

By the Council of the Royal Society of London for Improving of Natural Knowledge.

Ordered, That the Book written by Robert Hooke, M. A. Fellow of this Society, Entitled, Micrographia, or fome Phyfiological Defcriptions of Minute Bodies, made by Magnifying Glaffes, with Obfervations and Inquiries thereupon, Be Printed by John Martyn, and James Alleftry, Printers to the faid Society.

Novem. 23. 1664.

Brouncker.P.R.S. \% \% \%

MICROGRAPHIA:
 OR SOME Pbyfological Defrriptions

 OF
MINUTE BODIES

MADE BY
MAGNIFYING GLASSES.

W I TH

Observations and Inquiries thereupon.
By R. HOOKE, Fellow of the Royal Society.

> Non poffis oculoquantum contendere Linceus, Non tamen idcirco contemnas Lippus inungi. Horat. Ep. Lib. I.

LONDON, Printed for Fames Alleftry, Printer to the Royal Society, and are to be fold at his Shop, at the Rofe and Cromn in Duck-Lane。M DCLXVII,

$654-706$

Do here mof humbly lay this fmall Prefent at Your Majefties Royal feet. And though it comes accompany'd with twodifadrantages ${ }_{3}$ the meannes of the Autbors and of the Subject; yet in both I am incouraged by the greatness of your Mercy and your Knowledge. By the onel am taught, that you can A forgive

The Epistle

forgive the moft prefumptuous Offendors: And by the otber, that you will not e fteem the leaftwork of Nature, or Art, unworthy your Obfervation. Amidft the many felicities that have accompanid your Majefties happy Reftauration and Government, it is none of the leaft confiderable, that Pbilofophy and Experimental Learning have profper'd under your Royal Patronage. And as the calm profperity of your Reign has given us the leifure to follow there Studies of quiet and retirement, fo it is juft, that the Fruits of them fhould, by way of acknowledgement, be return'd to your Majefty. There are, Sir, feveral other of your Subjects, of your Royal Society, now bufie about Nobler matters: The Improvement of Manufactures and Agriculture, the Increafe of Commerce, the Advantage of Navigation: In all which they are afsijted by your Majefties Incouragement and Example. Amidft all thofe

greater

Dedicatory.

greater Defigns, I here prefume to bring in that which is more proportionable to the fmalne \bar{s} of my Abilities, and to offer fome of the leaft of all vifible things, to that Mighty King, that has eftat blibt an Empie over the beft of all Inviffble things of this World, the Minds of Men.

Your Majefties mof thumble
Thire and and moft obedient
Subject and Servant,
of Tobrum motis geviloz thom ei ti 10年 . 2noißmill hluox vd amol
mofntudis sis ogiobits bimonl IOOY
Robert Hoake.

[^0] you have laid upon me, to offer thefe my pogr Labourirs to this MOST 1LLU. STRIOUS ASSEMBLY. YOU have been pleas'd formerly to accept of thefe rude Draugbts. I have firice added to them fome Defcriptions, and fome Conjectures of my own. And therefore, together with YOUR Acceptance, I mult alfo beg YOUR pardon. The Rules YOU have prefcribd YOUR felves in YOUR Philofophical Progrefs do feem the beft that have ever yet been practis'd. And particularly that of avoiding Dogrnatizing, and the efpoufal of any Hypotbefis not fufficiently grounded and confirm'd by Experiments. This way feems the moft excellent, and may preferve both Pbilofopby and Natural Hiftory from its former Corruptions.In faying which, I may feem to condemn my own Courfe in this Treatife; in which there may perhaps be fome Expreffions, which may feem more pofitive then YOUR Prefcriptions will permit: And though I defire to have them underftood only as Conjectures and Quaries (which YOUR Method does not altogether difallow)yet if even in thofe I have exceeded, 'tis fit that I fhould declare, that it was not done by YOUR Directions. For it is moft unreafonable, that YOU fhould undergo the imputation of the faults of my Conjeciures, feeing YOU can receive fo fmall advantage of reputation by the Jeight Obfervations of

> YOUR moft bumble and moft faithful Servant

THE

 PREFACE.

 PREFACE.}

T is the great prerogative of Mankind above other Creatures, that we are not only able to behold the works of Nature, or barely to fuftein our lives by them, - but we bave allo thepower of confidering, comparing, altering, affifting, and improving them to various ufes. And as this is the pecculiar priviledge of bumane Nature in general, $f 0$ is it capable of being fo far advanced by the belps of Art, and Experience, as to make fome Men excel others in their Obfervations, and Deductions, almoft as mucb as they do Beafss. By the addition of. Jucb artificial Inftruments and merhods, there may be, in fome manner, a reparation made for the mijchiefs, and imperfection, mankind bas drawn upon it felf, by negligence; and intemperance, and a wilful and fuperfitious deferting the Preforipts and Rules of Nature, whereby every man, both from a deriv'd corruption, innate and born with bim, and from bis breeding and converfe with men, is very fubject to Mipinto all forts of errors.

The only way which now remains for us to recover fome degree of thofe former perfeciions, feems to be, by reciifying the operations of the Senfe, the Memory, and Reafon, ince upon the evidence, the ftrength, the integrity, and the right correfpondence of all thefe, all the light, by which our aciions are to be guided, is to be renewed, and allour command over things is to be eftablijbt.

It is therefore moft worthy of our confideration, to recollect their $\sqrt{ } \mathrm{e}$ feveral defects, that fo we may the better underftand bow to fupply them, and by what affifances we may inlarge their power, and fecure them in performing tbeir particular duties.

As for the actions of our Senfes, we cannot but obferve them to be in

The Preface.

many particulars mucb outdone by thofe of other Creatures, and when at bef,to be far fhort of the perfeciion they feem capable of: And tbefe infirinities of the Senfes arije from a doible caufe, eitber from the difproportion of the Object to the Organ, whereby an infinite number of things can never enter into them, or elfe from error in the Perception, that many things, wbich come witbin tbeir reach, are not received in a right manner.

The like frailties are to be found in the Memory; we often let many things flip away from us, wbich deferve to be retain'd; and of thofe which we treafure up, a great part is either frivolous or falle; and if good, and fubftantial, eitber in tracio of time obliterated, or at beft fo overwhelmed and buried under more frothy notions, that when there is need of therr, they are in vain fought for.

The two main foundations being fo deceioable, it is no wonder, tbat all the fucceeding works which we build upon them, of arguing, concluding, defining, judging, and all tbe other degrees of Reafon, are yable to the fame imperfection, being, at beft, either vain, or uncertain: Sotbat the errors of the underfanding are anfwerable to the two otber, being defective both in the quantity and goodnes of its knowledge; for the limits, to which our thoughts are confind, are fmall in refpect of the vafl extent of Nature it felf; fome parts of it are too large to be comprebended, and fome too lictle to beperceived. And from thence it muft fol low, that not baving a full fenfation of the Object, we muft be very lame and imperfect in our conceptions about it, and in all the propogitions which we build uponit; bence. we often take the fhadow of tbings for the fubftance, fmall appearances for good fimilitudes, fimilitudes for definitions; and even many of thofe, wbich we think to be the moft folid definitions, are ratber expreflions. of our own mijguided apprebenfions then of the true nature of the tbings themfelves.

The effects of tbeefe imperfections are manifefted in different ways, according to the temper and diffofition of the feveral minds of men, forme they incline to grofs ignorance and fupidity, andothers to a prefumptuous impofing on otber mens Opinions, and a confident dogmatizing on matters, whereof there is ne affurance to be given.

The Preface.

Thus all the uncertainty, and mijfakes of bumane actions, proceed either from the narrowness and wandring of our Senfes, from the lippe= rine β or delufion of our Memory, from the confinement or rafbne β of our Underftanding, fo that 'tis no wonder, that our power over natural caufes and effecis is fo flowly inprood, feeing we are not only to contend witb tbe obfcurity and dificulcy of the things whereon we work and think, but even tbe forces of our own minds confipire to betray us:
Thefe being the dangers in the procel of bumane Reafon, the remedies of them all can only proceed from the real, the mechanical, the experimental Pbilofopbyywkich bas this advantage over the Philofophy of difcourfe and difputation, that whereas that chiefly aims at the fubtily of its Deduciions and Conclufions, witbout mucb regard to the firfs ground-work, which ought to be well laid on the Senfe and Menory; fo this intends the right.ordering of them all, and the making them ferviceable to each otber.

Ibe firft tbing to be undertaken in this weighty work, is a watchfulnefs over the failings and an inlargement of the dominion, of the Senfes.

To which end it is requifite, firfi, That tbere fould be a fcrupulous choicc,and a ftrict examination, of the reality, conflancy, and certainty of the Particulars that me admit:This is the firf rife whereon trutb is to begin, and bere the mofif fevere, and moft inpartial diligence, muft be imployed; the foring up of all, witbout any regard to evidence or ufe, will only tend to darknefs and confufion. We muft not therefore efteem the ricbes of our Pbilofophical treafure by the number only, but cbiefly by the weight;the mofl vulgar Infances are not to be neglecited, but above all, the mof inftructive are to be entertain'd; the footfleps of Nature are to be trac d, not only in ber ordinary courfe, but when foe feerns to be put to ber flijfts, to make many doublings and turnings, and to ufe formekind of art in indeavouring to avoid our difcovery.

The mext care to be taken, in refpeci of the Senfes, is a fipplying of their infirmities witb Inftruments, and, as it were, the adding of artificial Organs to the natural ; this in one of them bas been of late years
accom-

The Preface.

accomplifot witb prodigious benefit to all forts of ufeful knowledge, by the invention of Optical Glafes. By the means of Telefcopes, there is notbing fo far diftant but may be reprefented to our view; and by the belp of Microfcopes, there is notbing fo fmall, as to efcape our inquiry; bence there is a new vifible World difcovered to the underftanding. By this means the Heavens are open'd, and a vaft number of new Stars, and new Motions, and new Productions appear in them, to wbich all the antient Aftronomerswere utterly Strangers. By this the Earth it Self, which lyes fo neer us, under our feet, fbews quite a new thing to us, and in every little particle of its matter, we now behold almoft as great a variety of Creatures, as we were able before to reckon up in the whole Univerfe it felf.

It feems not improbable, but that by thefe belps the fubtilty of the compofition of Bodies, the fructure of their parts, the varioustexture of their matter, the inftruments and manner of their inward motions, and all the other poflible appearances of.tbings, may come to be more fully difcovered; all which the antient Peripateticks were content to comprehend in two general and (unle β further explaind) ufele β words of Matter and Form. From whence there, may arife many admirable advantages,towards the increafe of the Operative, and the Mechanick Knowledge, to which this Age feems fo mucb inclined, becaufe we may perbaps be inabled to difcern all the fecret workings of Nature, almoft in the fame manner as we do thofe that are the produciions of Art, and are manag'd by Wheels, and Engines, and Springs, that were devifed by bumane Wit.

In tbis kind I bere prefent to the World my imperfeci Indeavours; which though they foall prove no other way confiderable, yet, I bope, they may be in fome meafure ufeful to the main Defign of a reformation in Pbilofophy, if it be only by Jhewing, that there is not fo mucb requir'd towards it, any ftrength of Imagination, or exacinefs of Method, or depth of Contemplation(though the addition of the fe, where they can be bad, muft needs produce a much more perfeci compofure) as a fincere Hand, and a faithful Eye, to examine, and to record, the things themfelves. as they appear.

The Preface.

And I beg my Reader, to let me take the boldneß to affure bim, that in this prefent condition of knowledge, a man fo qualified, as I bave indeavoured to be, only with refolution, and integrity, and plain intentions of imploying bis Senfes aright, may venture to. compare the reality and the ufffulne β of bis fervices, towards the true Pbilofophy, with thofe of otber men, that are of much fronger, and more acute fpeculations, that fball not make ufe of the fame metbod by the Senfes.

The truth is, the Science of Nature bas been already too long made only a work of the Brain and the Fancy: It is now bigh time that it Sould return to the plainne β and foundne β of Obfervations on material and obvious things. It is faild of great Empires, That the beft way to preferve them from decay, is to bring them back to the firft Principles, and Arts, on which they did begin. The fame is undoubtedly true in Pbilofophy, that by wandring far away into invifible Notions, bas almof quite deftroy'd it felf, and it can never be recovered, or continued, but by returning into the fame fenfible paths, in which it did at firft proceed.

If therefore the Reader expects from me any infallible Dedustions, or certainty of Axioms, I am to fay for my felf, that thofe fronger Works of Wit and Imagination are above my weak Abilities; or if they bad not been fo, I would not bave made ufe of thern in this prefent Subject before me: Whereever be finds that I bave ventur'd at any fmall Conjectures, at the caufes of the things that I bave obferved, Ibefeech bin to look upon them only as doubtful Problems, and uncertain gheffes, and not as unquefionable Conclufions, or matters of unconfutable Science; Ibave produced notbing bere, nith intent to bind bis underftanding to an implicit confent, I am fo far from that, that I defire bim, not abjolutely to rely upon thefe Obfervations of my eyes, if be finds them contradiCted by the future Ocular Experiments of σ ber and impartial Difcoverers.

As for my part, Ibave obtained my end, if thefe my fmall Labours fhall be thought fit to take up fome place in the large flock of natural Obfervations, which fo many hands are bufie in providing. If Ihave. contributed the meaneft foundations whereon otbers may raife nobler

The Preface.

Superftructures, I am abundantly fat isfied; and all my ambition is, that Imay ferve to the great Pbilofopbers of this Age, as the makers and the grinders of my Glaffes did to me; that I may prepare and furnifh them with fome Materials, wbich they may afterwards order and manage with better skill, and to far greater advantage.

Tbe next remedies in tbis univerfal cure of the. Mind are to be applyed to the Memory, and they are to confift of fucb Direciions as may inform us, what things are befl to be ftor'd up for our purpofe, and which is the befi way of fo difpofing them, that they may not only be kept in fafety, but ready and convenient, to be at any time produc'd for ufe, as occafon fall require. But I will not bere prevent my felf in what I may fay in another Difcourfe, wherein I faall make an attempt to propofe fome Confiderations of the manner of compiling a Natural and Artifcial Hiffory, and of fo ranging and regiffring its Particulars into Pbilofophical Tables, as may make them moft uffeful for the raijing of Axioms and Theories.

The laft indeed is the mof hazardous Enterprize, and yet the moft neceffary; and tbat is, to take fuch care tbat the Judgment and the Reafon of Man (which is the third Faculty to be repair'd and improvid) Joould receive fucb afiftance, as to avoid the dangers to which it is by nature moft fubject. The Imperfections, which I bave already mention'd, to which it is lyable, do eitber belong to the extent, or the goodnels of its knomledge; and bere the diffrculty is the greater, leaft that mbich may be tbougbt a remedy for the one fhould prove deftructive to the otber, leaf by feeking to inlarge our Kinowledge, we flould render it weak and uncertain; and leaft by being too fcrupulous and exaci about every Circumftance of it, we fhould confine and fireigbten it too mucb.

In both thefe the middle wayes are to be taken, notbing is to be omitted, and yet every tbing to paß a mature deliberation: No Intelligence from Men of all Profefions, and quarters of the World, to beffighted, and yet all to be fo feverely examin'd, that there remain no room for doubt or inftability; much rigour in admitting, much ftrictnefs in comparing, and above all, nucb flownefs in debating, and fhynefs

The Preface.

thynefs in determining, is to be practifed. The Underftanding is to order all the inferiour fervices of the lower Faculties; but yet it is to do this only as a lawful Mafter, and not as a Tyrant. It muft not incroach upon their Offtces, nor take upon it felf the employments which belong to eitber of them. It muft watch the irregularities of the Senfes, but it muft not go before them, or prevent tbeir information. It muflexamine, range, and difpofe of the bank which is laid up in the Memory; but it muft be fure to make diffinction between the fober and well collected heap, and the extravagant Idea's, and mittaken Images, which there it may fornetimes light upon. So many are the links, upon whicb the true Pbilofopby depends, of which, if any one be loofe, or weak, the whole chain is in danger of being diffolv'd ; it is to begin with the -Hands. and Eyes, and to proceed on through the Memory, to be continued by the Reafon; nor is it to fop there, but to come about to the Hands and Eyes again, and \int_{0}, by a continual paffage round from one Faculty to another, it is to be maintained in life and firength, as much as the body of man is by the circulation of the blood tbrough the feveral parts of the body, the Arms, the Fat, the Lungs, the Heart, and the Head.

If once tbis metbod were followed with diligence and attention, there is notbing that lyes within the power of buman Wit (or which is far more effectual) of buman Indufiry, which we might not compiaß; we might not only bope for Inventions to equalize thofe of Copernicus, Galileo, Gilbert Harvy, and of otbers, wbofe Names are almoft loft, that were the Inventors of Gun-powder, the Seamans Compafs, Printing, Etching, Graving, Microfcopes, \&c. but multitudes that may far exceed tbem: for even thofe difcoveries feem to bave been the producis of fome fuch method, though but imperfeci ; What may not be therefore expected from it if thorougbly profecuted? Talking and contention of Arguments would foon be turn' dinto labours; all the finedreams of Opinions, and univerfal metaphyfical natures, which the luxury of fubtil Brains bas devis d, would quickly vanilh, and giveplace to folid Hiftories, Experiments and Works. And as at firf, mankind fell by tafting of the forbidden Tree of Know ledge 3 o we, their Pofterity, may be inpart reftor'd

The Preface.

by the fame way, not only by beholding and contemplating, but by táfting too tbofe fruits of Natural knowledge, that were never yet forbidden.

From bence the World may be affifled witb variety of Inventions, new matter for Sciences may be collected, the old improv'd, and their ruft rubb' daway; and as it is by the benefit of Senfes that we receive all our Skill in the works of Nature, $\int 0$ they alfo may be wonderfully benefited by it, and may be guided to an eafier and more exact performance of their Offices; 'tis not unlikely, but that we may find out wherein our Senjes are deficient, and as cafily find wayes of repairing them.

The Indeavours of Skilful men bave been mof converfant about the affitance of the Eye, and many noble Productions bave followed upon it; and from bence we may conclude, that there is a way open'd for advancing the operations, not only of all the otber Senfes, but even of the Eye it felf;that which bas been already done ougbt not to content us, but ratber to incourage us to proceed further, and to attempt greater things in the fame and different wayes.
'Tis not unlikely, but that there may be yet invented feveral otber belps for the eye, as mucb exceeding thofe already found, as thofe do the bare eye, fuch as by which we may perbaps be able to difcover living Creatures in the Moon, or otber Planets, the figures of the compounding Particles of matter, and the particular Schematifms and Textures of Eodies.

And as Glaffes bave bighly promoted our feeing, $\int 0^{\circ}$ tis not improbable, but tbat there may be found many Mechanical Inventions to improve our otber Senfes, of hearing, fmelling, tafting, touching. 'Tis not impoffible to bear a whifper a furlongs diftance, it baving been already done; and perbaps the nature of the thing would not make it more impoffible, though that furlong Jbould be ten times multiply'd. And tbough fome famous Authors bave affirm'd it impofible to bear through the thinneft plate of Mufcovy-glafs; yet Iknow a way,by which tisenfie enough to bear one fpeak tbrough a wall a yard thick. It bas not been yet thoroughly examin' d, bow far Otocoufticons may be improo'd, nor what other wayes there may be of quickning our bearing, or conveying found through other bodies then the Air: for that that is not the only medium, I can af ure the Reader, that I bave,by the belp of a diftended wire, propa-

The Preface.

gated the found to a very confiderable diftance in an inftant, or witb as feemingly quick a motion as that of ligbt, at leaff, incoupparably fwifter then that, which at the fame time was proparated tbrough the Air; and this not only in a fraight line, or direef, but in one bended in many: angles.

Nor are the other three Yo perfect, but that diligence, attention, and many mechanical contrivances, may alfa bighly imprave themen F ior fince the Jenfe of finelling feems to be made by the fwife paffage of the Air (impregnated with the flean's and effluvia of Feverail odorous Bodies) througts the grifly meanders of the Nofe whofey furffices are coverd with a very fenfible nerve, and moiftned by a tranfudation from the proceffus mamillares of the Brain, and form ad ${ }_{7}$ joyning glandules, and by tbe moift feam of the Lungs, with a Liquon convenient for the reception of thofe eflluvia and by the adbefion and mixing of thofe feams witb that liquor, and thereby affecting the nerve, or perbaps by infinuating themflues into the juices of the brain, after the fame manner, as I bave in the following Obfervations intimated, the parts of Salt topaß through the skins of Efs, and Frogs. Since, I fay, fruelling feems to be made by fome fuch way, tis not inprobable, but that fome contrivance, for making a great quantity of Air paß quick tbrought the Nofe, migbt as much promote the fenfe of finelling, as the any wayes hindring that paffage does dull and defiroy it. Several tryals I bave made, botb of bindring and pronoting this fenfe, and bave fucceeded in forne according to expeciation; and indeed to me it feems capable of being improv'd, for the judging of the confitutions of many Bodies. Perbaps we may thereby allo judge (as otber Creatures feem to do) what is wholfome, what poyfon; and in a word, what are the pecifick properties of Bodies.

There may be allo fome otber mechanical wayes found out, of fenfibly perceiving the effluvia of Bodies; feveral Infances of wbich, were it bere proper, I couldgive of Mineral fieams and exbalations; and it feems not impofible, but that by fome fuch wayes improved, may be dijcovered, what Minerals lye buried under the Earth, without the trouble to dig for them; fome things to confirm this Conjecture enay be found in Agricola, and otber Writers of Minerals, peaking of the Vegetables that are apt to thrive, of pine, in thofe feams.

Whetber

The Preface.

Whether allo thofe feains, which feem to iffue out of the Earth, and mix with the Air (and fo toprecipitate fore aqueous Exbalations, wherewith 'tis impregnated) may not be by fome way detected before they produce the effect, feems bard to determine; yet Jometbing of this kind I am able to difcover, by an Infrument I contriv'd to Jhew all the minute variations in thepref fure of the Air; by wbich I conftantly find, tbat before, and during the time of rainy weatber, the preffure of the Air is le β, and in dry weather, but efpecially when an Eaftern Wind (which baving paft over vaft tracis of Land is beavy with Eartby Particles) blows, it is much more, though thefe cbanges are varied according to very odd Laws.
The Inftrument is this. I prepare a pretty capaceous Bolt-head AB, with a frall fem about two foot and a half long $D C$; upon the end of this D Iput on a fmall bended Glafs,or brazen syphon DEF (open at D, E and F, but to be clofed with cement at F and E , as occafion ferves) whofe ftem F fhould be about fix or eight inches long, but the bore of it not above half an inch diameter, and very even; thefe I fix very frongly together by the help of very hard Cement, and then fit the whole Glafs A BCDEF into a long Board, or Frame, in fuch manner, that almoft half the head A B may lye buried in a concave Hemifphere cut into the Board RS ; then I place it fo on the Board RS, as is expreft in the firft Figure of the firft Scheme; and fix it very firm and fteady in that poffure, fo as that the weight of the Mercury that is afterwards to be put into it,may not in the leaff fhake or fir it; then drawing a line XY on the Frame R T, fo that it may divide the ball into two equal parts, or that it may pafs, as 'twere, through the center of the ball. 1 begin from that, and divide all the reft of the Board towards UT into inches, and the inches between the 25 and the end E (which need not be above two or three and thirty inches diftant from the line X Y) I fubdivide into Decimals; then ftopping the end F with foft Cement, or foft Wax, I invert the Frame, placing the head downwards, and the Orifice E upwards; and by it, with a fmall Funnel, I fill the whole Glafs with Quickfilver; then by ftopping the fmall Orifice E with my finger, I offentimes erect and invert the whole Glafs and Frame, and thereby free the Quickfilver and Glafs from all the bubbles or parcels of lurking Air ; then inverting it as before, Ifill it top full with clear and well ftrain'd Quickfilver, and having made ready a frall ball of pretty hard Cement, by heat made very foft, I prefs it into the hole E, and thereby fop it very faft; and to fecure this Cement from flying out afterward, I bind over it a piece of Leather, that is fpread over in the infide with Cement, and wound about it whilft the Cement is hot: Having thus faftned it, I gently erect again the Glaf after this manner: I firft let the Frame down edge-wayes, till the edge R V touch the Floor, or ly horizontal ; and then in that edging pofture raife the end RS; this I do, that if there chance to be any Air hidden in the frall Pipe E, it may afcend into the Pipe F, and not into the Pipe D C : Having thus erected it, and hung it by the hole Q , or fixt it perpendicularly by any other means, I open the end F ,

The Preface.

and by a fmall syphon I draw out the Aercury fo long, till I find the furface of it $A B$ in the head to touch exactly the line XY; at which ţime I immediately take away the syphon, and if by chance it be run fomewhat below the line X Y, by pouring ingently a little Mercury at F, I raife it again to its defired height, by this contrivance I make all the fenfible rifing and falling of the Mercury to be vifible in the furface of the Mercury in the Pipe F, and fcarce any in the head A B. But becaufe there really is fome fmall change of the upper furface alfo, I find by feveral Obfervations how much it rifes in the Ball, and falls in the Pipe F, to make the diftance between the two furfaces an inch greater then it was before; and the meafure that it falls in the Pipe is the length of the inch by which I am to mark the parts of the Tube F, or the Board on which it lyes, into inches and Decimals: Having thus juftned and divided it, I have a large Wheel M N O P, whofe outmoft limb is divided into two hundred equal parts; this by certain fmall Pillars is fixt on the Frame R T, in the manner expreft in the Figure. In the middle of this, on the back fide, in a convenient frame, is placed a fmall Cylinder, whofe circumference is equal to twice the length of one of thofe divifions, which I find anfwer to an inch of afcent, or defcent, of Alerciry: This Cylinder I, is movable on a very fmall Needle, on the end of which is fixt a very light Index K L , all which are fo pois'd on the Axis, or Needle, that no part is heavier then another: Then about this Cylinder is wound a fmall Clew of Silk, with two fmall fteel Bullets at each end of it GH ; one of thefe, which is fomewhat the heavier, ought to befo big, as freely to move to and fro in the PipeF; by means of which contrivance, every the leaft variation of the height of the Mercury will be made exceeding vifible by the motion to and fro of the fmall Index K L.

But this is but one way of dicovering the effluvia of the Earthmixt witb the Air ; there may be perbaps many otbers, witne β the Hygrofcope, an Infrument whereby the watery feams volatile in the Air are difcerned, wbich the Nofe it felf is not able to find. This I bave defcrib'd in the following Trast in the Defcription of the Beard of a wild Oat. Otbers there are,may be difcovered botb by the Nofe, and by otber wayes alfo. Thbus the fmoak of burning Wood is fmelt, feen, and fufficiently felt by the eyes: The fumes of burning Brimftone are fmelt and difcovered alfo by the deffroying the Colours of Bodies, as by the whitening of a red Rofe : And who knows, but that the Induftry of man, following this method, may find out wayes of improving this fenfeto as great a degree of per fection as it is in any Animal, and perbaps yet bigher.
'Tis not improbable alfo,but tbat our tafte may be very mucb improv'd, eitber by preparing our taft for the Body, as, after eating bitter tbings, Wine, or other Vinous liquors, are more fenfibly tafted; or elfe by preparing

The Prefacf.

paring Bodies for our taf; as the difolving of Metals with acid Liquors, make them tafable, which were before altogetber infipid; tbus Lead becomes fweeter then Sugar, and Silver more bitter then Gall, Copper and Iron of moft loathfome $t a f f s$. And indeed the bufine β of this fenfe being to dicover the prefence of diffolved Bodies in Liquors put on the Tongue, or ingeneral to dif cover that a fluid body bas fome folid body dif olv'd in it, and what they are; whatever contrivance makes this difcovery improves this fenfe. In this kind the mixtures of Chymsical Liquors afford many Infances; as the fureet Vinegar that is impregnated with Lead may be difcovered to be fo by the affufion of a little of an Alcalizate folution: The bitter liquor of Aqua fortis and Silver may be difcover'd to be charg'd witb that Metal, by laying in it fome plates of Copper: 'Tis not improbable alfo,but there may be multitudes of other wayes of difcovering the parts diffolv'd, or difoluble in liquors; and what is this difcovery but a kind of fecundary tafting.

Tis not improbable alfo, but tbat the fenfe of feeling may be bigbly inprov'd, for that being a fenfe that judges of the more grois and robuft motions of the Particles of Bodies, feems capable of being inprovid and afifted very many wayes. Thus for the diftinguifbing of Heat and Cold, the Weather-glafs and Thermometer, which Ibave def crib dintbis following Treatife, do exceedingly perfeci it; by each of nobich the leaft variations of heat or cold, which the moft Acute Senfer is not able to diftingui/h, are manifefted This is oftentimes furtber promoted alfo by the belp of Burn-ing-glaffes, and the like, which collect and unite the radiating beat. Thus the roughnefs and fmoothnefs of a Body is made much more fenfible by the help of a Microfcope, then by the moff tender and delicate Hand. Perbaps, a Pbyjitian might, by feveral other tangible proprieties, difcover the confitution of a Body as well as by the Pulfe. I do but inffance in thefe,to feew what pofibility there may be of many otbers, and what.probability and hopesthere were of finding them, if this method were followed; for the Offices of the five Senfes being to deteci eitber the fubtil and curious Motions propagated througg all pellucid or perfecily homogeneous Bodies; Or the moregrofs and vibrative Pulfe communicated tbrough the Air and allotber converient mediums,wbetber fluid or folid: Or the

The Preface.

effluvia of Bodies diffolv'd in the Air ; Or the particles of bodies diffolv'd or diffoluble in Liquors, or the more quick and violent fhaking motion of heat in all or any of thefe: mbatfoever does any mayes promote any of thefe kinds of criteria, does afford a way of improving fome one fenfe. And what a multitude of tbefewould a diligent Man meet with in bis inquiries? Andtbis for the belping and promoting the fenfitive faculty only.

Next, as for the Memory, or retentive faculty, me may be fufficiently infructed from the written Hiftories of civil actions, what great afle fance may be afforded the Memory, in the committing to writing tbings obfervable in natural operations. If a Pby/itian be tberefore accounted the more able in bis Faculty, becuufe be bas bad long experience and pravice, the remembrance of wbich, tbough perbaps very inperfect, does regulate all bis after actions: What ougbt to be thought of that man, tbat has not only a perfect regifter of bis own experience, but is grown old with the experience of many bundreds of years, and many thoufands of men.

And though of late, men, beginning to be enfible of tbis convenience, bave here and there regiffred and printed fome fen Centuries, yet for the mof ipart they are fet down very lamely and imperfecily, and, Ifear, many times not fo truly, they feeming, feveral of them, to be defign'd more for Oftentation then publique ufe: For, not to inflance, that they do, for the mof part,onit thofe Experiences they bave made, wherein their Patients bave mijcarried, it is very eafie to be perceiv'd, that they do all a long hyperbolically extol their own Prefcriptions, and vilifie thofe of otbers. Notwithffanding all which, thefe kinds of Hiftories are generally efteerid ujeful, even to the ableft Pbyjitian.

What may not be expecied from the rational or deductive Faculty that is furnifbt with fucb Materials, and thofe fo readily adapted, and rang'd for ufe, that in a moment, as 'twere, thoufands of Inflances, ferving for the illuftration, determination, or invention, of almoft any inquiry, may be reprefented even to the fight? How neer the nature of Axioms muft all thofe Propoficions be wbich are examin'd before fo many Witneffes? And bow difficult will it be for any, though never fo fubtilan error in Pbilofophy, to fcape from being difcover'd, after it basindur'd the touch, and 5 o many other tryals?

What

The Preface.

What kind of mechanicalway, andpbyfical invention alfo is there requir' d, that might not this way be found out? The Invention of a way to find the Longitude of places is eafily perform' d, and tbat to as great perfection as is defir' d, or to as great an accuratenefs as the Latitude of places can be found at Sea; and perbaps yet alfo to a greater certainty then that bas been bitberto found, as I fball very fpeedily freely manifeff to the morld. The way of flying in the Air feems principally unpraciicable, by reafon of the want of ftrength in humane mufcles; if therefore tbat could be fuppli d,it were,Itbink, eafie to make twenty contrivances to perform the office of Wings: What Attempts alfo I bave made for the fupplying that Defect, and my fucceffestberein, which, It bink, are wholly new, and not inconfiderable, I fball in anotber place relate.
'Tis not unlikely alfo, but that Chymifts, if they followed tbis method, might find out their fo much fought for Alkaheft. What an univerfal Menftruum, which diffoloes all forts of Sulphureous Bodies, Ibave difooverd (wbich bas not been before taken notice of as fuch) Ibave fhewn in the fixteenth Obfervation.

What a prodigious variety of Inventions in Anatomy bas tbis latter Age afforded, even in our own Bodies, in the very Heart, by wbich we live, and the Brain,wbich is the feat of our knowledge of other things? witneß allthe excellent Works of Pecquet, Bartholinus, Billius, and many otbers ; and at bome, of Docior Harvy, Doctor Ent, Doctior Willis, Docior Gliffon. InCeleftial Obfervations we bave far exceeded all the Antients,even the Chaldeans and Egyptians themfelves, whofe vaft Plains, high Towers, and clear Air, did not give them fo great adoantages over us, as we bave over them by our Glafles. By the belpof which, they bave been very much outdone by the famous Galileo, Hevelius, Zulichem; and our own Countrymen, Mr. Rook, Docfor Wren, and the great Ornament of our Cburch and Nation, the Lord Bifhop of Exeter. And to fay no more in Aerial Difcoveries, there bas been a wonderful progreß made by the Noble Engine of the molt Illuftrious Mr. Boyle, arbom it becomes me to mention with all bonour, not only as my particular Patron, but as the Patron of Philofophy it Jelf; which be every day increafes by bis Labours, and adorns by bis Example.

The Preface.

The good fucceß of all tbefe great Men, and many otbers, and the now feemingly great obvioufnels of mofi of their and divers other Inventions, which from the beginning of the world bave been, as 'twere, trodon, and yet not minded till thefe lafi inquifitive Ages (an Argument that there may be yet bebind multitudes of the like) puts me in mind to recommend fucb Studies, and tbe profecution of them by fuch metbods, to the Gentlemen of our Nation, whofe leifure makes them fit to undertake, and the plenty of their fortunes to accomplifh, extraordinary tbings in this way. And I do not onlypropofe this kind of Experimental Philofophy as a matter of bigh rapture and delight of the mind, but even as a material and fenfible Pleafure. So vaft is the variety of Objects which will come under their Infpections, fo many different wayes there are of handling them, fo great is the fatisfaction of finding out new things, that I dare compare the contentment which they will injoy, not only to that of contemplation, but even to that wibich moft men prefer of the very Senfes themfelves.

And if they will pleafe to take any incouragenent from fo mean and fo imperfeci endeavours as mine, upon my own experience, I can af ure them, without arrogance, That there bas not been any inquiry or Problem in Mechanicks, that I bave bitbertopropounded to my felf, but by a certain metbod (wbich I may on fome otber opportunity explain) I bave been able prefently to examine the pofibility of it; and iffo, as eafily to excogitate divers wayes of performing it: And indeed it is pofible to do as much by this method in Mechanicks, as by Algebra can be peefform'din Geometry. Nor can I at all doubt, but tbat the fame metbod is as applicable to Phyfical Enquiries, and as likely to find and reap thence as plentiful a crop of Inventions; and indeed there feems to be no fubject fo barren, but may with tbis good busbandry be bigbly improv'd.

Toward the profecution of this metbod in Phyfical Inquiries, I bave bere and there gleaned up an handful of Obfervations, in the collection of mof of which I made ufe of Microfcopes, and fome other Glaffes and InAruments that improve the fenfe; wbich way I bave berein taken, not that there are not multitudes of uffful and pleafant Obfervables, yet uncolLecied, ,bvious enough without the belps of Art, but only to promote the ufe of Mechanical belps for the Senfes,both in the furveying the already vifible

The PREFACF.

World, and for tbe difcovery of many otbers bitherto unknown, and to make us, witb the great Conqueror, to be affecied that we bave not yet overcome one World when there are fo many otbers to be difcovered, every confiderable improvement of Telefcopes or Microfcopes producing new Worlds and Terra-Incognita's to our view.

The Glaffes I ufed were of our Englifh make, but though very good of the kind, yet far foort of what might be expected, could we once find a way of making Glaffes Elliptical, or of fome more true Sbape ; for though both Microfcopes, and Telefcopes, as they now are, will magnifie an Object about a thoufand thoufand times bigger then it appears to the naked eye; yet the Apertures of the Object-glaffes are fo very fmall, that very few Rays are admitted, and even of thofe fen there are fo many falfe, that the Objeci appears dark and indiftinct : And indeed thefe inconveniences are fuch, as feem infeparable from Spherical Glaffes, even when moft exactly made;but the way we bave bitherto made ufe offor that purpofe is fo imperfect, that there may be perbapsten wrought before one be made tolerably good, and moft of thofe ten perbaps every one differing in goodne β one from another, which is an Argument, that the way bitberto ufed is, at leafi, very uncertain. So that thefe Glaffes bave a double defect; the one, that very few of them are exacily true wrought; the other, that even of thofe that are beft among them, none will admit a fufficient number of Rayes to magnifie the Objest beyond a determinate bigneß. Againft which Inconveniences the only Remedies I bave bitherto met with are thefe.

Firft, for Microfcopes (where the Object we view is near and within our power)the beft way of making it appear bright in the Glafs, is to caft a great quantity of light on it by means of convex glaffes, for thereby, though the aperture be very fmall, yet there will throng in through it fuch multitudes, that an Object will by this means indure to be magnifid as much again as it would be without it. The way for doing which is this. I make choice of fome Room that has only one window open to the South, and at about three or four foot diftance from this Window, on a Table, I place my Microfcope, and then fo place either a round Globe of Water, or a very deep clear plano convex Glafs (whofe convex fide is turn'd towards the Window) that there is a great quantity of Rayes collected and thrown upon the Object: Or if the Sun fhine, I place a frall piece of oyly Paper very near the Object, between that and the light; then with a good large Burning-Glafs I fo collect and throw the Rayes on the Paper, that there may be a very great quantity of light pafs through it to the Object ; yet I fo proportion that light, that it

The Preface.

may not finge or burn the Paper. Inftead of which Paper there may be made ufe of a fmall piece of Looking-glafs plate, one of whofe fides is made rough by being rubbid on a flat Tool with very fine fand, this will, if the heat be leifurely caft on it, indure a much greater degree of heat, and confequently very much augment a convenient light. By all which means the light of the Sun, or of a Window, may be fo calt on an Object, as to make it twice as light as it would otherwife be without it, and that without any inconvenience of glaring, which the immediate light of the Sun is very apt to create in moft Objects; for by this means the light isfo equally diffured, that all parts are alike inlightned; but when the immediate light of the Sun falls on it, the reflexions from fome few parts are fo vivid, that they drown the appearance of all the other, and are themfelves alfo, by reafon of the inequality of light, indiftinct, and appear only radiant foots.

But becaule the light of the Sun, and alfo that of a Window, is in a continual variation, and fo many Objects cannot be view'd long enough by them to bethroughly examin'd; befides that, oftentimes the Weather is fo dark and cloudy, that for many dayes together nothing can be view'd: And becaufe alfo there are many Objegts to be met with in the night, which cannot fo conveniently be kept perhaps till the day, therefore to procure and caft a fufficient quantity of light on an Object in the night, I thought of, and often ufed this, Expedient.

I procur'd me a fmall Pedeftal, fuch as is defrrib'd in the fifth Figure of the firft scheme on the frnall Pillar A B, of which were two movable Armes CD, which by means of the Screws EF, I could fix in any part of the Pillar; on the undermoft of thefe I plac d a pretty large Globe of Glafs G, fill'd with exceeding clear Brine, ftopt, inverted, and fixt in the manner vifible in the Figure; out of the fide of which Arm proceeded another Arm H , with many joynts; to the end of which was faftned a deep plain Convex glafs I , which by means of this Arm could be moved to and fro, and fixt in any pofture. On the upper Arm was placed a friall LampK, which could be fo mov'd upon the end of the Arm, as to be fet in a fit pofture to give light through the Ball: By means of this Inftrument duly plac'd, as is expreft in the Figure, with the fmall flame of a Lamp may be caft as great and convenient a light on the Object as it will well indurejand being always conftant, and to be had at any time, I found moft proper for drawing the reprefentations of thofe fmall Objects I had occafion to obferve.

None of all which ways (though much beyond any other hitherto made ufe of by any I know) do afford a fufficient help, but after a certain degree of magnifying, they leave us again in the lurch. Henceit were very defirable, that fome way were thought of for making the Object-glafs of fuch a Figure as would conveniently bear a large Aperture.

As for Telefcopes, the only improvement they feem capable of, is the increafing of their lengtb; for the Object being remote, there is no tbought of giving it a greater light then it bas ; and therefore to augment the Aperture, the Glaß muft be ground of a very large (bbere; for, by tbat

The Preface.

means, the longer the Gla β be, the bigger aperture nill it bear, if the Glaffes be of an equal goodme β in their kind. Therefore a fix will indure a mucb larger Aperture then a three foot $G l a \beta$; and a fixty foot $G l a \beta$ will proportionably bear a greater Aperture then a thirty, and pill as mucb excel it alfo as a fix foot does a three foot, as I bave experimentally objerv'd in one of that length made by Mr. Richard Reives here at London, which will bear an Aperture above tbree inches over, and yet make the Object proportionably big and difitinct ; whereas there are very few thirty foot Glafes that will indurc an Aperture of more then two inches over. So that for Telefcopes, fuppofing we bad a very ready way of making their Objeci Glafes of exacily fpherical Surfaces, we might, by increafing the length of the Glaß, magnifie the Object to any affignable bigne β. And for performing botb thefe, I cannot inagine any way more eafie, and more exaci, then by this following Engine,by means of which, any Glaffes, of what length foever, may be fpeedily made. It feems the moft eafie, becaufe with one and the fame Tool may be with care ground an Object Gla β, of any length or breadtbrequifite, and that witb very little or no trouble in fitting the Engine, and witbout mucb skill in the Grinder. It feems to be the moft exaci, for to the very laft froke the Glaß does regulate and rectifie the Tool to its exact Figure; and the longer or more the Tool and Glaß are wrought togetber, the moreexact will both of them be of the defir'd Figure. Further, the motions of the Glaß and Tool do fo cro β each other, tbat there is not one point of eithers Surface, but bas thoufands of croß motions thwarting it, ऽo that there can be no kind of. Rings or Gutters made eitber in the Tool or Glaß.

The contrivance of the Engine is, only to make the ends of two large Mandrils fo to move, that the Centers of them may be at any convenient diftance afunder, and that the Axis of the Mandrils lying both in the fame plain produc'd, may meet each other in any affignable Angle; both which requifites may be very well perform'd by the Engine defcrib'd in the third Figure of the firf Scheme : where A B fignifies the Beam of a Lath fixt perpendicularly or Horizontally, CD the two Poppet heads, fixt at about two foot diffance, EF an Iron Mandril, whofe tapering neck F runs in an adapted tapering brafs Collar; the other end Eruns on the point of a Screw G; in a convenient place of this is faftned H a pully Wheel, and into the end of it,that comes through the Poppet head C, is frewed a Ring of a hollow cylinder K , or fome other conveniently fhapd Tool, of what widenefs flail

The Preface.

be thought moft proper for the cize of Glaffes, about which it is to be imploy'd: As, for Object glaffes, between twelve foot and an hundred foot long, the Ring may be about fix inches over, or indeed fomewhat more for thofe longer Glaffes. It would be convenient alfo, and not very chargeable, to have four or five feveral Tools; as one for all Glaffes between an inch and a foot, one for all Glaffes between a foot and ten foot long, another for all between ten and an hundred, a fourth for all between a hundred and a thoufand foot long; and if Curiofity fhall ever proceed fo far,one for all lengths between a thoufand and ten thoufand foot long; for indeed the principle is fuch, that fuppofing the Mandrils well made, and of a good length, and fuppofing great care be ufed in working and polifhing them, I fee no reafon, but that a Glafs of a thoufand, nay of ten thoufand foot long, may be as well made as one of ten; for the reafon is the fame,fuppofing the Mandrils and Tools be made fufficiently ftrong, fo that they cannot bend; and fuppofing the Glafs, out of which they are wrought, be capable of fogreat a regularity in its parts as to refraction: this hollow cylinder K is to contain the Sand, and by being drove round very quick to and fro by means of a fmall Wheel, which may be mov'd with ones foot, ferves to grind the Glafs : The other Mandril is fhap'd like this, but it has an even neck inftead of a taper one, and runs in a Collar, that by the help of a Screw, and a joynt made like M in the Figure, it can be ftill adjuftned to the wearing or wafting neck: into the end of this Mandril is ferewed a Chock N , on which with Cement or Glew is faftned the piece of Glafs Q that is to be form'd ; the middle of which Glafs is to be plac'd juft on the edge of the Ring, and the Lath OP is to be fet and fixt (by means of certain pieces and ferews, the manner whereof will be fufficiently evidenc'd by the Figure) in fuch an Angle as is requifite to the forming of fuch a Sphere as the Glafs is defign'd to be of; the geometrical ground of which being fufficiently plain, though not heeded before, I fhall, for brevities fake, pafs over. This laft Mandril is to be made (by means of the former, or fome other Wheel) to run round very fwift alfo, by which two crofs motions the Glafs cannot chufe (if care be us'd) but be wrought into a moft exactly feherical Surface.

But becaufe we are certain, from the Laws of refraction (wbich \dot{I} I bave experimentally found to be fo, by an Infirument I fball prefertly defcribe) that the lines of the angles of Incidence are proportionate to the lines of the angles of Refraction, therefore if Glafes could be made of thofe kind of Figures, or fome other, fuch as the moft incomparable Des Cartes bas invented, and demonfirated in bis Pbilofopbical and Matbematical Works,we might bope for a much greater perfection of Opticks then can be rationally expected from 厅pherical ones; for though, cateris paribus, we find, that the larger the Telefcope Objeci Glaffes are, and the Sborter thofe of the Microfcope, the better they magnifie, yet both of them,

The Preface.

befide fuch deterninate dimenfions, are by certain inconveniences rendred unuffeul; for it willbe exceeding difficull to make and manage a Tube above an hundred foot long, and it will be as diffcult to inlighten an Objef leß then an bundred part of an inch dijfant from the Objefi Glaß.

I bave not as yet made any attempts of that kind, though I know two or three wayes, which, as far as I bave yet confidered, Seem very probable, and may invite me to make a tryal as foon as Ib.zve an ofportunity, of wbich I may bereafter perbaps acquaint the world. In the Interim, I Joall defribe the Infrument Iever now mention'd, by wbich the refraation of all kinds of Liquors may be moft exacily meafur'd, thereely to give the curious an opportunity of making wbat furtber tryals of that kind they Jaall think requijte to any of their intended tryals; and to let them fee that the laws of Refraciion are not only notional.

The Inftrument confifted of five Rulers, or long pieces placed together, after the manner expreft in the fecond Figure of the firft Scheme, where A B denotes a ftraight piece of wood about fix foot and two inches long, about three inches over, and an inch and half thick, on the back fide of which washung a fmall plummet by a line ftretcht from top to bottom, by which this piece was fet exactly upright, and fo very firmly fixt; in the middle of this was made a hole or center, into which one end of a hollow cylindrical brafs Box CC, fafhion'd as I fhall by and by defcribe, was plac'd, and could very eafily and truly be mov'd to and fro ; the other end of this Box being put into, and moving in, a hole made in a fmall arm DD; into this box was faftned the long Ruler EF, about three foot and three or four inches long, and at three foot from the above mention'd Centers P P was a hole E_{2} cut through, and crofs'd with two fmall threads, and at the end of it was fixt a fmall fight G, and on the back fide of it was fixt a fmall Arm H, with a Screw to fix it in any place on the Ruler LM; this Ruler LM was mov'd on the Center B (which was exactly three foot diftance from the middle Center P) and a line drawn through the middle of it LM , was divided by a iine of cords into fome fixty degrees, and each degree was fubdivided into minutes, fo that putting the crofs of the threads in E upon any part of this divided line, I prefently knew what Angle the two Rules A B and EF made with each other, and by turning the Screw in H_{3} I could fix them in any pofition. The other Ruler alfo RS was made much after the fame manner, only it was not fixt to the hollow cylindrical Box, but, by meams of two fmall brafs Armes or Ears, it mov'd on the Centers of it; thisalfo, by means of the crofs threads in the hole S , and by a Screw in K , could be faftned on any divifion of another line of cords of the fame radius drawn on NO. And fo by that means, the Angle made by the two Rulers, $A B$ and R S, was alfo known. The Brafs box CC in the middle was fhap'd very much like the Figure \mathbf{X}, that is, it was a cylindrical Box ftopp'd clofe at either end, off of which a part both of the fides and bottomes was cut out, fo

The Preface.

that the Box, when the Pipe and that was joyne d to it, would contain the Water when fill'd half full, and would likewife, without running over, indure to be inclin'd to an Angle, equal to that of the greateft refraction of Water, and no more, without running over. The Ruler E F was fixt very faft to the Pipe V, fo that the Pipe V directed the length of the RulerE F , and the Box and Ruler were mov'd on the Pin T T, fo as to make any defirable Angle with the Ruler A B. The bottom of this Pipe V was ftop'd with a fmall piece of exactly plain Glafs, which was placd exactly perpendicular to the Line of direction, or Axis of the Ruler E F. The Pins alfo T T were drill'd with fmall holes through the Axis, and throtigh thofe holes was ftretcht and faftned a fmall Wire. There was likewife a fmall Pipe of Tin locfly put on upon the end of V, and reaching down to the fight G ; the ufe of which was only to keep any falle Rayes of light from paffing through the bottom of V , and only admitting fuch to pafs as pierced through the fight G : All things being placed together in the manner defrib'd in the Figure; that is, the Ruler AB being fixt perpendicular, I filld the Box CC with Water, or any other Liquor, whofe refraction I intended to try, till the Wire paffing through the middle of it were juft covered: then I moved and fixt the Ruler F E at any affignable Angle, and placed the flame of a Candle juft againft the fight G; and looking through the fight I, I moved the Ruler RS to and fro, till I perceived the light paffing through G to be covered, as 'twere, or divided by the dark Wire paffing through PP: then turning the Screw i. K , I fixt it in that pofture: And through the hole S, Iobferved what degree and part of it was cut by the crofs threads in S. And this gave me the Angle of Inclination, APS anfwering to the Angle of Refraction BPE: for the furface of the Liquor in the Box will be alwayes horizontal, and confequently AB will be a perpendicular to it; the Angle therefore APS will meafure, or be the Angle of Inclination in the Liquor; next E P B mutt be the Angle of Refraction, for the Ray that paffes through the fight G, paffes alfo perpendicularly through the Glafs Diapl.ragme at F , and confequently alfo perpendi-* cularly through the lower furface of the Liquor contiguous to the Glafs, and therefore fuffers no refraction till it meet with the horizontal furface of the Liquor in C C, which is determined by the two Angles.

By means of this Infrument I can witblittle trouble, and a very frall quantity of any Liquor, examine, mof accurately, the refraction .of it, not only for one inclination, but for all; and thereby am inabled to make very accurate Tables; feveralof wbicb Ibave alfo experimentally made, and find, that Oyl of Turpentine bas a much greater Refrakition thenSpirit of Wine, though it be lighter; and tbat Spirit of Wine bas a greater Refraction then Water, thougb it be lighter alfo; but tbat falt Water alfo bas a greater Refraction then frefh, thoug bit be heavier: but Allum water bas a leß refraction then common Water, thougb bea 4 vier alfo. So that it Jeems, as to the refraction made in a Liquor, the Ipecif

The Preface.

fick gravity is ofno effcacy. By tbis Ibave alfo found, that look wbat proportion the Sine of the Angle of ome Inclination bas to the Sine of the Angle of Refraction, correffondent to it, the fame proportion bave all the Sines of other Inclinations to the Sines of their appropriate Refractions.

My way for meafuring how much a Glafs magnifies an Object, plac'd at a convenient diftance from my eye, is this. Having rectifid the Microfoope, to Fee the defir'd Object through it very diftinctly, at the fame time that I look upon the Object through the Glafs with one eye, I look upon other Objects at the fame diftance with my other bare eye; by which means I am able, by the help of a Ruler divided into inches and fmall parts, and laid on the Pedeftal of the Microfope, to caft, as it were, the magnifid appearance of the Object upon the Ruler, and thereby exactly to meafure the Diameter it appears of through the Glafs, which being compar'd with the Diameter it appears of to the naked eye, will eafily afford the quantity of its magnifying.

The Microf cope, which for the moft part I made ufe of, was fhap'd much like that in the fixth Figure of the firft Scheme, the Tube being for the moft part not above fix or feven inches long, though, by reafon it had four Drawers, it could very much be lengthened, as occafion required; this was contriv'd with three Glaffesja fmall Object Glafs at A, a thinner Eye Glafs about B , and a very deep one about C : this I made ufe of only when I had occafion to fee much of an Object at once; the middle Glafs conveying a very great company of radiating Pencils, which would go another way, and throwing them upon the deep Eye Glafs. But when ever I had occafion to examine the fmall parts of a Body more accurately, I took out the middle Glafs, and only made ufe of one Eye Glafs with the Object Glafs, for always the fewer the Refractions are, the more bright and clear the Object appears. And therefore 'tis not to be doubted, but could we make a Microfiope to have one only refraction, it would, ceteris paribus, far excel any other that had a greater number. And hence it is, that if you take a very clear piece of a broken Venice Glafs, and in a Lamp draw it out into very fmall hairs or threads, then holding the ends of thefe threads in the flame, till they melt and run into a frall round Globul, or drop, which will hang at the end of the thread; and if further you ftick feveral of thefe upon the end of aftick with a little fealing Wax, fo as that the threads frand upwards, and then ont a Whetftone firft grind off a good part of them, and afterward on a fmoothMetal plate, with a little Tripoly, rub them till they come to bed very fmooth; if. one of thefe be fixt with a little foft Wax againft a fmall needle hole, prick'd through a thin Plate of Brafs, Lead, Pewter, or any other Metal, and an Object, placd very near, be look'd at through it, it will both magnifie and make fome Objects more diftinct then any of the great Microfopes. But becaufe thefe, though exceeding eafily made, are yet very troublefome to be us d, becaufe of their fmalnefs, and the nearnefs of the Object; therefore to prevent both thefe, and yet ha ve only two Refractions, I prot vided me a Tube of Brafs, fhap'd much like that in the fourth Figure of the firt Scheme; into the fmaller end of this I fixt with Wax a goodplano don-

The Preface.

vex Object Glaß; with the convex fide towards the Object, and into the bigger end I fixt allo with wax a pretty large plano Convex Glafs, with the convex fide towards my eye, then by means of the frmall hole by the fide, I fill'd the intermediate face between thefe two Glaffes with very clear Water, and with a Screw ftoppid itin; then putting on a Cell for the Eye, I could perceive an Object more bright then I could when the intermediate fpace was only fill'd with Air,but this, for other inconveniences, I made but little ufe of.

My way for fixing both the Glafs and Object to the Pedeftal moft conveniently was thus : Uipon one fide of a round Pedeftal $A B_{3}$ in the fixth Figure of the firft scheme, was fixt a fmall Pillar CC, on this was fitted a fmall Iron Arm D, which could be mov'd up and down, and fixt in any part of the Pillar, by means of a fmall Screw E; on the end of this Arm was a fmall Ball fitted into a kind of focket F, made in the fide of the Brafs Ring G, through which the fmall end of the Tube was ferew'd; by means of which contrivance I could place and fix the Tube in what pofture I defir'd (which for many Obfervations was exceeding, neceffary) and adjuften it moft exactly to any Object.

For placing the Object,I Imade this contrivance; upon the end of a fmall brafs Link or Staple H H, I fo fafmed a round Plate.I I, that it might be turn'd round upon its Center K, and going pretty ftiff, would ftand fixt in any pofture it wasfet; on the fide of this was fixt a fmall Pillar $P_{\text {, }}$, about three quarters of an inch high, and through the top of this was thruft a fmall Iron pin M, whofe top juft frood over the Center of the Plate; on this top I fixt a fmall Object, and by means of thefe contrivances I was able to turn it into all kind of pofitions, both tomy Eye and the Light; forby moving round the fraall Plate on its center, I could move it one way, and by turning the Pin M, I could move it another way, and this without ftirring the Glafs at all, or at leaft but very little: the Plate likewife I could move to and fro to any part of the Pedeftal (which in many cales was very convenient) and fix it alfo in any Pofition, by means of a Nut N, which was fcrew'd on upon the lower part of the Piltar C.C. All the other Contrivances are obvious enough from the draught, and will need no defcription

Now though this were the Inffrument Imade moft ufe of, yet I bave made feveral otber Tryals with otber kinds of Microfcopes, which both for matter and form were very different from common ppherical Glafes. Ithave made a Microfcope with one piece of Glaß, both whofe furfaces were plains. I bave made anotber only with it plano cancave, witbout any kind of reffeciion, divers alfo by means of reftection. Bbave made otbers of Waters, Gums, Refins, Salts, Arfenick, Oyls, and with divers other mixtirres of watery and oyly Liquors. Andindeedtber fubject is capable of a great variety; but I find generally none more ufe-f ful then that which is made with two Glaffes, fuch as Ibave already den fribd

The Preface.

What the things are I obferv'd, the following defriptions will manifeft; in brief, they were either exceeding fmall Bodies, or exceeding fmall Pores, or exceeding fmall Motions, fome of each of whichthe Reader will find in the following Notes, and fuch, as Iprefume, (many of them at leafi) will be new, and perbaps not le β ftrange: Some fpecimen of each of wbich Heads the Reader will find in the fubfequent delineations, and indeed of fome more then I was willing there fbould be; wbich was occafoned by my firft Intentions to print a much greater number then I bave fince found time to compleat. Of fucb therefore as Ibad, I felecied only fome few of every Head, which for fome particulars feern'd mof obfervable, rejeciing the reft as fuperfluous to the prefent Defign.

What each of the delineated Subjecis are,the following deforiptions annext to each will inform, of which I fball bere, only once for all, add, That in divers of them the Gravers bave pretty well follow'd my directions and draughts; and that in making of them, I indeavoured (as far as Iwas able) firf to difcover tbe true appearance, and next to make aplain reprefentation of it. This Imention the ratber, becaufe of thefe kind of Objects there is much more difficulty to difcover the true fhape, then of thofe vifible to the naked eye, the fame Object feeming quite differing, in one pofition to the Ligbt, from what it really is, and may be dijcover'd in another. And therefore I never began to make any draught before by many examinations in feveral lights, and in feveral pofitions to thofe lights, I bad difcover'd the true form. For it is exceeding difficult in fome Objecis, to diffinguifb between a prominency and a depreffion, between a fhadow and a black ftain, or a reflection and a whitenefs in the colour. Befides, the tranfirency of mof Objects renders them yet mucb more difficult then if they were opacous. The Eyes of a Fly in one kind of light appear almof like a Lattice, drilld tbrough with abundance of frall boles; wbich probably may be the Reafon, why the Ingenious Dr. Power feems to fuppofe them fuch. In the Sunfline they look like a Surface cover'd with golden Nails; in another poffure, like a Surface cover'd with Pyramids; in anotber with Cones; and in other poftures of quite otber Jbapes; but tbat which exbibits the beft, is the Light collected on the Object, by thofe means I bave already defcrib' d.

The Prefacf.

And this was undertaken in profecution of the Defign wbich the ROYAL SOCIETY bas propos'd to it felf. For the Mermbers of the Afembly having before their eys fo many fatal Inflances of the errors and falffoods, in which the greatef 1 part of mankind bas fo long wandred, becaufe they rely' dupon the frengtb of bumane Reafon alone, bave begun anew to correct all Hypothefes by fenfe, as Seamen do their dead Reckonings by Coeleftial Obfervations;and to this purpofe it bas been tbeir principal indeazour to enlarge do ftrengthen the Senifes by Medicine, and by fucb outward Inftruments as areproper for their particular works. By this means they find fome reafon to fuffeci,that thofeeffects of Bodies, wbich bave been commonly attributed to Qualities, and thofe confeß'd to be occult, are perform'd by the fmall Machines of Nature, which are not to be difcern'd witbout thefe belps, feeming the meer products of Motion, Figure, and Magnitude; and that the Natural Textures, which fome call tbe Plaftick faculty, may be made in Looms, which a greater perfeciion of Opticks may make difcernable by thefe Glaffes:fo as now they are no more puzz led about them,then the vulgar are to conceive, bow Tapeftry or fiowred Stuffs are noven. And the ends of all thefe Inquiries they intend to be the Pleafure of Contemplative minds, but above all,the eale and difpatch of the labours of mens bands. They do indeed neglect no opportunity to bring all the rare things of Remote Countries with bin the compaß of their knowledge and prastice. But they fill acknowledg their moft ufeful Informations to arije from common things, and from diverfifying their moft ordinary operations upon them. They do not wholly reject Experiments of meer light and theory; but they principally aim at fuch, whofe Applications will improve and facilitate the prefent way of Manual Arts. And though fome men, who are perbaps taken up about leß honourable Employments, arepleas'd to cenfure their proceedings, yet they can flew more fruits of their firf \hat{t} three years, wherein tbey bave affembled, theri any other Society in Europe can for a mucb larger fpace of time.'Tis true, fuch unndertakings as theirs do commonly meet with fmall incouragement., becaufe. men are generally rather taken with the plaufible and difcurfive, then the real and the folid part of Pbilofophy; yet by the good fortune of their inftitution, in an Age of all others the moff inquifitive, they bave beeri affited by the contribution and prefence of very many of the chief Nobility and Gentry, g and

The Preface.

 and otbers, who are fome of the moft confiderable in their feveral Profeflons. But that that yet fartber convinces me of the Real efteem that the more ferious part of men bave of this Society, is, that feveral Merchants, men who aci in earnef (whofe Object is meum wo tuum, that great Rudder of bumane affairs) bave adventur'd confiderable fums of Money, to put in practice what fome of our Members have contrived, and bave continued ftedfaft in their good opinions of fucb Indeavours, when not one of a bundred of the vulgar bave believed their undertakings feafable. And it is alfo fit to be added, that they bave one advantage peculiar to themfelves, that very many of their number are men of Converfe and Traffick; which is a good Omen, that their attempts will bring Pbilofophy from words to action, feeing the men of Buflne β bave bad fogreat a flare in their firft foundation.And of this kind I ought not to conceal oneparticular Generofity,wbich more nearly concerns my felf. It is the munificence of Sir JohnCutler, inendowing a Lećcure for the promotion of Mechanick Arts,to be governed and directed byThisSociety. ThisBounty Imention for the Honourablenels of the thing it felf, and for the expectation which I bave of the efficacy of the Example ; for it cannot now be objecfied to them, that their Defigns will be efteemed frivolous and vain, when they bave fuch a real Teftimony of the Approbation of a Man that is fuch an eminent Ornament of this renowned City, and one, who, by the Variety, and the happy Succefs, of bis negotiations, bas given evident proofs, that be is not eafie to be deceiv'd. This Gentlenan bas well obferv'd, that the Arts of life bave been too long imprifon'd in the dark. Shops of Mechanicks themfelves,, there hindred from growth, either by ignorance, or felf-intereft:and be bas bravely freed them from thefe inconveniences:He bath not only obliged Tradefmen, but Trade it felf: He bas done a work that is wortby of London, and bas taugbt the cbief City of Commerce in the world the right way bow Commerce is to be improvid. We bave already feen many otber great figns of Liberality and a large mind, from the fame band:For by bis diligence about theCorporation for the Poor; by bis honorable Subfcriptions for the rebuilding of St. Paul's; by bis chearful Disburfment for the replanting of Ireland, and by many otber fucb publick works, be has Joewn by what means be indeavours to eftablifh bis Memory; and now by this laft gift be bas done that, whick became one of the wifeft Citizens

The Preface.

 Lord Verulam, firf propounded it.But to return to my Subject, from a digreffien, wbich, I Ioope, my Reader sill pardon me, fecing the Exainple is fo rare that I can make no more fuch. digreflons. If thefe my firf Latours frall be amy wayes uffulto inquiring men, I muft attribute the incouragement and prometion of them to a very Reverend and Learned Perfon, of whom this ought in juffice to be faid, That there is fearce any one Invention, which this Nation has produc'd in our Age, but it has fome way or other been fet forward by his affiftance. My Reader, I believe, will quickly ghe β, tbat it is Dr. Wihkins that Imean. He is indeed a man born for the good of mankind, and for the honour of bis Country. In the fweetnefs of whofe behaviour, in the calmnefs of bis mind, in the unbounded goodnefs of bis heart, we bave an evident Inflance, what the true and the primitive unpaffionate Religit on was, before it was fowred by particular Factions. In a word, bis Zeal bas been fo conftant and effectual in advancing all grood and proftiable Arss,tbat as one of the Antient Romans faid of Scipio, That he thanked God that he was a Roman ; becaufe whereever Scipie had been born, there had been the feat of the Empire of the world: So may I thank God, tbat Dr. Wilkins was an Englifhman, for whereever be had lived, there bad been the chief Seat of generous Knowledge and true Philofaphy. To the truth of this, there are fo many mortby men living that will fubafribe, that I an confident, what I bave bere faid, will not be look'd upon, by any ingenious Reader, as a Panegyrick, but only as a real teftimony.

By the Advice of this Excellent man Ifrrt fet upon this Enterprife, yet fill carne to it with much Reluctancy, becaufe I was to follow the foot fleps of fo eminent a Perfon as Dr. Wren, who was the firft that attempted any tbing of this nature ; whofe original draughts do now make one of the Orniaments of tbat great Colleciion of Rarities in the Kings Clofet. This Honor, which bis firf beginnings of this kind bave receiv'd, to be admitted into the mof fanous place of the world, did not fo much incourage, as the hazard of coming after Dr. Wren did affright me; for of bim I muft affirm, thatt, Jince the time of Archimedes, there fcarce ever met in one mann, in fo

The Preface.

great a perfection, fuch a Mechanical Hand, and fo Philofophical a Mind.

But at laft, being affured botb by Dr. Wilkins, and Dr. Wren bininfelf, that be bad given over bis intentions of profecuting it, and not finding that there was any elfe defign' d tbe purfuing of it, Ifet upon tbis undertaking, and was not a little incourag'd toproceed in it, by the Honour the Royal Society was pleats do favour me with, in approving of thofe draughts (wbich from time to time as Ibad an opportunity of defcribing) Iprefented to tberin. And particularly by the Incitements of divers of thofe Noble and excellent Perfons of it, which were my more efpecial Friends, who were not leß 3 urgent with me for the publijbing, then for the profecution of theri.

After I bad almoft compleated thefe Pictures and Obfervations (baving bad divers of them ingraven, and was ready to fend them to the Pre β) I was inforrid, that the Ingenious Pbyjitian Dr. Henry Power bad inade feveral Microfcopical Obfervations, wbich bad Inot afterwards, upon our interchangably viewing each otbers $P_{\text {apers, }}$ found that they were for the moft part differing from mine, either in the Subjectit felf, or in the particulars taken notice of; and that bis defign was only to print Obfervations without PiEfures, I bad even tben fuppreffed what Ibad fo far pro.. ceeded in. But being furtber excited by feveral of my Friends, in complyance with their opinions, that it would not be unacceptable to feveral inquifitive Men, and boping allo, that I fhould thereby difcover fometbing New to the World, I bave at length caft in my Mite, into the vaft Treafury of A Philofophical Hiftory. And it is my hope, as well as belief, that thefe my Labours will be no more comparable to the Productions of many other Natural Philofophers, who are now every where buffe about greater things; then my little Objects are to be compar'd to the greater and more beautiful Works of Nature, A Flea, a Mite, a Gnat, to an Horfe, an Elephant, or a Lyon.

MICROGRAPHIA;

OR SOME
Phyfiological Defrriptions
O F

MINUTEBODIES.

MADEBY
MAGNIFYING GLASSES;
W ITH
Observations and Ineuiries thereupon.

Obferv. I. Of the Point of a florrp finall Needle.

in Geometry, the moft natural way of beginning is Schem.s. from a Mathematical point; fo is the fame method in Fig.r. Obfervations and Natural hiftory the moft genuine,fimple, and inftructive. We muft firft endevour to make letters, and draw fingle ftrokes true, before we venture to write whole sentences, or to draw large PiClures. And in Phyjical Enquiries, we muft endevour to follow Nature in the more plain and eafie ways the treads in the moft fimple and uncompounded bodies, to trace her fteps, and be acquainted with her manner of walking there, before we venture our felves into the multitude of meanders fhe hasin bodies of a more complicated nature; leff, being unable to diftinguifh and judge of our way, we quickly lofe both Nature our Guide, and our Selves too, and are left to wander in the labyrinth of groundlefs opinions; wanting both judgment, that light, and experience, that clew, which fhould direct our proceedings.

We will begin thefe our Inquiries therefore with the Obfervations of Bodies of the moft fimple nature firft, and fo gradually proceed to thofe of a more compounded one. In profecution of which method, we fhall begin with a Phyfical point; of which kind the Point of a Needle is commonly reckon'd for one; and is indeed, for the moft part, made fo fharp, that the naked eye cannot difringuifh any parts of it: It very eafily pierces, and makes its way through all kind of bodies fofter then it felf:But if view'd with a very good Microfoope, we may find that the top of a Needle (though as to the B renfe
fenfe very Jharp) appears a broad, blunt, and very irregular end ; not refembling a Cone, as is imagin'd, but onely a piece of a tapering body, with a great part of the top remov'd, or deficient. The Points of Pins are yet more blunt, and the Points of the moft curious Mathematital Inftruments do very feldome arrive at fo great a fharpnefs; how much therefore can be built upon demonfraticns made onely by the productions of the Ruler and Compaffes, he will be better able to confider that fhall but view thofe points and lines with a Microfcope.

Now though this point be commonly accounted the fharpeft (whence when we would exprefs the fharpnefs of a point the moft fuperlatively, we fay, As fharp as a Needle) yet the Microfcope can afford ushundreds of Inftances of Points many thoufand times fharper: fuch as thofe of the bairs, and briftles, and claws of multitudes of Infects; the thorns, or crooks, or bairs of leaves, and other fmall vegetables; nay, the ends of the firicie or fmall parallelipipeds of Amianthus, and alumen plumofum; of many of which, though the Points are fo fharp as not to be vifble, though view'd with a Microf cope (which magnifies the Object, in bulk, above a million of times) yet I doubt not, but were we able pračically to make Microfopes according to the theory of them, we might find hills, and dales, and pores, and a fufficient bredth, or expanfion, to give all thofe parts elbow-room, even in the blunt top of the veryPoint of any of thefe fo very fharp bodies. For certainly the quantity or extenfion of any body may be Divifible in infinitum, though perhaps not the matter.

But to proceed: The Image we have here exhibited in the firft Figure, was the top of a fmall and very fharp Needle, whofe point a a neverthelefs appear'd through the Microfope above a quarter of an inch broad, not round nor flat, but irregular and uneven; fo that it feem'd to have been big enough to have afforded a hundred armed Mites room enough to be rang'd by each other without endangering the breaking one anothers necks, by being thruft off on either fide. The furface of which, though appearing to the naked eye very fmooth, could not neverthelefs hide a multitude of holes and feratches and ruggedneffes from being difcover d by the Microfcope to inveft it, feveral of which inequalities (as A, B, C, feem'd boles made by fome frall fpecks of Ruff; and D fome adventitious body, that ftuck very clofe to it) were $c a$ fual. All the reft that roughen the furface, were onely fo many marks of the rudenefs and bungling of Art. So unaccurate is it, in all its productions, even in thofe which feem moft neat, that if examin'd with an organ more acute then that by which they were made, the more we fee of their Shape, the lefs appearance will there be of their beauty: whereas in the works of Nature, the deepeft Difccveries fhew us the greateft Excellencies. An evident Argument, that he that was the Author of all thefe things, was no other then Omnipotent; being able to include as great a variety of parts and contrivances in the yet fmalleft Difcernable Point, as in thofe vafter bodies (which comparatively are called alfo Points) fuch as the Earth, Sun, or Planets. Nor need it feem frrange that the Earth it felf may be by an Analogie call'd a!Phyfical Point:For as its body, though now

ysu wi foro: fur stmpor $\frac{0 \tau}{t}$

Micrographia.

fo near us as to fill our eys and fancies with a fenfe of the vaftnefs of it, may by a little Diftance, and fome convenient Dimiiniffing Glaffes, be made vanifh into a fcarce vifible Speck, or Point (as I have often try'd on the Moon, and (when not too bright) on the sun it felf.) So, could a Mechanical contrivance fuccesfully anfwer our Theory, we might fee the lealt fot as big as the Earth it felf; and Difcover, as Des Cartes Diop ch. alfo conjectures, as great a variety of bodies in the Moon, or Planets, as in ${ }^{10} .69$. the Earth.
But leaving thefe Dilcoveries to future Induftries, we fhall proceed to add one Obfervation more of a point commonly fo call'd, that is, the mark of a full fop, or period. And for this purpofe I obferved many both printed ones and written; and among multitudes I found few of them more round or regular then this which I have delineated in the third figure of the fecond Scheme, but very many abundantly more disfigur'd; and for the moft part if they feem d equally round to the cye, I found thofe points that had been made by a Copper-plate, and Roll-prefs, to be as misfhapen as thofe which had been made with Types, the moft curious and fmothly engraven ftrokes and points, looking but as fo many furrows and boles, and their printed impreffions, but like fmutty daubings on a matt or uneven floor with a blunt extinguifht brand or ftick's end. And as for points made with apen they were much more rugged and deformed. Nay, having view'd certain pieces of exceeding curious writing of the kind (one of which in the bredth of a two-pence compris'd the Lordsprayer, the Apoftes Creed, the ten Commandments, and about half a dozen verfes befides of the Bible, whofe lines were fo fmall and near together, that I was unable to number them with my naked eye, a very ordinary Microfoope, I had then about me, inabled me to fee that what the Writer of it had afferted was true, but withall difcover'd of what pitifull bungling fcribbles and fcrawols it was compos'd, Arabian and China characters being almoft as well fhap'd; yet thus much I muft fay for the Man, that it was for the moft part legible enough, though in fome places there wanted a good fantfy well prepofeft to help one through. If this manner of f mall writing were made eafie and practicable (and I think I know fuch a one, but have never yet made tryal of it, whereby one might be inabled to write a great deale with much eafe, and accurately enough in a very little roome) it might be of very good ufe to convey fecret Intelligence without any danger of Difovery or miftrufting. But to come again to the point. The Irregularities of it are caufed by three or four coadjutors, one of which is, the uneven furface of the paper, which at beft appears no fmother then a very courfe piece of Shagd cloth, next the irregularity of the Type or Ingraving, and a third is the rough Daubing of the Printing-Inkthat lies upon the inftrument that makes the impreffion, to all which, add the variation made by the Different lights and Shadoros, and you may have fufficient reafon to ghefs that a point may appear ruuch more ugly then $t h i s$, which I have here prefented, which though it appear'd through the Microfope gray, like a great fplatch of London dirt, about three inches over; yet to the naked eye it was black, and no bigger then that in the midft of the Circle A. And could I have found

Micrographia.

found Room in this Plate to have inferted an O you fhould have feen that the letters were not more diftinct then the points of Diftinction, nor a drawn circle more exactly fo, then we have now fhown a point to be a point.

Obferv. II. Of the Edge of a Razor.

Schems.2.
Fig. 2.

THe fharpeft Edge hath the fame kind of affinity to the fharpeft Point in Phyficks, as a line hath to a point in Mathematicks; and therefore the Treaty concerning this, may very properly be annexed to the former. ARazor doth appear to be a Body of a very neat and curious afpect, till more clofely viewed by the Microfoope, and there we may obferve its very Edge to be of all kind of fhapes, except what it fhould be. For examining that of a very fharp one, I could not find that any part of it had any thing of hharpnefs in it; but it appear'd a rough furface of a very confiderable bredth from fide to fide, the narroweft part not feeming thinner then the back of a pretty thick Knife. Nor is't likely that it fhould appear any otherwife, fince as we juft now fhew'd that a point appear'd a circle, 'tis rational a line fhould be a parallelogram.

Now for the drawing this fecond Figure(which reprefents a part of the Edge about half a quarter of an inch long of a Razor well fet) Ifo plac'd it between the Object-glafs \& the light,that there appear'd a reflection from the very Edge, reprefented by the white line abcdef. In which you may perceive it to be fomewhat fharper then elfewhere about d, to be indented or pitted about b, to be broader and thicker about c, and unequal and rugged about e, and pretty even between $a b$ and $e f$. Nor wasthat part of the Edge $g h i k$ fo fmooth as one would imagine fo fmooth bodies as a Hone and Oyl fhould leave it; for befides thofe multitudes of feratches, which appear to have raz'd the furface $g h i k$, and to crofs each other every way which are not half of them expreft in the Figure, there were feveral great and deep frratches, or furrows, fuch as $g b$ and $i k$, which made the furface yet more rugged, caus'd perhaps by fome fmall Duft cafually falling on the Hone, or fome harder or more flinty part of the Hone it felf. The other part of the Razor $l l$, which is polifhd on a grinding-ftone, appear'd much rougher then the other, looking almoft like a plow'd field, with many parallels, ridges, and furrows, and a cloddy, as 'twere, or an uneven furface : nor fhall we wonder at the roughneffes of thofe furfaces, fince even in the moft curious wrought Glafles for Microfoopes, and other Optical ufes, I have, when the Sun has fhone well on them, difcover'd their furface to be varioully raz'd or fcratched, and to confift of an infinite of fmall broken furfaces, which reflece the light of very various and differing colours. And indeed it feems impoffible by Art to cut the furface of any hard and brittle body fimcoth, fince Putte, or even the moft curious Poroder that can be made ufe of, to polifh fuch a body, muft confift of little hard rough particles, and each of them muft cut its way, and confequently leave fome kind of gutter or furrows

Micrographia.

furrow behind it. And though Nature does feem to do it very readily in all kinds of fluid bodies, yet perhaps future obfervators may difcover even thefe alfo rugged; it being very probable, asI elfewhere fhew, that fluid bodies are made up of fmall folid particles varioufly and Itrongly mov'd, and may find reafon to think there is fcarce a furface in rerum na* $t u r \hat{a}$ perfectly fmooth. The black fot $m n$, I ghefs to be fome fmall fpeck of ruft, for that I have oft obferv'd to be the manner of the working of Corrofive Juyces. To conclude, this Edge and piece of a Razor, if it had been really fuch as it appear'd through the Microfoope, would fcarcely have ferv'd to cleave wood, much lefs to have cut off the hair of beards, unlefs it were after the manner that Lucian merrily relates Charon to have made ufe of, when with a Carpenters Axe he chop'd off the beard of a fage Philofopher, whofe gravity he very cautioufly fear'd would indanger the overfetting of his Wherry.

Obferv. II I. Of fine Lawn, or Linmen Clotb.

THis is another product of Art, A piece of the fineft Lawn I was able to get, fo curious that the threads were fcarce difcernable by the naked eye, and yet through an ordinary Microfope you may perceive what a goodly piece of coarge Matting it is 3 what proportionable cords each of its threads are, being not unlike, both in thape and fize, the bigger and coarfer kind of fingle Rope-yarn, wherewith they ufually make Cables. That which makes the Lawn fo tranfparent, is by the Microfiope, nay by the naked eye, if attentively viewed, plainly enough evidenced to be the multitude of fquare holes which are left between the threads, appearing to have much more hole in refpect of the intercurrent parts then is for the moft part left in a lattice-windons, which it does a little refemble, onely the croffing parts are round and not flat.

Thefe threads that compofe this fine contexture, though they are as fmall as thofe that conftitute the finer forts of Silks, have notwithftanding nothing of their gloffie, pleafant, and lively reflection. Nay, I have been informed both by the Inventor himfelf, and feveral other eye-witneffes, that though the flax, out of which it is made, has been (by a fingular art, of that excellent Perfon, and Noble Vertuofo, M. Charls Howard, brother to the Duke of Norfolk)fo curioufly drefs'd and prepar'd, as to appear both to the eye and the touch, full as fine and as gloffie, and to receive all kinds of colours, as well as Sleave-Silk; yet when this Silken Flax is twifted into threads, it quite lofeth its former lufter, and becomes as plain and bafe a thread to look on, as one of the fame bignefs, made of common Flax.

The reafon of which odd Phenomenon feems no other then this; that though the curioufly dreft Flax has its parts fo exceedingly fmall, as to equallize, if not to be much fmaller then the clew of the Silk-worm, efpecially in thinnefs, yet the differences between the figures of the conftituting filaments are fo great, and their fubftances fo various, that whereas

Micrographia.

thofe of the silk are fmall,round, hard, tranjparent, and to their bignefs proportionably ftiff, fo as each filament preferves its proper Figure, and confequently its vivid reflection intire, though twifted into a thread, if not too hard; thofe of Flax are flat, limber, offter, and leß tranßarent, and in twifting into a thread they joyn, and lie fo clofe together, as to lofe their own, and deftroy each others particular reflections. There feems therefore three Particulars very requifite to make the fo dreft Flax appear Silk alfo when fpun into threads. Firft, that the fubftance of it fhould be made more clear and tranfparent, Flax retaining in it a kind of opacating brown, or yellow; and the parts of the whiteft kind I have yet obferv'd with the Microf cope appearing white, like flaw'd Horn or Glafs, rather then clear, like clear Horn or Glafs. Next that, the filaments fhould each of them be rounded, if that could be done, which yet is not fo very neceffary, if the firft be perform'd, and this third, which is, that each of the fmall filaments be flifned; for though they be fquare, or flat, provided they be tran Parent and ftiff, much the fame appearances muft neceffarily follow. Now, though I have not yet made trial, yet I doubt not, but that both thefe proprieties may be alfo induc'd upon the Flax,and perhaps too by one and the fame Expedient, which fome trials may quickly inform any ingenious attempter of, who from the ufe and profit of fuch an Invention, may find fufficient argument to be prompted to fuch Inquiries. As for the tenacity of the fubftance of Flax, out of which the thread is made, it feems much inferiour to that of Silk, the one being a vegetable, the other an animal fubftance. And whether it proceed from the better concoction, or the more homogeneous conftitution of animal fubftances above thofe of vegetables, I do not here determine; yet fince I generally find, that vegetable fubftances do not equalize the tenacity of animal, nor thefe the tenacity of fome purified mineral fubftances; I am very apt to think, that the tenacity of bodies does not proceed from the bamous, or booked particles, as the Epicureans, and fome modern Pbilofophers have imagind; but from the more exact congruity of the conftituent parts, which are contiguous to each other, and fo bulky, as not to be eafily feparated, or fhatter'd, by any fmall pulls or concuffion of heat.

Obferv. I V. Of fine waled Silk, or Taffety.

Sebem. 3.
Fig. \mathbf{x} His is the appearance of a piece of very fine Taffety-riband in the bigger magnifying Glafs, which you fee exhibits it like a very convenient fubftance to make Bed-matts, or Door-matts of,or to ferve for Beehives, Corn-fcuttles, Chairs, or Corn-tubs, it being not unlike that kind of work, wherewith in many parts in England, they make fuch Utenfils of Straw, a little wreathed, and bound together with thongs of Brambles. For in this Contexture, each little filament, fiber, or clew of the Silk-worm, feem'd about the bignefs of an ordinary Straw, as appears by the little irregular

Fig: 2

Micrographia.

regular pieces, $a b, c d$, and $e f$; The $W a r p$, or the thread that ran croffing the Riband, appear'd like a fingle Rope of an Inch Diameter; but the Woof, or the thread that ran the length of the Riband, appear'd not half fo big. Each Inch of fix-peny-broad Riband appearing no lefs then a piece of Matting Inch and half thick, and twelve foot fquare; a few yards of this, would be enough to floor the long Gallery of the Loure at Paris. But to return to our piece of Riband: It affords us a not unpleafant object, appearing like a bundle, or wreath, of very clear and tranfparent Cylinders, if the Silk be white, and curioufly ting'd ; if it be colour'd, each of thofe fmall horney Cylinders affording in fome place or other of them, as vivid a reflection, as if it had been fent from a Cylinder of Glafs or Horns In-fo-much, that the reflections of Red, appear'd as if coming from fo many Granates, or Rubies. The lovelinefs of the colours of Silks above thofe of hairy Stuffs, or Linnen, confifting as I elfe-where intimate, chiefly in the tranfparency, and vivid reflections from the Concave, or inner furface of the tranparent Cylinder, as are alfo the colours of Precious Stones; for moft of the reflections from each of thefe Cylinders, come from the Concave furface of the air, which is as 'twere the foil that incompaffes the cylinder. The colours with which each of thefe Cylinders are ting'd, feem partly to be fuperficial, and fricking to the out-fides of them; and partly, to be imbib'd, or funck into the fubftance of them : for Silk, feeming to be little elfe then a dried thread of Glew, may be fuppos'd to be very eafily relaxt, and foftened, by being fteeped in warm, nay in cold, if penetrant, juyces or liquors. And thereby thofe tinctures, though they tinge perhaps but a fmall part of the fubftance, yet being fo highly impregnated with the colour, as to be almoft black with it, may leave an impreffion ftrong enough to exhibite the defir'd colour. A pretty kinde of artificial Stuff I have feen, looking almoft like tranfparent Parchment, Horn, or Ifing-glafs, and perhaps fome fuch thing it may be made of, which being tranfarent, and of a glutinous nature, and eafily mollified by keep. ing in water, as I found upon trial, had imbib'd, and did remain ting'd with a great variety of very vivid colours, and to the naked eye, it look'd very like the fubftance of the Silk. And I have often thought, that probably there might be a way found out, to make an artificial glutinous compofition, much refembling, if not full as good, nay better, then that Excrement, or whatever other fubftance it be out of which, the Silk-worm wire-draws his clew. If fuch a compofition were found, it were certainlyan eafie matter to find very quick ways of drawing it out into fmall wires for ufe. I need not mention the ufe of fuch an Invention, nor the benefit that is likely to accrue to the finder, they being fufficiently obvious. Thishint therefore, may, I hope, give fome Ingenious inquifitive Perfon an occafion of making fome trials, which if fuccefffull, I have my aim, and I fuppofe he will have no occafion to be difpleas'd.

Obferv. V. Of watered Silks, or Stuffs.

Schem. 3. Fig. 2.

THere are but few Artificial things that are worth obferving with a Microfoppe ; and therefore I fhall fpeak but briefly concerning them. For the Productions of art are fuch rude miffhapen things, that when view'd with a Microf cope, there is little elfe obfervable, but their deformity. The moft curious Carvings appearing no better then thofe rude Rufjan Images we find mention'd in Purchas, where three notches at the end of a Stick, ftood for a face. And the moft fmooth and burnifh'd furfaces appear moft rough and unpolifht : So that my firft Reafon why Ifhall add but a few obfervations of them, is, their mif-fhapen form; and the next, is their ufelefsnefs. For why fhould we trouble our felves in the examination of that form or fhape (which is all we are able to reach with a Microfope) which we know was defign'd for no higher a ufe, then what we were able to view with our naked eye? Why fhould we endeavour to difcover myfteries in that which has no fuch thing in it? And like Rabbins find out Caballijms, and anigmâs in the Figure, and placing of Letters, where no fuch thing lies hid : whereas in natural forms there are fome fo fmall, and fo curious, and their defign'd bufinefs fo far remov'd beyond the reach of our fight,that the more we magnify the object, the more excellencies and myfteries do appear; And the more we difcover the imperfections of our fenfes, and the Omnipotency and Infinite perfections of the great Creatour. I fhall therefore onely add one or two Obfervations more of artificial things, and then come to the Treaty concerning fuch matters as are the Productions of a more curious Workman. One of thefe, fhall be that of a piece of water'd Silk, reprefented in the fecond Figure of the third scheme, asit appear'd through the leaft magnifying Glafs. $A B$. fignifying the long way of the Stuff,and $C D$ the broad way. This Stuff, if the right fide of it be looked upon, appears to the naked eye, all over fo waved, undulated, or grain'd, with a curious, though irregular variety of brighter and darker parts, that it adds no fmall gracefulnefs to the Olofs of it. It is fo known a propriety, that it needs but little explication, but it is obfervable, which perhaps every one has not confidered, that thofe parts which appear the darker part of the wave, in one pofition to the light, in another appears the lighter, and the contrary;and by this means the undulations become tranfient, and in a continual change, according as the pofition of the parts in refpect of the incident beams of light is varied. The reafon of which odd phanomena, to one that has but diligently examin'd it even with his naked eye, will be obvious enough. But he that obferves it with a Microfcepe, may more eafily perceive what this Proteus is, and how it comes to change its thape. He may very eafily perceive, that it proceedsonely from the variety of the Reflections of light, which is caus'd by the various 乃ape of the Particles, or little protuberant parts of the thread that compofe the furface; and that thofe parts of the waves that

> appear

Micrographia。

appear the brighter throw towards the eye a multitude of fmall reffections of light, whereas the darker fcarce afford any. The reafon of which reflection, the Microfope plainly difcovers, as appears by the Figure. In which you may perceive, that the brighter parts of the furface confift of an abundance of large and frong reflections, denoted by $a, a, a, a, a, \& c$. for the furfaces of thofe threads that run the long woay, are by the Mechanical procefs of watering, creas'd or angled in another kind of poffure then they were by the weaving: for by the weaving they are onely bent round the warping threads ; but by the watering, they are bent with ant angle, or elbor, that is in ftead of lying, or being bent round the threads; as in the third Figure, a, a, a, a, a, are about $b, b, b(b, b, b$ reprefenting the ends, as 'twere, of the crofs threads, they are bent about) they are creas d on the top of thofe threads, with an angle, as in the fourth Figure, and that with all imaginable variety; fo that, whereas before they reflected the light onely from one point of the round furface, as about $c, c ; c$, they now when water'd, reflect the beams from more then half the whole furface, as $d e, d e, d e$, and in other poftures they return no reflections at all from thofe furfaces. Hence in one pofture they compofe the brighter parts of the waves, in another the darker. And thefe reflections are alfo varied, according as the particular parts are varioully bent. The reafon of which creafing we fhall next examine; and here we muft fetch our information from the Mechanifn or manner of proceeding in this operation; which, as I have been inform'd, is no other then this.

They double all the Stuff that is to be water'd, that is, they creafe it juft through the middle of it, the whole length of the piece, leaving the right fide of the Stuff inward, and placing the two edges, or filvages juft upon one another, and, as near as they can,place the wale fo in the doubling of it, that the wale of the one fide may lie very near parallel, or even with the wale of the other; for the nearer that pofture they lie, the greater will the watering appear; and the more obliquely, or acrofs to each other they lie, the fmaller are the waves. Their way for folding it for a great wale is thus: they take a Pin, and begin at one fide of the piece in any wale, and fo moving it towards the other fide, thereby direct their hands to the oppofite ends of the wale, and then, as near as they can, place the two oppofite ends of the fame wale together, and fo double, or fold the whole piece, repeating this enquiry with a Pin at every yard or two's diftance through the whole length; then they fprinkle it with water, and fold it the longways, placing between every fold a piece of Paftboard, by which means all the wrong fide of the water'd Stuff becomes flat, and with little wales, and the wales on the other fide become the more protuberant; whence the creafings or angular bendings of the wales become the more perficuous. Having folded it in this manner, they place it with an interjacent Paftboard into an hot Prefs, where it is kept very violently preft, till it be dry and ftiff; by which means, the wales of either contiguous fides leave their own impreffions upon each other, as is very manifeft by the fecond Figure, where 'tis obvious enough, that the wale of the piece $A B C D$ runs parallel between the pricked lines ef, ef, ef, and as

Micrographia.

manifeft to difcern the impreffions upen thefe wales, left by thofe that were preft upon them, which lying not exactly parallel with them,but a little athwart them, as is denoted by the lines of, 0 oo o, gh, $g h, g h$, between which the other wales did lie parallel;they are fo varioully, and irregularly creas'd that being put into that fhape when wet, and kept fo till they be drie, they fo fet each others threads, that the Moldings remain almoft as long as the Stuff lafts.

Hence it may appear to any one that attentively confiders the Figure, why the parts of the wale a, a, a, a, a, a, fhould appear bright; and why the parts b, b, b, b, b, b, fhould appear fhadowed, or dark; why fome, as d, d, d, d, d, d, fhould appear partly light, and partly dark : the varieties of which reflections and fhadows are the only caufe of the appearance of watering in Silks, or any other kind of Stuffs.

From the variety of reflection, may alfo be deduc'd the caufe why a fmall breez or gale of wind ruffling the furface of a fmooth water, makes it appear black; as alfo, on the other fide, why the fmoothing or burnilhing the furface of whitened Silver makes it look black; and multitudes of other phænomena might hereby be folv'd, which are too many to behere infifted on.

Obferv. VI. Of friall Glafs Canes.

Schem, 4. Hat I might be fatisfid, whether it were not poffible to make an Artificial pore as fmall as any Natural I had yet found, I made feveral attemps with fmall glafs pipes, melted in the flame of a Lamp, and then very fuddenly drawn out into a great length. And, by that means, without much difficulty, I was able to draw fome almoft as fmall as a Cobweb, which yet, with the Microfcope, I could plainly perceive to be perforated, both by looking on the ends of it, and by looking on it againft the light; which was much the eafier way to determine whether it were folid or perforated; for, taking a fmall pipe of glafs, and clofing one end of it, then filling it balf full of water, and holding it againft the light, I cculd, by this means, very eafily find what was the differing afpect of a folid and a perforated piece of glafs; and fo eafily diftinguifh, without feeing either end, whether any Cylinder of glafs I look'd on, were a folid fick, or a bollow cane. And by this means, I could alfo prefently judge of any fmall filament of glafs, whether it were bollow or not, which would have been exceeding tedious to examine by looking on the end. And many fuch like ways I was fain to make ufe of, in the examining of divers other particulars related in this Book, which would have been no eafie task to have determined meerly by the more common way of looking on, or viewing the Object. For, if we confider firft, the very faint light wherewith the object is enlightened, whence many particles appear opacous, which when more enlightned, appear very tranfparent, fo that I was fain to determine its tranparency by one glafs, and its texture by another Next, the unmanageablenefs of moft objects, by reafon

Fig: 7

A

Micrographia.

of their malnefs, 3. The difficulty of finding the defired point, and of placing it fo, as to reflect the light conveniently for the Inquiry, Laftly, ones being able to view it but with one ege at once, they will appear no fmall obftudions, nor are they eafily remov'd without many contrivan ces. But toproceed, I could not find that water, or fome deeply ting'd liquors would in fmall ones rife fo high as one would expect; and the bigheft I have found it yet rife in any of the pipes I have try'd, was to 21 inibes above the level of the water in the veffel: for though I found that in the fmall pipes it would nimbly enter at firf, and run about 6 or 7 inches upwards; yet I found it then to move upwards fo fow, that I have not yet had the patience to obferve it above that height of 21 inches (and that was in a pretty large Pipe, in comparifon of thofe I formerly mentioned; for I could oblerve the progrefs of a very deep ting'd liquor in it with my nakedeye, without much trouble; whereas many of the other pipes were fo very finall, that unlefs in a convenient pefture to the light, I could not perceive them:) But 'tis very probable, that a greater patience and affiduity may difcover the liquors to rije, at leaft to remain fufpended, at heights that I fhould be loath now even to ghefs at, if at leaft there be any proportion kept between the height of the afcending liquor, and the bignefs of the holes of the pipes.

An Attempt for the Explication of this Experiment.

My Conjecture, That the unequal height of the furfaces of the water, procseded from the greater preffure made upon the water by the Air mithout the Pipes A B C, then by that within them; I fhall endeavour to confirm from the truth of the two following Propofitions:

The firft of which is, That an unequal preffire of the incumbent Air, will caufe an unequal height in the water's surfaces.

And the fecond is, That in this experiment there is fuch an unequal pref/ure.

That the firft is true, the following Experiment will evince. For if you take any Veffel fo contrived, as that you can at pleafure either increafe or diminifb the prefure of the Air upon this or that part of the $s u$ perficies of the water, the equality of the height of thofe parts will prefently be loft; and that part of the superficies that fuftains the greater preffure, will be inferior to that which undergoes the lefs. A fit Veffel for this purpofe, will be an inverted Glafs Syphon, fuch an one as is defribed in the Sixtb Figure. For if into it you put Water enough to fill it as high as $A B$, and gently blow in at D, you fhall deprefs the Superficies B, and thereby raije the oppofite Superficies A to a conjederable beight, and by gently fucking you may produce clean contrary effects.

Next, That there is fuch an unequal prefure, I fhall prove from this, That there is a much greater incongruity of Air to Glafs, and fome other Bodies, then there is of Water to the fame.

By Congruity, I mean a property of a fluid Body, whereby any part of it is readily united with any other part, either of it felf, or of any other simizlar, fluid, or folid body: And by Incongruity a property of a fuid, by which it is hindred from uniting with any diffimilar, fluid, or folid Body.

This laft property, any one that hath been obfervingly converfant about fluid Bodies, cannot be ignorant of. For (not now to mention feveral chymical spirits and oyls, which will very bardly, if at all, be brought to mix with one another; infomuch that there mây be found fome 8 or 9 , or more, feveral diftinct Liquors, which frimming one upon another, will not prefently wix) we need (eek no further for Examples of thiskind in fluids, then to obferve the drops of rain falling through the air, and the bubbles of air which are by any means conveyed under the furface of the water; or a drop of common sallet oyl fwimming upon water. In all which, and many more examples of this kind that might be enumerated, the incongruity of two fluids is eafily difcernable. And as for the Congruity or Incongruity of Liquids, with feveral kinds of firms Bodies, they have long fince been taken notice of, and called by the Names of Drinef and Moifure (though thefe two names are not comprehenfive enough, being commonly ufed to fignifie only the adhering or not adhering of pater to fome other (olid Bodies) of this kind we may obferve that pater will more readily met fome woods then others; and that woater, let fall upon a Feather, the whiter fide of a Colpoort, and fome other leaves, or upon almoft any dufty, unctuous, or refinous fuperficies, will not at all adhere to them, but eafily tumble off from them, like a folid Bowl; whereas, if dropt upon Linnen, Paper, Clay, green Wood, \&c. it will not be taken off, without leaving fome part of it behind adhering to them. So Quick-filver, which will very bardly be brought to ftick to any vegetable body, will readily adhere to, and mingle with, feveral clean metalline bodies.

And that we may the better finde what the caufe of Congruity and Incongruity in bodies is, it will be requifite to confider, Firft, what is the caufe of fluidne \int_{s}; And this, I conceive, to be nothing elfe but a certain pulfe or Shake of beat; for Heat being nothing elfe but a very briskand vebement agitation of the parts of a body (as I have elfiwhere made probabable) the parts of a body are thereby made fo loofe from one another, that they eafily move any roay, and become fluid. That I may explain this a little by a grofs Similitude, let us fuppofe a difh of fand fet upon fome body that is very much agitated, and fhaken with fome quick and frong vibrating motion, as on a Miffone turn'd round upon the under ftone very violently whilft it is empty; or on a very ftiff Drum-head, which is vehemently or very nimbly beaten with the Drumfticks. By this means, the fand in the difh, which before lay like a dull and unactive body, becomes a perfect fluid; and ye can no fooner make a bole in it with your finger, but it is immediately filled up again, and the upper furface of it levell'd. Nor can you bury a light body, as a piece of Cork under it, but it prefently emerges or fwims as twere on the top; nor can youllay a heavier on the top of it, as a piece of Lead, but it is immediately buried

MicrographiA。

in Sand, and (as 'twere) finks to the bottom. Nor can you make a bole in the fide of the Difh, but the fand fhall run out of it to a level, not an obvious property of a fluid body, as fuch, but this dos imitate; and all this meerly caufed by the vehement agitation of the conteining veffel; for by this means, each fand becomes to have a vibrative or daneing motion, fo as no other heavier body can reft on it, unlefs fuftein'd by fome other on either fide: Nor will it fuffer any Body to be beneath it, unlefs it be a heavier then it felf. Another Inftance of the ftrange loofening nature of a violent jarring Mution, or a flrong and nimble vibrative one, we may have from a piece of iron grated on very ftrongly with a file: for if into that a pin be fcrew'd fo firm and hard, that though it has a convenient head toit, yet it can by no means be unforew'd by the fingers; if, I fay, you attempt to unfrew this whilft grated on by the file, it will be found to undoe and turn very eafily. The firf of thefe Examples manifefts, how a body actually divided into fmall parts, becomes a fluid. And the latter manifefts by what means the agitation of heat fo eafily loofens and unties the parts of folid and firm bodies. Nor need we fuppofe heat to be any thing elfe, befides fuch a motion; for fuppofing we could Mechanically produce fuch a one quick and frong enough, we need not fpend fuel to melt a body. Now, that I do not fpeak this altogether groundlefs, I muft refer the Reader to the Obfervations I have made upon the fhining fparks of Steel, for there he fhall find that the fame effects are produced upon fmall chips or parcels of Steel by the flame, and by a quick and violent motion; and if the body of feel may be thus melted (as I there fhew it may) I think we have little reafon to doubt that almoft any other may not alfo. Every Smith can inform one how quickly both his File and the Iron grows bot with filing, and if you rub almoft any two bard bodies together, they will do the fame: And we know, that a fufficient degree of heat caufes fluidity, in fome bodies much fooner , and in otherslater; that is, the parts of the body of fome are folaofe from one another, and fo unapt to cobere, and fo minute and little, that a very fmall degree of agitation keeps them always in the fate of fluidity. Of this kind, I fuppofe, the Ether, that is the medium or fluid body, in which all other bodies do asit were fwim and move; and particularly, the Air, which feems nothing elfe but a kind of tindure or folution of terreftrial and aqueous particles dij/olv'dinto it, and agitated by it, juft as the tincture of Cocbeneel is nothing but fome finer diffoluble parts of that Concrete lick'd up or difolv'd by the fluid water. And from this Notion of it, we may eafily give a more Intelligible reafon how the Air becomes fo capable of Rarefacition and Condenfation. For, as in tinclures, one grain of fome ftrongly tinging fubftance may fenfibly colour fome bundred thoufand grains of appropriated Liquors,fo as every drop of it has its proportionate fhare, and be fenfibly ting'd, as I have try'd both with Logwood and Cocheneel: And as fome few grains of salt is able to infect as great a quantity, as may be found by precipitations, though not fo eafily by the fight or afte; fo the Air, which feems to be but as twere a tincture or faline Jubfance, cifjolv'd and agitated by the fluid and agil AEther, may dif-

Micrographia.

perfe and expand it felf into a vaft space, if it have room enough, and infect, as it were, every part of that fpace. But, as on the other fide, if there be but fome femgrains of the liquor, it may extract all the colour of the tinging fubftance, and may diffolve all the Salt, and thereby become much more impregnated with thofe fubftances, fo may all the air that fufficed in a rarify'd fate to fill fome bundred thoufand fpaces of Æther, be compris'd in only ome, but in a pofition proportionable denfe. And though we have not yet found out fuch ftrainers for Tinctures and Salts aswe have for the Air, being yet unable to feparate them from their diffolving liquors by any kind of filtre, without presipitation, as we are able to feparate the Air from the Æther by Glafs, and feveral other bodies. And though we are yet unable and ignorant of the ways of precipitating Air out of the Æther as we can Tinctures, and Salts out of feveral difolvents; yet neither of thefe feeming impolfible from the nature of the things, nor fo improbable but that fome happy future induftry may find out ways to effect them; nay, further, fince we find that Nature does really perform (though by what means we are not certain) both thefe actions, namely, by precipitating the Air in Rain and Dews, and by fupplying the Streams and Rivers of the World with frefh water, frain'd through fecret fubterraneous Caverns: And fince, that in very many other proprieties they do fo exactly feem of the fame nature; till further obfervations or tryals do inform us of the contrary, we may fafely enough conclude them of the fame kind. For it feldom happens that any two natures have fo many properties coincident or the fame, as I have obferv'd Solutions and Air to have, and to be different in the reft. And therefore I think it neither impolfible, irrational, nay nor difficult to be able to predidt what is likely to happen in other particulars alfo, befides thofe which obfervation or Experiment have declared thus or thus; efpecially, if the circumfances that do often very much conduce to the variation of the effects be duly weigh'd and confider'd. And indeed, were there not a probability of this, our inquiries would be endlefs, our tryals vain, and our greateft inventions would be nothing but the meer products of chance, and not of Reafon; and, like Mariners in an Ocean, deftitute both of a Compajs and the fight of the Celeffial guids, we might indeed, by chance, Steer directly towards our defired Port, but 'tis a thoufand to one but we mifs our aim. But to proceed, we may hence alfo give a plain reafon, how the Air comes to be darkned by clouds, \&c. which are nothing but a kind of precipitation, and how thofe precipitations fall down in showrs. Hence alfo could I very eafily, and I think truly, deduce the caufe of the curious fixangular figures of Snow, and the appearances of Haloes, $6 \boldsymbol{c} c$. and the fudden thickning of the Sky with Clouds, and the vanifling and difappearing of thofe Clouds again; for all thefe things may be very eafily imitated in a glafs of liquor, with fome flight Chymical preparations as I have often try'd, and may fomewhere elfe more largely relate, but have not now time to fet them down. But to proceed, there are other bodies that confift of particles more $G r o f s$, and of a more apt figure for cobefion, and this requires a fomexobat greater agitation; fuch, I fuppofe s. fermented vinous

Micrographia.

spirits, feveral chymical Oils, which are much of kin to thofe Spirits, \&e. Others yet require a greater, as water, and fo others much greater, for almoft infinite degrees: For, I fuppofe there are very few bodies in the world that may not be made aliquatenus fluid, by fome or other degree of agitation or heat.

Having therefore in fhort fet down my Notion of a Fluid body, I come in the next place to confider what Congruity is; and this, as I faid before, being a Relative property of a fluid, whereby it may be faid to be like or unlike to this or that other body, whereby it does or does not mix with this or that body. We will again have recourfe to our former Experiment, though but a rude one; and here if we mix in the difh feveral kinds of fands, fome of bigger, others of lefs and finer bulks, we fhall find that by the agitation the fine fand will eject and thron out of it felf all thofe bigger bulks of fmallftones and the like, and thofe will be gathered together all into one place; and if there be other bodies in it of other natures, thofe alfo will be feparated into a place by themfelves, and united or tumbled up together. And though this do not come up to the bigheft property of Congruity, which is a Cobefion of the parts of the fluid together, or a kind of attraction and tenacity, yet this does as 'twere ßhadom it out, and fomewhat refemble it; for juft after the fame manner, I fuppofe the pulfe of heat to agitate the fmall parcels of matter, and thofe that are of a like bigne β, and figure, and matter, will bold, or dance together, and thofe which are of a differing kind will be thruft or hov'd out frombetween them; for particles that are all fimilar, will, like fo many equal mufical frings equally ftretcht, vibrate together in a kind of Harmony or unifon; whereas others that are diffimilar, upon what account foever, unlefs the difproportion be otherwife counter-ballanc'd, will, like fo many frings out of tune to thofe unifons, though they have the fame agitating pulfe, yet make quite differing kinds of vibrations and repercufions, fo that though they may be both mov'd, yet are their vibrations fo different, and fo untun'd, as 'twere to each other, that they crofs and jar againft each other, and confequently, cannot agree together, but fly back from each other to their fimilar particles. Now, to give you an inftance how the difproportion of fome bodies in one refpect, may be counter-ballanc'd by a contrary difproportion of the fame body in another refpect, whence we find that the fubtil vinous Jpirit is congruous, or does readily mix with water, which in many properties is of a very differing nature, we may confider that a unifon may be made either by two f trings of the fame bignefs, length, and tenfion, or by two ftrings of the fame bigne β, but of differing length, and a contrary differing tenfion; or $3 l y$. by two ftrings of unequal length and bignefs, and of a differing tenfion, or of equal length, and differing bignefs and tenfion, and leveral other fuch varieties. To which three properties infrings, will correfpond three proprieties alfo in fand, or the particles of bodies, their Matter or Subfance, their Figure or Shape, and their Body or Bulk. And from the varieties of thefe three, may arife infinite varieties in fluid bodies, though all agitated by the fame pulfe or vibrative motion. And there may be as many ways of making Harmonies
and Difcords with thefe, as there may be with mufical frings. Having therefore feen what is the caufe of Congruity or Incongruity, thofe relative properties of lluids, we may, from what has been faid, very eafily collect, what is the reafon of thofe Relative proprieties alfo between furid bodies and Solid; for fince all bodies confift of particles of fuch a subftance, Figure, and Bulk; but in fome they are united together more firmly then to be loofened from each other by every vibrative motion (though I imagine that there is no body in the world, but that fome degree of agitation may, as I hinted before, agitate and loofen the particles fo as to make them fluid) thofe cobering particles may vibrate in the fame manner almoft as thofe that are loofe and become unijons or dijcords, as I may fo fpeak, to them. Now that the parts of all bodies, though never fo Jolid, do yet vibrate, I think we need go no fnrther for proof, then that all bodies have fome degrees of beat in them, and that there has not been yet found any thing perfectly cold: Nor can I believe indeed that there is any fuch thing in Nature, as a body whofe particles are at rest, or lazy and unactive in the great Theatre of the World, it being quite contrary to the grand Oeconomy of the Univerfe. We fee therefore what is the reafon of the fympathy or uniting of fome bodies together, and of the antipathy or flight of others from eachother : For Congruity feems nothing elfe but a sympathy, and Incongruity an Antipathy of bodies; hence fimilar bodies once united will not eafily part, and diffimilar bodies once difjoyn'd will not eafily unite again; from hence may be very eafily deduc'd the reafon of the $\bar{\sim}$ feenfion of water and 2 uick-filver above their ufual fta tion, as I fhall more at large anon fhew.

Thefe properties therefore (alwayes the concomitants of fluid bodies) produce thefe following vifible Effects:

Firft, They unite the parts of a fluid to its fimilar Solid, or keep them feparate from its difimilar. Hence 2uick-filver will (as we noted before) stick to Gold, Silver, Tin, Lead,\&c. and unite with them : but roulofffrom Wood, stone, Glafs, \&c. if never fo little fcituated out of its horizontallevel; and water that will wet Salt and diffolve it, will Jip off from Tallow, or the like, without at all adbering; as it may likewife be obferved to do upon a duffy fuperficies. And next they caufe the parts of bomogeneal fluid bodies readily to adhere together and mix, and of beterogeneal, to be exceeding averfe thereunto. Hence we find, that troo fmall drops of water, on any fuperficies they can roul on, will, if they chance to touch each other, readily unite and mix into one 3^{d} drop: The like may be obferved with two fmall Bowls of 2uick-fluer upon a Table or Glafs, provided their furfaces be not dufty; and with two drops of oyl upon fair water, ơv. And further, water put unto wine, falt water, vinegar, fpirit of mine, or the like, does immediately (efpecially if they be fhaken together) dijperfe it felf all over them. Hence, on the contrary, we alfo find, that Oyl of Tartar poured upon Quick-filver, and spirit of Wine on that $O y l$, and $O y l$ of Turpentine on that Spirit, and Air upon that Oyl, though they beftopt clofely up into a Bottle, and 乃baken never fo much, they will by no means long fuffer any of their bigger parts to be united or in-

Micrographia.

cluded within any of the orher Liquors(by which recited Liquors, may be plainly enough reprefented the four Peripatetical Elements, and the more fubtil \&ther above all.) From this property'tis, that a drop of soater does not mingle with, or vanifh into Air, but is driven (by that Fluid equally protruding it on every fide) and forc't into as little a face as it can pof fibly be contained in, namely, into a Round Globule. So likewife a-litthe Air blown under the mater, is united or thruft into a Bubble by the ambient water. And a parcel of 2uick-filver enclofed with Air, Water, or almoft any other Liquor, is formed into a round Ball.

Now the caufe why all thefe included Fluids, newly mentioned, or as many others as are wholly included within a heterogeneous fluid, are not exactly of a spkerical Figure (feeing that if caufed by thefe Principles enly, it could be of no other) muft proceed from fome other kind of pref/jure againft the two oppofite flatted fides. This adventitious or accidental prefure may proceed from divers canfes, and accordingly muft diverfifie the Figure of the included heterogeneous fluid: For feeing that a body may be included either with a fluid only, or only with a folid, or partly with a fluid, and partly with a folid, or partly with one fluid, and partly with another; there will be found a very great variety of the terminating furffaces, much differing from a spherical, according to the various refiftance or preffure that belongs to each of thefe encompafling bodies.

Which Properties may in general be deduced from two heads, viz. Motion, and Rest. For, either this Globular Figure is altered by a natural Motion, fuch as is Gravity; or a violent, fuch as is any accidental motion of the fluids, as we fee in the rind ruffling up the water, and the purlings of Streams, and foaming of Catarraits, and the like. Or thirdly, By the Reft, Firmmess and stability of the ambient solid. For if the including solid be of an angular or any other irregular Form, the included fluid will be near of the like, as a Pint-Pot full of water, or a Bladder full of Air. And next, if the including or included fluid have a greater gravity one than another,then will the globular Form be depreft into an Elliptico-fpherical: As if, for example, we fuppofe the Circle $A B C D$, in the fourth Figure, to reprefent a drop of water, Quick-fliver, or the like, included with the Air or the like, which fuppoling there were no gravity at all in either of the fluids, or that the contained and containing were of the fame weight, would be equally comprest into an exactly pphericalbody (the ambient fluid forcing equally againft every fide of it.) But fuppofing either a greater gravity in the included, by reafon whereof the parts of it being preff from A towards B, and thereby the whole put into motion, and that motion being hindred by the refiftance of the fubjacent parts of the ambient, the globular Figure A D B C will be depreft into the Elliptico\int pherical, $E G F H$. For the fide A is detruded to E by the Gravity, and B to F by the refiftance of the fubjacent medium: and therefore C muft neceffarily be thruft to G; and D to H. Or elfe, fuppofing a greater gravi$t y$ in the ambient, by whofe more then ordinary preffure againft the under fide of the included globule ; B will be forced to F, and by its reffitance of

Micrographia.

the motion uproards, the fide A will be depreft to E, and therefore C being thruft to G and D to H; the globular Figure by this means alfo will be made an Elliptico-fpherical. Next if a fluid be includedpartly with one, and partly with another fluid, it will be found to be fhaped diverfly, according to the proportion of the gravity and incongruity of the 3 fluids one to another : As in the fecond Figure, let the upper $M M M$ be Air, the middle $L M N O$ becommonoyl, the lower o o o be Water, the oyl will be form'd, not into a pherical Figure, fuch as is reprefented by the pricked Line, but into fuch a Figure as L M N O, whofe fide L M N will be of a flatter Elliptical Figure, by reafon of the great difproportion between the Gravity of Oyl and Air, and the fide L O M of a rounder, becaufe of the fmaller difference between the weight of oyl and Water. Laftly, The globular Figure will be changed, if the ambient be partly fluid and partly folid. And here the termination of the incompaffed fiuid towards the incompaffing is fhap'd according to the proportion of the congruity or incongruity of the fluids to the folids, and of the gravity and incongruity of the fluids one to another. As fuppofe the fubjacent medium that hinders an included fluids defeent, be a folid, as let K I, in the fourth Figure, reprefent the fmooth fuperficies of a Table; E G F H, a parcel of running Mercury; the fide G F H will be more flatted, according to the proportion of the incongruity of the Mercury and Air to the Wood, and of the gravity of Mercury and Air one to another; The fide G E H will likewife be a little more depreft by reafon the fubjacent parts are now at reft, which were before in motion.

Or further in the third Figure, let A I L D reprefent an including folid medium of a cylindrical fhape (as fuppofe a fmall glafs Far) Let F G E M M reprefent a contain'd fluid, as water; this towards the bottom and fides, is figured according to the concavity of the Glafs: But its upper Surface, (which by reafon of its gravity, (not confidering at all the Air above it, and fo neither the congruity or incongruity of either of them to the Glafs) fhould beterminated by part of a sphere whofe diameter fhould be the fame with that of the earth, which to our fenfe would appear a ftraight Line, as F G E, Or which by reafon of its having a greater congruity to Glafs than Air has, (not confidering its Gravity) would be thruft into a concave sphere, as CHB , whofe diameter would be the fame with that of the concavity of the Veffel :) Its upper Surface, I fay, by reafon of its having a greater gravity then the Air, and having likewife a greater congruity to Glafs then the Air has, is terminated, by a concave Elliptico-Spherical Figure, as C K B. For by its congruity it eafily conforms it felf, and adheres to the Glafs, and conftitutes as it were one containing body with it, and therefore fhould thruft the contained Air on that fide it touches it, into a Jpherical Figure, as B H C, but the motion of Gravity depreffing a little the Corners B and C, reducesit into the aforefaid Figure $\mathrm{C} \mathrm{K} \mathrm{B}$. two contiguous fluids, then of the other, to the containing folid, that caufes the feparating furfaces to be thus or thus figured: And that it is not becaufe this or that figurated furface is more proper, natural, or peculiar to one

Micrographl/a.

one of thefe fluid bodies, then to the other, will appearffom this 5 that the fame fluids will by being put into differing folds, change their finffades. For the fante water, which in a Glafs or wooden veffel will haveaconcave furface upwards, and will rife higher ina fraller then a greateer Pipe, the fame water, I fay, in the fame Pipes greafed over or oyled, will pró duce quite contrary effects; for it will bave a protuberant and condex furface upwards, and will not rife fo high in finall, as in bigger Pipes : Náy, in the very fame folid Veffel, you may make the very lame the contigitous Liquids to alter their Surfaces; for taking a friall Wine-glafs,or flich like Veffel, and pouring water gently into it, you fhall perceive the furface of the water all the way concave, till it rife even with the top, when you fhall find it (if you gently and carefully pour in more) to grow very protuberant and convex; the reafon of which is plain, for that the folid fides of the containing body are no longer extended, to which the water does more readily adhere then the air; but it is henceforth to be included with air, which would reduce it into a bemifphere, but by reafon of its gravity, it is flatted into an oval. Quicksilver alfo which to Glafs is more incongruous then Air (and thereby being put into a Clafs-pipe, will not adhere to $i t$, but by the more congrnous air will be forced to have a very protuberant furface, and to rife higher in a greater then a leffer Pipe) this Quicksilver to clean Metal, efpecially to Gold, Silver, Tin. Lead, \&c. Iron excepted, is more comgrnous then Air, and will not only ftick to it, but have a concave Surface like water, and rife higher in a lefs, then in a greater Pipe:
In all thefe Examples it is evident, that there is an extraordinary and adventitious force, by which the globular Figure of the contained beterogeneous fluid is altered; neither canit be inagined, how it flould otherwife be of any other Figure then Globular : For being by the beterogeneous fluid equally protruded every way, whatfoever part is protaberant, will be thereby depreft. From this caufe it is, that in its efiectsit does very much refemble a round spring (fuch as a Hoop.) For as in'a round spring there is required an additional pre/fure againft two oppofite lides, to reduce it into an Oval Form, or to force it in between the fides of a Hole, whofe Dianzeter is lefs then that of the spring, there muft be a confiderat ble force or protrufion againft the concave or inner fide of the spring; So to alter this /pherical conftituticn of an included fluid body, there is required more preffure againft oppofite fides to reduce it into an' Ovil ; and, to prefs it into an Hole lefs in Diameter then it felf, it requires a greater protrufion againft all the other fides. What degrees of force are requilite to reduce them into longer and longer ovals, or to prefs them into lefs and lefsholes, I have not yet experimentally calculated; but thus much by experiment I find in general, that there is alwayes required a greater preflure to clofe them into longer Ovals, or protude them into fmaller boles. The neceffity and reafon of this, were it requifite, I couldeafily explain: butbeing not foneceffary, and requiring more roem and time then I have for it at prefent, I fhall here omit it'; and proceed to fhew, that this may be prefently found true, if Experiment be made with a

[^1]
Micrographia.

rousd Spring (the way of making which trials is obvious enough.) And with the fluid bodies of Mercury, Air, © cr, the way of trying which, will be fomewhat more difficult; and therefore Ifhall in brief defcribe it. He therefore that would try with Air, muft firft be provided of a Gla $/ s$-pipe, made of the fhape of that in the fifth Figure, whereof the fide A B, reprefents a ftraight Tube of about three foot long, C, reprefents another part of it, which confifts of a round Bubble; fo ordered, that there is left a pafage or hole at the top, into which may be faftened with cement feveral fmall Pipes of determinate cylindrical cavities: as let the hollow of
$\left.\begin{array}{c}\text { F. } \\ \text { G. } \\ \text { H. } \\ \text { I. } \\ \text { K. } \\ \text { L. } \\ \text { M. } \\ \text { G.c }\end{array}\right\}$ be $\left\{\begin{array}{l}\frac{1}{4} \\ \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{3} \\ \frac{1}{21} \\ \frac{2}{16} \\ \frac{2}{24} \\ \frac{1}{32} \\ \frac{4}{32}\end{array}\right\}$ of an inch.

There may be added as many more, as the Experimenter fhall think fit, with holes continually decreafing by known quantities, fo far as his fenfes are able to helphim; I fay, fo far, becaufe there may be made Pipes fo frall that it will be impoffible to perceive the perforation with ones naked eye, though by the help of a Microfcope, it may eafily enough be perceived: Nay, I have made a Pipe perforated from end to end, fo fmall, that with my naked eye I could very hardly fee the body of it, infomuch that I have been able to knit it up into a knot without breaking: And more accurately examining one with my Microfoope, I found it not fo big as a fixteenth part of one of the fmaller hairs of my head which was of the fmaller and finer fort of hair, fo that fixteen of thefe Pipes bound fag-got-wife together, would but have equalized one fingle hair; how fmall therefore muft its perforation be? It appearing to me through the MicroScope to be a proportionably thick-fided Pipe.

To proceed then, for the trial of the Experiment, the Experimenter muft place the Tube A B, perpendicular, and fill the Pipe F (cemented into the hole E) with water, but leave the bubble C full of Air, and then gently pouring in water into the Pipe A B, he muft obferve diligently how high the water will rife in it before it protrude the bubble of Air C, through the narrow paflage of F , and denote exactly the height of the Cylinder of water, then cementing in a fecond Pipe as G, and filling it with water; he may proceed as with the former, denoting likewife the height of the Cylinder of water, able to protrude the bubble C through the paffage of \mathbf{G}, the like may he do with the next Pipe, and the next, \& c. as far as he is able : then comparing the feveral heights of the Cylinders, with the feveral boles through which each cylinder did force the air (having due regard to the Cylinders of water in the fmall Tubes) it will be very eafie to determine, what force is requifite to prefs the Air into fuch and fuch a bole, or (to apply it to our prefent experiment)

Micrographia.

how much of the preffure of the Air is taken off by its ingrefs into fmaller and fmaller boles. From the application of which to the entring of the Air into the bigger bole of the V effel, and into the fmaller bole of the Pipe, we fhall clearly find, that there is a greater preffure of the air upon the water in the Vefjel or greater pipe, then there is upon that in the leffer pipe: For fince the preflure of the air every way is found to be equal, that is, as much as is able to prefs up and fuftain a Cylinder of Quicksilver of two foot and a half high, or thereabouts; And fince of this prefliure fo many more degrees are required to force the Air into a fmaller then into a greater bole that is full of a more congruous fluid. And laftly, fince thofe degrees that are requifite to prefs it in, are thereby taken off from the Air within, and the Air within left with fo many degrees of preffure lefs then the Air without; it will follow, that the Air in the lefs Tube or pipe, will have lefs preffure againft the fuperficies of the water therein, then the Air in the bigger: which wasthe minor Propofition to be proved.

The Conclufion therefore will neceflarily follow, viz. That this unequal preßure of the Air canfed by its ingreß into unequal boles, is a caufe fufticient to produce this effect, without the belp of any other concurrent; and therefcre is probably the principal (if not the only) caufe of thefe Phenomena.

This therefore being thus explained, there will be divers Pbsnomena explicable thereby, as, the rifing of Liquors in a Filtre, the rifing of spirit of Wine, Oyl, melted Tallow, ow. in the Week of a Lamp, (though made of fmall Wire, Threeds of Asbeftus, strings of Glafs, or the like) the rifing of Liquors in a spunge, piece of Bread, sand, erc. perhaps alfo the afcending of the sap in Trees and Plants, through their fmall, and fome of them imperceptible pores, (of which I have faid more, on another occafion) at leaft the pafling of it out of the earth into their roots. And indeed upon the confideration of this Principle, multitudes of other ufes of it occurr'd to me, which I have not yet fo well examined and digefted as to propound for Axioms, but only as உucries and Conjectures which may ferve as bints toward fome further dijcoveries.

As firft, Upon the confideration of the congruity and incongruity of Bodies, as to touch, I found alfo the like congruity and incongruity (if Imay fo fpeak) as to the Tranfinitting of the Raies of Light: For as in this regard, water (not now to mention other Liquors) feems nearer of affinity to Glafs then Air, and Air then Quicksilver: whence an oblique Ray out of Glafs, will pafs into water with very little refraction from the perpendiinlar, but none out of Glafs into Air, excepting a direcit, will pafs without a very great refraction from the perpendicular, nay any oblique Ray under thirty degrees, will not be admitted into the Air at all. And 2uickfilver will neither admit oblique or direct, but reflects all; feeming, as to the tranfmitting of the Raies of Light, to be of a quite differing conftitution, from that of Air, Water, Glafs, $\sigma \boldsymbol{c}$. and to refemble moft thofe opacous and ftrong reflecting bodies of Metals: So alfo as to the property of cohefion or congruity, Water feems to keep the fame order, being

more

22

Micrographia.
more congruous to Glafs then Air, and Air then Quickfilver.
A Second thing (which was hinted to me, by the confideration of the included fluids globular form, caufed by the protrufion of the ambient heterogeneous fluid) was, whether the Phonomena of gravity might not by this means be explained, by fuppofing the Globe of Earth, Water, and Air to be included with a fluid, heterogeneous to all and each of them, fo fubtil, as not only to be every where interfperfed through the Air, (or rather the air through it) but to pervade the bodies of Glafs, and even the clofeft Metals, by which means it may endeavour to detrude all earthly bodies as far from it as it can; and partly thereby, and partly by other of its properties may move them towards the Center of the Earth. Now that there is fome fuch fluid, I could produce many Experiments and Reafons, that do feem to prove it: But becaufe it would ask fome time and room to fet them down and explain them, and to confider and anfwer all the Objections (many whereof I forefee) that may be alledged againft it; I fhall at prefent proceed to other Queries,contenting my felf to have here only given a hint of what I may fay more elfwhere.

A Third $\mathscr{Q}^{\text {uery }}$ then was, Whether the beterogeneity of the ambient fluid may not be accounted a fecondary caufe of the roundnefs or globular form of the greater bodies of the world, fuch as are thofe of the sun,stars, and Planets, the fubftance of each of which feems altogether beterogeneous to the circum-ambient fluid atber? And of this I fhall fay more in the Obfervation of the Moon.

A Fourth was, Whether the globular form of the fmaller parcels of matter here upon the Earth, as that of Fruits, Pebbles, or Flints, ©oc. (which feem to have been a Liquor at firft) may not be caufed by the beterogeneous ambient fluid. For thus we fee that melted Glafs will be naturally formed into a round Figure; fo likewife any fmall Parcel of any fuffible body, if it be perfectly enclofed by the Air, will be driven into a globular Form; and, when cold, will be found a folid Ball. This is plainly enough manifefted to us by their way of making hot with the drops of Lead; which being a very pretty curiofity, and known but to a very few, and having the liberty of publifhing it granted me, by that EminentVirtuefo Sir Robert Moray, who brought in this Account of it to the Royal Society, thave here tranfcribed and inferted.

To make fmall fhot of different fizes; Communicated by his Highnefs P. R.

TAke Lead out of the Pig wbat quantity you pleafe, melt it down, fiir and clear it with an iron Ladle, gatbering togetber the blackjib parts that fwim at top like foum, and when you fee the colour of the clear Lead to be greenifl, but no fooner, Arem uponit Auri-
pigmentum

Micrographia.

pigmentum powdered according to the quantity of Lead, about as much as will lye upon a balf Crom piece will ferve for eigbteen or twenty pound weight of fome forts of Lead; otbers will require more, or le β. After the Auripigmentum isput in, fir the Lead well, and the Auripigmentum will flame: when the flame is over, take out fome of the Lead in a Ladle baving a lip or notch in the brim for convenient pouring out of the Lead, and being well warmed among ft the melted Lead, and with a fick make forme fingle drops of Lead trickle out of the Ladle into water in a Glass, wbich if they fall to be round and without tails, there is Auripigmentum enough put in, and the temper of the beat is right, otherwije put in more. Then lay two bars of Iron (or fome moreproper Iron-tool made on purpofe) upon a Pail of water, and place upon them a round Plate of Copper, of the fize and figure of an ordinary large Pewter or Silver Trencher, the bollow whereof is to be about three inches over, the bottom lower then the brims about balf an inch, pierced with thirty, forty, or more fmall boles; the fraller the boles are, the fmaller the fhot willbe; and the brim is to be tbicker then the bottom, to conferve the beat the better.

The bottom of the Trencber being forme four inches diftant frum the water in the Pail, lay ipon it fome burning Coles, to keep the Lead inelted upon it. Thenwith the bot Ladle take Lead off the Pot where it flands melted, and pour it foftly upon the burning Coles over the bottom of the Trencher, and it will immediately run tbrough the boles into the water in finall round drots. Thus pour on new Lead fill as faft as it runs.tbrough the Trencher till all be done; blowing now and then the Coles with hand-Bellows, when the Lead in the Trencher cools fo as to fiop from rumning.

Whilft onepours on the Lead, another muft, with, another Ladle, tbrufted four or five incbes under water in the Pail, catch from time to time fome of the flot, as it drops down, to fee the fize of it, and whetber there be any faults in it. The greatef care is to keep the Lead upon the Trencber in the right degree of beat; if it be too cool, it will not run tbrought the Trencher, though it fand melted upon it ; and this is to

24

 Micrographia.be belped by blowing the Coals a little, or pouring on new Lead that is botter: but the cooler the Lead, the larger the Shot; and the botter, the fraller; when it is too bot, the drops will crack and fly; then you muft fop pouring on new Lead, and let it cool; and folong as you obferve the right temper of the beat, the Lead will conffantly drop into very round Sbot, witbout Jo much as one witb a tail in manypounds.

When all is done, take your Shot out of the Pailof water, and put it in a Frying-pan over the fire to dry them, which muft be done warily, fill fbaking them tbat they melt not; andwben they are dry you may feparate the finall from the great, in Pearl Sives made of Copper or Lattin let into one another, into as many fizes as you pleafe. But if you would bave your Sbot larger then the Trencher makes them, you may do it with a Stick, making tbem trickle out of the Ladle, as bath been faid.

If the Trencher be but toubbt a dery little when the Lead fops from going tbrough it, and be not too cool, it will drop again, but it is better not to touch it at all. At the melting of the Lead take care that there be nokind of Oyl, Greafe, or the like, upon the Pots, or Ladles, or Trencher.

The Chief caufe of this Globular Figure of the Sbot, feems to be the Auripigmentum; for, as foon as it is put in ainong the melted Lead, it lofes its flining brigbtnes, contracting inflantly a grayifb film or. skin upon it, when you foum it to make it clean with the Ladle. So that when the Air comes at the falling drop of the melted Lead, that skin confiricfstbem every wbereequally: but upon what account, and whetber this be the true caufe, is left to furtber difquijition,

Much after this fame manner, when the Air is exceeding cold through which it paffes, do we find the drops of Rain, falling from the Clouds, congealed into round Hait-ftones by the freezing Ambient.

To which may be added this other knotin Experiment, That if yout gently let fall a drop of mater upon fmall fand or $d u f t$, you fhall find. as it were, an artificial round foone quickly generated. Icannot upon this occafion omit the mentioning of the ftrange kind of Grain, which I have obferved in a fone brought from Kettering in Northampton/hire, and therefore called by Mafons Kettering-Stone, of which fee the Defcription.

Which

Micrographia。

Which brings into my mind what I long fince obferved in the fiery Sparks that are ftruck out of a Steel. For having a great defire to fee what was left behind, after the Spark was gone out, I purpofely ftruck fire over a very white piece of Paper, and obferving diligently where fome confpicuous fparks went out, I found a very little black fot no bigger then the point of a Pin, which through a Microf oope appeared to be a perfectly round Ball, looking much like a polifht ball of Steel, infomuch that I was able to fee the Image of the window reflected from it. I cannot here ftay (having done it more fully in another place) to examine the particular Reafons of it, but fhall only hint, that I imagine it to be fome fmall parcel of the Steel, which by the violence of the motion of the ftroke (moft of which feems to be impreft upon thofe fmall parcels) is made fo glowing hot, that it is melted into a Vitrum, which by the ambient Air is thruft into the form of a Ball.

A Fifth thing which I thought worth Examination was, Whether the motion of all kind of Springs, might not be reduced to the Principle whereby the included beterogeneous fluid feems to be moved; or to that whereby two Solids, as Marbles, or the like, are thruft and kept together by the ambient fluid.

A Sixth thing was, Whether the Rifing and Ebullition of the Water out of Springs and Fountains (which lie much higher from the Center of the Earth then the Superficies of the Sea, from whence it feems to be derived) may not be explicated by the rifing of Water in a fmaller Pipe: For the Sea-water being ftrained through the Pores or Crannies of the Earth, is, as it were, included in little Pipes, where the preffure of the Air has not fo great a power to refift its rifing: But examining this way, and finding in it feveral difficulties almoft irremovable, I thought upon a way that would much more naturally and conceivably explain it, which was by this following Experiment: I took a Glafs-Tube, of the form of that defcribed in the fixth Figure, and chufing two beterogeneous fluids, fuch as Water and Oyl, I poured in as much Water as filled up the Pipes as high as $A B$, then putting in fome $O y l$ into the Tube $A C$, I depreft the fuperficies A of the Water to E, and B I raifed to G, which was not fo high perpendicularly as the fuperficies of the OylF , by the face FI , wherefore the proportion of the gravity of thefe two Liquors was as GH to FE.

This Experiment I tried with feveral other Liquors, and particularly with frefh Water and Salt (which I made by diffolving Salt in warm Water) which two though they are nothing heterogeneous, yet before they would perfectly mix one with another, I made trial of the Experiment: Nay, letting the Tube wherein I tried the Experiment remain for many dayes, I obferved them not to mix ; but the fuperficies of the frefh was rather more then lefs elevated above that of the Salt. Now the proportion of the gravity of Sea-water, to that of River-water, according to stevinus and Varenius, and as I have fince found pretty true by making trial my felf, is as 46 . to 45 . that is, 46 . Ounces of the falt Wa-
ter will take up no more room then 45 . of the frefh. Or reciprocally 45 pints of falt-water weigh as much as 46 of frefh.

But I found the proportion of Brine to frefh Water to be near 13 to 12 : Suppofing therefore G H M to reprefent the Sea, and F I the height of the Mountain above the Superficies of the Sea, F M a Cavern in the Earth, beginning at the bottom of the Sea, and terminated at the top of the Mountain, L M the Sand at the bottom, through which the Water is as it were ftrained, fo as that the frefher parts are only permitted to tranfude, and the faline kept back; if therefore the proportion of GM to F M be as 45 to 46 , then may the Cylinder of Salt-water $G \mathrm{M}$ make the Cylinder of Frefh-water to rife as high as E , and to run over at N . I cannot here ftand to examine or confute their Opinion, who make the depth of the Sea, below its Superficies, to be no more perpendicularly meafured then the height of the Mountains above it: "Tis enough for me to fay, there is no one of thofe that have afferted it, have experimentally known the perpendicular of either; nor fhall I here determine, whether there may not be many other caufes of the feparation of the frefh water from the falt, as perhaps fome parts of the Earth through which it is to pafs, may contain a Salt, that mixing and uniting with the Sea-falt, may precipitate it; much after the fame manner as the Alkalizate and Acid Salts mix and precipitate each other in the preparation of Tartarum Vitriolatum. I know not alfo whether the exceeding cold (that muft neceffarily be) at the bottom of the Water, may not help towards this feparation, for we find, that warm Water is able to diffolve and contain more Salt, then the fame cold; infomuch that Brines ftrongly impregnated by heat, if let cool, do fuffer much of their Salt to fubfide and cryftallize about the bottom and fides. I know not alfo whether the exceeding preffire of the parts of the Water one againft another, may not keep the Salt from defcending to the very bottom, as finding little or no room to infert it felf between thofe parts, protruded fo violently together, or elle fqueeze it upwads into the fuperiour parts of the Sea, where it may more eafily obtain room for it felf, amongft the parts of the Water, by reafon that there is more heat and lefs preffire. To this Opinion I was fomewhat the more induced by the relations I have met with in Geographical Writers, of drawing frefh Water from the bottom of the Sea, which is falt above. I cannot now ftand to examine, whether this natural perpetual motion may not artificially be imitated: Nor can Iftand to anfwer the Objections which may be made againft this my Suppofition: As, Firft, How it comes to pafs, that there are fometimes falt Springs much higher then the Superficies of the Water? And, Secondly, Why Springs do not run fafter and flower, according to the varying height made of the Cylinder of Sea-water, by the ebbing and flowing of the Sea ?

As to the Firft, Infhort, I fay, the frefh Water may receive again a faline Tincture near the Superficies of the Earth, by paffing through fome falt Mines, or elfe many of the faline parts of the Sea may be kept back, though not all.

Micrographia.

And as to the Second, The fame spring may be fed and fupplyed by divers Caverns, coming from very far diftant parts of the Sea, fo as that it may in one place be bigh, in another low water; and fo by that means the spring may be equally fupply'd at all times. Or elfe the Cavern may be fo ftraight and narrow, that the water not having foready and free paflage through it, cannot upon fo fhort and quick mutations of preffure, be able to produce any fenfible effect at fuch a diftance. Befides that; to confirm this hypothefis, there are many Examples found in Natural Hiftorians, of springs that do ebb and flow like the Sea : As particularly,thofe recorded by the Learned Camden, and after him by speed, to be found in this Ifland: One of which,they relate to be on the Top of a Mountain, by the fmall Village Kilken in Flintfhire, Maris amulus qui fatis temporibus fuas evomit \& reforbet Aquas; Which at certain times rifeth and falleth after the manner of the Sea. A Second in Caermardenfiire, near Caermarden, at a place called Cantred Bichan; Qui (ut foribit Giraldus) naturali die bis undis deficiens, or toties exuberans, marinas imitatur inftabilitates; That twice in four and twenty hours ebbing and flowing, refembleth the unftable motions of the Sea. The Phenomena of which two may be eafily made out, by fuppofing the Cavern, by which they are fed, to arife from the bottom of the nextSea. A Third, is a Well upon the River Ogmore in Glamorganfire, and near unto Newton, of which Camden relates himfelf to be certified, by a Letter from a Learned Friend of his that obferved it, Fons abeft hinc, obc. The Letter is a little too long to be inferted, but the fubftance is this; That this Well ebbs and flows quite contrary to the flowing and ebbing of the Sea in thofe parts: for 'tis almoft empty at Full Sea, but full at Low water. This may happen from the Channel by which it is fupplied, which may come from the bottom of a Sea very remote from thofe parts, and where the Tides are much difiering from thofe of the approximate fhores. A Fourth, lies in Wefmorland, near the River Loder; Qui inftar Euripi Sapius in die reciprocantibus undis fluit er refluit, which ebbs and flows many times a day. This may proceed fromits being fupplyed from many Channels, coming from feveral parts of the Sea, lying fufficiently diftant afunder to have the times of High-water differing enough one from the other; fo as that whenfoever it fhall be High water over any of thofe places, where thefe Channels begin, it fhall likewife be fo in the Well; but this is but a fuppofition.

A Seventh $2 u e r y$ was, Whether the diffolution or mixing of feveral bodies, whether fuid or folid, with faline or other Liquors, might not partly be attributed to this Principle of the congruity of thofe bodies and their diffolvents? As of Salt in Water, Metals in feveral Menftruums, Unctuous Gums in Oyls, the mixing of Wine and Water, ovc. And whether precipitation be not partly made from the fame Principle of Incongruity? I fay partly, becaule there are in fome Diffolutions,fome other Caufes concurrent.

I fhall laftly make a much nore feemingly ftrange and unlikely 2 थery; and that is, Whether this Principle, well examined and explained, may
not be found a co-efficient in the moft confiderable Operations of Na ture? As in thofe of Heat, and Light, and confequently, of Rarefaction and Condenfation, Hardnefs, and Fluidne f_{s}, Perfpicuity and Opacoufne f_{s}, Refractions and Colours, ©c. Nay,I know not whether there may be many things done in Nature, in which this may not (be faid to) have a Finger? This I have in fome other paffages of this Treatife further enquired into and Thewn, that as well Light as Heat may be caufed by corrofion, which is applicable to congruity, and confequently all the reft will be but fubfequents: In the mean time I would not willingly be guilty of that Error, which the thrice Noble and Learned Verulam juftly takes notice of, as fuch, and calls Pbilofophice Genus Empiricum, quod in paucorum Experimentorum Anguftits or obfuritate fundatum eft. For Ineither conclude from one fingle Experiment, nor are the Experiments I make ufe of,all made upon one Subject: Nor wreft Iany Experiment to make it quadrare with any preconceiv'd Notion. But on the contrary, I endeavour to be converfant in divers kinds of Experiments, and all and every one of thofe Trials, I make the Standards or Touchftones, by which Itry all my former Notions, whether they hold out in weight, and meafure, and touch, orc. For as that Body is no other then a Counterfeit Gold, which wants any one of the Proprieties of Gold, (fuch as are the Malleablenefs, Weight, Colour, Fixtnefs in the Fire, Indiffolublenefs in Aqua fortis, and the like) though it has all the other ; fo will all thofe Notions be found to be falle and deceitful, that will not undergo all the Trials and Tefts made of them by Experiments. And therefore fuch as will not come up to the defired Apex of Perfection, I rather wholly reject and take new, then by piecing and patching, endeavour to retain the old, as knowing fuch things at beft to be but lame and imperfect. And this courfe I learned from Nature; whom we find neglectful of the old Body, and fuffering its Decaies and Infirmities to remain without repair, and altogether follicitous and careful of perpetuating the species by new Individuals. And it is certainly the moft likely way to erect a glorious Structure and Temple to Nature, fuch as fhe will be found (by any zealous Votary) to refide in; to begin to build a new upon a fure Foundation of Experiments.

But to digrefs no further from the confideration of the Pbenomena ${ }_{2}$ more immediately explicable by this Experiment, we fhall proceed to Shew, That, as to the rifing of Water in a Filtre, the reafon of it will be manifeft to himi, that does take notice, that a Filtre is conftituted of a great number of fmall long folid bodies, which lie fo clofe together, that the Air in its getting in between them, doth lofe of its preffure that it has againft the Fluid without them, by which means the Water or Liquor not finding fo ftrong a refiftance between them as is able to counter-ballance the preffure on its fuperficies without, is raifed upward, till it meet with a preffure of the Air which is able to hinder it. And as to the Rifing of Oyl, melted Tallow, Spirit of Wine, erc. in the Week of a Candle or Lamp, it is evident, that it differs in nothing from the former, fave only in this, that in a Filtre the Liquor defcends and runs away by another part; and in the Week the Liquor is difperfed and carried away by the

Flame;

Micrographia。

Flame; fomething there is afcribable to the Heat, for that it may rarifie the more volatil and firituous parts of thofe combuftible Liquors, and fo being made lighter then the Air, it may be protruded upwards by that more ponderous fluid body in the Form of Vapours; but this can be afcribed to the afcenfion of but a very little, and moft likely of that on ly which afcends without the Week. As for the Rifing of it in a Spunge, Bread, Cotton. ©oc. above the fuperficies of the fubjacent Liquor; what has been faid about the Filtre (if confidered) will eafily fuggeft a reafon, confidering that all thefe bodies abound with frall holes or pores.

From this fame Principle alfo (viz, the unequal preffure of the Air againft the unequal Juperficies of the water) proceeds the caufe of the aca ceflion or incurfion of any floating body againft the fides of the containing Veffel, or the appropinquation of two floating bodies, as Bubbles, Corks, sticks, strams, evc. one towards another. As for inftance, Take a Glafs-jar, fuch as AB in the feventh Figure, and filling it pretty near the top with water, throw into it a fmall round piece of Cork, as C, and plunge it all over in water, that it be wet, fo as that the water may rife up by the fides of it, then placing it any where upon the fuperficies, about an inch, or one inch and a quarter from any fide, and you fhall perceive it by degrees to make perpendicularly toward the neareft part of the fide, and the nearer it approaches, the fafter to be moved; the reafon of which Phenomenon will be found no other then this, that the Air has a greater preffure againft the middle of the fuperficies, then it has againft thofe parts that approach nearer, and are contiguous to the fides, Now that the preflure is greater, may (as Ifhewed before in the explication of the third Figure) be evinced from the flatting of the water in the middle, which arifes from the gravity of the under fluid: for fince, as I fhewed before, if thete were no gravity in the under fluid, or that it were equal to that of the upper, the terminating Surface would be spherical, and fince it is the additional preffure of the gravity of water that makes it fo flat, it follows, that the preffure upon the middle muft be greater then towards the fides. Hence the Ball having a ftronger preffure againft that fide of it which refpects the middle of the fuperficies, then againft that which refpects the approximate fide, muft neceffarily move towards that part, from whence it finds leaft refiftance, and fo be accelerated, as the refiftance decreafes. Hence the more the water is raifed under that part of its way it is paffing above the middle, the fafter it is moved: And therefore you will find it to move fafter in E then in D, and in D then in C. Neither could I find the floating fubftance to be moved at all, until it were placed upon fome part of the superficies that was fenlibly elevated above the height of the middle part. Now that this may be the true caufe, you may try with a blown Bladder, and an exactly round Ball upon a very fmooth fide of fome pliable body, as Horn or Quicksilver. For if the Ball be placed under a part of the Bladder which is upon one fide of the middle of its preffure, and you prefs ftrongly againft the Bladder, you fhall find the Ball moved from the middle towards the fides.

Having

Micrographia.

Having therefore fhewn the reafon of the motion of any float towards the fides, the reafon of the incurfion of any two floating bodies will eafily appear: For the rifing of the water againft the fides of either of them, is an Argument fufficient, to fhew the preffure of the Air to be there lefs, then it is further from it, where it is not fo much elevated ; and therefore the reafon of the motion of the other toward it, will be the fame as towards the fide of the Glafs; only here from the fame reafon, they are mutually moved toward each other, whereas the fide of the Glafs in the former remains fixt. If alfo you gently fill the Jar fo full with water, that the water isprotuberant above the fides, the fame piece of Cork that before did haften towards the fides, does now fly fromit as faft towards the middle of the Superficies; the reafon of which will be found noother then this, that the preffure of the Air is ftronger againft the fides of the Superficies G and H, then againft the middle I ; for fince, as I fhewed before, the Principle of congruity would make the terminating Surface Spherical, and that the flatting of the Surface in the middle is from the abatement of the waters preffure outwards, by the contrary indeavour of its gravity ; it follows that the preffure in the middle muft be lefs then on the fides; and therefore the confecution will be the fame as in the former. It is very odd to one that confiders not the reafon of it, to fee two floating bodies of wood to approach each other, as though they were indued with fome magnetical vigour; which brings into my mind what I formerly tried with a piece of Cork or fuch like body, which I fo ordered, that by putting a little ftick into the fame water, one part of the faid Cork would approach and make toward the ftick, whereas another would difcede and fly away, nay it would have a kind of verticity, fo as that if the Fquator (as Imay fo fpeak) of the Cork were placed towards the ftick, if let alone, it would inftantly turn its appropriate Pole toward it, and then run a-tilt at it:and this was done only by taking a dry Cork, and wetting one fide of it with one fmall froak; for by this means gently putting it upon the water, it would deprefs the fuperficies on every fide of it that was dry, and therefore the greateft prefliure of the Air, being near thofe fides caufed it either to chafe away, or elfe to fly off from any other floating body, whereas that fide only, againft which the water afcended, was thereby able to attract.

It remains only, that Ifhould determine how high the Water or other Liquor may by this means be raifed in a fmaller Pipe above the Superficies of that without it, and at what height it may be fuftained: But to determine this, will be exceeding difficult, unlefs I could certainly know how much of the Airs preffire is taken off by the fmalnefs of fuch and fuch a Pipe, and whether it may be wholly taken off, that is, whether there can be a hole or pore fo fmall, into which Air could not at all enter, though water might with its whole force; for were there fuch, 'tis manifeft, that the water might rife in it to fome five or fix and thirty Englifh Foot high. I know not whether the capillary Pipes in the bodies of fmall Trees, which we call their Microficopical pores, may not be fuch; and whether the congruity of the fides of the Pore may not yet draw the juyce

Micrographia.

even higher then the Air was able by its bare preffure to raife it: For, Congruity is a principle that not only unites and holds a body joyned to it, but, which is more, attracts and draws a body that is very near it, and holds it above its ufual height.

And this is obvious even in a drop of water fufpended under any $\mathrm{Si}-$ milar or Congruous body : For, befides the ambient preffure that helps to keep it fuftein' d , there is the Congruity of the bodies that are contiguous. This is yet more evident in Tenacious and Glutinous bodies; fuch as Gummous Liquors, Syrups, Pitch, and Rofin melted, Ooc. Tar, Tur pentine, Balfom, Bird-lime, ©oc. for there it is evident, that the Parts of the tenacious body, as I may fo call it, do ftick and adhere fo clofely together, that though drawn out into long and very flender Cylinders, yet they will not eafily relinquifh one another; and this, though the bodies be aliquatenus fluid, and in motion by one another; which, to fuch as confider a fluid body only as its parts are in a confufed irregular motion, without taking in alfo the congruity of the parts one among another, and incongruity to fome other bodies, does appear not alittle ftrange. So that befides the incongruity of the ambient fluid to it, we are to confider alfo the congruity of the parts of the contein'd fluid one with another.
And this Congruity (that I may here a little further explain it) is both a Tenaceous and an Attractive power; for the Congruity, in the Vibrative motions, may be the caufe of all kind of attraction, not only Electrical, but Magnetical alfo, and therefore it may be alfo of Tenacity and Glutinoufnefs. For, from a perfect congruity of the motions of two diftant bodies, the intermediate fluid particles are feparated and droven away from between them, and thereby thofe congruous bodies are, by the incompaffing mediums, compell'd and forced neerer together; wherefore that attractivenefs muft needs be ftronger, when, by an immediate contact, they are forc'd to be exactly the fame: As I fhew more at large in my Theory of the Magnet. And this hints to me the reafon of the fufpenfion of the Mercury many inches, nay many feet, above the ufual ftation of 30 inches. For the parts of Quick-filver, being fo very fimilar and congruous to each other, if once united, will not eafily fuffer a divulfion : And the parts of water, that were any wayes beterogeneous, being by exantlation or ravefaction exhaufted, the remaining parts being alfo very fimilar, will not eafily part neither. And the parts of the Glafs being folid, are more difficultly disjoyn'd; and the water, being fomewhat fimilar to both, is, as it were, a medium to unite both the Glafs and the Mercury together. So that all three being united, and not very diffimilar, by means of this contact, if care be taken that the Tube inerecting be not fhogged, the Quicksilver will remain fufpended, notwithftanding its contrary indeavour of Gravity, a great height above its ordinary Station; but if this immediate Contact be removed, either by a meer feparation of them one from another by the force of a fhog, whereby the other becomes imbodied between them, and licks up from the furface fome agil parts, and fo hurling them makes them air ; or elfe

Micrographia.

by fome fmall heterogeneous agil part of the Water, or Air, or Quickfilver, which appears like a bubble, and by its jumbling to and fro there is made way for the beterogeneous Ather to obtrude it felf between the Glafs and either of the other Fluids, the Gravity of Mercury precipitates it downward with very great violence; and if the Veffel that holds the reftagnating Mercury be convenient, the Mercury will for a time vibrate to and fro with very large reciprocations, and at laft will remain kept up by the preffure of the external Air at the height of neer thirty inches. And whereas it may be objected, that it cannot be, that the meer imbodying of the Ither between thefe bodies can be the caufe,fince the $\boldsymbol{E t b e r}$ having a free paffage alwayes, both through the Pores of the Glafs, and through thofe of the Fluids, there is no reafon why it fhould not make a feparation at all times whilft it remains fufpended, as when it is violently dif-joyned by a fhog. To this I anfwer, That though the 压ther paffes between the Particles, that is, through the Pores of bodies, fo as that any chafme or feparation being made, it has infinite paffages to admit its entry into it, yet fuch is the tenacity or attractive virtue of Congruity, that till it be overcome by the meer ftrength of Gravity, or by a fhog affifting that Conatus of Gravity, or by an agil Particle, that is like a leaver agitated by the 压tber; and thereby the parts of the congruous fubftances are feparated fo far afunder, that the ftrength of congruity is fo far weakened, as not to be able to reunite them, the parts to be taken hold of being removed out of the attractiveSphere, as I may fo fpeak, of the congruity; fuch, I fay, is the tenacity of congruity, that it retains and holds the almoft contiguous Particles of the Fluid, and fuffers them not to be feparated, till by meer force that attractive or retentive faculty be overcome: But the feparation being once made beyond the Sphere of the attractive activity of congruity, that virtue becomes of no effect at all, but the Mercury freely falls downwards till it meet with a reffittance from the preffure of the ambient Air, able to refift its gravity, and keep it forced up in the Pipe to the height of about thirty inches.

Thus have I gently raifed a Steel pendulum by a Loadftone to a great Angle,till by the fhaking of my hand I have chanced to make a feparation between them, which is no fooner made, but as if the Loadftone had retained no attractive virtue, the Pendulum moves freely from it towards the other fide. So vaft a difference is there between the attractive vir* tue of the Magnet when it acts upon a contiguous and upon a disjoyned body: and much more muft there be between the attractive virtues of congruity upon a contiguous and disjoyned body ; and in truth the attractive virtue is fo little upon a body disjoyned, that though I have with a Microf cope obferved very diligently, whether there were any extraordinary protuberance on the fide of a drop of water that was exceeding neer to the end of a green ftick, but did not touch it, I could not perceive the leaft; though I found, that as foon as ever it toucht it the whole drop would prefently unite it felf with it; fo that it feems an abfolute contact is requifite to the exercifing of the tenacious faculty of congruity.

Obferv.

Obferv. VII. Of fome Phænomena of Glafs drops.

THefe Glafs Drops are fmall parcels of coarfe green Glafs taken out of the Pots that contain the Metal (asthey call it) in fufion, upon the end of an Iron Pipe ; and being exceeding hot, and thereby of a kind of fluggifh fluid Confiftence, are fuffered to drop from thence into a Bucket of cold Water, and in it to lye till they be grown fenfibly cold.
Some of thefe I broke in the open air, by fnapping off a little of the fmall ftem with my fingers, others by crufhing it with a friiall pair of Plyers; which I had no fooner done, then the whole bulk of the drop flew violently, with a very brisk noife, into multitudes of fmall pieces, fome of which were as fmall as duft, though in fome there were remaining pieces pretty large, without any flaw at all, and others very much flaw'd, which by rubbing between ones fingers was eafily reduced to duft; thefe difperfed every way fo violently, that fome of them pierced my skin. I could not find, either with my naked Eye, or a Microfcope, that any of the broken pieces were of a regular figure, nor any one like another, but for the moft part thofe that flaw'd off in large pieces were prettily branched.
The ends of others of thefe drops I nipt off whilft all the bodies and ends of them lay buried under the water, which, like the former, flew all to pieces with as brisk a noife, and as ftrong a motion.

Others of thefe I tried to break, by grinding away the blunt end, and though I took a feemingly good one, and had ground away neer two thirds of the Ball, yet would it not fly to pieces, but now and then fome fmall rings of it would fnap and fly off, not without a brisk noife and quick motion, leaving the Surface of the drop whence it flew very prettily branched or creafed, which was eafily difcoverable by the Microf cope. This drop,after I had thus ground it, without at all impairing the remnant that was not ground away, I caufed to fly immediately all into fand upon the nipping off the very tip of its flender end.
Another of thefe drops I began to grind away at the fmaller end, but had not worn away on the ftone above a quarter of an inch before the whole drop flew with a brisk crack into fand or fmall duft ; nor would it have held folong, had there not been a little flaw in the piece that I ground away, as I afterwards found.
Several others of thefe drops I covered over with a thin but very tuff skin of Icthyocolla, which being very tough and very tramfarent, was the moft convenient fubftance for thefe tryals that I could imagine, having dipt,I fay, feveral of thefe drops in this tranfparent Glue whilft hot, and fuffering them to hang by a ftring tied about the end of them till they were cold, and the skin pretty tough; then wrapping all the body of the

Micrographia.

drop (leaving out only the very tip) in fine fupple Kids-leather very clofely, I nipped off the fmall top, and found, as I expected, that notwithftanding this skin of Glue, and the clofe wrapping up in Leather, upon the breaking of the top, the drop gave a crack like the reft, and gave my hand a pretty brisk impulfe: but yet the skin and leather was fo ftrong as to keep the parts from flying out of their former pofture; and, the skin being tranfparent, I found that the drop retained exactly its former figure and polifh, but was grown perfectly opacous and all over flaw'd, all thofe flaws lying in the manner of rings, from the bottom or blunt end, to the very top or fmall point. And by feveral examinations with a Microfoope, of feveral thus broken, I found the flaws, both within the body of the drop, and on the outward furface, to lye much in this order.

Let AB in the Figure X of the fourth Scheme reprefent the drop cafed over with ICthyocolla or Ifinglafs, and (by being ordered as is before prefrribed) crazed or flawed into pieces, but by the skin or cafe kept in its former figure, and each of its flawed parts preferved exactly in its due pofture ; the outward appearance of it fomewhat plainly to the naked eye, but much more confpicuous if viewed with a fmall fenfs appeared much after this fhape. That is, the blunt end B for a pretty breadth, namely, as far as the Ring C C C feemed irregularly flawed with divers clefts, which all feemed to tend towards the Center of it, being, as I afterwards found, and fhall anon fhew in the defcription of the figure Y , the Bafis, as it were, of a Cone, which was terminated a little above the middle of the drop, all the reft of the Surface from C C C to A was flawed with an infinite number of fmall and parallel Rings, which as they were for the moft part very round, fo were they very thick and clofe together, but were not fo exactly flaw'd as to make a perfect Ring, but each circular part was by irregular cracks flawed likewife into multitudes of irregular flakes or tiles; and this order was obferved likewife the whole length of the neck,

Now though I could not fo exactly cut this conical Body through the Axis, as is reprefented by the figure Y ; yet by anatomizing, as it were, of feveral, and taking notice of divers particular circumftances, I was informed, that could I have artificially divided a flaw'd drop through the Axis or Center, I fhould with a Microfoope have found it to appear much of this form, where A fignifies the Apex, and B the blunt end, C C the Cone of the Bafis, which is terminated at T the top or end of it, which feems to be the very middle of the blunt end, in which, not only the conicalbody of the Bafis CC is terminated, but as many of the parts of the drop as reach as high as DD.

And it feemed to be the head or beginning of a Pith, as it were, or a a part of the body which feemed more fpungy then the reft, and much more irregularly flawed, which from Tafcended by EE, though lefs vifible, into the fmall neck towards A. The Grain, as it were, of all the flaws, that from all the outward Surface A DC CD A, was much the fame, as is reprefented by the black ftrokes that meet in the middle DT, DT, DE, DE, $\dot{\sigma} c$.

Micrographia.

Nor is this kind of Grain, as I may call it, peculiar to Glafs drops thus quenched; for (not to mention Coperas-fones, and divers other Marchafites and Minerals, which I have often taken notice of to be in the very fame manner flaked or grained, with a kind of Pith in the middle.) Ihave obferved the fame in all manner of caft Iron, efpecially the coarfer fort, fuch as Stoves, and Furnaces, and Backs, and Pots are made of: For upon the breaking of any of thofe Subftances it is obvious to obferve, how from the out-fides towards the middle, there is a kind of Radiation or Grain much refembling this of the Glafs-drop; but this Grain is moft confpicuous in Iron-bullets, if they bebroken: the fame phenomena may be produced by cafting regulus of Antimony into a Bullet-mold, as alfo with Glafs of Antimony, or with almoft any fuch kind of Vitrified fubfance, either caft into a cold Mold or poured into Water.

Others of thefe Drops Iheat red hot in the fire, and then fuffered them to cool by degrees. And thefe I found to have quite loft all their fulminating or flying quality, as alfo their hard, brittle and frringy texture; and to emerge of a much fofter temper, and much eafier to be broken or frapt with ones finger;but its ftrong and brittle quality was quite deftroyed, and it feemed much of the fame confiftence with other green Glafs well nealed in the Oven.

The Figure and bignefs of thefe for the moft part was the fame with that of the Figure \mathbf{Z}; that is, all the furface of them was very fmooth and polifht, and for the moft part round, but very rugged or knobbed about D , and all the length of the ftem was here and there pitted or flatted. About D, which is at the upper part of the drop under that fide of the ftem which is concave, there ufually was made fome one or more little Hillocks or Prominences. The drop it felf, before it be broken, appears very tranfparent, and towards the middle of it, to be very full of fmall Bubbles, of fome kind of aerial fubftance, which by the refraction of the outward furface appear much bigger then really they are; and this may be in good part removed, by putting the drop under the furface of clear Water, for by that means moft part of the refraction of the convex Surface of the drop is deftroyed, and the bubbles will appear much fmaller. And this, by the by, minds me of the appearing magnitude of the aperture of the iris, or pupil of the eye, which though it appear, and be therefore judged very large, is yet not above a quarter of the bignefs it appears of, by the lenticular refraction of the Corned.

The caufe of all which Phenomena I imagine to be no other then this, That the Parts of the Glafs being by the exceffive heat of the fire kept off and feparated one from another, and thereby put into a kind of flug-. gifh fluid confiftence, are fuffered to drop off with that heat or agitation remaining in them, into cold Water; by which means the outfides of the drop are prefently cool'd and crufted, and are thereby made of a loofe texture, becaufe the parts of it have not time to fettle themfelves leifurely together, and fo to lie very clefe together: And the innermoft parts of the drop, retaining ftill much of their former heat and agitations, remain

Micrographia。

of a loofe texture alfo, and, according as the cold ftrikes inwards from the bottom and fides, are quenched, as it were, and made rigid in that very pofture wherein the cold finds them. For the parts of the cruft being already hardened, will not fuffer the parts to fhrink any more from the outward Surface inward ; and though it fhrink a little by reafon of the fmall parcels of fome Aerial fubftances difperfed through the matter of the Glafs, yet that is not neer fo much as it appears (as I juft now hinted ;) nor if it were, would it be fufficient for to confolidate and condenfe the body of Glafs into a tuff and clofe texture, after it had been fo exceffively rarified by the heat of the glafs-Furnace.

But that there may be fuch an expanfion of the aerial fubftance contained in thofe little blebbs or bubbles in the body of the drop, this following Experiment will make more evident.

Take a fmall Glafs-Cane about a foot long, feal up one end of it hermetically, then put in a very fmall bubble of Glafs, almoft of the fhape of an Effence-viol with the open mouth towards the fealed end, then draw out the other end of the Pipe very fmall, and fill the whole Cylinder with water, then fet this Tube by the Fire till the Water begin to boyl, and the Air in the bubble be in good part rarified and driven out, then by fucking at the fmalling Pipe, more of the Air or vapours in the bubble may be fuck'd out, fo that it may fink to the bottom; when it is funk to the bottom, in the flame of a Candle, or Lamp,nip up the flender Pipe and let it cool: whereupon it is obvious to obferve, firf, that the Water by degrees will fubfide and fhrink into much lefs room: Next, that the Air or vapours in the Glafs will expand themfelves $\mathfrak{f o}$, as to buoy up the little Glafs: Thirdly, that all about the infide of the Glafs-pipe there will appear an infinite number of fmall bubbles, which as the Water grows colder and colder will fwell bigger and bigger, and many of them buoy themfelves up and break at the top.

From this Difceding of the heat in Glafs drops, that is, by the quenching or cooling Irradiations propagated from the Surface upwards and inwards, by the lines CT, CT, DT, D E, ©ic. the bubbles in the drop have room to expand themfelves a little, and the parts of the Glafs contract themfelves; but this operation being too quick for the fluggith parts of the Glafs, the contraction is performed very unequally and irregularly, and thereby the Particles of the Glafsare bent, fome one way, and fome another, yet fo as that moft of them draw towards the Pithor middle TEE E, or rather from that outward: fo that they cannot extricate or unbend themfelves, till fome part of T E E E be broken and loofened, for all the parts about that are placed in the manner of an Arch, and fo 'till their hold at T EE E be loofened they cannot fly afunder, but uphold, and fhelter, and fix each other much like the ftones in a Vault, where each ftone does concurre to the frability of the whole Fabrick, and no one ftone can be taken away but the whole Arch falls.And wherefoever any of thofe radiating wedges D T D, \&ic. are removed, which are the component parts of this Arch,the whole Fabrick prefently falls to
piceces

Micrographia.

pieces; for all the Springs of the feveral parts are fet at liberty, whieh immediately extricate themfelves and fly afunder every way; each part by its fpring contributing to the darting of it felf and fome other contiguous part. But if this drop be heat fo hot as that the parts by degrees can unbend themfelves, and be fettled and annealed in that pofture, and be then fuffered gently to fubfide and cool; The parts by this nealing lofing their fpringinefs, conftitute a drop of a more foft but lefs brittle texture, and the parts being not at all under a flexure, though any part of the middle or Pith TEE E be broken, yet will not the drop at all fly to piecos as before.

This Conjecture of mine I fhall indeavour to make out by explain ing each particular Affertion with analogous Experiments : The Affertions are thefe.

Firft, That the parts of the Glafs, whilft in a fluid Confiftence and hot, are more rarified, or take up more room, then when hard and cold.

Secondly, That the parts of the drop do fuffer a lwofold contraEtion.

Thirdly, That the dropping or quenching the glowing metal in the Water makes it of a hard, fpringing, and rarified texture.

Fourthly, That there is a flexion or force remaining upon the parts of the Glafs thus quenched, from which they indeavour to extricate themfelves.

Fifthly, That the Fabrick of the drop, that is able to hinder the parts from extricating themfelves, is analogus to that of an Arch.

Sixthly, That the fudden flying afunder of the parts proceeds from their fpringinefs.

Seventhly, That a gradual heating and cooling does anneal or reduce the parts of Glafs to a texture that is more loofe, and eafilier tobebrof ken, but not fo brittle.

That the firft of thefe is true may be gathered from this, That Heat is a property of a body arijing from the motion or agitation of its parts; and therefore whatever body is thereby toucht muft neceffarily receive fome part of that motion, whereby its parts will be fhaken and agitated, and fo by degrees free and extricate themfelves from one another, and each part fo moved does by that motion exert a conatus of protruding and difplacing all the adjacent Particles. Thus Air includedin a veffiel, by being heated will burft it to pieces. Thus have I broke a Bladder held over the fire in my hand, with fuch a violence and noife, that it almoft made me deaf for the prefent, and much furpaffed the noife of a Muskets The like have I done by throwing into the fire fmall glafs Bubbles hermetically fealed, with a little drop of Water included in them. Thus Water alfo, or any other Liquor, included in a convenient vefiel, by being warmed, manifeftly expands it felf with a very great violence, fo as to break the frongeft veffiel, if when heated it be namowly imprifoned init,

Micrographia.

This is very manifeft by the fealed Thermometers, which I have, by feveral tryals, at laft brought to a great certainty and tendernefs: for I have made fome with ftems above four foot long, in which the expanding Li quor would fo far vary, as to be very neer the very top in the heat of Summer, and prety neer the bottom at the coldeft time of the Winter. The Stems I ufe for them are very thick,ftraight, and even Pipes of Glafs, with a very frall perforation, and both the head and body I have made on purpofe at the Glafs-houfe, of the fame metal whereof the Pipes are drawn: thefe I can eafily in the flame of a Lamp, urged with the blaft of a pair of Bellows, feal and clofe together, fo as to remain very firm, clofe and even; by this means I joyn on the body firft, and then fill both it and a part of the ftem, proportionate to the length of the ftem and the warmth of the feafon I fill it in, with the beft rectified spirit of Wine high* ly ting'd with the lovely colour of Cocheneel, which I deepen the more by pouring fome drops of common spirit of Vrine, which muft not be too well rectified, becaufe it will be apt to make the Liquor to curdle and ftick in the fmall perforation of the ftem. This Liquor I have upon tryal found the moft tender of any firituous Liquor, and thofe are much more fenfibly affected with the variations of heat and cold then other more flegmatick and ponderous Liquors, and as capable of receiving a deep tincture, and keeping it,as any Liquor whatfoever; and (which makes it yet more acceptable) is not fubject to be frozen by any cold yet known. When I have thus filled it,I can very eafily in the forementioned flame of a Lamp feal and joyn on the head of it.

Then, for graduating the ftem, I fix that for the beginning of my divifion where the furface of the liquor in the ftem remains when the ball is placed in common diftilled water, that is fo cold that it juft begins to freeze and fhoot into flakes; and that mark I fix at a convenient place of the ftem, to make it capable of exhibiting very many degrees of cold, below that which is requifite to freeze water: the reft of my divifions, both above and below this (which I mark with a [0] or nought) I place according to the Degrees of Expanfion, or Contradtion of the Liquor in proportion to the bulk it had when it indur'd the newly mention'd freezing cold. And this may be very eafily and accurately enough done by this following way; Prepare a Cylindrical vefiel of very thin plate Brafs or Silver, A B C D of the figure Z; the Diameter A B of whofe cavity let be about two inches, and the depth B C the fame; let each end be cover'd with a flat and fmooth plate of the fame fubftance, clofely foder'd on, and in the midft of the upper cover make a pretty large hole E F, about the bignefs of a fifth part of the Diameter of the other; into this faften very well with cement a ftraight and even Cylindrical pipe of Glafs, EF G H, the Diameter of whofe cavity let be exactly one tenth of the Diameter of the greater Cylinder. Let this pipe be mark'd at GH with a Diamant, fo that \mathbf{G} from E may be diftant juft two inches, or the fame height with that of the cavity of the greater Cylinder, then divide the length E G exactly into 10 parts, fo the capacity of the hollow of each of thefe divifions will be $\frac{1}{1000}$ part of the capacity of the greater Cylin-

Micrographia.

der. This veffel being thus prepared, the way of marking and graduating the Thermometers may be very eafily thus performed:
Fill this Cylindrical veffel with the fame liquor wherewith the Thermometers are fill'd, then place both it and the Thermometer you are to graduate, in water that is ready to be frozen, and bring the furface of the liquor in the Thermometer to the firft marke or $[0]$; then fo proportion the liquor in the Cylindrical veffel, that the furface of it may juft be at the lower end of the frall glafs-Cylinder; then very gently and gradually warm the water in which both the Thermometer and this Cylindrical veffel ftand, and as you perceive the ting'd liquor to rife in both ftems, with the point of a Diamond give feveral marks on the ftem of the Thermometer at thofe places, which by comparing the expanfion in both Stems, are found to correfpond to the divifions of the cylindrical veffel, and having by this means marked fome few of thefe divifions on the Stem, it will be very eafie by thefe to mark all the reft of the Stem, and accordingly to affign to every divifion a proper character.

A Thermometer, thus marked and prepared, will be the fitteft Inftrument to make a Standard of heat and cold that can be imagined. For being fealed up, it is not at all fubject to variation or wafting, nor is it liable to be changed by the varying preffure of the Air, which all other kind of Thermometers that are open to the Air are liable to. But to proceed.

This property of Expanfion with Heat, and Contraction with Cold, is not peculiar to Liquors only, but to all kind of folid Bodies alfo, efpecially Metals, which will more manifeftly appear by this Experiment.

Take the Barrel of a Stopcock of Brafs, and let the Key, which is well fitted to it, be riveted into it,fo that it may llip, and be eafily turned round, then heat this Cock in the fire, and you will find the Key fo fwollen, that you will not be able to turn it round in the Barrel ; but if it be fuffered to cool again, as foon as it is cold it will be as movable, and as eafie to be turned as before.

This Quality is alfo very obfervable in Lead, Tin, Silver, Antimony, Pitch, Rofin, Bees-max, Butter, and the like; all which, if after they be melted you fuffer gently to cool, you fhall find the parts of the upper Surface to fubfide and fall inwards, lofing that plumpnefs and fmoothnefs it had whilft in fufion. The like I have alfo obferved in the cooling of Glafs of Antimony, which does very neer approach the nature of Glaff,

But becaufe thefe are all Examples taken from other materials then Glafs, and argue only, that poffibly there may be the like property alfo in Glafs, not that really there is; we fhall by three or four Experiments indeavour to manifeft that alfo.

And the Firft is an Obfervation that is very obvious even in thefe very drops, to wit, that they are all of them terminated with an unequal or irregular Surface, efpecially about the fmaller part of the drop, and the whole length of the ftem; as about D, and from thence to A, the whole Surface, which would have been round if the drop had cool'd leifurely, is, by being quenched haftily, very irregularly flatted and pitted; which

Micrographia.

Ifuppofe proceeds partly from the Waters unequally cooling and prefs fing the parts of the drop, and partly from the felf-contracting or fubfiding quality of the fubftance of the Glafs: For the vehemency of the heat of the drop caufes fuch fudden motions and bubbles in the cold W ater,that fome parts of the Water bear more forcibly againft one part then againft another, and confequently do more fuddenly cool thofe parts to which they are contiguous.

A Second Argument may be drawn from the Experiment of cutting Glaffes with a hot Iron. For in that Experiment the top of the Iron heats, and thereby rarifies the parts of the Glafs that lie juft before the crack, whence each of thofe agitated parts indeavouring to expand its felf and get elbow-room, thrufts off all the reft of the contiguous parts, and confequently promotes the crack that was before begun.

A Third Argument may be drawn from the way of producing a crack in a found piece or plate of Glafs, which is done two wayes, either Firft, by fuddenly heating a piece of Glafs in one place more then in another. And by this means chymifts ufually cut off the necks of Glafs-bodies, by two kinds of Inftruments, either by a glowing hot round Iron-Ring, which juft incompaffes the place that is to be cut, or elfe by a sulphur ${ }^{\prime} d$ Threed, which is often wound about the place where the feparation is to be made, and then fired. Or Secondly,A Glafs may be cracked by cooling it fuddenly in any place with Water, or the like, after it has been all leifurely and gradually heated very hot. Both which Phenomena feem manifeftly to proceed from the expanfion and contraction of the parts of the Glafs, which is alfo made more probable by this circumftance which I have obferved, that a piece of common window-glafs being heated in the middle very fuddenly with a live Coal or hot Iron, does ufually at the firft crack fall into pieces, whereas if the Plate has been gradually heated very hot, and a drop of cold Water and the like be put on the middle of it, it only flaws it, but does not break it afunder immediately.

A Fourth Argument may be drawn from this Experiment; Take a Glafs-pipe, and fit into it a folid ftick of Glafs, fo as it will but juft be moved in it. Then by degrees heat them whilf they are one within another, and they will grow fliffer, but when they are again cold, they will be as eafie to be turned as before. This Expanfion of Glafs is more manifeft in this Experiment.

Take a ftick of Glafs of a confiderable length, and fit it fo between the two ends or frews of a Lath,that it may but juft eafily turn, and that the very ends of it may be juft toucht and fufteined thereby; then applying the flame of the Candle to the middle of it, and heating it hot, you will prefently find the Glafs to ftick very faft on thofe points, and not without much difficulty to be convertible on them, before that by removing the flame for a while from it, it be fuffered to cool, anden y ou will find it as eafie to be turned round as at the firft.

Fromall which Experiments it is very evident, that all thofe Bodies, and particularly Glafs, fuffers an Expanfion by Heat, and that a very confiderable

Micrographia.

fiderable one, whilft they are in a ftate of Fufion. For Fluidity as I cllewhere mention, being notbing but an effect of a very frong and quick Jiaking motion, whereby the parts are, as it were, loofened from each other, and conjequently leave an interjacent face or vacuity; it follows, that all thofe fhaken Particles muft neceffarily take up much more room then when they were at reff, and lay quietly upon each other. And this is further confirmed by a Pot of boyling Alabafter, which will manifeftly rife a fixth or eighth part higher in the Pot, whilft it is boyling, then it will remain at, both befote and after it be boyled.The reafon of which odd Pbonomenon (to hint it here only by the way) is this, that there is in the curious powder of Alabalter, and other calcining Stones, a certain watery fubftance, which is fo fixt and included with the folid Particles, that till the heat be very confiderable they will not fly away; but after the heat is increafed to fuch a degree, they break out every way in vapours, and thereby fo fhake and loofen the fmall corpulles of the Powder from each other, that they become perfectly of the nature of a fluid body , and one may move a ftick to and fro through it, and fitir it as eafily as water, and the vapours burft and break out in bubbles juft as in boyling water, and the like; whereas, both before thofe watery parts are flying away, and after they are quite gone; that is, before and atter it have done boyling,all thofe effectsceafe, and a ftick is as difficultly moved to and fro in it as in fand, or the like. Which Explication I could eafily prove, had I time; but this is not a fit place for it.

To proceed therefore, I fay, that the dropping of this expanded Body into cold Water, does make the parts of the Glafs fuffer a double contraction: The firft is, of thofe parts which are neer the Surface of the Drop. For Cold, as I faid before, contracting Bodies, that is, by the abatement of the agitating faculty the parts falling neerer together; the parts next adjoying to the Water mult needs lofe much of their motion, and impart it to the Ambient-water (which the Ebullition and commotion of it manifefts) and thereby become a folid and hard cruft, whilf the innermoft parts remain yet fluid and expanded; whence, as they grow cold alfo by degrees, their parts muft neceffarily be left at liberty to be condenfed, but becaufe of the hardnefs of the outward cruft, the contraction cannot be admitted that way; but there being many very fmall, and before inconfpicuous, bubbles in the fubftance of the Glafs, upon the fubfiding of the parts of the Glafs, the agil fubftance contained in them has liberty of expanding it felf a little, and thereby thofe bubbles grow much bigger, which is the fecond Contraction. And both thefe are confirmed from the appearance of the Drop it felf: for as fur the outward parts, we fee,firf, that it is irregular and fhrunk, as it were, which is caufed by the yielding a little of the hardened Skin to a Contraction, after the very outmoft Surface is fettled ; and as for the internal parts, one may with ones naked Eye perceive abundance of very confpicuous bubbles, and with the Microf cope many more.

The Confideration of which Particulars will eafily make the Third Pofition probable, that is, that the parts of the drop will be of a yery hard, though of a rarified Texture; for if the outward parts of the Drop, by reafon of its hard cruft, will indure very little Contraction, and the agil Particles, inclu-
ded in thofe bubbles, by the lofing of their agitation, by thedecreafe of the Heat, lofe alfo moft part of their Spring and Expanfive power; jit follows (the withdrawing of the heat being very fudden) that the parts muft be left in a yery loofe Texture, and by reafon of the implication of the parts one about another, which from their lluggifhnes and glutinoufnefs I fuppofe to be much after the manner of the fticks in a Thorn-bufb,or a Lock of Wool; It will follow, I fay, that the parts will hold each other very ftrongly together, and indeavour to draw each other neerer together, and confequently their Texture muft be very hard and ftiff, but very much rarified.

And this will make probable my next Pofition, That the parts of the Glafs are under a kind of tenfion or flexure, out of robich they indeavour to extricate and free themfelves, and thereby all the parts draw towards the Center or middle, and would, if the outward parts would give way, as they do when the outward parts cool leifurely (as in baking of Glaffes) contract the bulk of the drop into a much lefs compafs. For fince, as I proved before,the Internal parts of the drop, when fluid, were of a very rarified Texture and, as it were, tos'd open like a Lock of Wool, and if they were fuffered leifurely to cool, would be again preft, as it were,clofe together: And fince that the heat, which kept them bended and open, is removed, and yet the parts not fuffered to get as neer together asthey naturally would; Ir follows, that the Particles remain under a kind of tenfion and flexure, and confequently have an indeavour to free themfelves from that bending and diftenfion, which they do, as foon as either the tip be broken, or as foon as by a leifurely heating and cooling, the parts are nealed into another pofture.
And this will make my next Pofition probable, that the parts of the clafs drops are contignated together in the form of an Arch, and cannot any where yield or be drawn inwards, till by the removing of fome one part of it(as it happens in the removing one of the ftones of an Arch)the whole Fabrick is fhatter d , and falls to pieces, and each of the Springs is left at liberty, fuddenly to extricate it felf: for fince I have made it probable, that the internal parts of the Glafs have a contractive power inwards, and the external parts are incapable of fuch a Contraction, and the figure of it being fpherical 5 it follows, that the fuperficial parts muft bear againft each other, and keep one another from being condens'd into a lefs room, in the fame manner as the ftones of an Arch conduce to the upholding each other in that Figure.And this is made more probable by another Experiment which was communicated to me by an excellent Perfon, whofe extraordinary Abilities in all kind of Knowledg, efpecially in that of Natural things, and his generous Difpofition in communicating, incouraged me to have recourfe to him on many occafions. The Experiment was this: Small Glafs-balls (about the bignefs of that reprefented in the Figure 6.) would, upon rubbing or feratching the inward Surface, fly all infunder, with a pretty brisk noife; whereas neither before nor after the inner Surface had been thus freatcht, did there appear any flaw or crack. And putting the pieces of one of thofe broken ones together again, the flaws appeared much after the manner of the black lines on the Figure, or. Thefe Balls were fmall, but exceeding thick bubbles of Glafs, which being crack'd off from the Puntilion whilft very hot, and fo fuffered to cool without nealing them in

Micrographta。

the Oveh over the Furnace, do thereby (being made of white Glafs, which cools much quicker then green Glafs, and is thereby made much brittler) acquirea very porous and very brittle texture: fo that if with the point of a Needle or Bodkin, the infide of any of them be rubbed prety hard, and then laid on a Table, it will, within a very little while, break into many pieces with a brisk noife, and throw the parts above a fpan afunder on the Table: Now though the pieces are not fo fmall as thofe of a fulminating drop, yet they as plainly fhew, that the outward parts of the Glafs have a great Conatus to fly afunder, were they not held together by the tenacity of the parts of the inward Surface: for we fee as foon as thofe parts are crazed by hard rubbing, and thereby their tenacity fooiled, the fpringinefs of the more outward parts quickly makes a divulfion, and the broken pieces will, if the concave Surface of them be further feratcht with a Diamond, fly again into fmaller pieces.

From which preceding confiderations it will follow Sixthly, That the fudden flying afunder of the parts as foon as this Arch is any where difordered or broken, proceeds from the fringing of the parts; which, indeavouring to extricate themfelves as foon as they get the liberty, they perform it with fuch a quicknefs, that they throw one another away with very great violence: for the Particles that compofe the Cruft have a Conatus to lye further from one another, and therefore as foon as the external parts are locfened they dart themfelves outward with great violence, juft as fo many Springs would do, if they were detained and faftened to the body, as foon as they fould be fuddenly loofened; and the internal parts drawing inward, they contract fo violently, that they rebound back again and fy into multitude of fmall fhivers or fands. Now though they appear not, either to the naked Eye, or the Microfoope, yet I am very apt to think there may be abundance of fmall flaws or cracks, which, by reafon the ftrong reflecting Air is not got between the contiguous parts, appear not. And that this may be fo, I argue from this, that I have very often been able to make a crack or flaw, in fome convenient pieces of Glafs, to a ppear and difappear at pleafure, according as by prefling together, or pulling afunder the contiguous parts, I excluded or admitted the ftrong reflecting Air between the parts: And it is very probable, that there may be fome Body, that is either very rarified Air, or fomething analogous to it, which fills the bubbles of thefe drops; which I argue, firft from the roundnefs of them, and next, from the vivid reflection of Light which they exhibite: Now though I doubt not, but that the Air in them is very much rarified, yet that there is fome in them, to fuch as well confider this Experiment of the difappearing of a crack upon the extruding of the Air, I fuppofe it will feem more then probable.

The Seventh and laft therefore that Ifhall prove, is, That the gradual beating and cooling of theye fo extended bodies does reduce the parts of the Glafs to a loofer and Softer temper. And this I found by heating them, and keeping them for a prety while very red hot in a fire; for thereby I found them to grow a little lighter, and the fmall Stems to be very eafily brokenand fnapt any where, without at all making the drop fly; whereas Micrographia.
before they were fo exceeding hard,that they could not be broken without much difficulty; and upon their breaking the whole drop would fly in pieces with very great violence. The Reafon of which laft feems to be, that the leifurely heating and cooling of the parts does not only waft fome part of the Glafsit felf, but ranges all the parts into a better order, and gives each Particle an opportunity of relaxing its felf, and confequently neither will the parts hold fo ftrongly together as before, nor be fo difficult to be broken: The parts now more eafily yielding, nor will the other partsfly in pieces, becaufe the parts have no bended Springs. The relaxation alfo in the temper of hardned Steel, and hammered Metals, by nealing them in the fire,feems to proceed from much the fame caufe. For both by quenching fuddenly fuch Metals as have vitrid parts interfpers'd, as Steel has, and by hammering of other kinds that do not fo much abound with them, as Silver, Brafs, ofc. the parts are put into and detained in a bended pofture, which by the agitation of Heat are thaken, and loofened, and fuffered to unbend themfelves.

Obferv. VIII. Of the fiery Sparks fruck froms a Flint or Steel.

Schems. 5.

${ }^{T}$T is a very common Experiment, by ftriking with a Flint againft a Steel,to make certain fiery and fhining Sparks to fly out from between thofe two compreffing Bodies. About eight years fince, upon cafually reading the Explication of this odd Phenomenon, by the moft Ingenious Des Cartes, I had a great defire to be fatisfied, what that Subftance was that gave fuch a fhining and bright Light : And to that end I fpread a fheet of white Paper,and on it, obferving the place where feveral of thefe Sparks feemed to vanifh, I found certain very fmall, black, but gliftering Spots of a movable Subftance, each of which examining with my Mijcrocope, I found to be a fmall round Globule; fome of which, as they looked prety fmall, fo did they from their Surface yield a very bright and ftrong reflection on that fide which was next the Light; and each look'd almoft like a prety bright Iron-Ball, whofe Surface was prety regular, fuch as is reprefented by the Figure A. In this I could perceive the Image of the Window prety well, or of a Stick, which I moved up and down between the Light and it. Others I found, which were, as to the bulk of the Ball, prety regularly round, but the Surface of them, as it was not very fmooth, but rough, and more irregular, fo was the reflection from it more faint and confufed. Such were the Surfaces of B. C.D. and E. Some of thefeI found cleft or cracked, as C , others quite broken in two and hollow, as D. which feemed to be half the hollow fhell of a Granado, brokenirregularly in pieces. Several others I found of other fhapes; but that which is reprefented by E, I obferved to be a very big Spark of Fire, which went out upon one fide of the Flint that I ftruck fire withall, to
which

Micrographia.

which it fuck by the root F, at the end of which fmall Stem was faften-ed-on a Hemifphere, or half a hollow Ball, with the mouth of it open from the ftemwards, fo that it looked much like a Funnel, or an old fafhioned Bowl without a foot. This night, making many tryals and obfervations of this Experiment,I met, among a multitude of the Globular ones which I had obferved, a couple of Inftances, which are very remarkable to the confirmation of my Hypothefis.

And the Firft was of a pretty big Ball faftened on to the end of a fmall fliver of Iron, which Compofitum feerned to be nothing elfe but a long thin chip of Iron,one of whofe ends was melted into a fmall round Globul;the other end remaining unmelted and irregular, and perfectly Iron.

The Second Inftance was not lefs remarkable then the Firft for \mathbf{t} found, when a Spark went out, nothing but a very fmall thin long fliver of Iron or Steel, unmelted at either end. So that it feems, that fome of thefe Sparks are the flivers or chips of the Iron vitrified, Others are only the flivers melted into Balls without vitrification, And the third kind are only fmall flivers of the Iron, made red-hot with the violence of the ftroke given on the Steel by the Flint.

He that fhall diligently examine the Phenomena of this Experiment, will, I doubt not, find caufe to believe, that the reafon I have heretofore given of it, is the true and genuine caufe of it, namely, That the spark appearing fo bright in the falling, is nothing elfe but a fmall piece of the steel or Flint, but moft commonly of the Steel, which by the violence of the froke is at the fame time fever'd and heatt red-bot, and that fometimes to fuch a degree, as to make it melt together into a friall Globule of Steel; and Sometimes alfo is that heat fo very intenfe, as further to melt it and vitrifie it; but many times the heat is fo gentle, as to be able to make the fiver only red hot ${ }_{3}$ zobich notwithftanding falling upon the tinder (that is only a very curious fmall Coal made of the fmall threads of Linnen burnt to coals and char'd) it eafily fets it on fire. Nor will any part of this Hypothefis feem ftrange to him that confiders, Firft, that either hammering, or filing, or otherwife violently rubbing of Steel, will prefently make it fo hot as to be able to burn ones fingers. Next, that the whole force of the ftroke is exerted upon that fmall part where the Flint and Steel firft touch: For the Bodies being each of them fo very hard, the puls cannot be far communicated, that is, the parts of each can yield but very little, and theres fore the violence of the concuffion will be exerted on that piece of Steel which is cut off by the Flint. Thirdly, that the filings or fmall parts of Steel are very apt, as it were, to take fire, and are prefently red hot, that is, there feems to be a very combufible fulphureous Body in Iron or Steel, which the Air very readily preys upon, as foon as the body is a little violently heated.

And this is obvious in the filings of Steel or fron caft through the flame of a Candle; for even by that fudden tranfitus of the fmall chips of Iron, they are heat red hot, and that combufible fulphureous Body is prefently prey'd upon and devoured by the aereal incompafling Menftruum, whofe office in this Particular I have fhewn in the Explication of Charcole.

And

Micrographia。

And in profecution of this Experiment, having taken the filings of Iron and Steel, and with the point of a Knife caft them through the flame of a Candle, Iobferved where fome confpicuous fhining Particles fell, and looking on them with my Microfoope, I found them to be nothing elfe but fuch round Globules, as I formerly found the Sparks ftruck from the Steel by a ftroke to be, only a little bigger; and fhaking together all the filings that had fallen upon the fheet of Paper underneath, and obferving them with the Microfcope, I found a great number of fmall Globules, fuch as the former, though there were alfo many of the parts that had remained untoucht, and rough filings or chips of Iron. So that, it feems, Iron does contain a very combuftible fulphureous Body, which is, in all likelihood, one of the caufes of this Phonomenon, and which may be perhaps very much concerned in the bufinefs of its hardening and tempering : of which fomewhat is faid in the Defcription of Mufcouy-glafs.

So that, thefe things confidered, we need not trouble our felves to find out what kind of Pores they are, both in the Flint and Steel, that contain the Atoms of fire, nor how thofe Atoms come to be hindred from running all out, when a dore or paffage in their Pores is made by the concuffion: nor need we trouble our felves to examine by what Prometheus the Element of Fire comes to be fetcht down from above the Regions of the Air, in what Cells or Boxes it is kept, and what Epimetbeus lets it go : Nor to confider what it is that caufes fo great a conflux of the atomical Particles of Fire, which are faid to fly to a flaming Body, like Vultures or Eagles to a putrifying Carcafs, and there to make a very great pudder. Since we have nothing more difficult in this Hypothefis to conceive, firft, as to the kindling of Tinder, then how a large Iron-bullet, let fall red or glowing hot upon a heap of Small-coal, fhould fet fire to thofe that are next to it firft : Nor fecondly, is this laft more difficult to be explicated, then that a Body, as Silver for Inftance, put into a weak Menfruum, as unrectified Aqua fortis fhould, when it is put in a great heat, be there diffolved by it, and not before; which Hypothefis is more largely explicated in the Defcription of Charcoal. To conclude, we fee by this Inftance, how much Experiments may eonduce to the regulating of Philofophical notions. For if the moft Acute Des Cartes had applied himfelf experimentally to have examined what fubftance it was that caufed that fhining of the falling Sparks ftruck from a Flint and a Steel, he would certainly have a little altered his Hypothefis, and we fhould have found, that his Ingenious Principles would have admitted a very plaufible Explication of this Phrenomenon; whereas by not examining fo far as he might, he has fet down an Explication which Experiment do's contradict.

But before Ileave this Defcription, I muft not forget to take notice of the Globular form into which each of thefe is moft curioully formed. And this Phanomenon, as Ihave elfewhere more largely fhewn, proceeds from a propriety which belongs to all kinds of fluid Bodies more or lefs,and is caufed by the Incongruity of the Ambient and included Fluid, which fo acts and modulates each other, that they aoquire, as neer as is pofible,

Fig: x

Micrographia.

poffible, a fperical or globular form, which propriety and feveral of the Phenomena that proceed from it, I have more fully explicated in the fixth Obfervation.

One Experiment, which does very much illuftrate my prefent Explication, and is in it felf exceeding pretty, I muft not pafs by: And that is a way of making fmall Globules or Balls of Lead, or Tin, as fmall almoft as thefe of Iron or Steel, and that exceeding eafily and quickly, by turning the filings or chips of thofe Metals alfo into perfectly round Globules. The way, in fhort, as I received it from the Learned Phyfitian Doctor I. G. is this;

Reduce the Metal you would thus fhape, into exceeding fine filings, the finer the filings are, the finer will the Balls be: Stratifie thefe filings with the fine and well dryed powder of quick Lime in a Crucible proportioned to the quantity you intend to make: When you have thus filled your Crucible, by continual fratifications of the filings and powder, fo that, as neer as may be, no one of the filings may touch another, place the Crucible in a gradual fire, and by degrees let it be brought to a heat big enough to make all the filings, that are mixt with the quick Lime, to melt, and no more; for if the fire be too hot, many of thefe filings will joyn and run together; whereasif the heat be proportioned, upon wafhing the Lime-duft in fair Water, all thofe fmall filings of the Metal will fubfide to the bottom in a moft curious powder, confifting all of exactly round Globules, which, if it be very fine, is very excellent to make Hourglaffes of.

Now though quick Lime be the powder that this direction makes choice of, yet I doubt not, but that there may be much more convenient ones found out, one of which I have made tryal of, and found very effectual; and were it not for difcovering, by the mentioning of it, another Secret, which I am not free to impart, I fhould have here inferted it.

Oblerv. IX. Of the Colours obfervable in Muccovy Glafs, and other thin Eodies.

MOfcovy-glafs, or Lapis fpecularis, is a Body that feems to have as many Curiofities in its Fabrick as any common Mineral I have met with : for firft, It is tranfparent to a great thicknefs: Next, it is compounded of an infinite number of thin flakes joyned or generated one upon another fo clofe \& fmooth, as with many hundreds of them to make one fmooth and thin Plate of a tranfparent flexible fubftance, which with care and diligence may be flit into pieces fo exceedingly thin as to be hardly perceivable by the eye, and yer even thofe, which I have thought the thinneff, I have with a good Microfoope found to be made up of many ether Plates, yet thinner; and it is probable, that, were our Microfcopes

Micrographia.

much better, we might much further difcover its divifibility. Nor are thefe flakes only regular as to the fmoothnefs of their Surfaces; but thirdly, In many Plates they may be perceived to be terminated naturally with edges of the figure of a Rhomboeid. ThisFigure is much more confpicuous in our Englifh talk, much whereof is found in the Lead Mines, and is commonly called spar, and Kauck, which is of the fame kind of fubftance with the Selenitis, but is feldom found in fo large flakes as that is, nor is it altogether fo tuff, but is much more clear and tranfparent, and much more curioufly fhaped, and yet may be cleft and flak'd like the other selenitis. But fourthly, this ftone has a property, which in refpect of the Microfoope, is more notable, and that is, that it exhibits feveral appearances of Colours, both to the naked Eye, but much more confpicuoully to the Miorefcope; for the exhibiting of which, I took a piece of Mufcovy-glafs, and fplitting or cleaving it into thin Plates, I found that up and down in feveral parts of them I could plainly perceive feveral white Specks or flaws, and others diverfly coloured with all the Colours of the Rainbow; and with the Microfope I could perceive, that thefe Colours were ranged in rings that incompaffed the white fpeck or flaw, and were round or irregular, according to the fhape of the fot which they terminated ; and the pofition of Colours, in refpect of one another, was the very fame as in the Rainbow. The confecution of thofe Colours from the middle of the fpot outward being Blew, Purple, Scarlet, Yellow, Green; Blew, Purple, Scarlet, and fo onwards, fometimes half a fcore times repeated, that is, there appeared fix, feven, eight, nine or ten feveral coloured rings or lines, each incircling the other, in the fame manner as I have often feen a very vivid Rainbom to have four or five feveral Rings of Colours, that is, accounting all the Gradations between Red and Blew for one: But the order of the Colours in thefe Rings was quite contrary to the primary or innermoft Rainbow, and the fame with thofe of the fecondary or outermoft Rainbow; thefe coloured Lines or Irijes, as Imay fo call them, were fome of them much brighter then others, and fome of them alfo very much broader, they being fome of them ten,twenty, nay, Ibelieve, neer a hundred times broader then others; and thofe ufually were broadih which were neereft the center or middle of the flaw. And oftentimes If found, that thefe Colours reacht to the very middle of the flaw, and then there appeared in the middle a very large foot, for the moft part, all of one colour, which was veery vivid, and all the other Colours incompaffing it, gradually afcending, and growing narrower towards the edges, keeping the fame order, as in the fecundary Rainbow, that is, if the middle were Blew, the next incompaffing it would be a Purple,the third a Red, the fourth a Yellow, ovc. as above ; if the middle were a Red, the next without it would be a Yellow, the third a Green, the fourth a Blew, and fo onward,. And this order it alwayes kept whatfoever were the middle Colour.

There was further obfervable in feveral other parts of this Body, many Lines or Threads, each of them of fome one peculiar Colour, and thofe foexceedingly bright and vivid, that it afforded a very pleafant object through

Micrographia。

through the Microfcope. Some of thefe threads I have obferved alfo to be pieced or made up of feveral fhort lengths of differently coloured ends (as I may fo call them) as a line appearing about two inches long through the Microfcope, has been compounded of about half an inch of a Peach colour, $\frac{1}{8}$ of a lovely Grafs-green, $\frac{2}{4}$ of an inch miore of a bright Scarlet, and the reft of the line of a Watchet blew. Others of them were much otherwife coloured; the variety being almoft infinite. Another thing which is very obfervable, is, that if you find any place where the colours are very broad and confpicuous to the naked eye, you may, by preffing that place with your finger, make the colours change places,and gofrom one part to another.

There is one Phanomenon more, which may, if care be ufed, exhibit to the beholder, as it has divers times to me, an exceeding pleafant, and not lefs inftructive Spectacle; And that is, if curiofity and diligence be ufed, you may fo fplit this admirable Subftance, that you may have pretty large Plates (in comparifon of thofe fmaller ones which you may obferve in the Rings) that are perhaps an $\frac{\frac{2}{8}}{}$ or a $\frac{1}{6}$ fart of an inch over, each of them appearing through the Mifrof fope moft curiouily, intirely, and uniformly adorned with fome one vivid colour : this, if examined with the Microfcope, may be plainly perceived to be in all parts of it equally thick. Two, three, or more of thefe lying one upon another, exhibit oftentimes curious compounded colours, which produce fuch a Compofitum, as one would fcarce imagine fhould be the refult of fuch ingredients: As perhaps a faint yellow and a blew may produce a very decp purple. But when anon we come to the more ftrict examination of thefe phanomena, and to inquire into the caufes and reafons of thefe productions, we fhall, hope, make it more conceivable how they are produced, and fhew them to be no other then the natural and neceflary effects arifing from the peculiar union of concurrent caufes.

Thefe Pbonomena being fo various, and fo truly admirable, it will certainly be very well worth our inquiry, to examine the caufes and reafons of them, and to confider, whether from thefe caufes demonftratively evidenced, may not be deduced the true caufes of the production of all kind of Colours. And I the rather now do it, inftead of an Appendix or Digreffion to this Hiftory, then upon the occafion of examining the Colours in Peacocks, or other Feathers, becaufe this Subject, as it does afford more variety of particular Colours, fo does it afford much better wayes of examining each circumftance. And this will be made manifeft to him that confiders, firft, that this laminated body is more fimple and regular then the parts of Peacocks feathers, this confifting only of an indefinite number of plain and fmooth Plates, heaped up, or incumbent on each other. Next, that the parts of this body are much more manageable, to be divided or joyned, then the parts of a Peacocks feather, or any other fubftance that I know. And thirdly, becaufe that in this we are able from a colourlefs body to produce feveral coloured bodies, affording all the variety of Colours imaginable : And feveral others, which the fubfequent Inquiry will make manifeft.

Micrographia.

To begin therefore, it is manifeft from feveral circumftances, that the material caufe of the apparition of thefe feveral Colours, is fome Lamina or Plate of a tranfparent or pellucid body of a thicknefs very determinate and proportioned according to the greater or lefs refractive power of the pellucid body. And that this is foabundance of Inftances and particular Circumftances will make manifeft.
As fiv t, if youtake any fmall piece of the Mufoovy-glafs, and with a Needle, or fome other convenient Inftrument, cleave it oftentimes into thinner and thinner Lamine, you fhall find, that till you come to a determinate thinnefs of them, they fhall all appear tranfparent and colourlefs, but if you continue to fplit and divide them further,you fhall find at laft, that each Plate, after it comes to fuch a determinate thicknefs, fhall appear moft lovely ting'd or imbued with a determinate colour. If further, by any means you fo flaw a pretty thick piece, that one part does begin to cleave a little from the other, and between thofe two there be by any means gotten fome pellucid medium, thofe laminated pellucid bodies that fill that fpace, fhall exhibit feveral Rainbows or coloured Lines, the colours of which will be difpofed and ranged according to the various thickneffes of the feveral parts of that Plate. That this is fo, is yet further confirmed by this Experiment.

Take two fmall pieces of ground and polifht Looking-glafs-plate, each about the bignefs of a fhilling, take thefe two dry, and with your fore-fingers and thumbs prefs them very hard and clofe together, and you fhall find, that when they approach each other very near, there will appear feveral Irifes or coloured Lines, in the fame manner almoft as in the Mufoovy-glafs; and you may very eafily change any of the Colours of any part of the interpofed body, by preffing the Plates clofer and harder together, or leaving them more lax; that is, a part which appeared coloured with a red, may be prefently ting'd with a yellow, blew, green, purple, or the like, by altering the appropinquation of the terminating Plates.Now that air is not neceflary to be the interpofed body, but that any other tranfparent fluid will do much the fame, may be tryed by wetting thofe approximated Surfaces with Water, or any other tranfparent Liquor, and proceeding with it in the fame manner as you did with the Air; and you will find much the like effect, only with this difference, that thofe compreft bodies, which differ moft, in their refractive quality, from the compreffing bodies, exhibit the moft ftrong and vivid tinctures. Nor is it neceffary, that this laminated and ting'd body fhould be of a fluid fubftance, any other fubftance, provided it be thin enough and tranfparent, doing the fame thing: this the Lamine of our Mufcovyglafs hint; but it may be confirm'd by multitudes of other Inftances.

And firft, we fhall find, that even Glafs it felf may, by the help of a Lamp, be blown thin enough to produce thefe Phonomena of Colours: which Phenomena accidentally happening, as I have been attempting to frame fmall Glaffes with a Lamp, did not a little furprize me at firft, having never heard or feen any thing of it before; though afterwards comparing it with the Phenomena, I had often
obferved

Micrographia.

obferved in thofe Bubbles which Children ufe to make with Soap-water, I did the lefs wonder ; efpecially when upon Experiment I found, I was able to produce the fame Pbrenomena in thin Bubbles made with any other tranfparent Subftance. Thus have I produced them with Bubbles of Pitch, Kofin, Colophony, Turpentine, solutions of feveral Gums, as GumArabick in water; any glutinous Liquor, as Wort, Wine, Spirit of Wine, oyl of Turpentine, Glare of Snails, \&c.

It would be needlefs to enumerate the feveral Inftances, thefe being enough to fhew the generality or univerfality of this propriety. Only i muft not omit, that we have inftances alfo of this kind even in metalline Bodies and animal ; for thofe feveral Colours which are obferved to follow each other upon the polifht furface of hardned Steel, when it is by a fufficient degree of heat gradually tempered or foftened, are produced from nothing elfe but a certain thin Lamina of a vitrum or vitrified part of the Metal, which by that degree of heat, and the concurring action of the ambient Air, is driven out and fixed on the furface of the Steel.

And this hints to me a very probable (at leaft, if not the true) caufe of the hardning and tempering of Steel, which has not, Ithink, been yet given, nor, that I know of been fo much as thought of by any. And that is this, that the hardnefs of it arifes from a greater proportion of a vitrified Subftance interfperfed through the pores of the Steel. And that the tempering or foftning of it arifes from the proportionate or finaller parcels of it left within thofe pores. This will feem the more probable, if we confider thefe Particulars.
Firft, That the pure parts of Metals are of themfelves very flexible and $t u f f$; that is, will indure bending and hammering, and yet retain their continuity.
Next, That the Parts of all vitrified Subftances, as all kinds of Glafs, the Scoria of Metals, bdc. are very hard, and alfo very brittle, being neither flexible nor malleable, but may by hammering or beating be broken into fmall parts or powders.
Thirdly, That all Metals (excepting Gold and Silver, which do not fo much with the bare fire, unlefs affifted by other faline Bodies) do more or lefs vitrifie by the ftrength of fire, that is, are corroded by a faJine Subftance, which I elfewhere fhew to be the true caufe of fire; and are thereby, as by feveral other Men $/$ raumis, converted into Scoria; And this is called, calcining of them, by Chimifts. Thus Iron and Copper by heating and quenching do turn all of them by degrees into Scoria, which are evidently vitrified Subftances, and unite with Glafs, and are eafily fufible; and when cold, very hard, and very brittle.

Fourthly, That moft kind of Vitrifications or Calcinations are made by Salts, uniting and incorporating with the metalline Particles. Nor do I know any one calcination wherein a saline body may not, with very great probability, be faid to be an agent or cuadjutor.

Fifthly, That Iron is converted into Steel by means of the incorporation of certain falts, with which it is kept a certain time in the fire.

Micrographia。

Sixthly, That any Iron may, in a very little time, be cafe bardned, as the Trades-men call it, by cafing the iron to be hardned with clay, and putting between the clay and iron a good quantity of a mixture of Urine, soot, Sea-falt, and Horjes hoofs (all which contein great quantities of Saline bodies) and then putting the cafe into a good ftrong fire, and keeping it in a confiderable degree of heat for a good while, and afterwards heating, and quenching or cooling it fuddenly in cold water.
Seventhly, That all kind of vitrify'd fubftances, by being fuddenly cool'd, become very hard and brittle. And thence arifes the pretty Phonomena of the Glafs Drops, which I have already further explained in its own place.

Eighthly, That thofe metals which are not fo apt to vitrifie, do not acquire any hardnefs by quenching in water, as Silver, Gold, \&c.
Thefe confiderations premis'd, will, I fuppofe, make way for the more eafie reception of this following Explication of the Phenomena of hardned and temper'd Steel. That Steel is a fubftance made out of Iron, by means of a certain proportionate Vitrification of feveral parts, which are fo curioufly and proportionately mixt with the more tough and unalter'd parts of the Iron, that when by the great heat of the fire this vitrify'd fubftance is melted, and confequently rarify'd, and thereby the pores of the Iron are more open, if then by means of dipping it in cold water it be fuddenly cold, and the parts hardned, that is, ftay'd in that fame degree of Expanfion they were in when hot, the parts become very hard and brittle, and that upon the fame account almoft as fmall parcels of glafs quenched in water grow brittle, which we have already explicated. If after this the piece of Steel be held in fome convenient heat, till by degrees certain colours appear upon the furface of the brightned metal, the very hard and brittle tone of the metal, by degrees relaxes and becomes much more tough and foft; namely, the action of the heat does by degrees loofen the parts of the Steel that were before ftreached or fet atilt as it were, and ftayed open by each other, whereby they become relaxed and fet at liberty, whence fome of the more brittle interjacent parts are thruft out and melted into a thin skin on the furface of the SteeI, which from no colour increafes to a deep Purple, and fo onward by thefe gradations or confecutions, White, Yellow, Orange, Minium, scarlet, Furple, Blew, Watchet, \&c. and the parts within are more conveniently, and proportionately mixt; and fo they gradually fubfide into a texture which is much better proportion'd and clofer joyn'd, whence that rigidneffe of parts ceafes, and the parts begin to acquire their former ductilnefs.
Now, that'tis nothing but the vitrify'd metal that fticks upon the furface of the colour'd body, is evident from this, that if by any means it be feraped and rubb'd off,the metal underneath it is white and clear;and if it be kept longer in the fire, fo as to increafe to a confiderable thicknefs, it may, by blows, be beaten off in flakes. This is further confirm'd by this obfervable, that that Ircn or Steel will keep longer from rufting which is covered with this vitrify'd cafe : Thus alfo Lead will, by degrees, be

Micrographta。

all turn'd into a litharge; for that colour which covers the top being fcum'd or fhov'd afide, appears to be nothing elfe but a litharge or vitrify'd Lead.

This is obfervable alfo in fome fort, on Brafs, Copper, Silver, Gold, Tin, but is moft confpicuous in Lead: all thofe Colours that cover the furface of the Metal being nothing elfe, but a very thin vitrifid part of the heated Metal.

The other Inftance we have, is in Aninal bodies, as in Pearls, Mother of Pearl-fhels, Oyfter-fhels, and almoft all other kinds of ftony fhels whatfoever. This have I alfo fometimes with pleafure obferv'd even in Mufcles and Tendons. Further, if you take any glutinous fubftance and runit exceedingly thin upon the furface of a fmooth glafs or a polifht metaline body, you fhall find the like effects produced: and in general, wherefoever you meet with a tranfparent body thin enough, that is terminated by reflecting bodies of differing refractions from it, there will be a production of thefe pleafing and lovely colours.

Nor is it neceffary, that the two terminating Bodies fhould be both of the fame kind, as may appear by the vitrified Lamina on Steel, Lead, and other Metals,one furface of which Lamine is contiguous to the furface of the Metal, the other to that of the Air.

Nor is it neceffary, that thefe colour'd Lamine fhould be of an even thicknefs, that is, fhould have their edges and middles of equal thicknefs, as in a Looking-glafs-plate, which circumftance is only requifite to make the Plate appear all of the fame colour; but they may refemble a Lens, that is, have their middles thicker then their edges; or elfe a double concave, that is, be thinner in the middle then at the edges; in both which cafes there will be various coloured rings or lines, with differing confecutions or orders of Colours; the order of the firft from the middle outwards being Red, Yellow, Green, Blew, ebc. And the latter quite contrary.

But further, it is altogether neceffary, that the Plate, in the places where the Colours appear, hould be of a determinate thicknefs: Firft, It muft not be more then fuch a thicknefs, for when the Plate is increafed to fuch a thicknefs, the Colours ceafe; and befides, I have feen in a thin piece of Mufcovy-glafs, where the two ends of two Plates, which appearing both fingle, exhibited two diftinet and differing Colours; but in that place where they were united, and conftituted one double Plate (as I may call it) they appeared tranfparent and colourlefs. Nor, Secondly, may the Plates be thinner then fuch a determinate cize; for we alwayes find, that the very outmoft Rim of thefe flaws is terminated in a white and colourlefs Ring.

Further, in this Production of Colours there is no need of a determinate Light of fuch a bignefs and no more, nor of a determinate pofition of that Light, that it fhould be on this fide, and not on that fide; nor of a terminating fhadow, asin the Prifme, and Rainbow, or Water-ball : for we find, that the Light in the open Air, either in ot out of the Sun-beams, and within a Room, either from one or many Windows, produces much

Micrographia.

the fame effect : only where the Light is brighteft, there the Colours are moft vivid. So does the light of a Candle, collected by a Glafs-ball. And further, it is all one whatever fide of the coloured Rings be towards the light; for the whole Ring keeps its proper Coloursfrom the middle outwards in the fame order as I before related, without varying at all, upon changing the pofition of the light.

But above all it is moft obfervable, that here are all kind of Colours generated in a pellucid body, where there is properly no fuch refraction as Des Cartes fuppofes his Globules to acquire a verticity by: For in the plain and even Plates it is manifeft, that the fecond refraction (according to Des Cartes his Principles in the fifth section of the eighth Chapter of his Meteors) does regulate and reftore the fuppofed turbinated Globules unto their former uniform motion. This Experiment therefore will prove fuch a one as our thrice excellent Verulam calls Experimentum Crucis, ferving as a Guide or Land-mark, by which to direct our courfe in the fearch after the true caufe of Colours. Affording us this particular negative Information, that for the production of Colours there is not neceflary either a great refraction, as in the Prifme ; nor Secondly, a determination of Light and fhadow, fuch às is both in the Prifme and Glafsball. Now that we may fee likewife what affirmative and pofitive Inftruction it yields, it will be neceffary, to examine it a little more particularly and ftrictly; which that we may the better do, it will be requifite to premife fomewhat in general concerning the nature of Light and Refraction.

And firft for Light, it feems very manifeft, that there is no luminous Body but has the parts of it in motion more or lefs.

Firft, That all kind of fiery burning Bodies have their parts in motion, I think, will be very eafily granted me. That the $\int p$ ark ftruck from a Flint and Steel is in a rapid agitation, I have elfewhere made probable. And that the Parts of rotten Wood, rotten Fi/h, and the like, are alfo in motion, I think, will as eafily be conceded by thofe, who confider, that thofe parts never begin to thine till the Bodies be in a ftate of putrefaction; and that is now generally granted by all, to be caufed by the motion of the parts of putrifying bodies. That the Bononian foone fhines no longer then it is cither warmed by the Sun-beams, or by the flame of a Fire or of a Candle, is the general report of thofe that write of it, and of others that have feen it. And that heat argues a motion of the internal parts, is (as I faid before) generally granted.

But there is one Inftance more, which was firft fhewn to the Royal society by Mr. Clayton a worthy Member thereof, which does make this Affertion more evident then all the reft : And that is, That a Diamond being $r u b{ }^{\prime} d$, fruck, or beated in the dark, fhines for a pretty while after, fo long as that motion, which is imparted by any of thofe Agents, remains (in the fame manner as a Glafs, rubb'd,ftruck, or (by a means which I fhall elfewhere mention) heated, yields a found which lafts as long as the eibrating motion of that Jonorous body) feveral Experiments made on which Stone, are fince publifhed in a Difcourfe of Colours, by the truly

Micrographiá。

honourable Mr. Boyle. What may be faid of thofe Ignes fatui that apt pear in the night, I cannot fo well affirm, having never had the opportunis ty to examine them my felf, nor to be inform'd by any others that had obferv'd them : And the relations of them in Authors are fo imperfect; that nothing can be built on them. But I hope I fhall be able in another place to make it at leaft very probable, that there is even in thofe alfoz Motion whieh caufes this effect. That the fhining of sea-water proceeds from the fame caufe, may be argued from this, That it fhines not till either it be beaten againft a Rock, or be fome otheriwayes broken or agitated by Storms, or Oars, or other percuffing bodies. And that the A nimal Energyes or Spirituous agil parts are very active in Cats eyes when they fhine, feems evident enough, becaufe their eyes never thine but when they look very intenily either to find their prey, or being hunted in a dark room, when they feek after their adverfary, or to find a way to efcape. And the like may be faid of the fhining Belfies of Gloworms, fince tis evident they can at pleafure either increafe or extinguifh that Radiation.

It would be fomewhat too long a work for this place Zetetically to examine, and pofitively to prove, what particular kind of motion it is that muft be the efficient of Light; for though it be a motion, yet 'tis not every motion that produces it, fince we find there are many bodies very violently mov'd, which yet afford not fuch an effect; and there are other bodies, which to our other fenfes, feem not mov'd fo much, which yet fhine. Thus Water and quick-filver, and moft other liquors heated, fhine not; and feveral hard bodies, as Iron, Silver, Brals, Cops per, Wood, ©c. though very often ftruck with a hammer, fline not pred fently, though they will all of them grow exceeding hot; whereas rota ten Wood, rotten Fifh, Sea water, Gloworns, © cc. have nothing of tangible heat in them, and yet (where there is no fronger light to affect the Senfory) they fhine fome of them fo Vividly, that one may make a fhift to read by them.

It would be too long, Ifay, here to infert the difcurfive progrefs by which I inquir'd after the proprieties of the motion of Light, and there ${ }^{3}$ fore I fhall only add the refult.

And, Firft, I found it ought to be exceeding quick, fuch as thofe motions of fermentation and putrefaction, whereby, certainly, the parts are exceeding nimbly and violently mov'd; and that, becaufe we find thofe motions are able more minutely to fhatter and divide the body, then the moft violent heats or menfirunms we yet know. And that fire is nothing elfe but fuch a diffolution of the Burning body, made by the moft univers fal menfruum of all fulpbureous bodies, namely, the Air, we fhall in an other place of this Tractate endeavour to make probable. And that, in all extreamly hot fhining bodies, there is a very quick motion that caufes Light, as well as a more robuft that caufes Heat, may be argued from the celerity wherewith the bodyes are diffolv'd.

Next, it muft be a Vibrative motion. And for this the newly mention'd Diamond affords us a good argument; fince if the motion of the parts did

Micrographia.

not return,the Diamond muft after many rubbings decay and be wafted: but we have no reafon to fufpect the latter, efpecially if we confider the exceeding difficulty that is found in cutting or wearing away a Di_{i} amond. And a Circular motion of the parts is much more improbable, fince, if that were granted, and they be fuppos'd irregular and Angular parts, I fee not how the parts of the Diamond fhould hold fo firmly together, or remain in the fame fenfible dimenfions, which yet they do. Next, if they be Globular, and mov'd only with a turbinated motion, I know not any caufe that can imprefs that motion upon the pellucid medium, which yet is done. Thirdly, any other irregular motion of the parts one amongft another, muft neceffarily make the body of a fluid confiftence, from which it is far enough. It muft therefore be a Vibrating motion.

And Thirdly, That it is a very fort vibrating motion, I think the inftances drawn from the fhining of Diamonds will alfo make probable. For a Diamond being the hardeft body we yet know in the World, and confequently the leaft apt to yield or bend, muft confequently alfo have its vibrations exceeding fhort.

And thefe, I think, are the three principal propritties of a motion, requifite to produce the effect call'd Light in the Object.
The next thing we are to confider, is the way or manner of the trajeEtion of this motion through the interpos'd pellucid body to the eye: And here it will be eafily granted,

Firft, That it muft be a body fufceptible and impartible of this motion that will deferve the name of a Tranfparent. And next, that the parts of fuch a body muft be Homogeneous, or of the fame kind. Thirdly, that the conftitution and motion of the parts mult be fuch, that the appulfe of the luminous body may be communicated or propagated through it to the greateft imaginable diftance in the leaft imaginable time; though I fee no reafon to affirm, that it muft be in an inftant: For I know not any one Experiment or obfervation that does prove it. And, whereas it may be objected, That we fee the Sun rifen at the very inftant when it is above the fenfible Horizon, and that we fee a Star hidden by the body of the Moon at the fame inftant, when the Star, the Moon, and our Eye are all in the fame line; and the like Obfervations, or rather fuppofitions, may be urg'd. I have this to anfwer, That I can as eafily deny as they affirm; for I would fain know by what means any one can be aflured any more of the Affirmative, then I of the Negative. If indeed the propagation were very flow, 'tis poffible fomething might be difcovered by Eclypfes of the Moon; but though we fhould grant the progrefs of the light from the Earth to the Moon, and from the Moon back to the Earthagain to be full two Minutes in performing, I know not any poffible means to difcover it ; nay, there may be fome inftances perhaps of Horizontal Eclypfes that may feem very much to favour this fuppofition of the flower progreffion of Light then moft imagine. And the like may be faid of the Eclypfes of the Sun, \&c. But of this only by the by. Fourthly, That the motion is propagated every way through an Homo-

Micrographia.

geneons medium by direct or flaight lines extended every way like Rays from the center of a Sphere. Fifthly, in an Homogeneous wedium this motion is propagated every way with equal velocity, whence neceffarily every pulfe or vitration of the luminous body will generate a Sphere, which will continually increafe, and grow bigger, juft after the fame manner (though indefinitely fwifter) as the waves or rings on the furface of the water do fwell into bigger and bigger circles about a point of it, where, by the finking of a Stone the motion was begun, whence it neceffarily follows, that all the parts of thefe Spheres undulated through an Homogeneous medium cut the Rays at right angles.

But becaufe all tranfparent mediums are not Homogeneous to one another,therefore we will next examine how this pulfe or motion will be propagated through differingly tranifarent mediums. And here, according to the moft acute and excellent Philofopher Des Cartes, I fuppofe the fign of the angle of inclination in the firft medium to be to the fign of refraction in the fecond, As the denfity of the firf, to the denfity of the fecond. By denfity, I mean not the denfity in refpect of gravity (with which the refractions or tranfparency of mediumes hold no proportion) but in refpect onely to the trajection of the Rays of light, in which refpect they only differ in this; that the one propagates the pulfe more eafily and weakly, the other more flowly, but more ftrongly. But as for the pulfes themfelves, they will by the refraction acquire another propriety, which we fhall now endeavour to explicate.

We will fuppofe therefore in the firft Figure AC FD to be a phyfical Ray, or ABC and DEF to be two Mathematical Rays, trajecifed from a very remote point of a luminous body through an Homogeneous tranfparent medium $L L L$, and $D A, E B, F C$, to be fmall portions of the orbicular impulfes which muft therefore cut the Rays at right angles; thefe Rays meeting with the plain furface NO of a medium that yields an eafier tranfitus to the propagation of light, and falling obliquely on it, they will in the medium M M M be refracted towards the perpendicular of the furface. And becaufe this medium is more eafily trajected then the former by a third, therefore the point C of the orbicular pulfe FC will be mov'd to H four fpaces in the fame time that F the other end of it is mov'd to G three fpaces, therefore the whole refracted pulfe GH fhall be oblique to the refracted Rays CHK and GI; and the angle G HC fhall be an acute, and fo much the more acute by how much the greater the refraction be, then which nothing is more evident, for the fign of the inclination is to be the fign of refraction as GF to TC the diftance between the point C and the perpendicular from G on $C K$, which being as four to three, HC being longer then GF is longer alfo then TC, therefore the angle GHC is lefs than G TC. So that henceforth the parts of the pulfes GH and IK are mov'd afcew; or cut the Rays at oblique angles.

It is not my bufinefs in this place to fet down the reafons why this or that body fhould impede the Rays more, others lefs: as why Water flould tranfmit the Rays more eafily, though more weakly than air. Onely thus

Micrographia.

much in general I fhall hint, that I fuppofe the medium MMM to have lefs of the tranfparent undulating fubtile matter, and that matter to be lefs implicated by it, whereas L LL I fuppofe to contain a greater quantity of the fluid undulating fubftance, and this to be more implicated with the particles of that medinm.
But to proceed, the fame kind of obliquity of the Pulfes and Rays will happen alfo when the refraction is made out of a more eafie into a more difficult mediü; as by the calculations of G Q \& C SR which are refracted from the perpendicular. In both which calculations 'tis obvious to obferve, that always that part of the Ray towards which the refraction is made has the end of the orbicular pulfe precedent to that of the other fide. And always, the oftner the vefraction is made the fame way, Or the greater the fingle refraction is, the more is this unequal progrefs. So that having found this odd propriety to be an infeparable concomitant of a refracted Ray, not ftreightned by a contrary refraction, we will next examine the refractions of the Sun-beams, as they are fuffer'd onely to pafs through a fmall paffage, obliquely out of a more difficult, into a more eafie medium.

Let us fuppofe therefore ABC in the fecond Figure to reprefent a large Chimical Glafs-body about two foot long, filled with very fair Water as high as $A B$, and inclin'd in a convenient pofture with B towards the Sun: Let us further fuppofe the top of it to be cover'd with an opacous body, all but the hole $a b$, through which the Sun-beams are fuffer'd to pafs into the Water, and are thereby refracted to c def, againft which part, if a Paper be expanded on the outfide, there will appear all the colours of the Rain-bow, that is, there will be generated the two principal colours, scarlet and Blue, and all the intermediate ones which arife from the compofition and dilutings of thefe two, that is, $c d$ fhall exhibit a Scarlet, which toward d is diluted into a rellow; this is the refraction of the Ray, $i k$, which comes from the underfide of the Sun; and the Ray ef thall appear of a deep Blue, which is gradually towards e diluted into a pale Watchet-blue. Between d and e the two diluted colours, Blue and Tellow are mixt and compounded into a Green; and this I imagine to be the reafon why Green is fo acceptable a colour to the eye, and that either of the two extremes are, if intenfe, rather a little offenfive, name$l y$, the being plac'd in the middle between the two extremes, and compounded out of both thofe, diluted alfo, or fomewhat qualifi'd, for the compofition, arifing from the mixture of the two extremes wadiluted, makes a Purple, which though it be a lovely colour, and pretty acceptable to the eye, yet is it nothing comparable to the ravifhing pleafure with which a curious and well tempered Green affects the eye. If removing the Paper, the eye be plac'd againft $c d_{\text {, }}$ it will perceive the lower fide of the Sun (or a Candle at night which is much better, becaufeit offends not the eye, and is more eafily manageable) to be of a deep Red, and if againft ef it will perceive the upper part of the luminous body to be of a deep Blue; and thefe colours will appear deeper and deeper, according as the Rays from the luminous body fall more obliquely on the furface of the Water, and thereby fuffer a greater refraction, and the

Micrographia.

more diftinct, the further c def is removed from the trajecting hole.
So that upon the whole, we fhall find that the reafon of the Pbenomena feems to depend upon theobliquity of the orbicular pulfe, to the Lines of Radiation, and in particular, that the Ray $c d$ which conftitutes the Scarlet has its inner parts, namely thofe which are next to the middle of the luminous body, precedent to the outermoft which are contiguous to the dark and unradiating fkie. And that the Ray ef which gives a Blue, has its outward part, namely, that which is contiguous to the dark fkie precedent to the pulfe from the innermoft, which borders on the bright area of the luminous body:
We may obferve further, that the caufe of the diluting of the colours towards the middle, proceeds partly from the widenefs of the hole through which the Rays pafs, whereby the Rays from feveral parts of the luminous body, fall upon many of the fame parts between ε and f as is more manifeft by the Figure: And partly alfo from the nature of the refraction it felf, for the vividnefs or frength of the two terminating colours, arifing chiefly as we have feen, from the very great difference that is betwixt the outfides of thofe oblique undulations \& the dark Rays circumambient, and that difparity betwixt the approximate Rays,decaying gradually : the further inward toward the middle of the luminous body they are remov'd, the more muft the colour approaeh to a white or an undifturbed light.

Upon the calculation of the refraction and reflection from a Ball of Water or Glafs, we have much the fame Phonomena, namely, an obliguity of the undulation in the fame manner as we have found it here. Which, becaufe it is very much to our prefent purpofe, and affords fuch an Inftancia crucis, as no one that I know has hitherto taken notice of, I fhall further examine. For it does very plainly and pofitively diftinguifh, and fhew, which of the two Hypothefes, either the Cartefian or this is to be followed, by affording a generation of all the colors in the Rainbow, where according to the Cartefian Principles there fhould be none at all generated. And fecondly, by affording an inftance that does more clofely confine the caufe of thefe Phonomena of colours to this prefent Hypothefis.
And firft,for the Cartefian, we have this to object againft it, That whereas he fays (Meteorum Cap.8.Sect.5.) sed judicabam unicam(refractioné fcilicet) ad minimü requiri, ơ quidem talew ut ejus effectus alià contrariâ (refractione) non deftruatur: Nam experientia docet fifuperficies NM ${ }^{\circ} \mathrm{NP}$ (nempe refringentes) Parallele forent, radios tantundem per alteram iterum erectos quantumper unam frangerentur, nullos colores depicturos; This Principle of his holds true indeed in a prifme where the refracting furfaces are plain, but is contradicted by the Ball or Cylinder, whether of Water or Glafs, where the refracting furfaces are Orbicular or Cylindrical. For if we examine the paffage of any Globule or Ray of the primary Iris, we fhall find it to pafs out of the Ball or Cylinder again, with the fame inclination and refraction that it enter'd in withall, and that that laft refraction by means of the intermediate reflection fhall be the fame as if without any reflection at all the Ray had been twice refracted by two Parallel furfaces.

Micrographia．

And that this is true，not onely in one，but in every Ray that goes to the conftitution of the Primary Iris；nay，in every Ray，that fuffers only two refractions，and one reflection，by the furface of the round body，we fhall prefently fee moft evident，if we repeat the Cartefian Scheme，men－ tioned in the tenth Section of the eighth Chapter of his Meteors，where

Schem． 6. Fig． 3. twice refracted at F and N ，and once reflected at K by the Purface of the Water－ball．For，firft it is evident，that KF and KN are equal，becaufe K N being the reflected part of K F they have both the fame inclination on the furface K that is the angles FK T，and NKV made by the two Rays and the Tangent of K are equal，which is evident by the Laws of re－ flection ；whence it will follow alfo，that K N has the fame inclination on the furface N ，or the Tangent of it XN that the Ray KF has to the fur－ face F，or the Tangent of it F Y，whence it muft neceffarily follow，that the refractions at F and N are equal，that is，K FE and KNP are equal． Now，that the furface N is by the reflection at K made parallel to the fur－ face at F ，is evident from the principles of reflection；for reflection being nothing but an inverting of the Rays，if we re－invertthe Ray KNP，and make the fame inclinations below the line T K V that it has above，it will be moft evident，that $\mathrm{K} H$ the inverfe of $\mathrm{K} N$ will be the continuation of the line FK，and that L H I the inverfe of O X is parallel to FY．And HM the inverfe of NP is Parallel to EF for the angle KHI is equal to KNO which is equal to K FY，and the angle K HM is equal to K NP which is equal to K FE which was to be prov＇d．
So that according to the above mentioned Cartefian principles there fhould be generated no colour at all in a Ball of Water or Glafs by two refractions and one reflection，which does hold moft true indeed，if the furfaces be plain，as may be experimented with any kind of prifme where the two refracting furfaces are equally inclin＇d to the reflecting；but in this the Phonomena are quite otherwife．

The caufe therefore of the generation of colour muft not be what Des Cartes affigns，namely，a certain rotation of the Globuli atherei，which are the particles which he fuppofes to conftitute the Pellucid medium，But fomewhat elfe，perhaps what we have lately fuppofed，and fhall by and by further profecute and explain．

But，Firft I fhall crave leave to propound fome other difficulties of his， notwithftanding exceedingly ingenious Hypothefis，which I plainly confefs to me feem fuch；and thofe are，

Firft，if that light be（as is affirmed，Diopt．cap．1．6．8．）not fo pro－ perly a motion，＇as an action or propenfion to motion，I cannot conceive how the eye can come to be fenfible of the verticity of a Globule，which is generated in a drop of Rain，perhaps a mile off from it．For that Globule is not carry＇d to the eye according to his formerly recited Principle；and if not fo，I cannot conceive how it can communicate its rotation，or circular motion to the line of the Globules between the drop and the eye．It can－ not be by means of every ones turning the next before him ${ }_{2}$ for if fo，then onely all the Globules that are in the odd places muft be turned the fame

```
that goes to
```

```
\[
\begin{aligned}
& \text { d body, we } \\
& \text { beme, }
\end{aligned}
\]
eome, men.
eors, where
rimary Iris,
\[
\begin{aligned}
& \text { face of this, }
\end{aligned}
\]
l, becaufe
inclination
\[
y \text { the } t w_{0}
\]
\[
\text { aws of } \mathrm{r}_{\mathrm{c}}
\]
ination on
to the fur-
llow, that
are equal.
o the fur-
ion being
\[
N P \text {, and }
\]
e, it will
uation of
Y. And
is equal
o KNP
es there
by two , if the where but in
n, But
oy and
of his,
confefs
proceive ich is cule is
and if
cular
can-
then
fame
way
```


MickographiA。

way with the firt, namely, the 3.5.7.9. II, ©ce. but all the Globules interpofited between them in the even places; namely, the 2.4.6.8.10. erc. muft be the quite contrary; whence, according to the Carteflan Hypotbefis, there muft be no diftinct colour generated, but a confufion. Next, fince the Cartefian Globuli are fuppos'd (Principiorum Pbilofoph. Part. 3. 6.86.) to be each of them continually in motion about their centers, I cannot conceive how the eye is able to diftinguifh this new generated motion from their former inherent one, if I may fo call that other wherewith they are mov'd or turbinated, from fome other caufe than refraction. And thirdly, I cannot conceive how thefe motions fhould not happen fometimes to oppofe each other, and then, in ftead of a rotation, there would be nothing but a direct motion generated, and confequently no colour. And fourthly, I cannot conceive, how by the Cartefian Hypothefis it is pof fible to give any plaufible reafon of the nature of the Colours generated in the thin lamine of thefe our Nicrofopical obfervations; for in many of thefe, the refraciing and reflecting furfaces are parallel to each other, and confequently no rotation can be generated, nor is there any neceffity of a fhadow or termination of the bright Rays, fuch as is fuppos'd (chap. 8. \$.5. Et preterea obfervavi umbram quoque, aut limitationem luminis requiri: and chap. 8. 6.9.) to be neceffary to the generation of any diftinct colours; Befides that, here is oftentimes one colour generated without any of the other appendant ones, which cannot be by the Carteflan Hy pothefis.

There muft be therefore fome other propriety of refraction that caufes colour. And upen the examination of the thing, I cannot conceive any one more general, infeparable, and fufficient, than that which thave before affign'd. That we may therefore fee how exactly our Hypothefis agreesalfo with the Phrenomena of the refracting round body, whether Globe or Cylinder, we fhall next fubjoyn our Calculation or Examen of it.

And to this end, we will calculate any two Rays: as for inftance; let schom. 6 . EF be a Ray cutting the Radius CD (divided into 20. parts) in G 16. Fig. 3. parts diftant from C , and ef another Ray, which cuts the fame Radius in g 17. parts diftant, thefe will be refracted to K and k, and from thence reflected to N and n, and from thence refracted toward P and p; therefore the Arch Ff will be 5. ${ }^{\text {d }} 5^{\prime}$. The Arch F K 106. ${ }^{\text {d }} 30$. the Arch $f k$ 101. ${ }^{\text {d }} 2^{\prime}$. The line F G 6000. and $f g 5267$. therefore $h f$. 733 . therefore Fc 980, almof. The line FK 16024. and $f k 15436$. therefore $\mathrm{N} d$ 196. and $n 0147$ almoft, the line Nn 1019 the Arch $\mathrm{N} n 5 .^{\mathrm{d}} \quad 5 \mathrm{r}^{\prime}$. therefore the Angle $\mathrm{N} n o$ is $34^{{ }^{d}} 43^{\circ}$. therefore the Angle $\mathrm{N} o n$. is $1390^{\text {d }} 5^{66^{\circ}}$. which is almoft 50 . $^{\text {d }}$ more than a right Angle.

It is evident therefore by this Hypothefis, that at the fame time that ef tonches f. EF is arrived at \therefore. And by that time efkn is got to n, EFKN is got to d, and when it touches N, the pulfe of the other Ray is got to 0 , and no farther, which is very fhort of the place it fhould have arriv'd to, to make the Rayn n to cut the orbicular pulfe. No at right Angles: therefore the Angle NOp is an acute Angle, but the quite con-

Micrographia.

trary of this will happen, if 17 .and 18 .be calculated in ftead of 16 .and 17% both which does moft exactly agree with the Phanomena: For if the Sun, or a Candle (which is better) be placed about $\mathrm{E} e$, and the eye about P p, the Rays EF ef. at 16 . and 17 . will paint the fide of the luminous object toward $n p$ Blue, and towards N P Red. But the quite contrary will happen when EF is 17 . and ef 18 . for then towards N P fhall be a Blue, and towards $n p$ a Red, exactly according to the calculation. And there appears the Blue of the Rainbow, where the two Blue fides of the two Images unite, and there the Red where the two Red fides unite, that is, where the two Images are juft difappearing; which is, when the Rays EF and NP produc'd till they meet, make an Angle of about 41. and an half; the like union is there of the two Images in the Production of the sccundary Iris, and the fame caufes, as upon calculation may appear; onely with this difference, that it is fomewhat more faint, by reafon of the duplicate reflection, which does always weaken the impulfe the oftner it is repeated.

Now, though the fecond refraction made at $\mathrm{N} n$ be convenient, that is, do make the Rays glance the more, yet is it not altogether requifite ; for it is plain from the calculation, that the pulfe $d n$ is fufficiently oblique to the Rays K N and $k n$, as wel as the pulfe $f c$ is oblique to the Rays F K \& $f k_{*}$ And therefore if a piece of very fine Paper be held clofe againft $\mathrm{N} n$ and the eye look on it either through the Ball as from D, or from the other fide, as from B. there fhall appear a Rainbow, or colour'd line painted on it with the part toward X appearing Red, towards O , Blue; the fame alfo fhall happen, if the Paper be placed about $K k$, for towards T fhall appear a Red, and towards V a Blue, which does exactly agree with this my Hypothefis, as upon the calculation of the progrefs of the pulfe will moft eafily appear.
Nor do thefe two obfervations of the colours appearing to the eye about p differing from what they appear on the Paper at N contradict each other ; but rather confirm and exactly agree with one another, as will be evident to him that examines the reafons fet down by the ingenious. Des Cartes in the 12. Sect. of the 8. Chapter of his Meteors, where he gives the true reafon why the colours appear of a quite contrary order to the eye, to what they appear'd on the Paper if the eye be plac'd in fteed of the Paper : And as in the Prifme, fo alfo in the Water, Drop, or Globe the Phrenomena and reafon are much the fame.

Having therefore fhewn that there is fuch a propricty in the prime and water Globule whereby the pulfe is made oblique to the progreflive, and that fo much the more, by how much greater the refraction is, I fhall in the next place confider, how this conduces to the production of colours, and what kind of impreffion it makes upon the bottom of the eye; and to this end it will be requifite to examine this Hypothefis a little more particularly.

Firft therefore, if we confider the manner of the progrefs of the pulfe, it will feem rational to conclude, that that part or end of the pulfe which precedes the other,muft neceeffarily be fomwhat more obtunded, or impeded by

[^2]
Migrographia.

by the refiftance of the traufparent medium, than the other parit or end of it which is fubfequent, whofe way is, as it were, prepared by the other; efpecially if the adjacent medimm be not in the fame manner enlightaed or agitated. And therefore (in the fourth Rigung of the fixth Fcomifin) the Ray AAAHB will have its fide. HH more deadned by the reffetance of the dark or quiet medium P PP, Whence there will be a kind of deadt nefs fuperinduc d on the fide HH H , which will continually increafe from B , and ftrike deeper and deeper into the Ray by the line BR ; Whence all the parts of the triangle, RB BHO will be of a dead Blue colour; and fo much the deeper, by how much the nearer they lie to the line $\mathrm{BH} \mathrm{H}_{3}$ which is moft deaded or impeded, and fo much the more dilute, by haw much the nearer it approaches the line BR. Next on the othen fide of the Ray A A N, the end A of the pulfe AH will be promoted, or made ftronger, having its paffage already prepar'd as 'twere by the other parts preceding, and fo its imprefficn wil be fronger; And becaufe of its obliquity to the Ray, there will be propagated a kind of faint motion into $Q Q$ the adjacent dark or quiet medium, which faint motion will fread further and further into Q Q as the Ray is propagated further and further from A, namely, as far as the line MA, whence all the triangle MAN will be ting'd with a Red, and that Red will be the deeper the nearer it approaches the line MA, and the paler or yellomen the nearer it is the line NA. And if the Ray be continued, fo that the lines $A N$ and $B R$ (which are the bounds of the Red and Blue diluted) do meet and crofs each other, there will be beyond that interfection generated all kinds of Gieens.

Now, thefe being the proprieties of every fingle refracted Ray of light, it will be eafie enough to confider what muft be the refult of very many fuch Rays collateral: As if we fuppofe infinite fuch Raysinterjaceent between AKSB and ANOB, which are the terminating: For in thiscafe the Ray A K S B will have its Red triangle intire, as lying next to the dark or quiet medium, but the other fide of it BS will have no Blue, becaufe the medinm adjacent to it SBO, is mov'd or enlightned, and confequently that light does deftroy the colour. So likewife will the Ray A NOB B lofe its Red, becaufe the adjacent medium is mov'd or enlightned, but the other fide of the Ray that is adjacent to the dark, namely, A HO will preferve its Blue entire, and thefe Rays muft be fo far produc'd as till AN and BR cut each other, before there will be any Green produc'd. From thefe Proprieties well confider'd, may be deduc'd the reafons of all the Phenomena of the prifme, and of the Globules or drops of Water which conduce to the production of the Rainbow.

Next for the impreffion they make on the Retina, we will furtherexamine this Hypotbefis: Suppofe therefore ABCDEF in the fifth Figure, to reprefent the Ball of the eye: on the Cornea of which ABC two Rays GACH and KCAI (which are the terminating Rays of a luminous body) falling, are by the refraction thereof collected or converg'd into two points at the bottom of the eye. Now, becaufe thefe terminating Rays, and all the intermediate ones which come from any part of the luminous body, are fuppos'd by forne fufficient refraction before they
enter

Micrographia.
enter the eye, to have their pulfes made oblique to their progreffion, and confequently each Ray to have potentially fuperinduc'd two proprieties, or colours, viz. a Red on the one fide, and a Blue on the other, which notwithftanding are never actually manifeft, butwhen this or that Ray has the one or the other fide of it bordering on a dark or unmov'd medium, therefore as foon as thefe Rays are entred into the eye, and fo have one fide of each of them bordering on a dark part of the humours of the eye, they: will each of them actually exhibit fome colour; therefore A DC the production G A CH will exhibit a Blue, becaufe the fide CD is adjacent to the dark medium C QD C,but nothing of a Red, becaufe its fide A D is adjacent to the enlightned medium A DF A: And all the Rays that from the points of the luminous body are collected on the parts of the Retina between D and F fhall have their Blue fo much the more diluted by how much the farther thefe points of collection are diftant from D towards F ; and the Ray A F C the production of K C AI, will exhibit a Red, becaufe the fide A F is adjacent to the dark or quiet medium of the eye APF A, but nothing of a Blue, becaufe its fide CF is adjacent to the enlightned medium CF DC, and all the Rays from the intermediate parts of the luminous bedy that are collected between F and D fhall have their Red fo much the more diluted, by how much the farther they are diftant from F towards D.
Now, becaufe by the refraction in the Cornea, and fome other parts of the eye, the fides of each Ray, which before were almoft parallel, are made to converge and meet in a point at the bottom of the eye, therefore that fide of the pulfe which preceded before thefe refractions, fhall firft touch the Retina, and the other fide laft. And therefore according as this or that fide, or end of the pulfe fhall be impeded, accordingly will the impreffions on the Retina be varied; therefore by the Ray GACH refracted by the Cornea to D there fhall be on that point a ftroke or impreffion confus'd, whofe weakeft end, namely, that by the line CD fhall precede, and the ftronger, namely, that by the line A D fhall follow. And by the Ray K CAI refracted to F, there fhall be on that part a confus'd ftroke or impreffion, whofe ftrongeft part, namely, that by the line CF fhal precede, and whofe weakeft or impeded, namely, that by the line A F fhall follow, and all the intermediate points between F and D will receive impreffion from the converg' d Rays fo much the more like the impreffions on F and D by how much the nearer they approach that or this.

From the confideration of the proprieties of which impreffions, we may collect thefe fhort definitions of Colours: That Blue is an impreffion on the Retina of an oblique and confus'd pulfe of light, wohofe weeakelt part precedes, and whoofe ftrongest follows. And, that Red is an impreffion on the Retina of an oblique and confus'dpulfe of light, whofe ftrongeft part precedes, and whofe weakeft follows.

Which proprieties, as they have been already manifefted, in the Prifme and falling drops ofRain, to be the caufes of the colours there generated, may be eafily found to be the efficients alfo of the colours appearing in thin laminated tranfparent bodies; for the explication of which, all this has been premifed.

And

Micrographia.

And that this is fo, a little clofer examination of the Pbenomena and the Figure of the body, by this Hypotbefis, will make evident.

For firt (as we have already obferved) the laminated body muf be of a determinate thicknefs, that is, it muft not be thinner then fuch a determinate quantity; for I have always obferv'd, that neer the edges of thofe which are exceeding thin, the colours difappear, and the part grows white; nor muft it be thicker then another determinate quantity; for I have likewife obferv'd, that beyond fuch a thicknefs,no colours appear'd, but the Plate looked white, between which two determinate thickneffes were all the colour'd Rings; of which in fome fubftances I have found ten or twelve, in others not half fo many, which I fuppofe depends much upon the tranfparency of the lamimated body. Thus though the confecutions are the fame in the foumm or the fkin on the top of metals; yet in thofe confecutions the fame colour is not fo often repeated as in the confecutionsinthin Glafs, or in Sope-water, or any other more tranfparent and glutisous liquor; for in thefe I have obferv'd, Red, yellow, Green, Blue, Purple; Red, Yellow, Green, Blue, Purple; Red,Yellow, Green, Blue, Purple; Red, Yellow, \&c. to fucceed each other, ten or twelve times, but in the other more opacous bodies the confecutions will not be half fo many.

And therefore fecondly, the laminated body muft be tranfparent, and this I argue from this, that I have not been able to produce any colour at all with an opacous body, though never fo thin. And this I have often try'd, by preffing a fmall Globule of Mercury between two fmooth Plates of Glafs, whereby I have reduc'd that body to a much greater thinnels then was requifite to exhibit the colours with a tranfparent body,
Thirdly, there muft be a confiderable reflecting body adjacent to the under or further fide of the lamina or plate: for this I always found, that the greater that reflection was, the more vivid were the appearing colours.

From which Obfervations, $i t$ is moft evident, that the reflection from the under or further fide of the body is the principal caufe of the production of thefe colours; which,that it is fo,and how it conduces to that effect, I fhall further explain in the following Figure, which is here defrribed of a very great thicknefs, as if it had been view'd through the Microfoope; and 'tis indeed much thicker than any Microfoope (I have yet us'd) has been able to fhew me thofe colour'd plates of Glafs, or Mufsovie-glafs, which I have not without much trouble view'd with it ; for though I have endeavoured to magnifie them as much as the Glaffes were capable of, yet are they fo exceeding thin, that I have not hitherto been able pofitively to determine their thicknefs. This Figure therefore I here reprefent, is wholy Hypothetical.

Let ABCDHFE in the fixth Figure be a fruftum of Mufcovy-glafs, thinner toward the end $A E$, and thicker towards DF. Let us firft fuppofe the Ray $a g b b$ coming from the Sun, or fome remote luminous object to fall obliquely on the thinner plate BAE, part therefore is reflected back, by $\mathrm{cg} h d$, the firft superficies; whereby the perpendicular

Micrographia.

pulfe $a b$ is after reflection propagated by $c d, c d$, equally remote from each other with $a b, a b$, fo that $a g+g c$, or $b b+b d$ are either of them equal to $a a$, as is alfo $c c$, but the body B A E being tranfparent, a part of the light of this Ray is refracted in the furface $A B$, and propagated by $g i k b$ to the furface EF, whence it is reflected and refracted again by the furface AB . So that after two refractions and one reflection, there is propagated a kind of fainter Ray e $m n f$, whofe pulfe is not only weaker by reafon of the two refractions in the furface $A B$, but by reafon of the time fpent in paffing and repafiing between the two furfaces $A B$ and $E F$, ef which is this fainter or weaker pulfe comes behind the pulfe $c d$; fo that hereby (the furfaces $A B$, and EF being fo neer together, that the eye cannot difcriminate them from one) this confus'd or duplicated pulfe, whofe ftrongeft part precedes, and whofe weakeft follows, does produce on the Retina (or the optick nerve that covers the bottom of the eye) the fenfation of a rellow.
And fecondly, this rellow will appear fo much the deeper, by how much the further back towards the middle between $c d$ and $c d$ the fpurious pulfe ef is remov' d , as in 2 where the furface BC being further remov'd from EF, the weaker pulfe ef will be nearer to the middle, and will make an impreffion on the eye of a Red.

But thirdly, if the two reflecting furfaces be yet further remov'd afunder'(as in 3 CD and EF are) then will the weaker pulfe be fo farr behind, that it will be more then half the diftance between $c d$ and $c d$. And in this cafe it will rather feem to precede the following ftronger pulfe, then to follow the preceding one, and confequently a Blue will be generated. And when the weaker pulfe is juft in the middle beween two ftrong ones, then is a deep and lovely Purple generated; but when the weaker pulfe ef is very neer to $c d$, then is there generated a Green, which will be bluer, or yellower, according as the approximate weak pulfe does precede or follow the ftronger.

Now fourthly, if the thicker Plate chance to be cleft into two thinner Plates, as CDFE is divided into two Plates by the furface GH then from the compofition arifing from the three reflections in the furfaces $C D, G H$, and $E F$, there will be generated feveral compounded or mixt colours, which will be very differing, according as the proportion between the thickneffes of thofe two divided Plates CDH G, and GHFE are varied.

And fifthly, if thefe furfaces CD and FE are further remov'd afunder, the weaker pulfe will yet lagg behind much further, and not onely be coincident with the fecond, $c d$, but lagg behind that alfo, and that fo much the more, by how much the thicker the Plate be; fo that by degrees it will be coincident with the third $c d$ backward alfo, and by degrees, as the Plate grows thicker with a fourth, and fo onward to a fifth, fixth, feventh, or eighth; fo that if there be a thin tranfparent body, that from the greateft thinnefs requifite to produce colours, does, in the manner of a Wedge, by degrees grow to the greateft thicknefs that a Plate can be of,to exhibit a colour by the reflection of Light from fuch a body, there

Micrographia.

Thall be generated feveral confecutions of colours, whofe order from the thin end towards the thick, fhall be Yelloro, Red, Purple, Blue, Green; Yellow, Red, Purple, Blue, Green ; Yellow, Red, Purple, Blue, Green; Yellow, \&e. and thefe fo often repeated, as the weaker pulfe does lofe paces with its Primary, or firtt pulfe, and is coincident with a fecond, third, fourth, fifth, fixth, efc. pulfe behind the firf. And this, as it is coincident, or follows from the firt Hypothefis I took of colours,fo upon exeriment have I found it in multitudes of inflances that feem to prove it. One thing which feems of the greateft concern in this Hypothefis, is to determine the greateft or leaft thicknefs requifite for thefe effects, which, though I have not been wanting in attempting, yet fo exceeding thin are thefe coloured Plates, and fo imperfect our Microfoope, that I have not been hitherto fuccefffull, though if my endeavours fhall anfwer my expectations,I fhall hope to gratifie the curious Reader with fome things more remov'd beyond our reach hitherto.

Thus have I, with as much brevity as I was able, endeavoured to explicate (Hypotbetically at leaft) the caufes of the Phenomena I formerly recited, on the confideration of which I have been the more particular. Firft, becaufe I think thefe I have newly given are capable of explicating all the Phonomena of colours, not onely of thofe appearing in the Prijme, Water-drop, or Rainbow, and in laminated or plated bodies, but of all that are in the world, whether they be fluid or folid bodies, whether in thick or thin, whether tranfparent, or feemingly opacous, as I fhall in the next Obfervation further endeavour to fhew. And fecondly, becaufe this being one of the two ornaments of all bodies difcoverable by the fight, whether looked on with, or without a Microfoope, it feem'd to deferve (fomewhere in this Tract, which contains a defcription of the Figure and Colour of fome ninute bodies) to be fomewhat the more intimately enquir'd into.

Obferv. X. Of Metalline, and other real Colours.

HAving in the former Difcourfe, from the Fundamental caufe of Colour, made it probable, that there are but two Colours, and fhewn; that the Phantafm of Colour is caus'd by the fenfation of the oblique or uneven pulfe of Light which is capable of no more varieties than two that arife from the two fides of the oblique pulfe, though each of thofe be capable of infinite gradations or degrees (each of them beginning from White, and ending the one in the deepert scarlet or rellow, the other in the deepeft Blue) I thall in this Section fet down fome Obfervations which I have made of other colours, fuch as Metalline powders tinging or colourd bodies and feveral kinds of tinctures or ting'd liquors, all which, together with thofe I treated of in the former Obfervation will, I fuppofe, comprife the feveral fubjects in which colour is obferv'd to be inherent, and the feveral manners by which it inheres, or is apparent

L 2

Micrographia.

in them. And here I ihall endeavour to fhew by what compofition all kind of compound colours are made, and how there is no colour in the world but may be made from the various degrees of thefe two colours, together with the intermixtures of Black and White.

And this being fo , as I fhall anon fhew, it feems an evident argument to me, that all colours whatfoever, whether in fluid or folid, whether in very tranfparent or feemingly opacous, have the fame efficient caufe, to wit, fome kind of refraction whereby the Rays that proceed from fuch bodies, have their pulfe obliquated or confus'd in the manner I explicated in the former Section; that is, a Red is caus'd by a duplicated or confus'd pulfe, whofe ftrongeft pulfe precedes, and a weaker follows : and a blue is caus'd by a confus'd pulfe, where the weaker pulfe precedes, and the ftronger follows. And according as thefe are, more or lefs, or varioully mixt and compounded, fo are the fenfations, and confequently the phantafms of colours diverfficed.

To proceed therefore; I fuppofe, that all tranfparent colour'd bodies, whether fluid or folid, do confift at leaft of two parts, or two kinds of fubftances, the one of a fubftance of a fomewhat differing refraction from the other. That one of thefe fubftances which may be calld the tinging fubftance, does confift of diftinct parts, or particles of a determinate bignefs which are difeminated, or difpers'd all over the other: That thefe particles, if the body be equally and uniformly colour'd, are evenly rang'd and difpers'd over the other contiguous body; That where the body is deepeft ting' d , there thefe particles are rang'd thickeft; and where 'tis but faintly ting' d, they are rang'd much thinner, but uniformly. That by the mixture of another body that unites with either of thefe, which has a differing refraction from either of the other, quite differing effects will be produc'd, that is, the confecutions of the confus'd pulfes will be much of another kind, and confequently produce other fenfations and phantafms of colours, and from a Red may turn to a Blue, or from a Blue to a Red, \&c.

Now, that this may be the better underfood, I fhall endeavour to explain my meaning a little more fenfible by a scheme: Suppofe we therefore in the feventh Figure of the fixth Scheme, that A B CD reprefents a Veffel holding a ting'd liquor, let II I I I,\&c. be the clear liquor, and let the tinging body that is mixt with it be EE, \&oc. FF, ©ic. GG, Xuc. $\mathrm{HH}, e^{\circ} c$. whofe particles (whether round, or fome other determinate Figure is little to our purpofe) are firft of a determinate and equal bulk. Next, they are rang'd into the form of 2uincunx, or Equilaterotriangular order, which that probably they are fo, and whythey are fo, I fhall elfewhere endeavour to fhew. Thirdly, they are of fuch a nature, as does either more eafily or more difficultly tranfmit the Rays of light then the liquor; if more eafily, blue is generated, and if more difficultly, a Red or Scarlet.

And firft, let us fuppofe the tinging particles to be of a fubftance that does more impede the Rays of light, we fhall find that the pulfe or wave of light mov'd from A D to B C, will proceed on, through the containing medium by the pulfes or waves $\mathrm{KK}, \mathrm{LL}, \mathrm{MM}, \mathrm{N} \mathrm{N}_{2}, \mathrm{OO}$; but

Micrographia.

becaufe feveral of thefe Rays that go to the conftitution of thefe pulfes will be flugged or fopped by the tinging particles $\mathrm{E}_{2} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{H}_{\text {; }}$ therefore there fhall be a fecundayy and weak pulfe that fhall follow the Ray, namely P P which will be the weaker: firft, becaufe it has fuffer'd many refractions in the impeding body; next, for that the Rays will be a little difpers d or confusd by reafon of the refraction in each of the particles, whether round or angular; and this will be more evident, if we alittle more clofely examine any one particular tinging Globule.
Suppofe we therefore AB in the eighth Fgure of the fixth scheme, to reprefent a tinging Globule or particle which has a greater refraction than the liquor in which it is contain'd: Let CD be a part of the pulfe of light which is propagated through the containing medium; this pulfe will be a little ftopt or impeded by the Globule, and foby that time the pulfe is paft to E F that part of it which has been impeded by paffing through the Globule, will get but to L M, and fo that pulfe which has been propagated through the Globule, to wit, $\mathrm{L} \mathrm{M}_{2} \mathrm{NO}, \mathrm{PC}$, will always come behind the pulfes EF, GH, IK, orc.

Next, by reafon of the greater impediment in A B, and its Globular Figure, the Rays that pafs through it will be difpers' d, and very mueh fcatter d. Whence CA and DB which before went direcf and parallel, will after the refraction in $A B$, diverge and fpread by $A P$, and $B Q$; fo that as the Rays do meet with more and more of thefe tinging particles in their way, by fo much the more will the pulfe of light further lagg behind the clearer pulfe, or that which has fewer refractions, and thence the deeper will the colour be, and the fainter the light that is trajected throughit; for not onely many Rays are reflected from the furfaces of $A B$, but thofe Rays that get through it are very much difordered.

By this Hypobefis there is no one experiment of colour that Ihave yet met with, but may be, I conceive, very rationably folv'd, and perhaps, had I time to examine feveral particulars requifite to the demonftration of it, I night prove it more than probable, for all the experiments about the changes and mixings of colours related in the Treatife of Colours, publifhed by the Incomparable Mr. Boyle, and multitudes of others which I have obferv'd, do fo eafily and naturally flow from thofe principles, that Iam very apt to think it probable, that they own their production to no other fecundary caufe: As to inftance in two or three experiments. In the twentieth Experiment, this Noble Autbour has fhewn that the deep bluiff purple-colosr of Violets, may be turn'd into a Green, by Alcalizate Salts, and to a Red by acid; that is, a Purple confifts of two colours, a deep Red, and a deep Blue; when the Blue is diluted, or altered, or deftroy'd by acid Salts, the Red becomes predominant, but when the Red is dilated by Alcalizate, and the Blue heightned, there is generated a Green; for of a Red diluted, is made a rellow, and rellow and Blue make a Green.

Now, becaufe the Jpurious pulfes which caufe a Red and a Blue, do the one follow the clear pulfe, and the other precede it, it ufually follows, that thofe saline refracting bodies which do dilute the colour of the one, do deepen that of the other. And this will be made manifeft byal-

Micrographia.

moft all kinds of Purples, and many forts of Greens, both thefe colours confifting of mixt colours; for if we fuppofe A and A in the ninth Figure, to reprefent two pulfes of clear light, which follow each other at a convenient diftance, A A, each of which has a /purious pulfe preceding it, as $B B$, which makes a Blue, and another following it, as $\mathbf{C C}$, which makes a Red, the one caus'd by tinging particles that have a greater refraction, the other by others that have a lefs refracting quality then the liquor or Menfruum in which thefe are diffolv'd, whatfoever liquor does fo alter the refraction of the one, without altering that of the other part of the ting'd liquor, muft needs very much alter the colour of the liquor; for if the refraction of the difolvent be increas' d , and the refraction of the tinging particles not altered, then will the preceding Jpurious pulfe be fhortned or fropt, and not out-run the clear pulfe fo much; fo that B B will become EE, and the Bluc be diluted, whereas the other Jpurious pulfe which follows will be made to lagg much more, and be further behind A A than before, and CC will become $f f$, and fo the rellow or Red will be heightned.

A saline liquor therefore,mixt with another ting'd liquor,may alter the colour of it feveral ways, either by altering the refraction of the liquor in which the colour fwims: or fecondly by varying the refraction of the coloured particles, by uniting more intimately either with fome particular corpufcles of the tinging body, or with all of them, according as it has a congruity to fome more efpecially, or to all alike: or thirdly, by uniting and interweaving it felf with fome other body that is already joyn'd with the tinging particles, with which fubftance it may have a congruity, though it have very little with the particles themfelves: or fourthly, it may alter the colour of a ting'd liquor by dif-joyning certain particles which were before united with the tinging particles, which though they were fomewhat congruous to thefe particles, have yet a greater congruity with the newly infus'd Saline menftruum. It may likewife alter the colour by further diffolving the tinging fubftance into fmaller and fmaller particles, and fo diluting the colour; or by uniting feveral particles together as in precipitations, and fo deepning it, and fome fuch other ways, which many experiments and comparifons of differing trials together, might eafily inform one of.

- From thefe Principles applied, may be made out all the varieties of colours obfervable, either in liquors, or any other ting'd bodies, with great eafe, and I hope intelligible enough, there being nothing in the notion of colour, or in the fuppos'd production, but is very conceivable, and may be poffible.

The greateft difficulty that I find againft this Hypothefis, is, that there feem to be more diftinct colours then two, that is, then Yellow and Blue. This Objection is grounded on this reafon, that there are feveral Reds, which diluted, make not a Saffron or pale Yellow, and therefore Red, or Scarlet feems to be a third colour diftinct from a deep degree of Yellow.

To which I anfwer, that Saffron affords us a deep Scarlet tincture, which may be diluted into as pale a Yellow as any, either by making a weak folution

Micrographia。

Intion of the Saffron, by infufing a fmall parcel of it into a great quantity of liquor, as in fpirit of Wine, or elfe by looking through a very thint quantity of the tincture, and which may be heightn'd into the lovelieft Scarlet, by looking through a very thick body of this tincture, or through a thinner parcel of it,which is highly impregnated with the tinging body, by having had a greater quantity of the Saffron diffolv'd in a fmaller parcel of the liquor.

Now, though there may be fome particles of other tinging bodies that give a lovely Scarlet alfo, which though diluted never fo much with liquor, or looked on through never fo thin a pareel of ting'd liquor, will not yet afford a pale Yellow, but onely a kind of faint Red; yet this is no argument but that thofe ting'dparticles may have in them the fainteft degree of Yellow, though we may be unable to make them exhibit it;For that power of being diluted depending upon the divifibility of the ting'd body, if I am unable to make the tinging particles fo thin as to exhibit that colour, it does not therefore follow, that the thing is impoffible to be done; now, the tinging particles of fome bodies are of fuch a nature, that unlefs there be found fome way of comminuting them into lefs bulks then the liquor does diffolve them into, all the Rays that pafs through them muft neceffarily receive a tincture fo deep, as their appropriate refractions and bulks compar'd with the proprieties of the diffolving liquor muft neceffarily difpofe them to emprefs, which may perhaps be a pretty deep Yellow, or pale Red.

And that this is not gratis dictum, I fhall add one inftance of this kind, wherein the thing is moft manifeft.

If you take Blue smalt, you fhall find, that to afford the deepeft Blue, which cateris paribus has the greateft particles or fands; and if you further divide, or grind thofe particles on a Grindftone, or porphyry ftone, you may by comminuting the fands of it, dilute the Blue into as pale a one as you pleafe, which you cannot do by laying the colour thin; for wherefoever any fingle particle is, it exhibits as deep a Blue as the whole mafs. Now, there are other Blues, which though never fo much ground, will not be diluted by grinding, becaufe confifting of very frall particles, very deeply ting'd,they cannot by grinding be actually feparated into fmaller particlesthen the operation of the fire, or fome other diffolving menfrum, has reduc'd them to already.

Thus all kind of Metalline colours, whether precipitated, fublim'd, calcin'd $^{\prime}$, or otherwife prepar'd, are hardly chang'd by grinding, as ultra marine is not more diluted; nor is Vermilion or Red-lead made of a more faint colour by grinding; for the fmalleft particles of thefe which Ihave view'd with my greateft Magnifying-Glaif, if they be well enlightned, appear very deeply ting'd with their peculiar colours; nor, thoughI have magnified and enlightned the particles exceedingly, could I in many of them, perceive them to be tranfparent, or to be whole particles, but the fmalleft fecks that I could find among well ground Vermilionand Redlead, feem'd to be a Red mafs, compounded of a multitude of lefs and lefs motes, which fticking together, compos'd a bulk, not one thoufand thoufandth part of the fmalleft vifible fand or mote.

Micrographia.

And this I find generally in moft Metalline colours, that though they confift of parts fo exceedingly fmall,yet are they very deeply ting d, they being fo ponderous, and having fuch a multitude of terreftrial particles throng d into a little room; fo that 'tis difficult to find any particle tranfparent or refembling a pretious ftone, though not impoffible; for I have obferv'd divers fuch fhining and refplendent colours intermixt with the particles of Cinnaber, both natural and artificial, before it hath been ground and broken or flaw'd into Vermilion: As I have alfo in orpiment, Red-lead, and Bife, which makes me fuppofe, that thofe metalline colours are by grinding, not onely broken and feparated actually into fmaller pieces, but that they are alfo flaw'd and brufed, whence they, for the moft part, become opacous, like flaw'd Cryftal or Glafs, ${ }^{\circ} c$. But for Smalts and verditures, I have been able with a Microfoope to perceive their particles very many of them tranfparent.

Now, that the others alfo may be tranfparent, though they do not appear fo to the Microfcope, may be made probable by this Experiment: that if you take ammel that is almoft opacous, and grind it very well on a Porphyry, or Serpentine, the fmall particles will by reafon of their flaws, appear perfectly opacous; and that tis the flaws that produce this opacounne β, may be argued from this, that particles of the fame Ammel much thicker if unflaw'd will appear fomewhat tranfparent even to the eye; and from this alfo, that the moft tranfparent and clear Cryftal, if heated in the fire, and then fuddenly quenched, fo that it be all over flaw'd, will appear opacous and white.
And that the particles of Metalline colours are tranfparent, may be argued yet further from this, that the Cryftals, or Vitriols of all Metals, are tranfparent, which fince they confift of metalline as well as faline particles, thofe metalline ones muft be tranfparent, which is yet further confirm'd from this, that they have for the moft part, appropriate colours; fo the vitriol of Gold is Yellow; of Copper,Blue, and fometimes Green; of Iron, green ; of Tinn and Lead, a pale White; of Silver, a pale Blue, ơc.

And next, the Solution of all Metals into menftruums are much the fame with the Vitriols, or Cryftals. It feems therefore very probable, that thofe colours which are made by the precipitation of thofe particles out of the menftruums by tranfparent precipitating liquors fhould be tranfparent alfo. Thus Gold precipitates with oyl of Tartar, or Spirit of Urine into a brown Yellow. Copper with fpirit of Urine into a Mucous blue, which retains its tranfparency. A folution of fublimate (as the fame Illuftrious Authour I lately mention'd fhews in his 40 . Experiment) precipitates with oyl of Tartar per deliquium, into an Orange colour'd precipitate; nor is it lefs probable, that the calcination of thofe Vitriols by the fire, fhould have their particles tranfparent: Thus Saccarum Saturni, or the Vitriol of Lead by calcination becomes a deep Orange-colour'd minium, which is a kind of precipitation by fome Salt which proceeds from the fire ; common Vitriol calcin'd, yields a deep Brown Red, e九c.

A third Argument, that the particles of Metals are tranfparent, is, that being calcin' $d_{\text {, }}$ and melted with Glafs, they tinge the Glafs with tranfpa-

Micrographia。

rent colours. Thus the Calx of Silver tinges the Glafs on which it is anneal'd with a lovely Yellow, or Gold colour, erc.

And that the parts of Metals are tranfparent, may be farther argued from the tranfparency of Leaf-gold, which held againft the light, both to the naked eye, and the Microfoope, exhibits a deep Green. And though I have never feen the other Metals laminated fo thin, that I was able to perceive them tranfparent, yet, for Copper and Brafs, if we had the fame conveniency for laminating them, as we have for Gold, we might, perhaps,through fuch plates or leaves, find very differing degrees of Blue, or Green; for it feems very probable, that thofe Rays that rebound from them ting'd, with a deep Yellow, or pale Red, as from Copper, or with a pale Yellow, as from Brafs, have palt through them; for I cannot conceive how by reflection alone thofe Rays can receive a tincture, taking any Hypothefis extant,
So that we fee there may a fufficient reafon be drawn from thefe infrances, why thofe colours which we are unable to dilute to the paleft Yellow, or Blue, or Green, are not therefore to be concluded not to be a deeper degree of them; for fuppofing we had a great company of fmall Globular effence Bottles, or round Glafs bubbles, about the bignefs of aWalnut, fill'd each of them with a very deep mixture of Saffron, and that every one of them did appear of a deep Scarlet colour, and all of them together did exbibit at a diftance, a deep dy'd Scarlet body. It does not follow, becaufe after we have come nearer to this congeries, or mafs, and divided it into its parts, and examining each of its parts feverally or apaxt, we find them to have much the fame colour with the whole mals; it does not, I fay, therefore follow, that if we could break thofe Globules fmaller, or any other ways come to fee a fmaller or thinner parcel of the ting'd liquor that fill'd thofe bubbles, that that ting'd liquor muft always appear Red, or of a Scarlet hue, fince if Experiment be made, the quite contrary will enfue; for it is capable of being diluted into the paleft Yellow.

Now, that I might avoid all the Objections of thiskind, by exhibiting an Experiment that might by ocular proof convince thofe whom other reafons would not prevail with, I provided me a Prifmatical Glaß, made hollow, juft in the form of a Wedge, fuch as is reprefented in the tenth Figure of the fixth scheme. The two parallelograni fides $\mathrm{ABCD}, \mathrm{ABEF}$, which met at a point, were made of the cleareft Looking-glafs plates well ground and polifh'd that I could get;thefe were joyn'd with hard cement to the triangular fides, B CE, A DF, which were of Wood; the Parallelogram bafe B CEF, likewife was of Wood joyn'd on to the reft with hard cement, and the whole Prifmatical Box was exactly fopt every where, but onely a little hole near the bafe was left,whereby the Veffel could be fill'd with any liquor, or emptied again at pleafure.

One of thefe Boxes (for Ihad two of them) Ifilld with a pretty deep tincture of Aloes, drawn onely with fair: Water, and then ftopt the hole with a piece of Wax, then, by holding this Wedge againft the Light, and looking through it, it was obvious enough to fee the tincture of the liquor near the edge of the Wedge where it was but very thin, to be a pale but

Micrographia.

well colour'd Yellow, and further and further from the edge, is the liquor grew thicker and thicker, this tincture appear'd deeper and deeper, fo that near the blunt end, which was feven Inches fromthe edge and three Inches and an half thick; it was of a deep and well colour'd Red. Now, the clearer and purer this tincture be, the more lovely will the deep Scarlet be, and the fouler the tincture be, the more dirty will the Red appear; fo that fome dirty tinctures have afforded their deepeft Red much of the colour of burnt Oker or spani/h brown;others as lovely a colour as Vermilion, and fome much brighter; but feveral others, according as the tinctures were worfe or more foul, exhibited various kinds of Reds, of very differing degrees.

The other of thefe Wedges, I fill'd with a moft lovely tincture of Copper, drawn from the filings of it, with firit of Urine, and this Wedge held as the former againft the Light, afforded all manner of Blues, from the fainteft to the deepeft, fo that I was in good hope by thele two, to have produc'd all the varieties of colours imaginable; for I thought by this means to have been able by placing the two Parallelogram fides together, and the edges contrary ways, to have fo mov'd them to and fro one by another, as by looking through them in feveral places, and through feveralthickneffes, I fhould have compounded, and confequently have feen all thofe colours, which by other like compofitions of colours would have enfued.

But infteed of meeting with what I look'd for, I met with fomewhat more admirable; and that was, that I found my felf utterly unable to fee through them when placed both together, though they were tranfparent enough when afunder; and though I could fee through twice the thicknefs, when both of them were fill'd with the fame colour'd liquors, whether both with the Yellow, or both with the Blue, yet when one was fill'd with the Yellow, the other with the Blue, and both looked through, they both appear'd dark, onely when the parts near the tops were look'd through, they exhibited Greens, and thofe of very great variety, as I expected, but the Purples and other colours, I could not by any means make, whether I endeavour'd to look through them both againft the Sun, or whether I plac'd them againft the hole of a darkned room.

But notwithftanding this mif-ghefling, I proceeded on with my trial in a dark room, and having two holes near one another, I was able, by placing my Wedges againft them, to mix the ting'd Rays that paft through them, and fell on a fheet of white Paper held at a convenient diffance from them as I pleas'd; fo that I could make the Paper appear of what colour I would, by varying the thickneffes of theWedges, and confequently the tincture of the Rays that paft through the two holes, and fometimes alfo by varying the Paper, that is, infteed of a white Paper, holding a gray, or a black piece of Paper.

Whence I experimentally found what I had before imagin'd, that all the varieties of colours imaginable are produc'd from feveral degrees of thefe two colours, namely, Yellow and Blue, or the mixture of them with light and darknefs, that is, white and black. And all thofe almoft infinite varieties which Limners and Painters are able to make by com-
pounding

Micrographia。

pounding thofe feveral colours they lay on their Shels or Palads, are nothing elfe, but fome compofitum, made up of fome one or more, or all of thefe four.

Now, whereas it may here again be objected, that neither can the Reds be made out of the Yellows, added together, or laid on in greater or lefs quantity, nor can the Yellows be made out of the Reds though laid never fo thin; and as for the addition of White or Black, they do nothing but either whiten or darken the colours to which they areadded and not at all make them of any other kind of colour: as forinftance, Vermilion, by being temper'd with White Lead, does not at all grow more Yellow, but onely there is made a whiter kind of Red. Nor does Yellow oker, though laid never fo thick, produce the colour of Vermilion, nor though it be temper'd with Black, does it at all make a Red; nay, though it be temper'd with White, it will not afford a fainter kind of Yellow, fuch as mafticut, but onely a whiten'd Yellow; nor will the Blues be diluted or deepned after the manner I fpeak of, as Indico will never afford fo fine a Blue as Ultramarine or Bife; nor will it,temper'd with Vermilion, ever afford a Green, though each of them be never fo much temper'd with white.

To which I anfwer, that there is a great difference between diluting a colour and whitening ofit; for diluting a colour, is to make the colour'd parts more thin, fo that the ting'd light, which is made by trajecting thofe ting'd bodies, does not receive fo deep a tincture; but white ning a colour is onely an intermixing of many clear reflections of light among the fame ting'd parts; deepning alfo, and darkning or blacking a colour, are very different; for deepning a colour, is to make the light pafs through a greater quantity of the fame tinging body; and darkning or blacking a colour, is onely interpofing a multitude of dark or black fpots among the fame ting'd parts, or placing the colour in a more faint light.
Firft therefore, as to the former of thefe operations, that is, diluting and deepning, moft of the colours us'd by the Limners and Painters are incapable of, to wit, Vermilion and Red-lead, and oker, becaufe the ting'd parts are fo exceeding fmall, that the moft curious Grindfrones we have, are not able to feparate them into parts actually divided fo fmall as the ting d particles are; for looking on the moft curioufly ground Vermilion, and 0 ker , and Red-lead, I could perceive that even thofe fmalt corpufcles of the bodies they left were compounded of many pieces, that is, they feem'd to be fmall pieces compounded of a multitude of leffer ting'd parts: each piece feeming almoft like a piece of Red Glafs,or ting'd Cryftal all flaw'd; fo that unlefs the Grindftone could actually divide them into frnaller pieces then thofe flaw'd particles were, which compounded that ting d mote I could fee with my Microfoope, it would be impoffible to dilute the colour by grinding, which, becaufe the fineft we have will not reach to do in Vermilion or Oker, therefore they cannot at all, or very hardly be diluted.
Other colours indeed, whofe ting'd particle are fuch as may be made fmaller, by grinding their colour, may be diluted. Thus feveral of the

M 2 , iomilw Blues

Micrographia.

Blues may be diluted, as Smalt and Bife; and Mafticut, which is Yellow, may be made more faint: And even Vermilion it felf may; by too much grinding, be brought to the colour of Red-lead, which is but an Orange colour, which is confeft by all to be very much upon the Yellow. Now, though perhaps fomewhat of this diluting of Vermilion by overmuch grinding may be attributed to the Grindftone, or muller, for that fome of their parts may be worn off and mixt with the colour, yet there feems not very much, for I have done it on a Serpentine-ftone with a muller made of a Pebble, and yet obferv'd the fame effect follow.

And fecondly, as to the other of thefe operations on colours, that is, the deepning of them, Limners and Painters colours are for the moft part alfo uncapable. For they being for the moft part opacous ; and that opaconfnef, as I faid before, proceeding from the particles, being very much flaw'd, unlefs we were able to joyn and re-wnite thofe flaw'd particles again into one piece, we fhall not be able to deepen the colour, which fince we are unable to do with moft of the colours which are by Painters accounted opacous, we are therefore unable to deepen them by adding more of the fame kind.
But becaufe all thofe opacous colours have two kinds of beams or Rays reflected from them,that is,Rays unting' d, which are onely reflected from the outward furface, without at all penetrating of the body, and ting'd Rays which are reflected from the inward furfaces or flaws after they have fuffer'd a two-fold refraction; and becaufe that tranfparent liquors mixt with fuch corpuycles, do,for the moft part, take off the former kind of reflection; therefore thefe colours mixt with Water or Oyl, appear much deeper than when dry, for moft part of that white reflecion from the outward furface is remov'd. Nay, fome of thefe colours are very much deepned by the mixture with fome tranfparent liquor, and that becaufe they may perhaps get between thofe two llaws, and fo confequently joyn two or more of thofe flaw'd pieces together; but this happens but in a very few.

Now, to fhew that all this is not gratis didunm, I fhall fet down fome Experiments which do manifeft thefe things to be probable and likely, which I have here deliver'd.
For, firft, if you take any ting'd liquor whattoever, efpecially if it be pretty deeply ting'd, and by any means work it into a froth,the congeries of that froth fhall feem an opacous body, and appear of the fame colour, but much whiter than that of the liquor out of which it is made. For the abundance of reflections of the Rays againft thofe furfaces of the bubbles of which the froth confifts, does fo often rebound the Rays backwards, that little or no light can pafs through, and confequently the froth appears opacous.
Again, if to any of thefe ting'd liquors that will endure the boiling there be added a fmall quantity of fine flower (the parts of which throughi the Microfope are plainly enough to be perceiv'd to confift of tranfparent corpuf(les) and fufferd to boyl till it thicken the liquor, the mals of the liquor will appear opacous, and ting'd with the fame colour, but very much whiten'd.

Thus

Micrographia.

Thus, if you take a piece of tranfparent Glafs that is well colour'd, and by heating it, and then quenching it in Water, you flaw it all over, it will become opacous, and will exhibit the fame colour with which the piece is ting'd, but fainter and whiter.

Or, if you take a Pipe of this tranfparent Glafs, and in the flame of a Lamp melt it, and then blow it into very thin bubbles, then break thofe bubbles, and collect a good parcel of thofe lamine together in a Paper, you fhall find that a fmall thicknefs of thofe Plates will conftitute an opacous body, and that you may fee through the mafs of Glafs before it be thus laminated, above four times the thicknefs: And befides, they will now afford a colour by reflection as other opacous (as they are call'd) colours will, but much fainter and whiter than that of the Lump or Pipe out of which they were made.

Thus alfo, if you take Putty, and melt it with any tranfparent colour'd Glafs, it will make it become an opacous colour'd lump, and to yield a paler and whiter colour than the lump by reflection.

The fame thing may be done by a preparation of Antimony, as has been fhewn by the Learned Phyfician, Dr. C. M. in his Excellent Obfervations and Notes on Nery's Art of Glafs; and by this means all tranfparent colours become opacous, or ammels. And though by being ground they lofe very much of their colour, growing much whiter by reafon of the multitude of fingle reflections from their outward furface, as I fhew'd afore, yet the fire that in the nealing or melting re-unites them, and fo renews thofe 今purious reflections, removes alfo thofe whitenings of the colour that proceed from them.

As for the other colours which Painters ufe, which are tranfparent, and us'd to varnifh over all other paintintings, tis well enough knownthat the laying on of them thinner or thicker, does very much dilute or deepen their colour.
Painters Colours therefore confifing moft of them of folid particles, fo fmall that they cannot be either re-united into thicker particles by any Art yet known, and confequently cannot be deepned; or divided into particles fo fmall as the flaw'd particles that exhibit that colour, much lefs into fmaller, and confequently cannot be diluted; It is neceffary that they which are to imitate all kinds of colours, fhould have as many degrees of each colour as can be procur'd.

And to this purpofe, both Limners and Painters have a very great variety both of Yellows and Blues, befides feveral other colourd bodies that exhibit very compounded colours, fuch as Greens and Purples; and others that are compounded of feveral degrees of Yellow, or feveral degrees of Blue, fometimes unmixt, and fometimes compounded with feveral other colour'd bodies.

The Yellows,' from the paleft to the deepeft Red or Scarlet, which has no intermixture of Blue, are pale and deep Mafticut, Orpament, Englifh oker, brown oker, Red Lead, and Vermilion, burnt Englifh oker, and burnt brown oker, which laft have a mixture of dark or dirty parts with them, ©f.c.

Their

Micrographia.

Their Blues are feveral kinds of smalts, and Verditures, and Bije, and Eltramarine, and Indico, which laft has many dirty or dark parts intermixt with it.

Their compounded colour'd bodies, as Fink, and Verdigrefe, which are Greens, the one a Popingay, the other a Sea-green; then Lac, which is 2 very lovely Purple.

To which may be added their Black and White, which they alfo ufually call Colours, of each of which they have feveral kinds, fuch as Bone Black, made of Ivory burnt in a clofe Veffel, and Blue Black, made of the fmall coal of Willow, or fome other Wood; and Cullens earth, which is a kind of brown Black, occ. Their ufual Whites are either artificial or natural White Lead, the laft of which is the beft they yet have, and with the mixing and tempering thefe colours together, are they able to make an imitation of any colour whatfoever: Their Reds or deep Yellows, they can dilute by mixing pale Yellows with them, and deepen their pale by mixing deeper with them; for it is not with opacous colours as it is with tranfparent, where by adding more Yellow to yellow, it is deepned, but in opacous diluted. They can whiten any colour by mixing White with it, and darken any colour by mixing Black, or fome dark and dirty colour. And in a word, moft of the colours, or colour'd bodies they ufe in Limning and Painting, are fuch, as though mixt with any other of their colours, they preferve their own hue, and by being in fuch very fmal parts difpers'd through the other colour'd bodies, they both, or altogether reprefent to the eye a conipofitum of all; the eye being unable, by reafon of their fmalnefs, to diftinguifh the peculiarly colour'd particles, but receives them as one intire compofitum: whereas in many of thefe, the Microfcope very eafily diftinguifhes each of the compounding colours diftinct, and exhibiting its own colour.

Thus have I by gently mixing Vermilion and Bije dry, produc'd a very fine Purple, or mixt colour, but looking on it with the Microf cope, I could eafily diftinguifh both the Red and the Blue particles, which did not at all produce the Phantafm of Purple.

To fumm up all therefore in a word, I have not yet found any folid colourd body, that thave yet examin'd, perfectly opacous; but thofe that are leaft tranfparent are Metalline and Mineral bodies, whofe particles generally, feeming either to be very fmall, or very much flaw'd, appear for the moft part opacous, though there are very few of them that I have look'd on with a Microfcope, that have not very plainly or circumftantially manifefted themfelves tranfparent.
And indeed, there feem to be fo few bodies in the world that are in minimis opacous, that I think one may make it a rational Qnery, Whether there be any body abfolutely thus opacous? For Idoubt notatall (and I have taken notice of very many circumftances that make me of this mind) that could we very much improve the Microfiope, we might be able to fee all thofe bodies very plainly tranfparent, which we now are fain onely to ghefs at by circumftances. Nay, the Object Glaffes we yet make ufe of are fuch, that they make many tranfarent bodies to the

Micrographia.

eye, feem opacous through them, which if we widen the Aperture a little, and caft more light on the objects, and not charge the Glaffes fo deep, will again difclofe their tranfparency.

Now, as for all kinds of colours that are diffolvable in Water, or other liquors, there is nothing fo manifeft, as that all thofe ting'd liquors are tranfparent ; and many of them are capable of being diluted and compounded or mixt with other colours, and divers of them are capable of being very much chang'd and heightned, and fixt with feveral kinds of Saline menffruums. Others of them upon compounding, deftroy or vitiate each others colours, and precipitate, or otherwife very much alter each otherstincture. In the true ordering and diluting, and deepning, and mixing, and fixing of each of which, confifts one of the greateft myfteries of the Dyers; of which particulars, becaufe our Microfcope affords us very little information, 1 fhall add nothing more at prefent; but onely that with a very few rinctures order'd and mixt after certain ways, too long to be here fet down, I have been able to make an appearance of all the various colours imaginable, without at all ufing the help of Salts, or saline menftruums to vary them.

As for the mutation of Colours by saline menfrumms, they have already been fo fully and excellently handled by the lately mention'd Incomparable Authour, that I can add nothing, but that of a multitude of trials that I made, I have found them exactly to agree with his Rules and Theories; and though there may be infinite inftances, yet may they be reduc'd under a few Heads, and compris'd within a very few Rules. And generally I find, that Saline menftruums are moft operative upon thofe colours that are Purple, or have fome degree of Purple in them, and upon the other colours much lefs. The fpurious pulfes that compofe which, being (as I formerly noted) fo very neer the middle between the true ones, that a fmall variation throws them both to one fide, or both to the other, and fo confequently muft make a vaft mutation in the formerly appearing Colour.

Obferv. XI. Of Figures obferv'd in finall Sand.

SAnd generally feems to be nothing elfe but exceeding fmall Pebbles, or at leaft fome very fmall parcels of a bigger ftone; the whiter kind feems through the Microfoope to confift of fmall tranfparent pieces of fome pellucid body, each of them looking much like a piece of Alum, or salt Gem; and this kind of Sand is angled for the moft part irregularly, without any certain fhape, and the granules of it are for the moft part flaw'd,though amongft many of them it is not difficult to find fome that are perfectly pellucid, like a piece of clear Cryftal, and divers likewife moft curioully thap'd, much after the manner of the bigger Stiric of Cryftal, or like the fmall Diamants I obfervid in certain Flints, of which Ifhall by and by relate; which laft particular feems to argue, that this kind of Sand is not made

Micrographia.

made by the comminution of greater tranfparent Cryftaline bodies, but by the concretion or coagulation of Water, or fome other fluid body.

There are other kinds of courfer Sands, which are browner, and have their particles much bigger; thefe, view'd with a Microf cope, feem much courfer and more opacous fubftances, and moft of them are of fome irregularly rounded Figures; and though they feem not fo opacous as to the naked eye, yet they feem very foul and cloudy, but neither do thefe want curioufly tranfparent, no more than they do regularly figurd and well colourd particles, as I have often found.

There are multitudes of other kinds of Sands, which in many particulars, plainly enough difcoverable by the Microfcope, differ both from thefe laft mention'd kinds of Sands, and from one another: there feeming to be as great variety of Sands, as there is of Stones. And as amongt Stones fome. are call'd precious from their excellency, fo alfo are there Sands which deferve the fame Epithite for their beauty; for viewing a fmall parcel of Eaft-India Sand (which was given me by my highly honoured friend, Mr. Daniel Colwall) and, fince that, another parcel, much of the fame kind, I found feveral of them, both very tranfparent like preciousStones, and regularly figur'd like Cryftal, Cornijh Diamants, fome Rubies, orc. and alfo ting'd with very lively and deep colours, like Rubys, Saphyrs, Emeralds, \&c. Thefe kinds of granuls I have often found alfo in Englifh Sand. And 'tis eafie to make fuch a counterfeit Sand with deeply ting'd Glafs, Enamels and Painters colours.

It were endlefs to defrribe the multitudes of Figures Ihave met with in thefe kind of minute bodies, fuch as spherical,Oval, Pyramidal, Conical, Prifinatical, of each of which kinds I have taken notice.

But amongft many others, I met with none more obfervable than this pretty Shell (defcribed in the Figure X. of the fifth Scheme) which, though as it was light on by chance, deferv'd to have been omitted (I being unable to direct any one to find the like) yet for its rarity was it not inconfiderable, efpecially upon the account of the information it may afford us. For by it we have a very good inftance of the curiofity of $\mathrm{Na}-$ ture in another kind of Animals which are remov'd, by reafon of their minutenefs, beyond the reach of our eyes; fo that as there are feveral forts of Infects, as Mites, and others, fo fmall asnot yet to have had any names; (fome of which I fhall afterwards defcribe) and fmall Fifhes, as Leeches in Vineger; and fmal vegetables, as Mofs, and Rofe-Leave-plants; and fmall Mufhroms, as mould: fo are there, it feems, fmall Shel-fifh likewife, Nature fhewing her curiofity in every Tribe of Animals, Vegetables, and Minerals.

I was trying feveral fmall and fingle Magnifying Glaffes, and cafually viewing a parcel of white Sand, when I perceiv'd one of the grains exactly fhap'd and wreath'd like a Shell, but endeavouring to diftinguifh it with my naked eye, it was fo very fmall, that I was fain again to make ufe of the Glafs to find it; then, whileft I thus look'd on it, with a Pin I feparated all the reft of the granules of Sand, and found it afterwards to appear to the naked eye an exceeding fmall white fot, no bigger than the point of a

Micrographimal

Pin. Afterwards I view'd it every way with a better Marcrofropereand found it on both fides, and edge-ways, to refemble the Shell of a fmalit Wateefs Snail with a flat fpiral Shell: it had twelve wreathings, $a_{0} b_{5}$ ci d_{3} e, \&ac. all very proportionably growing one lefs than another toward the middle or center of the Shell, where there was a very fmall round white fpot. I could not certainly difcover whether the Shell were hollow or not, but it feem'd fill'd with fomewhat, and tis probable that it might be petrify'd as other larger Shels often are, fuchas are mention'd in the feventeenth obfervation.

Obferv. XII. Of Gravel in Vrine.

IHave often obferv'd the Sand or Gravel of Urine, which feems to be a tartareous fubftance, generated out of a saline and a terreftrial fubftance cryfalliz'd together, in the form of Tartar, fometimes iticking to the fides of the Z'rinal, but for the moft part finking to the bottom, and there lying in the form of coorfe common Sand; thefe, through the $M i$ crofcope, appear to be a company of fmall bodies, partly tranfparent, and partly opacous, fome White, fome Yellow, fome Red, others of more brown and dufkie colours.

The Figure of them is for the moft part flat, in the manner of Slats, or fuch like plated Stones, that is, each of them feem to be made up of feveral other thinner Plates, much like Mrficovic Glafs, or Englifh sparr, to the laft of which, the white plated Gravel feems moft likely; for they feem not onely plated like that, but their fides flap'd alfo into Rhombs, Rhomboeids, and fometimes into Recfangles and fquares. Their bignefs and Figure may be feen in the fecond Figure of the fixth Plate, which reprefents about a dozen of them lying upon a plate ABCD, fonse of which, as $a_{2} b, c, d_{\text {, }}$ feem'd more regular than the reft, and e, which was a fmall one, fticking on the top of another, was a perfect Rhomboeid on the top, and had four Rellangular fides.

The line \mathbf{E} which was the meafure of the Microfoope, is $\frac{1}{3}$ part of an Englifh Inch, fo that the greateft bredth of any of thern, exeeeded not ${ }^{2} \frac{2}{2}$ P part of an Inch.

Putting thefe into feveral liquors, I found oyl of Vitriol, spirit of Vrine, and feveral other saline menfrums to difolve them; and the firft of thefe in lefs than a minute without Ebullition, Water, and feveral other liquors, had no fudden operation upon them. This I mention, becaufe thofe liquors that diffolve them, firft make them very white, not vitiating, but rather rectifying their Figure, and thereby make thern afford a very pretty object for the Microf cope.

How great an advantage it would be to fuch as are troubled with the Stone, to find fome menfruum that might diffolve them without hurting the Bladder, is eafily imagin'd, fince fome injections made of fuch bodies might likewife diffolve the ftone, which feems much of the fame nature.

Micrographia.

It may therefores perhaps, be worthy fome Phyficians enquiry, whether there may not belfomething mixt with the Urine in which the Gravel orStone lies, which may again make it diffolve it, the firt of which feems by it's regular Figures to have been fometimes Cryftalliz'd out of it. For whether this Cryftallization be made in the manner as Alum, Peter,\&c. are cryffallized out of a cooling liquor, in which, by boyling they have been diilolv'd; or whether it be made in the manner of Tartarum Vitriolatum, that is, by the Coalition of an acid and a sulphureous fubftance, it feems not impoffible, but that the liquor it lies in, may be again made a diffolvent of it. But leaving thefe inquiries to Phyficians or Chymifts, to whom it doesmore properly belong, I fhall proceed.

Obferv. X I II. Of the fmall Diamants, or Sparks in Flints.

CHancing to break a Flint ftone in pieces, I found within it a certain cavity all crufted over with a very pretty candied fubftance, fome of the parts of which, upon changing the pofture of the Stone, in refpeck of the Incident light, exhibited a number of fmall, but very vivid reflections; and having made ufe of my Microfoope, I could perceive the whole furface of that cavity to be all befet with a multitude of little Cryftaline or Adamantine bodies, fo curioufly thap'd, that it afforded a not unpleafing object.

Having confidered thofe vivid repercuffions of light, I found them to be made partly from the plain external furface of thefe regularly figured bodies (which afforded the vivid reflections) and partly to be made from within the fomewhat pellucid body, that is, from fome furface of the body, oppofite to that fuperficies of it which was next the eye.

And becaufe thefe bodies were fo fmall, that I could not well come to make Experiments and Examinations of them, I provided me feveral fmall firize of Cryftals or Diamants, found in great quantities in Cornmall, and are therefore commonly called Cornib Diamants: thefe being very pellucid, and growing in a hollow cavity of a Rock (as I have been feveral times informed by thofe that have obferv d them) much after the fame manner as thefe do in the Flint; and having befides their outward. furface very regularly fhap'd, retaining very near the fame Figures with fome of thofe I obferv'd in the other, became a convenient help to me for the Examination of the proprieties of thofe kinds of bodies.

And firft for the Reflections; in thefe I found it very obfervable, That the brighteft reflections of light proceeded from within the pellucid body; that is, that the Rays admitted through the pellucid fubftance in their getting out on the oppofite fide, were by the contiguous and ftrong reflecting furface of the Air very vividly reflected, fo that more Rays were reflected to the eye by this furface, though the Ray in entring and getting out of the Cryftal had fuffer'd a double refraction, than there were from the outward furface of the Glafs where the Ray had fuffer'd no reflraction at all.

Micrographia.

And that this was the furface of the Air that gave fo vivid a re-percuffion I try'd by this means. I funk half of a firia in Water, fo that only Water was contiguous to the under furface, and then the internal reflection was fo exceedingly faint, that it was fcarce difcernable. Again, I try'd to alter this vivid reflection by keeping off the Air, with a body not fluid, and that was by rubbing and holding my finger very hard againft the under furface, fo as in many places the pulp of my finger did touch the Glafs, without any interjacent air between; thenobferving the reflection, I found,that wherefoever my finger or fkin toucht the furface, from that part there was no reflection, but in the little furrows or creafes of my fkin , where there remain'd little fmall lines of air,from them was return'd a very vivid reflection as before. I try'd further, by making the furface of very pure Quickfilver to be contiguous to the under furface of this pellucid body, and then the reflection from that was fo exceedingly more vivid that from the air, as the reflection from air was than the reflection from the Water; from all which trials I plainly faw, that the ftrong reflecting air was the caufe of this Phenomenon.

And this agrees very well with the Hypotbefis of light and Pellucid bodies which I have mention'd in the defcription of Muycovy-glaß; for we there fuppofe Glafs to be a medium, which does lefs reffif the pulfe of light, and confequently, that moft of the Rays incident on it enter into it, and are refracted towards the perpendicular; whereas the air I fuppofe to be a body that does more refift it, and confequently more are re-perciff'd then do enter it: the fame kind of trials have I made, with Cryftalline Glaß, with drops of fluid bodies, and feveral other ways, which do all feem to agree very exactly with this Theory. So that from this Principle well eftablifh'd, we may deduce feverall Corollaries not unworthy obfervation.

And the firft is, that it plainly appears by this, that the production of the Rainbow is as much to be afcribed to the reflection of the concave furface of the air, as to the refraction of the Globular drops : this will be evidently manifeft by thefe Experiments, if you foliate that part of a Glafs-ball that is to reflect an Iris, as in the Cartefian Experiment, above mention'd, the reflections will be abundantly more ftrong, and the cos lours more vivid: and if that part of the furface be touch'd with Watet, fcarce affords any fenfible colour at all.

Next we learn, that the great reafon why pellucid bodies beaten fmall are white, is from the multitude of reflections, not from the particles of the body, but from the contiguous furface of the air. And this is evidently manifefted, by filling the Interfitia of thofe powder'd bodies with Water, whereby their whitenefs prefently difappears. From the fame reafon proceeds the whitenefs of many kinds of Sands, which in the Microfoope appear to be made up of a multitude of little pellucid bodies, whofe brighteft reflections may by the Microfoope be plainly perceiv'd to come from their internal furfaces; and much of the whitenefs of it may be deftroy'd by the affulion of fair Water to be contiguous to thofe furfaces.

The whitenefs alfo of froth, is for the moft part to be afcribed to the N_{2}
reflection

Micrographia.

reflection of the light from the furface of the air within the Bubbles, and very little to the reflection from the furface of the Water it felf: for this laft reflection does not return a quarter fo many Rays, as that which is made from the furface of the air, as I have certainly found by a multitude of Obfervations and Experiments.
The whitenefs of Linnen, Paper, silk, \&c. proceeds much from the fame reafon, as the Microfcope will eafily difcover; for the Paper is made up of an abundance of pellucid bodies, which afford a very plentifull reHection from within, that is, from the concave furface of the air contiguous to its component particles; wherefore by the affufion of Water, Oyl , Tallow, Turpentine, σc. all thofe reflections are made more faint, and the beams of light are fuffer'd to traject \& run through the Paper more freely.

Hence further we may learn the reafon of the whitenefs of many bodies, and by what means they may be in part made pellucid: As white Marble for inftance, for this body is compofed of a pellucid body exceedingly flaw'd, that is, there are abundance of thin, and very fine cracks or chinks amongft the multitude of particles of the body, that contain in them fmall parcels of air, which do fo re-percuß and drive back the penetrating beams, that they cannot enter very deep within that body, which the Microf cope does plainly inform us to be made up of a Congeries of pellucid particles. And I further found it fomewhat more evidently by fome attempts I made towards the making tranfparent Marble, for by heating the Stone a little, and foaking it in Oyl, Turpentine, Oyl of Turpentine, $e^{\circ} c$, I found that I was able to fee much deeper into the body of Marble then before; and one trial, which was not with an unctuous fubftance, fucceeded better than the reft, of which, when I have a better opportunity, I fhall make further trial.

This alfo gives us a probable reafon of the fo much admired Phanomena of the Oculus Mundi, an Oval ftone, which commonly looks like white Alabafter, but being laid a certain time in Water, it grows pellucid, and tranfparent, and being fuffer'd to lie again dry, it by degrees lofes that tranfparency, and becomes white as before. For the Stone being of a hollow fpongie nature, has in the firft and laft of thele appearances, all thofe pores fill'd with the obtunding and reflecting air; whereas in the fecond, all thofe pores are fill'd with a mediun that has much the fame refraction with the particles of the Stone, and therefore thofe two being contiguous, make, as twere, one continued medium, of which more is faid in the $15.0 b$ ervation.

There are a multitude of other Phonomena, that are produc'd from this fame Principle, Jwhich as it has not been taken notice of by any yet that I know, foI think, upon more diligent obfervation, will it not be found the leaft confiderable. But I have here onely time,to hint Hypothefes, and not to profecute them fo fully as I could wifh; many of them having a vaft extent in the production of a multitude of Phanomena, which have been by others, either not attempted to be explain'd, or elfe attributed to fome other caufe than what I have affign'd, and perhaps than the right; and therefore Ifhall leave this to the profecution of fuch as have more leifure:

Miciographiad

 onely before I leave it, I muft not pretermit to hint, that by this Principle, multitades of the Pbonomena of the air, as about Mijts, Clouds; Meteors, Haloes, \&c. are moft plainly and (perhaps) truly explicable; multitudes alfo of the Phonomena in colourd bodies, as liquors, orc are deducible from it.And from this I fhall proceed to a fecond confiderable Phonomenon which thefe Diamants exhibit, and that is the regularity of their Figure, which is a propriety not lefs general than the former; It comprifing within its extent, all kinds of Metals, all kinds of Minerals, moft Precious fones, all kinds of salts, multitudes of Earths, and almoft all kinds of fluid bodies. And this is another propiety, which, though a little fuperficially taken notice of by fome, has not, that I know, been fo much as attempted to be explicated by any.

This propriety of bodies, as I think it the moft worthy, and next in order to be confider'd after the contemplation of the Globular Figure, fo have I long had a defire as wel as a determination to have profecuted it if I had had an opportunity, having long fince propos'd to my felf the method of my enquiry thercin, it containing all the allurements that I think any enquiry is capable of: For, firft I take it to proceed from the moft fimple principle that any kind of form can come from, next the Globular, which was therefore the firft I fet upon, and what I have therein perform'd, I leave the Judicious Reader to determine. For as that form proceeded from a propiety of fluid bodies, which I have call'd Congruity, or Incongruity; fo I think, had I time and opportunity, I could make probable, that all thefe regular Figures that are fo confpicuoufly various and curious, and do fo adorn and beautifie fuch multitudes of bodies, as I have above hinted, avife onely from three or four feveral pofitions or poftures of Globular particles, and thofe the moft plain, obvious, and neceffary conjunctions of fuch figur'd particles that are poffible, fo that fuppofing fuch and fuch plainand obvious caufes concurring the coagulating particles muft neceffarily compofe a body of fuch a determinate regular Figure, and no other; and this with as much neceffity and obvioufnefs as a fluid body encompaft with a Heterogeneous fluid muft be protruded into a spherule or Globe. And this I have ad oculum demonftated with a company of bullets,and fome few other very fimple bodies; fo that there was not any regular Figure, which I have hitherto met withall, of any of thofe bodies that I have above named, that I could not with the compofition of bullets or globules, and one or two other bodies, imitate, even almoft by fhaking them together. And thus for inftance may we find that the Globular bullets will of themfelves, if put on an inclining plain,fo that they mayrun together, naturally run into a triangular order, compofing all the variety of figures that can be imagin'd to be made out of equilateral triangles; and fuch will you find, upontrial, all the furfaces of Alum to be compos'd of: For three bullets lying on a plain, as clofe to one another as they can compofe an requilatero-triangular form, as in A in the 7 .Scheme. If a fourth be joyn'd to them on either fide as clofely as it can, they four compofe the moft regular Rhombus confifting of two aquilateral triangles,
clain:

Micrographia.

as B. If a fifth be joyn'd to them on either fide in as clofe a pofition as it can, which is the propriety of the Texture, it makes a Trapezium, or fourfided Figure, two of whofe angles are 120 and two 60 . degrees, as C . If a fixth be added, as before, either it makes an equilateral triangle, as D , or a Rhomboeid, as E, or an Hex-angular Figure, as F, which is compos'd of two primary Rhombes. If a feventh be added, it makes either ant equilatero-bexagonal Figure, as G, or fome kind of fix-fided Fi* gare, as H , or I. And though there be never fo many placed together, they may be rang' dinto fome of thefe lately mentioned Figures, all the angles of which will be either 60 . degrees, or 120 . as the figure K. which is an equiangular bexagonal Figure is compounded of 12. Globules, of may be of 25 , or 27, or 36 , or 42, ofc. and by thefe kinds of texture, or pofition of globular bodies, may you find out all the variety of regular fhapes, into which the fmooth furfaces of Alum are form'd, as upon examination any one may eafily find; nor does it hold only in fuperficies, but in folidity alfo,for it's obvious that a fourth Globule laid upon the third in this texture, compofes a regular Tetrabedron, which is a very ufual Figure of the Cryfals of Alum. And (to haften) there is no one Figure into which Alum is obferv'd to be cryftallized, but may by this texture of Globules be imitated, and by no other.
1 could inftance alfo in the Figure of sea-falt, and Sal-gem, that it iscomposid of a texture of Globules, placed in a cubical form, as L, and that all the Figures ofthofe Salts may be imitated by this texture of Globules, and by no other whatfoever. And that the forms of Vitriol and of Salt-Peter, as alfo of Cryf fall,Hore-frosf, \&c. are compounded of thefe two textures, but modulated by certain proprieties: But I have not here time to infift upon, as I have not neither to thew by what means Globules come to be thus context, and what thofe Globules are, and many other particulars requifite to a full and intelligible explication of this propriety of bodies. Nor have I hitherto found indeed an opportunity of profecuting the inquiry fo farr as I defign'd ; nor do I know when I may, it requiring abundance of time, and a great deal of affiftance to go through with what I defign'd; the model of which was this :

Firft, to get as exact and full a collection as I could, of all the differing kinds of Geometrical figur'd bodies, fome three or four feveral budies of each kind.

Secondly, with them to get as exact a Hiftory as poflibly I could learh of their places of Generation or finding, and to enquire after as many circumftances that tended to the Illuftrating of this Enquiry, as poflibly I could obferve.

Thirdly, to make as many trials as upon experience I could find requifite, in Diffolutions and Coagulations of feveral cryftallizing Salts ; for the needfull inftruction and information in this Enquiry.

Fourthly, to make feveral trials on divers other bodies, at Metals, Minerals, and Stones, by diffolving them in feveral Menfiruums, and eryftalizing them, to fee what Figures would anife from thofe feveral Compofitums.

Micrographia.

Fitfthly, to make Compofitions and Coagulations of feveral Salts together into the fame mafs, to obferve of what Figure the product of them would be; and in all, to note as many circumftances as I fhould judge conducive to my Enquiry.

Sixthly, to enquire the clofenefs or rarity of the texture of thefe bodies, by examining their gravity, and their refraction, σc.

Seventhly, to enquire particularly what operations the fire has upon feveral kinds of Salts, what changes it caufes in their Figures, Textures, or Energies.
Eighthly, to examine their manner of diffolution, or acting uponthofe bodies difloluble in them; The texture of thofe bodies before and after the procefs. And this for the Hiftory.
Next for the Solution, To have examin'd by what, and how many means, fuch and fuch Figures, actions and effects could be producd poffibly.

And laftly, from all circumfances well weigh'd, I fhould have endeavoured to have fhewn which of them was moft likely, and (if the informations by thefe Enquiries would have born it) to have demonftrated which of them it muft be, and was.

But to proceed, As Ibelieve it next to the Globular the moft fimple; fo do I, in the fecond place, judge it not lefs pleafant; for that which makes an Enquiry pleafant, are, firft a noble Inventum that promifes to crown the fuccefffull endeavour; and fuch muft certainly the knowledge of the efficient and concurrent caufes of all thefe curious Geometrical Figures be,which has made the Philofophers hitherto to conclude nature in thefe things to play the Geometrician, according to that faying of
 ry; and here we meet with nothing lefs than the Mathematicks of nature, having every day a new Figure to contemplate, or a variation of the fame in a nother body,
Which do afford us a third thing, which will yet more fweeten the Enquiry, and that is, a multitude of information; we are not fo much to grope in the dark, as in moft other Enquiries, where the Inventum is great; for having fuch a multitude of inftances to compare, and fuch eafie ways of generating, or compounding and of deftroying the form, as in the Solution and Cryfallization of Salts, we cannot but learn plentifull information to proceed by. And this will further appear from the univerfality of the Principle which Nature has made ufe of almoft in all inanimate bodies. And therefore, as the contemplation of them all conduces to the knowledg of any one; fo from a Scientifical knowledge of any one does follow the fame of all, and every one.

And fourthly, for the ufefulnefs of this knowledge, when acquir'd, certainly none can doubt, that confiders that it caries us a ftep forward into the Labirinth of Nature, in the right way towards the end we propofe our felves in all Philofophical Enquiries. So that know ${ }^{-}$ ing what is the form of Inanimate or Mineral bodies, we fhall be the better able to proceed in our next Enquiry after the forms of Vegeta + tive

Micrographia.

tive bodies; and laft of all, of Animate ones, that feeming to be the higheft ftep of natural knowledge that the mind of man is capable of.

Oblerv. XIV. Of feveral kindes of frozen Figures.

1Have very often in a Morning, when there has been a great boar-frof, with an indifferently magnifying Microfoope, obferv'd the fmall stirie, or Cryftalline beard, which then ufually covers the face of moft bodies that lie open to the cold air, and found them to be generally Hexangular prifmatical bodies, much like the long Cryftals of salt-peter, fave onely that the ends of them were differing: for whereas thofe of Nitre are for the moft part pyramidal, being terminated either in a point or edge; thefe of Froft were hollow, and the cavity in fome feem'd pretty deep, and this cavity was the more plainly to be feen, becaufe ufually one or other of the fix parallelograms fides was wanting, or at leaft much fhorter then the reft.

But this was onely the Figure of the Bearded boar-froft; and as for the particles of other kinds of hoar-frofts, they feem'd for the moft partirregular, or of no certain!Figure. Nay, the parts of thofe curious branchings, or vortices, that ufually in cold weather tarnifh the furface of Glafs, appear through the Microfiope very rude and unfhapen, as do moft other kinds of frozen Figures, which to the naked eye feem exceeding neat and curious, fuch as the Figures of snow, frozen Vrine, Hail, feveral Figures frozen in common Water, $\epsilon^{\circ} c$. Some Obfervations of each of which I fhall hereunto annex, becaufe if well confider'd and examind, they may, perhaps, prove very inftructive for the finding out of what I have endeavoured in the preceding Obfervation to fhew, to be (next the Globular Figure which is caus'd by congruity, as I hope I have made probable in the fixth Obfervation) the moft fimple and plain operation of Nature, of which, notwithftanding we are yet ignorant.

I.

Several Obfervables in the fix-branched Figures form'don the furface of Urine by freezing.
Sthem. 8. I The Figures were all frozen almoft even with the furface of the
Fig. x. Wrine in the Vefiel, but the bigger ftems were a little prominent above that furface, and the parts of thofe ftems which were neareft the center (a) were biggeft above the furface.

2 Thave obferv'd feveral kinds of thefe Figures, fome fmaller, no bigger then a Two-pence, others fo bigg, that I have by meafure found one of its ftems or branches above four foot long; and of thefe, fome were pretty round, having all their branches pretty neer alike; other of them were more extended towards one fide, as ufually thofe very large ones were

 P:88. Fig 4

Fig:5

Fio:i

Migrographia.

were, which I have obferv'd in Ditches which have been full of foul water.
3 None of all thefe. Figures I have yet taken notice of, had ahy regular pofition in refpect of one another, or of the fides of the Veffels non did I find any of them equally to exactnefs extended every way from the center a.

4 Where ever there was a center, the branchings from it, $a b_{5} a c, a d_{5}$, $a e, a f$, $a g$, were never fewer, or more then fix, which ufally concurr'd, or met one another very neer in the fame point or center, $a ;$; though oftentimes not exactly ; and were enclin'd to each other by an angle, of very neer fixty degrees, I fay, very neer, becaufe, though having endeavoured to meafure them the moft acurately I was able, with the largeft Compaffes I had, I could not find any fenfible variation from that meafure, yet the whole fix-branched Figure feeming to compofe a folid angle, they muft neceflarily be fomewhat lefs.

5 The middle lines or ftems of thefe branches, $a b, a c, a d, a e, a f, a g$, feem'd fomewhat whiter, and a little higher then any of the intermediate branchings of thefe Figures; and the center a_{5} was the moft prominent part of the whole Figure, feeming the apex of a folid angle or pyramid, each of the fix plains beinga little enclin'd below the furface of the 2 rin .

6 The lateral branchings iffuing out of the great ones, fuch as op, $m q, \& c$. were each of them inclin'd to the great ones, by the fame angle of about fixty degrees, as the great ones were oneto another, and always the bigger branchings were prominent above the lefs, and the lefs above the leaft, by proportionate gradations.

7 The lateral branches fhooting out of the great ones, weht all of them from the center, and each of them was parallel to that great branch, next to which it lay; fo that as all the branches on one fide were parallel to one another, fo were they all of them to the approximate great branch, as $p o, q r$, as they were parallel to each other, and fhot from the center, fo were they parallel alfo to the great branch $a b$.

8 Some of the ftems of the fix branches proceeded ftraight, and of a thicknefs that gradually grew fharper towards the end, as ag.
9 Others of the ftems of thofe branches grew bigger and knotty towards the middle, and the branches alfo as well as ftems, from Cylinders grew into Plates, in a moft admirable and curious order, fo exceeding regular and delicate, as nothing could be more, as is vifible in $a b, a c, a d$, a e, af, but towards the end of fome of thefe ftems, they began again to grow fmaller and to recover their former branchings, as about k and n.

10 Many of the lateral branches had collateral branches) (if I may fo call them) as $q m$ had many fuch as $\int t$, and moft of thofe again fubcollateral, as $v m$, and thefe again had others lefs, which one may call laterofubcollateral, and thefe again others, and they others, \&ve. in greater Figures.

II The branchings of the main Stems joyn'd not together by any regular line, ner did one fide of the one lie over the other fide of the other, but the fmall collateral and fubcollateral branches did lie at top of one
another according to a certain order or method, which I always obferv'd to be this.

12 That fide of a collateral or fubcollateral, \&c. branch, lay over the
fide of the approximate (as the feathers in the wing of a Bird) whofe branchings proceeded parallel to the laft biggert frem from which it fprung,and not to the biggeft ftem of all, unlefs that were a fecond ftem backwards.

13 This rule that held in the branchings of the Sexangular Figure held alfo in the branchings of any other great or fmall ftem, though it did not proceed from a center.
14. The exactnefs and curiofity of the figuration of there branches, was in every particular fo tranfeendent, that I judge it almoft impoffible for humane art to imitate.

15 Tafting feveral cleer pieces of this Ice, I could not find any Vrinous tafte in them, but thofe few I tafted, feem'd as infipid as water.

16 A figuration fomewhat like this, though indeed in fome particulars much more curious, I have feveral times obferv'd in regulus martis ftellatus, but with this difference, that all the ftems and branchings are bended in a moft excellent and regular order, whereas in Ice the ftems and branchings are ftreight, but in all other particulars it agrees with this, and feems indeed nothing but one of thele ftars, or branched Figures frozen on Vrine, diftorted, or wreathed a little, with a certain proportion: Leadalfo that has Areenick and fome other things mixt with it, I have found to have its furface, when fuffer'd to cool, figured fomewhat like the branchings of Urine, but much fmaller.

17 But there is a Vegetable which does exceedingly imitate thefe branches, and that is, Fearn, where the main ftem may be obferv'd to thoot out branches, and the ftems of each of thefe lateral branches, to fend forth collateral, and thofe fubcollateral, and thofe latero fubcollateral, \&c. and all thofe much after the fame order with the branchings, divifions, and fubdivifions in the branchings of thefe Figures in frozen Vrine; fo that if the Figures of both be well cpnfider'd, one would ghefs that there were not much greater need of a feminal principle for the production of Fearn, then for the production of the branches of Vrine, or the Stella martis, there feeming to be as much form and beauty in the one as in the other.

And indeed, this Plant of Fearn, if all particulars be well confider'd, will feem of as fimple, and uncompounded a form as any Vegetable, next to Mould or Mufforomes, and would next after the invention of the forms of thofe, deferve to be enquir'd into; for notwithftanding feveral have affirm'd it to have feed, and to be propagated thereby; yet, though I have made very diligent enquiry after that particular, I cannot find that there is any part of it that can be imagin'd to be more feminal then another: But this onely here by the by:

For the freezing Figuresin Vrine, I found it requifite,
Firft, that the Superficies be not difturbed with any wind, or other commotion of the air, or the like.

Micrographia.

Secondly, that it be net too long expofed, fo as that the whole bulk be frozen,for oftentimes, in fuch cafes, by reafon of the fwelling the of Ice, or from fome other caufe, the curious branched Figures difappear.

Thirdly, an artificial freezing with Snow and Salt, apply'd to the outfide of the containing Veffel, fucceeds not well, unlefs there be a very little quantity in the Vefiel.

Fourthly, If you take any cleer and fmooth Glafs, and wetting all the infide of it with Urine, you expofe it to a very fharp freezing, you will find it cover'd with a very regular and curious Figure.

II.

Obfervables in figur'd Snow.

Expofing a piece of black Cloth, or a black Hatt to the falling Snow, I have often with great pleafure, obferv'd fuch an infinite variety of curioufly figur'd Snow, that it would be as impoffible to draw the Figure and fhape of every one of them, as to imitate exactly the curious and Geometrical Mechanifme of Nature in any one. Some coorfe draughts, fuch as the coldnefs of the weather, and the ill provifions, I had by me for fuch a purpofe, would permit me to make, I have here added in the Second Figure of the Eighth Scheme.

In all which I obferv'd, that if they were of any regular Figures, they were always branched out with fix principal branches, all of equal length, fhape and make, from the centes, being each of them inclin'd to either of the next branches on either fide of it, by an angle of fixty degrees.

Now, as all thefe ftems were for the moft part in one flake exactly of the fame make, fo were they in differing Figures of very differing ones; fo that in a very little time I have obferv'd above an hundred feveral cizes and fhapes of thefe ftarry flakes.

The branches alfo out of each ftem of any one of thefe flakes, were exactly alike in the fame flake; fo that of whatever Figure one of the branches were, the other five were fure to be of the fame, very exactly, that is, if the branchings of the one were fmall Perallelipipeds or Plates, the branchings of the other five were of the fame; and generally, the branchings were very conformable to the rules and method obferv'd before, in the Figures on Vrine, that is, the branchings from each fide of the ftems were parallel to the next ftem on that fide, and if the ftems were plated, the branches alfo were the fame; if the ftems were very long, the branches alfo were fo, $\dot{\sigma}^{\circ} c$.

Obferving fome of thefe figur'd flakes with a Micrefoope, I found them not to appear fo curious and exactly figur'd as one would have imagin'd, but like Artificial Figures, the bigger they were magnify'd, the more irregularites appeard in them; but this irregularity feem'd afcribable to the thawing and breaking of the flake by the fall, and not at all to the defect of the plaftick virtue of Nature, whofe curiofity in the formation of moft of thefeskind of regular Figures, fuch as thofe of Salt, Minerals, $\& c_{0}$
O_{2} appears

Micrographta.

appears by the help of the Microfoope, to be very many degrees fmaller then the moft acute eye is able to perceive without it. And though one of thefe fix-branched Stars appear'd here below much of the flhape defcribed in the Third Figure of the Eighth Scheme; yet I am very apt to think, that could we have a fight of one of them through a Microfcope as they are generated in the Clouds before their Figures are vitiated by external accidents, they would exhibit abundance of curiofity and neatnefs there alfo, though never fo much magnify'd: For fince I have obferv'd the Figures of salts and Minerals to be fome of them fo exceeding fmall, that I have fcarcely been able to perceive them with the Microf cope, and yet have they been regular, and fince (as far as I have yet examin'd it) there feems to be but one and the fame caufe that produces both thefe effects, I think it not irrational to fuppofe that thefe pretty figur'd Stars of S now, when at firft generated might be alfo very regular and exact.

III.

Several kinds of Figures in Water frozen.

Putting fair Water into a large capacious Vefel of Glafs, and expofing it to the cold, I obferv'd after a little time, feveral broad, flat, and thin lamine, or plates of Ice, croffing the bulk of the water and one another very irregularly, onely moft of them feem'd to turn one of their edges towards that fide of the Glafs which was next it, and feem'd to grow, as twere from the infide of the Veffel inwards towards the middle, almoft like fo many blades of Fern. Having taken feveral of thefe plates out of water on the blade of a Knife, I obferv'd them figur'd much after the manner of Herring bones, or Fern blades, that is, there was one bigger ftem in the middle like the back-bone, and out of it, on either fide, were a multitude of fmall/tirie, or icicles, like the fmaller bones, or the fmaller branches in Fern, each of thefe branches on the one fide, were parallel to all the reft on the fame fide, and all of them feem'd to make an angle with the ftem,towards the top, of fixty degrees, and towards the bottom or root of this ftem, of 120 . See the fourth Figure of the 8. Plate.

I obferv'd likewife feveral very pretty varieties of Figures in Water, frozen on the top of a broad flat Marble-ftone, expos'd to the cold with a little Water on it, fome like feathers, fome of other fhapes, many of them were very much of the fhape expreft in the fifth Figure of the 8. Scheme, which is extremely differing from any of the other Figures.

I obferv'd likewile, that the fhootings of Ice on the top of Water, beginning to freez, were in ftreight prismatical bodies much like thofe of roch-peter, that they croft each other ufually without any kind of order or rule, that they were always a little higher then the furface of the Water that lay between them; that by degrees thofe interjacent fpaces would be fill'd with Ice allo, which ufually would be as high as the furface of the reft.

Inflakes of Ice that had been frozen on the top of Water to any confiderable

Micrographia.

fiderable thicknefs, I obferv'd that both the upper and the under fides of it were curioufly quilld, furrow'd, or grain'd, as it were, which when the Sun fhone on the Plate, was exceeding eafily to be perceiv'd to be much after the fhape of the lines in the 6. Figure of the 8.scheme, that is, they confifted of feveral ftreight ends of parallel Plates, which were of divers lengths and angles to one another without any certain order:

The caufe of all which regular Figures (and of hundreds of others; namely of Salts, Minerals, MMetals, \&c. which I could have here inferted; would it not have been too long) feems to be deducible from the fame Principles, which I have (in the 13.0 obervation) hinted only, having not yet had time to compleat a Theory of them. But indeed (which I there alfo hinted) I judge it the fecond ftep by which the Pyramid of natural knowledge (which is the knowledge of the form of bodies) is to be afcended: And whofoever will climb it, muft be well furnifh'd with that which the Noble Verulam calls Scalam Intellectus; he muft have fealing Ladders, otherwife the fteps are fo large and high, there will be no getting up them, and confequently little hopes of attaining any higher ftation, fuch as to the knowledge of the moft fimple principle of Vegetation manifefted in Mould and Mufhromes, which, as I elfewhere endeavoured to fhew, feems to be the third frep; for it feemsto mc , that the Intellect of man is like his body, deftitute of wings, and cannot move from a lower to a higher and more fublime ftation of knowledg, otherwife then ftep by ftep, nay even there where the way is prepar'd and already made paflible; as in the Elements of Geometry, or the like, where it is fain to climb a whole feries of Propofitions by degrees, before it attains the knowledge of one Probleme. But if the afcent be high, difficult and above its reach, it muft have recourfe to a novum organum, fome new engine and contrivance, fome new kind of Algebra, or Analytick Art before it can furmount it.

Obferv. XV. Of Kettering-ftone, and of the pores of Inanimate bodies.

THis Stone which is brought from Kettering in Northampton-figire, and Scbem. 9. digg'd out of a Quarry, as I am inform'd, has a grain altogether admirable, nor have I ever feen or heard of any other ftone that has the like. It is made up of an innumerable company of fmall bodies, not all of the fame cize or fhape, but for the moft part, not much differing from a Globular form, nor exceed they one another in Diameter above three or four times; they appear to the eye, like the Cobb or Ovary of a Herring, or fome fmaller fifhes, but for the moft part, the particles feem fomewhat lefs, and not fo uniform; but their variation from a perfect globular ball,feemsto be only by the preffure of the contiguous bals which have a little depreft and protruded thofe toucht fides inward, and fore'd the
the other fides as much outwards beyond the limits of a Globe; juft as it would happen, if a heap of exactly round Balls of foft Clay were heapd upon one another; or, as I have often feen a heap of fmall Globules of Quicksilver, reduc'd to that form by rubbing it much in a glaz'd Veffel, with fome flimy or fluggifh liquor, fuch as Spittle, when though the top of the upper Globules be very neer fpherical, yet thofe that are preft upon by others, exactly imitate the forms of thefe lately mention'd grains.

Where thefe grains touch each other, they are fo firmly united or fettled together, that they feldom part without breaking a hole in one or th'other of them, fuch as $a, a, a, b, c, c, \& x$. Some of which fractions, as a, a, a, a, where the touch has been but light, break no more then the outward cruft, or firf thell of the ftone, which is of a white colour, a little dafh'd with a brownifh Yellow, and is very thin, like the fhell of an Egg: and I have feen fome of thofe grains perfectly refemble fome kind of Eggs,both in colour and fhape: But where the union of the contiguous granules has been more firm, there the divulfion has made a greater Chafm, as at b, b, b, in fo much that I have obferv'd fome of them quite broken in two, as at c, c, c, which has difcovered to me a further refemblance they have to Eggs,they having an appearance of a white and yelk, by two differing fubftances that envelope and encompafs each other.

That which we may call the white was pretty whitifh neer the yelk, but more dufkie towards the fhell; fome of them I could plainly perceive to be fhot or radiated like a Pyrites or fire-fone; the yelk in fome I faw hollow, in others fill'd with a dufkie brown and porous fubftance like a kind of pith.

The fmall pores, or interfitia e e e e betwixt the Globules, I plainly faw, and found by other trials to be every way pervious to air and water, for I could blow through a piece of this ftone of a confiderable thicknefs, as eafily as I have blown through a Cane, which minded me of the pores which Des Cartes allow his materia fubtilis between the athereal globules.

The object, through the Microfcope, appears like a Congeries or heap of Pibbles, fuch as I have often feen caft up on the fhore, by the working of the Sea after a great ftorm, or like (in fhape, though not colour) a company of fmall Globules of Quickfilver, look'd on with a Microfoope, when reduc'd into that form by the way lately mentioned. And perhaps, this laft may give fome hint at the manner of the formation of the former : For fuppofing fome Lapidefcent fubftance to be generated, or fome way brought (either by fome commixture of bodies in the Sea it felf, or protruded in, perhaps, out of fome fubterraneous caverns) to the bottom of the Sea, and there remaining in the form of a liquor like Quickfilver, beterogeneous to the ambient Saline fluid, it may by the working and tumblings of the Sea to and fro be jumbled and comminuted into fuch Globules as may afterwards be hardned into Flints, the lying of which one upon another, when in the Sea, being not very hard, by reafon of the weight of the incompaffing fluid, may caufe the undermoft to be a little, though not much, varied from a globular Figure. But this only by the by.

After

Micrographia.

After what manner this Kettering-ftone fhould be generated I cannot learn, having never been there to view the place, and obferve the circumftances; but it feems to me from the ftructure of it to be generated from fome fubftance once more fluid, and afterwards by degrees growing harder, almoft after the fame manner as I fuppofed the generation of Flints to be made.

But whatever were the caufe of its curious texture, we may learn this information from it; that even in thofe things which we account vile, rude, and coorfe, Nature has not been wanting to fhew abundance of curiofity and excellent Mechanifme.

We may here find a Stone by help of a Microfope, to be made up of abundance of fmall Balls, which do but juft touch each other, and yet there being fo many contacts, they make a firm hard mafs, or a Stone much harder then Free-ftone.
Next, though we can by a Microf cope difcern fo curious a fhape in the particles, yet to the naked eye there fcarce appears any fuch thing; which may afford us a good argument to think, that even in thofe bodies alfo, whofe texture we are not able to difcern, though help'd with Microfopes, there may be yet latent fo curious a schematifine, that it may abundantly fatisfie the curious fearcher, who fhall be fo happy as to find fome way to difcover it.

Next, we here find a Stone, though to the naked eye a very clofe one, yet every way perforated with innumerable pores, which are nothing elfe but the interfitia, between thofe multitudes of minute globular particles, that compofe the bulk it felf; and thefe pores are not only difcover'd by the Microfoope, but by this contrivance.

I took a pretty large piece of this ftone, and covering it all over with cement, fave only at two oppofite parts, I found my felf able, by blowing in at one end that was left open, to blow my fittle, with which I had wet the other end, into abundance of bubbles, which argued thefe pores to be open and pervious through the whole ftone, which affords us a very pretty inftance of the poroufnefs of fome feemingly clofe bodies, of which kind I fhall anon have occafion to fubjoyn many more, tending to prove the fame thing.

I muft not here omit to take notice, that in this body there is not a vegetative faculty that fhould fo contrive this ftructure for any peculiar ufe of Vegetation or growth, whereas in the other inftances of vegetable porous bodies, there is an anima, or forma informans, that does contrive all the Structures and Mechanijmes of the conftituting body, to make them fubfervient and ufefull to the great Work or Function they are to perform. And fo I ghefs the pores in Wood, and other vegetables, in bones, and other Animal fubftances, to be as fo many channels, provided by the Great and Alwife Creator, for the conveyance of appropriated juyces to particular parts. And therefore, that this may tend, or be pervious all towards one part, and may have impediments, as valves or the like, to any other; but in this body we have very little reafon to fufpect there fhould be any fuch defign, for it is equally pervious every way, not onely for-
ward, but backwards, and fide-ways, and feems indeed much rather to be Homogeneous or fimilar to thofe pores, which we may with great probability believe to be the channels of pellucid bodies, not directed, or more open any one way, then any other, being equally pervious every way. And, according as thefe pores are more or greater in refpect of the interffitial bodies, the more tranfparent are the fo conftituted concretes; and the fmaller thofe pores are, the weaker is the Impulfe of light communicated through them, though the more quick be the progrefs.
Upon this Occafion, Ihope it will not be altogether unfeafonable, if I propound my conjectures and Hypothefis about the medium and conveyance of light.
I fuppofe then, that the greateft part of the Interflitia of the world, that lies between the bodies of the Sun and Starrs, and the Planets, and the Earth, to be an exceeding fluid body, very apt and ready to be mov'd and to communicate the motion of any one part to any other part, though never fo far diftant : Nor do I much concern my felf, to determine what the Figure of the particles of this exceedingly fubtile fluid medium muft be; nor whether it have any interftitiated pores or vacuities, it being fufficient to folve all the Phenomena to fuppofe it an exceedingly fluid, or the moft fluid body in the world, and as yet impoffible to determine the other difficulties.

That being fo exceeding fluid a body, it eafily gives paffage to all other bodies to move to and fro in it.

That it neither receives from any of its parts, or from other bodies; nor communicates to any of its parts, or to any other body, any impulfe, or motion in a direct line, that is not of a determinate quicknefs. And that when the motion is of fuch determinate fwiftnefs, it both receives, and communicates, or propagates an impulfe or motion to any imaginable diftance in ftreight lines, with an unimaginable celerity and vigour.
That all kind of folid bodies confift of pretty maflie particles in refpect of the particles of this fluid medium, which in many places do fo touch each other, that none of this fluid medium interpofes much after the fame mannner (to ufe a grofs fimilitude) as a heap of great frones compafs one great congeries or mafs in the midft of the water.
That all fluid bodies which we may call tangible, are nothing but fome more fubtile parts of thofe particles, that ferve to conftiture all tangible bodies.
That the water, and fuch other fluid bodies, are nothing but a congeries of particles agitated or made fluid by it in the fame manner as the particles of salt are agitated or made fluid by a parcel of water, in which they are diffolv'd, and fubfiding to the bottom of it, conftitute a fluid body, much more maffie and denfe, and lefs fluid then the pure water it felf.

That the air on the other fide is a certain company of particles of quite another kind, that is, fuch as are very much fmaller, and more eafiely moveable by the motion of this fluid medium; much like thofe very fub. tile parts of Cochenel, and other very deep tinging bodies, where by a very
fmall

Migrographia.

fmall parcel of matter is able to tinge and diffufe it felf over a very great quantity of the fluid diffolvent; or fomewhat after that manner, as fmoak, and fuch like minute bodies, or fteams, are obferv'd to tinge a very great quantity of air; onely this laft fimilitude is deficient in one propriety, and that is a perpetuity or continuance in that ftate of commixture with the air, but the former does more neerly approach to the nature and manner of the air's being diffolv'd by this fluid or Axther. And this Similitude will further hold in thefe proprieties; that as thofe tinctures may be increafed by certain bodies, fo may they be precipitated by others; as I fhall afterwards fhew it to be very probable, that the like accidents happen even to the Air it felf.
Further, as thefe folutions and tinctures do alter the nature of thefe fluid bodies, as to their aptnefs to propagate a motion or impulfe through them, even fo does the particles of the Air, Water, and other fluid bodies, and of Glafs, Cryftal, ©cc. which are commixt with this bulk of the Extber, alter the motion of the propagated pulfe of light; that is, where thefe more bulkie particles are more plentifull, and confequently a leffer quantity of the 压ther between them to be mov'd, there the motion muft neceflarily be the fwifter, though not fo robuft, which will produce thofe effects, which I have (I hope) with fome probability, afcribed to it in the digreffion about Colours, at the end of the Obfervations on Mauf. covr-gla β.

Now, that other Stones, and thofe which have the clofeft and hardeft textures, and feem (as far as we are able to difcover with our eyes, though help'd with the beft Microfopes) freeft from pores, are yet not ${ }^{-1}$ withftanding replenifh'd with them ; an Inftance or two will, I fuppofe, make more probable.
A very folid and unflaw'd piece of cleer white Marble, if it be well polifh'd and glaz'd, has fo curioutly frnooth a furface, that the beft and moft poliih'd furface of any wrought-glafs, feems not to the naked eye, nor through a Microfcope, to be more fmooth, and lefs porous. And yet, that this hard clofe body is repleniff'd with aburdance of pores, I think thefe following Experiments will fufficiently prove.

The firft is, That if you take fuch a piece, and for a pretty while boyl it in Turpentine and Oyl of Turpentine, you fhall find that the ftone will be all imbu'd with it; and whereas before it look'd more white, but more opacous, now it will look more greafie, but be much more tranfparent, and if you let it lie but a little while, and then break off a part of it, you Thall find the unctuous body to have penetrated it to fuch a determinate depth every way within the furface. This may be yet eafier try'd with a piece of the fame Marble, a little warm'd in the fire, and then a little Pitch or Tarr melted on the top of it; for thefe black bodies, by their infinuating themfelves into the invifible pores of the fone, ting it with fo black a hue, that there can be no further doubt of the truth of this affertion, that it abounds with fmall imperceptible pores,

Now, that other bodies will alfo fink into the pores of Marble, befides unctuous, I have try'd, and found, that a very Blue tincture made in

Micrographia。

Birit of Vrine would very readily and eafily fink into it, as would alfo feveral tinctures drawn with /pirit of Wine.

Nor is Marble the only feemingly clofe ftone, which by other kinds of Experiments may be found porous; for I have by this kind of Experiment on divers other ftones found much the fame effect, and in fome, indeed much more notable. Other ftones I have found fo porous, that with the Microfoope I could perceive feveral fmall winding holes, much like Worm-holes, as I have noted in fome kind of Purbeck-ftone, by looking on the furface of a piece newly flaw'd off; for if otherwife, the furface has been long expos'd to the Air, or has been feraped with any tool, thofe fmall caverns are fill'd with duft, and difappear,

And to confirm this Conjecture, yet further, I fhall here infert an excellent account, given into the Royal society by that Eminently Learned Phyfician, Doctor Goddard, of an Experiment, not lefs infructive? ${ }^{\text {th }}$ hen curious and accurate, made by himfelf on a very hard and feemingly clofe ftone call'd Oculus Mundi, as I find it preferv'd in the Records of that Honourable Society.

A fmall ftone of the kind, call'd by fome Authours, Oculus Mundi, being dry and cloudy, weigh'd $5_{2 ; 6}^{209}$ Grains.

The fame put under water for a night, and fomewhat more, became tranfparent, and the fuperficies being wiped dry, weighed $6 \frac{3}{256}$ Grains.

The difference between thefe two weights, $\circ \frac{50}{236}$ of a Grain.
The fame Stone kept out of water one Day and becoming cloudy again weighed, $5 \frac{225}{255}$ Graines.

Which was more then the firft weight, $\circ \frac{16}{256}$ of a Grain.
The fame being kepttwo Days longer weighed, $5_{\frac{20}{20}}^{\frac{00}{26}}$ Graines.
Which was lefs then at firft, $0 \frac{1}{2,6}$ of a Grain.
Being kept dry fomething longer it did not grow fenfibly lighter.

Being put under water for a night and becoming again tranfparent and wiped dry, the weight was, $6 \frac{3}{256}$ Grains, the fame with the firt after putting in water, and more then the laft weight after keeping of it dry, $0 \frac{57}{\frac{516}{6}}$ of a Grain.

Another Stone of the famekind being variegated with milky wbite and gray like fome forts of Agates, while it lay under water, was alwaies invironed with little Bubbles, fuch as appear in
water
water a little before boyling, next the fides of the Veffel.
There were alfo fome the like Bubbles on the Surface of the water juft over it, as if either fome exhalations came out of it, or that it did excite fome fermentation in the parts of the water contiguous to it.

There was little fenfible difference in the tranfparency of this Stone,before the putting under water, and after: To befure the milky-white parts continued as before, but more difference in weight then in the former. For whereas before the putting into the water the weight was $18_{1: 3}^{\circ 2}$ Graines. After it had lyen in about four and twenty hours the weight was $20 \frac{27}{288}$ Graines, fo thedifference was, $\mathrm{I}_{128}^{\frac{1}{28}^{8}}$ Graines.

The fame Stone was infufed in the water fcalding hot, and fo continued for a while after it was cold, but gotno more weight then upon infufing in the cold, neither was there any fenfible Difference in the weight both times.

In which Experiment, there are three Obfervables, that feem wery manifeftly to prove the poroufnefs of thefe feemingly clofe bodies: the firft is their acquiring a tranfparency, and lofing their whitenefs after fteeping in water, which will feem the more ftrongly to argue it, if whati have already faid about the making tranfparent, or clarifying of fome bodies, as the white powder of beaten Glafs, and the froth of fome glutinous tranfparent liquor be well confiderd; for thereby it will feem rational to think that this tranfparency arifes from the infinuation of the water (which has much the fame refraction with fuch ftony particles, as may be difcoverd by Sand view'd with a Microfoope) into thofe pores which were formerly repleat with air (that has a very differing refraction, and cons fequently is very reflective) which feems to be confirm'd by the fecond Obfervable, namely, the increafe of weight after tteeping, and decreafe upon drying. And thirdly, feem'd yet more fenfibly confirm'd by the multitude of bubbles in the laft Experiment.

Wefind alfo moft Acid Salts very readily to difolve and feparate the parts of this body one from another; which is yet afurther Argument to confirm the poroufnefs of bodies, and will ferve as fuch, to fhew that even Glafs allo has an abundance of pores in it, frice there arefeveral liquors, that withlong ffaying in a Glafs, will focorrode and eat intoit, as at lait, to make it pervious to the liquor it contain'd, of which I have feen very many Intances.

Since therefore we find by other proofs, that many of rethofe bodies
which we think the moft folid ones, and appear fo to our fight, have notwithftanding abundance of thofe groffer kind of pores, which will admit feveral kinds of liquors into them, why fhould we not believe that Glafs, and all other tranfparent bodies abound with them, fince we have many other arguments, befides the propagation of light, which feem to argue for it?
And whereasit may be objected, that the propagation of light is no argument that there are thofe atomical pores in glafs, fince there are Hy pothefes plaufible enough to folve thofe Phenomena, by fuppofing the pulfe onely to be communicated through the tranfparent body.
To this I anfwer, that that Hypothefis which the induftrious Moreanus has publifh'd about the flower motion of the end of a Ray in a denfer medium, then in a more rare and thin, feems altogether unfufficient to folve abundance of Phenomena, of which this is not the leaft confiderable, that it is impoffible from that fuppofition, that any colours fhould begenerated from the refraction of the Rays; for fince by that Hypothefis the undulating pulfe is always carried perpendicular, or at right angles with the Ray or Line of direction, it follows, that the ftroke of the pulfe of light, after it has been once or twice refracted (through a Prifme,for example) muft affect the eye with the fame kind of ftroke as if it had not been refracted at all. Nor will it be enough for a Defendant of that Hy pothefis, to fay, that perhaps it is becaufe the refractions have made the Rays more weak, for if fo, then two refractions in the two parallel fides of a உuadrangular Prijme would produce colours, but we have ne fuch Phenomena produc'd.

There are feveral Arguments that I could bring to evince that there are in all tranfparent bodies fuch atomical pores. And that there is fuch a fluid body as I am arguing for, which is the medium, or Inftrument, by which the pulfe of Light is convey'd from the hucid body to the enlightn'd. But that it being a digreffion from the Obfervations I was recording, about the Pores of Kettering Stone, it would be too much fuch, if I fhould protract it too long; and therefore I fhall proceed to the next Obfervation.

Obferv. XVI. Of Charcoal, or burnt Vegetables.

CHarcoal, or a Vegetable burnt black, affords an object,no lefs pleafant than inftructive ; for if youtake a fmall round Charcoal, and break it fhort with your fingers, you may perceive it to break with a very frooth and fleek furface, almoft like the furface of black fealing Wax; this furface, if it be look'd on with an ordinary Microfoope, does manifeft abundance of thofe pores which are alfo vifible to the eye in many kinds of Wood, rang d round the pith, both a in kind of circular order, and a radiant one. Of thefe there are a multitude in the fubftance of the Coal, every where almoft perforating and drilling it from end to end; by means

Micrographif.

means of which, be the Coal never fo long, you may eafily blow through it; and this you may prefently find, by wetting one end of it with Spittle, and blowing at the other.

But this is not all, for befides thofe many great and confpicuous irregular fpots or pores, if a better Microfope be inade ufe of, there will appear an infinite company of exceedingly fmall, and very regular pores, fo thick and fo orderly fet, and fo clofe to one another, that they leave very little room or fpace between them to be fill'd with a folid body, for the apparent interflitia, or feparating fides of thefe pores feem fo thin in fome places, that the texture of a Honey-comb carnot be more porous. Though this be not every where fo, the intercurrent partitions in fome places being very much thicker in proportion to the holes.

Moft of thefe fmall pores feem'd to be pretty round, and were rang'd in rows that radiated from the pith to the bark; they all of them feem'd to be continued open pores, running the whole length of the Stick; and that they were all perforated, I try'd by breaking off a very thin fliver of the Coal crofs-ways, and then with my Microfope, diligently furveying them againft the light, for by that means I was able to fee quite through them.

Thefe pores were fo exceeding fmall and thick, that in a line of them, ${ }^{\frac{2}{i s}}$ part of an Inch long, I found by numbring them no lefs then 150 . fmall pores; and therefore in a line of them an Inch long, muft be no lefs then 2700. pores, and in a circular area of an Inch diameter, muft be about 5725350 . of the like pores; fo that a Stick of an Inch Diameter, may containe no lefs then feven hundred and twenty five thonfand, befides 5 Millions of pores, which would, I doubt not, feem even incredible, were not every one left to believe his own eyes. Nay, having fince examin'd Cocus, black and green Ebony, Lignum Vita, \&c. I found, that all thefe Woods have their pores, abundantly fmaller then thofe of foft light Wood; in fo much, that thofe of Guajacum feem'd not above an eighth part of the bignefs of the pores of Beech, but then the Interfititia were thicker; fo prodigioufly curious are the contrivances, pipes, or fluces by which the Succus nutritius, or Juyce of a Vegetable is convey'd from place to place.

This Obfervation feems to afford us the true reafon of feveral Phenomena of Coals; as
Firft, why they look black; and for this we need go no further then the scheme, for certainly, a body that has fo many pores in it as this is difcover'd to have, from each of which no light is reflected, muft neceffarily look black, efpecially, when the pores are fomewhat bigger in proportion to the intervals then they are cut in the scheme, black being nothing elfe but a privation of Light, or a want of reflection; and wherefover this reflecting quality is deficient, there does that part look black, whether it be from a poroufnefs of the body, as in thisInftance, or in a deadning and dulling quality, fuch as I have obferv'd in the scoria of Lead, Tin, Silver, Copper, ecc.

Next, we may alfo as plainly fee the reafon of its fhining quality, and that

Mickographia.

that is from the even breaking off of the fick, the folid interfitio having a regular termination or furface, and having a pretty ftrong reflecting quality, the many fmall reflections become united to the naked eye, and make a very pretty fhining furface.
Thirdly, the reafon of its hardnefs and brittlenefs feems evident, for fince all the watery or liquid fubftance that moiftn'd and toughn'd thofe Interfitia of the more folid parts, are evaporated and remov'd, that which is left hehind becomes of the nature almoft of a ftone, which will not at all, or veery little, bend without a divulfion or folution of its continuity.

It is not my defign at prefent, to examine the ufe and Mechanijme of thefe parts of Wood, that being more proper to another Enquiry; but rather to hint, that from this Experiment we may learn,

Firft, what is the caufe of the blacknefs of many burnt bodies, which We may find to be nothing elfe but this; that the heat of the fire agitating and rarifying the waterifh, tranfparent, and volatile water that is contain'd in them, by the continuation of that action, does fo totally expel and drive away all that which before fill the pores, and was difpers'd alfo through the folid mafs of it, and thereby caus'd an univerfal kind of tranfparency, that it not onely leaves all the pores empty, but all the I^{-}terffitia alfo fo dry and opacous, and perhaps alfo yet further perforated, that that light onely is reflected back which falls upon the very outward edges of the pores, all they that enter into the pores of the body, nevet returning, but being loft in it.
Now, that the Charring or coaling of a body is nothing elfe, may be eafily believ'd by one that fhall confider the means of its production, which may be done after this, or any fuch manner. The body to be charr'd or coal'd, may be put into a Crucible, Pot, or any other Veffel that will endure to be made red-hot in the Fire without breaking, and then cover'd over with Sand, fo as no part of it be fuffer'd to be open to the Air, then fet into a good Fire, and there kept till the Sand has continu d red hot for a quarter, half, an hour or two, or more, according to the nature and bignefs of the body to be coal'd or charr'd, then taking it out of the Fire, and letting it ftand till it be quite cold, the body may be taken out of the Sand well charr'd and cleans'd of its waterifh parts; but in the taking of it out, care muft be had that the Sand be very neer cold, for elfe, when it comesinto the free air, it will take fire, and readily burn away.

This may be done alfo in any clofe Veffel of Glafs, as a Retort, or the like, and the feveral fluid fubftances that come over may be receivad in a fit Recipient, which will yet further countenance this Hypothefis: And their manner of charring Wood in great quantity comes much to the 佁the thing, namely, an application of a great heat to the body, and preferving it from the free accefs of the devouring airr; this may be eafily leamid from the Hiftory of Charring of Coal, moft excellently defcrib'd aita publifhd by that Hooft accomplifh'd Gentleman, Mr. Fobn Evelin, in the $100,101,103$, pages of his sylva, to which I thall therefore refer the cu rioús Reader that deffres a full information of $i t$.

Next

Micrographia.

Next, we may learn what part of the Wood it is that is the combufible matter; for fince we fhall find that none, or very little of thofe fluid fub, ftances that are driven over into the Receiver are combuffible, and that moft of that which is left behind is fo, it follows, that the folid interfitio of the Wood are the combuftible matter. Further, the reafon why unt charr'd Wood burns with a greater flame then that which is charr'd, is as evident, becaufe thofe waterifh or volatil parts iffiuing out of the fired Wood, every way, not onely fhatter and open the body, the better for the fire to enter, but iffiuing out in vapours or wind, they beconie like fo many little colipiles, or Bellows, whereby they blow and agitate the fir'd part, and conduce to the more fpeedy and violent confumption or diffolution of the body.

Thirdly, from the Experiment of charring of Coals (whereby we fee that notwithftanding the great heat, and the duration of it, the folid parts of the Wood remain, whileft they are preferv'd from the free accefs of the air undiffipated) we may learn, that which has not, that I know of, been publiffid or hinted, nay, not fo much as thought of, by any; and that in fhort is this.

Firft, that the Air in which we live, move, and breath, and which encompafies very many, and cherifhes moft bodies it encompaffes, that this Air is the menftruum, or univerfal diffolvent of all sulphureous bodies.

Secondly, that this action it perforris not, till the body be firit fufficiently heated, as we find requifite alfo to the diffolution of many other bodies by feveral other menftruums.

Thirdly, that this action of diffolution, produces or generates a very great heat, and that which we call Fire; and this is common alfo to many diffolutions of other bodies, made by menfruums, of which I could give multitudes of Inftances.

Fourthly, that this action is performd with fo great a violence, and does fo minutely act, and rapidly agitate the fmalleft parts of the combuffible matter, that it produces in the diaphanous medium of the Air, the action or pulfe of light, which what it is, I have elfe-where already fhewn.

Fifthly, that the dijfolution of fulphureous bodies is made by a fubftance inherent, and mixt with the Air, that is like, if not the very fame, with that which is fixt in Salt-peter, which by multitudes of Experiments that may be made with Saltpeter, will, I think, moft evidently be demonftrated.

Sixthly, that in this difolution of bodies by the Air, a certain part is united and mixt, or diffolv'd and turn'd into the Air, and made to fly up and down with it in the fame manner as a metalline or other body diffolv'd into any menfiruums, does follow the motions and progrefles of that menfruum till it be precipitated.

Seventhly, That as there is one part that is diffoluble by the Air,fo are there other parts with which the parts of the Air mixing and uniting, do make a Coagulum, or precipitation, as one may call it, which caufes it to be feparated from the Air, but this precipitate is fo light, and in fo fmall and rarify'd or porous clufters, that it is very volatil, and is eafily carry'd up by the motion of the Air, though afterwards, when the heat and agitation

Micrographia.

agitation that kept it rarify'd ceafes, it eafily condenfes, and commixt with other indiffoluble parts, it ficks and adheres to the next bodies it meets withall; and this is a certain salt that may be extracted out of soot. Eighthly, that many indiffoluble parts being very apt and prompt to berarify' d , and fo, whileft they continue in that heat and agitation, are lighter then the Ambient Air, are thereby thruft and carry d upwards with great violence, and by that means carry along with them, not onely that saline concrete I mention'd before, but many terreftrial, or indiffoluble and irrarefiable parts, nay, many parts alfo which are diffoluble, but are not fuffer'd to ftay long enough in a fufficient heat to make them prompt and apt for that action. And therefore we find in soot, not onely a part, that being continued longer in a competent heat, will be diffolv'd by the Air, or take fire and burn; but a part alfo which is fixt, terreftrial, and irrarefiable.
Ninthly, that as there are thefe feveral parts that will rarifie and fly, or be driven up by the heat, fo are there many others, that as they are indiffoluble by the aerial menftrum, fo are they of fuch fluggifh and grofs parts, that they are not eafily rarify'd by heat, and therefore cannot be rais'd by it ; the volatility or fixtnels of a body feeming to confift only in this, that the one is of a texture, or has component parts that will be eafily rarify'd into the form of Air, and the other, that it has fuch as will not, without much ado, be brought to fuch a conftitution; and this is that part which remains behind in a white body call'd Afhes, which contains a fubftance, or Salt, which Chymifts call Alkali:what the particular natures of each of thefe bodies are, I fhall not here examine, intending it in another place, but fhall rather add that this Hypothefis does fo exactly agree with all Phenomena of Fire, and fogenuinely explicate each particular circumftance that I have hitherto oblerv'd, that it is more then probable, that this caufe which I have affign'd is the true adequate, real, and onely caufe of thofe Phonomena; And therefore I fhall proceed a little further, to fhew the nature and ufe of the Air.

Tenthly, therefore the diffolving parts of the Air are but few, that is, it feems of the nature of thofe saline menfrumms, or firits, that have very much flegme mixt with the firits, and therefore a fmall parcel of it is quickly glutted, and will diffolve no more; and therefore unlefs fome frefh part of this menftruum be apply'd to the body to be difiolv'd, the action ceafes, and the body leaves to be diffolv'd and to fhine, which is the Indication of it, though plac'd or kept in the greateft heat; whereas salt-peter is a menftruum, when melted and red-hot, that abounds more with thofe Diffolvent particles, and therefore as a fmall quantity of it will diffolve a great fulphureous body, fo will the diffolution be very quick and violent.

Therefore in the Eleventh place, it is obfervable, that, as in other folutions, if a copious and quick fupply of frefh menftruum, though but weak, be poured on, or applied to the diffoluble body, it quickly confumesit: So this menftruum of the Air, if by Bellows, or any other fuch contrivance, it be copioufly apply'd to the fhining body, is found to diffolve

Micrographiá.

diffolve it as foon, and as violently as the more ftrong menftruini of melted Nitre.

Therefore twelfthly, it feems reafonable to think that there is no fuch thing as an Element of Fire that fhould attract or draw up the flame; or towards which the flame fhould endeavour to afcend out of a defire on appetite of uniting with that as its Homogeneal primitive and generating Element ; but that that fhining tranfient body which we call Flame, is, nothing elfe but a mixture of Air, and volatil fulphureous parts of diffoluble or combuftible bodies, which are acting upon each other whilpt they afcend, that is, flame feems to be a mixture of Air, and the combuftible volatil parts of any body, which parts the encompafing Air does diffolve or work upon, which action,as it does intend the heat of the aerial parts of the diffolvent, fo does it thereby further rarifie thofe parts that are acting, er that are very neer them, whereby they growing much lighter then the heavie parts of that Menflrum that are more remote, are thereby protruded and driven upward; and this may be eafily obferv'd alfo in difiolutions made by any other menftrunm, efpecially fuch as either create heat or bubbles. Now, this action of the Menfluum, or Ain, on the diffoluble parts, is made with fuch violence, or is fuch, that it limparts fuch a motion or pulfe to the diaphanous parts of the Air, as I have elfewhere fhewn is requifite to produce light.

This Hypotbefis I have endeavoured to raife from an Infinite of Obfer-s vations and Experiments, the procefs of which would be much toolong to be here inferted, and will perhaps another time afford matter copious enough for a much larger Difcourfe, the Air being a Subject which (though all the world has hitherto liv'd and breath'd in,and been unconverfant about)has yet been folittle truly examin'd or explain'd ${ }^{\text {that }}$ a di-t ligent enquirer will be able to find but very little information from what has been (till of late) written of it: But being once well underftood, it will, I doubt not, inable a man to render an intelligible, nay probable, if not the true reafon of all the Phonomena of Fire, which, as it, has been found by Writers and Philofophers of all Ages a matter of no fmall difficulty, as may be fufficiently underftood by their ftrange Hypothefes, and unintelligible Solutions of fome few Phanomena of it; fo will it prove a matter of no fmall concern and ufe in humane affairs, as I thall elfewhere endeavour to manifefo when I come to thew the ufe of the Air in refpi? ration, and for the prefervation of the life, nay, for the confervation and reftauration of the health and natural conftitution of mankind as lwell as all other aereal animals, as alfo the ufes of this principle or propricty of the Air in chymical, mechanical, and other operations, In this place I have onely time to hint an Hypothefis, which, if God permit me life, and opportunity, I may elfewhere profecute, improve and publiftro In the meantime, before I finifh this Difcourfe, I muft not forget to acquaint the Reader, that having had the liberty granted me of making fomie trials on a piece of Lignum folfile thewn to the Royal Society, by the eminently Ingenious and Learned Phyfician, Doctor Ent, who receiv'd it for a Prefent from the famous Ingeniofo Cavalliero de Pozzi, it being one of the faireft

Micrographia.

and beft pieces of Lignum foffile he had feen; Having (I fay) taken a fmall piece of this Wood, and examin'd it, I found it to burn in the open Air almoft like other Wood, and infteed of a refinous fmoak or fume, it yielded a very bituminous one, fmelling much of shat kind of fent: But that which I chiefly took notice of, was, that cutting off a fmall piece of it, about the bignefs of my Thumb, and charring it in a Crucible with Sand, after the manner I above prefcrib'd, I found it infinitely to abound with the fmaller fort of pores, fo extreme thick, and fo regularly perforating the fubftance of it long-ways, that breaking it off a-crofs, I found it to look very like an Honey-comb; but as for any of the fecond, or bigger kind of pores, I could not find that it had any; fo that it feems, whatever were the caufe of its production, it was not without thofe fmall kind of pores which we have onely hitherto found in Vegetable bodies : and comparing them with the pores which I have found in the Charcoals that I by this means made of feveral other kinds of Wood, I find it refemble none fo much as thofe of Firr, to which it is not much unlike in grain alfo, and feveral other proprieties.
And therefore, what ever is by fome, who have written of it, and particularly by Francifee Stellute, who wrote a Treatife in Italian of that Subject, which was Printed at Rome, 1637. affirm'd that it is a certain kind of Clay or Earth, which in tract of time is turn'd into Wood, Irather fufpect the quite contrary, that it was at firft certain great Trees of Fir or Pine, which by fome Earthquake, or other cafualty, came to be buried under the Earth,and was there, after a long time's refidence (according to the feveral natures of the encompaffing adjacent parts)either rotted and turn'd into a kind of Clay, or petrify'd and turn'd into a kind of Stone, or elfe had its pores fill'd with certain Mineral juices, which being ftayd in them, and in tract of time coagulated, appear'd, upon cleaving out, like fmall Metaline Wires, or elfe from fome flames or fcorching forms that are the occafion oftentimes, and ufually accompanyEarthquakes, might be blafted and turn'd into Coal, or elfe from certain Jubterraneous fires which are affirm'd by that Authour to abound much about thofe parts (namely, in a Province of Italy, calld $\mathrm{V}_{\text {mbria, }}$, now the Dutchie of spoletto, in the Territory of Todi, anciently call'd Tudor; and between the two Villages of Collefecco and Rofaro not far diftant from the high-way leading to Rome, where it is found in greater quantity then elfewhere)are by reafon of their being encompaffed with Earth, and fo kept clofe from the diffolving Air, charr ${ }^{2}$ d and converted into Coal. It would be too long a work to deferibe the feveral kinds of pores which I met withall, and by this means difeovered in feveral other Vegetable bodies; nor is it my prefent defign to expatiate upon Inftances of the fame kind, but ratherto give a Spe + cimen of as many kinds as I have had opportunity as yet of obferving, referving the profecution and enlarging on particulars till a more fit op ${ }^{4}$ portunity; and in profecution of this defign, I fhall here add:

Obferv.

Fig: 2:

Obferv. XVII. Of Petrify'd wood, and otber Petrify'd bodies.

0F this fort of fubftance, I obferv'd feveral pieces of very differing kinds, both for their outward fhape, colour, grain, texture, hardnefs, $\epsilon \sigma c$. fome being brown and redifh; others gray, like a Hone; others black, and Flint-like : fome foft, like a Slate or Whetfone, others as hard as a Flint, and as brittle. That which I more particular examin'd, was a piece about the bignefs of a mans hand, which feem'd to have been a part of fome large tree, that by rottennefs had been broken off from it before it began to be petrify d.

And indeed, all that I have yet feen, feem to have been rotten Wood before the petrifaction was begun; and not long fince, examining and viewing a huge great $O a k$, that feem'd with meer age to be rotten as it ftood, I was very much confirm'd in this opinion; for I found, that the grain, colour, and Chape of the Wood, was exactly like this petrify'd fubItance; and with a Microfcope, I found, that all thofe Microfcopical pores, which in fappy or firm and found Wood are fill'd with the natural or innate juices of thofe Vegetables, in this they were all empty, like thofe of Vegetables charr'd; but with this difference, that they feem'd much larger then I have feen any in Char-coals; nay, even then thofe of Coals made of great blocks of Timber, which are commonly call'd old-coals.

The reafon of which difference may probably be, that the charring of Vegetables, being an operation quickly perform'd, and whileft the Wood is fappy, the more folid parts may more eafily fhrink together, and contract the pores or interfititia between them, then in the rotten Wood, where that natural juice feems onely to be wafh'd away by adventitious or unnatural moifture; and fo though the natural juice be wafted from between the firm parts, yet thofe parts are kept afunder by the adventitious moyftures, and fo by degrees fettled in thofe poftures.

And this I likewife found in the petrify'd Wood, that the pores were fomewat bigger then thofe of charcoal, each pore being neer upon half as bigg again, but they did not bear that difproportion which is expreft in the tenth Scheme, between the fmall feecks or pores in the firft Figure (which reprefenteth the pores of Coal or Wood charr'd) and the black fpots of the fecond Figure (which reprefent the like Microf copical pores in the petrify'd Wood) for thefe laft were drawn by a Microfcope that magnify'd the object above fix times more in Diameter then the Microfcope by which thofe pores of Coal were obferv'd.

Now, though they were a little bigger, yet did they keep the exact figure and order of the pores of Coals and of rotten Wood, which laft alfo were much of the fame cize.

The other Obfervations on this petrify'd fubftance, that a while fince, by the appointment of the Royal society, I made, and prefented to them an account of, were thefe that follow, which had the honour done them
by the moft accomplifh'd Mr. Evelin, my highly honour'd friend, to be inferted and publifhed among thofe excellent Obfervations wherewith his sylva is replenifh'd, and would therefore have been here omitted, had not the Figure of them, as they appear'd through the Mificrofoope been before that engraven.

This Petrify'd fubftance refembled Wood, in that
Firft, all the parts of it feem'd not at all diflocated, or alter'd from their natural Pofition, whil'ft they were Wood, but the whole piece retain'd the exact fhape of Wood, having many of the confpicuous pores of wood fill remaining pores, and fhewing a manifeft difference vifible enough between the grain of the Wood and that of the bark, efpecially when any fide of it was cut fmooth and polite; for then it appear'd to have a very lovely grain, like that of fome curious clofe Wood.

Next (it refembled Wood) in that all the fmaller and (if I may fo call thofe which are onely vifible with a good magnifying Glafs) Microf copical pores of it appear (both when the fubftance is cut and polifh'd tranfwerlly and parallel to the pores of it) perfectly like the Microfcopical pores of feveral kinds of Wood, efpecially like and equal to thofe of feveral forts of rotten Wood which I have fince obferv'd, retaining both the flape, pofition and magnitude of fuch pores. It was differing from Wood:

Firft, in weight, being to common water as $3^{\frac{1}{4}}$ to 1 . whereas there are few of our Engliff. Woods, that when very dry are found to be fullas heavie as water.

Secondly, in bardne β, being very neer as hard as a Flint; and in fome places of it alfo refembling the grain of a Flint: and, like it, it would very readily cut Glafs, and would not without difficulty, efpecially in fome parts of it, be fcratch'd by a black hard Flint: It would alfo as readily ftrike fire againft a Steel, or againft a Flint, as any common Flint.

Thirdly, in the clofeneß of it, for though all the Microf copical pores of this petrify'd fubftance were very confpicuous in one pofition, yet by altering that pofition of the polifh'd furface to the light, it was alfo manifeft, that thofe pores appear'd darker then the reft of the body, onely becaufe they were fill'd up with a more dufkie fubftance, and not becaufe they were hollow.

Fourthly, in its incombuftiblene β, in that it would not burn in the fire; nay, though I kept it a good while red-hot in the flame of a Lamp, made very intenfe by the blaft of a fmall Pipe, and a large Charcoal, yet it feem'd not at all to have diminifh'd its extenfion; but only I found it to have chang'd its colour, and to appear of a more dark and dufkie brown colour; nor could I perceive that thofe parts which feem'd to have been Wood at firft, were any thing wafted, but the parts appear'd as folid and clofe as before. It was further obfervable alfo, that as it did not confume like Wood, fo neither did it crack and flie like a Flint, or fuch like hard Stone, nor was it long before it appear'd red-hot.

Fifthly, in its difjolublene β; for putting fome drops of diftill'd vinegar upon the Stone, I found it prefently to yield very many Bubbles, juft like thofe which may be obferv'd in fpirit of Vinegar when it corrodes corals,

Micrographia.

though perhaps many of thofe fmall Bubbles might proceed from fome fmall parcels of Air which were driven out of the pores of this petrifj'd fubftance by the infinuating liquid menftruum.

Sixthly, in its rigidnefs and friability, being not at all flexible but brittle like a Flint, infomuch that I could with one knock of a Hammer break off a piece of it, and with a few more, reduce that into a pretty fine powder.

Seventhly, it feem'd alfo very differing from Wood to the touch, feeling more cold then Wood ufually does, and much like other clofe ftones and Minerals.

The Reafons of all which Pbonomena feem to be,
That this petrify'd Wood having lain in fome place where it was well foak'd with petrifying water (that is, fuch a water as is well impregnated with ftony and earthy particles) did by degrees feparate, either by ftraining and filtration, or perhaps, by precipitation, cohefion or coagulation, abune dance of frony particles from the permeating water, which fony particles, being by means of the thuid vehicle convey d, not onely into the Microf copical pores, and fo perfectly ftoping them up, but alfo into the pores or interffitia, which may, perhaps, be even in the texture or schematifme of that part of the Wood, which, through the Microfcope, appears moft folid, do thereby fo augment the weight of the Wood, as to make it above three times heavier then water ${ }_{2}$ and perhaps, fix times as heavie as it was when Wood.

Next, they thereby fo lock up and fetter the parts of the Wood, that the fire cannot eafily make them flie away, but the action of the fire upon them is onely able to Char thofe parts, as it were, like a piece of Wood, if it be clos'd very faft up in Clay, and kept a good while red-hot in the fire, will by the heat of the fire be charr'd and not confum'd, which may, perhaps, alfo be fomewhat of the caufe, why the petrify'd fubftance appear'd of a dark brown colour after it had been burnt.
By this intrufion of the petrifying particles, this fubftance alfo becomes hard and friable; for the fmaller pores of the Wood being perfectly wedg'd, and fuft up with thofe ftony particles, the fmall parts of the Wood have no places or pores into which they may flide upon bending, and confequently little or no flexion or yielding at all can be caus'd in fuch a fubftance.
The remaining particles likewife of the Wood among the ftony particles, may keep them from cracking and flying when put into the fire, as they are very apt to do in a Flint.
Nor is Wood the onely fubftance that may by this kind of tranfinutas tion be chang'd into ftone; for I my felf have feen and examin'd very many kinds of fubftances, and among very credible Authours, we may meet with Hiftories of fuch Metamorphofes wrought almoft on all kind of fubftances, both Vegetable and Animal, which Hiftories, it is not my bufinefs at prefent, either to relate, or epitomife, but only to fet down fome Obfervation I lately made on feveral kind of petrify'd Shels, found about Kein/ham, which lies within four or five miles of Brifol, which are commonly call'd serpentinc-fones.

Exami-

Micrographia.

Examining feveral of thefe very curioufly figur'd bodies (which are commonly thought to be Stones form'd by fome extraordinary Plaftick virtue latent in the Earth it felf) I took notice of thefe particulars:

Firft, that thefe figured bodies, or ftoncs, were of very differing fubftances, as to hardnefs: fome of Clay, fome Marle, fome foft Stone, almoft of the hardnefs of thofe foft ftones which Mafons call Fire-ftone, others as hard as Portland ftone, others as hard as Marble, and fome as hard a a Flint or Cryftal.

Next, they were of very differing fubftances as to tranfparency and colour; fome white, fome almoft black, fome brown, fome Metalline, or like Marchafites; fome tranfparent like white Marble, others like flaw'd Cryftal,fome gray, fome of divers colours; fome radiated like thefe long petrify'd drops, which are commonly found at the Peak, and in other fubterraneous caverns, which have a kind of pith in the middle.

Thirdly, that they were very different as to the manner of their outward figuration; for fome of them feem'd to have been the fubftance that had fill'd the Shell of fome kind of Shel-fifh; others, to have been the fubftance that had contain'd or enwrapp'd one of there Shels, on both which, the perfect impreffion either of the infide or outfide of fuch Shells feem'd to be left, but for the moft part, thofe impreffions feem'd to be made by an imperfect or broken Shell, the great end or mouth of the Shell being always wanting, and oftentimes the little end, and fometimes half, and in fome there were impreffions, juft as if there had been holes broken in the figurating, imprinting or moulding Shell; fome of them feem'd to be made by fuch a Shell very much brufed or flaw'd, infomuch that one would verily have thought that very figur'd ftone had been broken or brufed whilft a gelly, as 'twere, and fo hardned, but within in the grain of the ftone, there appeard not the leaft fign of any fuch brufe or breaking, but onely on the very uttermoft fuperficies.

Fourthly, they were very different, as to their outward covering, fome having the perfect Shell, both in figure, colour, and fubftance, fticking on upon its furface, and adhering to it, but might very eafily be feparated from it, and like other common Cockle or Scolop-Jhels, which fome of them moft accurately refembled, were very diffoluble in common Vinegar, others of them, efpecially thofe Serpentine, or Helical fones were cover'd or retained the fhining or Pearl-colour'd fubftance of the infide of a Shel, which fubftance, on fome parts of them, was exceeding thin, and might very eafily be rubbed off; on other parts it was pretty thick, and retained a white coat, or flaky fubftance on the top, juft like the outfides of fuch Shells; fome of them had very large pieces of the Shell very plainly fticking on to them, which were eafily to be broken or flaked off by degrees: they likewife, fome of them retain'd all along the furface of them very pretty kind of futures, fuch as are obferv'd in the fkulls of feveral kinds of living creatures, which futures were moft curioufly fhap'd in the manner of leaves, and every one of them in the fame Shell, exactly one like another, which I was able to difcover plainly enough with my naked eye, but more perfectly and diftinctly with my Microfcope; all there
thefe futures, by breaking fome of thefe fones, Ifound to be the fermini, or boundings of certain diaphragms, or partitions, which feem'd to divide the cavity of the Shell into a multitude of very proportionate and regular cells or caverns, thefe Diaplragms, in many of them, I found very perfect and compleat, of a very diftinct fubftance from that which fill'd the cavities, and exactly of the fame kind with that which covered the out ${ }^{-}$ fide, being for the moft part whitifh, or mother-of-pearl colour'd.

As for the cavities between thofe Diaplragms, I found fome of them fill'd with Marle, and others with feveral kinds of ftones, others, for the moft part hollow, oncly the whole cavity was ufually covered over with a kind of tartareous petrify'd fubftance, which ftuck about the fides, and was there fhot into very curious regular Figures, juft as Tartar, or other diffolv'd Salts are obferv'd to frick and cryftallize about the fides of the containing Veffels; or like thofe little fiamants which Ibefore obferved to have covered the vaulted cavity of a Flint; others had thefe cavities all lin'd with a kind of metalline or marchafite-like fubftance, which with a Microfcope I could as plainly fee moft curioufly and regus larly figured, as I had done thofe in a Flint.
From all which, and feveral other particulars which I obferv'd, I cannot but think, that all thefe, and moft other kinds of tony bodies which are found thus ftrangely figured, do owe their formation and figuration, not to any kind of Plafick virtue inherent in the earth, but to the Shells of certain Shel-fifhes, which, either by fome Deluge, Inundation, Earthquake, or fome fuch other means, came to be thrown to that place, and there to be fill'd with fome kind of Mudd or Clay, or petrifying Water, or fome other fubftance, which in tract of time has been fettled together and hardned in thofe fhelly moulds into thofe fhaped fubftances we now find them; that the great and thin end of thefe Shells by that Earthquake, or what ever other extraordinay caufe it was that brought thems thither, was broken off; and that many others were otherwife broken, bruifed and disfigured; that thefe Shells which are thus fpirallied and feparated with Diaphragmes, were fome kind of Nantili or Porcelane fbells; and that others were fhells of Cockles,Mufcles, Periwincles, Scolops,\&c. of various forts; that thefe Shells in many, from the particular nature of the containing or enclos'd Earth, or fome other caufe, have in tract of time rotted and mouldred away, and onely left their impreffions, both on the containing and contained fubftances; and fo left them pretty loofe one within another, fothat they may be eafily feparated by a knock or two of a Hammer. That others of thefe Shells, according to the nature of the fubftances adjacent to them, have, by a long continuance in that pofture, been petrify'd and turn'd into the nature of fone, juft as I even now obferv'd feveral forts of Wood to be. That oftentimes the Shell may be found with one kind of fubftance within, and quite another without, having, perhaps, been fill'd in one place, and afterwardstranflated to another, which I have very frequently obferv'd in Cookle, Mufole, Perimincle, and other fhells, which I have found by the Sea fide. Nay, further, that fome parts of the fame Shell may be filld in one place, and
fome other caverns in another, and others in a third, or a fourth, or a fifth place, for fo many differing fubftances have I found in one of thefe petrify'd Shells, and perhaps all thefe differing from the encompaffing earth or ftone ; the means how all which varieties may be caus' d , I think, will not be difficult to conceive, to any one that has taken notice of thofe Shells, which are commonly found on the Sea fhore : And he that fhall throughly examine feveral kinds of fuch curioufly form'd ftones, will (I am very apt to think) find reafon to fuppofe their generation or formation to be afcribable to fome fuch accidents as I have mention'd, and not to any Plafick virtue: For it feems to me quite contrary to the infinite prudence of Nature, which is obfervable in all its works and productions, to defign every thing to a determinate end, and for the attaining of that end, makes ufe of fuch ways as are (as farr as the knowledge of man has yet been able to reach) altogether confonant, and moft agreeable to man's reafon, and of no way or means that does contradicf, or is contrary to humane Ratiocination; whence it has a lorg time been a general obfervation and maxime, that Nature does nothing in vain; It feems, I fay, contrary to that great Wifdom of Nature, that thefe prettily fhap'd bodies fhould have all thofe curious Figures and contrivances (which many of them are adorn'd and contriv'd with) generated or wrought by a Plaftick virtue, for no higher end then onely to exhibite fuch a form; which he that fhall throughly confider all the circumftances of fuch kind of Figur'd bodies, will, I think, have great reafon to believe, though, I confefs, one cannot prefently be able to find out what Nature's defigns are. It were therefore very defirable, that a good collection of fuch kind of figur'd ftones were collected; and as many particulars, circumftances, and informations collected with them as could be obtained, that from fuch a Hiftory of Obfervations well rang'd, examin'd and digefted, the true original or production of all thofe kinds, of ftones might be perfectly and furely known; fuch as are Thunderftones, Lapides Stellares, Lapides Judaici, and multitudes of other, whereof mention is made in Aldroviandus Wormius, and other Writers of Minerals.

Obferv. XVIII. Of the Schematifme or Texture of Cork, and of the Cells and Pores of fome otber fuch frotby Bodies.

ITook a good clear piece of Cork, and with a Pen-knife fharpen'd as keen as a Razor, I cut a piece of it off, and thereby left the furface of it exceeding fmooth, then examining it very diligently with a MicroSope, me thought I could perceive it to appear a little porous; but I could not fo plainly diftinguifh them, as to be fure that they were pores, much lefs what Figure they were of : But judging from the lightnefs and yielding quality of the Cork, that certainly the texture could not befo
curious,

curious, bu find it to knife, cut it, and pla body, and exceeding a Honeyunlike a Firft, empty ca by the Fi (as I may proportio (which er Next, of a great by certail fight of t I no fo pores I e any Wri but me t the true Firf, foope cot there is a Spung folid b Nex why Co fequent never fo it be the to get a its fubft fubitanc fectly er very pla ate it fe and con Nets, an And ling natu preffion, ftance as fion, and fame fpa

Micrographia.

curious, but that poffibly, if I could ufe fome further diligence, I might find it to be difcernable with a Microfope, I with the fame fharp Penknife, cut off from the former fmooth furface an exceeding thin piece of it, and placing it on a black object Plate, becaufe it was it felf a white body, and cafting the light on it with a deep plano-convex Glafs, I could exceeding plainly perceive it to be all perforated and porous, much like a Honey-comb,but that the pores of it were not regular; yet it was not unlike a Honey-comb in thefe particulars.

Firft, in that it had a very little folid fubftance, in comparifon of the empty cavity that was contain'd between, as does more manifeftly appear by the Figure A and B of the XI. scheme, for the Interftitia, or walls (as I may fo call them) or partitions of thofe pores were neer as thin int proportion to their pores, as thofe thin films of Wax in a Honey-comb (which enclofe and conftitute the fexangular cells) are to theirs.

Next, in that thefe pores, or cells, were not very deep, but confifted of a great many little Boxes, feparated out of one continued long pore, by certain Diaphragms, as is vilible by the Figure B, which reprefents a fight of thofe pores fplit the long-ways.

I no fooner difern'd thefe (which were indeed the firft microf copical pores I ever faw, and perhaps, that were ever feen, for I had not met with any Writer or Perfon, that had made any mention of them before this) but me thought I had with the difcovery of them, prefently hinted to me the true and intelligible reafon of all the Phenomena of Cork; As,

Firft, if I enquir'd why it was fo exceeding light a body? my Microfoope could prefently inform me that here was the fame reafon evident that there is found for the lightnefs of froth, an empty Honey-comb, Wool, a Spunge, a Pumice-ftone, or the like; namely, a very fmall quantity of a folid body, extended into exceeding large dimenfions.

Next, it feem'd nothing more difficult to give an intelligible reafon, why Cork is a body fo very unapt to fuck and drink in Water, and confequently preferves it felf, floating on the top of Water, though left on it never fo long: and why it is able to ftop and hold air in a Bottle, though it be there very much condens'd and confequently prefles very ftrongly to get a paflage out, without fuffering the leaft bubble to pafs through its fubftance. For, as to the firft, fince our Microfope informs us that the fubftance of Cork is altogether fill'd with Air, and that that Air is perfectly enclofed in little Boxes or Cells diftinct from one another. It feems very plain, why neither the Water, nor any other Air can eafily infinuate it felf into them, fince there is already within them an intus exiffens, and confequently, why the pieces of Cork become fo good floats for Nets, and ftopples for Viols, or other clofe Veffels.

And thirdly, if we enquire why Cork has fuch a fpringinefs and fwelling nature whem comprefs'd? and how it comes to fuffer fo great a compreffion, or feeming penetration of dimenfions, fo as to be made a fubftance as heavie again and more, bulk for bulk, as it was before compreffion, and yet fuffer'd to return, is found to extend it felf again into the fame fpace? Our Microfope will eafily inform us, that the whole mals R confifts
confifts of an infinite company of fmall Boxes or Bladders of Air, which is a fubftance of a fpringy nature, and that will fuffer a confiderable condenfation (as I have feveral times found by divers trials, by which I have moft evidently condens'd it into lefs then a twentieth part of its ufual dimenfions neer the Earth, and that with no other ftrength then that of my hands without any kind of forcing Engine,fuch as Racks,Leavers, Wheels, Pullies, or the like, but this onely by and by) and befides, it feems very probable that thofe very films or fides of the pores, have in them a fpringing quality, as almoft all other kind of Vegetable fubftances have, fo as to help to reftore themfelves to their former pofition.

And could we fo eafily and certainly difcover the Schematime and Texture even of thefe films, and of feveral other bodies, as we can thefe of Cork; there feems no probable reafon to the contrary, but that we might as readily render the true reafon of all their Phonomena; as namely, what were the caufe of the fpringinefs, and toughnefs of fome, both as to their flexibility and reftitution. What, of the friability or brittlenefs of fome others, and the like; but till fuch time as our Aicrofoope, or fome other means, enable us to difcover the true Schematijm and Texture of all kinds of bodies, we muft grope, as it were, in the dark, and onely ghefs at the true reafons of things by fimilitudes and comparifons.
But, to return to our Obfervation. I told feveral lines of thefe pores, and found that there were ufually about threefcore of thefe fmall Cells placed end-ways in the eighteenth part of an Inch in length, whence I concluded there muft be neer eleven hundred of them, or fomewhat more then a thoufand in the length of an Inch, and therefore in a fquare Inch above a Million, or 1166400. and in a Cubick Inch, above twelve hundred Millions, or 12597 12000. a thing almoft incredible, did not our Microfoope affure us of it by ocular demonftration; nay, did it not difcover to us the pores of a body, which were they diaphragm' d, like thofe of Cork, would afford us in one Cubick Inch, more then ten times as many little Cells, as is evident in feveral charr'd Vegetables; fo prodigioufly curious are the works of Nature, that even thefe confpicuous pores of bodies, which feem to be the channels or pipesthrough which the succus nutritius, or natural juices of Vegetables are convey'd, and feem to correfpond to the veins, arteries and other Veffels in fenfible creatures, that thefe pores I fay, which feem to be the Veffels of nutrition to the vafteft body in the World, are yet fo exceeding fmall, that the Atoms which Epicurus fancy'd would go neer to prove too bigg to enter them, much more to conftitute a fluid body in them. And how infinitely fmaller then muft be the Veffels of a Mite, or the pores of one of thefe little Vegetables I have difcovered to grow on the back-fide of a Rofe-leaf, and fhall anon more fully defcribe, whofe bulk is many millions of times lefs then the bulk of the fmall fhrub it grows on; and even that fhrub, many millions of times lefs in bulk then feveral trees (that have heretofore grown in England, and are this day flourifhing in other hotter Climates, as we are very credibly inform'd) if at leaft the pores of this fmall Vegetable fhould keep any fuch proportion to the body of it, as we have found thefe pores
of other Vegetables to do to their bulk. But of thele pores thave faid more elfewhere.

To proceed then, Cork feems to be by the tranfverfe conftitution of the pores, a kind of Fungus or Miufhrome, for the pores lie like fo many Rays tending from the center, or pith of the tree, outwards; fo that if you cut off a piece from a board of Cork tranfvertly, to the flat of it, you will, as it were, fplit the pores, and they will appear juft as they are exprefs'd in the Figure B of the XI. Scheme. But if you fhave off a very thin piece from this board, parallel to the plain of it, you will cut all the pores tranfverfly, and they will appear almoft as they are exprefs'd in the Figure A, fave onely the folid Interffitia will not appear fo thick as they are there reprefented.

So that Cork feems to fuck its nourifhment from the fubjacent bark of the Tree immediately, and to be a kind of excrefcence, or a fubftance diffiuct from the fubftances of the entire Tree, fomething analogus to the Mufhrome, or Mofs on other Trees, or to the hairs on Animals. And having enquir'd into the Hiftory of Cork, I find it reckoned as an excrefcency of the bark of a certain Tree, which is diftinct from the two barks that lie within it, which are common alfo to other trees; That 'tis fome time before the Cork that covers the young and tender fprouts comes to be difcernable; That it cracks, flaws, and cleaves into many great chaps, the bark underneath remaining entire; That it may be feparated and remov'd from the Tree, and yet the two under-barks (fuch as are alfo common to that with other Trees) not at all injur'd, but rather helped and freed from an external injury. Thus Jonfonius in Dendrologia, Speaking de subere, fays, Arbor eft procer a, Lignum eft robufum, dempto cortice in aquis non fluitat, Cortice in orbem detracto juvatur, crafcefcens enimp praftringit \&゙ ftrangulat, intra triennium iterum repletur: Caudex ubi adolefcit crajus, cortex fuperior denjus carnofus, duos digitos crafuis, fiaber, rimofus, é qui nifi detrabatur debijcit, alioque fubnafcente expellitur, interior qui Jubeft novellus ita rubet ut arbor minio picta videatur. Which Hiftories, if well confider'd, and the tree, fubftance, and manner of growing, if well examin'd, would, I am very apt to believe, much confirm this my conjecture about the origination of Cork.

Nor is this kind of Texture peculiar to Cork onely; for upon examination with my Microfcope, I have found that the pith of an Elder, or almoft any other Tree, the inner pulp or pith of the Cany hollow ftalks of feveral other Vegetables: as of Fennel, Carrets, Duucus, Bur-docks, Teafels, Fearn, fome kinds of Reeds, ooc. have much fuch a kind of Schematifine, as I have lately thewn that of Cork, fave onely that here the pores are rang'd the long-ways, or the fame ways with the length of the Cane, whereas in Cork they are tranfverfe:

The pith alfo that fills that part of the ftalk of a Feather that is above the Quil, has much fuch a kind of texture, fave onely that which way foever I fet this light fubitance, the pores feem'd to be cut tranfverfly; fo that I ghefs this pith which fills the Feather, not to confift of abundance of long pores feparated with Diaphragms, as Cork does, but to be a kínd. R 2
of folid or hardned froth, or a congeries of very fmall bubbles confolidated in that form, into a pretty ftiff as well as tough concrete, and that each Cavern, Bubble, or Cell, is diftinctly feparate from any of the reft, without any kind of hole in the encompaffing films, fo that I could no more blow through a piece of this kinde of fubftance, then I could through a piece of Cork, or the found pith of an Elder.

But though I could not with my Microfope, nor with my breath, nor any other way I have yet try'd, difcover a paffage out of one of thofe cavities into another, yet I cannot thence conclude, that therefore there are none fuch, by which the succus nutritius,'or appropriate juices of Vegetables, may pafs through them; for, in feveral of thofe Vegetables, whil'ft green, I have with my Microfoope, plainly enough difcover'd thefe Cells or Poles fill'd with juices, and by degrees fweating them out : as I have alfo obferved in green Wood all thofe long Microfcopical pores which appear in Charcoal perfectly empty of any thing but Air.
Now, though I have with great diligence endeavoured to find whether there be any fuch thing in thofe Microfcopical pores of Wood or Piths, as the Valves in the heart, veins, and other paffages of Animals,that open land give paffage to the contain'd fluid juices one way, and fhut themfelves, and impede the paffage of fuch liquors back again, yet have I not hitherto been able to fay any thing pofitive in it; though, me thinks, it feems very probable, that Nature has in thefe paffages, as well as inthofe of Animal bodies, very many appropriated Inftruments and contrivances, whereby to bring her defigns and end to pafs, which 'tis not improbable, but that fome diligent Obferver, if help'd with better Aticrofoopes, may in time detect.
Apd that this may be fo, feems with great probability to be argued from the frange Phenomena of fenfitive Plants, wherein Nature feems to perform feveral Animal actions with the fame Schematifns or Orginization that is common to all Vegetables, as may appear by fome no lefs inftructive then curious Obfervations that were made by divers Eminent Members of the Rogal Society on fome of thefe kind of Plants, whereof an account was delivered in to them by the moft Ingenious and Excellent Phyfician, Doctor Clark, which, having that liberty granted me by that moft Illuftrious Society, I have hereunto adjoyn'd.
Obfervations on the Humble and Senfible Plants in M. Chiffin's Garden in Saint James's Park, made Auguft the $9^{\text {th) }} 166 \mathrm{r}$. Prefent, the Lord Brouncker, Sr. Robert Moray, Dr. Wilkins, Mr. Evelin, Dr. Hen/baw, and Dr. Clark,
There are four Plants, two of which are little fhrub Plants, with a little fhort ftock, about an Inch above the ground, from whence are fpread feveral fticky branches, round, ftreight, and
fmooth,
fmooth in the diftances between the Sprouts, but juft under the Sprouts there are two tharp thorny prickles, broad in the leteting on, as in the Bramble, one juft under the Sprout, the other on the oppofite fide of the branch.

The diftances betwixt the Sprouts are ufually fomething
See Schem. 11 o more then an Inch, and many upon a Branch, according to its Fig $_{\mathrm{g}}$ 2. length, and they grew fo, that if the lower Sprout be on theleft fide of the Branch, the next above is on the right, and fo to the end, not frouting by pairs.

At the end of each Sprout are generally foar fprigs, two at the Extremity, and one on each fide, juft under it. At the firft fprouting of thefe from the Branch to the Sprig where the leaves grow, they are full of litele fhort white hairs, which wear off as the leaves grow, and then they are fmooth as the Branch.

Upon each of thefe fprigs, are, for the moft part, eleven pair of leaves, neatly fet into the uppermoft part of the little fprig, exactly one againt another, as it were in little articulations, fich as Anatomifts call Enartbrofis, where the round head of a Bone is received into another fitted for its motion; and ftanding very fitly to fhut themfelves and touch, the pairs juft above them clofing fomewhat upon them, as in the fhut forig; fo is the little round Pedunculus of this leaf fitted into a little cavity of the fprig, vifible to the eye in a fprig new pluck d, or in a fprig withered on the Branch, from which the leaves eafily fall by touching.

The leaf being almoft an oblong fquare, and fet into the P_{e-} dunculus, at one of the lower corners, receiveth from that not onely a Spine, as I may call it, which, paffing through the leaf, divides it fo length-ways that the outer-fide is hroader then the inner next the fprig, but little fibres paffing obliquely towards the oppofite broader fide, feem to make it here a litele mifcular, and fitted to move the whole leaf, which, together with the whole fprig, are fet full with little fhort whitifh hairs.

One of thefe Plants, whofe branch feem'd to be older and more grown then the other, onely the tender Sprouts of it, after the leaves are fhut, fall and hang down; of the other, the whole branches fall to the ground, if the Sun fhine very warm, upen the firft taking off the Glafs, which I therefore call the bumble Plant.

The other two, which do never fall, nor do any of their branches flagg and hang down, thut not their leaves, but upon fomewhat a hard ftroke; the ftalks feem to grow up from a root, and appear more berbaceous, they are round and fmooth, without any prickle, the Sprouts from them have feveral pairs of fprigs, with much lefs leaves then the other on them, and have on each fprig generally feventeen pair.

Upon touching any of the fprigs with leaves on, all the leaves on that fprig contracting themfelves by pairs, joyned their upper fuperficies clofe together.

Upon the dropping a drop of Aqua fortis on the fprig betwixt the leaves, $f f$ all the leaves above thut prefently, thofe below by pairs fucceffively after, and by the lower leaves of the other branches, $l l, k k, \& c$. and fo every pair fucceffively, with fome little diftance of time betwixt, to the top of each fprig, and fo they continu'd fhut all the time we were there. But I returning the next day, and feveral days fince,found all the leaves dilated again on two of the fprigs; but from $f f$, where the Aqua fortis had dropped upwards, dead and withered; but thofe below on the fame fprig, green, and clofing upon the touch, and are fo at this day, Auguft 14 .

With a pair of Sciffers, as fuddenly as it could be done, one of the leaves $b b$ was clipped off in the middle, upon which that pair, and the pair above, clofed prefently, after a little interval, $d d$, then $e e$, and fo the reft of the pairs, to the bottom of the fprig, and then the motion began in the lower pairs, $l l$, on the other fprigs, and fo fhut them by pairs upwards, though not with fuch diftinct diftances.

Under

Under a pretty large branch with its fprigs on, there lying a large Shell betwixt two and three Inches below it, there was rubbed on a ftrong fented oyl, after a little time all the leaves on that fprig were fhut, and fo they continued all the time of our ftay there, but at my returne the next day, I found the pofition of the Shell alter'd, and the leaves expanded as before, and clofing upon the touch.

Upon the application of theSun-beams by a Burning-glafs, the more bumble Plant fell, the other thut their leaves.

We could not fo apply the fnioak of Sulpher, as to have any vifible effect from that, at two or three times trial; but on another trial, the fmoak touching the leaves, it fucceeded.

The bumble Plant fell upon taking off the Glafs wherewith it was covered.

Cutting off one of the little Sprouts, two or three drops of liquor were thruft out of the part from whence that was cut, very cleer, and pellucid, of a bright greenifh colour, tafting at firft a little bitterifh, but after leaving a licorifh-like tafte in my mouth. Since, going two or three times when it was cold, I took the Glaffes. from the more bumble Plant, and it did not fall as formerly, but fhut its leaves onely. But coming afterwards, when the Sun thone very warm, as foon as it was taken off, it fell as before.

Since I pluck'd off another fprig, whofe leaves were all thut, and had been fo fome time, thinking to obferve the liquor Thould come from that I had broken off, but finding none, though with preffing, to come, I, as dexteroully as I could, pull'd off one whofe leaves were expanded, and then had upon the fhut. . ting of the leaves, a little of the mention'd liquor, from the end of the fprig I had broken from the Plant. And this ewice fucceffively, as often almoft as I durft rob the Plant.

But my curiofity carrying me yet further, I ciit off one of the harder branches of the ftronger Plant, and there came of the liquor,
liquor, both from that I had cut, and that I had cut it from, without preffire.

Which made me think, that the motion of chis Plant upon touching, might be from this, that there being a conftant intercourfe betwixt every part of this Plant and its root,either by a circulation of this liquor, or a conftant preffing of the fubtiler parts of it to every extremity of the Plant. Upon every preffure,from whatfoever it proceeds, greater then that which keeps it up, the fubtile parts of this liquor are thruft downwards, towards its articulations of the leaves, where, not having room prefently to get into the fprig, the little round pedunculus, from whence the Spine and thofe oblique Fibres I mention'd rife, being dilated, the Spine and Fibres (being continued from it) muft be contracted and fhortned, and fodraw the leaf upwards to joyn with its fellow in the fame condition with it felf, where, being clofed, they are held together by the implications of the little whitifh hair, as well as by the ftill retreating liquor, which diftending the Fibres that are continued lower to the branch and root, fhorten them above; and when the liquor is fo much forced from the Sprout, whofe Fibres are yet tender, and not able to fupport themfelves, but by that tenfnefs which the liquor filling their interfices gives them, the Sprout hangs and flags.

But, perhaps, he that had the ability and leifure to give you the exact Anatomy of this pretty Plant, to fhew you its Fibres, and vifible Canales, through which this fine liquor circulateth, or is moved, and had the faculty of better and more copioufly expreffing his Obfervations and conceptions, fuch a one would eafily from the motion of this liquor, folve all the Pbenomena, and would not fear to affirm, that it is no obfcure fenfation this Plant hath. But I have faid too much, I humbly fubmit, and am ready to ftand corrected.

I have not yet made fo full and fatisfactory Obfervations as I defire on this Plant, which feems to be a Subject that will afford abundance of information.
information. But as farr as I have had opportunity to examine i_{t}, I have difcovered with my Microfcope very curious ftructures and contrivances; but defigning much more accurate examinations and trials, both with my Mucrofcope, and otherwife, as foon as the feafon will permit, I thall not till then add any thing of what Ihave already taken notice of; but as farr as I have yet oblerv'd,I judge the notion of it to proceed from caufes very differing from thofe by which Cut-ffrings, or Lute-ftrings, the beard of a wilde Oat, or the beard of the Seeds of Geranium, Mofaimm, or Muskgraß and other of kinds of Cranes-bill, move themfelves. Of which I thall add more in the fubfequent Obfervations on thofe bodies.

Obferv. XIX. Of a Plant growing in the blighted or yellow pecks of Damask-rofe-leaves, Bramble-leaves, and fome otber kind of leaves.

IHave for feveral years together, in the Moneths of fune, Fuly, Auguf, and September (when any of the green leaves of Rofes begin to dry and grow yellow) obferv'd many of them, efpecially the leaves of the old fhrubs of Damask-Rofes, all befpecked with yellow ftains, and the underfides juft againft them, to have little yellow hillocks of a gummous fubftance, and feveral of them to have fmall black fpots in the midit of thofe yellow ones, which, to the naked eye, appear'd no bigger then the point of a Pin, or the fmalleft black fot or tittle of Ink one is able to make with a very fharp pointed Pen.

Examining thefe with a Microfoope, I was able plainly to diftinguih, up and down the furface, feveral fmall yellow knobs, of a kind of yellowiffi red gummy fubftance, out of which I perceiv'd there fprung multitudes of little cafes or black bodies like Seed-cods, and thofe of them that were quite without the hillock of Gưmm, difclos'd themfelves to grow out of it with a fmall Straw-colour'd and tranfparent ftem, the which feed and ftem appear'd very like thofe of common Mofs (which I elfewhere defcribe) but that they were abundantly lefs, many hundreds of them being not able to equalize one fingle feed Cod of Mofs.

I have often doubted whether they were the feed Cods of fome little Plant, or fome kind of fmall Buds, or the Eggs of fome very fmall Infect; they appear'd of a dark brownifh red, fome almoft quite black, and of a Figure much refembling the feed-cod of Mofs, but their ftalks on which they grew were of a very fine tranfparent fubftance, almoft like the ftalk of mould, but that they feem'd fomewhat more yellow.

That which makes me to fuppofe them to be Vegetables, is for that \bar{I} perceiv'd many of thofe hillocks bare or deftitute, as if thofe bodies lay yet conceal'd, as G. In others of them, they were juft fpringing out of their gummy hillocks, which all feem'd to fhoot directly outwards, as at A. In others, as at B, I found them juft gotten out, with very little or no ftalk,
and the Cods of an indifferent cize; but in others, as C, I found them begin to have little fhort ftalks, or ftems; in others, as D , thofe ftems were grown bigger, and larger; and in others, as at E, F, H, I, K, L, \&rc. thofe ftems and Cods were grown a great deal bigger, and the ftalks were more bulky about the root, and very much taper'd towards the top, as at F and L is moft vifible.
I did not find that any of them had any feed in them, or that any of them were hollow, bit as they grew bigger and bigger, I found thofe heads or Cods begin to turn their tops towards their roots, in the fame manner as I had obferv'd that of Mofs to do; fo that in all likelihood, Nature did intend in that pofture, what fhe does in the like feed-cods of greater bulk, that is, that the feed, when ripe, fhould be fhaken out and difperfed at the end of it, as we find in Columbine Cods, and the like.
The whole Oval OOOO in the fecond Figure of the 12. scheme reprefents a fmall part of a Rofe leaf, about the bignefs of the little Oval in the hillock, C, marked with the Figure X. in which I have not particularly oblerv'd all the other forms of the furface of the Rofe-leaf, as being little to my prefent purpofe.

Now, if thefe Cods have a feed in them fo proportion'd to the Cod, as thofe of Pinks, and Carnations, and Columbines, and the like, how unimaginably fmall muft each of thofe feeds neceflarily be, for the whole length of one of the largeft of thofe Cods was not $\frac{1}{500}$ part of an Inch; fome not above $\frac{1}{x .00}$, and therefore certainly, very many thoufand of them would be unable to make a bulk that fhould be vifible to the naked eye; and if each of thefe contain the Rudiments of a young Plant of the fame kind, what muft we fay of the pores and conftituent parts of that?

The generation of this Plant feems in part, afcribable to a kind of Mildew or Blight, whereby the parts of the leaves grow fcabby, or putrify'd, as it were, fo as that the moifture breaks out in little fcabs or fpots, which, as I faid before, look like little knobs of a red gummous fubftance.
From this putrify'd fcabb breaks out this little Vegetable; which may be fomewhat like a Mould or Mof and mave its equivocal generation much after the fame manner as I have fuppofed Mofs or Mould to have, and to be a more fimple and uncompounded kind of vegetation, which is fet a moving by the putrifactive and fermentative heat, joyn'd with that of the ambient aerial, when (by the putrifaction and decay of fome other parts of the vegetable, that for a while ftaid its progrefs) it is unfetter'd and left at liberty to move in its former courfe, but by reafon of its regulators, moves and acts after quite another manner then it did when a coagent in the more compounded machine of the more perfect Vegetable.

And from this very fame Principle, I imagine the Mifleto of Oaks, Thorns, Appletrees, and other Trees, to have its original: It feldom or never growing on any of thofe Trees, till they begin to wax decrepid, and decay with age, and are pefter'd with many other infirmities.

Hither alfo may be referr d thofe multitudes and varieties of Mufhroms, fuch as that, call'd Jews-ears, all forts of gray and green Mofles, \&c. which infeft
infert all kind of Trees, fhrubs, and the like, efpecially when they come to any bignefs. And this we fee to be very much the method of Nature throughout its operations, putrifactive Vegetables very often producing a Vegetable of a much lefs compounded nature, and of a much inferiour tribe; and putrefactive animal fubftances degenerating into fome kind of animal production of a much inferiour rank, and of a more fimple nature.

Thus we find the humours and fubftances of the body, upon putrifaction, to produce ftrange kinds of moving Vermine: the putrifaction of the flimes and juices of the Stomack and Guts, produce Worms almoft like Earth-worms, the Wheals in childrens hands produce a little Worm, call'd a Wheal-soorm: The bloud and milk, and other humours, produce other kinds of Worms, at leaft, if we may believe what is deliver'd to usby very famous Authors; though, I confefs, I have not yet been able to difcover fuch my felf.

And whereas it may feem frrange thatVinegar, Meal, mufty Casks, \&c. are obferv'd to breed their differing kinds of Infects, or living creatures, whereas they being Vegetable fubftances, feem to be of an inferiour kind, and fo unable to produce a creature more noble, or of a more compounded nature then they themfelves are of, and fo without fome concurrent feminal principle, may be thought utterly unfit for fuch an operation; I muft add, that we cannot prefently pofitively fay, there are no animal fubftances, either mediately, as by the foil or fatning of the Plant from whence they fprung, or more immediately, by thereal mixture or compofition of fuch fubftances, join'd with them; or perchance fome kind of Infect, in fuch places where fuch kind of putrifying or fermenting bodies are, may, by a certain inftinct of nature, eject fome fort of feminal principle, which cooperating with various kinds of putrifying fubftances, may produce various kinds of Infects, or Animate bodies: For we find in moft forts of thofe lower degrees of Animate bodies, that the putrifying fubftances on which thefe Eggs, Seeds, or feminal principles are caft by the Infeit, become, as it were, the Matrices or Wombs that conduce very much to their generation, and may perchance alfo to their variation and alteration, much after the fame manner, as, by ftrange and unnatural copulations, feveral new Rinds of Animals are produc'd, as Mules, and the like, which are ufually calld Monftrous, becaufe a little unufual, though many of them have all their principal parts as perfectly fhap'd and adapted for their peculiar ufes, as any of the moft perfect Animals. If therefore the putrifying body, on which any kind of feminal or vital principle chances to be calt, become fomewhat more then meerly a nurfing and foftering helper in the generation and production of any kind of Animate body, the more neer it approaches the true nature of a Womb, the more power will it have on the by-blow it inclofes. But of this fomewhat more in the defcription of the Water-gnat. Perhaps fome more accurate Enquiries and Obfervations about thefe matters might bring the Queftion to fome certainty, which would be of no fmall concern in Natural Philofophy.
2. But that putrifying animal fubftances may produce animals of an inferior
kind $_{3}$
kind, I fee not any fo very great a difficulty, but that one may, without much abfurdity, admit: For as there may be multitudes of contrivances that go to the making up of one compleat Animate body; fo, That fome of thofe coadjutors, in the perfect exiftence and life of it, may be vitiated, and the life of the whole deftroyed, and yet feveral of the conftituting contrivances remain intire, I cannot think it beyond imagination or poffibility; no more then that a like accidental procefs, as I have elfwhere hinted, may alfo be fuppofed to explicate the method of Nature in the Metamorphofis of Plants. And though the difference between a Plant and an Animal be very great, yet I have not hitherto met with any fo cogent an Argument, as to make me pofitive in affirming thefe two to be altogether Heterogeneous, and of quite differing kinds of Nature: And befides, as there are many Zoophyts, and fenfitive Plants(divers of which I have feen, which are of a middle nature, and feem to be Natures tranfition from one degree to another, which may be obferv'd in all her other paffages, wherein fhe is very feldom obferv'd to leap from one ftep to another) fo have we, in fome Authors, Inftances of Plantsturning into Animals, and Animals into Plants, and the like; and fome other very ftrange (becaufe unheeded) proceedings of Nature; fomething of which kind may be met with, in the defcription of the Water-Gnat, though it be not altogether fo direct to the prefent purpofe.
But to refer this Difcourfe of Animals to their proper places, I fhall add, that though one fhould fuppofe, or it fhould be prov'd by Obfervations, that feveral of thefe kinds of Plants are accidentally produc'd by a eafual putrifaction, I fee not any great reafon to queftion, but that, notwithftanding its own production was as 'twere cafual, yet it may germinate and produce feed, and by it propagate its own, that is, a new Species. For we do not know, but that the Omnipotent and All-wife Creator might as directly defign the ftructure of fuch a Vegetable, or fuch an Animal to be producd out of fuch or fuch a putrifaction or change of this or that body, towards the conftitution or ffructure of which, he knew it neceflary, or thought it fit to make it an ingredient; as that the digeftion or moderate heating of an Egg, either by the Female, or the Sun, or the heat of the Fire, or the like, fhould produce this or that Bird; or that Putrifactive and warm fteams fhould, out of the blowings,as they call them, that is, the Eggs of a Flie, produce a living Magot, and that, by degrees, be turn'd into an Aurelia, and that, by a longer and a proportion'd heat, be tranfmuted into a Fly. Nor need we therefore to fuppofe it the more imperfect in its kind, then the more compounded Vegetable or Animal of which it is a part; for he might as compleatly furnifh it with all kinds of contrivances neceflary for its own exiftence, and the propagation of its own Species, and yet make it a part of a more compounded body: as a Clock-maker might make a Set of Chimes to be a part of Clock, and yet, when the watch part or ftriking part are taken away, and the hindrances of its motion remov'd, this chiming part may go as accurately, and ftrike its tune as exactly, as if it were ftill a part of the compounded Automaton. So, though the original caufe, or
feminal
ctable
nifi it
id the
com
o be a
taken
g part
fill 3
ufe, or
emina

feminal principle from which this minute Plant on Rofe leaves did fpring, were, before the corruption caus'd by the Mill-dew, a component part of the leaf on which it grew, and did ferve as a coagent in the production and conftitution of it, yet might it be fo confummate, as to produce a feed which might have a power of propagating the fame fpecies:the works of the Creator feeming of fuch an excellency, that though they are unable to help to the perfecting of the more compounded exiftence of the greaten Plant or Animal, they may have notwithftanding an ability of acting fingly upon their own internal principle, fo as to produce a Vegetable body, though of a lefs compounded nature, and to proceed fo farr in the method of other Vegetables, as to bear flowers and feeds, which may be capabale of propagating the like. So that the little cafes which appear to grow on the top of the flender ftalks, may, for ought Iknow, though I fhould fuppofe them to fring from the perverting of the ufual courfe of the parent Vegetable, contain a feed, which, being fcatter'd on other leaves of the fame Plant, may produce a Plant of much the fame kind.

Nor are Damafk-Rofe leaves the onely leaves that produce thefe kinds of Vegetable fproutings; for I have obferv'd them alfo in feveral other kinds of Rofe leaves, and on the leaves of feveral forts of Briers; and on Bramble leaves they are oftentimes to be found in very great elufters; fo that I have found in one clufter, three, four, or five hundred of them, making a very confpicuous black fipot or feab on the back fide of the leaf.

Obferv. X X. Of blue Mould, and of the firl Principles of V_{e-} getation arijing from Putrefaction.

He Blue and White and feveral kinds of hairy mouldy fpots, which are obfervable upon divers kinds of putrify' d bodies, whether Ani ${ }^{2}$ mal fubftances, or Vegetable, fuch as the fkin, raw or drefs'd, flefh, bloud, humours, milk, green Cheefe, \& c. or rotten fappy Wood, or Herbs, Leaves, Barks, Roots, ©fc. of Plants, are all of them nothing elfe but feveral kinds of fmall and varioufly figur'd Mufhroms, which, from convenient materials in thofe putrifying bodies, are, by the concurrent heat of the Air, excited to a certain kind of vegetation, which will not be un ${ }^{2}$ worthy our more ferious fpeculation and examination, as I fhall by and by fhew. But, firft, I muft premife a fhort defcription of this specimen, which I have added of this Tribe, in the firft Figure of the XII. scheme, which is nothing elfe but the appearance of a fmall white foot of hairy mould, multitudes of which I found to befpeck \& whiten over the red covers of a fmall book, which, it feems, were of Sheeps-fkin, that being more apt to gather mould, even in a dry and clean room, then other leathers. Thefe fpots appear'd, through a good Microf cope, to be a very pretty fhap'd Vegetative body, which, from almoft the fame part of the leather, fhot
out multitudes of fmall long cylindrical and trarifparent ftalks, not exaitly ftreight, but a little bended with the weight of a round and white knob that grew on the top of each of them; many of thefe knobs Iobferv'd to be very round, and of a fmooth furface, fuch as A A, Occ. others fmooth likewife, but a little oblong, as B; feveral of them a little broken, or cloven with chops at the top, as \mathbf{C}; others flitter'd as'twere, or flown all to pieces, as D D. The whole fubftance of thefe pretty bodies was of a very tender conftitution, much like the fubftance of the fofter kind of common white Mufhroms, for by touching them with a Pin, I found them to be brufed and torn; they feem'd each of them to have a diftinct root of their own; for though they grew neer together in a clufter, yet I could perceive each ftem to rife out of a diftinct part or pore of the Leather; fome of thefe were fmall and fhort, as feeming to have been but newly fprung up, of thefe the balls were for the moft part round, others were bigger, and taller, as being perhaps of a longer growth, and of thefe, for the moft part, the heads were broken, and fome much wafted, as $\mathbf{E}_{\text {; }}$ what thefe heads contain'd I could not perceive; whether they were knobs and flowers, or feed cafes, I am not able to fay, but they feem'd moft likely to be of the fame nature with thofe that grow on Mulhroms, which they did, fome of them, not a little refemble.

Both their fmell and tafte, which are active enough to make a fenfible impreffion upon thofe organs, are unpleafant and noifome.

I could not find that they would fo quickly be deftroy'd by the actual flame of a Candle, as at firft fight of them I conceived they would be, but they remain'd intire after I had paft that part of the Leather on which they ftuck three or four times through the flame of a Candle; fo that, it feems they are not very apt to take fire, no more then the common white Mufhroms are when they are fappy.

There are a multitude of other fhapes, of which thefe Microfcopical Mufhroms are figur'd, which would have been a long Work to have defcribed, and would not have fuited fo well with my defign in this Treatife, onely, amongft the reft, I muft not forget to take notice of one that was a little like to, or refembled, a Spunge, confifting of a multitude of little Ramifications almoft as that body does, which indeed feems to be a kind of Water-Mufhrom, of a very pretty texture, as I elfe-where manifef. And a fecond, which I muft not omit, becaufe often mingled, and neer adjoining to thefe I have defcrib'd, and this appear'd much like a Thicket of bufhes, or brambles, very much branch'd, and extended, fome of them, to a great length, in proportion to their Diameter, like creeping brambles.

The manner of the growth and formation of this kind of Vegetable, is the third head of Enquiry, which, had I time, I fhould follow : the figure and method of Generation in this concrete feeming to me, next after the Enquiry into the formation, figuration, or chryftalization of Salts, to be the moft fimple, plain, and eafie; and it feems to be a medium through which he muft neceffarily pafs, that would with any likelihood inveftigate the forma informans of Vegetables: for as I think that he fhall: find it a very difficult talk, who undertakes to difcover the form of Sa^{-}

Micrographia.

line cryftallizations, without the confideration and prefeience of the nature and reafon of a Globular form, and as difficult to explicate this configuration of Mufhroms, without the previous confideration of the form of Salts; fo will the enquiry into the forms of Vegetables be no lefs, if not much more difficult, without the fore-knowledge of the forms of Mufhroms, thefe feveral Enquiries having no lefs dependance one upon another then any felect number of Propoffions in Mathematical Elements may be made to have.

Nor do I imagine that the fkips from the one to another will be found very great, if beginning from fluidity, or body without any form, we defcend gradually, till we arrive at the higheft form of a bruite Animal's Soul, making the fteps or foundations of our Enquiry, Fluidity, Orbioulation, Fixation, Angulization, or Cryftallization Germination or Ebullition, Vegetation, Plantanimation, Animation, Senfation, Imagination.

Now, that we may the better proceed in our Enquiry, It will be requifite to confider :

Firft, that Mould and Mufhroms require no feminal property, but the former may be producid at any time from any kind of putrifying Animal, or Vegetable Subftance, as Flefh, eic. kept moift and warm, and the latter, if what Mathiolus relates be true, of making them by Art, are as much within our command, of which Matter take the Epitomie which Mr. Parkinfon has deliver'd in his Herbal, in his Chapterof Mugbroms, becaufe I have not Mathiolus now by me: Unto thefe Mufloroms (faith he), may - alfo be adjoyn'd thofe mbich are made of Art (whereof Mathiolus makes mention) that grow naturally among certain ftones in Naples, and that the ftones being digg'd up, and carried to Rome, and other places, wobere they fet them in their Wine cellars, covering them with a little Earth, and fprinkling a little warm water thereon, would mithin four days produce Mufbroms fit to be eaten, at what time one will: As alfo that Mufloroms may be made to grow at the foot of a wilde Poplar Tree, within four days after, warm water mberein fome leaves have been diffolv'd 乃all be pow'd into the Root (which muft be fit) and the ftock above ground.

Next, that as Mufhroms may be generated without feed, fo does it not appear that they have any fuch thing as feed in any part of them; for having confidered feveral kinds of them, I could never find any thing in them that I could with any probability ghefs to be the feed of it, fo that it does not as yet appear (that I know of) that Mufhroms may be generated from a feed, but they rather feem to depend merely upon a cons venient conftitution of the matter out of which they are made, and d concurrence of either natural or artificial heat.
Thirdly, that by feveral bodies (as Salts and Metals both in Water and in the air, and by feveral kinds of fiblimations in the Air) actuated and guided with a congruous heat, there may be producd feveral kinds of bodies as curioully, if not of a more compos'd Figure; feveral kinds of rifing or Ebulliating Figures feem to manifeft; as witnefs the flooting in the Rectification of fpifits of Vrine, Hart-horn, Bloud, \&c. withefs alfo the curious branches of evaporated difolutions, fome of themi againft
the fides of the containing Jar: others fanding up, or growing an end, out of the bottom, of which I have taken notice of a very great variety. But above all the reff, it is a very pretty kind of Germination which is afforded us in the Silver Tree, the manner of making which with Mercury and Silver, is well known to the Chymifts, in which there is an Ebullition or Germination, very much like this of Mufhroms, if I have been rightly inform'd of it.

Fourthly, I have very often taken notice of, and alfo obferv'd with a Microfoope, certain excrefcencies or Ebullitions in the fnuff of a Candle, which, partly from the fticking of the fmoaky particles as they are carryed upwards by the current of the rarify'd Air and flame, and partly alfo from a kind of Germination or Ebullition of fome actuated unctuous parts which creep along and filter through fome fmall ftring of the Week, are formed into pretty round and uniform heads, very much refembling the form of hooded Mufhroms, which, being by any means expos'd to the frefh Air, or that air which encompaffes the flame, they are prefently lick'd up and devour'd by it, and vanifh.

The reafon of which Phenomenon feems to me, to be no other then this:
That when a convenient thread of the Week is fo bent out by the fides of the fnuff that are about half an Inch or more, remov'd above the bottom, or loweft part of the flame, and that this part be wholly included in the flame; the Oyl (for the reafon of filtration, which I have elfewhere rendred) being continualy driven up the fnuff, is driven likewife into this ragged bended-end, and this being remov'd a good diftance, as half an Inch or more, above the bottom of the flame, the parts of the air that paffes by it, are already, almoft fatiated withe the diffolution of the boiling unctuous fteams that iffued out below, and therefore are not onely glutted, that is, can diffolve no more then what they are already acting upon, but they carry up with them abundance of unctuous and footy particles, which meeting with that rag of the Week, that is plentifully fill'd with Oyl , and onely fpends it as faft as it evaporates, and not at all by diffolution or burning, by means of thefe fteamy parts of the filterated Oyl iffiuing out at the fides of this ragg, and being inclos'd with an air that is already fatiated and cannot prey upon them nor burn them, the afcending footy particles are ftay'd about it and fix'd, fo as that about the end of that ragg or filament of the fnuff, whence the greateft part of the fteams iffue, there is conglobated or fix'd a round and pretty uniform cap, much refembling the head of a Muhtrom, which, if it be of any great bignefs, you may obferve that its underfide will be bigger then that which is above the ragg or ftem of it; for the Oyl that is brought into it by filtration, being by the bulk of the cap a little fhelter'd from the heat of the flame, does by that means iffue as much out from beneath from the falk or downwards, as it does upwards, and by reafon of the great accefs of the adventitious fmoak from beneath, it increafes moft that way. That this may be the true reafon of this Pbenomenon, I could produce many Arguments and Experiments to make it probable: As,

Firt, that the Filtration earries the Oyl to the top of the Week, at leaft

Micrographia.

as high as thefe raggs, is vifible to one that will obferve the fnuff of a burning Candle with a Microfoope, where he may fee an Ebullition or bubbling of the Oyl , as high as the fnufflooks black.

Next, that it does fteam away more then burn; P could telly you of the dim burning of a Candle, the longer the fnuff be which arifes from the abundance of vapours out of the higher parts of it.

And, thirdly, that in the middle of the flame of the Candle, neer the top of the fnuff, the fire or diffolving principle is nothing neer fo ftrong, as neer the botton and out edges of the flame, which may be obferv d by the burning afunder of a thread, that will firft break in thofe parts that the edges of the flame touch, and not in the middle.

And I could add feveral Obfervables that I have taken notice of in the flame of a Lamp actuated with Bellows, and very many others that confirm me in my opinion, but that it is not fo much to my prefent purpofe, which is onely to confider this concreet in the fnuff of a Candle, fo farr as it has any refemblance of a Mufhrom, to the confideration of which, that I may return, I fay, we may alfo obferve:

In the firft place, that the droppings or trillings of Lapidefcent waters in Vaults under ground, feem to conititute a kind of petrify'd body, form'd almoft like fome kind of Mufhroms inverted, in fo much that I have feen fome knobb'd a little at the lower end, though for the moft part, indeed they are otherwife fhap'd, and taper'd towards the end; the generation of which feems to be from no other reafon but this, that the water by foaking through the earth and Lime (for I ghefs that fubftance to add much to it petriffing quality) does fo impregnate it felf with ftony particles, that hanging in drops in the roof of the Vault, by reafon that the foaking of the water is but flow, it becomes expos'd to the Air, and thereby the outward part of the drop by degrees grows hard, by reafon that the water gradually evaporating the frony particles neer the outfides of the drop begin to touch, and by degrees, to dry and grow clofer together, and at length conftitute a cruft or thell about the drop; and this foaking by degrees, being more and more fupply'd, the drop grows longer and longer, and the fides harden thicker and thicker into a Quill or Cane, and at length, that hollow or pith becomes almoft ftop'd up, and folid: afterwards the foaking of the petrifying water, finding no longer a paffage through the middle, burfts out, and trickles down the outfide, and as the water evaporates, leaves new fuperinduc'd fhells, which more and more fwell the bulk of thofe Iceicles; and becaufe of the great fupply from the Vault, of petrifying water, thofe bodies grow bigger and bigger next to the Vault, and taper or fharpen towards the point; for the accefs from the arch of the Vault being but very flow, and confequently the water being fpread very thinly over the furface of the Iceicle, the water begins to fettle before it can reach to the bottom, or corner end of it; whence, if you break one of thefe, you would almoft imagine it a ftick of Wood petrify'd, it having fo pretty a refemblance of pith and grain, and if you look on the outfide of a piece, or of one whole, you would think no lefs, both from its vegetable roundnefs and
tapering form; but whereas all Vegetables are obferv'd to fhoot and grow perpendicularly upwards, this does fhoot or propend directly downwards.
By which laft Obfervables, we fee that there may be a very pretty body fhap'd and concreeted by Mechanical principles, without the leaft fhew or probability of any other feminal formatrix.

And fince we find that the great reafon of the Thanomena of this pretty petrifaction, are to be reduc'd from the gravity of a fluid and pretty volatil body impregnated with fony particles, why may not the Phenomena of Ebullition or Germination be in part poffibly enough deduc'd from the levity of an impregnated liquor, which therefore perpendicularly afcending by degrees, evaporates and leaves the more folid and fix'd parts behind in the form of a Mufhrom, which is yet further diverfify'd and fpecificated by the forms of the parts that impregnated the liquor, and compofe or help to conftitute the Mufhrom.

That the foremention'd Figures of growing Salts, and the Silver Tree, are from this principle, I could very eafily manifeft; but that I have not now a convenient opportunity of following it, nor have I made a fufficient number of Experiments and Obfervations to propound, explicate,and prove fo ufefull a Theory as this of Mufhroms: for, though the contrary principle to that of petrify'd Iceicles may be in part a caufe; yet I cannot but think, that there is fomewhat a more complicated caufe, though yet Mechanical, and poffible to be explain'd.

We therefore have further to enquire of it, what makes it to be fuch a liquor, and to afcend, whether the heat of the Sun and Air, or whether that of firmentiation and putrifaction, or both together; as alfo whether there be not a third or fourth; whether a Saline principle be not a confiderable agent in this bufinefs alfo as well as heat; whether alfo a fixation, precipitation or fettling of certain parts out of the aerial Mufhrom may not be alfo a confiderable coadjutor in the bufinefs. Since we find that many pretty beards or firice of the particles of Silver may be precipitated upon a piece of Brafs put into a Solution of Silver very much diluted with fair water, which look not unlike a kind of mould or hoar upon that piece of metal; and the hoar froft looks like a kind of mould; and whether there may not be feveral others that do concurr to the production of a Mufhrom, having not yet had fufficient yime to profecute according to my defires, I muft referr this to a better opportunity of my own, or leave and recommend it to the more diligent enquiry and examination of fuch as can be mafters both of leifure and conveniencies for fuch an Enquiry.

And in the mean time, I muft conclude, that as far as I have been able to look into the nature of this Primary kind of life and vegetation, I cannot find the leaft probable argument to perfwade me there is any other concurrent caufe then fuch as is purely Mechanical, and that the effects or productions are as neceffary upon the concurrence of thofe caufes as that a Ship, when the Sails are hoift up, and the Rudder is fet to fuch a pofition,fould, when the Wind blows, be mov'd in fuch a way or courle

Micirographia./

to that or t'other place; Or, as that the brufed Watch, which I mention in the defrription of Mofs, fhould, when thofe parts which hindred: its motion were fallen away, begin to move, but after quite another man* ner then it did before.

Obferv. X X 1. Of Mofs, and feveral other finall vegetative Sub: fanices.

MOfs is a Plant, that the wifeft of Kings thought neither unworthy his fpeculation, nor his Pen, and though amongft Plants it be in bulk one of the fmalleft, yet it is not the leaft confiderable: For, as to its fhape, it may compare for the beauty of it with any Plant thatgrows, and bears a much bigger breadth; it has a root almoft like a feedy Parfnep, furnifh'd with fmall ftrings and fuckers, which are all of them finely branch'd, like thofe of the roots of much bigger Vegetables; out of this frings the ftem or body of the Plant, which is fomewhat ूuadrangular, rather then Cylindrical, moft curioufly fluted or ftrung with Imall creafes, which run, for the moft part, parallel the whole ftem; on the fides of this are clofe and thick fet, a multitude of fair,large, well-fhap'd leaves, fome of them of a rounder, others of a longer fhape, according as they are younger or older when pluck'd; as I ghefs by this, that thole Plants that had the ftalks growing from the top of them, had their leaves of a much longer thape, all the furface of each fide of which, is curioully cover'd with a multitude of little oblong tranfparent bodies, in the manner as you fee it exprefs'd in the leaf B, in the XIII. Scheme.

This Plant, when young and fpringing up, does much refemble a Houfleek, having thick leaves, almof like that, and feems to be fomwhat of kin to it in other particulars; alfo from the top of the leaves, there fhoots out a frnall white and tranfparent hair, or thorn: This ftem, in time, come to fhoot out into a long, roundand even ffalk, which by cutting tranfverfly, when dry, I manifeftly found to be a ftiff, hard, and hollow Cane, or Reed, without any kind of knot, or ftop, from its bottem, where the leaves encompafs'd it, to the top, on which there grows a large feed cafe, A, cover'd with a thin, and more whitifh $\mathrm{fkin}, \mathrm{B}$, terminated in a long thorny top, which at firft covers all the Cafe, and by degrees, as that fwells, the fkin cleaves, and at length falls off, with its thorny top and all (which is a part of it) and leaves the feed Cafe to ripen, and by degrees, to fhatter out its feed at a place underneath this cap, B, which before the feed is ripe, appears like a flat barr'd button, without any hole in the middle; but as it ripens, the button grows bigger, and a hole appears in the middle of it, E , out of which, in all probability, the feed falls: For as it ripens by a provifion of Nature, that end of this Cafe turns downward after the fame manner as the ears of Wheat and Barley ufually do; and opening feveral of thefe dry red Cafes, F, I found them to be
quite hollow, without any thing at all in them; whereas when I cut them afunder with a fharp Pen-knife when green, I found in the middle of this great Cafe, another fmaller round Cafe, between which two, the interftices were fill'd with multitudes of ftringie fibres, which feem'd to fufpend the leffer Cafe in the middle of the other, which (as farr as I was able to difcern) feem'd full of exceeding fmall white feeds, much like the feed-bagg in the knop of a Carnation, after the flowers have been two or three days, or a week, fallen off; but this I could not fo perfectly difcern, and therefore cannot pofitively affirm it.

After the feed was fallen away, I found both the Cafe, Stalk, and Plant, all grow red and wither, and from other parts of the root continually to fpring new branches or flips, which by degrees increafed, and grew as bigg as the former, feeded, ripen'd, fhatter'd, and wither'd.

I could not find that it obferv'd any particular feafons for thefe feveral kinds of growth, but rather found it to be fpringing, mature, ripe, feedy, and wither'd at all times of the year; But I found it moft to flourifh and increafe in warm and noift weather.

It gathers its nourifhments,for the moft part, out of fome Lapidefcent, or other fubflance corrupted or chang'd from its former texture, or fubftantial form; for I have found it to grow on the rotten parts of Stone, of Bricks, of Wood, of Bones, of Leather, ecc.

It oft grows on the barks of feveral Trees, fpreading it felf, fometimes from the ground upwards, and fometimes from fome chink or cleft of the bark of the Tree, which has fome putrifj'd fubftance in it; but this feems of a diftinct kind from that which I obferv'd to grow on putrify'd inanimate bodies, and rotten earth.

There are alfo great varieties of other kinds of Moffes, which grow on Trees, and feveral other Plants, of which I fhall here make no mention, nor of the Mofs growing on the fkull of a dead man, which much refembles that of Trees.

Whether this Plant does fometimes originally fpring or rife out of corruption, without any diffeminated feed, I have not yet made trials enough to be very much, either pofitive or negative; for as it feems very hard to conceive how the feed fhould be generally difpers'd into all parts where there is a corruption begun, unlefs we may rationally fuppofe, that this feed being fo exceeding fmall, and confequently exceeding light, is thereby taken up, and carried to and fro in the Air into every place, and by the falling drops of rain is wafh'd down out of it, and fo difpers'd into all places, and there onely takes root and propagates, where it finds a convenient foil or matrix for it to thrive in; fo if we will have it to proceed from corruption, it is not lefs difficult to conceive,

Firft, how the corruption of any Vegetable, much lefs of any Stone or Brick, fhould be the Parent of fo curioufly figur'd, and fo perfect a Plant as this is. But here indeed, I cannot but add, that it feems rather to be a product of the Rain in thofe bodies where it is ftay'd, then of the very bodies themfelves, fince I have found it growing on Marble, and Flint; but always the Microfcope, if not the naked eye, would difcover fome little hole of Dirt in which it was rooted.

Micrographia.

Next, how the corruption of each of thofe exceedingly differing bodies fhould all confpire to the production of the fame Plant, that is, that Stones, Bricks, Wood, or vegetable fubftances, and Bones, Leuther, Honns, or animate fubftances, unlefs we may with fome plaufiblenefs fay, that Air and Water are the coad jutors, or menfiruums, in all kinds of putrifactions, and that thereby the bodies (though whil'ft they retain'd their fubftantial forms, were of exceeding differing natures, yet) fince they are diffolv'd and mixt into another, they may be very Homogeneous, they being almoft refolv'd again into Air, Water, and Earth; retaining, perhaps, one part of their vegetative faculty yet entire, which meetilig with congruous affiftants, fuch as the heat of the Air, and the tluidity of the Water, and fuch like coadjutors and conveniences, acquires a certain vegetation for a time, wholly differing perhaps from that kind of vegetation it had before.

To explain my meaning a little bettet by a grofs Similitude :
Suppofe a curious piece of Clock-work, that had had feveral motions and contrivances in it, which, when in order. would all have mov'd in their defign'd methods and Periods. We will further fuppofe, by fome means, that this Clock comes to be broken, brufed, or otherwife difordered, fo that feveral parts of it being diflocated, are impeded, and fo ftand ftill, and not onely hinder its own progreflive motion, and produce not the effect which they were defign'd for, but becaufe the other parts alfo have a dependence upon them, put a fop to their motion likewife; and fo the whole Inftrument becomes unferviceable,g and not fit for any ufe. This Inftrument afterwards, by fome fhaking and tumbling, and throwing up and down, comes to have feveral of its parts fhaken out, and feveral of its curious motions, and contrivances, and particles all fallen afunder; here a Pin falls out, and there a Pillar, and here a Wheel, and there a Hammer, and a Spring, and the like, and among the reft, away falls thofe parts alfo which were brufed and diforder'd, and had all this while impeded the motion of all the reft; hereupon feveral of thofe other motions that yet remain, whofe fprings were not quite run down, being now at liberty, begin each of them to move, thus or thus, but quite after another method then before, there being many regulating parts and the like, fallen away and loft. Upon this, the Owner, who chances to hear and obferve fome of thefe effects, being ignorant of the Watch-makers Art, wonders what is betid his Clock, and prefently imagines that fome Artift has been at work, and has fet his Clock in order, and made a new kind of Inftrument of it, but upon examining circumftances, he finds there was no fuch matter, but that the cafual flipping out of a Pin had made feveral parts of his Clock fall to pieces, and that thereby the obftacle that all this while hindred his Clock, together with other ufefull parts were fallen out, and fo his Clock was fet at liberty. And upon winding up thofe fprings again when run down, he finds his Clock to go, but quite after another manner then it was wont heretofore.

And thus may it be perhaps in the bufinefs of Mofs and Mould, and Mufhroms, and feveral other fontaneous kinds of vegetations, which may

134

Micrograhpia.

may be caus'd by a vegetative principle, which was a coadjutor to the life and growth of the greater Vegetable, and was by the deftroying of the life of it ftopt and impeded in performing its office; but afterwards, upon a further corruption of feveral parts that had all the while impeded it, the heat of the Sun winding up, as it were, the foring, fets it again into a vegetative motion, and this being fingle, and not at all regulated as it was before (when a partof that greater machine the priftine vegetable) is mov'd after quite a differing manner, and produces effects very differing from thofe it did before.
But this I propound onely as a conjecture, not that I am more enclin'd to this Hypothefis then the feminal, which upon good reafon 1 ghefs to be Mechanical alfo, as I may elfewhere more fully fhew: But becaufe I may, by this, hint a poffible way how this appearance may be folv'd; fuppofing we fhould be driven to confefs from certain Experiments and Obfervations made, that fuch or fuch Vegetables were produc'd out of the corruption of another, without any concurrent feminal principle (as I have given fome reafon to fuppofe, in the defcription of a Microfoopical Mufhrome) without derogating at all from the infinite wifdom of the Creator. For this accidental production, as I may call it, does manifeft as much, if not very much more, of the excellency of his contrivance as any thing in the more perfect vegetative bodies of the world, even as the accidental motion of the Automaton does make the owner fee, that there was much more contrivance in it then at firft he imagin'd. But of this I have added more in the defcription of Mould, and the Vegetables on Rofe leaves, σc. thofe being much more likely to have their original from fuch a caufe then this which I have here defcribed, in the 13. Scheme, which indeed I cannot conceive otherwife of, then as of a moft perfect Vegetable, wanting nothing of the perfections of the moft confpicuous and vafteft Vegetables of the world, and to be of a rank fo high, as that it may very properly be reckon'd with the tall Cedar of Lebanon, as that Kingly Botanift has done.
We know there may be as much curiofity of contrivance, and excellency of form in a very fmall Pocket-clock, that takes not up an Inch fquare of room, as there may be in a Church-clock that fills a whole room; And I know not whether all the contrivances and Mechanifms requifite to a perfect Vegetable, may not be crowded into an exceedingly lefs room then this of Mofs, as I have heard of a ftriking Watch fo fmall, that it ferv'd for a Pendant in a Ladies ear; and I have already given you the defcription of a Plant growing on Rofe leaves, that is abundantly fmaller then Mofs; infomuch, that neer 1000 . of them would hardly make the bignefs of one fingle Plant of Mofs. And by comparing the bulk of Mofs, with the bulk of the biggeft kind of Vegetable we meet with in Story (of which kind we find in fome hotter climates, as Guine, and Brafile, the ftock or body of fome Trees to be twenty foot in Diameter, whereas the body or ftem of Mofs, for the moft part, is not above one fixtieth part of an Inch) we fhall find that the bulk of the one will exceed the bulk of the other, no lefs then 2985984 Millions,

Migrographia.

or 2985984000000 , and fuppofing the production on a Rofe leaf to be a Plant, we fhall have of thofe Indian Plants to exceed a production of the fame Vegetable kingdom no lefs then 1000 times the former number; fo prodigioully varicus are the works of the Creator, and fo All-fufficient is he to perform what to man would feem unpoffible, they being both alike eafie to him, even as one day, and a thoufand years are to him as one and the fame time.
I have taken notice of fuch an infinite variety of thofe fmaller kinds of vegetations, that fhould I have defcribed every one of them, they would almoft have fill'd a Volume, and prov d bigg enough to have made a new Herbal, fuch multitudes are there to be found in moift hot weather, efpecially in the Summer time, on all kind of putrifying fubftances, which, whether they do more properly belong to the Claffis of Mufloroms, or Moulds, or Moffes, I fhall not now difpute, there being fome that feem more properly of one kind, others of another, their colours and magnitudes being as much differing as their Figures and fubftances.
Nay, I have obferv'd that putting fair Water (whether Rain-water or Pump-water, or May-dew, or Snow-water, it was almoft all one) I have often oblerv'd, I fay, that this Water would, with a little ftanding, tarnifh and cover all about the fides of the Glafs that lay under water, with a lovely green; but though I have often endeavour'd to difcover with my Microfope whether this green were like Mofs, or long ftriped Sea-weed, or any other peculiar form, yet fo ill and imperfect are our Microfoopes, that I could not certainly difcriminate any.

Growing Trees alfo, and any kinds of Woods, Stones, Bones, orc, that have been long exposid to the Air and Rain, will be all over cover'd with a greenifh fcurff, which will very much foul and green any kind of cloaths that are rubb'd againft it; viewing this, I could not certainly perceive in many parts of it any determinate form, though in many I could perceive a Bed as 'twere of young Mofs, but in other parts it look'd almoft like green bufhes, and very confus'd,but always of what ever irregular Figures the parts appear'd of, they were always green, and feem'd to be either fome Vegetable, or to have fome vegetating principle.

Obferv. XXII. Of common Sponges, and feveral other Spongie fibrous bodies.

ASponge is commonly reckon'd among the Zoophyts, or Plant Animals; and the texture of it, which the Microfeope difcovers, feems to confirm it; for it is of a form whereof I never obferv'd any other Vegetable, and indeed, it feems impoffible that any fhould be of it, for it confifts of an infinite number of fmall fhort fibres, or nervous parts, much of the fame bignefs, curioufly jointed or contex'd together in the form of a Net, as is more plainly manifeft by the little Draught which I have

Micrographia.

added, in the third Figure of the IX. Scheme, of a piece of it, which you may perceive reprefents a confus'd heap of the fibrous parts curioully jointed and implicated. The joints are, for the moft part, where three fibres onely meet, for I have very feldom met with any that had four.

At thefe joints there is no one of the three that feems to be the ftock whereon the other grow, but each of the fibres are, for the moft part, of an equal bignefs, and feemeach of them to have an equal fhare in the joint; the fibres are all of them much about the fame bigness, not fmaller towards the top of the Sponge, and bigger neerer the bottom or root, as is ufuall in Plants, the length of each between the joints, is very irregular and different; the diftance between fome two joints, being ten or twelve times more then between fome others.
Nor are the joints regular, and of an equitriagonal Figure, but, for the moft part, the three fibres' fo meet, that they compofe three angles very differing all of them from one another.

The mefhes likewife, and holes of this reticulated body, are not lefs various and irregular: fome bilateral, others trilateral, and quadrilateral Figures; nay, I have obferv'd fome mefhes to have $5,6,7,8$, or 9 . fides, and fome to have onely one, fo exceeding various is the Lufus Nature in this body.

As to the outward appearance of this Vegetative body, they are fo nfuall every where, that I need not defcribe them, confifting of a foft and porous fubftance, reprefenting a Lock, fometimes a fleece of Wooll; but it has befides thefe fmall microfoopical pores which lie between the fibres, a multitude of round pores or holes, which, from the top of it, pierce into the body, and fometimes go quite through to the bottom.

I have obferv'd many of thefe Sponges, to have included likewife in the midft of their fibrous contextures, pretty large friable frones, which muft either have been inclos'd whil'ft this Vegetable was in formation, or generated in thofe places after it was perfectly fhap'd. The later of which feems the more improbable, becaufe I did not find that any of thefe ftony fubftances were perforated with the fibres of the Sponge.

I have never feen nor been enform'd of the true manner of the growing of Sponges onthe Rock; whether they are found to increafe from little to great, like Vegetables, that is, part after part, or like Animals, all parts equally growing together; or whether they be matrices or feed-baggs of any kind of Fifhes, or fome kind of watry Infect ; or whether they are at any times more foft and tender, or of another nature and texture, which things, if I knew, I fhould much defire to be informed of: but from a curfory view that I at firft made with my Microfcope, and fome other trials, I fuppofed it to be fome Animal fubftance caft out, and faftned upon the Rocks in the form of a froth, or congeries of bubbles, like that which I have often obferv'd on Rofemary, and other Plants (wherein is included a little Infect) that all the little films which divide thefe bubbles one from another, did prefently, almoft after the fubftance began to grow a little harder, break,and leave onely the thread behind, which might be, as 'twere, the angle or thread between the bubbles, that the great

Micrographia.

 great holes or pores obfervable in thefe Sponges were made by the erus ption of the included Heterogeneous fubftance (whether air, or fome other body, for many other fluid bodies will do the fame thing) which breaking out of the leffer, were collected into very large bubbles, and fo might make their way out of the Sponge, and in their paffage might leave a round cavity; and if it were large, might carry up with it the adjacent bubbles, which may be perceiv'd at the outfide of the Sponge, if it be firft throughly wetted, and fufferd to plump it felf into its natural form, or be then wrung dry, and fuffer'd to expand it felf again, which it will freely do whil'ft moilt: for when it has thus plump'd it felf into its natural fhape and dimenfions, tis obvious enough that the mouthis of the larger holes have a kind of lip or rifing round about them, but the other fmaller pores have little or none. It may further be found, that each of thefe great pores has many other fmall pores below, that are united unto it, and help to conftitute it, almoft like fo many rivulets or friall ftreams that contribute to the maintenance of a large River. Nor from this Hypothefis would it have been difficult to explicate, how thofe little branches of coral, fmal stones, shells, and the like, come to be included by thefe frothy bodies: But this inded was but a conjecture ; and upon a more accurate enquiry into the form of it with the Microfoope, it feems not to be the true origine of them; for whereas Sponges have onely three arms which join together at each knot, if they had been generated from bubbles they muft have had four.But that they are Animal Subftances, the Chymical examination of them feems to manifeft, they affording a volatil Salt and firit, like HartsHorn, as does alfo their great ftrength and toughnefs, and their fmell when burn'd in the Fire or a Candle, which has a kind of flefhy fent, not much unlike to hair. And having fince examin'd feveral Authors concerning them, among others, I find this account given by Bellowius, in the X I. Cbap. of his 2^{d} Book, De Aquatilibus. spongie recentes, fays he, a ficcis longe diverfa, fopulis aque nearine ad duos vel tres cubitos, nonnunquam quatuor tantum digitos immerfis, ut fungi arboribus adbarent, fordido quodani fucco aut mucofa potius fanie refferte, ufque adeo fetida,ut vel eminus naufeam excitet, continetur autem ios cavernis, quas inanes in ficcis \& lotis spongits cernimus: Putris pulmonis modo nigre confpiciuntur, verùm que in fublimi aque nafcuntur multo magis opaca nigredine fuffufa funt. Vivere quidem spongias adbarendo Ariftoteles cenfot: abfolute vero minime: fenfumque aliquem babere, vel eo argumento (inquit) credantur, quod difficillime abfrahantur, nific clanculum agatur: Atq; ad avulforis acceffum it a contrabantur, ut eas evellere difficile fit, quod idem etiam faciunt quoties flatus tempeftatéfque argent. Puto autem illis fuccum fordidum quem fupra !diximus carnis loco à natura attributum fuife : atque meatibus latioribus tant quam inteftinis aut interaneis uti. Ceterum pars ea que spongid cautibus adharent eft tanquan folii petiolus, a quo veluti collum quoddam gracile incipit: quod deinde in latitudinem diffufum capitis globum facit. Recentibus nibil eft fiftulofum, befitantque tanquam radicibus. Superne omnes propemodum meatur concreti latent : inferne verd quaterni aut quini patent, per quos

Micrographia.

eas fugere exiftimamus. From which Defcription, they feem to be a kind of Plant-Animal that adheres to a Rock, and thefe fmall fibres or threads which we have defcribed, feem to have been the Veffels which ('tis very probable) were very much bigger whil'ft the Interfitia were fill'd (as he affirms) with a mucous, pulpy or flefhy fubftance; but upon the drying were fhrunk into the bignefs they now appear.

The texture of it is fuch, that I have not yet met with any other body in the world that has the like, but onely one of a larger fort of Sponge (which is preferv'd in the Mufeum Harveanum belonging to the moft Illuftrious and moft learned Society of the Phyficians of London) which is of a horney, or rather of a petrify'd fubftance. And of this indeed, the texture and make is exactly the fame with common Sponges, but onely that both the holes and the fibres, or texture of it is exceedingly much bigger, for fome of the holes were above an Inch and half over, and the fibres and texture of it was bigg enough to be diftinguifhed eafily with ones eye, but conficuoufly with an ordinary fingle Microfcope. And thefe indeed, feem'd to have been the habitation of fome Animal; and examining Arifotle, I find a very confonant account hereunto, namely, that: he had known a certain little Animal, call'd Pinnothera, like a Spider, to be bred in thofe caverns of a Sponge, from within which, by opening and clofing thofe holes, he infnares and catches the little Fiihes; and in another place he fays, That'tis very confidently reported, that there are certain Moths or Worms that refide in the cavities of a Sponge, and are there nourifhed: Notwithftanding all which Hiftories, I think it well worth the enquiring into the Hiftory and nature of a Sponge, it feeming to promife fome information of the Veffels in Animal fubftances, which (by reafon of the folidity of the interferted flefh that is not eafily remov'd, without deftroying alfo thofe interfpers'd Veffels) are hitherto undifcover'd; whereas here in a Sponge, the Parenchyma, it feems, is but a kind of mucuus gelly, which is very eafily and cleerly wafh'd away.

The reafon that makes me imagine, that there may probably be fome fuch texture in Animal fubftances, is, that examining the texture of the filaments of tann'd Leather, I find it to be much of the fame nature and ftrength of a Sponge; and with my Microfcope, I have obferv'd many fuch joints and knobs, as I have defcribed in Sponges, the fibres alfo in the hollow of feveral forts of Bones, after the Marrow has been remov'd, I have found fomewhat to refemble this texture, though, I confefs, I never yet found any texture exactly the fame, nor any for curiofity comparable to it.

The filaments of it are much fmaller then thofe of Silk, and through the Microfcope appear very neer as tranfparent, nay, fome parts of them I have oblerv d much more.

Having examin'd alfo feveral kinds of Mufhroms, I finde their texture to be fomewhat of this kind, that is, to confift of an infinite company of fmall filaments, every way contex'd and woven together, fo as to make a kind of cloth, and more particularly, examining a piece of Touch-wood (which is a kind of fews-ear, or Mufhrom, growing here in England alfo,
on feveral forts of Trees, fuch as Elders, Maples, Willows, erc. and is commonly call'd by the name of spunk; but that we meet with to bed fold in Shops, is brought from beyond Seas) Ifound it to be made of air exceeding delicate texture: For the fubftance of it feels, and looks to the naked eye, and may be ftretch'd any way, exactly like a very fine piece of Chamois Leather, or wafh'd Leather, but it is of fomewhat a browner: hew, and nothing neer fo ftrong; but examining it with my Microfiopey I found it of fomewhat another make then any kind of Leather; for whereas both Chamois, and all other kinds of Leather I have yet view'd, confift of an infinite company of filaments, fomewhat like bufhes interwoven one within another, that is, of bigger parts or ftems , as it were, and fmaller branchings that grow out of them; or like a heap of Ropes ends, where each of the larger Ropes by degrees feem to fplit or untwift, into many fmatler Cords, and each of thole Cords imto fmaller Lines, and thofe Lines into Threads, ơc. and thefe ftrangely intangled, or interwoven one within another : The texture of this Touch-wood feems more like that of a Leck or a Fleece of Wool, for it confifts of an infinite number of fmall filaments, all of them, as farr as I could pereeive, of the fame bignefs like thofe of a Sponge, but that the filaments of this were not a twentieth part of the bignefs of thofe of a Sponge; and I could not fo plainly perceive their joints, or their manner of interweaving, though, as farr as I was able to difcern with that Microfcope I had, I fuppofe it to have fome kind of refemblance, but the joints are nothing neer fo thick, nor without much trouble vifible.

The filaments I could plainly enough perceive to be even,round, cylindrical, tranfparent bodies, and to crofs each other every way, that is, there were not more feem'd to lie borizontally then perpendicularly and thwartway, fo that it is fomewhat difficult to conceive how they fhould grow in that manner. By tearing off a fmall piece of it; and looking on the ragged edge, I could among feveral of thofe fibres perceive fmall joints, that is, one of thofe hairs fplit into two, each of the lame bignefs with the other out of which they feem'd to grow, but having not lately had an opportunity of examining their manner of growth, I cannot pofitively af firm any thing of them.

But to proceed, The fwelling of Sponges upon wetting and the rifing of the Water in it above the furface of the Water that it touches, are both from the fame caufe, of which an account is already given in the fixth Obfervation.

The fubftance of them indeed, has fo many excellent properties, fcarce to be met with in any other body in the world, that I have often wondered that fo little ufe is made of it, and thofe onely vile and fordid; certainly, if it were well confider'd, it would afford much greater con* veniencies.

That ufe which the Divers are faid to make of it, feems, if true, very ftrange, but having made trial of it my felf, by dipping a fmall piece of it in very good Sallet-oyl, and putting it in my mouth, and then keeping my mouth and nofe under water, I could not find any fuch thing; for I
was as foon out of breath, as if I had had no Sponge, nor could I fetch my breath without taking in water at my mouth; but I am very apt to think, that were there a contrivance whereby the expir'd air might be fore'd to pafs through a wet or oyly Sponge before it were again infpir'd, it might much cleanfe, and ftrain away from the Air divers fuliginous and other noifome fteams, and the dipping of it in certain liquors might, perhaps, fo renew that property in the Air which it lofes in the Lungs, by being breath'd, that one fquare foot of Air might laft a man for refpiration much longer, perhaps, then ten will now ferve him of common Air.

Obferv. XXIII. Of the curious texture of Sea-weeds.

FOr curiofity and beauty, I have not among all the Plants or Vegetables I have yet obferv'd, feen any one comparable to this Sea-weed Thave here defcrib'd, of which I am able to fay very little more then what is reprefented by the fecond Figure of the ninth Scheme: Namely, that it is a Plant which grows upon the Rocks under the water, and increafes and fpreads it felf into a great tuft, which is not onely handfomely branch'd into feveral leaves, but the whole furface of the Plant is cover'd over with a moft curious kind of carv'd work, which confifts of a texture much refembling a Honey-comb; for the whole furface on both fides is cover'd over with a multitude of very fmall holes, being no bigger then fo many holes made with the point of a fmall Pinn, and rangid in the neateft and moft delicate order imaginable, they being plac'd in the manner of a Quincunx, or very much like the rows of the eyes of a Fly, the rows or orders being very regular, which way foever they are obferv'd: what the texture was, as it appear'd through a pretty bigg Magnifying Microfcope, I have here adjoin'd in the firft Figure of the 14. Scheme. which round Area $A B C D$ reprefents a part of the furface about one eighth part of an Inch in Diameter: Thofe little holes, which to the eye look'd round, like fo many little fpots, here appear'd very regularly thapd holes, reprefenting almoft the fhape of the fole of a round toed thoe, the hinder part of which, is, as it were, trod on or cover d by the toe of that next below it;thefe holes feem'd wall'd about with a very thin and tranfparent fubftance, looking of a pale ftraw-colour; from the edge of which; againft the middle of each hole, were fprouted out four frall tranfparent ftraw-colour'd Thorns, which feem'd to protect and cover thofe cavities, from either fide two ; neer the root of this Planit, were fprouted out feveral fmall branches of a kind of baftard Coralline, curis oufly branch'd, though fmall.

And to confirm this, having lately the opportunity of viewing the large Plant (if I may fo call it) of a Sponge petrify'd, of which I made mention in the laft Obfervation, I found, that each of the Branches or Figures of it, did, by the range of its pores, exhibit juft fuch a texture, the
y the
thin
edge
fmall
cover
were
curi
g the
made
hes of
xture,
the

Micrographia.

the rows of pores croffing one another, much after the namener as the rows of eyes do which are defcrib'd in the 26 .Scheme : Coralline alfo, and feveral forts of white Coral, I have with a Micorofoope obferv'd very curioufly fhapd. And I doubt hot, butt that he that flall obferve thefe feveral kinds of Plants that grow upon Recks, which the Sea fomer times ovenflows, and thofe heaps of others which are vomited out of it tepon the fhore, may find multitudes of litule Plants, and other bodies; which like this will afford very beautifull objects for the Alicrof cope 3 and this specimen hete is adjoin'd onely to excite their curiofities who have opb, portunity of obferving to examine and collect what they find worthy, their notice; for the Sex, among terreftrial bodies, is alfo a prolifich mother, and affords as many Inftances of fpontaneoss generations as ei-: ther the Air or Eairth.

Obferv. XXI V. Of the furfaces of Rofemary, and other leaves.

THis which is delineated within the circle of the fecond Figure of the 14. Seheme, is a fmall part of the back or under fide of a leaf of Rofemary, which I did not therefore make choice of, becaufe it had any thing peculiar which was not obfervable with a Microfope in feverah other Plants, but becaufe it exhibits at one view,

Firft, a fmooth and fhining furface, narnely, A B, which is a part of the upper fide of the leaf, that by a kind of hem or doubling of the leaf appears on this fide. There are nultitudes of leaves, whefe furfaces are like this fmooth, and as it were quilted, which look like a curious quilted bagg of green Silk, or like a Bladder, or fome fuch pliable tranfparent fubftance, full fuffed out with a green juice or liquor; the furface of Rue, or Herbgrafs, is polifh'd, and all over indented, or pitted, like the Silk-worm's Egg, which 1 hhall anon defcribe $;$ the fnooth furfaces of other Plants are otherwife quilted, Nature in this, as it were, expreffing her Needle-work, or imbroidery.

Next a downy or bufhy furface, fuch as is all the under fide almoft, appearing through the Microf ope much like a thicket of bufhes, and with this kind of Down or Hair the leaves and ftalks of multitudes of Vegetables are covered; and there feems to be as great a variety in the fhape, bulk, and manner of the growing of thefe fecundary Plants, as I may call them (they being, as it were, a Plant growing out of a Plant, or fomes what like the hairs of Animals) as there is to be found amongft fmalt fhrubs that compofe buhhes; but for the moft part, they confift of fmall: tranfparent parts, fome of which grow in the flape of frall Needles or Bodkins, as on the Thiftle, Cowag-ecod ard Nettle; others in the form of Cat's claws, as in Cliders, the beards of Barley, the edges of feveral forts of Grafs and Reeds, Gecin other, as Coltsfoot, Rofe-campion, Aps, Poplar, Willow, and almoft all other downy Plants, they grow in the formof buthes very much diverfify d in each particular Plant. That which Ihave before
before in the 19 . Obfervation noted on Rofe-leaves, is of a quite differing kind, and feems indeed a real Vegetable, diftinct from the leaf.
Thirdly, among thefe fmall bufhes are obfervable an infinite company of fmall round Balls, exactly Globular, and very much refembling Pearls, namely, CCCC, of thefe there may be multitudes obferv'd in Sage, and feveral other Plants, which I fuppofe was the reafon why Atbanafius Kircher fuppofed them to be all cover'd with Spiders Eggs, or young Spiders, which indeed is nothing elfe but fome kind of gummous exfudation, which is always much of the fame bignefs. At firft fight of thefe, I confefs, I imagin'd that they might have been fome kind of matrices, or nourifhing receptacles for fome fmall Infect, juft as I have found Oakapples, and multitudes of fuch other large excrefcencies on the leaves and other parts of Trees and fhrubs to be for Flyes, and divers other Infects, but obferving them to be there all the year, and fcarce at all to change their magnitude, that conjecture feem'd not fo probable. But what ever be the ufe of it, it affords a very pleafant object through the Microfoope, and may, perhaps, upon further examination, prove very luciferous.

Obferv. XXV. Of the finging points and juice of Nettles, and fome other venomous Plants.

ANettle is a Plant fo well known to every one, as to what the appearance of it is to the naked eye, that it needs no defcription; and there are very few that have not felt as well as feen it ; and therefore it will be no news to tell that a gentle and flight touch of the fkin by a Nettle, does oftentime, not onely create very fenfible and acute pain, much like that of a burn or fcald, but often allo very ángry and hard fwellings and inflamations of the parts, fuch as will prefently rife, and continue fwoln divers hours. Thefe obfervations, I fay, are common enough; but how the pain is fo fuddenly created, and by what means continued, augmented for a time, and afterwards diminifh'd, and at length quite exftinguifh'd, has not, that I know, been explain'd by any.

And here we muft have recourfe to our Microfcope, and that will, if almoft any part of the Plant be looked on, fhew us the whole furface of it very thick fet with turn-Pikes, or fharp Needles, of the fhape of thofe reprefented in the 15 . Scheme and firft Figure by A B, which are vifible alfo to the naked eye ; each of which confifts of two parts very diftinct for thape, and differing alfo in quality from one another. For the part A, is fhaped very much like a round Bodkin, from B tapering till it end in a very fharp point; it is of a fubftance very hard and ftiff, exceedingly tranfparent and cleer, and, as I by many trials certainly found, is hollow from top to bottom.

This I found by this Experiment, I had a very convenient Microfoope

\square
foope with a fingle Glafs which drew about half an Inch, this I had fafted into a little frame, almoft like a pair of Spectacles, which I placed before mine eyes, and fo holding the leaf of a Nettle at a convenient diftance from my eye, Idid firft, with the thrufting of feveral of thefe briftes into my fkin, perceive that prefently after I had throft them in I felt the burning pain begin; next I obferv d in divers of them, that upon thrufting my finger againft their tops, the Bodkin (if 1 may fo call it) did not in the leaft bend, but I could perceive moving up and down within it a certain liquor, which uponthrufting the Bodkin againft its bafis, or bagg $B_{\text {, }}$ I could perceive to rife towards the top, and upontaking away my band, I could fee it again fubfide, and forink into the bagg; this I did very often, and faw this Pbonomenon as plain as I could ever fee a parcel of water afcend and defcend ina pipe of Glafs. But the bafis underneaththefe Bodkins on which they were faft, were made of a more pliable fubftance, and looked almoft like a little bagg of green Leather, or rather refembled the fhape and furface of a wilde Cucumber, or cucumeris afinini, and I could plainly perceive them to be certain little baggs, bladders, or receptacles full of water, or as I ghefs, the liquor of the Plant, which was poifonous, and thofe fmall Bodkins were but the Syringe-pipes, or Cly-fter-pipes, which firft made way into the fkin, and then ferved to convey that poifonous juice, upon the preffing of thofe little baggs, into the interior and fenfible parts of the fkin , which being fo difcharg d , does corrode, or, as it were, burn that part of the fkinit tonches $;$ and this pain wil fometimes laft very long, according as the impreffion is made deeper or ftronger.

The other parts of the leaf or furface of the Nettle, have very little confiderable, but what is common to moft of thefe kinds of Plants, as the ruggednefs or indenting, and hairinefs, and other roughneffes of the furface or out-fide of the Plant, of which I may fay more in another place. As I fhall likewife of certain little pretty cleer Balls or Apples which I have obferved to ftick to the fides of thefe leaves, both on the upper and under fide, very much like the fmall Apples which I have often obferv'd to grow on the leaves of an Oak call'd Oak-apples which are nothing but the Matrices of an Infect, as I elfewhere fhew.

The chief thing therefore is, how this Plant comes, by fo flight a touch, to create fo great a painjand the reafon of this feems to be nothing elfe, but the corrofive penetrant liquor contain'd in the fmall baggs or bladders, upon which grow out thofe fharp Syringe-pipes, as I before noted; and very confonant to this, is the reafon of the pain created by the fting of a Bee, Wafp, ©c. as I elfewhere fhew: For by the Dart, which is likewife a pipe, is made a deep paflage into the fkin, and then by the anger of the Fly, is his gally poifonous liquor injected; which being admitted among the fenfible parts, and fo mix'd with the humours or fagnating juices of that part, does create an Ebullition perhaps, or effervefcens, as is ufually obferv'd in the mingling of two differing chymical faline liquors, by which means the parts become fwell'd, hard, and very painfull; for thereby the nervous and fenfible parts are not onely ftretch'd and ftrain'd beyond

Micrographia.

beyond their natural tone, but are alfo prick'd, perhaps, or corroded by the pungent and incongruous pores of the intruded liquor.

And this feems to be the reafon, why Aqua fortis, and other faline liquors, if they come to touch the fenfitive parts, as in a cut of the fkin, or the like, do fo violently and intollerably excruciate and torment the Patient. And'tis not unlikely, but the Inventors of that Diabolical practice of poifoning the points of Arrows and Ponyards, might receive their firft hint from fome fuch Inftance in natural contrivances, as this of the Nettle : for the ground why fuch poifon'd weapons kill fo infallibly as they do, feems no other then this of our Nettle's ftinging; for the Ponyard or Dart makes a paffage or entrance into the fenfitive or vital parts of the body, whereby the contagious fubftance comes to be diffolv'd by, and mix'd with the fluid parts or humours of the body, and by that means fpreads it felf by degrees into the whole liquid part of the body, in the fame manner, as a few grains of Salt, put into a great quantity of Water, will by degrees diffufe it felf over the whole.

And this I take to be the reafon of killing of Toads, Frogs, Effs, and feveral Fifhes, by ftrewing Salt on their backs (which Experiment was fhewn to the Royal society by a very ingenious Gentleman, and a worthy Member of it) for thofe creatures having always a continual exfudation, as it were, of flimy and watry parts,fweating out of the pores of their fkin, the faline particles, by that means obtain a vehicle, which conveys them into the internal and vital parts of the body.

This feems alfo to be the reafon why bathing in Mineral waters are fuch foveraign remedies for multitudes of diftempers, efpecially chronical; for the liquid \& warm vehicles of the Mineral particles, which are known to be in very confiderable quantities in thofe healing baths, by the body's long ftay in them, do by degrees fteep and infinuate themfelves into the pores and parts of the fkin, and thereby thofe Mineral particles have their ways and paflages open'd to penetrate into the inner parts, and mingle themfelves with the ftagnant juices of the feveral parts; befides, many of thofe offenfive parts which were united with thofe flagnant juices, and which were contrary to the natural conftitution of the parts, and fo become irkfome and painfull to the body, but could not be difcharged, becaufe Nature had made no provifion for fuch accidental mifchiefs, are, by means of this foaking, and filling the pores of the fkin with a liquor, afforded a paffage through that liquor that fills the pores into the ambient fluid, and thereby the body comes to be difcharged.

So that'tis very evident, there may be a good as well as an evil application of this Principle. And the ingenious Invention of that Excellent perfon, Doctor Wren, of injecting liquors into the veins of an Animal, feems to be reducible to this head : I cannot ftay, nor is this a fit place, to mention the feveral Experiments made of this kind by the moft incomparable Mr. Boyle, the multitudes made by the lately mention'd Phyjician Doctor Clark, the Hiftory whereof, as he has been pleas'd to communicate to the Royal Society, fo he may perhaps be prevail'd with to make publique himfelf: But I Gall rather hint, that certainly, if this Principle
were well confider'd,there might, befides the further improving of Bathing and Syringing into the veias, be thought on feveral ways, whereby feveral obftinate diftempers of a humane body, fich as the Gout, Dropfie, Stone, $\sigma^{\circ} c$, might be mafter d, and expell'd; and good men might make as good a ufe of it , as evil men have made a perverfe and Diabolical.
And that the filling of the pores of the fkin with forme fluid vebicle, is of no fmall efficacy towards the preparing a paflage for feveral kiads of penetrant juices, and other dififoluble bodies, to infinuate themfelves within the ikin, and into the feufitive parts of the body, may be, 1 think, prov'd by an Intance given us by Bellonius, in the 26. Chapter of the fecond Beok of his Obfervations, which containing a very remarkable Story I have here tranferib'd: Cum Chamseleonis nigri radices (fays he) apud Pagum quendam Livadochorio nuncupatum erui curaremnus, plurimi Greci © Turca ffed atum venerunt quid erveremus, eas vero frufulutatim Secabanus, ©o filo trajiciebamus ut facilius exficcari poffent. Turce in eo negotio occupatos nos videntes, fimiliter cas radices tractare od fecare voluerunt: at cum fummus effet .fitus, ơ oomnes fudore maderent, quicunque eam radicenz manibus tractaverint fuderemque abferferant, ant faciem digitis falpferant, tantam pruriginem is locis ques attigerant poffea fonjerunt, ut aduri viderentur. Chamalconis enim wigri radix ea virtute pollet, ut cus ti applicata ipfam adeo inflammet, ut nec fquilla, nec urtice ulle centefima parte ita adurent : At prurigo non adeo celeriter feSe prodit. Poff unama aut alteram porra horam, finguli variis faciei locis cutem adeo inflammatani habere capiomus ut tota a anguinea videretur, atque quo magis cam confricabamus, tanto wadgis excitabatur prurigo. Fonti affidebamus Sil p platano, atque initio pro ludicro babebamus ec ridebamus: at tandem illi plurimum indignati funt, © injfaffeverafeemus nunquam expertos tali virtute eamplantampollere, band dubie male nas multaffent. Attamen noftra excufatio fuiit ab illis facilius accepta, shm eoden incommodo nos affectos conficicerent. Mirum fane quod in tantillo radice tam ingentem eficaciam nof fro malo experti fumus.
By which obfervation of his, it leems manifeft, that their being all cover'd with fweat who gather'd and cut this root of the black Chameleon Thiftle, was the great reafon why they fuffer'd that inconvenience, for it feems the like circumfance had not been before that noted, nor do Ifind any mention of fuch a property belonging to this Vegetable in any of the Herbals I have at prefent by me.

I could give very many Obfervations which I have made of this kind, whereby I have found that the beft way to get a body to be infinuated into the fubftance or infenfible pores of another, is firft, to find a fluid vebicle that has fome congruity,both to the body to be infinuated, and to the body into whofe pores you would have the other convey'd. And in this Principle lies the great myffery of ftaining feveral forts of bodies, as Marble, Woods, Bones, éc. and of Dying Silks, Cloaths, Wools, Feathers, © c. But thefe being digreffions, I hall proceed to:
Obferv. X X V I. Of Cowage, and the itching operation of fome bodies

THere is a certain Down of a Plant,brought from the Eaff-Indies, call'd commenly, though very improperly, con-itch, the reafon of which

Micrographia.

miftake is manifeft enough from the defcription of it,which Mr. Parkinfon fets down in his Herbal, Tribe XI. Chap. 2. Phafolus filiqua birfuta; The bairy Kidney-bean, called in Zurratte where it grows, Coubage : We bave bad (fayshe) another of this kind brought us out of the Eaft-Indies, wobich being planted, was in Jaem like the former, but came not to perfection, the unkindly feafon not fuffering it to Shew the flower; but of the Cods that were brought, fome were fmaller, forter, and rounder then the Garden kind; others much longer, and many growing together, as it were in clufters, and cover d all over woith a brown fort bairineß, fo fine, that if any of it be rubb'd, or fall on the back of ones hand, or other tender parts of the skin, it will caufe a kind of itching, but not frong, nor long induring, but paljing quickly away, without either danger or harm; the Beans were fmaller then ordinary, and of a black Bining colour.

Having one of thefe Cods given me by a Sea-Captain, who had frequented thofe parts, I found it to be a fmall Cod, about three Inches long, much like a fhort Cod of French Beans, which had fix Beans in it, the whole furface of it was cover'd over with a very thick and fhining brown Down or Hair, which was very fine, and for its bignefs ftiff; taking fome of this Down, and rubbing it on the back of my hand, 1 found very little or no trouble, only I was fenfible that feveral of thefe little downy parts with rubbing did penetrate, and were funk, or ftuck pretty deep into my fkin. After I had thus rubb'd it for a pretty while, I felt very little or no pain, in fo much that I doubted, whether it were the true Couhage; but whil'ft I was confidering, I found the Down begin to make my hand itch, and in fome places to fmart again, much like the ftinging of a Flea or Gnat, and this continued a pretty while, fo that by degrees I found my fkin to be fwell'd with little red puftules, and to look as if it had been itchie. But fuffering it without rubbing or fcratching, the itching tickling pain quickly grew languid, and within an hour I felt nothing at all, and the little protuberancies were vanifh'd.

The caufe of which odd Phenomenon, I fuppofe to be much the fame with that of the ftinging of a Nettle, for by the Microfcope, I difcover'd this Down to confift of a multitude of fmall and flender conical bodies, much refembling Needles or Bodkins, fuch as are reprefented by A B. C D. EF. of the firft Figure of the XVI. scheme; that their ends A A A, were very fharp, and the fubftance of them ftiff and hard, much like the fubftance of feveral kinds of Thorns and crooks growing on Trees. And though they appear'd very cleer and tranfparent, yet I could not perceive whether they were hollow or not, but to me they appear'd like folid tranfparent bodies, without any cavity in them; whether, though they might not be a kind of Cane, fill'd with fome tranfparent liquor which was hardned (becaufe the Cod which I had was very dry) I was not able to examine.

Now, being fuch ftiff, fharp bodies, it is eafie to conceive, how with rubbing they might eafily be thruft into the tender parts of the skin, and there, by reafon of their exceeding finenefs and drinefs, not create any confiderable trouble or pain, till by remaining in thofe places moiftned with the humours of the body, fome cauftick part flicking on them, or
refiding within them might be diffolv'd and mix'd with the ambient juices of that place, and thereby thofe fibres and tender parts adjoyning become affected, and as it were corroded by it; whence, while that action lafts, the pains created are pretty fharp and pungent, though fmall, which is the effential property of an itching one.

That the pain alfo caufed by the ftinging of a Flea, a Gnat, a Flie, a Wafp, and the like, proceeds much from the very fame caufe, I elfewhere in their proper places endeavour to manifeft. The ftinging alfo of fhred Horf-hair, which in meriment is often ftrew'd between the fheets of a Bed, feems to proceed from the fame caufe.

Obferv. XXVII. Of the Beard of a wilde Oat, and the ufe that may be made of it for exbibiting always to the Eye the temperature of the Air, as to drine β and moifure.

THis Beard of a wild oat, is a body of a very curiousftructure, though to the naked Eye it appears very flight; and inconfiderable, it being only a fmall black or brown Beard or Briftle, which grows out of the fide of the inner Husk that covers the Grain of a wild oat; the whole length of it, when put in Water, fo that it may extend it felf to its full length, is not above an Inch and a half, andfor the moft part fomewhat fhorter, but when the Grain is ripe, and very dry, which is ufualy in the Moneths of fuly, and Auguft, this Beard is bent fomewhat below the middle, namely, about ${ }_{3}^{3}$ from the bottom of it, almoft to a right Angle, and the under part of it is wreath'd lik a With; the fubftance of it is very brittle when dry, and it will very eafily be broken from the husk on whichit grows.
If you take one of thefe Grains, and wet the Beard in Water, you will prefently fee the fmall bended top to turn and move round, as if it were fenfible; and by degrees, if it be continued wet enough, the joint or knee will ftreighten it felf; and if it be fuffer'd to dry again, it will by degrees move round another way, and at length bend again into its former pofture.

If it be view'd with an ordinary fingle Microfoope, it will appear like a fmall wreath'd Sprig, with two clefts; and if wet as before, and then look'd on with this Microfcope, it will appear to unwreath it felf, and by degrees, to ftreighten its knee, and the two clefts will become ftreight, and almoft on oppofite fides of the fmall cylindrical body.

If it be continued to be look'd a little longer with a Microfcope, it will within a little while begin to wreath it felf again, and foon after return to its former pofture, bending it felf again neer the middle, into a kind of knee or angle.

Several of thofe bodies I examin'd with larger Microfiopes, and there found them much of the make of thofe two long wreath'd cylinders de $=$ lineated in the fecond Figure of the 15 . Scheme, which two cylinders re-

Micrographia.

prefent the wreathed part broken into two pieces, whereof the end AB is to be fuppos'd to have join'd to the end CD, fo that EA CF does reprefent the whole wreath d part of the Beard, and E G a fmall piece of the upper part of the Beard which is beyond the knee, which as I had not room to infert, fo was it not very confiderable, either for its form, or any known property; but the under or wreathed part is notable for both: As to its, form, it appear'd, if it were look'd on fide-ways, almoft like a Willow, or a fmall tapering rod of Hazel , the lower or bigger half of which onely, is twifted round feveral times, in fome three, in others more ${ }_{2}$ in others lefs, according to the bignefs and maturity of the Grain on which it grew, and according to the drinefs and moifture of the ambient Air, as I fhall fhew more at large by and by.

The whole outward Superficies of this Cylindrical body is curioufly adorned or fluted with little channels, and interjacent ridges, or little protuberances between them, which run the whole length of the Beard, and are ftreight where the Beard is not twifted, and wreath where it is, juft after the fame manner: each of thofe fides is befet pretty thick with fmall Brifles or Thorns, fomewhat in form refembling that of Porcupines Quills, fuch as a a a a in the Figure; all whofe points are directed like fo many Turn-pikes towards the fmall end or top of the Beard, which is the reafon, why, if you endeavour to draw the Beard between your fingers the contrary way, you will find it to ftick, and grate, as it were, againft the fkin.

The proportion of theefe fmall conical bodies a a a a a to that whereon they grow, the Figure will fufficiently fhew, as alfo their manner of growing, their thicknefs, and neernefs to each other, as, that towards the root or bottom of the Beard, they are more thin, and much horter, infomuch that there is ufually left between the top of the one, and the bottom of that next above it, more then the length of one of them, and that towards the top of the Beard they grow more thick and clofe (though there be fewer ridges) fo that the root, and almoft half the upper are hid by the tops of thofenext below them.

I could not perceive any tranfverfe pores, unlefs the whole wreath'd part were feparated and cleft, in thofe little channels, by the wreathing into fo many little ftrings as there were ridges, which was very difficult to determine; but there were in the wreathed part two very confpicuous channels or clefts, which were continued from the bottom F to the elbow EH , or all along the part which was wreath'd, which feem'd to divide the wreath'd Cylinder into two parts, a bigger and a lefs; the bigger was that which was at the convex fide of the knee, namely, on the fide $A_{\text {, }}$ and was wreath'd by 0000 O ; this, as it feem'd the broader, fo did it alfo the longer, the other P P P PP, which was ufually purs'dor wrinckled in the bending of the knee, as about E , feem'd both the fhorter and narrower, fo that at firft I thought the wreathing and unwreathing of the Beard might have been caus'd by the fhrinking or fwelling of that part ; but upon further examination, If found that the clefts, K K, LL_{2}, were ftuft up with a kind of Spongie fubftance, which, for the moft part, was

Micrographia.

very confpicuous neer the knee, as in the cleft $K K$, when the Beard was dry ; upon the difcovery of which, I began to think, that it was upon the fwelling of this porous pith upon the accefs of moifture or water that the Beard, being made longer in the midft, was ftreightined, and by the flirinking or fubliding of the parts of that Spongie fubftance together, when the water or moifture was exhal'd or dried, the pith or middle parts growing fhorter, the whole became twifted.
But this I cannot be pofitive in, for upon cutting the wreath'd part in many places tranfverfly, I was not fo well fatisfy d with the fhape and manner of the pores of the pith; for looking on thefe tranfverfe Sections with a very good Microfcope, I found that the ends of thofe tranfverfe Sections appear'd much of the manner of the third Figure of thes 15. Scheme ABCFE, and the middle or pith CC, feem'd very full of pores indeed, but all of them feem'd to run the long-ways.

This Figure plainly enough fhews in what manner thofe clefts, K and L divided the wreath'd Cylinder into two unequal parts, and alfo of what kind of fubitance the whole body confifts; for by cutting the fame Beard in many places, with tranfverfe Sections, I found much the fame appearance with this exprefs'd ; fo that thofe pores feem to run, as in moft other fuch Cany bodies, the whole length of it.
The clefts of this body K K, and LL, feem'd (as is alfo exprefsd in the Figure) to wind very oddly in the inner part of the wreath; and in fome parts of them, they feem'd ftuffed, as it were, with that Spongie fubftance, which I juft now defcribed.
-This fo oddly conftituted Vegetable fubftance, is firft (that I have met with) taken notice of by Baptijfa Porta, in his Natural Magick, as a thing known to children and Juglers, and it has beencall'd by fome of thofelaft named perfons, the better to cover their cheat, the Legg of an Arabian spider, or the Legg of an inchanted Egyptian Fly, and has been ufed by them to make a fmall Index, Crofs, or the like, to move round upon the wetting of it with a drop of Water, and muttering cettain words.

But the ule that has been made of it, for the difcovery of the various conftitutions of the Air, as to drinefs and moiftnefs, is incomparably beyond any other; for this it does to admiration: The manner of contriving it fo, as to perform this great effect, is onely thus:

Provide a good large Box of Ivory, about four Inches over, and of what depth you fhall judge convenient (according to your intention of making ufe of one, two, three, or more of thefe fmall Beards, ordered in the manner which I fhall by and by defcribe) let all the fides of this Box be turned of Bafket-work (which here in London is eafily enough procur'd) full of holes, in the manner almoft of a Lettice, the bigger, or more the holes are, the better, that fo the Air may have the more free paffage to the inclofed Beard,and may the more eafily pafs through the Inftrument; it will be better yet, though not altogether fo handfom, if infteed of the Baf-ket-work on the fides of the Box, the bottom and top of the Box be join'd together onely with three of four mall Pillars, after the manner repre-

Micrographia.

fented in the 4.Figure of the 15 . Scheme. Or, if you intend to make ufe of many of thefe fmall Beards joind together, you may have a fmall long Cafe of Ivory, whofe fides are turn'd of Bafket-work, full of holes, which may be ferew'd on to the underfide of a broad Plate of Ivory, on the other fide of which is to be made the divided Ring or Circle, to which divifions the pointing of the Hand or Index, which is moved by the conjoind Beard, may fhew all the Minute variations of the Air.

There may be multitudes of other ways for contriving this fmall Inftrument, fo as to produce this effect, which any one may, according to his peculiar ufe, and the exigency of his prefent occafion, eafily enough contrive and take, on which I fhall not therefore infift. The whole manner of making any one of them is thus: Having your Box or frame AABB, fitly adapted for the free paffage of the Air through it, in the midft of the bottom B B B, you mufthave a very fmall hole C, into which the lower end of the Beard is to be fixd, the upper end of which Beard $a b$, is to pafs through a fmall hole of a Plate, or top A A, if you make ufe onely of a fingle one, and on the top of it e, is to be fix'd a fmall and very light Index $f g$, made of a very thin fliver of a Reed or Cane; but if you make ufe of two or more Beards, they muft be fix'd and bound together, either with a very fine piece of Silk, or with a very fmall touch of hard Wax, or Glew, which is better, and the Index $f g$, is to be fix'd on the top of the fecond, third, or fourth in the fame manner as on the fingle one.
Now, becaufe that in every of thefe contrivances, the Index $f g$, will with fome temperatures of Air, move two, three, or more times round, which without fome other contrivance then this, will be difficult to diftinguifh,therefore I thought of this Expedient: The Index or Hand $f g$, being rais'd a pretty way above the furface of the Plate AA, fix in at a little diftance from the middle of it a fmall Pin b, fo as almoft to touch the furface of the Plate A A, and then in any convenient place of the furface of the Plate, fix a fmall Pin, on which put on a fmall piece of Paper, or thin Paft-board, Vellom, or Parchment, made of a convenient cize, and fhap'd in the manner of that in the Figure exprefs'd by $i k$, fo that having a convenient number of teeth every turn or return of the Pin b, may move this fmall indented Circle, a tooth forward or backwards, by which means the teeth of the Circle, being mark'd, it will be thereby very eafie to know certainly, how much variation any change of weather will make upon the fmall wreath'd body. In the making of this Secundary Circle of Vellom, or the like, great care is to be had, that it be made exceeding light, and to move very eafily, for otherwife a fmall variation will fpoil the whole operation. The Box may be made of Brafs, Silver, Iron, or any other fubitance, if care be taken to make it open enough, to let the Air have a fufficiently free accefs to the Beard. The Index alfo may be various ways contrived, fo as to fhew both the number of the revolutions it makes, and the Minute divifions of each revolution.

I have made feveral trials and Inftruments for difcovering the drinefs and moifture of the Air with this little wreath'd body, and find it to vary exceeding fenfibly with the leaft change in the conftitution of the Air, as

Micrographia.

to drinefs and moifture, fo that with one breathing upon it, thave made it untwift a whole bout, and the Index or Hand has fhew'd or pointed to various divifions on the upper Face or Ring of the Inftrument, according as it was carried neerer and neerer to the fire, or as the heat of the Sun increafed upon it.

Other trials I have made with Gut-ftrings, but find them nething neer fo fenfible, though they alfo may be fo contriv'd as to exhibit the changes of the Air, as to drinefs and moifture, both by their ftretching and frrinking in length, and alfo by their wreathing and unwreathing themfelves; but thele are nothing neer fo exact or fo tender; for their varying property will in a little time change very much. But there are feveral other Vegetable fubftances that are much more fenfible then even this Beard of a wilde Oat; fuch I have found the Beard of the feed of Mufk-grafs, or Geranium mofchatum, and thofe of other kinds of Cranesbil feeds, and the like. But always the fmaller the wreathing fubftance be, the more fenfible is it of the mutations of the Air, a conjecture at the reafon of which I fhall by and by add.

The lower end of this wreath'd Cylinder being ftuck upright in a little foft Wax, fo that the bended part or Index of it lay horizontal, I have obferv'd it always with moifture to unwreath it felf from the Eaft (For inftance) by the South to the Weft, and fo by the North to the Eaft again, moving with the Sun (as we commonly fay) and with heat and drouth to re-twift, and wreath it felf the contrary way, namely, from the Eaft, (for inftance) by the North to the Weft, and fo onwards.

The caufe of all which Phonomena, feems to be the differing texture of the parts of thefe bodies, each of them (efpecially the Beard of a wilde Oat, and of Mosk-grafs feed) Feeming to have two kind of fubftances, one that is very porous, loofe, and fpongie, into which the watry fteams of the Air may be very eafily forced, which will be thereby fwell'd and extended in its dimenfions, juft as we may obferve all kind of Vegetable fubfrance upon fteeping in water to fwell and grow bigger and longer. And a fecond that is more hard and clofe, into which the water can very little,or not at all penetrate, this therefore retaining always very neer the fame dimenfions, and the other ftretching and fhrinking, according as there is more or lefs moifture or water in its pores, by reafon of the make and Thape of the parts, the whole body muft neceflarily unwreath and wreath it felf.

And upon this Principle, it is very eafie to make feveral forts of contrivances that fhould thus wreath and unwreath themfelves, either by heat and cold, or by drinefs and moifture, or by any greater or lefs force, from whatever caufe it proceed, whether from gravity or weight, or from wind which is motion of the Air, or from fome fpringing body, or the like.

This, had I time, Ifhould enlarge much more upon; for it feems to me to be the very firft footftep of senfation, and Animate motion, the moft plain,fimple, and obvious contrivance that Nature has made ufe of to produce a motion, next to that of Rarefaction and Condenfation by heat and

Micrograhpia.

and cold. And were thisPrinciple very well examin'd, I am very apt to think, it would afford us a very great help to find out the Mechanijnt of the Mufcles, which indeed, as farr as I have hitherto been able to examine, feems to me not fo very perplex as one might imagine, efpecially upon the examination which I made of the Mufcles of Crabs, Lobfers, and feveral forts of large Shell-filh, and comparing my Obfervations on them, with the circumftances I obferv'd in the mufcles of terreftrial Animals.

Now, as in this Inftance of the Beard of a wilde Oat, we fee there is nothing elfe requifite to make it wreath and unwreath it felf, and to ftreighten and bend its knee, then onely a little breath of moift or dry Air, or a fmall atome almoft of water or liquor, and a little heat to make it again evaporate; for, by holding this Beard, plac'd and fix'd as I before directed, neer a Fire, and dipping the tip of a fmall fhred of Paper in well rectify'd fpirit of Wine, and then touching the wreath'd Cylino drical part, you may perceive it to untwift it felf; and prefently again, upon the avolation of the firit, by the great heat, it will re-twift it felf, and thus will it move forward and backwards as oft as you repeat the touching it with the fpirit of Wine ; fo may, perhaps, the fhrinking and relaxing of the mufcles be by the influx and evaporation of fome kind of liquor or juice. But of this Enquiry I fhall add more elfewhere.

Obferv. XXVIII. Of the Seeds of Venus looking-glaß, or Corn Violet.

FRom the Leaves, and Downs, and Beards of Plants, we come at laft to the Seeds; and here indeed feems to be the Cabinet of Nature, wherein are laid up its Jewels. The providence of Nature about Vegetables, is in no part manifefted more, then in the various contrivances about the feed, nor indeed is there in any part of the Vegetable fo curious carvings, and beautifull adornments, as about the feed; this in the larger forts of feeds is moft evident to the eye; nor is it lefs manifeft through the Micrafoope, in thofe feeds whofe thape and ftructure, by reafon of their fmalnefs, the eye is hardly able to diftinguifh.

Of thefe there are multitudes, many of which I have obferved through a Microfcope, and find, that they do, for the moft part, every one afford exceeding pleafant and beautifull objects. For befides thofe that have various kinds of carv'd furfaces, there are other that have fmooth and perfectly polifh'd furfaces, others a downy hairy furface; fome are cover'd onely with a fkin, others with a kind of fhell, others with both, as is obfervable alfo in greater feeds.

Of thefe feedsI have onely defcribed four forts which may ferve as a specimen of what the inquifitive obfervers are likely to find among the reft. The firft of thefe feeds which are deferibed in the 17. Scheme, are thofe of Corn-Violets, the feed is very fmall, black, and fhining, and, to the naked eye, looks almoft like a very fmall Flea; But through the

Miscrofope

UNIVERSITÄTS.

Micrographia.

Mic rofcope, it appears a large body, cover'd with a tough thick and bright reflecting fkin very irregularly fhrunk and pitted, infomuch that it is almoft an impoffibility to find two of them wrinkled alike, fo great a variety may there be even in this little feed.
4. This, though it appear'd one of the moft promifing feeds for beauty to the naked eye, yet through the Microf cope it appear'd but a rude mifhapen feed, which I therefore drew, that I might thereby manifeft how unable we are by the naked eye to judge of beauteous or lefs curious microf opical Objects; cutting fome of them in funder, I obferv'd them to be fill'd with a greenifh yellow pulp, and to have a very thick hufk, in proportion to the pulp.

Obferv. XXIX. Of the Seeds of Tyme.

THefe pretty fruits here reprefented, in the 18 . Scheme, are nothing elfe, but nine feveral feeds of Tyme; they are all of them in differing pofture, both as to the eye and the light; nor are they all of them exactly of the fame fhape, there being a great variety both in the bulk and figure of each feed; but they all agreed in this, that being look'd on with a Microforpe, they each of them exactly refembled a Lemmon or Orange dry'd; and this both in fhape and colour. Some of them are a little rounder, of the fhape of an Orange, as A and B, they have each of them a very confpicuous part by which they were join'd to their little ftalk, and one of them had a little piece of ftalk remaining on 3 the oppofite fide of the feed, you may perceive very plainly by the Figure, is very copped and prominent, as is very ufual in Lemmons, which prominencies are exprefs'd in D, E and F.

They feem'd each of them a little creas'd or wrinckled, but E was very confpicuoully furrow'd, as if the inward make of this feed had been fomewhat like that of a Lemmon alfo, but upon dividing feveral feeds with a very fharp Pen-knife, and examining them afterward, I found their make to be in nothing but bulk differing from that of Peas, that is, to have a pretty thick coat, and all the reft an indifferent white pulp, which feem'd very clofe; fo that it feems Nature does not very much alter her method in the manner of inclofing and preferving the vital Principle in the feed, in thefe very fmall grains, from that of Beans, Peas, ovc.

The Grain affords a very pretty Object for the Microfcope, namely, a Difh of Lemmons plac'd in a very little room; fhould a Lemmon or Nut be proportionably magnify'd to what this feed of Tyme is, it would make it appear as bigg as a large Hay-reek,and it would be no great wonder to fee Homers Iliads, and Homer and all, cramm'd into fuch a Nut-fhell. We may perceive even in thefe fmall Grains, as well as in greater, how curious and carefull Nature is in preferving the feminal principle of Vegetable bodies, in what delicate, ftrong and moft convenient Cabinets fhe

Micrographia.

lays them and clofes them in a pulp for their fafer protection from outward damgers, and for the fupply of convenient alimental juice, when the heat of the Sun begins to animate and move thefe little automatons or Engines; as iffhe would, from the ornaments wherewith the has deckt thefe Cabinets, hint to us, that in them fhe has Taid up her Jewels and Mafter-pieces. And this, if we are but diligent in obferving, we fhall find her method throughout. There is no curiofity in the Elemental kingdom, if I may fo call the bodies of Air, Water, Earth, that are comparable in form to thofe of Minerals; Air and Water having no form at all, unlefs a potentiality to be form'd into Globules; and the clods and parcels of Earth are all irregular, whereas in Minerals fhe does begin to Geometrize, and practife, as 'twere, the firft principles of Mechanicks, fhaping them of plain regular figures, as triangles, fquares, ecc. and tetraedrons, cubes, obc. But none of their forms are comparable to the more compounded ones of Vegetables; For here fhe goes a ftep further, forming them both of more complicated fhapes, and adding alfo multitudes of curious Mechanick contrivances in their ftructure;for whereas in Vegetables there was no determinate number of the leaves or branches, nor no exactly certain figure of leaves, or flowers, or feeds, in Animals all thofe things are exactly defin'd and determin'd; and where-ever there is either an excefs or defect of thofe determinate parts or limbs, there has been fome impediment that has fpoil'd the principle which was moft regular: Here we fhall find, not onely moft curioufly compounded fhapes, but moft ftupendious Mechanifms and contrivances, here the ornaments are in the higheft perfection, nothing in all the Vegetable kingdom that is comparable to the deckings of a Peacock; nay,to the curiofity of any feather, as Ielfewhere fhew; nor to that of the fmalleft and moft defpicable Fly. But I muft not ftay on thefe feeculations, though perhaps it were very well worth while for one that had leifure, to fee what Information may be learn'd of the nature, or ufe, or virtues of bodies, by their feveral forms and various excellencies and properties. Who knows but Adam might from fome fuch contemplation, give names to all creatures? If at leaft his names had any fignificancy in them of the creature's nature on which he impos'dit; as many (upon what grounds I know not) have fuppos'd : And who knows, but the Creator may, in thofe characters, have written and engraven many of his moft myfterious defigns and counfels, and given man a capacity, which, affifted with diligence and induftry, may be able to read and underftand them. But not to multiply my digreffion more then I can the time, I will procead to the next, which is,

Obferv. XXX. Of the Seeds of Poppy.

THe fmall feeds of Poppy, which are defcribed in the 19. Scheme, both for their fmalnefs, multiplicity and prettinefs, as alfo for their admirable foporifick quality, deferve to be taken notice of among the other

other microfcopical feeds of Vegetables: For firf, though they grow in a Cafe or Hive oftentimes bigger then one of thefe Pictures of the microfoopical appearance, yet are they for the moft part fo yery little, that they exceed not the bulk of a fmall Nitt, being not above $\frac{1}{32}$ fart of an Inch in Diameter, whereas the Diameter of the Hive of them oftentimes exceeds two Inches, fo that it is capable of containing neer two hundred thoufand, and fo in all likelihood does contain a vaft quantity, though perhaps not that number. Next, for their prettinefs, they may be compar'd to any microfopical feed I have yet feen; for they are of a dark brownifh red colour, curioufly Honey-comb'd all over with a very pretty variety of Net-work, or a fmall kind of imbofment of very orderly rais'd ridges, the furface of them looking not unlike the infide of a Beev's ftomack. But that which makes it moft confiderable of all, is, the medicinal virtues of it, which are fuch as are not afforded us by any Mineral preparation ; and that is for the procuring of fleep, a thing as neceffary to the well-being of a creature as his meat, and that which refrefhes both the voluntary and rational faculties, which, whil'ft this affection has feis'd the body, are for the moft part unmov'd, and at reft. And, methinks, Nature does feem to hint fome very notable virtue or excellency in this Plant from the curiofity it has beftow'd uponit. Firf, in its flower, it is of the higheft fcarlet-Dye, which is indeed the prime and chiefeft colour, and has been in all Ages of the world moft highly efteem'd: Next, it has as much curiofity fhew'd alfo in the hufk or cafe of the feed, as any one Plant I have yet met withall; and thirdly, the very feeds themfelves, the Microfoope difcovers to be very curioully' fhap'd bodies; and laftly, Nature has taken fuch abundant care for the propagation of it, that one fingle feed grown into a Plant, is capable of bringing fome hundred thoufands of feeds.

It were very worthy fome able man's enquiry whether the intention of Nature, as to the fecundary end of Animal and Vegetable fubftances might not be found out by fome fuch characters and notable impreffions as thefe, or from divers other circumftances, as the figure, colour, place, time of flourihhing, fpringing and fading, duration, tafte, friell, ©oc. For if fuch there are (as an able Phyfician upon good grounds has given me caufe to believe) we might then, infteed of ftudying Herbals (where fo little is deliver d of the virtues of a Plant, and lefs of truth) have recourfe to the Book of Nature it felf, and there find the moft natural, ufefull, and moft effectual and feecifick Medicines, of which we have amongft Vegetables, two very noble Inftances to incourage fuch a hope, the one of the fefuite powder for the cure of intermitting Feavers, and the other of the juice of Poppy for the curing the defect of fleeping.

Obferv. XXXI. Of Purflane-feed.

THe Seeds of Purflane feem of very notable fhapes, appearing through the Microforpe fhap'd fomewhat like a nautilus or Porcelane fhell, as may be feen in the XX. scheme, it being a fmall body; coyl'd round in the manner of a Spiral; at the greater end whereof, which reprefents the mouth or orifice of the Shell, there is left a little white tranfparent fubftance, like a fkin, reprefented by B B B B, which feems to have been the place whereunto the ftem was join'd. The whole furface of this Coclea or Shell, is cover'd over with abundance of little prominencies or buttons very orderly rang'd into Spiral rows, the fhape of each of which feem'd much to refemble a Wart upon a mans hand. The order, variety, and curiofity in the fhape of this little feed, makes it a very pleafant object for the Microfope, one of them being cut afunder with a very fharp Penknife, difcoverd this carved Cafket to be of a brownifh red, and fomewhat tranfparent fubftance, and manifefted the infide to be fill'd with a whitifh green fubftance or pulp, the Bed wherein the feminal principle lies invelop'd.

There are multitudes of other feeds which in fhape reprefent or imitate the forms of divers other forts of Shells: as the feed of Scurvygraß, very much refembles the make of a Concha Venerea, a kind of Purcelane Shell; others reprefent feveral forts of larger fruits, fweat Marjerome and Pot-marjerome reprefent Olives. Carret feeds are like a cleft of a Coco-Nut Hulk; others are like Artificial things, as Succory feeds are like a Quiver full of Arrows, the feeds of Amearanthus are of an exceeding lovely fhape, fomewhat like an Eye: The fkin of the black and Thrivled feeds of Onyons and Leeks, are all over knobbed like a Seals fkin. Sorrel has a pretty black ihining three-fquare feed, which is picked at both ends with three ridges, that are bent the whole length of it. It were almoft endlefs to reckon up the feveral fhapes, they are fo many and fo various; Leaving them therefore to the curious ubferver, I fhall proceed to theObfervations on the parts of Animals.

Obferv. X X X II. Of the Figure of feveral forts of Hair, and of the texture of the fkin.

VIewing fome of the Hairs of my Head with a very good Microfcope, I took notice of thefe particulars:

1. That they were, for the moft part, cylindrical, fome of them were fomewhat Prifmatical, but generally they were veryneer round, fuch as are reprefented in the fecond Figure of the 5.Scheme, by the Gylinders EEE. nor could I find any that bad fharp angules.
2. That

Micrographia.

2. That that part which was next the top, was bigger then that which was neerer the root.
3. That they were all along from end to end tranfparent, though not very cleer, the end next the root appearing like a black tranfparent piece of Horn, the end next the top more brown, fome what like tranfparent Horn.
4. That the root of the Hairs were pretty fmooth, tapering inwards, almoft like a Parfneb; nor could I find that it had any filainents, or any other veffels, fuch as the fibres of Plants.
5. That the top when fplit (which is common in long Hair) appeard like the end of a ftick, beaten till it be all flitter'd, there being not onely two fplinters, but fometimes half a fcore and more.
6. That they were all, as farr as I was able to find, folid cylindrical bodies, not pervious, like a Cane or Bulrufh; nor could I find that they had any Pith, or diftinction of Rind, or the like, fuch as I had obferv'd in Horfe-hairs, the Briftles of a Cat, the Indian Deer's Hair, erc.

Obfervations on feveral otber forts of Hair.

For the Brifles of a Hogg, I found them to be firft a hard tranfparent horny fubftance, without the leaft appearatice of pores or holes in it ; and this I try'd with the greateft care I was able, cutting many of them with a very fharp Razor, fo that they appear'd, even in the Glafs, to have a pretty fmooth furface, but fomewhat waved by the fawing to and fro of the Razor, as is vifible in the end of the Prijmatical body A of the fame Figure ; and then making trials with caufing the light to be caft on them all the various ways I could think of, that was likely to make the pores appear, if there had been any, I was not able to difcover any.
Next, the Figure of the Brifles was very various, neither perfectly round, nor fharp edg' d , but Prifmatical, with divers fides, and round angles, as appears in the Figure A. The bending of them in any part where they before appear'd cleer, would all flaw them, and make them look white.

The Muftacheos of a Cat (part of one of which is reprefented by the fhort Cylinder B of the fame Figure) feem'd to have, all of them that I obferv'd, a large pith in the middle, like the pith of an Elder, whofe texture was fo clofe, that I was not able to difcover the leaft fign of pores; and thofe parts which feem to be pores, as they appear'd in one pofition to the light, in another I could find a manifeft reflectiom to be caft from them.

This I inftance in, to hint that it is not fafe to conclude any thing to be pofitively this or that, though it appear never fo plain and likely when look'd on with a Microfoope in one pofture, before the fame be examin'd by placing it in feveral other pofitions.

And this I take to be the reafon why many have believed and afferted the Hairs of a man's head to be hollow, and like fo many fmall pipes perforated from end to end.

Now, though I grant that by an Analogie one may fuppofe them fo,
and

Micrograhpia.

and from the Polonian difeafe one may believe them fuch, yet I think we have not the leaft encouragement to either from the Alucrofoope, much lefs pofitively to affert them fuch. And perhaps the very effence of the Plica Polonica may be the hairs growing hollow, and of an unnatural conftitution.

And as for the Analogie, though I am apt enough to think that the hairs of feveral Animals may be perforated fomewhat like a Cane, or at leaft have a kind of pith in them, firff, becaufe they feem as'twere a kind of Vegetable growing on an Animal, which growing, they fay, remains a long while after the Animal is dead, and therefore fhould like other Vegetables have a pith; and fecondly, becaufe Horns and Feathers, and Porcupine's Quils, and Cats Brifles, and the long hairs of Horfes, which come very neer the nature of a mans hair, feem all of them to have a kind of pith, and fome of them to be porous, yet I think it not (in thefe cafes, where we have fuch helps for the fenfe as the Microfoope affords) fafe concluding or building on more then we fenfibly know, fince we may, with examining, find that Nature does in the make of the fame kind of fubftance, often vary her method in framing of it : Inftances enough to confirm this we may find in the Horns of feveral creatures: as what a vaft difference is there between the Horns of an Oxe, and thofe of fome forts of Staggs as to their fhape? and even in the hairs of feveral creatures, we find a vaft difference; as the hair of a man's head feems, as I faid before, long, Cylindrical and fometime a little Prifmatical, folid or impervious, and very fmall; the hair of an Indian Deer (a part of the middle of which is defcribed in the third Figure of the fifth scheme, marked with F) is bigger in compafs through all the middle of it, then the Brifle of an Hogg, but the end of it is fmaller then the hair of any kind of Animal (as may be feen by the Figure G) the whole belly of it, which is about two or three Inches long, looks to the eye like a thread of courfe Canvafs, that has been newly unwreath'd, it being all wav'd or bended to and fro, much after that manner, but through the Microfoope, it appears all perforated from fide to fide, and Spongie, like a fmall kind of fpongy Coral, which is often found upon the Englifh fhores; but though I cut it tranfverfly, I could not perceive that it had any pores that ran the long-way of the hair: the long hairs of Horfes CC and $D_{\text {, feem Cylindrical and fomewhat }}$ pithy; the Brifles of a Cat B, are conical and pithy: the Quils of Porcupines and Hedghoggs, being cut tranfverlly, have a whitifh pith, in the manner of a Starr,or Spur-rowel : Piggs-hair (A) is fomewhat triagonal, and feems to have neither pith nor pore: And other kinds of hair have quite a differing ftructure and form. And therefore I think it no way agreeable to a true natural Hiftorian, to pretend to be fo fharp-fighted, as to fee what a pre-conceiv'd Hypotbefis tells them fhould be there, where another man, though perhaps as feeing, but not foreftall'd, can difcover no fuch matter.
But to proceed; I obferv'd feveral kind of hairs that had been Dyed, and found them to be a kind of horny Cylinder, being of much about the tranfparency of a pretty cleer piece of Oxe horm; thefe appear'd quite

Micrographiáa

throughout'ting d with the colours they exhibited. And 'tis likely, that thofe hairs being boyl'd or fteep'd in thofe very hot ting'd liquors in the Dye-fat, And the fubftance of the hair being much like that of an Oxes Horn, the penetrant liquor does fo far mollifie and foftenthe fubftance; that it finks into the very center of it, and fo the ting'd parts come to be mix'd and united with the very body of the hair, and do not (as fome have. thought) only ftick on upon the outward furface. And this the boiling of Horn will make more probable; for we fhall fond by that action, that the water will infinuate it felf to a pretty depth within the furface of it, efpecially if this penetrancy of the water be much helped by the Salts that are ufually mix'd with the Dying liquors. Aow, whereas Silk may be dyed or ting dinto all kind of colours without boiling of dipping into hot liquors, I ghefs the reafon to be fwo-fold: Firft, becaufe the filaments, or fmall cylinders of Silk, are abundantly fmaller and finer, and fo have a much lefs depth to be penetrated then moft kind of hairs; and next, becaufe the fubffance or matter of Silk, is much more like a Glew then the fubftance of Hair is. And that I have reafon to fuppofe: Firft, becaufe when it is fpun or drawn out of the Worm, it is a perfect ghatinous fubftance, and very eafily fricks and cleaves to any ad jacent body, as I have feveral times obferved, both in Silk-worms and Spiders. Next, becaufe that Ifind that waterdoes eafily diflolve and mollifie the fubltance again, which is evident from their manner of ordering thofe bottoms or pods of the Silk-worm before they are able to unwind them. It is no great wonder therefore, if thofe Dyes or ting diquors do very quickIy mollifie and tinge the furfaces of fo fmadl and fo glutinous a body. And we need not wonder that the colours appear fo lovely in the one, and fo dull in the other, if we view but the ting'd cylinders of both kinds with a good Microfeope; for whereas the fubitance of Hairat beft, is but a dirty dufkifh white fomewhat tranfparent, the filaments of Silk have a moft lovely tranfparency and cleernefs, the difference between thofe two being not much lefs then thao between a piece of Horn, and a piece of Cryftal; the one yielding a bright and yivid reflection from the concave fide of the cylinder, that is, from the concave furface of the Air that incompafies the back-part of the cylinder; the other yielding a dull and perturb'd reflection from the feveral Heterogencous payts that compofe it. And this difference will be manifeft enough to the eye, if you get a couple of fmall Cylinders, the fmaller of Cryftal Glafs, the other of Horm, and then varnifhing themover very thinly wich fome tranf parcogt colour, which will reprefent to the naked eye much the fame kind of obje\& which is reprefented to it from the filaments of Silk and Hair by the help of the Microfcope. Now, fince the threads of Silk and Serge aremadeup of a great number of thefe filaments, we may henceforth ceafe to wonder at the difference. From mach the fame reafon proceeds the vivid and lovely colours of Feathers, wherein they very farr exceed the natural as well as Artificial colours of hair, of which I fhallifay more in its proper place.

The Teguments indeed of creatures are all of them adapted to the peeuliar ufe and convenience of that Animal which they inwrap; and very

Micrographia.

much alfo for the ornament and beauty of it, as will be moft evident to any one that fhall attentively confider the various kinds of cloathings wherewith moft creatures are by Nature invefted and cover'd. Thus I have obferved, that the hair or furr of thofe Northern white Bears that inhabite the colder Regions, is exeeeding thick and warm : the like have I obferv'd of the hair of a Greenland Deer, which being brought alive to London, I had the opportunity of viewing; its hair was fo exceeding thick, long and foft, that I could hardly with my hand, grafp or take hold of his fkin, and it feem'd fo exceeding warm, as I had never met with any before. And as for the ornamentative ufe of them, it is moft evident in a multitude of creatures, not onely for colour, as the Leopards, Cats, Rhein Deer, Coc. but for the fhape, as in Horfes manes, Cats beards, and feveral other of the greater fort of terreftrial Animals, but is much more confpicuous, in the Veftments of Fifhes, Birds, Infects, of which I fhall by and by give fome Inftances.

As for the fkin, the Microf cope difcovers as great a difference between the texture of thofe feveral kinds of Animals, as it does between their hairs; but all that I have yet taken notice of, when tann'd or drefs'd, are of a Spongie nature, and feem to be conftituted of an infinite company of fmall long fibres or hairs, which look not unlike a heap of Tow or Okum ; every of which fibres feem to have been fome part of a Mufcle, and probably, whil' t the Animal was alive, might have its diftinct function, and ferve for the contraction and relaxation of the fkin, and for the ftretching and fhrinking of it this or that way.
And indeed, without fuch a kind of texture as this, which is very like that of spunk, it would feem very ftrange, how any body fo ftrong as the Ikin of an Animal ufually is, and fo clofe as it feems, whil't the Animal is living, fhould be able to fuffer fo great an extenfion any ways, without at all hurting or dilacerating any part of it. But, fince we are inform'd by the Microfope, that it confifts of a great many fmall filaments, which are implicated, or intangled one within another, almoft no otherwife then the hairs in a lock of Wool, or the flakes in a heap of Tow, though not altogether fo loofe ; but the filaments are here and there twifted, as twere, or interwoven, and here and there they join and unite with one another,fo as indeed the whole fkin feems to be but one piece, we need not much wonder:And though thefe fibres appear not through a Microfope, exactly jointed and contex'd, as in Sponge; yet, as I formerly hinted, I am apt to think, that could we find fome way of difcovering the texture of it, whil'ft it invefts the living Animal, or had fome very eafie way of feparating the pulp or intercurrent juices, fuch as in all probability fill thofe Interfititia, without dilacerating, brufing, or otherwife fpoiling the texture of it (as it feems to be very much by the ways of tanning and dreffing now us'd) we might difcover a much more curious texture then I have hitherto been able to find; perhaps, fomewhat like that of Sponges.
That of Cbamoije Leather is indeed very much like that of Spunk, fave onely that the filaments feem nothing neer fo even and round, nor altogether fo fmall, nor has it fo curious joints as spunk has, fome of which I have

Micrographta。

have lately difcover'd like thofe of a Sponge, and perhaps all thefe three bodies may be of the fame kind offubftance, though two of them indeed are commonly accounted Vegetable (which, whether they be fo or no, I fhall not now difpute) But this feems common to all three, that they undergo a tanning or dreffing, whereby the interfpers'd juices are wafted and wafh'd away before the texture of them can be difcover'd.

What their way is of drefling, or curing Sponges, I confefs, I cannot learn; but the way of drelfing spunk, is, by boiling it a good while in a ftrong Lixivium, and then beating it very well; and the manner of dreffing Leather is fufficiently known.

It were indeed extremely defirable, if fuch a way could be found whereby the Parenchyma or flefh of the Mufcles, and feveral other parts of the bod, ymight be wafh'd, or wafted clean away, without vitiating the form of the fibrous parts or veffells of it, for hereby the texture of thofe parts, by the help of a good Microfoope, might be moft accurately found.

But to digrefs no further, we may, from this difcovery of the Microfoope, plainly enough underftand how the fkin, though it looks foclofe as it does, comes to give a paflage to fo vaft a quantity of excrementitious fubftances, as the diligent sauciorius has excellently obferved it to do, in his medicina fatica; for it feems very probable, from the texture after dreffing, that there are an infinit of pores that every way pierce it, and that thofe pores are onely fill'd with fome kind of juice, or fome very pulpy foft fubftance, and thereby the fteams may almoft as eafily find a paffage through fuch a fluid vehicle as the vaporous bubbles which are generated at the bottom of a Kettle of hot water do find a paffage through that fluid medium into the ambient Air.
Nor is the fkin of animals only thus pervious, but even thofe of vegetables alfo feem to be the fame; for otherwife I cannot conceive why, if two frigs of Rofemary (for Inftance) be taken as exactly alike in all particulars as can be, and the one be fet with the bottom in a Glafs of water, and the other be fet juft without the Glafs, but in the Air onely, though you ftop the lower end of that in the Air very carefully with Wax, yet fhall it prefently almoft wither, whereas the other that feems to have a fupply from the fubjacent water by its fmall pipes, or microfcopical pores, preferves its greennefs for many days, and fometimes weeks.

Now, this to me, feems not likely to proceed from any other caufe then the avolation of the juice through the fkin; for by the Wax, all thofe other pores, ${ }^{\prime}$, the ftem are very firmly and clofely ftop'd up. And from the more or lefs poroufnefs of the fkins or rinds of Vegetables may, perhaps, be fomewhat of the reafon given, why they keep longer green, or fooner wither; for we may obferve by the bladdering and craking of the leaves of Bays,Holly, Laurel, \&cc. that their fkins are very clofe, and do not fuffer fo free a paffage through them of the included juices.

But of this, and of the Experiment of the Rofernary, I hall elfewhere more fully confider, it feeming to me an extreme luciferous Experiment, fuch as feems indeed very plainly to prove the schematifm or ftructure
of Vegetables altogether mechanical, and as neceffary, that (water and warmth being apply'd to the bottom of the frig of a Plant) fome of it fhould be carried upwards into the ftem, and thence diftributed into the leaves, as that the water of the Thames covering the bottom of the Mills at the Bridge foot of London, and by the ebbing aud flowing of it, paffling ftrongly by them, fhould have fome part of it convey'd to the Cefterns above, and thence into feveral houfes and Cefterns upand down the City.

Obferv. XXXIII. Of the Scales of a Soal, and other Fifhes.

HAving hinted fomewhat of the fkin and covering of terreftrial Animals, I fhall next add an Obfervation I made on the fkin and Scales of a Soal, a fmall Fifh, commonly enough known; and here in Fifhes, as well as other Animals, Nature follows its ufual method, framing all parts fo, as that they are both ufefull and ornamental in all its compolures, mingling utile and dulce together; and both thefe defigns it feems to follow, though our unaffifted fenfes are not able to peceive them: This is not onely manifeft in the covering of this Fifh only, but in multitudes of others, which it would be too long to enumerate, witnefs particularly that fmall Sand Shell, which I mentiond in the XI. Obfervation, and infinite other fmall Shells and Scales, divers of which I have view'd. This fkin I view'd, was flead from a prettylarge soal, and then expanded and dry'd, the infide of it, when dry, to the naked eye, look'd very like a piece of Canvafs, but the Microfoppe difcover'd that texture to be nothing elfe, but the inner ends of thofe curious Scolop'd Scales I, I, I, in the fecond Figure of the XXI. scheme, namely, the part of G G G G (of the larger reprefentation of a fingle Scale, in the firft Figure of the fame Scheme) which on the back fide, through an ordinary fingle Magnifying Glafs, look'd not unlike the Tyles on an houfe.

The outfide of it, to the naked eye, exhibited nothing more of ornament, fave the ufual order of ranging the Scales into a triagonal form ${ }_{2}$ onely the edges feem'd a little to thine, the finger being rubb d from the tail-wards towards the head, the Scales feem'd to ftay and raze it; But through an ordinairy Magnifying glafs, it exhibited a moft curioufly carved and adorned furface, fuch as is vifible in the fecond Figure, each of thofe (formerly almoft imperceptible) Scales appearing much of the fhape I, I, I, that is, they were round, and protuberant, and fomewhat fhap'd like a Scolop, the whole Scale being creas'd with curioully wav'd and indented ridges, with proportionable furrows between; each of which was terminated with a very fharp tranfparent bony fubftance, which, like fo many fmall Turnpikes, feem'd to arm the edges.

The back part K K K was the fkin into which each of thefe Scales were very deeply fix'd, in the curiousregular order, vifible in the fecond

Micrographiá.

Figure: The length and fhape of the part of the Scale which was buried, by the fkin, is evidenced by the firf Figure; which is the reprefentation of one of them pluck'd out and view'd through a good Microfeope, namely, the part LF G GF L, wherein is alfo more plainly to be feen, the manner: of carving of the fcolopt part of every particular Scale, how each ridge or barrEEE is alternately hollowed or engraven, and how every gutter between them is terminated with very tranfparent and hard, pointed: fpikes, and how every other of thefe, as A A A A, are much longer thenthe interjacent ones, D D D.

The texture or form alfo of the hidden part appears, namely, the middle part, GGG , feems to confut of a great number of fmall quills, or pipes, by which, perhaps, the whole may be noupifhed; and the fide parts F F confift of a more fibrous texture, though indeed the whole Scale feem'd to be of a very tough grilly fubftance, like the darger Scales: of other Fifhes.

The Scales of the fkin of a Dog-fifh (which is us'd by fuch as work in Wood, for the fmoothing of their work, and confifts plainly enough to the naked eye, of a great number of fmall horny points) through the Microfope appear'd each of them curioufly ridg'd, and very neatly carved ; and indeed, you can hardly look on the fcales of any Fifh, but you may difcover abundance of curiofity and beautifying; and not only in thefe Fifhes, but in the fhells and crufts or armour of moft forts of Marine Animals fo invefted. Obferv. XXXIV. Of the Sting of a Bee.

THe Sting of a Bee, delineated in the fecond Figure of the XVI. scheine, feems to be a weapon of offence, and is as great an Inftance, that Nature did realy intend revenge as any, and that firft, becaufe there feems to be no other ufe of it. Secondly, by reafon of its admirable fhape, feeming to be purpofely fhap'd for that very end. Thirdly, from the virulency of the liquor it ejebts, and the fad effects and fymptoms that follow it.

But whatever be the ufe of it,certain it is, that the ftructure of it is very admirable; what it appears to the naked eye, I need not defcribe, the thing being known almoft to every one, but it appears through the Microfoope, to confift of two parts, the one a theath, without a chape or top, fhap'd almoft like the Holfter of a Piftol, beginning at d, and ending at b, this fheath I could moft plainly perceive to be hollow, and to contain in it, both a Sword or Dart, and the poifonous liqnor that caufes the pain. The fheath or cafe feem d to have feveral joints or fettings together, marked by $f \mathrm{gbiklmno}$, it was arm'd moreover neer the top, with feveral crooks or forks ($p q r \int t$) on one fide, and ($p q r \int t u$) on the other, each of which feem'd like fo many Thorns growing on a briar, or rather like fo many Cat's Claws; for the crooks themfelves feem'd to be little fharp tranfparent points or claws, growing out of little protuberancies on

Micrograhpia.

the fide of the fheath, which, by obferving the Figure diligently, is eafie enough to be perceiv'd; and from feveral particulars, I fuppofe the Animal has a power of difplaying them, and fhutting them in again as it pleafes, as a Cat does its claws, or as an Adder or Viper can its teeth or fangs.

The other part of the Sting was the Sword, as 1 may fo call it, which is fheath'd, as it were, in it, the top of which' $a b$ appears quite through at the frialler end, juft as if the chape of the fheath of a Sword were loft, and the end of it appear'd beyond the Scabbard; the end of this Dart (a) was very fharp, and it was arm'd likewife with the like Tenterhooks or claws with thofe of the fheath, fuch as $(v x y, x y z z)$ thefe crooks, 1 am very apt to think, can be closd up alfo, or laid flat to the fides of the Sword when it is drawn into the Scabbard, as I have feveral times obferv'd it to be, and can be fpred again or extended when ever the Animal pleafes.
The confideration of which very pretty ftructure, has hinted to me, that certainly the ufe of thefeclaws feems to be very confiderable, as to the main end of this Inftrument, for the drawing in, and holding the fling in the flefh; for the point being very fharp, the top of the Sting or Dagger $(a b)$ is very eafily thruft into an Animal's body, which being once entred, the Bee, by endeavouring to pull it into the fheath, draws (by reafon of the crooks $(v x y$) and ($x y z z$) which lay hold of the fkin on either fide) the top of the fheath ($t \int r v$) into the fkin after it, and the crooks t, s, and r, v, being entred, when the Bee endeavours to thruft out the top of the fting out of the fheath again, they lay hold of the fkin on either fide, and fo not onely keep the fheath from fliding back, but helps the top inwards, and thus, by an alternate and fucceflive retracting and emitting of the Sting in and out of the fheath, the little enraged creature by degrees makes his revengfull weapon pierce the tougheft and thickeft Hides of his enemies, in fo much that fome few of thefe ftout and refolute foldiers with thefe little engines, do often put toffight a huge mafty Bear, one of their deadly enemies, and thereby fhew the world how much more confiderable in Warr a few fkilfull Engineers and refolute foldiers politickly order'd, that know how to manage fuch engines, are, then a vaft unweildy rude force, that confides in, and acts onely by, its ftrength. But (to proceed) that he thus gets in his Sting into the fkin, I conjecture, becaufe, when I have obferv'd this creature living, I have found it to move the Sting thus, to and $\mathrm{fro}_{\text {, }}$ and thereby alfo, perhaps, does, as 'twere, pump or force out the poifonous liquor, and make it hang at the end of the fheath about b in a drop. The crooks, I fuppofe alfo to be the caufe why thefe angry creatures, haftily removing themfelves from their revenge, do often leave thefe weapons behind them, fheath'd, as 'twere, in the fiefh, and, by that means, caufe the painfull fymptoms to be greater, and more lafting, which are very probably caus'd, partly by the piercing and tearing of the fkin by the Sting, but chiefly by the corrofive and poifonous liquor that is by this Syringe-pipe convey'd among the fenfitive parts there of and thereby more eally gnaws

Micrographia。

and corrodes thofe tender fibres: As I have fhewed in the defcription of a Nettle and of Cowhage.

Obferv. XXXV. Of the contexture and Jhape of the particles of Feathers.

EXamining feveral forts of Feathers, I took notice of thefe particulars in all forts of wing-Feathers, efpecially in thofe which ferv'd for the beating of the air in the action of flying.

That the outward furface of the Quill and Stem was of a very hard,ftiff, and horny fubftance, which is obvious enough, and that the part above the Quill was fill d with a very white and light pith, and, with the Microfoope, I found this pith to be nothing elfe, but a kind of natural congeries of fmall bubbles, the films of which feem to be of the fame fubftance with that of the Quill, that is, of a ftiff tranfparent horny fubftance.
Which particular feems to me, very worthy a more ferious confideration; For here we may obferve Nature, as 'twere, put to its fhifts, to make a fubftance, which fhall be both light enough, and very ftiff and ftrong, without varying from its own eftablifh'd principles, which we may obferve to be fuch, that very ftrong bodies are for the moft part very heavie alfo, a frrength of the parts ufually requiring a denfity, and a denfity a gravity; and therefore fhould Nature have made a body fo broad and fo ftrong as a Feather, almoft, any other way then what it has taken, the gravity of it muft neceflarily have many times exceeded this; for this pith feems to be like fo many ftops or crofs pieces in a long optical tube, which do very much contribute to the ftrength of the whole, the pores of which were fuch, as that they feem'd not to have any communication with one another, as I have elfewhere hinted.
But the Mechanifm of Nature is ufually fo excellent, that one and the fame fubftance is adapted to ferve for many ends. For the chief ufe of this, indeed, feems to be for the fupply of nourifhment to the downy or feathery part of the ftem; for'tis obvious enough in all forts of Feathers, that 'tis plac'd juft under the roots of the branches that grow out of either fide of the quill or falk, and is exactly fhap'd according to the ranking of thofe branches, coming no lower into the quill, then juft the beginning of the downy branches, and growing onely on the under fide of of the quill where thofe branches do fo. Now, in a ripe Feather (as one may call it) it feems difficult to conceive how the succus nutritius fhould be convey'd to this pith; for it cannot, I think, be well imagin'd to pals through the fubftance of the quill, fince, having examin'd it with the greateft diligence I was able, I could not find the leaft appearance of pores; but he that fhall well examine an unripe or pinn'd Feather, will plainly enough perceive the Veffel for the conveyance of it to be the thin filmy pith (as tis call'd) which paffes through the middle of the quill.

As for the make and contexture of the Down it felf, it is indeed very
rare and admirable, and fuch as I can hardly believe, that the like is to be difcover'd in any other body in the world; for there is hardly a large Feather in the wing of a Bird but contains neer a million of diftinct parts, and every one of them fhapd in a moft regular \& admirable form,adapted to a particular Defign : For examining a middle ciz'd Goofe-quill, I eafily enough found with my naked eye, that the main ftem of it contain'd about 300. longer and more Downy branchings upon one fide, and as many on the other of more ftiff but fomewhat fhorter branchings. Many of thefe long and downy branchings, examining with an ordinary $M i$ crofope, I found divers of them to contain neer 1200. fmall leaves (as I may call them, fuch as EF of the firft Figure of the 23. scheme) and as many ftalks ; on the other fide, fuch as I K of the fame Figure, each of the leaves or branchings, E F, feem'd to be divided into about fixteen or eighteen fmall joints, as may be feen plainly enough in the Figure, out of moft of which there feem to grow fmall long fibres, fuch as are exprefs'd in the Figure, each of them very proportionably fhap'd according to its pofition, or plac'd on the ftalk E F; thofe on the under fide of it, namely, $1,2,3,4,5,6,7,8,9$, Cic. being much longer then thofe directly oppofite to them on the upper ; and divers of them, fuch as $2,3,4,5,6,7,8,9$, of c. were terminated with fmall crooks, much refembling thofe fmall crooks, which are vifible enough to the naked eye, in the feed-buttons of Bur-docks. The ftalks likewife, IK on the other fide, feem'd divided into neer as many fmall knotted joints, but without any appearance of ftrings or crooks, each of them about the middle K, feem'd divided into two parts by a kind of fork, one fide of which, namely, K L, was extended neer the length of KI, the other, M, was very fhort.

The tranfverfe Sections of the ftems of thefe branchings, manifefted the fhape or figure of it to be much like I NO E, which confifted of a horny fkin or covering, and a white feemingly frothy pith, much like the make of the main ftem of a Feather.

The ufe of this ftrange kind of form, is indeed more admirable then all the reft, and fuch as deferves to be much more ferioully examin'd and confider'd, then I have hitherto found time or ability to do ; for certainly, it may very much inftruct us in the nature of the Air, efpecially as to fome properties of it.

The frems of the Downy branches INOE, being rang'd in the order vifible enough to the naked eye, at the diftance of I F, or fomewhat more, the collateral ftalks and leaves (if I may fo call thofe bodies Inewly defcribed) are fo rang'd, that the leaves or hairy ftalks of the one fide lie at top, or are incumbent on the ftalks of the other, and crofs each other, much after the manner exprefs'd in the fecond Figure of the 23. Scheme, by which means every of thofe little hooked fibres of the leaved ftalk get between the naked ftalks, and the ftalks being full of knots, and a prety way dif-join'd, fo as that the fibres can eafily get between them, the two parts are fo clofely and admirably woven together, that it is able to impede,for the greateft part, the tranfcurfion of the Air; and though they are fo exceeding fmall, as that the thicknefs of one of

Micrographia。

thefe ftalks amounts not to a 500 . part of an Inch, yet do they compofe fo ftrong a texture, as, notwithftanding the exceeding quick and violent beating of them againft the Air, by the ftrength of the Birds wing, they firmly hold together. And it argues an admirable providence of Nature in the contrivance and fabrick of them; for their texture is fuch, that though by any external injury the parts of them are violently dif-joyn'd, fo as that the leaves and falkstouch not one another, and confequently feveral of thefe rents would impede the Bird's flying; yet, for the moft part, of themfelves they readily re-join and re-contex themfelves, and are eafily by the Birds Atroking the Feather, or drawing it through its Bill, all of them fettled and woven into their former and natural pofture; for chere are fuch an infinite company of thofe fmall fibres in the under fide of the leaves, and moft of them have fuch little crooks at their ends, that they readily catch and hold the ftalks they touch.
From which ftrange contexture, it feems rational to fuppofe that there is a certain kind of mefh or hole fo fmall, that the Air will not very eafily pafs through it, as I hinted alfo in the fixth Obfervation about frnall Glafs Canes, for otherwife it feems probable, that Nature would have drawn over fome kind of thin film which fhould have covered all thofe almoft fquare mefhes or holes, there feeming through the Microfope to be more then half of the furface of the Feather which is open and vifibly pervious; which conjecture will yet feem more probable from the texture of the brufhie wings of the Tinea argentea, or white Feather wing'd moth, which I thall anone defcribe. But Nature, that knows beft its own laws, and the feveral properties of bodies, knows alfo beft how to adapt and fit them to her defigned ends, and whofo would know thofe properties, muft endeavour to trace Nature in its working, and to fee what courfe fhe obferves. And this I fuppofe will be no inconfiderable advantage which the schematijms and Structures of Animate bodies will afford the diligent enquirer, namely, moft fure and excellent inftructions, both as to the practical part of Mechanicks and to the Theory and knowledge of the nature of the bodies and motions.

Obferv. XXXVI. Of Peacoks, Ducks, and other Feathers of changeable colours.

THe parts of the Feathers of this glorious Bird appear, through the Microfcope, no lefs gaudy then do the whole Feathers; for, as to the naked eye tis evident that the fem or quill of each Feather in the tail fends out multitudes of Lateral branches, fuch as AB in the third Figure of the 23 . scbeme reprefents a fmall part of about $\frac{x}{32}$ part of an Inch long; and each of the lateral branches emit multitudes of little fprigs, threads or hairs on either fide of them, fuch as $C D, C D, C D$, fo each of thofe threads in the Microfope appears a laxge long body, confifting of a multitude
tude of bright reflecting parts, whofe Figure 'tis no eafie matter to determine, as he that examinesit fhall find; for every new pofition of it to the light makes it perfectly feem of another form and fhape, and nothing what it appear'd a little before; nay, it appear'd very differing ofttimes from fo feemingly inconfiderable a circumftance, that the interpofing of ones hand between the light and it,makes a very great change, and the opening or fhutting a Cafement and the like, very much diverfifies the appearance. And though, by examining the furm of it very many ways, which would be tedious here to enumerate, I fuppofe I have difcover'd the true Figure of it, yet oftentimes, upon looking on it in another pofture, I have almoft thought my former obfervations deficient, though indeed, upon further examination, I have found even thofe alfo to confirm them.

Thefe threads therefore I find to be a congeries of fmall Lamine or plates, as ee e ee, \&c. each of them fhap'd much like this of $a b c d$, in the fourth Figure, the part $a c$ being a ridge, prominency, or ftem, and b and d the corners of two fmall thin Plates that grow unto the fmall ftalk in the middle,fo that they make a kind of little feather; each of thefe Plates lie one clofe to another,almoft like a company of floping ridge or gutter Tyles; they grow on each fide of the ftalk oppofite to one another, by two and two, from top to bottom, in the manner exprefs'd in the fifth Figure, the tops of the lower covering the roots of the next above them; the under fide of each of thefe laminated bodies, is of a very dark and opacous fubftance, and fuffers very few Rays to be trajected, but reflects them all toward that fide from whence they come, much like the foil of a Looking-glafs; but their upper fides feem to me to confift of a multitude of thin plated bodies, which are exceeding thin, and lie very clofe together, and thereby, like mother of Pearl fhells, do not onely reflect a very brifk light, but tinge that light in a moft curious manner; and by means of various pofitions, in refpect of the light, they reflect back now one colour, and then another, and thofe moft vividly.

Now, that thefe colours are onely fantafical ones, that is, fuch as arife immediately from the refractions of the light, I found by this, that water wetting thefe colour'd parts, deftroy'd their colours, which feem'd to proceed from the alteration of the reflection and refraction. Now, though I was not able to fee thofe hairs at all tranfparent by a common light, yet by looking on them againft the Sun, I found them to be ting'd with a darkifh red colour, nothing a-kin to the curious and lovely greens and blues they exhibited.

What the reafon of colour feems to be in fuch thin plated bodies, I have elfewhere fhewn. But how water caft upon thofe threads deftroys their colours, I fuppofe to be perform'd thus; The water falling upon thefe plated bodies from its having a greater congruity to Feathers then the Air, infinuates it felf between thofe Plates, and fo extrudes the ftrong reflecting Air, whence both thefe parts grow more tranfparent, as the Microfoope informs, and colourlefs alfo, at beft retaining 2 very faint and

Migrographia.

dull colour. But this wet being wafted away by the continual eyaporas tions and fteams that pafs through them from the Peacock, whilff that Bird is yet alive, the colours again appear in their formen lufter the in terfitia of thele Plates being filld with the ftrongly reflecting Air.

The beauteous and vivid colours of the Feathers of this Bird, being found to proceed from the curious and exceeding fmalnefs and finenefs of the reflecting parts, we have here the reafongiven us of all thofe gaut deries in the apparel of other Birds alfo 0_{0} and how they come to exceed the colours of all other kinds of Animals, befides Infects; for fince (3s we here, and elfewhere alfo thew) the vividnefs of a colour, depends upon the finenefs and tranfparency of the reflecting and refracting parts s and fince our Microfcope difcovers to us, that the component parts of feathers are fuch, and that the hairs of Animals are otherwife; and fince we find alfo by the Experiment of that Noble and nuoft Excellent Perfon I former 9 ly named; that the difference between Silk and Flax, as to its colour, is nothing elfe (for Flax reduc'd to a very great finenefs of parts, both white and colour'd, appears as white and as vivid as any Silk, but lofes that brightnefs and its Silken afpect as foon as it is twifted into thread, by reafon that the component parts, though very fmall and fine, are yet pliable flakes, and not cylinders, and thence, by twifting, become united ins to one opacousbody, whereas the threads of Silk and Feathers retain their luftre, by preferving their cylindrical form intire withoytmixing; fo that each reflected and refracted beam that compofes the glofs of Silk, preferves its own property of modulating the lightintire); And fince we find the fame confirm'd by many other Experiments elfewhere mentioned, I think we may fafely conclude this for an Axiome, that wherefoever we meet with tranfparent bodies, fpun out into very fine parts, either cleer, or any ways ting'd, the colours refulting from fuch a compofition muft neceflarily be very glorious, vivid, and cleer, like thofe of Silk and Feathers. This may perhaps hint fome ufefull way of making other bodies, befides silk, befuffeptible of bright tinctures, but of this onely by the by.

The changeable colour'd Feathers alfo of Ducks, and feveral other Birds, I have found by examination with my Micrefcope, to proceed from much the fame caufes and textures.

> Oblerv. XXXVII. Of the Feet of Flies, and feveral other Ins fects.

THe foot of a Fly (delineated in thefirft Figuve of the 23. scobeme, which reprefents three joints, the two Tallons, and the two Pattens in a flat pofture; and in the fecond Figune of the fame scheme, whichreprefents onely one joint, the Tallons and Pattens in another pofture) is of a moft admirable and curious contrivance, for by this the iFlies are inabled to walk againft thefides of Glafs, perpehidienlarly upwards, and to

$$
A^{2} a
$$

contain!
contain themfelves in that pofture as long as they pleafe;nay, to walk and fufpend themfelves againft the under furface of many bodies, as the ceiling of a room, or the like, and this with as great a feeming facility and firmnefs, as if they were a kind of Antipodes, and had a tendency upwards, as we are fure they have the contrary, which they alfo evidently difcover, in that they cannot make themfelves fo light, as to ftick or fufpend themfelves on the under furface of a Glafs well polifh'd and cleans'd; their fufpenfion therefore is wholly to be afcrib'd to fome Mechanical contrivance in their feet; which, what it is, we fhall in brief explain, by fhewing, that its Mechanifm confifts principally in two parts, that is, firft its two Claws, or Tallons, and fecondly, two Palms, Pattens, or Soles.

The two Tallons are very large, in proportion to the foot, and handfomly fhap'd in the manner defcrib'd in the Figures, by AB, and A C, the bigger part of them from A to $d d_{2}$, is all hairy, or brifled, but toward the top, at Cand B fmooth, the tops or points, which feem very Tharp turning downwards and inwards, are each of them mov'd on a joint at A, by which the Fly is able to open or fhut them at pleafure, fo that the points B and C being entered in any pores, and the Fly endeavouring to fhut them, the Claws not onely draw one againft another, and fo faften each other, but they draw the whole foot, GGA DD forward, fothat on a foft footing, the tenters or points G G G G , (whereof a Fly has about ten in each foot, to wit, two in every joint) run into the pores, if they find any, or at leaft make their way; and this is fenfible to the naked eye, in the feet of a Chafer, which, if he be fuffer'd to creep over the hand, or any other part of the fkin of ones body, does make his fteps as fenfible to the touch as the fight.

But this contrivance, as it often fails the Chafer, when he walks on hard and clofe bodies, fo would it alfo our Fly, though he be a much leffer, and nimbler creature, and therefore Nature has furnifh'd his foot with another additament much more curious and admirable, and that is, with a couple of Palms, Pattens or Soles D D, the ftructure of which is this:

From the bottom or under part of the laft joint of his foot, K, arife two fmall thin plated horny fubftances, each confifting of two flat pieces, D D, which feem to be flexible, like the covers of a Book, about F F, by which means, the plains of the two fides E E, Ido not always lie in the fame plain, but may be fometimes fhut clofer, and fo each of them may take a little hold themfelves on a body; but that is not all, for the under fides of thefe Soles are all befet with fmall brifles, or tenters, like the Wire teeth of a Card ufed for working Wool, the points of all which tend forwards, hence the two Tallons drawing the feet forwards, as I before hinted, and thefe being applied to the furface of the body with all the points looking the contrary way, that is, forwards and outwards, if there be any irregularity or yielding in the furface of the body, the Fly fufpends it felf very firmly and eafily, without the accefs or need of any fuch Sponges fill'd with an imaginary gluten, as many have, for want of good Glaffes, perhaps, or a troublefome and diligent examination, fuppos'd.

Now, that the Fly is able to walk on Glafs, proceeds partly from fome ruggednefs
rugged
frioaky
and tho
may th
This

Micrographia.

ruggednes of the furface; and chiefly from a kind of tarnifh, or dirty fmoaky fubftance, which adheres to the furface of that very hard body; and though the pointed parts cannot penetrate the fubftance of Glafs, yet may they find pores enough in the tarnifh, or at leaft make them.

This Structure I fomewhat the more diligently furvey'd, becaufe I could not well comprehend, how, if there were fuch a glutinous matter in thofe fuppofed Sponges, as moft (that have obferv'd that Object in a Aricrofope) have hitherto believ d, how, I fay, the Fly could for readily unglew and loofen its feet: and, becaufe I have not found any other creature to have a contrivance any ways like it; and chiefly, that we might not be caft upon unintelligible explications of the phonomend of Nature, at leaft others then the true ones, where our fenfes were able to furnifh us with an intelligible, rationall and true one.

Somewhat a like contrivance to this of Flies fhall we find in moft other Animals, fuch as all kinds of Flies and cafe-wing'd creatures; nay, in a Flea, an Animal abundantly fmaller then this Fly. Other creatures, as Mites, the Land-Crab, ©ic. have onely one fmall very fharp Tallon at the end of each of their legs, which all drawing towards the center or middle of their body, inable thefe exceeding light bodies to fufpend and faften themelves to almoft any furface.

Which how they are able to do, will not feem ftrange, if we confider, firft, how little body there is in one of thefe creatures compar'd to their fuperficies, or outfide, their thicknefs, perhaps, oftentimes, not amounting to the hundredth part of an Inch: Next, the ftrength and agility of thefe creatures compar'd to their bulk, being, proportionable to their bulk, perhaps, an hundred times ftronger then an Horfe or Man. And thirdly, if we confider that Nature does always appropriate the inftruments, fo as they are the moft fit and convenient to perform their offices, and the moft fimple and plain that poflibly can be; this we may fee further verit fy'd alfo in the foot of a Loufe which is very much differing from thofe I have been defribing, but more convenient and neceflary for the place of its habitation, each of his leggs being footed with a couple of fmall claws which he can open or fhut at pleafure, fhap'd almoft like the claws of a Lobfter or Crab,but with appropriated contrivances for his peculian ufe, which being to move its body to and fro upon the hairs of the creature it inhabits, Nature has furnilhid one of its claws with joints, almoft like the joints of a man's fingers, fo as thereby it is able to encompafs or grafp a hair as firmly as a man can a flick or rope.

Nor, is there a lefs admirable and wonderfull Mechanifm in the foot of a Spider, whereby he is able to fpin, weave, and climb, or run onhis curious tranfparent clew, of which I fhall fay more in the defcription of that Animal.

And to conclude, we fhall in all things find; that Nature does not onely work Mechanically, but by fuch excellent and moft compendious, as well as ftupendious contrivances, that it were impoffible for all the reafon in the woild to find out any contrivance to do the fame thing that fhould have more convenient properties, And can any be fo fottifh,

A a 2
as
as to think all thofe things the productions of chance? Certainly, either their Ratiocination muft be extremely depraved, or they did never attentively confider and contemplate the Works of the Al-mighty.

Obferv. XXXVIII. Of the Structure and motion of the Wings of Flies.

T${ }^{1}$ He Wings of all kinds of Infects, are, for the moft part, very beautifull Objects, and afford no lefs pleafing an Object to the mind to fpeculate upon, then to the eye to behold. This of the blue Fly, among the reft, wants not its peculiar ornaments and contrivances; it grows out of the Thorax, or middle part of the body of a Fly, and is feated a little beyond the center of gravity in the body towards the head, but that Excentricly is curioufly balanc'd; firft, by the expanded Area ofthe wings which lies all more backwards then the root, by the motion of them, whereby the center of their vibration is much more backwards towards the tail of the Fly then the root of the wing is. What the vibrative motion of the wings is, and after what manner they are moved, I have endeavoured by many trials to find out: And for the firft manner of their motion, I endeavoured to obferve feveral of thofe kind of fmall fpinning Flies, which will naturally fufpend themfelves, as it were, pois'd and fteady in one place of the air, without rifing or falling, or moving forwards or backwards; for by looking down on thofe, I could by a kind of faint fhadow, perceive the utmoft extremes of the vibrative motion of their wings, which fhadow, whil'ft they fo endeavoured to fufpend themfelves, was not very long, but when they endeavour'd to flie forwards, it was fomewhat longer; next, I tried it, by fixing the leggs of a Fly upon the top of the ftalk of a feather, with Glew, Wax, ecc. and then making it endeavour to flie away; for being thereby able to view it in any pofture, I collected that the motion of the wing was after this manner. The extreme limits of the vibrations were ufually fomewhat about the length of the body diftant from one another, oftentimes fhorter, and fometimes alfo longer; that the formoft limit was ufually a little above the back, and the hinder fomwhat beneath the belly; between which two limits, if one may ghefs by the found, the wing feem'd to be mov'd forwards and backwards with an equal velocity: And if one may (from the fhadow or faint reprefentation the wings afforded, and from the confideration of the nature of the thing) ghefs at the pofture or manner of the wings moving betweeen them, it feem'd to be this: The wing being fuppos'd placed in the upmoft limit, feems to be put fo that the plain of it lies almoft horizontal, but onely the forepart does dip a little, or is fomewhat more depreft; in this pofition is the wing vibrated or mov'd to the lower limit, being almoft arrived at the lower limit, the hinder part of the wing moving fomewhat fafter then the former,
former, feems it
again in moved which t ons or π very. pri bration if not fo we may fwift, fo ceeds fr And it fe portion
ought I ons of ar other pla molt pro found in quickne chufe bu
Anima 0 tive facu fo quick, Whil' wings, I there we them fro a long ha them con fo that at lent ufe, that it mi ting to and a paffage onfome tion, whi thought, nient pall admitting
dulum
din
tures mig?
Out,the ai The fab ing $\mathrm{Nic}_{\text {icro }}$

Micrographia.

former, the Area of the wing begins to dip behind, and in that pofture feems it to be mov'd to the upper limit back again, and thence back again in the firft pofture, the former part of the Area dipping again, as it is moved downwards by means of the quicker motion of the main ftem which terminates or edges the forepart of the wing. And thefe vibrations or motions to and fro between the two limits feem fo fwift, that 'tis very probable (from the found it affords, if it be compar'd with the vibration of a mufical ftring, tun'd unifon to it) it makes many hundreds, if not fome thoufands of vibrations in a fecond minute of time. And, if we may be allow'd to ghefs by the found, the wing of a Bee is yet more fwift, for the tone is much more acute, and that, in all likelihood, proceeds from the exceeding fwift beating of the air by the frall wing. And it feems the more likely too, becaufe the wing of a Bee is lefs in proportion to its body, then the other wing to the body of a Fly; fo that for ought I know, it may be one of the quickeft vibrating fontaneous motions of any in the world; and though perhaps there may be many Flies in other places that afford a yet more fhrill noife with their wings, yet 'tis moft probable that the quickeft vibrating fpontaneous motion is to be found in the wing of fome creature. Now, if we confider the exceeding quicknefs of thefe Animal firits that muft caufe thefe motions, we cannot chufe but admire the exceeding vividnefs of the governing faculty or Anima of the Infect, which is able to difpofe and regulate fo the the motive faculties, as to caufe every peculiar organ, not onely to move or act fo quick, but to do it alfo fo regularly.

Whil'ft I was examining and confidering the curious Mechanifm of the wings, I obferv'd that under the wings of moft kind of Flies, Bees, ofc. there were plac'd certain pendulums or extended drops (as I may fo call them from their refembling motion and figure) for they much refembled a long hanging drop of fome tranfparent vifcous liquor ; and I obferved them conftantly to move juft before the wings of the Fly began to move, fo that at the firft fight I could not but ghefs, that there was fome excellent ufe, as to the regulation of the motion of the wing, and did phancy, that it might be fomething like the handle of a Cock, which by vibrating to and fro, might, as 'twere, open and fhut the Cock, and thereby give a paffage to the determinate influences into the Mufcles; afterwards, upon fome other trials, I fuppos'd that they might be for fome ufe in refpiration, which for many reafons I fuppofe thofe Animals to ufe, and, me thought, it was not very improbable, but that they might have convenient paffages under the wings for the emitting, at leaft, of the air, if not admitting, as in the gills of Fifhes is moft evident; or, perhaps, this Pendulum might be fomewhat like the ftaff to a Pump, whereby thefe creatures might exercife their Analogus lungs, and not only draw in, but force out, the air they live by : but thefe were but conjectures, and upon further examination feem'd lefs probable.

The fabrick of the wing, as it appears through a moderately magnifying Microf cope, feems to be a body confifting of two parts, as is vifible in the 4. Figure of the 23.5 chemejand by the 2.Figure of the 26 .Scheme; the one is a quilly
a quilly or finny fubftance, confifting of feveral long, flender and varioufly bended quills or wires, fomething refembling the veins of leaves; thefe are, as 'twere, the finns or quills which ftiffen the whole Area, and keep the other part diftended, which is a very thin tranfparent fkin or membrane varioufly folded, and platted, but not very regularly, and is befides exceeding thickly beftuck with innumerable fmall brifles, which are onely perceptible by the bigger magnifying Microfoope, and not with that neither, but with a very convenient augmentation of fkylight projected on the Object with a burning Glafs, as I have elfewhere fhew d, or by looking through it againft the light.

In fteed of thefe fmall hairs, in feveral other Flies, there are infinite of fmall Feathers, which cover both the under and upper fides of this thin film as in almoft all the forts of Butterflies and Moths: and thofe fmall parts are not onely fhap'd very much like the feathers of Birds, but like thofe variegated with all the variety of curious bright and vivid colours imaginable; and thofe feathers are likewife fo admirably and delicately rang' d , as to compofe very fine flourifhings and ornamental paintings, like Turkie and Perfian Carpets, but of far more furpaffing beauty, as is evident enough to the naked eye, in the painted wings of Butterflies, but much more through an ordinary Microfoope.

Intermingled likewife with thefe hairs, may be perceived multitudes of little pits, or black fots, in the exended membrane, which feem to be the root of the hairs that grow on the other fide; thefe two bodies feem difpers'd over the whole furface of the wing.

The hairs are beft perceiv'd, by looking through it againft the light, or, by laying the wing upon a very white piece of Paper, in a convenient light, for thereby every little hair moft manifeftly appears; a Specimen of which you may obferve drawn in the fourth Figure of the 23. Scheme, A B, CD, EF whereof reprefent fome parts of the bones or quills of the wing, each of which you may perceive to be cover'd over with a multitude of fales, or brifles, the former AB, is the biggeft ftem of all the wing, and may be properly enough call'd the cut-air, it being that which terminates and ftiffens the formof edge of the wing ; the fore-edge of this is arm'd with a multitude of little brifles, or Tenter-hooks, in fome ftanding regular and in order, in others not; all the points of which are directed from the body towards the tip of the wing, nor is this edge onely thus fring'd, but even all the whole edge of the wing is cover'd with a fmall fringe, confifting of fhort and more flender brifles.

This Subject, had I time, would afford excellent matter for the contemplation of the nature of wings and of flying; but, becaufe I may, perhaps, get a more convenient time to profecute that fpeculation, and recollect feveral Obfervations thatI have made of that particular. I fhall at prefent proceed to

Obferv. XXXIX. Of the Eyes and Head of a Grey drone Fly, and of feveral other creatures.

Itook a large grey Dronc-Fly, that had a large head, but a fmall and flender body in proportion to it, and cutting off its head, I fix'd it with the forepart or face upwards ufon my Object Plate (this I made choice of rather then the head of a great blue Fly, becaufe my enquiry being now about the eyes,I found this Fly to have, firft the biggeft clufters of eyes in proportion to his head, of any fmall kind of Fly that I have yet feen, it being fomewhat inclining towards the make of the large Dragon-Flies. Next, becaufe there is a greater variety in the knobs or balls of each clufter, then is of any fmall Fly) Then examining it according to my ufual manner, by varying the degrees of light, and altering its polition to each kinde of light, I drew that reprefentation of it which is delineated in the 24. Scheme, and found thefe things to be as plain and evident, as notable and pleafant.

Firft, that the greateft part of the face, nay, of the head, was nothing elfe but two large and protuberunt bunches, or prominent parts, A B C D E A , the furface of each of which was all cover'd over, or fhap'd into a multitude of fmall Hemijpheres, plac'd in a triagonal erder, that being the clofeft and moft compacted, and in that order, rang'd over the whole furface of the eye in very lovely rows, between each of which, as is neceffary, were left long and regular trenches, the bottoms of every of which, were perfectly intire and not at all perforated or drill'd through, which I moft certainly was affured of, by the regularly reflected Image of certain Objects which I mov'd to and fro between the head and the light. And by examining the Cornea or outward fkin, after I had ftript it off from the feveral fubftances that lay within it, and by looking bcth upon the inffer and againft the light.

Next, that of thofe multitudes of Hemifpheres, there were obfervable two degrees of bignefs, the half of them that were lowermoft, and look'd toward the ground or their own leggs, namely, CDE, CDE being a pretty deal fmaller then the other, namely, A B CE, AB C E, that look'd upward, and fide-ways, or foreright, and backward, which variety I have not found in any other fmall Fly.

Thirdly, that every one of thefe Hemijpheres, as they feem'd to be pretty neer the true fhape of a Hemijphere, fo was the furface exceeding fmooth and regular, reflecting as exact, regular, and perfect an Image of any Object from the furface of them, as a fmall Ball of Quick-filver of that bignefs would do, but nothing neer fo vivid, the reflection from thefe being very languid, much like the reflection from the outfide of Water, Glats, Cryftal, © c. In fo much that in each of thefe Hemijpheres, I have been able to difcover a Land-fcape of thofe things which lay before my window,

Micrographia.

window, one thing of which was a large Tree, whofe trunk and top I could plainly difcover, as I could alfo the parts of my window, and my hand and fingers, if I held it between the Window and the Object; a fmall draught of nineteen of which, as they appear'd in the bigger Mag-nifying-glafs to reflect the Image of the two windows of my Chamber, are delineated in the third Figure of the 23. Scheme.

Fourthly, that thefe rows were fo difpos'd, that there was no quarter vifible from his head that there was not fome of thefe Hemiffheres directed againft ; fo that a Fly may be truly faid to have an eye every way, and to be really circumpect. And it was further obfervable, that that way where the trunk of his body did hinder his profpect backward, thefe protuberances were elevated, as it were, above the plain of his fhoulders and back, fo that he was able to fee backwards alfo over his back.

Fifthly, in living Flies, I have obferv'd, that when any fmall mote or duft, which flies up and down the air, chances to light upon any part of thefe knobs, as it is fure to ftick firmly to it and not fall, though through the Microfope it appears like a large ftone or ftick (which one would admire, efpecially fince it is no ways probable that there is any wet or glutinous matter upon thefe Hemijpheres, but I hope I fhall render the reafon in another place) fo the Fly prefently makes ufe of his two fore-feet in ftead of eye-lids, with which, as with two Brooms or Brufhes, they being all beftuck with Brifles, he often fweeps or brufhes off what ever hinders the profpect of any of his Hemijpheres, and then, to free his leggs from that dirt, he rubs them one againft another, the pointed Brifles or Tenters of which looking both one way, the rubbing of them to and fro one againft another, does cleanfe them in the fame manner as I have obferv'd thofe that Card Wool, to cleanfe their Cards, by placing their Cards, fo as the teeth of both look the fame way, and then rubbing them one againft another. In the very fame manner do they brufh and cleanfe their bodies and wings, as l fhall by and by fhew ; other creatures have other contrivances for the cleanfing and cleering their eyes.

Sixthly, that the number of the Pearls or Hemipheres in the clufters of this Fly, was neer 14000 . which I judged by numbering certain rows of them feveral ways, and cafting up the whole content, accounting each clufter to contain about feven thoufand Pearls, three thoufand of which were of a cize, and confequently the rows not fo thick, and the foure thoufand I accounted to be the number of the fmaller Pearls next the feet and probofcis. Other Animals I obferv'd to have yet a greater number, as the Dragon-Fly or Adderbolt : And others to have a much lefs company, as an Ant, \&c. and feveral other frall Flies and Infects.
seventhly, that the order of thefe eies or Hemijpheres was altogether curibus and admirable, they being plac'd inall kind of Flies, and aerial animals, in a moft curious and regular ordination of triangular rows, in which order they are rang'd the neereft together that poflibly they can, and confequently leave the leaft pits or trenches between them. But in shrimpss, Cramfighes, Lobfers, and fuch kinds of Cruftaceous water Animals, thave

Micrographia.

yet obferv'd them rang'd in a quadrangular order, the rows cutting each other at right angles, which as it admits of a lefs number of Pearls in equal furfaces; fo have thofe creatures a recompence made them, by having their eyes a little movable in their heads, which the other altogether want. So infinitely wife and provident do we find all the Difpenfations in Nature, that certainly Epicurus, and his followers, muif very little have confider'd them, who afcrib'd thofe things to the production of chance, that wil, to a more attentive confiderer, appear the products of the higheft Wifdom and Providence.

Upon the Anatomy or Diffection of the Head, I obferv'd thefe particulars:
Firft, that this outward finin, like the Cornea of the eyes of the greater Animals, was both flexible and tranfparent, and feem'd, through the $M i$ crofcope, perfectly torefemble the very fubftance of the Cornea of a man's eye; for having cut out the clufter, and remov'd the dark and mucous fruff that is fubjacent to it, I could fee it tranfparent like a thin piece of fkin, having as many cavities in the infide of it, and rang'd in the fame order as it had protuberances on the outfide, and this propriety, I found the fame in all the Animals that had it, whether Flies or Shell-Fifh.

Secondly, I found that all Animals that I have obferv'd with thofe kind of eyes, have withinthis Cornea, a certain cleer liquor or juice, though in a very little quantity, and,

I obferv'd thirdly, that within that eleer liquor, they had a kind of dark mucous lining, which was all fread round within the cavity of the clufter, and feem'd very neer adjoining to it, the colour of which, in fome Flies, was grey; in others, black; in others red; in others, of a mix'd colour ; in others, fotted ${ }^{5}$ and that the whole clufters, when look'd on whil'ft the Animal was living, or but newly kill'd, appear'd of the fame colour that this ccat (as Imay fo call it) appear'd of, when that outward fkin, or Cornea, was remov'd.

Fourthly, that the reft of the capacity of the clufters was in fome, as in DragonFlies, erc. hollow, or empty; in others filld with fome kind of fubftance; in blue Flies, with a reddifh mufculous fubftance, with fibres tending from the center or bottom outwards; and divers other, with various and differing kinds of fubftances.

That this curious contrivance is the organ of fight to all thofe various Cruftaceous Animals, which are furnifhd with it, I think we need not doubt, if we confider but the feveral congruities it has with the eyes of greater creatures.

As firft, that it is furnifh'd with a Cornea, with a tranfparent bumour, and with a uvea or retina, that the Figure of each of the fmall Hemijpheres are very spherical, exactly polifh'd, and moft vivid, lively and plump, when the Animal is living as in greater Animals, and in like manner dull, flaccid, and irregular, or thrunk, when the Animal is dead.

Next, that thofe creatures that are furnifh'd with it, have no other organs that have any refemblance to the known eyes of other creatures.

Micrographia.

'Thirdly, that thofe which they call the eyes of Crabs,Lobfters,Shrimps, and the like, and are really fo, are Hemijpher'd, almoft in the fame manner as thefe of Flies are. And that they really are fo, I have very often try' d , by cutting off thefe little movable knobs, and putting the creature again into the water, that it would fwim to and fro, and move up and down as well as before, but would often hit it felf againft the rocks or ftones; and though I put my hand juft before its head, it would not at all ftart or fly back till I touch'd it, whereas whil'ft thofe were remaining, it would ftart back, and avoid my hand or a ftick at a good diftance before it touch'd it. And if in cruftaceous Sea-animals, then it feems very probable alfo, that thefe knobs are the eyes in cruffaceousInfects, which are alfo of the fame kind, onely in a higher and more active Element; this the conformity or congruity of many other parts common to either of them, will ftrongly argue,their cruftaceous armour, their number of leggs, which are fix, befide the two great claws, which anfwer to the wings in Infects; and in all kind of Spiders, as alfo in many other Infects that want wings, we fhall find the compleat number of them, and not onely the number, but the very fhape, figure, joints, and claws of Lobfters and Crabs, as is evident in Scorpions and Spiders, as is vifible in the fecond Figure of the 3 I. Scheme, and in the little Mite-worm, which I call a Land-crab,deferib'd in the fecond Figure of the 33. scheme, but in their manner of generation being oviparous, \&uc. And it were very worthy obfervation, whether there be not fome kinds of transformation and metamorphofis in the feveral ftates of cruftaceous water-animals, as there is in feveral forts of Infects; for if fuch could be met with, the progrefs of the variations would be much more confpicuous in thofe larger Animals, then they can be in any kind of Infects our colder Climate afford5.

There being their eyes, it affords us a very pretty Speculation to contemplate their manner of vifion, which, as it is very differing from that of biocular Animals, fo is it not lefs admirable.

That each of thefe Pearls or Hemijpheres is a perfect eye, I think we need not doubt, if we confider onely the outfide or figure of any one of them, for they being each of them cover'd with a tranfparent protuberant Cornea, and containing a liquor within them, refembling the watry or glaffie humours of the eye, muft neceffarily refract all the parallel Rays that fall on them out of the air, into a point not farr diftant within them, where (in all probability) the Retina of the eye is placed, and that opacous, dark, and mucous inward coat that (I formerly fhew'd) I found to fubtend the concave part of the clufter is very likely to be that $t u$ nicle or coat, it appearing through the Microfoope to be plac'd a little more than a Diameter of thofe Pearls below or within the tunica cornea. And if fo, then is there in all probability, a little Picture or Image of the objects without, painted or made at the bottom of the Retina againft every one of thofe Pearls, fo that there are as many impreffions on the Retina or opacous fkin, as there are Pearls or Hemijpheres on the clufter. But becaufe it is impoffible for any protuberant furface whatfoever, whether \int pherial or other, fo to refract the Raysthat come from farr remote
lateral

Micrographia./I

lateral points of any Object as to collect them again, and unite them each in a diftinct point, and that onely thofe Rays which come from fome point that lies in the $A x$ is of the Figure produc' d , are fo accurately refracted to one and the fame pointagain, and that the lateral Rays;thefurther they are remov'd, the more imperfect is their refracted confluence; It follows therefore, that onely the Picture of thofe parts of the external objects that lie in, or neer, the $A x$ is of each Hemijphere, 'are difcernably painted or made on the Retina of each Hemiifphere, and that therefore each of them can diftinctlyfenfate or fee onely thofe parts which are very neer perpendicularly oppos'd to it, or lie in or neer its optick $A x i$ s. Now, though there may be by each of thefe eye-pearls, a reprefentation to the Animal of a whole Hemifphere in the fame manner as in a man's eye there is a ficture or fenfation in the Retina of all the objects lying almoft in an Hemijphere; yet, as in a man's eye alfo, there are but fome very few points which liyng in, or neer, the optick $A x$ is are diftinctly diff cern'd: So there may be multitudes of Pictures made of an Object in the feveral Pearls, and yet but one, or fome very few that are diftinct; The reprefentation of any object that is made in any other Pearl, but that which is directly, or very neer directly, oppos' d , being altogether confus'd and unable to produce a diftinct vifion.

So that we fee, that though it has pleas'd the All-wife Creator, to indue this creature with fuch multitudes of eyes, yet has he not indued it with the faculty of feeing more then another creature; for whereas this cannot move his head, at leaft can move itvery little, without moving his whole body, biocular creatures can in an inftant (or the twoinkling of an eye, which, being very quick, is vulgarly ufed in the fame fignification) move their eyes fo as to direct the optick $A x$ is to any point; nor is it probable, that they are able to fee attentively at one time more then one Phyfical point; for though there be a diftinctilmage made in every eye, yet 'tis very likely, that the obferving faculty is only imploy'd about fome one object for which they have moft concern.

Now, as we accurately diftinguifh the fite or pofition of an Object by the motion of the Mufcles of the eye requifite to put the optick Line in a direct pofition, and confufedly by the pofition of the imperfect Picture of the object at the bottom of the eye; fo are thefe cruftaceous creatures able to judge confufedly of the pofition of objects by the Picture or impreffion made at the bottom of the oppofite Pearl, and diftinctly by the removal of the attentive or obferving faculty, from one Pearl to another, but what this faculty is,as it requires another place, fo a much deeper fpeculation. Now, becaufeit were impoffible,even with this multitude of eyeballs, to fee any object diltinct(for as I hinted before, onely thofe parts that lay in, or veryneer, the optick Lines could be fo) the Infinitely wife Creator has not left the creature without a power of moving the head a little in Aerial cruftaceous animals, and the very eyes alfo in cruyfaceous Sea-animalss fo that by thefe means they are inabled to direct fome optick line or other againft any object,and by that means they have the vifive faculty as compleat as any Animal that can move its cyes.

Diftances

Micrographia.

Diftances of Objects alfo, 'tis very likely they diftinguifh, partly by the confonant impreffions made in fome two convenient Pearls; one in each clufter; for, according as thofe congruous impreffions affect, two Pearls neerer approach'd to each other, the neerer is the Object, and the farther they are diftant, the more diftant is the Object: partly alfo by the alteration of each Pearl, requifite to make the Senfation or Picture perfect; for 'tis impoffrble that the Pictures of two Objects, varioufly diftant, can be perfectly painted, or made on the fame Retina or bottom of the eye not altered, as will be very evident to any one that fhall attentively confider the nature of refraction. Now, whether this alteration may be in the Figure of the Cornea, in the motion of accefs or recefs of the Retina towards the Cornea, or in the alteration of a cruftaline humour, if fuch there be, I pretend not to determine; though I think we need not doubt, but that there may be as much curiofity of contrivance and ftructure in every one of thefe Pearls, as in the eye of a Whale or Elephant, and the almighty's Fiat could as eafily caufe the exiftence of the one as the other; and as one day and a thoufand years are the fame with him,fo may one eye and ten thoufand.
This we may be fure of, that the filaments or fenfative parts of the Retina muft be moft exceedingly curious and minute, fince the whole Picture it felf is fuch; what muft needs the component parts be of that Retina which diftinguifhes the part of an object's Picture that muft be many millions of millions lefs then that in a man's eye? And how exceeding curious and fubtile muft the component parts of the medium that conveys light be, when we find the inftrument made for its reception or refraction to be fo exceedingly fmall? we may, I think, from this fpeculation be fufficiently difcouraged from hoping to difcover by any optick or other inftrument the determinate bulk of the parts of the medium that conveys the pulfe of light, fince we find that there is not lefs accuratenefs fhewn in the Figure, and polifh of thofe exceedingly minute lenticular furfaces, then in thofe more large and conficuous furfaces of our own eyes. And yet can I not doubt, but that there is a determinate bulk of thole parts, fince I find them unable to enter between the parts of Mercury, which being in motion, muft neceffarily have pores, as I fhall elfewhere fhew, and here pafs by, as being a digreffion.
Asconcerning the horns FF, the feelers or fmellers, GG, the Probafcis HH , and I , the hairs and brilles, K K , I fhall indeavour to defrribe in the 42 . obfervation.

Obferv. X L. Of the Teetb of a Snail.

IHave little more to add of the Teeth of a Snail, befides the Picture of it, which is reprefented in the firft Figure of the 25 . Scheme, fave that his bended body, ABCDEF , which feem'd fafhioned very much like a row of fmall teeth, orderly plac'd in the Gums, and looks as if it

Mickographia.

were divided into feveral fmaller and greater black teeth, was nothing but one fmall bended hard bone, which was plac'd in the upper jaw of the mouth of a Houfe-Snail, with which I obferv'd this very Snail to feed on the leaves of a Rofe-tree, and to bite out pretty large and half round bits, not unlike the Figure of a (C) nor very much differing from it in bignefs, the upper part ABCD of this bone, I found to be much whiter, and to grow out of the upper chap of the Snail G G G, and not to be any thing neer fo much creas'd as the lowerand blacker part of H HII HK K H which was exactly fhap'd like teeth, the bone growing thinner, or tapering to an edge towards $\mathrm{K} K \mathrm{~K}$. It feem'd to have nine teeth, or prominent parts IK, IK, IF, ofo. which were join'd together by the thinner interpos'd parts of the bone. The Animal to which thefe teeth belong, is a very anomalous creature, and feems of a kind quite diftinct from any other terreftrial Animal or Infect, the Anatony whereof exceedingly differing from what has been hitherto given of it I fhould have inferted, but that it will be more proper in another place. I have never met with any kind of Animal whofe teeth are all join'd in one, fave onely that I lately obferv'd, that all the teeth of a Rhinocerot, which grow on either fide of its mouth, are join'd into one large bone, the weight of one of which I found to be neer eleven pound Haverdupois. So that it feems one of the biggeft fort of terreftrial Animals, as well as one of the fmalleft, has his teeth thus fhap'd.

Obferv. X LI. Of the Eggs of Silk-worms, and otber Infects.

THe Eggs of Silk-worms(one of which I have defrrib'd in the fecond Figure of 25 . Scheme) afford a pretty Object for a Microfcope that magnifies very much, efpecially if it be bright weather, and the light of a window be caft or collected on it by a deep Convex-glafs, or Water-ball. For then the whole furface of the Shell may be perceiv'd all cover'd over with exceeding fmall pits or cavities with interpofed edges, almoft in the manner of the furface of a Poppy-feed, but that thefe holes are not an hundredth part fcarce of theirbignefs; the Shell, when the young ones were hatch'd (which I found an eafie thing to do, if the Eggs were kept in a warm place) appear'd no thicker in proportion to its bulk, then that of an Hen's or Goos's Egg is to its bulk, and all the Shell appear'd very white (which feem'd to proceed from its tranfparency) whence all thofe pittings did almoft vanifh, fo that they could not, without much difficulty, be difcern'd, the infide of the Shell feem'd to be lin'd alfo with a kind of thin film, not unlike (keeping the proportion to its Shell) that with which the fhell of an Hen-egg is lind; and the fhell it felf feem'd like common Egg-fhells, very brittle, and crack'd. In divers other of thefe Eggs I could plainly enough, through the fhell, perceive the fmall Infect lie coyled round the edges of the thell. The fhape of the Egg it felf, the Figure pretty well reprefents(though by default of the Graver it does

Micrographia.

not appear fo rounded, and lying above the Paper, as it were, as it ought to do) that is, it was for the moft part pretty oval end-ways, fomewhat like an Egg, but the other way it was a little flatted on two oppofite fides. Divers of thefe Eggs, as is common to moft others, I found to be barren, or addle, for they never afforded any young ones. And thofe I ufually found much whiter then the other that were prolifick. The Eggs of other kinds of Oviparous Infects I have found to be perfectly round every way, like fo many Globules, of this fort I have obferv'd fome كorts of Spiders Eggs; and chancing the laft Summer to inclofe a very large and curioufly painted Butterfly in a Box, intending to examine its gaudery with my Microfcope, I found within a day or two after I inclosd her, almoft all the inner furface of the Box cover'd over with an infinite of exacily round Eggs, which were ftuck very faft to the fides of it, and in fo exactly regular and clofe an order, that made me call to mind my Hypotbefis, which I had formerly thought on for the making out of all the regular Figures of Salt, which I have elfewhere hinted; for here I found all of them rang'd into a moft exact triagonal order, much after the manner as the Hemijpheres are place on the eye of a Fly; all which Eggs I found after a little time to behatch'd, and out of them to come a multitude of fmall Worms, very much refembling young Silk-worms, leaving all their thin hollow fhells behind them, fticking on the Box in their triagonal pofture; thefe I found with the Microfcope to have much fuch a fubftance as the Silk-worms Eggs, but could not perceive them pitted. And indeed, there is as great a variety in the fhape of the Eggs of Oviparous Infects as among thofe of Birds.

Of thefe Eggs, a large and lufty Fly will at one time lay neer four or five hundred, fo that the increafe of thefe kind of Infects muft needs be very prodigious, were they not prey'd on by multitudes of Birds, and deftroy d by Frofts and Rains; and hence 'tis thofe hotter Climates between the Tropicks are infefted with fuch multitudes of Locufts, and fuch other Vermine.

Obferv. X L II. Of a blue Fly.

THis kind of Fly, whereof a Microfopical Picture is delineated in the firft Figure of the 26. Scheme, is a very beautifull creature, and has many things about it very notable; divers of which I have already partly defcrib'd, namely, the feet, wings, eyes, and head, in the preceding Obfervations.

And though the head before defcrib'd be that of a grey Drone-Fly, - for the mainit is very agreeable to this. The things wherein they - moft, will be eafily enough found by the following particulars : ye the clufters of eyes of this Fly, are very much fmaller then thofe differ n-Fly, in proportion to the head.
Firf, of the Dro.

Micrographia.

And next, all the eyes of each clufter feem'd much of the fame bignefs one with another, not differing as the other, but rang'd in the fame triagonal order.

Thirdly, between thefe two clufters, there was a fcaly prominent front B , which was arm'd and adorn'd with large tapering fharp black brifles, which growing out in rows on either fide, were fo bent toward each other neer the top, as to make a kind of arched arbour of Brifles, which almoft cover'd the former front.

Fourthly, at the end of this Arch, about the middle of the face, on a prominent part C , grew two fmall oblong bodies, $\mathrm{D} D$, which through a Microfoope look'd not unilike the Pendants in Lillies, thefe feem'd to be jointed on to two fmall parts at C, each of which feem'd again jointed into the front.

Fifthly, out of the upper part and outfides of thefe horns (as I may call them, from the Figure they are of, in the 24 . Scheme, where they are marked with FF) there grows a fingle feather, or brufhy Brifle, EE, fomewhat of the fame kind with the tufts of a Gnat, which l have before defcribed.

What the ufe of thefe kind of horned and tufted bodies thould be, I cannot well imagine, unlefs they ferve for fmelling or hearing, though how they are adapted for either, it feems very difficult to defribe they are in almoft every feveral kind of Flies of fo various a fhape; though certainly they are fome very effential part of the head, and have fome very notable office affign'd them by Nature, fince in all Infects they are to be found in one or other form.

Sixthly, at the under part of the face F F, were feveral of the former fort of bended Brifles; and below all, the mouth, out of the middle of which, grew the probofois G H I, which, by means of feveral joints, whereof it feem'd to confift, the Fly was able to move to and fro, and thruft it in and out as it pleasd; the end of this hollow body (which was all over cover'd with fmall fhort hairs or brifles) was, as'twere, bent at H , and the outer or formoft fide of the bended part HI , flit, as it were, into two chaps, H, HI, all the outfide of which where cover'd with hairs, and pretty large brifles; thefe he could, like two chaps, very readily open and fhut, and when he feem'd to fuck any thing from the furface of a body, he would fpread abroad thofe chaps, and apply the hollow part of them very clofe to it.

From either fide of the Probofcis, within the mouth, grew two other fmall horns, or fingers, K K, which were hairy, but fmall in this Figure; but of another fhape, and bigger in proportion, in the 24 . Scheme, where they are marked with G G, which two indeed feem'd a kind of fmellers, but whether fo or not, I cannot pofitively determine.

The Thorax or middle part of this Fly, was cas'd, both above and beneath, with a very firm cruft of armour, the upper part more round, and covered over with long conical brilles, all whofe ends pointed backwards; out of the hinder and under part of this grew out in a clufter fix leggs, three of which are apparent in the Figure, the other three were hid by the body

MicrograhpiA.

body plac'd in that pofture. The leggs were all much of the fame make, being all of them cover'd with a ftrong hairy fcale or fhel, juft like the legs of a Crabb or Lobfter, and the contrivance of the joints feem'd much the fame; each legg feem'd made up of eight parts, $1,2,3,4,5,6,7,8$, to the eighth or laft of which, grew the foles and claws, defcribed before in the 38 . Obfervation.

Out of the upper part of this trunck grew the two wings, which I mentiond in the 38 . Obfervation, confifting of a film, extended on certain fmall ftiff wires or bones: thefe in a blue Fly, were much longer then the body, but in other kind of Flies they are of very differing proportions to the body. Thefe films, in many Flies,were fo thin,that, like feveral other plated bodies (mention'd in the ninth obfervation) they afforded all varieties of fantaftical or tranfient colours (the reafon of which I have here endeavoured to explain) they feem'd'to receive their nourifhment from the falks or wires, which feem'd to be hollow, and neer the upper part of the wing LL feveral of them feem'd jointed, the fhape of which will fufficiently appear by the black lines in the fecond Figure of the 26. Scheme, which is a delineation of one of thofe wings expanded directly to the eyes.

All the hinder part of its body is cover'd with a moft curious blue mining armour, looking exactly like a polifh'd piece of iteel brought to that blue colour by annealing, all which armour is very thick beftuck with abundance of tapering brifles, fuch as grow on its back, as is vifible enough by the Figure.

Nor was the infide of this creature lefs beautifull then its outfide, for cutting off a part of the belly, and then viewing it, to fee if I could difcover any Veffels, fuch as are to be found in a greater Animals, and even in Snails exceeding manifeftly, I found,much beyond my expectation, that there were abundance of branchings of Milk-white veflels, no lefs curious then the branchings of veins and arteries in bigger terreftrial Animals, in one of which, I found two notable branches, joining their two mainftocks, as it were, into one common ductus; now, to what veins or arteries thefe Veffells were analogus, whether to the vena porta, or the meferaick veffells, or the like, or indeed, whether they were veins and arteries, or vafa lactea, properly fo called, I am not hitherto able to determine, having not yet made fufficient enquiry; but in all particulars, there feems not to be any thing lefs of curious contrivance in thefe Infects, then in thofe larger terreftrial Animals, for I had never feen any more curious branchings of Veffells, then thofe I obferv'd in two or three of thefe Flies thus opened.

It is a creature active and nimble, fo as there are very few creatures like it, whether bigger or fmaller, in fo much, that it will fcape and avoid a fmall body, though coming on it exceeding fwiftly, and if it fees any thing approaching it, which it fears, it prefently fquats down, as it were, that it may be the more ready for its rife.
Nor is it lefs hardy in the Winter, then active in the Summer, induring all the Frofts, and furviving till the next Summer, notwithftanding the bitter

Micrographia.

bitter cold of our Climate; nay, this creature will indure to be frozen, and yet not be deftroy'd,for I have taken one of them out of the Snow whereon it has been frozen almoft white, with the Ice about it, and yet by thawing it gently by the warmth of a fire, it has quickly reviv'd and flown about.

This kind of Fly feems by the fteams or tafte of fermenting and putrifying meat (which it often kiffes, as'twere, with its probofois as it trips over it) to be ftimulated or excited to eject its Eggs or Seed on it, perhaps, from the fame reafon as Dogs, Cats, and many other brute creatures are excited to their particular lufts, by the fmell of their females, when by Nature prepared for generation; the males feeming by thofe kind of fmells, or other incitations, to be as much neceflitated thereto, as Aqua Regis ftrongly impregnated with a folution of Gold, is forced to precipitate it by the affufion of firit of Vrine, or a folution of salt of Tartar.

One of thefe put in fpirit of Wine, was very quickly feemingly kill'd, and both its eys and mouth began to look very red, but upon the taking of it out, and fuffering it to lie three or four hours, and heating it with the Sun beams caft through a Burning-glafs, it again reviv'd, feeming, as it were, to have been all the intermediate time, but dead drunk, and after certain hours to grow frefh again and fober.

Obferv. X L I I I. Of the Water-Infect or Gnat.

'THis little creature, defcribed in the firft Figure of the 27. Scheme, was a fmall fcaled or crufted Animal, which I have often obferv'd to be generated in Rain-water; I have alfo obferv'd it both in Pond and River-water. It is fuppos'd by fome, to deduce its firf original from the putrifaction of Rain-water, in which, if it have flood any time open to the air, you fhall feldom mifs, all the Summer long, of fore of them frifking too and fro.
'Tis a creature, wholly differing in thape from any I ever obferv'd; nor is itsmotion lefsftrange: It has a very large head, in proportion to its body, all covered with a fhell, like other teftaceous Animals, but it differs in this, that it has, up and down feveral parts of it, feveral tufts of hairs, or brifles, plac'd in the order exprefs'd in the Figure; It has two horns, whichfeem'd almoft like the horns of an Oxe, inverted, and, as neer as I could ghefs, were hollow, with tufts of brifles, likewife at the top;there horns they could move eafily this or that way, and might, perchance, be their noftrils. It has a pretty large mouth, which feem'd contriv'd much like thofe of Crabs and Lobfters, by which, I have often obferv'd them to feed on water, or fome imperceptible nutritive fubftance in it.

I could perceive, through the tranfparent fhell, while the Animal furviv'd, feveral motions in the head, thorax, and belly, very diftinctly, C 6

Micrographia.

of differing kinds which I may, perhaps, elfewhere endeavour moreaccurately to examine, and to fhew of how great benefit the ufe of a Microfoppe may be for the difcovery of Nature's courfe in the operations perform'd in Animal bodies, by which we have the opportunity of obferving her through thefe delicate and pellucid teguments of the bodies of Infects acting according to her ufual courfe and way, undifturbed, whereas, when we endeavour to pry into her fecrets by breaking open the doors upon her, and diffecting and mangling creatures whil'ft there is life yet within them, we find her indeed at work, but put into fuch diforder by the violence offer'd, as it may eafily be imagin'd how differing a thing we Thould find, if we could, as we can with a Microf cope, in thefe fmaller creatures, quietly peep in at the windows, without frighting her out of her ufual byas.

The form of the whole creature, as it appear'd in the Microfoope, may, without troubling you with more defcriptions, be plainly enough perceiv'd by the scheme, the hinder part or belly confifting of eight feveral jointed parts, namely, A BCDEFG H, of the firft Figure, from the midft of each of which,on either fide, iffued out three or four fmall brifles or hairs, $\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}$, the tail was divided into two parts of very differing make; one of them, namely, K , having many tufts of hair or brifles, which feem'd to ferve both for the finns and tail, for the Oars and Ruder of this little creature, wherewith it was able, by frifking and bending its body nimbly to andfro, to move himfelf any whither, and to fkull and fteer himfelf as he pleas'd;the other part, L , feem'd to be, as 'twere, the ninth divifion of his belly, and had many fingle brifles on either fide. From the end V, of which, through the whole belly, there was a kind of Gut of a darker colour, MMM, wherein, by certain Periftaltick motions there was a kind of black fubftance mov'd upwards and downwards through it from the orbicular part of it, N_{2} (which feem'd the Ventricle, or ftomach) to the tail \mathbf{V}, and fo back again, which periftaltick motion I have obferv'd alfo in a Loufe, a Gnat, and feveral other kinds of tranfparent body'd Flies. The Thorax or cheft of this creature OOOO, was thick and fhort, and pretty tranfparent, for through it I could fee the white heart (which is the colour alfo of the bloud in thefe, and moft other Infects) to beat, and feveral other kind of motions. It was beftuck and adorn'd up and down with feveral tufts of brifles, fuch as are pointed out by P, P, P, P, the head Qwas likewife beftuck with feveral of thofe tufts, S S S; it was broad and fhort, had two black eyes, T T, which I could not perceive at all pearl'd, as they afterwards appear'd, and two fmall horns, R R , fuch as I formerly defcrib'd.

Both its motion and reft is very ftrange, and pleafant, and differing from thofe of moft other creatures I have obferv'd; for, where it ceafes from moving its body, the tail of it feeming much lighter then the reft of its body, and a little lighter then the water it fwims in, prefently boys it up to the top of the water, where it hangs fufpended with the head always downward; and like our Antipodes, if they do by a frikk get below that fuperficies, they prefently afcend again unto it, if they ceafe

Micrographia。

moving, until they tread, as it were, under that fuperficies with their tails; the hanging of thefe in this pofture, put me in mind of a certain creature I have feen in London, that was brought out of America, which would very firmly fufpend it felf by the tail, with the head downwards, and was faid to fleep in that pofture, with her young ones in her falre belly, which is a Purfe, provided by Nature for the production, nutrition, and prefervation of her young ones, which is defcribed by Pijo in the 24. Chapter of the fifth Book of his Natural Hiftory of Brafil.

The motion of it was with the tail forwards, drawing its felf backwards, by the friiking to and fro of that tuft which grew out of one of the ftumps of its tail. It had another motion, which was more futable to that of other creatures, and that is, with the head forward; for by the moving of his chaps.(if I may fo call the parts of his mouth) it was able to move it felf downwards very gently towards the bottom, and did, as 'twere, eat up its way through the water.
But that which was moft obfervable in this creature, was, its Metamorphofis or change; for having kept feveral of thefe Animals in a Glafs of Rain-water, in which they were produc'd, I found, after about a fortnight or three weeks keeping, that feveral of them flew away in Gnats, leaving their hufks behind them in the water floating under the furface, the place where thefe Animals were wont to refide, whil'ft they were inhabitants of the water: this made me more diligently to watch them, to fee if I could find them at the time of their transformation; and not long after, I obferv'd feveral of them to be changed into an unufual fhape, wholly differing from that they were of before, their head and body being grown much bigger and deeper, but not broader, and their belly, or hinder part fmaller, and coyl'd, about this great body much of the fafhion reprefented by the prick d line in the fecond Figure of the 27. Scheme, the head and horns now fwam uppermoft 2 and the whole bulk of the body feem'd to be grown much lighter; for when by my frightingwof it, it would by frifking out of its tail (in the manner exprefs'd in the Figure by B C) fink it felf below the furface towards the bottom; the body would more fwiftly re-afcend, then when it was in its former fhape.
Iftill marked its progrefs from time to time, and found its body ftill to grow bigger and bigger, Nature, as it were, fitting and accoutring it for the lighter Element, of which it was now going to be an inhabitant; for, by obferving one of thefe with my Microfoope, I found the eyes of it to be altogether differing from what they feem'd before, appearing now all over pearl'd or knobb'd, like the eyes of Gnats. as is vifible in the fecong Figure by A. At length, I faw part of this creature to fwim above, and part beneath the furface of the water, below which though it would quickly plunge it felf if I by any means frighted it, and prefently re-afcend into its former pofture; after a little longer expectation, I found that the head and body of a Gnat, began to appear and ftand cleer above the furface, and by degrees it drew out its leggs, firft the two formoft, then the other, at length its whole body perfect and entire appear'd out of the hufk (which it left in the water) ftanding on its leggs upon

MicrographiA.

the top of the water, and by degrees it began to move, and after flew about the Glafs a perfect Gnat.

I have been the more particular, and large in the relation of the tranfformation of divers of thefe little Animals which I obferv'd, becaufe I have not found that any Authour has obferv'd the like; and becaufe the thing it felf is fo ftrange and heterogeneous from the ufual progrefs of other Animals, that I judge it may not onely be pleafant, but very ufefull and neceffary towards the compleating of Natural Hiftory.

There is indeed in Pifo, a very odd Hiftory, which this relation may make the more probable; and that is in the 2. Chapter of the 4. Book of his Natural Hiftory of Brafil, where he fays,Porro preter tot documenta fertilitatis circa vegetabilia © fenfitiva marina telluris amula, accidit ch illud, quod paucis à Paranambucenfi milliaribus,pifcatoris uncum citra intentionem contingat infigi vadis petrofis, ठ̋ loco pifcis fpongia, coralla, aliafque arbufculas warinas capi. Inter brec inufitate forme prodit 乃pongiofa arbufcula, fefquipedis longitudinis, brevioribus radicibus, lapideis nitens vadis, or rupibus infixa, erigiturque in corpus fiongiofum molle oblongum rotundum turbinatum: intus miris cancellis or alveis fabricatum, extus autem tenaci glutine inftar Apume propolis undique veftitum, oftio Satis patulo er profundo in fummitate reliđfo, ficht ex alter a iconum probe depicta videre licet (fee the third and fourth Figures of the 27. Scheme.) Ita ut Apiarium marinum vere dixeris; primo enim intuitu è Mare ad Terram delatum,vermichlis fcatebat caruleis parvis, qui mox à calore folis in Nunjcas, vel Apes potius, eafq; exiguas © nigras tranf. formebantur, circumvolantefque evaneffebant, ita ut de cornm mellificatione nibil certi con/pici datum fuerit, cum tamen cerofa materia propolis Apumque cella manifefte apparerent, atque ipfa mellis qualif cunque fubftantia proculdubio urinatoribus patebit, ubi curiofius inquifiverint bac apiaria, eaque in natali folo de falo diverfis temporibus penitius luftrarint.

Which Hiftory contains things fufficiently ftrange to be confider'd, as whether the hufk were a Plant, growing at the bottom of the Sea before, of it felf, out of whofe putrifaction might be generated thefe ftrange kind of Magots; or whether the feed of certain Bees, finking to the bottom, might there naturally form it felf that vegetable hive, and take root; or, whether it might not be placed there by fome diving Fly; or, whether it might not be fome peculiar propriety of that Plant, whereby it might ripen or formits vegetable juice into an Animal fubftance; or, whether it may not be of the nature of a Sponge, or rather a Sponge of the nature of this, according to fome of thofe relations andiconjectures I formerly made of that body, is a matter very difficult to be determined. But indeed, in this defcription, the Excellent Pijo has not been fufficiently particular in the fetting down the whole procefs, as it were to be wifh'd: There are indeed very odd progreffes in the production of feveral kinds of Infects, which are not lefs inftructive then pleafant, feveral of which, the diligent Goedartius has carefully obferv'd and recorded, but among all his Obfervations, he has none like this, though that of the Hemerobius be fomewhat of this kind, which is added as an Appendix by fohannes Mey.

I have

Ihav him, ob of, thou ment to for in hi feveral been fp thofe 0 to bef found but fill ownacc and arcl fhelter' to grow which,
come, a
tranflat
pers, th
thefe ki
Willow
Ther
red tuft
Rind,
kinds
fantly.
Worms
that W
were d
Now
wife. Cr
ing wha
on of th
toconv
thofe of
places
them,
haved
The
thofep
and inc
paffage
From
Other p
have th
Phall fir
Galls,

Micrographia.

I have, formy own particular, befides feveral of thofe mention'd by him, obferv'd divers other circumftances, perhaps, not much taken notice of, though very common, which do indeed afford us a very coercive argu* ment to admire the goodnefs and providence of the infinitely wife Creator in his moft excellent contrivances and difpenfations. I have obferv'd, at feveral times of the Summer, that many of the leaves of divers Plants have been fpotted, or, as it were fcabbed, and looking on the underfides of thofe of them that have been but a litte irregular, I have perceiv'd them to be fprinkled with divers forts of little Eggs, which letting alone, I have to be iprinkled with divers orts of little Eggs, whichleting alone, have but ftill to keep their former places, and thofe places of the leaves, of their own accords, to be grown very protuberant upwards, and very hollow, and arched underneath, whereby thofe young creatures are, as it were, fhelter'd and houfed from external injury; divers leaves I have obferv'd to grow and fwell fo farr, as at length perfectly to inclofe the Animal, which, by other obfervations I have made, I ghefs to contain it, and become, as it were a womb to it, fo long, till it be fit and prepar'd to be tranflated into another ftate, at what time, like (what they fay of) Vipers, they gnaw their way through the womb that bred them; divers of thefe kindsI have met with upon Goofberry leaves, Rofe-tree leaves, Willow leaves, and many other kinds.

There are often to be found upon Rofe-trees and Brier bufhes, little red tufts, which are certain knobs or excrefcencies,growing out from the Rind, or barks of thofe kinds of Plants, they are cover'd with ftrange kinds of threads or red hairs, which feel very foft, and look not unpleafantly. In moft of thefe, if it has no hole init, you fhall find certain little Worms, which I fuppofe to be the caufes of their production; for when that Worm has eat its way through, they, having performed what they were defign'd by Nature to do, by degrees die and wither away.

Now, the manner of their production,I fuppofe to be thus; that the Alwife Creator has as well implanted in every creature a faculty of knowing what place is convenient for the hatching, nutrition, and prefervation of their Eggs and of-fprings, whereby they are ftimulated and directed to convenient places, which becom, as 'twere the wombs that perform thofe offices: As he has alfo fuited and adapted a property to thofe places wherby they grow and inclofe thofe feeds, and having inclofed them, provide a convenient nourifhment for them, but as foon as they have done the office of a womb, they die and wither.

The progrefs of inclofure I have often obferv'd in leaves, which in thofe places where thofe feeds have been caft, have by degrees fwell'd and inclos'd them, fo perfectly round, as not to leave any perceptible paffage out.

From this fame caufe, I fuppofe that Galls, Oak-apples, and feveral other productions of that kind, upon the branches and leaves of Trees, have their original; for if you open any of them, when almoft ripe, you Thall find a little Wormin them. Thus, if you open never fo many dry Galls, you fhall find either a hole whereby the Worm has eat its paffage
out, or if you find no paffage, you may, by breaking or cutting the Gall, find in the middle of it a fmall cavity, and in it a fmall body, which does plainly enough yet retain a fhape, to manifeft it once to have been a Worm, though it dy'd by a too early feparation from the Oak on which it grew, its navel-ftring, as twere, being broken off from the leaf or branch by which the Globular body that invelop'd it, received its nourifhment from the Oak.

And indeed, if we confider the great care of the Creator in the difpenfations of his providences for the propagation and increafe of the race, not onely of all kind of Animals, but even of Vegetables, we cannot chufe but admire and adore him for his Excellencies, but we fhall leave off to admire the creature, or to wonder at the ftrange kind of acting in feveral Animals, which feem to favour fo much of reafon; it feeming to me moft manifef, that thofe are but actings according to their ftructures, and fuch operations as fuch bodies, fo compos'd, muft neceffarily, when there are fuch and fuch circumftances concurring, perform : thus, whenwe find Flies fwarming, about any piece offlefh that does begin a little to ferment; Butterflies about Colworts, and feveral other leaves, which will ferve to hatch and nourifh their young; Gnats, and feveral other Flies about the Waters, and marifhy places, or any other creatures, feeking and placing their Seeds in convenient repofitories, we may, if we attentively confider and examine it, find that there are circumftances fufficient, upon the fuppofals of the excellent contrivance of their machine, to excite and force them to act after fuch or fuch a manner; thofe fteams that rife from thefe feveral places may, perhaps, fet feveral parts of thefe little Animals at work, even as in the contrivance of killing a Fox or Wolf with a Gun, the moving of a ftring, is the death of the Animal; for the Beaft, by moving the flefh that is laid to entrap him, pulls the ftring which moves the trigger, and that lets go the Cock which on the fteel frikes certain fparks of fire which kindle the powder in the pann, and that prefently flies into the barrel, where the powder catching fire rarifies and drives out the bullet which kills the Animal ; in all which actions, there is nothing of intention or ratiocination to be afcrib'd either to the Animal or Engine, but all to the ingenioufnefs of the contriver.

But to return to the more immediate confideration of our Gnat: We have in it an Inftance, not ufual or common,of a very ftange amphibious creature, that being a creature that inhabits the Air, does yet produce a creature, that for fome time lives in the water as a Fifh, though afterward (which is as ftrange) it becomes an inhabitant of the Air, like its Sire, in the form of a Fly. And this, me thinks, does prompt me to propofe certain conjectures, as Queries, having not yet had fufficient opportunity and leifure to anfwer them my felf from my own Experiments or Obfervations.

And the firft is, Whether all thofe things that we fuppofe to be bred from corruption and putrifaction, may not be rationally fuppos'd to have their origination as natural as thefe Griats, who, tis very probable, were firft dropt into this Water, in the form of Eggs. Thofe Seeds or

Eggsmu
rields,
themfel not exce next, Ih rated aft bably fro of the c probabl by the G rain; for may (bei tion of $f t$ fo, perha of Rain it

Micrographia.

Eggs muft certainly be very fmall, which fo fmall a creature as a Gnat yields, and therefore: we need not wonder that we find not the Eggs themfelves, fome of the younger of them, which I have obferv'd, having not exceeded a tenth part of the bulk they have afterwards come to ; and next, I have obferved fome of thofe little ones which muft have been generated after the Water was inclofed in the Bottle, and therefore moft probably from Eggs, whereas thofe creatures have been fuppos'd to be bred of the corruption of the Water, there being not formerly known any. probable way how they fhould be generated.

A fecond is, whether thefe Eggs are immediately dropt into the Water by the Gnats themfelves, or, mediately, are brought down by the falling rain; for it feems not very improbable, but that thofe fmall feeds of Gnats may (being, perhaps, of fo light a nature, and having fo great a proportion of furface to fo fmall a bulk of body) be ejected into the Air, and fo, perhaps, carried for a good while too and fro in it, till by the drops of Rain it be wafh'd out of it.

A third is, whether multitudes of thofe other little creatures that are found to inhabit the Water for fome time, do not, at certain times, take wing and fly into the Air, others dive and hide themfelves in the Earth, and fo contribute to the increafe both of the one and the other Element.

Poffcript.

A good while fince the writing of this Defcription, I was prefented by Doctor Peter Ball, an ingenious Member of the Royal Society, with a little Paper of Nuts, which he told me was fent him from a Brother of his out of the Countrey, from Mambead in Devonflire, fome of them were loofe, having been, as I fuppofe, broken off, others were ftill growing faft on upon the fides of a ltick, which feem'd by the bark, pliablenefs of it, and by certain ftrings that grew out of it, to be fome piece of the root of a Tree; they were all of them dry' d, and a little fhrivell'd, others more round, of a brown colour; their fhape was much like a Figg, but very much fmaller,fome being about the bignefs of a Bay-berry, others, and the biggeft, of a Hazel-Nut. Some of thefe that had no hole in them, I carefully opened with my Knife, and found in them a good large round white Maggot, almoft as bigg as a fmall Pea, which feem'd fhap'd like other Maggots, but fhorter. I could not find them to move, though I ghefs'd them to be alive, becaufe upon pricking them witha Pinn, there would iffue out a great deal of white mucous matter, which feem'd to be from a voluntary contraction of their fkin ; their hufk or matrix confifted of three Coats, like the barks of Trees, the outermoft being more rough and fpongie, and the thickeft, the middlemoft more clofe, hard, white, and thin, the innermoft very thin, feeming almoft like the fkin within an Egg's fhell. The two outermoft had root in the branch or ftick, but the innermoft had no ftem or procefs, but was onely a fkin that cover'd the cavity of the Nut. All the Nuts that had no holes eaten in them, I found to contain thefe Maggots, but all that had holes, I found empty, the Maggots,
it feems, having eaten their way through, taken wings and flown away, as this following account (which I receiv'd in writing from the fame perfon, as it was fent him by his Brother) manifefts. In a moorifh black Peaty mould, with fome fmall veins of whitifh yellows Sands, upon occafion of digging a bole two or three foot deep, at the bead of a Pond or Pool, to Jet a Tree in, at that depth, merefound, about the end of October 1663. in thofe very veins of sand, thofe Buttons or Nuts, fticking to a little loofe ffick, that is, not belonging to any live Tree, and fome of them alfo free by themfelves.

Four or five of which being then open'd, fome were found to contvin live Infects come to perfection, moft like to flying Ants, if not the fame; in others, Infects, yet imperfect, having but the head and wings form d, the reft remaining a foft white pulpy fubftance.

Now, as this furnifhes us with one odd Hiftory more, very agreeable to what I before hinted, fo I doubt not, but were men diligent obfervers, they might meet with multitudes of the fame kind, both in the Earth and in the Water, and in the Air, on Trees, Plants, and other Vegetables, all places and things being, as it were, animarum plena. And I have often, with wonder and pleafure, in the Spring and Summer-time, look'd clofe to, and diligently on, common Garden mould, and in a very fmall parcel of it, found fuch multitudes and diverfities of little reptiles,fome in hufks,others onely creepers, many wing'd, and ready for the Air; divers hufks or habitations left behind empty. Now, if the Earth of our cold Climate be fo fertile of animate bodies, what may we think of the fat Earth of hotter Climates? Certainly, the Sun may there, by its activity, caufe as great a parcel of Earth to fly on wingsin the Air, as it does of Water in fteams and vapours. And what fwarms muft we fuppofe to be fent out of thofe plentifull inundations of water which are poured down by the fluces of Rain in fuch vaft quantities? So that we need not much wonder at thofe innumerable clouds of Locufts with which Africa, and other hot countries are fo peftred, fince in thofe places are found all the convenient caufes of their production, namely, genitors, or Parents, concurrent receptacles or matrixes, and a fufficient degree of natural heat and moifture.

I was going to annex a little draught of the Figure of thofe Nuts fent out of Devonflire, but chancing to examine Mr. Parkinfon's Herbal for fomething elfe, and particularly about Galls and Oak-apples, I found among no lefs then 24 . feveral kinds of excrefcencies of the Oak, which I doubt not, but upon examination, will be all found to be the matrixes of fo many feveral kinds of Infects; I having obferv'd many of them my felf to be fo,among 24 .'feveral kinds, I fay, I found one defcribed and Figur'd directly like that which I had by me, the scheme is there to be feen, the defcription, becaufe but fhort, Ihave here adjoin'd Theatri Botanici trib. 16 . Chap. 2. There groweth at the roots of old Oaks in the Spring-time, and femetimes alfo in the very beat of summer, a peculiar kind of Mufhrom or Excrefcence, call'd Uva Quercina, freelling out of the Earth, many growing one clefe unto another, of the fafbion of a Grape, and therefore took the name, the Oak-Grape, and is of a Purplifh colour on the outfide,

Micrographia。

and white within like Milk, and in the end of Summer becometh hard and moody. Whether this be the very fame kind, I cannot affirm, but both the Picture and Defcription come very neer to that I have, but that he feems not to take notice of the hollownefs or Worm, for which 'tis moft obfervable. And therefore 'tis very likely, if men did but take notice, they might find very many differing Species of thefe Nuts, Ovaries, or Matrixes, and all of them to have much the fame defignation and office. And I have very lately found feveral kinds of Excrefencies on Trees and Shrubs, which having endured the Winter, upon opening them, I found moft of them to contain little Worms, but dead $_{3}$ thofe things that contain'd them being wither'd and dry.

Obferv. XLIV. Of the tufted or Brufh-born'd Gnat.

THis little creature was one of thofe multitudes that fill our Englifis air all the time that warm weather lafts, and is exactly of the fhape of that Iobferv'd to be generated and hatch'd out of thofe little Infects that wriggle up and down in Rain-water. But, though many were of this form, yet Iobferv'd others to be of quite other kinds; nor were all of this or the other kind generated out of Water Infects; for whereas I obfervid that thofe that proceeded from thofe Infects were at their full growth, I have alfo found multitudes of the fame fhape, but much fmaller and tenderer feeming to be very young ones, creep up and downupon the leaves of Trees, and flying up and down in fmall clufters, in places very remote from water; and this Spring, I obferv'd one day, when the Wind was very calm, and the afternoon very fair, and pretty warm, though it had for a long time been very cold weather, and the wind continued fill in the Eaft, feveral fmall fwarms of them playing to and fro in little clouds in the Sun, each of which were not a tenth part of the bignefs of one of thefe I here have delineated; though very much of the fame fhape, which makes me ghefs, that each of thefe fwarms might be the of-fpring of one onely Gnat, which had been hoorded up in fome fafe repofitory all this Winter by fome provident Parent, and were now by the warmth of the Spring-air, hatch'd intolittle Flies.

And indeed, fo various, and feemingly irregular are the generations or productions of Infects, that he that fhall carefully and diligently obferve the feveral methods of Nature therein, will have infinitely caufe further to admire the wifdom and providence of the Creator; for not onely the fame kind of creature may be produc'd from feveral kinds.of ways, but the very fame creature may produce feveral kinds: For, as divers Watches may be made out of feveral materials, which may yet have all the fame appearance, and move after the fame manner, that is, fhew the hour equally true, the one as the other, and out of the fame kind of matter, like Watches,may be wrought differing ways; and, as one and the fame Watch D d
may,

Micrographia.

may, by being diverfly agitated, or mov'd, by this or that agent,' or after this or that manner, produce a quite contrary effect: So may it be with thele moft curious Engines of Infect's bodies; the All-wife God of Nature, may have fo ordered and difpofed the little Automatons, that when nourifhed, acted, or enlivened by this caufe, they produce one kind of effect, or animate fhape, when by another they act quite another way, and another Animal is produc'd. So may he fo order feveral materials, as to make them, by feveral kinds of methods, produce fimilar Automatons.

But to come to the Defcription of this Infect, as it appears through a Microfoope, of which a reprefentation is made in the 28. scheme. Its head A, is exceeding fmall, in proportion to its body, confifting of two clufters of pearl'd eyes B B, on each fide of its head, whofe pearls or eye-balls are curioully rang'd like thofe of other Flies; between thefe, in the forehead of it, there are plac'd upontwo fmall black balls, C C, two long jointed horns, tapering towards the top, much refembling the long horns of Lobfters, each of whofe ftems or quills, D D, were brifled or brufhed with multitudes of fmall ftift hairs, iffuing out every way from the feveral joints, like the ftrings or fproutings of the herb Horfe-tail, which is oft oblerv'd to grow among Corn, and for the whole fhape, it does very much refemble thofe brubyy Vegetables; befides thefe, there are two other jointed and brifled horns, or feelers, E E, in the forepart of the head, and a probofcis, F, underneath, which in fome Gnats are very long, ftreight hollow pipes, by which thefe creatures are able to drill and penetrate the fkin, and!thence, through thofe pipes fuck fo much bloud as to ftuff their bellies fo full till they be ready to burft.

This fmall head, with its appurtenances, is faftned on by a fhort neck, G, to the middle of the thorax, which is large, and feems cafed with a ftrong black fhel, HIK , out of the under part of which, iffue fix long and flender legs, L L L L L L, fhap'd juft like the legs of Flies, but fpun or drawn out longer and flenderer, which could not be exprefs'd in the Figure, becaufe of their great length; and from the upper part, two oblong, but flender tranfparent wings, MM_{2}, fhaped fomewhat like thofe of a Fly, underneath each of which, as I have obferv'd alfo in divers forts of Flies, and other kinds of Gnats, was placed a fmall body, \mathbf{N}, much refembling a drop of fome tranfparent glatinous fubftance, hardned or cool'd, as it was almoft ready to fall, for it has a round knob at the end, which by degrees grows flenderer into a fmall ftem, and neer the infertion under the wing, this ftem again grows bigger; thefe little Pendulums, as I may fo call them, the litle creature vibrates to and fro very quick when it moves its wings, and I have fometimes obferv'd it to move them alfo, whil'ft the wing lay ftill, but always their motion feem'd to further the motion of the wing ready to follow; of what ufe they are, as to the moving of the wing, or otherwife, I have not now time to examine.

Its belly was large, as it is ufually in all Infects, and extended into nine lengths or partitions, each of which was cover'd with round armed rings or fhells; fix of which, OP QRS T were tranfparent, and divers kinds of Periftaltick, motions might be very eafily perceiv'd, whil'tt the Animal

Micrographia。

Was alive, but efpecially a fnall cleer white part V, feemed to bear like the heart of a larger Animal. The laft three divifios, $\mathrm{W} \mathrm{XY}_{3}$ were cover'd with black and opacous fhells. To conclude, take this creature altogether, and for beauty and curious contrivances, it may be compared with the largeft Animal upon the Earth. Nor doth the Alwife Creator feem to have fhewn lefs care and providence in the fabrick of it, thenin thofe which feem moft confiderable.

Obferv. X L V. Of the great Belly'd Gnat or female Gnat.

THe fecond Gnat, delineated in the twenty ninth scheme, is of a very differing fhape from the former;but yet of this fort alfo, I found feveral of the Gnats, that were generated out of the Water Infect : the wings of this, were much larger then thofe of the other, and the belly much bigger, fhorter and of an other fhape; and, from feveral particulars, I gheft it to be the Female Gnat, and the former to be the Male.

The thorax of this, was much like that of the other, having a very ftrong and ridged back-piece, which went alfo on either fide of its leggs; about the wings there were feveral joynted pieces of Armor, which feem'd curioufly and conveniently contriv'd, for the promoting and ftrengthning the motion of the wings:its head was much differing from the other, being much bigger and neater fhap'd, and the horns that grew out between his eyes on two little balls, were of a very differing flape from the tufts of the other Gnat, thefe having but a few knots or joynts, and each of thofe but a few, and thofe fhort and ftrong, britles. The formoft horns or feelers, were like thofe of the former Gnat.

One of thefe Gnats I have fuffer'd to pierce the fkin of my hand, with its proboficis, and thence to draw out as much blood as to fill its belly as full as it could hold, making it appear very red and tranfparent; and this without any further pain, then whil ft it was finking in its probofcis, as it is alfo in the ftinging of Fleas: a good argument, that thefe creatures do not wound the fkin , and fuck the blood out of enmity and revenge, but for meer neceffity, and to fatisfy their hunger. By what means this creature is able to fuck, we fhall thew in another place.

Obferv. XLVI. Of the white featherwing'd Moth or Tinea Argentea.

THis white long wing d Moth, which is delineated in the 30. Scheme; afforded a lovely object both to the naked Eye, and through a Microfcope: to the Eye it appear'd a fmall Milk white Fly with four white

D d 2
Wings

Micrographia.

Wings, the two formoft fomewhat longer then the two hindermoft, and the two fhorter about half an Inch long, each of which four Wings feem'd to confift of two fmall long Feathers, very curioufly tufted, or haired on each fide, with purely white, and exceedingly fine and fmall Haires, proportion'd to the ftalks or ftems, out of which they grew, much like the tufts of a long wing-feather of fome Bird, and their ftalks or ftems were, like thofe, bended backwards and downwards, as may be plainly feen by the draughts of them in the Figure.

Obferving one of thefe in my Microfoope, I found, in the firft place, that all the Body,Legs, Horns and the Stalks of the Wings, were covered over with various kinds of curious white Feathers, which did, with handling or touching, eafily rubb off and fly about, in fo much that looking on my Fingers, with which I had handled this Moth, and perceiving on them little white fpecks, I found by my Microfcope, that they were feveral of the fmall Feathers of this little creature, that ftuck up and down in the $r u$ gofities of my Skin.

Next, I found that underneath thefe Feathers, the pretty Infect was covered all over with a crufted Shell, like other of thofe Animals, but with one much thinner and tenderer.

Thirdly, Ifound, as in Birds alfo is notable, it had differing and appropriate kinds of Feathers, that covered feveral parts of its body.
Fourthly, furveying the parts of its body, with a more accurate and better Magnifying Microf cope, I found that the tufts or haires of its Wings were nothing elfe but a congeries, or thick fet clufter of fmall vimina or twiggs, refembling a fmall twigg of Birch, ftript or whitned, with which Brufhes are ufually made, to beat out or brufh off the duft from Cloth and Hangings. Every one of the twiggs or branches that compofed the Brufh of the Feathers, appeared in this bigger Magnifying Glafs (of which E F which reprefents $\frac{1}{24}$ part of an Inch, is the fcale, as \mathbf{G} is of the leffer, which is only $\frac{1}{3}$) like the figure D. The Feathers alfo that covered a part of his Body, and were interfperfed among the brufh of his Wings, I found, in the bigger Magnifying Glafs, of the fhape A, confifting of a ftalk or ftem in the middle, and a feeming tuftednefs or brufhy part on each fide. The Feathers that cover'd moft part of his Body and the ftalk of his wings, were, in the fame AMicrof cope, much of the figure B , appeating of the fhape of a fmall Feather, and feemed tufted : thofe which covered the Horns and fmall parts of the Leggs, through the fame Microfoope, appear'd of the fhape C. Whether the tufts of any or all of thefe fmall Feathers, confifted of fuch component particles as the Feathers of Birds, I much doubt, becaufe I find that Nature does not alwaies keep, or:operate after the fame method, in fmaller and bigger creatures. And of this, we have particular Inftances in the Wings of feveral creatures For whereas, in Birds of all kinds, it compofes each of the Feathers of which its Wing confifts, of fuch an exceeding curious and moft admirable and ftupendious texture, as I elfe where fhew, in the Obfervations on a Feather; we find it to alter its method quite, in the fabrick of the Wings of thefe minute creatures, compofing fome of thin extended membranes

Micrographia.

or fkins, fuch as the Wings of Dragon-flys; in others, thofe fkins are all over-grown, or pretty thick beftuck, with fhort brifles, as in Flefh-flies; in others, thofe filmes are covered, both on the upper and under fide, with fmall Feathers, plac'd almoft like the tyles on a Houfe, and are curioully rang'd and adorn'd with moft lively colours, as is obfervable in Butter-flies, and feveral kinds of Moths; In others, inftead of their films, Nature has provided nothing, but a matter of half a fcore ftalks (if I well remember the number; for I have not lately met with any of thele flys, and did not, when I firft obferv'd them, take fufficient notice of divers particulars) and each of thefe ftalks, with a few fingle branchings on each fide, refembling much the branched back-bone of a Herring or the like Fifh, or a thin hair'd Peacocks feather, the top or the eye being broken off. With a few of thefe on either fide (which it was able to fhut up or expand at pleafure, much like a Fann, or rather like the pofture of the feathers in a wing, whichly all one under another, when fhut, and by the fide of each other, when expanded) this pretty little grey Moth (for fuch was the creature I obferv'd, thus wing'd) could very nimbly, and as it feem'd very eafily move its corpufcle, through the Air,from place to place. Other Infects have their wings cas'd, or cover'd over, with certain hollow fhells, fhap'd almoft like thofe hollow Trayes, in which Butcherscarry meat, whofe hollow fides being turn'd downwards, do not only fecure their folded wings from injury of the earth, in which moft of thofe creatures refide, but whilf they fly. ferves as a help to fuftain and bear them up. And thefe are oblervable in scarabees and a multitude of other terreftrial cruffaceous Infects; in which we may yet further obferve a particular providence of Nature.

Now in all thefe kinds of wings, we obferve this particular, as a thing moft worthy remark ; that where ever a wing confifts of difcontinued parts, the Pores or interfitia between thofe parts are very feldom, either much bigger, or much fmaller, then thefe which we here find between the particles of thefe brufhes, fo that it fhould feem to intimate, that the parts of the Air are fuch, that they will not eafily or readily, if at all, pafs through thefe Pores, fo that they feem to be ftrainers fine enough to hinder the particles of the Air (whether hinder'd by their bulk, or by their agitation, circulation, rotation or undulation, I fhall not here determine) from getting through them, and, by that means,ferve the Animal as well, if not better, then if they were little films. I fay, if not better, becaufe I have obferv'd that all thofe creatures, that have film'd wings, move them aboundantly quicker and more ftrongly, fuch as all kind of Flies and scarabees and Batts, then fuch as have their wings covered with feathers, as Butter-flies and Birds, or twiggs, as Moths, which have each of them a much flower motion of their wings; That little ruggednefs perhaps of their wings helping them fomewhat, by taking better hold of the parts of the Air, or not fuffering them fo eafily to pafs by, any other way then one.

But what ever be the reafon of it, tis moft evident, that the fmooth wing'd Infects have the ftrongeft Mufcles or movent parts of their wings, and the other much weaker; and this very Infect, we are now deferibing;

Micrographia.

had a very fmall thorax or middle part of his body, if compar'd to the length and number of his wings; which therefore, as he mov'd them very flowly,fo muft he move them very weakly. And this laft propriety do we find fomewhat obferv'd alfo in biggerkind of Flying creatures, Birds; fo that we fee that the Wifdom and Providence of the All-wife Creator, is not lefs fhewn in thefe frall defpicable creatures, Flies and Moths, which we have branded with a name of ignominy, calling them Vermine, then in thofe greater and more remakable animate bodies, Birds.
I cannot here ftand to add any thing about the nature of flying, though, perhaps, on another occafion, I may fay fomething on that fubject, it being fuch as may deferve a much more accurate examination and ferutiny then it has hitherto met with; For to mei there feems nothing wanting to make a manable to fly, but what may be eafily enough fupply'd from the Mechanicks hitherto known, fave onely the want of ftrength, which the Mufcles of a man feem utterly uncapable of, by reafon of their fmalnefs and texture, but how even ftrength alfo may be mechanically made, an artificial Mufcle fo contriv'd, that thereby a man fhall be able to exert what ftrength he pleafes, and to regulate it alfo to his own mind, I may elfewhere endeavour to manifeft.

Obferv. XLVII. Of the Shepherd Spider, or long logg'd Spider.

THe Carter,Shepherd Spider,or long-legg'd Spider, has, for two particularities, very few fimilar creatures that I have met with; the firft, which is difcoverable onely by the Microfoope, and is in the firft and fecond Figures of the 3 I. Scheme, plainly defcrib'd, is the curious contrivance of his eyes, of which (differing from moft other Spiders) he has onely two, and thofe plac'd upon the top of a fmall pillar or hillock, rifing out of the middle of the top of its back, or rather the crown of its head, for they were fix'd on the very top of this pillar (which is about the heighth of one of the tranfverfe Diameters of the eye, and look'd on in another pofture, appeard much of the fhape, BCD) The two eyes, $\cdot \mathrm{BB}$, were placedback to back, with the tranfparent parts,or the pupils, looking towards either fide, but fomewhat more forward then backwards. C was the column or neck on which they ftood, and \mathbf{D} the crown of the head out of which that neck fprung.

Thefe eyes, to appearance, feem'd to be of the very fame ftructure with that of larger binocular creatures, feeming to have a very fmooth and very protuberant Cornea, and in the midft of it to have a very black pupil, incompaffed about with a kind of grey Iris, as appears by the Figure; whether it were able to move thefe eyes to and fro, Thave not obferv'd, but tis not very likely he fhould, the pillar or neck C, feeming to be cover'd and ftiffen'd with a crufty fhell; but Nature, in probability, has fup-

Miciographlá.

ply'd that defect, by making the Cornea fo very protuberant, and fetting it fo cleer above the fhadowing or obftructing of its profpect by the body, that tis likely each eye may perceive, though not fee diftinctly; althof a Hemippere, whence having fo fmall and round a body plac'd urpon fuch long leggs, it is quickly able fo to wind, and turn it , as to fee any thing diftinct. This creature, as do all other Spiders I have yet examin'd, does very much differ from moft other Infects in the Figure of its eyes; for I cannot, with my beft Microfoope, difcover its eyes to be any ways knobb'd or pearl'd like thofe of other Infects.

The fecond Peculiarity which is obvious to the eye, is alfo very remarkable, and thatis the prodigious length of its Ieggs, in proportion to its fnall/round body, each legg of this I drew, being above fixteen times the fength of its whole body, and there are fome which have them yet longer, and others that feem of the fame kind, that have them a great deal fhorter; the eight leggs are each of them jointed, juft like thofe of a Crab but every of the parts are foun our prodigigufly longer in proportion, each of thefe teggs are terminated in a fmall cafe or thell, fhapd almoft like that of a Mufle-fhell, as is evident in the third Eigure of the fame Scheme (that reprefents the appearance of the under part or belly of the creature) by the fhape of the protuberant conical body, III, \& c. Thefe are as 'twere plac'd or faften'd on to the protuberant body of the Infect, which is to be fuppos'd very high at M, making a kind of blunt cone whereof M is to be fuppos'd the Apex, about which greater cone of the body, the fmaller cones of the leggs are plac d_{2} each of them almoft reaching to the top in fo admirable a manner, as does not a little manifeft the wifdom of Nature in the contrivance ; for thefe long Leavers (asi may fo call them) of the legs, havingnot the a dvantage of a long end on the other fide of the bypomochlion or centers on which the parts of the leggs move, muft neceflarily require a vaft ftrength to move them, and keep the body ballanced and fufpended, in fo much, that if we fhould fuppofe a man's body fufpended by fuch a contrivance, an hundred and fifty times the ftrength of a man would not keep the body from falling on the breaft. To fupply therefore each of there leggs with its proper ftrength, Nature has allow'd to each a large Cheft or Cell, in which is included a very large and ftrong Mufcle, and thereby this little Animal is not onely able to fufpend its body upon lefs then thefe eight, but to move it very fwiftly over the tops of grafs and leaves.
Nor are thefe eight leggs fo prodigiounly long, but the ninth, and tenth, which are the two claws, $K K$, are as fhort, and ferve infteed of a probofcis, for thofe feem'd very little longer then his mouth; each of them had three parts, but very fhort, the joints K K, which reprefented the third, being longer then both the other. This creatureg feems (which I have feveral times with pleafure obferv'd) to throw its body upon the prey, infreed of its hands, not unlike a hunting Spider, which leaps like a Cat at a Moufe. The whole Fabrick was a very pfetty one, and could I have diffected it,I doubt not but I hould have found asimary fingularities within it as without, perhaps, for the moft part, not unlike
the parts of a Crab, which this little creature does in many things, very much refemble; the curiofityof whofe contrivance, I have in another place examin'd. I omit the defcription of the horns, A A, of the mouth, L L, which feem'd like that of a Crab; the fpecklednefs of his fhell, which proceeded from a kind of feathers or hairs, and the hairinefs of his leggs, his large thorax and little belly, and the like, they being manifefted by the Figure; and fhall onely take notice that the three parts of the body, namely, the head, breaft, and belly, are in this creature ftrangely confus'd, fo that tis difficult to determine which is which, as they are alfo in a Crab; and indeed, this feemsto be nothing elfe, but an Air-crab, being made more light and nimble, proportionable to the medium wherin it refides; and as Air feems to have but one thoufandth part of the body of Water, fo does this Spider feem not to be a thoufandth part of the bulk of a Crab.

Oblerv. X L V III. Of the bunting Spider, and feveral other forts of Spiders.

THe hunting Spider is a fmall grey Spider, prettily befpeck'd with black fpots all over its body, which the Microfoope difcovers to be a kind of feathers like thofe on Butterflies wings, or the body of the white Moth I lately defcrib'd. Its gate is very nimble by fits, fometimes running, and fometimes leaping, like a Grafhopper almoft, then ftanding ftill, and fetting it felf on its hinder leggs, it will very nimbly turn its body, and look round it felf every way: It has fix very confpicuous eyes, two looking directly forwards, plac'd juft before ; two other, on either fide of thofe, looking forward and fide-waysjand two other about the middle of the top of its back or head, which look backwards and fide-wards; thefe feem'd to be the biggeft. The furface of them all was very black, fphærical, purely polifh'd, reflecting a very cleer and diftinct Image of all the ambient objects, fuch as a window, a man's hand, a white Paper, or the like. Some other properties of this Spider, obferv'd by the moft accomplifh'd Mr. Evelyn, in his travels in Italy, are moft emphatically fet forth in the Hiftory hereunto annexed, which he was pleas'd upon my defire to fend me in writing.

Of all the forts of Infects, there is none has afforded me more divertifements then the Venatores, which are a fort of $L u p i$, that have their Denns in the rugged walls, and crevices of our houfes; a fmall brown and delicately fpotted kind of Spiders, whofe hinder leggs are longer then the reft.

Such I did frequently obferve at Rome, which efpying a Fly at three or four yards diftance, upon the Balcony (where I ftood)

Micrograpihia./

would not make directly to her, but craul under the Rail, till being arr iv'd to the Antipodes, it would fteal up, feldomimiffing its aim ; but if it chanced to want any thing of being perfectly oppofite,would at firft peep, immediatly flide down again, till taking better notice, it would come the next time exactly uporn the Fly's back: But, if this hapn'd not to be within a competent leap, then would this Infeat move fo foftly, as the very fhadow of the Gnomon feem'd not to be more imperceptible, unlefs the Fly mov'd; and then would the Spider move alfo in the fame proportion, keeping that juft time with her motion, as if the fame Soul had animated both thofe little bodies; and whether it were forwards, backwards, or to either fide, without at all turning her body, like a well mannag'd Horfe! But, if the capricious Fly took wing, and pitch'd upon another place behind our Huntrefs, then would the Spider whirle its body fo nimbly about, as nothing could be imagin'd more fwift ; by which means, fhe always kept the head towards her prey, though to appearance, as immovable, as if it had been a Nail driven into the Wood, till by that indifcernable progrefs (being arriv'd within the fphere of her reach) the made a fatal leap (fwift as Lightning) upon the Fly, catching him in the pole, where the never quitted hold till her belly was full, and then carried the remainder home. I have beheld them inftructing their young ones, how to hunt, which they would fometimes difcipline for not well obferving; but, when any of the old ones did (as fometimes) mifs a leap, they would run out of the field, and hide them in their crannies, as afham'd, and haply not be feen abroad for four or five hours after; for fo long have I watched the nature of this ftrange Infect, the contemplation of whofe fo wonderfull fagacity and addrefs has amaz'd me; nor do I find in any chafe whatfoever, more cunning and Stratagem obferv'd: I have found fome of thefe Spiders in my Garden, when the weather (towards the Spring)
E e
is
is very hot, but they are nothing fo eager of hunting as they are in Italy.

There are multitudes of other forts of Spiders, whofe eyes, and moft other parts and properties, are fo exceedingly different both from thofe I have defcrib'd, and from one another, that it would be almoft endlefs, at leaft too long for my prefent Effay, to defcribe them, as fome with fix eyes, placd in quite another order; others with eight eyes; others with fewer, and fome with more. They all feem to be creatures of prey, and to feed on other fmall Infects, but their ways of catching them feem very differing: the Shepherd Spider by running on his prey; the Hunting Spider by leaping on it,other forts weave Nets, or Cobwebs, whereby they enfnare them, Nature having both fitted them with materials and tools, and taught them how to work and weave their Nets, and to lie perdue, and to watch diligently to run on any Fly, as foon as ever entangled.

Their thread or web feems to be fpun out of forme vifcous kind of excrement, lying in their belly, which, though foft when drawn out, is, prefently by reafon of its fmalnefs, hardned and dried by the ambient Air. Examining feveral of which with my Microfoope, Ifound them to appear much like white Horf-hair, or fome fuch tranfparent horny fubftance, and to be of very differing magnitudes; fome appearing as bigg as a Pigg's brifle, others equal to a Horfs-hair; other no bigger then a man's hair; others yet fmaller and finer. I obferv'd further, that the radiating chords of the web were much bigger, and fmoother then thofe that were woven round, which feem'd fraller, and all over knotted or pearl'd, with fmall tranfparent Globules, not unlike fmall Cryftal Beads or feed Pearls, thin ftrung on a Clew of Silk; which, whether they were fo fpun by the Spider, or by the adventitious moifture of a fogg (which I have obferv'd to cover all thefe filaments with fuch Cryftalline Beads) I will not now difpute.

Thefe threads were fome of them fo fmall, that I could very plainly, with the Microfoope, difcover the fame confecutions of colours as in a Prifine, and they feem'd to proceed from the fame caufe with thofe colours which I have already defcrib'd in thin plated bodies.

Much refembling a Cobweb, or a confus'd lock of thefe Cylinders, is a certain white fubftance which, after a fogg, may be obferv'd to fly up and down the Air; catching feveral of thefe, and examining them with my Microfoope, I found them to be much of the fame form, looking moft like to a flake of Worfted prepar'd to be fpun, though by what means they fhould be generated, or produc'd, is not eafily imagined: they were of the fame weight, or very little heavier then the Air; and 'tis not unlikely, but that thofe great white clouds, that appear all the Summer time, may be of the fame fubftance.

Micrographea.

bluos tias dyiden bsori ati blindamen
Obferv. XLIX. Of an Ant or Pifmire.

THis was a creature, more troublefom to be drawn, then any of the reft, for I could not, for a good while, think of a way to makeic fufferits body to ly quiet in a natural pofture; but whil'ft it was alive, if its feet were fetterd in Wax or Glew, it would fo twift and wind its body, that I could not any wayes get a good view of it; and if I killed it, its body was folittle, that I did often fooile the fhape of it, before I could throughly view it: for this is the nature of thefe minute Bodies, that as foon, alhoft, as ever their life is deftroy'd, their parts immediately fhrivel, and dofe their beauty; and fo is it alfo with fmall Plants, as I inftanced before, in the defcription of Mofs. And thence alfo is the reafon of the variations in the beards of wild Oats, and in thofe of Mufkgrafs feed, that their bodies, being exceeding fmall, thofe fmall variations which are made in the furfaces of all bodies, almoft upon every change of Air, efpecially if the body be porous, do here become fenfible, where the whole body is fo fmall, that it is almoft nothing but furface; for as in vegetable fubftances ${ }_{3}$ Ifee no great reafon to think, that the moifture of the Aire (that, fticking to a wreath'd beard, does make it untwift ihould evaporate, or exhale away, any fafter then the moifture of other bodies, but rather that the avolation from, or accefs of moifture to, the furfaces of bodies being much the fame, thofe bodies become mof fenfible of it, which have the leaft proportion of body to their furface. So isit alfo with Animal fubftances; the dead body of an Ant, or fuch little creature, does almoft inftantly fhrivel and dry, and your object fhall be quite another thing, before you can half delineate it, which proceeds not from the extraordinary exhalation, but from the fmall proportion of body and juices, to the ufual drying of bodies in the Air efpecially if warm. For which inconvenience, where I could not otherwife remove it, I thought of this expedient.
I took the creature, I had defign'd to delineate, and put it into a drop of very well rectified fpirit of Wine, this I found would prefently difpatch, as it were, the Animal, and being taken out of it, and lay'd on a paper, the fpirit of Wine would immediately fly away, and leave the Animal dry, in its natural pofture, or at leaft, in a conftitution, that it might eafily with a pin be plac'd, in what pofture you defired to draw it, and the limbs would fo remain, without either moving, or fhriveling. And thus I dealt with this Ant, which I have here delineated, which was one of many, of a very large kind, that inhabited under the Roots of a Tree, from whence they would fally out in great parties, and make mof grievous havock of the Flowers and Fruits, in the ambient Garden, and return back again very expertly, by the fame wayes and paths they went.
It was more then half the bignefs of an Earwig, of a dark brown, or reddifh colour, with long legs, on the hinder of which it would ftand

Micrographia.

up, and raife its head as high as it could above the ground, that it might ftare the further about it, juft after the fame manner as I have alfo obferv'd a hunting Spider to do: and putting my finger towards them, they have at firft all run towardsit, illalmoft at it; and then they would ftand round about it, at a certain diftance, and fmell, as it were, and confider whether they fhould any of them venture any further, till one more bold then the reft venturing to climb it, all the reft, if I would have fuffered them, would have immediately followed: many fuch other feemingly rational actions I have obferv din this little Vermine with much pleafure, which would be too long to be here related; thofe that defire more of them may fatisfie their curiofity in Ligons Hiftory of the Barbadoes.
Having infnar'd feveral of thefe into a fmall Box, I made choice of the talleft grown among them, and feparating it from the reft, I gave it a Gill of Brandy, or Spirit of Wine, which after a while e'en knock'd him down dead drunk, fo that he became movelefs, though at firft putting in he ftruggled for a pretty while very much, till at laft, certain bubbles iffiing out of its mouth, it ceafed to move; this (becaufe I had before found them quickly to recover again, if they were taken out prefently) Ifuffered to lye above an hour in the Spirit; and after I had taken it out, and put its body and legs into a natural pofture, remained movelefs about an hour; but then, upon a fudden, as if it had been awaken out of a drunken fleep, it fuddenly reviv'd and ran away; being caught, and ferv'd as before, he for a while continued ftruggling and ftriving, till at laft there iffued feveral bubbles out of its mouth, and then, tanquam animam expirafet, he remained movelefs for a good while; but at length again recovering, it was again redipt, and fuffered to lye fome hours in the Spirit; notwithftanding which, after it had layen dry fome three or four hours, it again recovered life and motion: Which kind of Experiments, if profecuted, which they highly deferve, feem to me of no inconfiderable ufe towards the invention of the Latent scheme, (as the Noble Verulam calls it) or the hidden, unknown Texture of Bodies.

Of what Figure this Creature appear'd through the Microfoope, the 32. Scheme (though not fo carefully graven as it ought) will reprefent to the eye, namely, That it had a large head A A, at the upper end of which were two protuberant eyes, pearl'd like thofe of a Fly, but fmaller B B ; out of the Nofe, or foremoft part, iffued two horns C C, of a fhape fufficiently differing from thofe of a blew Fly, though indeed they feem to be both the fame kind of Organ, and to ferve for a kind of fmelling; beyond thefe were two indented jaws DD, which he open'd fide-wayes, and was able to gape them afunder very wide; and the ends of them being armed with teeth, which meeting went between each other, it was able to grafp and hold a heavy body, three or four times the bulk and weight of its own body: It had only fix legs, fhap'd like thofe of a Fly, which, as Ifhewed before, is an Argument that it is a winged Infect, and though I could not perceive any fign of them in the middle part of its body (which feem'd to confift of three joints or pie-

Micrographiad

ces EF G; out of which frung two legs, yet tis known that there are of them that have long wings, and flyup and down in the air.
The third and laft part of its body II I was bigger and larger then. the other two, unto which it was joun'd by a very fmall middle, and had a kind of loofe fhell, or another diftinct part of its body $\mathrm{H}_{\text {; }}$, which feem'd to be interpos'd, and to keep the thorax and belly from touch ing.
The whole body was cas'd oven with a very ftrong armour, and the belly MII was covered likewife with multitudes of Imall white fhining brifles; the legs, horns, head, and niiddle parts ofits body were beftuck with hairs alfo, butfmallerand darker.

Obferv. L. Of the mandring Mite.

IN September and October, 1661. I obferv'd in Oxford feveral of thefe litele pretty Creatures to wanderto and froband often totravel over the plains of my Window. And in September andoctober. 1663. I obferv'd likewife feveral of thefe vety fame Creatures traverfing a window at London, and looking without the window upon the fubjacent wall, I found whole flocks of the fame kind punning to and fro among the frall groves and thickets of green mofs, and upon the curioufly fpreading vegetable blew or yellow mofs, which is a kind of a Mufhrome or Jews ear.

Thefe Creatures to the naked eye feemed to be a kind of black Mite, but much nimbler and ftronger then the ordinary Cheefe-Mites; but examining themin a Mierofope, I found them to be a very fine crufted or fhell'd Infect, much like that reprefented in the firft Figure of the threeand thirtieth scheme, with a protuberant oval thell A, indented, or pitted with an abundance of frall pits, all covered over with little white brifles, whofe points all directed backwards.

It had eight legs, each of them provided with a very fharp tallon, of claw at the end, which this little Animal, in its going, faftned into the pores of the body over which it went. Each of thefe legs were beftuck in every joynt of them with multitudes of fmall hairs, or (if we refpect the proportion they bore to the bignefs of the leg) turnpikes, all pointing towards the claws.

The Thorax, or middle parts of the body of this Creature, was exceeding fmall, in refpect both of the head and belly, it being nothing but that part which was covered by the two fhells BB, though it feem'd to grow thicker underneath: And indeed, if we confider the great variety Nature ufes in proportioning the three parts of the body, the Head, Thorax, and Belly) we fhall not wonder at the flall proportion of this Tharax, nor at the vafter bulk of the belly, for could. we exactly anatomife this little Creature, and obferve the particular defigns of each part, we thould doubtlefs, as we do in all her more ma-
nageable and tractable fabricks, find much more reafon to admire the excellency of her contrivance and workmanfhip, then to wonder, it was not made otherwife.
The head of this little Infect was ihap'd fomewhat like a Mite's, that is, it had a long fnout, in the manner of a Hogs, with a knobbed ridge running along the middle of it , which was beftuck on either fide with many fmall brifles, all pointing forward, and two very large pikes or horns, which rofe from the top of the head, juft over each eye, and pointed forward alfo. It had two pretty large black eyes on either fide of the head EE, from one of which I could fee a very bright reflection of the window, which made me ghefs, that the Cornea of it was fmooth, like thofe of bigger Infects. Its motion was pretty quick and ftrong, it being able very eafily to tumble a ftone or clod four times as big as its whole body.

At the fame time and place, and diverstimes fince, Ihave obferved with my Microfope, another little Infect, which, though I have not annexed the picture of, may be worth noting, for its exceeding nimblenefs as well as fmalnefs; it was as fmall as a Mite, with a body deep and ridged, almoft like a Flea; it had eight blood-red legs, not very long, but flender; and two horns or feelers before. Its motion was fo exceeding quick, that I have often loft fight of one I have obferved with my naked eye; and though, when it was not frighted, I was able to follow the motions of fome with my Microfcope; yet if it vvere never folittle ftartled, it pofted avvay vvith fuch fpeed, and turn'd and vvinded it felf fo quick, that I fhould prefently lofe fight of it.

When I firlt obferv'd the former of thefe Infects, or Mites, I began to conjecture, that certainly I had found out the vagabond Parents of thofe Mites we find in Cheefes, Meal, Corn, Seeds, mufty Barrels, mufty Leather, efc. thefe little Creatures, vvandring to and fro every vvhither, might perhaps, as they vvere invited hither and thither by the mufty fteams of feveral putrifying bodies, make their invafions upon thofe new and pleafing territories, and there fpending the remainder of their life, which might be perhaps a day, or thereabouts, in very plentiful and riotous living, might leave their off-fpring behind them, which by the change of the foil and Country they now inhabite, might be quite alter'd from the hew of their primogenitors, and, like Mores tranllated into Northern European Climates, after a little time, change both their skin and fhape. And this feems yet more probable in thefe Infects, becaufe that the foil or body they inhabit, feems to be almoft half their parent, for it not only hatches and brings thofe little eggs, or feminal principles, to perfection, but feems to augment and nourifh them alfo before they are hatch'd or fhaped; for it is obvious enough to be obferv'd, that the eggs of many other Infects, and particularly of Mites, are increas'd in bulk after they are laid out of the bodies of the Infects, and plump'd fometimes into many times their former bignefs, fo that the bodies they are laid in being, as it were, half their mothers, we thall not wonder that it fhould have fuch an active power to change their forms. We find by relations,
relati spania bided Nor certify negati the cu conjec of tho caule t mere P ent as meroat thefe, 0 in anot nomen provid
R^{2} by me lefsno wasab eight upon in mat other out of manne much nifh'd and 1 bothf tended would put a and f fortwo having
bright
hands,
and fe
The

Micrographia.

relations how much the Ncgro Women do befmeer the of-fpring of the spaniard, bringing forth neither white-fkinn'd nor black, but tawny hided Mulattos.

Now, though I propound this as probable, I have not yet been fo farr certify'd by Obfervations as to conclude any thing, either pofitively or negatively, concerning it. Perhaps, fome more lucky diligence may pleafe the curious Inquirer with the difcovery of this, to be a truth, which I now conjecture, and may thereby give him a fatisfactory account of the caufe of thofe creatures, whofe original feems yet fo obfcure, and may give him caufe to believe, that many other animate beings, that feem alfo to be the mere product of putrifaction, may be innobled with a Pedigree as ancient as the firft creation, and farr exceed the greateft beings in their numerous Genealogies. But on the other fide, if it fhould be found that thefe, or any other animate body, have no immediate fimilar Parent,I have in another place fet down a conjectural Hypothefis whereby thofe Phra nomena may likely enough be folv'd, wherein the infinite wifdom and providence of the Creator is no lefs rare and wonderfull.

Obferv. L I. Of the Crab-like Inject.

REading one day in Septemb. I chanced to obferve a very fmal creature creep over the Bock I was reading, very flowly; having a Microfcope by me, I obferv'd it to be a creature of a very unufual form, and that not lefs notable; fuch as is defcrib'd in the fecond Figure of the 33.8 cheme. It was about the bignefs of a large Mite, or fomewhat longer, it had ten legs, eight of which, A A A A, were topt with veryfharp claws, and were thofe upon which he walk'd, feeming thap'd much like thofe of a Crab, which in many other things alfo this little creature refembled; for the two other claws, BB , which were the formoft of all the ten, and feem'd to grow out of his head, like the horns of other Animals, were exactly form'd in the manner of Crabs or Lobfters claws, for they were thap'd and jointed much like thofe reprefened in the scheme and the ends of them were furnifh'd with a pair of claws or pincers, CC, which this little animal did open and fhut at pleafure: It feem'd to make ufe of thofe two horns or claws both for feelers and holders; for in its motion it carried thefe aloft ex ${ }^{-}$ tended before, moving them to and fro, juft as a man blindfolded would do his hands when he is fearfull of running againft a wall, and if I put a hair to it, it would readily take hold of it with thefe claws, and feem to hold it faft. Now, though thefe horns feem'd to ferve him for two ufes, namely, for feeling and holding; yet he feem'd neither blind, having two fmall black fpots, D D, which by the make of them, and the bright reflection from them feem'd to be his eyes; nor did it want other hands, having another pair of claws, E E, very neer plac'd to its mouth, and feem'd adjoining to it.

The whole body was cafed over with armour-fhells, as is ufuall in all
thofe

Micrograhpia.

thofe kinds of cruffaceous creatures, efpecially about their bellies, and feem'd of three kinds; the head F feem'd cover'd with a kind of faly fhell, the thorax with two fmooth fhells, or Rings, G G, and the belly with eight knobb'd ones. I could not certainly find whether it had under thefe laft fhells any wings, but I fuffect the contrary; for I have not found any wing'd Infect with eight leggs, two of thofe leggs being always converted into wings, and, for the moft part, thofe that have but fix, have wings.
This creature, though I could never meet with more then one of them, and fo could not make fo many examinations of it as otherwife I would,Idid notwithftanding, by reafon of the great curiofity that appear'd to me in its fhape, delineate it, to fhew that, in all likelihood, Nature had crouded together into this very minute Infect, as many, and as excellent contrivances, as into the body of a very large Crab, which exceeds it in bulk, perhaps,fome Millions of times; for as to all the apparent parts,there is a greater rather then a lefs multiplicity of parts,each legg has as many parts, and as many joints as a Crabs, nay, and as many hairs or brifles; and the like may be in all the other vifible parts; and 'tis very likely, that the internal curiofities are not lefs excellent : It being a general rule in Na ture's proceedings, that where fhe begins to difplay any excellency, if the fubject be further fearch'd into, it will manifeft, that there is not lefs curiofity in thofe parts which our fingle eye cannot reach, then in thofe which are more obvious.

Obferv. L I I. Of the fmall Silver-colour'd Book-worm.

AS among greater Animals there are many that are fcaled, both for ornament and defence, fo are there not wanting fuch alfo among the leffer bodies of Infects, whereof this little creature gives us an Inftance. It is a fmall white Silver-fhining Worm or Moth, which I found much converfant among Books and Papers, and is fuppos'd to be that which corrodes and eats holes through the leaves and covers; it appears to the naked eye, afmall gliftering Pearl-colour'd Moth, which upon the removing of Books and Papers in the Summer, is often obferv'd very nimbly to fcud, and pack away to fome lurking cranney, where it may the better protect it felf from any appearing dangers. Its head appears bigg and blunt, and its body tapers from it towads the tail, fmaller and fmaller, being fhap'd almoft like a Carret.

This the Microfcopical appearance will more plainly manifeft, which exhibits, in the third Figure of the 33 . Scheme, a conical body, divided into fourteen feveral partitions, being the appearance of fo many feveral fhels, or fhields that cover the whole body, every of thefe fhells are again coverd or tiled over with a multitude of thin tranfparent fcales, which, from the multiplicity of their reflecting furfaces,make the whole Animal appear of a perfect Pearl-colour.

Which

Micrographia.

Which, by the way, may hint us the reafon of that fo much admired appearance of thofe fo highly efteem'd bodies, as alfo of the like in mother of Pearl-fhells, and in multitudes of other fhelly Sea-fubftances; for they each of them confifting of an infinite number of very thin fhells or laminated orbiculations, caufe fuch multitudes of reflections, that the compofitions of them together with the reflections of others that are fo thin as to afford colours (of which I eifewhere give the reafon) gives a very pleafant reflection of light. And that this is the true caufe,feems likely, firf, becaufe all thofe fo appearing todies are compounded of multitudes of plated fubftances. And next that, by ordering any trafparent fubftance after this manner, the like Phonomena may be produc'd; this will be made very obvious by the blowing of Glafs into exceeding thin fhells, and then breaking them into fcales, which any lamp-worker will prefently do; for a goodquantity of thefe fcales, laid in a heap together, have much the fame refemblance of Pearls. Another way, not lefs inftructive and pleafant, is a way which I have feveral times done, which is by working and toffing, as 'twere, a parcel of pure cryftalline glafs whilft it is kept glowing hot in the blown flame of a Lamp, for, by that means, that purely tranfarent body will be fo divided into an infinite number of plates, or frall ftrings, with interpos'd aerial plates and fibres, that from the multiplicity of the reflections from each of thofe internal furfaces, it may be drawn out into curious Pearl-like or Silver wire, which though fmall, will yet be opacous; the fame thing I have done with a compofition of red Colophon and Turpentine, and a little Bee's Wax, and may be done likewife with Birdlime, and fuch like glutinous and tranfparent bodies: But to return to our defrription.

The fmall blunt head of this Infect was furnifh'd on either fide of it with a clufter of eyes, each of which feem'd to contain but a very few, in comparifon of what I had obferv'd the clufters of other Infects to abound with; each of thefe clufters were befet with a row of fmall brifles, much like the cilia or hairs on the eye-lids, and, perhaps, they ferv'd for the fame purpofe. It had two long horns before, which were ftreight, and tapering towards the top, curioufly ring d or knobb'd, and brifled much like the Marfh Weed, call'd Horfe-tail, or Cats-tail, having at each knot a fring'd Girdle, as I may fo call it, of fmaller hairs, and feveral bigger and larger brilles, here and there difpers'd among them; befides thefe, it had two fhorter horns, or feelers, which were knotted and fring'd, juft as the former, but wanted brifles, and were blunt at the ends; the hinder part of the creature was terminated with three tails, in every particular refembling the two longer horns that grew out of the head: The leggs of it were fal'd and hair'd much like the reft, but are not exprefs'd in this Figure, the Moth being intangled all in Glew, and fo the leggs of this appear'd not through the Glafs which looked perpendicularly upon the back.

This Animal probably feeds upon the Paper and covers of Books, and perforates in them feveral fmall round holes, finding, perhaps, a convenient nouriflament in thofe hufks of Hemp and Flax, which have pafs'd

Micrographia。

through fo many fcourings, wafhings, dreffings and dryings," as the parts of old Paper muft neceflarily have fuffer'd; the digeftive faculty, it feems, of thefe little creatures being able yet further to work upon thofe ftubborn parts, and reduce them into another form.

And indeed, when I confider what a heap of Saw-duft or chips this little creature (which is one of the teeth of Time) conveys into its intrals. I cannot chufe but remember and admire the excellent contrivance of Nature, in placing in Animals fuch a fire, as is continually nourifhed and fupply'd by the materials convey'd into the ftomach, and fomented by the bellows of the lungs; and in fo contriving the moft admirable fabrick of Animals, as to make the very feending and wafting of that fire, to be inftrumental to the procuring and collecting more materials to augment and cherifh it felf, which indeed feems to be the principal end of all the contrivances obfervable in bruit Animals.

Obferv. LIII. Of a Flea.

THe frength and beauty of this fmall creature, had it no other relation at all to man, would deferve a defcription.
For its ffrength, the Microfoope is able to make no greater difcoveries of it then the naked eye, but onely the curions contrivance of its leggs and joints, for the exerting that ftrength, is very plainly manifefted, fuch as no other creature, I have yet obferv'd, has any thing like it; for the joints of it are fo adapted, that he can, as'twere,fold them fhort one within another, and fuddenly ftretch, or fpring them out to their whole length, that is, of the fore-leggs, the part A, of the 34. scheme, lies within B, and B within C, parallel to, or fide by fide each other; but the parts of the two next, lie quite contrary, that is, D without E , and E without F, but parallel alfo; but the parts of the hinder leggs, G, H and I, bend one within another, like the parts of a double jointed Ruler, or like the foot, legg and thigh of a man; thefe fix leggs he clitches up altogether, and when he leaps, fprings them all out, and thereby exerts his whole ftrength at once.

But, as for the beauty of it, the Microfcope manifefts it to be all over adorn'd with a curioully polifh'd fuit of fable Armour, neatly jointed, and befet with multitudes of fharp pinns, thap'd almoft like Porcupine's Quills, or bright conical Steel-bodkins; the head is on either fide beautify'd with a quick and round black eye K, behind each of which alfo appears a fmall cavity, L, in which he feems to move to and fro a certain thin film befet'with many fmall tranfparent hairs, which probably may be his ears; in the forepart of his head, between the two fore-leggs, he hastwo fmall long jointed feelers, or rather fmellers, M M, which have four joints, and are hairy, like thofe of feveral other creatures; between thefe, it has a fmall probofis, or probe, NNO, that feems to confift of a tube,

https://digi.ub.uni-heidelberg.de/diglit/hooke1667/0319

gefördert durch die

Gesellschaft der Freunde
Universität Heidelberg e.V.

Micrographia.

tube N N , and a tongtie or fucker O , which I have perceiv'd himi to flip in and out. Befides thefe, it has alfo two chaps or biters PP, which are fomewhat like thofe of an Ant, but I could not perceive them tooth'd; thefe were fhap'd very like the blades of a pair of round top'd Scizers, and were opened and fhut juft after the fame manner; with thefe Inftruments does this little bufie Creature bite and pierce the fkin, and fuck out the blood of an Animal, leaving the fkin inflamed with a fmall round red fpot. Thefe parts are very difficult to be difcovered, becaufe, for the moft part, they lye covered between the fore-legs. There are many other particulars, which, being more obvious, and affording no great matter of information, I thall pafs by, and refer the Reader to the Figure.

Obferv. LIV. Of a Loufe.

THis is a Creature fo officious, that 'twill be known to every one at one time or other, fo bufie, and fo impudent, that it will be intruding it felf in every ones company, and fo proud and afpiring withall, that it fears not to trample on the beft, and affects nothing fo much as a Crown; feeds and lives very high, and that makes it fo faucy, as to pull any one by the ears that comes in its way, and will never be quiet till it has drawn blood: it is troubled at nothing fo much as at a man that frratches hishead, as knowing that man is plotting and contriving fome mifchief againft it, and that makes it oftentime fculk into fome meaner and lower place, and run behind a mans back, though it go very much againft the hair; which ill conditions of it having made it better known then trufted, would exempt me from making any further defcription of it, did not my faithful Mercury, my Microfope, bring me other information of it. For this has difcovered to me, by means of a very bright light caft on it, that it is a Creature of a very odd fhape; it has a head fhap'd like that expreft in 35 . scheme marked with A, which feems almoft Conical, but is a little flatted on the upper and under fides, at the biggeft part of which, on either fide behind the head (as it were, being the place where other Creatures ears ftand) are placed itstwo black fhining goggle eyes B B, looking backwards, and fenced round with feveral fmall cilia or hairs that incompafs it,fo that it feems this Creature has no very good forefight: It does not feem to have any eye-lids, and therefore perhaps its eyes were fo placed, that it might the better cleanfe them with its fore-legs; and perhaps this may be the reafon, why they fo much avoid and run from the light behind them, for being made to live in the fhady and dark receffes of the hair, and thence probably their eye having a great aperture, the open and clear light, efpecially that of the Sun, muft needs very much offend them; to fecure thefe eyes from receiving any injury from the hairs through which it paffes, it has

Ffis

Micrographia。

two hornsthat grow before it, in the place where one would have thought the eyes fhould be; each of thefe CC hath four joynts, which are fringed, as 'twere, with fmall brifles, from which to the tip of its fnout D , the head feems very round and tapering, ending in a very Tharp nofe D , which feems to have a fmall hole, and to be the paffage through which he fucks the blood. Now whereas if it be plac'd on its back, with its belly upwards, as it is in the 35 . Scheme, it feems in feveral Pofitions to have a refemblance of chaps, or jaws, as is reprefented in the Figure by EE, yet in other poftures thofe dark ftrokes difappear ; and having kept feveral of them in a box for two or three dayes, fo that for all that time they had nothing to feed on, I found, upon letting one creep on my hand, that it immediately fell to fucking, and did neither feem to thruft its nofe very deep into the fkin, nor to open any kind of mouth, but I could plainly perceive a fmall current of blood, which came directly from its fnout, and paft into its belly; and about A there feem'd a contrivance, fomewhat refembling a Pump, pair of Bellows, or Heart, for by a very fwift Cyfole and diaftole the blood feem'd drawn from the nofe, and forced into the body. It did not feem at all,though I viewed it a good while as it was fucking, to thruft more of its nofe into the fkin then the very fnout D , nor did it caufe the leaft difcernable pain, and yet the blood feem'd to run through its head very quick and freely, fo that it feems there is no part of the flkin but the blood is difpers'd into, nay, even into the cuticula; for had it thruft its whole nofe in from D to CC, it would not have amounted to the fuppofed thicknefs of that tegument, the length of the nofe being not more then a three hundredth part of an inch. It has fix legs, covered with a very tranfparent fhell, and joynted exacdly like a Crab's, or Lobfter's; each leg is divided into fix parts by thefe joynts, and thofe have here and there feveral fmall hairs; and at the end of each leg it has two claws, very properly adapted for its peculiar ufe, being thereby inabled to walk very fecurely both on the fkin and hair; and indeed this contrivance of the feet is very curious, and could not be made more commodioufly and compendioufly, for performing both thefe requifite motions, of walking and climbing up the hair of a mans head, then it is : for, by having the leffer claw (a) fet fo much fhort of the bigger (b) when it walks on the fkin the fhorter touches not, and then the feet are the fame with thofe of a Mite, and feveral other fmall Infects, but by means of the fmall joynts of the longer claw it can bend it round, and fo with both claws take hold of a hair, in the manner reprefented in the Figure, the long tranfparent Cylinder FF F, being a Man's hair held by it.

The Thorax feem'd cas'd with another kind of fubftance then the bel1 y , namely, with a thin tranfparent horny fubftance, which upon the fafting of the Creature did not grow flaccid; through thisI could plainly fee the blood, fuck'd from my hand, to be varioutly diftributed, and mov'd to and fro; and about G there feem'd a pretty big white fubflance, which feem'd to be moved within its thorax; befides, there appear'd very many fmall milk-white veffels, which croft over the breaft

Micrographia。

between the legs, out of which, on either fide, were many frall branchings, thefe feem'd to be the veins and arteries, for that which is analogus to blood in all Infects is milk-white.

The belly is covered with a tranfparent fubftance likewife, but more refembling a fkin then a fhell, for 'tis grain'd all over the belly juft like the skin in the palms of a man's hand, and when the belly is empty, grows very flaccid and wrinkled 3 at the upper end of this is placed the fomach HH , and perhaps alfo the white fot II may be the liver or pancreass, which. by the periffaltick motion of the guts, is a little mov'd to and fro, not with a fyfole and diaftole, but rather with a thronging or juftling motion. Viewing one of thefe Creatures, after it had fafted two dayes, all the hinder part was lank and flaccid, and the white fot II hardly mov'd, moft of the white branchings difappear'd, and moft alfo of the rednefs or fucked blood in the guts, the periftaltick motion of which was farce difeernable; but upon the fuffering it to fuck, it prefently fill'd the fkin of the belly, and of the fix fcolop'd embofments on either fide, as full as it could be fruft; the fomach and guts were as full as they could hold; the periftaltick motion of the gut grew quick, and the juftling motion of II accordingly; multitudes of milk-white veffels feem'd quickly filled, and turgid, which were perhaps the veins and arteries, and the Creature was fo greedy, that though it could not contain moré, yet it continued fucking as faft as ever, and as faft emptying it felf behind: the digeftion of this Creature muft needs be very quick, for though I perceiv'd the blood thicker and blacker when fuck d^{2}, yet ${ }_{3}$ when in the guts, it was of a very lovely ruby colour, and that part of it, which was digefted into the veins, feemed white; whence it appears, that a further digeftion of blood may make it milk, at leaft of a refembling colour: What is elfe obfervable in the figure of this Creature, may be feen by the 35 . Scheme.

Obferv. LV. Of Mites.

THe leaft of Reptiles I have hitherto met with, is a Mite, a Creature whereof there are fome fo very fmall, that the fharpeft fight, unaffifted with Glaffes, is not able to dilcern them, though, being white of themfelves, they move on a black and fmooth furface; and the Eggs, out of which thefe Creatures feem to be hatch'd, are yet fmaller, thofe being ufually not above a four or five hundredth part of a well grown Mite, and thofe well grown Mites not much above one hundredth of an inch in thicknefs; fo that according to this reckoning there may be no lefs then a million of well grown Mites contain'd in a cubick inch, and five hundred times as many Eggs.

Notwithftanding which minutenefs a good Micrefcope difcoters thofe fmall movable fpecks to be very prettily fhap'd Infects, each of them furnifh'd
nifh'd with eight well fhap'd and proportion'd legs, which are each of them joynted or bendable in eight feveral places, or joynts, each of which is covered, for the moft part, with a very tranfparent fhell, and the lower end of the fhell of each joynt is fringed with feveral fmall hairs; the contrivance of the joynts feems the very fame with that of Crabs and Lobfters legs, and like thofe alfo, they are each of them terminated with a very fharp claw or point; four of thefe legs are fo placed, that they feem to draw forwards, the other four are placed in a quite contrary pofition, thereby to keep the body backwards when there is occafion.
Fig. 1.
Stbem, 36 . The body, as in other larger Infects, confifts of three regions or Sibem, ${ }^{66}$. parts; the hinder or belly A, feems covered with one intire fhell, the middle, or cheft, feems divided into two fhells B C. which running one within the other, the Mite is able to fhrink in and thruft out asit finds occafion, as it can alfo the fnout D . The whole body is pretty tranfparent, fo that being look'd on againft the light, divers motions within its body may be perceived; as alfo all the parts are much more plainly delineable, then in other poftures, to the light. The fhell, efpecially that which covers the back, is curioufly polifht, fo that'tis eafie to fee, as in a convex Looking-glafs, or foliated Glafs-ball, the picture of all the objects round about; up and down, in feveral parts of its body, it has feveral fmall long white hairs growing out of its fhell, which are often longer then the whole body, and are reprefented too fhort in the firft and fecond Figures; they feem all pretty ftraight and plyable, fave only two upon the fore-part of its body, which feem to be the horns, as may be feen in the Figures; the firt whereof is a profpect of a fmaller fort of Mites (which are ufually more plump) as it was pafant to and fro; the fecond is the profpect of one fixt onits tail (by means of a little mouthglew rubed on the object plate) exhibiting the manner of the growing of the legs, together with their feveral joynts.

This Creature is very much diverfify'd in fhape, colour, and divers other properties, according to the nature of the fubftance out of which it feems to be ingendred and nourifhed, being in one fubftance more long, in another more round, in fome more hairy, in others more fmooth, in this nimble, in that flow, here pale and whiter, there browner, blacker, more tranfparent, ofc. I have obferved it to be refident almoft on all kinds of fubftances that are mouldy, or putrifying, and have feen it very nimbly mefhing through the thickets of mould, and fometimes to lye dormant underneath them; and 'tis not unlikely, but that it may feed on that vegetating fubftance, fpontancous Vegetables feeming a food proper enough for Spontaneous Animals,

But whether indeed this Creature, or any other, be fuch or not, I cannot pofitively, from any Experiment, or Obfervation, I have yet made, determine. But, as I formerly hinted, it feems probable, that fome kind of wandring Mite may fow, as 'twere, the firft feeds, or lay the firft eggs, in thofe places, which Nature has inftructed them to know convenient for the hatching and nourifhing their young; and though perhaps the prime

Micrographia.

prime Parent might be of a thape very differing from what the offfpring, after a little while, by reafon of the fubftance they feed on, or the Region (as 'twere) they inhabite; yet perhaps even one of thefe alter ${ }^{\circ}$ progeny, wandering again from its native foil, and lighting on by chance the fame place from whence its prime Parent came, and there fettling, and planting, may produce a generation of Mites of the fame fhapes and properties with the firft wandring Mite: And from fome fuch accidents as thefe, I am very apt to think, the moft forts of Amimals, generally accounted Jpontancous, have their origination, and all thofe va rious forts of Mites, that are to be fiet with up and down in divers putrifying fubftances, may perhafs be all of the fame kind, and have fprung fromone and the fame fort of Mites at the firft.

Obferv. L VI. Of a fmall Creature batcb'd on a Vine.

THere is, almoft all the Spring and Summer time, a certain fmall ${ }_{3}$ round, white Cobweb, as 'twere, about the bigners of a Pea, which fticks very clofe and faft to the ftocks of Vines nayl'd againft a warmi wall : being attentively viewed, they feem cover' d, upon the upper fide of them, with a fmall husk, not unlike the fale, or fhell of a Woodloufe, or Hog-loufe, a fmall Infect ufirally found about rotten wood, which upon touching prefently rouls it felf into the form of a peppercorn: Separating feveral of thefe from the ftock, I found them, with my Microfcope, to confift of a fhell, which now feemed more likely to be the hurk of one of thefe Infects: And the fur feem'd a kind of cobweb, confifting of abundance of fmall filaments, or fleaves of cobwebs. In the midit of this, if they were not hatch'd, and runaway before, the time of which hatching was ufually about the latter end of fune, or beginning of July, Ihave often found abundance of fmall brown Eggs, fuch as A and B in the fecond Figure of the 36. scheme, much about the bignefs of Mites Eggs; and at other times, multitudes of fmall Infects, fhaped exactly like that in the third Figure marked with X. Its head large, almoft half the bignefs of its body, which is ufual in the fotus of moft Creatures. It had two fmall black eyes $a a$, and two fmall long joynted and brifled horns $b \cdot b$. The hinder part of its body feem'd to confift of nine fcales, and the laft ended in a forked tayl, much like that of a Cu tio, or Wood loufe, out of which grew two long hairs; they ran to and fro very fwiftly, and were mach of the bignefs of a common Mite, but fome of them lefs: The longeft of them feem'd not the hundredth part of an inch, and the Eggs ufually not above half as much. They feemed to have fix legs, which were not vifible in this I have here detineated, by reafon they were drawn under its body.
If thefe Minute creatures were Wood-lice(as indeed from their own flape and frame, the fkin, or fhell, that grows on them, one may with great pro
bability ghefs) itaffords us an Infrance, whereof perhaps there are not many like in Nature, and that is, of the prodigious increafe of thefe Creatures, after they are hatch'd and run about ;for a common Wood-loufe, of about half an inch long, is no lefs then a hundred and twenty five thoufand times bigger then one of thefe, which though indeed it feems very ftrange, yet lihave obferved the young ones of fome Spiders have almoft kept the fame proportion to their Dam.
This, methinks, if it be fo, does in the next place hint a Quæry, which may perhaps deferve a little further examination : And that is, Whether there be not many of thofe minute Creatures,fuch as Mites, and the like, which, though they are commonly thought of otherwife, are only the pully, or young ones, of much bigger Infects, and not the generating, or parent Infect, that has layd thofe Eggs; for having many times obferv'd thofe Eggs, which ufually are found in great abundance where Mites are found, it feems fomething ftrange, that fo fmall an Animal fhould have an Egg fo big in proportion to its body. Though on the other fide, I muft confefs, that having kept divers of thofe Mites inclofed in a box for a good while, I did not find them very much augmented beyond their ufual bignefs.
What the husk and cobweb of this little white fubftance fhould be, I cannot imagine, unlefs it be, that the old one, when impregnated with Eggs, fhould there ftay, and fix it felf on the Vine, and dye, and all the body by degrees fhould rot, fave only the husk, and the Eggs in the body: And the heat, or fire, as it were, of the approaching Sun-beams flould vivifie thofe Relicts of the corrupted Parent, and out of the afhes, as 'twere, (as it is fabled of the Phonix) fhould raife a new offfring for the perpetuation of the Jpecies. Nor will the cobweb, as it were, in which thefe Eggs are inclos'd, make much againft this ConjeCture; for we may, by thofe cobwebs that are carried up and down the Air after a Fog (which with my Microocope I have difcovered to be made up of an infinite company of fmall filaments or threads) learn, that fuch a texture of body may be otherwife made then by the fpinning of a Worm.

Obferv. LVII. Of the Eels in Vinegar.

OF thefe fmall Eels, whichare to be found in divers forts of Vinegar, I have little to add befides their Picture, which you may find drawn in the third Figure of the 25. Scheme: That is, they were fhaped much like an Eel, fave only that their nofe A, (which was a little more opacous then the reft of their body) was a little fharper, and longer, in proportion to their body, and the wrigling motion of their body feem'd to be onely upwards and downwards, whereas that of Eels is onely fide wayes: They feem'd to have a more opacous part about

Micrographia.

about B, which might, perhaps, be their Gills; it feeming always the fame proportionate diftant from their nofe, from which, to the tip of their tail, C, their body feem'd to taper.
Taking feveral of thefe out of their Pond of Vinegar, by the net of a fmall piece of filtring Paper, and laying them on a black fmooth Glafs plate, I found that they could wriggle and winde their body, as much Ealmoft as a Snake, which made me doubt, whether they were a kind of Eal or Leech.

I thall add no other obfervations made on this minute Animal, being prevented herein by many excellent ones already publifh'd by the ingenious, Doctor Power, among his Micrefopical Obfervations, fave onely that a quantity of Vinegar repleat with them being included in a fmall Viol, and ftop'd very clofe from the ambient air, all the included Worms in a very fhort time died, as if they had been ftifled,

And that their motion feems (contrary to what we may obferve in the motion of all other Infects) exceeding flow. But the reafon of it feems plain, for being to move to and fro after that manner which they do, by waving onely, or wrigling their body; the tenacity, or glutinoufnefs, and the denfity or refiftance of the fluid medium becomes fo excceding fenfible to their extremely minute bodies, that it is to me indeed a greater wonder that they move them fo faft as they do,then that they move them no fafter. For what a vaftly greater proportion have they of their fuperficies to their bulk, then Eels or other larger Fifhes, and next, the tenacity and denfity of the liquor bei,g much the fame to be moved both by the one and the other, the refiftance or impediment thence arifing to the motions made through it, muft be almoft infinitely greater to the fmall one then to the great. This we find experimentally verify'd in the Air, which though a medium a thoufand times more rarify'd then the water, the refiftance of it to motions made through it, is yetfo fenfible to very minute bodies, that a Down-feather(the leatt of whofe parts feem yet bigger then thefe Eels, and many of them almoft incomparably bigger, fuch as the quill and ftalk) is fufpended by it, and carried to and fro as if it had no weight.

Obferv. LVIII. Of a new Property in the Air, and feveral other tranffarent Mediums nam'd Inflection, whereby very many confiderable Phænomena are attempted to be folv'd, and divers other ufes are binted.

SInce the Invention (and perfecting in fome meafure) of Telefcopes, it has been obferv'd by feveral, that the Sun and Moon neer the Horizon, are disfigur'd (lofing that exactly-fmooth terminating circular limb, which they are obferv'd to have when fituated neerer the Zenith) and are bounded with an edge every way (efpecially upon the right and left

Micrographia.

fides) ragged and indented like a Saw : which inequality of their limbs, I have further obferv d , not to remain always the fame, but to be continually chang d by a kind of fluctuating motion, not unlike that of the waves of the Sea; fo as that part of the limb, which was but even now nick'd or indented in, is now protuberant, and will prefently be finking again ; neither is this all, but the whole body of the Luminaries, do in the Telefcope, feem to be deprefs'd and flatted, the upper, and more efpecially the under fide appearing neerer to the middle then really they are, and the right and left appearing more remote:whence the whole Area feems to be terminated by a kind of Oval.It is further obferv' d, that the body, for the moft part, appears red, or of fome colour approaching neer unto it, as fome kind of yellow; and this I have always mark d, that the more the limb is flatted or ovalled, the more red does the body appear, though not always the contrary. It is further obfervable, that both fix'd Stars and Planets, the neerer they appear to the Horizon, the more red and dull they look, and the more they are obferv'd to twinkle; in fo much, that I have feen the Dog-ffarr to vibrate fo ftrong and bright a radiation of light, as almoft to dazle my eyes, and prefently, almoft to difappear. It is alfo obfervable, that thofe bright fcintillations neer the Horizon, are not by much fo quick and fudden in their confecutions of one another, as the nimbler twinklings of Stars neerer the Zenith. This is alfo notable, that the Starrs neer the Horizon, are twinkled with feveral colours; fo as fometimes to appear red, fometimes more yellow, and fometimes blue, and this when the Starr is a pretty way elevated above the Horizon. I have further, very often feen fome of the fmall Starrs of the fifth or fixth magnitude, at certain times to difappear for a fmall moment of time, and again appear more confpicuous, and with a greater lufter. I have feveral times, with my naked eye, feen many fmaller Starrs, fuch as may be call'd of the feventh or eighth magnitude to appear for a fhort fpace, and then vanifh, which, by directing a fmall Telefcope towards that part they appear'd and difappeard in; I could prefently find to be indeed fmall Starrs fo fituate, as I had feen them with my naked eye, and to appear twinkling like the ordinary vifible Stars; nay, in examining fome very notable parts of the Heaven, with a three foot Tube, me thought Inow and then, in feveral parts of the conftellation, could perceive little twinklings of Starrs, making a very fhort kind of apparition, and prefently vanifhing, but noting diligently the places where they thus feem'd to play at boepeep, I made ufe of a very good twelve foot Tube, and with that it was not uneafie to fee thofe, and foveral other degrees of fmaller Starrs, and fome fmaller yet, that feem'd again to appear and difappear, and thefe alfo by giving the fame Object-glafs a much bigger aperture, I could plainly and conftantly fee appear in their former places; fo that I have obferv'd fome twelve feveral magnitudes of Starrs lefs then thofe of the fix magnitudes commonly recounted in the Globes.

It has been obferv'd and confirm'd by the accurateft Obfervations of the beft of our modern Aftronomers, that all the Luminous bodies appear above the Horizon, when they really are below it. So that the

Sun

Sun anc
has bee
that the
have;
then it
I hav and hig
Trees,
tice of
at a go
fpicuo
tremul
Divers
have g
gether
true,
pheno
the fev
in mak
and fe
caufe
the tr
plicate
and th
fiperfic
withir
Fir
vario
thefe
caufe

Micrographia.

Sun and Moon have both been feen above the Horizon, whil'ft the Moon has been in an Eclipfe. I fhall not here inftance in the great refractions, that the tops of high mountains, feen at a diftance, have been found to have; all which feem to argue the Horizontal refraction, much greater then it is hitherto generally believ'd.

I have further taken notice, that not onely the Sun, Moon and Starrs, and high tops of mountains have fuffer'd thefe kinds of refraction, but Trees, and feveral bright Objects on the ground : I have often taken notice of the twinkling of the reflections of the Sun from a Glafs-window at a good diftance, and of a Candle in the night, but that is not fo confpicuous, and in obferving the fetting Sun, I have often taken notice of the tremulation of the Trees and Bufhes, as well as of the edges of the Sun. Divers of thefe Phonomena have been taken notice of by feveral, who have given feveral reafons of them, but I have not yet met with any altogether fatisfactory, though fome of their conjectures have been partly true, but parly alfo falfe.Setting my felf therfore upon the inquiry of thefe Phenomena, I firft endeavour'd to be very diligent in taking notice of the feveral particulars and circumftances obfervable in them; and next, in making divers particular Experiments, that might cleer fome doubts, and ferve to determine, confirm, and illuftrate the true and adxquate caufe of each; and upon the whole, I find much reafon to think, that the true caufe of all thefe Phenomena is from the inflection, or multiplicate refraction of thofe Rays of light within the body of the Atmofphere, and that it does not proceed from a refraction caus'd by any terminating fuperficies of the Air above, nor from any fuch exactly defin'd fuperficies within the body of the Atmopphere.

This Conclufion is grounded upon thefe two Propofitions:
Firft, that a medium, whofe parts are unequally denfe, and mov'd by various motions and tranfpofitions as to one another, will produce all thefe vifible effects upon the Rays of light, without any other coefficient. caufe.

Secondly, that there is in the Air or Atmofphere, fuch a variety in the conftituent parts of it, both as to their denfity and rarity, and as to their divers mutations and pofitions one to another.

By Denfity and Rarity, I underftand a property of a tranfparent body, that does either more or lefs refract a Ray of light (coming obliquely uponits fuperficies out of a third medium) toward its perpendicular: As I call Glafs a more denfe body then Water, and Water a more rare body then Glafs, becaufe of the refractions (more or lefs deflecting towards the perpendicular) that are made in,them, of a Ray of light out of the Air that has the fame inclination upon either of their fuperficies.

So as to the bufinefs of Refraction, fpirit of Wine is a more denfe body then Water, it having been found by an accurate Inftrument that meafures the angles of Refractions to Minutesthat for the fame refracted angle of $30: 00^{\prime}$ in both thofe Mediums, the angle of incidence in Water was but $41^{\circ} .3^{\prime} 5$. but the angle of the incidence in the trial with fpirit of Wine was $42^{\circ}: 45^{\prime}$. But as to gravity, Water is a more denfe body then Gg 2
fpirit

Micrographia.

fpirit of Wine, for the proportion of the fame Water, to the fame very well rectify'd 'pirit of Wine was, as 2 I. to 19.
So as to Refraction, Water is more Denfe then Ice; for I have found by a moff certain Experiment, which I exhibited before diver's illuftrious Perfons of the Royal Society, that the Refraction of Water was gueater then that of Ice, though fome confiderable Authors have affirm'd the contrary, and though the Ice be a very hard, and the Water a very fluid body.

That the former of the two preceding Propofitions is true, may be manifefted by feveral Experiments: As firft, if you take any two liquors differing from one another in denfity, but yet fuch as will readily mix: as SaltWater, on Brine, \& Frefhjalmoft any kind of Sale diffolv'd in Water, and filtrated, fo that it be cleer, (pirit of Wine and Water; nay, firit of Wine, and fpirit of Wine, one more highly rectify'd then the other, and very many other liquors; if(Ifay) you take any two of thefe liquors, and mixing them in a Glafs Viol, againft one fide of which you have fix'd or glued a fmall round piece of Paper, and fhaking them well together (fo that the parts of them may be fomewhat difurb'd and move up and down)you endeavour to fee that round piece of Paper through the body ofothe liquors; you fhall plainly perceive the Figure to wave, and to be indented much after the fame manner as the limb of the Sun through a Telefoope feemsto be, fave onely that the mutations here, are much quicker. And if, infteed of this bigger Circle, you take a very fmall foot, and faften and view it as the former, you will find it to appear much like the twinkling of the Starrs, though much quicker : which two Phenomena (for I fhall take notice of no more at prefent ${ }_{2}$ though I could inftance in multitudes of others) muft neceffarily be causd by an inflection of the Rays within the terminating fuperficies of the compounded medium, fince the furfaces of the tranfarent body through which the Rays pafs to the eye, are not at all altered or changd.

This inflection (ifI may fo call it) I imagine to be nothing elfe, but a miltiplicate refradion, caufed by the unequal donfity of the conftituent parts of the medium, whereby the motion, action or progrefs of the Ray of light is hindred from proceeding in a freight line, and inflected or deflecled by a curve. Now, that it is a curve line is manifeft by this Experiment:Itook a Box,fuch as A D G E, in the firft Figure of the 37.8 cheme, whofe fides ABCD , and EFGH, were made of two fmooth flat plates of, Glafs, then filling it half full with a very ftrong folution of Salt, I filled the other half with very fair frefh water, then expofing the opacous fide, D H G C, to the Sun, Iobferv'd both the refraition and inflection of the Sun beams,ID \& K H, and marking as exactly as I could, the points, $\mathrm{P}, \mathrm{N}, \mathrm{O}, \mathrm{M}$, by which the Ray, K H, paffed through the compounded nedinm, I found them to be in a curve line; for the parts of the medium being continually more denfe the neerer they were to the bottom, the Ray $p f$ was continually more and more deflected downwards from the ftreight line.

This Inficction may be mechanically explained, either by Monfieur

Micrographia.

Des Cartes principles, by conceiving the Globuls of the third Element to find lefs and lefs refiftance againft that fide of them whichisidowriwards; on by a way, which Ihave furthen explicated in the Inquifirion about Co louns, to be from anobliquacion of the pulfe of light, whenee the ruden part is continually promoteds and confequently wefracted towards the perpendicular, which cuts the Orbs at nightangles. What the pariticus lar Figure of the Cwive line, defcribid by this way of light, is, I thall not now fand to examine, efpecially fince there may be fomany forts of it as there may be varieties of ohe Pofitions of the intermidiat degrees of denfity and rarity between the bottom and the top of the inflecting Mediumd

I could produce many more Examples and Experiments, to ilhuftrate and prove this firft Propofition, viz. that there is fuch a conftitution of fome bodies as will cande intlection. As not to mention thofe I have obferv'd in Harn, Tortoife-fletl, trinflatent Gums, and refinous subfiances : The weins of Glafs, nay, of metred Cryjtal, found, and much complained of by Glafs-grinders, and others, might fufficiently demonftrate the truth of it to any diligent Obfervator.

But that, I prefume, I have by this Example given proof fufficient (viz. oentar demonftration) to evince, that there is fuch a modulation, or bending of the rayes of light, as I have call'd inflection, differing both from reflection, and refraction (fince they are both made in the fuperficies, this only in the middle) ; and likewife, that this is able or fufficient to produce the effects. I have afcribed to it.
It remains therefore to thew, that there is fuch a property in the Air, and that it is fufficient to produce all the above mentioned Phanomenay and therefore may be the principal, if not the only caufe of them.

Finft, That there is fuch a property, may be proved from this, that the parts of the Air are fome of them more condens'd, others more rarified, either by the differing heat, or differing preffure it fuftains, or by the fomewhat heterogeneous vapours interfpersd through it. For as the Air is more or lefs rarified, fo doesit more or lefs refract a ray of light (that comes out of a denfer medium) from the perpendicular. This you may find true, if you maketryal of this Experiment.

Take a fmall Glafs-bubble, made in the form of that in the fecond Figure of the 37. Scheme, and by heating the Glafs very hot, and thereby very much rarifying the included Air, or, which is better, by rarifying a fmall quantity of water, included in it, into vapours, which will expel the moft part, if not all the Air, and then fealing up the fmall neck of it, and letting it cool, you may find, if you place it in a convenient Inftrument, that there will be a manifeft difference, as to the refraction.

As if in this fecond Figure you fuppofe A to reprefent a friall fight or hole, through which the eye looks upon an object, as C , through the Glafs-bubble B, and the fecond fight L; all which remain exactly fixt in their feveral places, the object C being fo cized and placed, that it may juft feem to touch the upper and under edge of the hole L : and fo all of it be feen through the fmall Glafs-ball of rarified Air; then by breaking
breaking off the fmall feal'd neck of the Bubble (without at all firring the fights, object, or glafs) and admitting the external Air, you will find your felf unable to fee the utmoft ends of the object; but the terminating rayes AE and AD (which were before refracted to G and F by the rarified Air) will proceed almoft directly to I and H ; which alteration of the rayes (feeing there is no other alteration made in the Organ by which the Experiment is tryed, fave only the admiffion, or exclufion of the condens'd Air) muft neceffarily be caufed by the variation of the medium contain'd in the Glafs B; the greateft difficulty in the making of which Experiment, is from the uneven furfaces of the bubble, which will reprefent an uneven image of the object.

Now, that there is fuch a difference of the upper and under parts of the Air, is clear enough evinc'd from the late improvement of the Torricellian Experiment, which has been tryed at the tops and feet of Mountains; and may be further illuftrated, and inquired into, by a means, which fome whiles fince I thought of, and us' d , for the finding by what degrees the Air paffes from fuch a degree of Denfity to fuch a degree of Rarity. And another, for the finding what preffure was requifite to make it pafs from fuch a degree of Rarefaction to a determinate Denfity: Which Experiments, becaufe they may be uffeful to illuftrate the prefent Inquiry, I fhall briefly defcribe.

Fig. 3.
I took then a fmall Glafs-pipe A B, about the bignefs of a Swans quill, and about four foot long, which was very equally drawn, fo that, as far as I could perceive, no one part was bigger then another: This Tube (being open at both ends) I fitted into another fmall Tube DE, that had a fmall bore juft big enough to contain the fmall Pipe, and this was feal'd up at one, and open at the other, end; about which open end I faftned a fmall wooden box C with cement, fo that filling the bigger Tube, and part of the box, with Quickfilver, I could thruft the fmaller Tube into it, till it were all covered with the Quickfilver: Having thus done, I faftned my bigger Tube againft the fide of a wall, that it might ftand the fteadier, and plunging the fmall Tube cleer under the Mercu$r y$ in the box, I fopt the upper end of it very faft with cement, then lifting up the fmall Tube, I drew it up by a fmall pully, and a ftring that I had faftned to the top of the Room, and found the height of the Mercurial Cylinder to be about twenty nine inches.

Then letting down the Tube again, I opened the top, and then thruft down the fmall Tube, till I perceived the Quickfilver to rife within it to a mark that I had plac'd juft an inch from the top;and immediately clapping on a fmall peice of cement that I had kept warm, I with a hot Iron feal'd up the top very faft, then letting it cool (that both the cement might grow hard, and more efpecially, that the Air might come to its temper, natural for the Day I try'd the Experiment in) I obferv'd diligently, and found the included Air to be exacily an Inch.

Here you are to take notice, that after the Air is feal'd up, the top of the Tube is not to be elevated above the fuperficies of the Quickfilver

Micrographia.

in the box, till the furface of that within the Tube be equal to it, for the Quickfilver (as I have elfewhere prov'd) being more heterogeneous to the Glafs then the Air, will not naturally rife up to high within the fmall Pipe,as the fuperficies of the Mercury in the box; and therefore you are to obferve, how much below the outivard fuperficies of the Mercury in the box, that of the fame in the Tubedoesftand, when the top being open, free ingr ifs is admitted to the outward Air.

Having thus done, I permitted the cylinder, or fmall Pipe, to rife out of the box, till I found the furface of the Quickfilver in the Pipe to be two inches above that in the box, and found the Air to have expanded it felf but one fixteenth part of an inch; then drawing op the frall pipe, till I found the height of the Quickfilver within to be four inches above that without, Ioblerved the Air to be expanded only, $\frac{1}{2}$ of an inch more then it was at firf, and to take up the room of $I^{\frac{1}{7}}$ inch: then I raifed the Tube till the Cylinder was fix inches high, and found the Air to take up $1 \frac{z}{9}$ inches of room in the Pipe; then to $8,10,12$. \& $\%$. the expanfion of the Air that I found to each of which Cylinders are fet down in the following Table; where the firft row fignifies the height of the Mercurial Cylinder; the next, the expanfion of the Air; the third, the preffure of the Atmofphere, or the higheft Cylinder of Mercury, which was then neer thirty inches: The laft fignifies the force of the Air fo expanded, which is found by fubftracting the firft row of numbers out of the third; for having found, that the outward Air would then keep up the Quickfilver to thirty inehes, look whatever of that height is wanting muft be attributed to the Elater of the Air depreffing. And therefore having the Expanfion in the fecond row, and the height of the fubjacent C_{y} linder of Mercury in the firft, and the greateft height of the cylinder of Mercury, which of it felf counterballances the whole preffure of the Atmofphere; by fubftracting the numbers of the firft row out of the numbers of the third, you will have the meafure of the cylinders fodepreft, and confequently the force of the Air,in the feveral Expanfions, regiftred.

The height of the Cylinder of Mercury,that, together with the Elater of the included Air, ballanced the preflure of the Atmofphere.	The Expanfion of the Air.	The height of the Mercury that counterballanc'd the Atmofphere	The ftrength of the Elater of the expanded Air.
\bigcirc	Or	30	30
02	-1: F_{16}	30	28
04	$01 \frac{5}{7}$	30	26
06	OI_{-2}	30	24
08	$01 \frac{1}{3}$	30	22
10	Or $\frac{1}{12}$	30	20
12	O1 ${ }^{2}$	30	18
14	O1 ${ }^{\frac{3}{6}}$	30	16
16	$02 \frac{2}{27}$	30	14
18	$02 \pm$	30	12
20	03	30	10
22	037	30	8
24	$05 \frac{1}{18}$	30	6
25	$06 \frac{2}{3}$	30	5
26	-8 $\frac{1}{2}$	30	4
$26 \frac{5}{4}$	$09 \frac{1}{2}$	30	$3{ }^{3}$
$26 \frac{1}{2}$	$10 \frac{3}{4}$	30	$3{ }^{\frac{1}{4}}$
263-	13	30	$3 \frac{1}{4}$
27	$15 \frac{1}{1}$	30	3

Micrographia.

I had feveral other Tables of my Obfervations, and Calculations, which I then made; but it being above a twelve month fince I made them ; and by that means having forgot many circumftances and particulars, I was refolved to make them over once again, which Idid Auguft the fecond 166 I . with the very fame Tube which I uled the year before, when I firft made the Experiment. (for it being a very good one, I had carefully preferv'd it:). And after having tryed it over and over again; and being not well fatisfied of fome particulars, I, at laft having put all things in very good order, and being as attentive, and obfervant, as poffibly 1 could, of every circumftance requifite to be taz-ken-notice of, did regifter my feveral Obfervations in this following Table. In the making of which, I did not exactly follow the method that I had ufed at firft; but, having lately heard of Mr. Tomoly's Hypothefis, I fhap'd my courfe in fuch fort, as would be moft convenient for the examination of that Hypothefis; the event of which you have in the latter part of the laft Table.

The other Experiment was, to find what degrees of force were requifite to comprefs, or condenfe, the Air into fuch or fuch a bulk.

The manner of proceeding therein was this : I took a Tube about five foot long, one of whofe ends was fealed up, and bended in the form of a syphon, much like that reprefented in the fourth Figure of the 37. Scheme, one fide whereof AD , that was open at A , was about fifty inches long, the other fide $B C$, thut at B, was not much above feven inches long; then placing it exiefly perpendicular, I pour'd in a little Quickfilver, and found that the Air B C was $\frac{6}{8}$ inches, or very near to feven ; then pouring in Quickfilver at the longer Tube, I continued filling of it till the Air in the fhorter part of it was contracted into half the former dimenfions, and found the height exacily nine and twenty inches; and by making feveral other tryals, in feveral other degrees of condenfation of the Air, I found them exactly anfwer the former Hypothefis.
But having (by reafon it was a good while fince I firft made) forgotten many particulars, and being much unfatisfied in others, I made the Experiment over again, and, from the feveral tryals, coilected the former part of the following Table: Where in the row next the left hand 24 . fignifies the dimenfions of the Air, fuftaining only the preffure of the $A t$ mofphere, which at that time was equal to a cylinder of Mercury of nine and twenty inches: The next Figure above it (20) was the dimenfions of the Air induring the firft compreffion, made by a cylinder of Mercury $5^{\frac{2}{2}}$ high, to which the preffure of the Atmofphere nine and twenty inches being added, the elaftick ftrength of the Airfo compreft will be found $34^{\frac{2}{16}}$, © 6.

Hh

A Table of the Elaftick power of the Air, both Experimentally and Hypothetically calculated, according to its various \mathcal{D} imenfions.

From

Micrographia.

From which Experiments, Ithink, we may fafely conclude, that the Elater of the Air is reciprocal to its extenfion, or at leaft very neer. So that to apply it to our prefent purpofe (which was indeed the chief caufe of inventing thefe wayes of tryal) we will fuppofe cylinder indefinitely extended upwards, [I fay a Cylinder, not a piece of a cone, becaufe, as I may elfewhere fhew in the Explication of Gravity, that triplicate proportion of the fhels of a Sphere, to their refpective diameters, I fuppofe to be removed in this cafe by the decreafe of the power of Gravity] and the preffure of the Air at the bottom of this Cylinder to be ftrong enough to keep up a cylinder of Merchry of thirty inches: Now becaufe by the moft accurate tryals of the molt illuftrious and incomparable Mr. Boyle, publifhed in his defervedly famous Pneumatick Book, the weight of Quickfilver, to that of the Air here belows is found neer about as fourteen thoufand to one: If we fuppofe the parts of the Cy linder of the Atmofphere to be every where of an equal denfity, we fhall (as he there deduces) find it extended to the height of thirty five thoufand feet, or feven miles: But becaufe by thefe Experiments we have fomewhat confirm'd the hypothefis of the reciprocal proportion of the Elaters to the Extenfions we fhall find, that by fuppofing this Cylinder of the Atmofpere divided into a thoufand parts, each of which being equivalent to thirty five feet, or feven geometrical paces, that is, each of thefe divifions containing as much Air as is fuppos'd in a Cylinder neer the earth of equal diameter, and thirty five foot high, we fhall find the lowermoft to prefs againft the furface of the Earth with the whole weight of the above mentioned thoufand parts; the preffure of the bottom of the fecond againft the top of the firft to be $1000-1=999$. of the third againft the fecond to be $1000-2=998$. of the fourth againft the third to be $1000-3=997$. of the uppermoft againft the 999. or that next below it, to be 1C00-999=1. fo that the extenfion of the lowermoft next the Earth, will be to the extenfion of the next below the uppermoft, as 1. to 999. for as the preflure fuftained by the 999. is to the prefliure fuftain'd by the firft, fo is the extenfion of the firft to the extenfion of the 999. fo that, from this hypothetical calculation, we fhall find the Air to be indefinitely extended: For if we fuppofe the whole thicknefs of the Air to be divided, as I juft now inftanced, into a thoufand parts, and each of thofe under differing Dimenfions, or Altitudes, to contain an equall quantity of Air, we fhall find, that the firft Cy^{\prime} linder, whofe Bafe is fuppofed to lean on the Earth, will be found to be extended $35 \frac{35}{999}$ foot; the fecond equal Divifion, or Cylinder, whofe bafis is fuppofed to lean on the top of the firft, fhall have its top extended higher by $35 \frac{70}{798}$; the third 35_{997}^{105}; the fourth 35_{996}^{140}; and fo onward, each equal quantity of Air having its dimenfions meafured by 35 . and fome additional number expreft alwayes in the manner of a fraction, whofe numerator is alway the number of the place multiplid by 35 . and whofe denominator is alwayes the preffure of the Atmofphere fuftain'd by that part, fo that by this means we may eafily calculate the height of 999 . divifions of thofe 1000 . divifions, I fuppos'd ; whereas the uppermoft Hha

Micrographia.

may extend it felf more then as high again,nay, perhaps indefinitely, or beyond the Moon; for the Elaters and Expanfions being in reciprocal proportions, fince we cannot yet find the plus ultra, beyond which the Air will not expand it felf, we cannot determine the height of the Air: for fince, as we have fhewn, the proportion will be alway as the preffure fuftain'd by any part is to 35 . fo 1000 . to the expanfion of that part; the multiplication or product therefore of the preflure, and expanfion, that is, of the two extream proportionals, being alwayes equal to the product of the means, or 35000 . it follows, fince that Rectangle or Product may be made up of the multiplication of infinite diverfities of numbers, that the height of the Air is alfo indefinite; for fince (as far as I have yet been able to try) the Air feems capable of an indefinite Expanfion, the preflure may be decreafed in infinitum, and confequently its expanfion upwards indefinite alfo.
if There being therefore fuch a difference of denfity, and no Experiment yet known to prove a Saltus, or fkipping from one degree of rarity to another much differing from it, that is, that an upper part of the Air fhould fo much differ from that immediately fubjacent to it, as to make a diftinct fuperficies, fuch as we obferve between the Air and Water, orc. But it being more likely, that there is a continual increafe of rarity in the parts of the Air, the further they are removed from the furface of the Earth: It will hence neceffarily follow, that (as in the Experiment of the falt and frefh Water) the ray of Light paffing obliquely through the Air alfo, which is of very different denfity, will be continually, and infinitely inflected, or bended, from a ftreight, or direct motion.
This granted, the reafon of all the above recited Phenomena, concerning the appearance of the Celeftial Bodies, will very eafily be deduced. As,

Firft, The rednefs of the Sun, Moon, and Stars, will be found to be caufed by the inflection of the rays within the Atmofphere. That it is not really in or near the luminous bodies, will, Ifuppofe, be very eafily granted, feeing that this rednefs is obfervable in feveral places differing in Longitude, to be at the fame time different, the fetting and rifing Sun of all parts being for the moft part red :

And fecondly, That it is not meerly the colour of the Air interpos' d , will, I fuppofe, without much more difficulty be yielded, feeing that we may obferve a very great interftitium of Air betwixt the Object and the Eye, makes it appear of a dead blew, far enough differing from a red, or yellow.
But thirdly, That it proceeds from the refraction, or inflection, of the rays by the Atmofphere, this following Experiment will, Ifuppofe, fufficiently manifeft.

Take a fphrrical Cryftalline Viol, fuch as is defcrib'd in the fifth Figure A BCD, and, having fill'd it with pure clear Water, expofe it to the Sun beams; then taking a piece of very fine Venice Paper, apply it againet that fide of the Globe that is oppofite to the Sun, as againft the

Micrographia。

fide B C, and you mail perceive a bright red Ring to appear, caus'd by the refraction of the Rays, A A A A, which is made by the Globe; in which Experiment, if the Gla!s and Water be very cleer, fo that there be no Sands nor bubbles in the Glafs, nor dirt in the Water, you fhall not perceive any appearance of any other colour. To apply which Experiment, we may imagine the Atmofphere to be a great tranfparent Globe, which being of a fubftance more denfe then the .other, or (which comes to the fame) that has its parts more denfe towards the middle, the Sun beams that are tangents, or next within the tangents of this Globe, will be refracted or inflected from their direct paflage towards the center of the Globe, whence, according to the laws of refractions made in a triangular Prifm, and the generation of colour fet down in the defcription of Mufcovi-glafs, there muft neceffarily appear a red colour in the tranfitus or paffage of thofe tangent Rays. To make this more plain, we will fuppofe (in the fixth Figure) A B C D, to reprefent the Globe of the At ${ }^{-2}$ mofpere, EFGH to reprefent the opacous Globe of the Earth, lying in the midft of it, neer to which, the parts of the Air, fuftaining a very great preffure, are thereby very much condens'd, from whence thofe Rays that are by inflection made tangents to the Globe of the Earth, and thofe without them, that pafs through the more condens'd part of the Atmofphere, as fuppofe between A and E, are by reafon of the inequality of the medium, inflected towards the center, whereby there muft neceffarily be generated a red colour, as is more plainly thewn in the former cited place; hence whatfoever opacous bodies (as vapours, or the like) fhall chance to be elevated into thofe parts, will reflect a red towards the eye; and therefore thofe evenings and mornings appear reddeft, that have the moft ftore of vapours and halituous fubftances exhaled to a convenient diftance from the Earth; for thereby the inflection is made the greater, and thereby the colour alfo the more intenfe; and feveral of thofe exhalations being opacous, reflect feveral of thofe Rays, which, through an Homogeneons tranfparent medium would pafs unfeen; and therefore we fee, that when there chances to be any clouds fituated in thofe Regions they reflect a ftrong and vivid red. Now, though one great caufe of the rednefs may be this inflection, yet I cannot wholly exclude the colour of the vapours themfelves, which may have fomething of rednefs in them, they being partly nitrous, and partly fuliginous; both which fteanas tinge the Rays that pafs through them, as is made evident by looking at bodies through the fumes of Aqua fortis, or feirit of Nitre [as the newly mentioned Illuftrious Perfon has demonftrated] and alfo through the fmoak of a Fire or Chimney.

Having therefore made it probable at leaft, that the morning and evening rednefs may partly proceed from this inflection or refraction of the Rays, we fhall next dhew, how the Oval Figure will be likewife eafily deduced.

Suppofe we therefore, EF GH in the fixth Figure of the 37 -Scheme, to reprefent the Earth; A B CD, the Atmofpere; EI, and EL, two Rays coming from the Sun, the one from the upper, the other from the neather

Limb,

Limb, thefe Rays, being by the Atmofphere inflected, appear to the eye at E , as if they had come from the points, N and O ; and becaufe the Ray L has a greater inclination upon the inequality of the Atmofphere then I, therefore muft it fuffer a greater inflection, and confequently be further elevated above its true place, then the Ray I, which has a lefs inclination, will be elevated above its true place; whence it will follow, that the lower fide appearing neerer the upper then really it is, and the two lateral fides, viz. the right and left fide, fuffering no fenfible alteration from the inflection, at leaft what it does fuffer, does rather increafe the vifible Diameter then diminifh it, as I fhall fhew by and by, the Figure of the luminous body muft neceflarily appear fomewhat Elliptical.

This will be more plain, if in the feventh Figure of th 37. Scheme we fuppofe AB to reprefent the fenfible Horizon; CDEF, the body of the Sun really below it; GHIK, the fame appearing above it, elevated by the inflection of the Atmofphere : For if, according to the beft obfervation, we make the vifible Diameter of the Sun to be about three or four and thirty minutes, and the Horizontal refraction according to Ticko be thereabout, or fomewhat more, the lower limb of the Sun E, will be elevated to I; but becaufe, by his account, the point C will be elevated but 29. minutes, as having not fo great an inclination upon the inequality of the Air, therefore IG, which will be the apparent refracted perpendicular Diameter of the Sun, will be lefs then C G, which is but 29. minutes, and confequently fix or feven minutes fhorter then the unrefracted apparent Diameter. The parts, D and F , will be likewife elevated to H and K , whofe refraction, by reafon of its inclination, will be bigger then that of the point C , though lefs then that of E;therefore will the femidiameter IL, be fhorter then LG, and confequently the under fide of the appearing Sun more flat then the upper.

Now, becaufe the Rays from the right and left fides of the Sun, δc. have been obferv'd by Ricciolo and Grimaldus, to appear more diftant one from another then really they are, though(by very manyObfervations that I have made for that purpofe, with a very good Telefcope,fitted with a divided Ruler) I could never perceive any great alteration, yet there being really fome, it will not be amifs, to fhew that this alfo proceeds from the refraction or inflection of the Atmoppere; and this will be manifeft, if we confider the Atmofphere as a tranfparent Globe, or at leaft a tranfparent fhell, encompaffing an opacous Globe, which, being more denfe then the medium encompaffing it, refracts or inflects all the entring parallel Rays into a point or focus,fo that wherefoever the Obfervator is plac'd within the Atmofphere, between the focus and the luminous body, the lateral Rays muft neceffarily be more converg'd towards his eye by the refraction or inflection, then they would have been without it; and therefore the Horizontal Diameter of the luminous body muft neceffarily beaugmented.

This might be more plainly manifeft to the eye by the fixth Figure; but becaufe it would be fomwhat tedious, and the thing being obvious enough

Micrographia。

enough to be imagin'd by any one that attentively confiders it, Ifhall rather omit it, and proceed to fhew, that the mafs of Air neer the furface of theEarth,confifts, or is made up,of parcels, which do very much differ from one another in point of denfity and rarity; and confequently the Rays of light that pafs through them will be varioufly inflected, here one way, and there another, according as they pafs fo or fo through thofe differing parts; and thofe parts being always in motion, either upwards or downwards, or to the right or left, or in fome way compounded of thefe, they do by this their motion inflect the Rays, now this way, and prefently that way.

This irregular, unequal and unconftant inflection of the Rays of light, is the reafon why the limb of the Sun, Moon, Fupiter, Saturn, Mars, and Venus, appear to wave or dance; and why the body of the Starrs appear to tremulate or twinkle, their bodies, by this means, being fometimes magnify'd, and fometimes diminifhed; fometimes elevated, otherwhiles deprefs d j now thrown to the right hand, and then to the left.

And that there is fuch a property or unequal diftribution of parts, is manifeft from the various degrees of heat and cold that are found in the Air; from whence will follow a differing denfity and rarity, both as to quantity and refraction; and likewife from the vapours that are interpos'd, (which, by the way, I imagine, as to refraction or inflection, to do the fame thing, as if they were rarify'd Air ; and that thofe vapours that afcend, are both lighter, and lefs denfe, then the ambient Air which boys them up; and that thofe which defcend, are heavier and more denfe) The firft of thefe may be found true, if you take a good thick piece of Glafs, and heating it pretty hot in the fire, lay it upon fuch another piece of Glafs, or hang it in the open Air by a piece of Wire, then looking upon fome far diftant Object (fuch as a Steeple or Tree) fo as the Rays from that Object pafs directly over the Glafs before they enter your eye, you fhall find fuch a tremulation and wavering of the remote Object, as will very much offend your eye: The like tremulous motion you may obferve to be caus'd by the afcending fteams of Water, and the like. Now, from the firft of thefe it is manifeft, that from the rarifaction of the parts of the Air, by heat, there is caus'd a differing refraction, and from the afcenfion of the more rarify'd parts of the Air, which are thruft up by the colder, and therefore more condens'd and heavie, is caus'd an undulation or wavering of the Object; for I think, that there are very few will grant, that Glafs, by as gentle a heat as may be endur d by ones hand, fhould fend forth any of its parts in fteams or vapours, which does not feem to be much wafted by that violent fire of the green Glafs-houfe; but, if yet it be doubted, let Experiment be further made with that body that is accounted, by Chymifts and others, the moft ponderous and fix'd in the world; for by heating of a piece of Gold, and proceeding in the fame manner, you may find the fame effects.

This trembling and thaking of the Rays, is more fenfibly caus'd by an actual flame, or quick fire, or any thing elfe heated glowing hot; as by a Candle, live Coal, red-hot Iron, or a piece of Silver, and the like: the fame alfo appears very confpicuous, if you look at an Object betwixt which which brings into my mind what I had once the opportunity to obferve, which was, the Sun rifing to my eye juft over a Chimney that fent forth a copious fteam of fmoak; and taking a fhort Telefcope, which I had then by me, I obferv'd the body of the Sun, though it was but juft peepd above the Horizon, to have its underfide, not onely flatted, and prels.d inward, as it ufually is when neer the Earth; but to appear more protuberant downwards then if it had fuffered no refraction at all; and befides all this, the whole body of the Sun appear'd to tremble or dance, and the edges or limb to be very ragged or indented, undulating or waving, much in the manner of a flag in the Wind.

This I have likewife often obferv'd in a hot Sunfhiny Summer's day, that looking on an Object over a hot itone, or dry hot earth, I have found the Object to be undulated or fhaken, much after the fame manner. And if you look upon any remote Object through a Telefcope (in a hot Summer's day efpecially) you fhall find it likewife to appear tremulous. And further, if there chance to blow any wind, or that the air between you and the Object be in a motion or current, whereby the parts of it, both rarify'd and condens'd, are fwiftly remov'd towards the right or left, if then you obferve the Horizontal ridge of a Hill far diftant, through a very good Telefoope, you fhall find it to wave much like the Sea, and thofe waves will appear to pafs the fame way with the wind.

From which, and many other Experiments, tis cleer that the lower Region of the Air, efpecially that part of it which lieth neereft to the Earth, has, for the moft part, its conftituent parcels varioully agitated, either by heat or winds, by the firft of which, fome of them are made more rare, and fo fuffer a lefs refraction; others are interwoven, either with afcending or defcending vapours; the former of which being more light, and fo more rarify'd, have likewife a lefs refraction; the latter being more heavie, and confequently more denfe, have a greater.
Now, becaufe that heat and cold are equally diffus'd every way ; and that the further it is fpread, the weaker it grows; hence it will follow, that the moft part of the under Region of the Air will be made up of feveral kinds of lentes, fome whereof will have the properties of convex, others of Concave glafes; which, that I may the more intelligibly make out, we will fuppofe in the eighth Figure of the 37. scheme, that A reprefents an afcending vapour, which, by reafon of its being fomewhat Heterogeneous to the ambient Air, is thereby thruft into a kind of Globular form, not any where terminated, but gradually finifhed, that is, it is moft rarity d in the middle about A, fome what more condens'd about B B, more then that about CC ; yet further, about DD, almoft of the fame denfity with the ambient Air about EE; and laftly, inclofed with the more denfe Air F F, fo that from A , to FF , there is a continual increafe of denfity. The reafon of which will be manifeft, if we confider the rifing vapour to be much warmer theh the ambient heavie Air; for by the coldnefs of the ambient Air, the fhell EE will be more refrigerated then $D D_{\text {s and that then }} C C$, which will be yet more then B, and that more

Micrographia.

more then A ; fo that from F to A , there is a continual increafe of heat, and confequently of rarity; from whence it will neceflarily follow, that the Rays of light will be inflected or refracted in it, in the fame manner as they would be in a Concave-glafe; for the Rays $G K I, G K I$ will be inflected by $G K H$, G K H, which will eafily follow from what I before explained concerning the inflection of the Atmoffhere.

On the other fide, a defcending vapour, or any part of the air included by an afcending vapour, will exhibit the fame effects with a Convex lens; for, if we fuppofe, in the former Figure, the quite contrary conftitution to that laft defcrib'd; that is, the ambient Air F F being hotter then any part of that matter within any circle, therefore the coldeft part muft neceflarily be A, as being fartheft remov'd from the heat, all the intermediate fpaces will be gradually difcriminated by the continuall mixture of heat and cold, fo that it will be hotter at EE, then D D, in $D D$ then $C C$, in $C C$ then B, and in $B B$ then A. From which, a like refraction and condenfation will follow; and confequently a leffer or greater refraction, fo that every included part will refrace more then the including, by which means the Rays, G K I, G K I, coming from a Starr, or fome remote Object, are fo inflected, that they will again concurr and meet, in the point M. By the interpofition therefore of this defcending vapour the vifible body of the Star, or other Object, is very much augmented, as by the former it was diminifhed.

From the quick confecutions of thefe two, one after another, between the Object and your eye, caufed by their motion upwards or downwards, proceeding from their levity or gravity, or to the right or left, proceeding from the wind, a Starr may appear, now bigger, now lefs, then really it would otherwife without them; and this is that property of a Starr, which is commonly call'd twinkling, or feintillation.

The reafon why a Star will now appear of one colour, now of another, which for the moft part happens when 'tis neer the Horizon, may very eafily be deduc'd fromits appearing now in the middle of the vapour, other whiles neer the edge; for if you look againft the body of a Starr with a Telefcope that has a pretty deep Convex Eye-glafs, and fo order it, that theStar may appear fometimes in one place, and fometimes in another of it;you may perceive this or that particular colour to be predominant in the apparent Figure of the Starr, according as it is more or lefs remote from the middle of the Lens. This I had here further explain'd, but that it does more properly belong to another place.

I fhall therefore onely add fome few Quæries, which the confideration of thefe particulars hinted, and fo finifh this Section.

And the firft I fhall propound is, Whether there may not be made an artificial tranfparent body of an exact Globular Figure that fhall fo inflect or refract all the Rays, that, coming from one point, fall upon any Hemijphere of it; that every one of them may meet on the oppofite fide, and crofs one another exactly in a point; and that it may do the like alfo with all the Rays that, coming from a lateral point, fall upon any other Hemijphere; for if fo, there were to be boped a perfection of Dioptrickss

Micrographia.

and a tranfmigration into heaven, even whil'ft we remain here upon earth in the flefh, and a defcending or penetrating into the center and innermoft receffes of the earth, and allearthly bodies; nay, it would open not onely a cranney, but a large window (as I may fo fpeak) into the Shop of Nature, whereby we might be enabled to fee both the tools and operators, and the very manner of the operation it felf of Nature; this, could it be effected, would as farr furpafs all other kind of perfpectives as the vaft extent of Heaven does the fmall point of the Earth, which diftance it would immediately remove, and unite them, as 'twere, into one, at leaft, that there fhould appear no more diftance between them then the length of the Tube, into the ends of which thefe Glaffes fhould be mferted: Now, whether this may not be effected with parcels of Glafs of feveral denfities, I have fometimes proceeded fo farr as to doubt (though in truth, as to the general, 1 have wholly defpair'd of it.) for I have often obferv'd in Optical Glaffes a very great variety of the parts, which are commonly called Veins; nay, fome of them round enough (for they are for the moft part, drawn out into ftrings) to conftitute a kind of lens.

This I fhould further proceed to ope, had any one been fo inquifitive as to have found out the way of making any tranfparent body, either more denfe or more rare; for then it might be poffible to compofe a Globule that fhould be more denfe in the middle of it, then in any other part, and to compofe the whole bulk, fo as that there fhould be a continual gradual tranfition from one degree of denfity to another; fuch as fhould be found requifite for the defired inflection of the tranfmigrating Rays; but of this enough at prefent, becaufe I may fay more of it when I fet down my own Trials concerning the melioration of Dioptricks, where I fhall enumerate with how many feveral fubftances I have made both Microfcopes, and Teleficpes, and by what and how many, ways: Let fuch as have leifure and opportunity farther confider it.

The next Quæry fhall be, whether by the fame collection of a more denfe body then the other, or at leaft, of the denfer part of the other, there might not be imagin'd a reafon of the apparition of fome new fix'd Stars, as thofe in the Swan, Caffiope's Charr, Serpentarius, Pificis, Cetus, \&c.

Thirdly, Whether it be poffible to define the height of the Atmofphere from this inflection of the Rays, or from the Quickfilver Experiment of the rarifaction or extenfion of the Air.

Fourthly, Whether the difparity between the upper and under Air be not fometimes fo great, as to make a reflecting fuperficies; I have had feveral Obfervations which feem to have proceeded from fome fuch caufe, but it would be too long to relate and examine them. An Experiment, alfo fomewhat analogous to this, I have made with Salt-water and Frefh, which two liquors, in moft Pofitions, feem'd the fame, and not to be feparated by any determinate fuperficies, which feparating furface yet in fome other Pofitions did plainly appear.

And if fo, Whether the reafon of the equal bounding or terminus of the under parts of the clouds may not proceed from this caufe; whether, fecondly,

Micrographia.

fecondly, the Reafon of the apparition of many Suns may not be found out, by confidering how the Rays of the Sun may fo be reflected, as to defcribe a pretty true Image of the body, as we find them from any regular Superficies. Whether alfo this may not be found to caufe the apparition of fome of thofe Parelii, or counterfeit Suns, which appear coloured, by refracting the Rays fo, as to make the body of the Sun appear in quite another place then really it is. But of this more elfewhere.
5. Whether the Phenomena of the Clouds may not be made out by this diverfity of denfity in the upper and under parts of the Air, by fuppofing the Air above them to be much lighter then they themfelves are, and they themfelves to be yet lighter then that which is fubjacent to them, many of them feeming to be the fame fubftance with the Cobwebs that fly in the Air after a Fog.

Now that fuch a conftitution of the Air and Clouds, if fuch there be, may be fufficient to perform this effect, may be confirm'd by this Expe riment.

Make as ftrong a Solution of Salt as you are able, then filling a Glafs of fome depth half full with it, fill the other half with frefh Water, and poyfe a little Glafs-bubble, fo as that it may fink pretty quick in frefh Water, which take and put into the aforefaid Glafs, and you fhall find it to fink till it comes towards the middle, where it will remain fixt, without mroving either upwards or downwards. And by a fecond Experiment, of poifing fuch a bubble in water, whofe upper part is warmer, and confequently lighter, then the under, which is colder and heavier; the manner of which follows in this next Query, which is,
6. Whether the rarifaction and condenfation of Water be not made after the fame manner, as thofe effects are produc'd in the Air by heat; for I once pois'd a feal'd up Glafs-bubble fo exactly, that never fo fmall an addition would make it fink, and as fmall a detraction make it fwim, which fuffering to reft in that Veffel of Water for fome time, Ialwayes found it about noon to be at the bottom of the Water, and at night, and in the morning, at the top: Imagining this to proceed from the Rarifaction of the Water, causd by the heat, I madetryal, and found moft true; for I was able at any time, either to deprefs, or raife it, by heat and cold; for if I let the Pipe ftand for forie time in cold water, I could eafily raife the Bubble from the bottom, whither I had a little afore detruded it, by putting the farie Pipe into warm Water. And this way I have been able, for a very confiderable time, to keep a Bubble fo poys'd in the Water, as that it fhould remain in the middle, and neither fink, nor fwim : For gently heating the upper part of the Pipe with a Candle, Coal, or hot Iron, till I perceived the Bubble begin to defcend, then forbearing, I have obferved it to defcend to fuch or fuch a ftation, and there to remain fufpended for fome hours, till the heat by degrees were quite vanifhed, when it would again afcend to its former place. This Ihave alfo often obferved naturally performed by the heat of the Air, which being able to rarifie the upper parts of the Water fooner then the lower, by reafon of its immediate contact, the heat of the Ait

$$
1 \text { i } 2
$$

has
has fometimes fo flowly increafed, that I have obferved the Bubble to be fome hours in paffing between the top and bottom.
7. Whether the appearance of the Pike of Tenerif, and feveral other high Mountains, at fo much greater a diftance then feems to agree with their refpective heights, be not to be attributed to the Curvature of the vifual Ray, that is made by its paffing obliquely through fo differingly Denfe a Medium from the top to the eye very far diftant in the Horizon : For fince we have already, I hope, made it very probable, that there is fuch an inflection of the Rays by the differing denfity of the parts of the Air; and fince I have found, by feveral Experiments made on places comparatively not very high, and have yet found the preffure fuftain'd by thofe parts of the Air at the top and bottom, and alfo their differing Expanfions very confiderable : Infomuch that I have found the preffure of the Atmofphere lighter at the top of St. Panl's Steeple in London (which is about two hundred foot high) then at the bottom by a fixtieth or fiftieth part, and the expanfion at the top greater then that at the bottom by neer about fo much alfo; for the Mercurial Cylinder at the bottom was about 39. inches, and at the tophalf an inch lower; the Air alfo included in the Weather-glafs, that at the bottom fill d only 155 . Paees, at the top fill'd 158. though the heat at the top and bottom was found exactly the fame with a fal'd Thermometer: I think it very rational to fuppofe, that the greateft Curvature of the Rays is made neareft the Earth, and that the inflection of the Rays, above 3. or 4. miles upwards, is very inconfiderable, and therefore that by this means fuch calculations of the height of Mountains, as are made from the diftance they are vifible in the Horizon, from the fuppofal that that Ray is a fraight Line (that from the top of the Mountain is, astwere, a Tangent to the Horizon whence it is feen) which really is a Curve, is very erroneous. Whence, I fuppofe, proceeds the reafon of the exceedingly differing Opinions and Affertions of feveral Authors, about the height of feveral very high Hills.
8. Whether this Inflection of the Air will not very much alter the fuppofed diftances of the Planets, which feem to have a very great dependence upon the Hypothetical refraction or inflection of the Air, and that refraction upon the hypothetical height and denfity of the Air: For fince (as I hope) I have here fhewn the Air to be quite otherwife then has been hithertofuppos'd, by manifefting it to be, both of a vaft, at leaft an uncertain, height, and of an unconftant and irregular denfity; It muft neceffarily follow, that its inflection muft be varied accordingly : And therefore we may hence learn, upon what fure grounds all the Aftronomers hitherto have built, who have calculated the diftance of the Planets from their Horizontal Parallax; for fince the Refraction and Parallax are fo nearly ally'd, that the one cannot be known without the other, efpecially by any wayes that have been yet attempted, how uncertain muft the Parallax be, when the Refraction is unknown? And how eafie is it for Aftronomers to aflign what diftance they pleafe to the Planets,and defend them, when they have fuch a curious fubterfuge as that of Refraction, wherein a very little variation will allow them liberty enough to place the Celeftial Bodies at what diftance they pleafe.

Micrographia.

If therefore we would come to any certainty in this point, we muft go orher wayes to work; and as I have here examined the height and refractive property of the Air by other wayes then are ufual, fomuft we find the Parallax of the Planets by wayes not yet practifed; and to this end, I cannot imagine any better way, then the Obfervations of them by two perfons at very far diftant parts of the Earth, that lye as neer as may be under the fame Meridian, or Degree of longitude, but differing as much in latitude, as there can be places conveniently found : Thefe two perfons, at certain appointed times, fhould (as near as could be) both at the fame time, obferve the way of the Moon, Mars, Venus, Fupiter, and Saturn, amongtt the fixt Stars, with a good large Telefoope, and making little Iconifmes, or pictures, of the fmall fixed Stars, that appear to each of them to lye in or near the way of the Center of the Planet, and the exadt meafure of the apparent Diameter; from the comparing of fuch Obfervaticns together, we might certainly know the true diftance, or Parallax, of the Planet. And having any one true Parallax of thefe Planets, we might very eafily have the other by their apparent Diameters, which the Telefope likewife affords us very accurately. And thence their motions might be much better known, and their Theories more exadty regulated. And for this purpofe I know not any one place more convenient for fuch an Obfervation to be made in, then in the Ifland of St. Helena, upon the Coaft of Africk, which lyes about fixteen degrees to the Southwards of the Line, and is very near, according to the lateft Geographical Maps, in the fame Meridian with London; for though they may not perhaps lye exactly in the fame, yet their Obfervations, being ordered according to what 1 fhall anon fhew, it will not be difficult to find the true diftance of the Planet. But were they both under the fame Meridian, it would be much better.

And becaufe Obfervations may be much eafier, and more accurately made with good Telefoopes, then with any other Inftruments, it will not, Ifuppofe, feem impertinent to explain a little what wayes I judge moft fit and convenient for that particular. Such therefore as fhall be the Obfervators for this purpofe, thould be furnifhed with the beft Telefoopes that can be had, the longer the better and more exact will their Obfervations be, though they are fomewhat the more difficultly manag'd. Thefe fhould be fitted with a Rete, or divided Scale, plac'd at fuch a diftance within the Eye-glafs, that they may be diftinctly feen, which fhould be the meafures of minutes and feconds; by this Inftrument each Obfervator fhould, at certain prefixt times, obferve the Moon, or other Planet, in, or very near, the Meridian ; and becaufe it may be very difficult to find two convenient ftations that will happen to be juft under the fame Meridian, they fhall, each of them, obferve the way of the Planet, both for an hour before, and an hour after, it arrive at the Meridian; and by a line, or ftroke, amongft the fmall fixed Stars, they fhall denote out the way that each of them obferv'd the Center of the Planet to be mov'd in for thofe two hours: Thefe Obfervations each of them fhall repeat for many dayes togethex, that both it may happen, that both of
themi
them may fometimes make their Obfervations together, and that from divers Experiments we may be the better affured of what certainty and exactnefs fuch kind of Obfervations are like to prove. And becaufe many of the Stars which may happen to come within the compafs of fuch an Iconi/m, or Map, may be fuch as are only vifible through a good Telefoope, whofe Pofitions perhaps have not been noted, nor their longitudes, or latitudes, any where remarked; therefore each Obfervator fhould indeavour to infert fome fixt Star, whofe longitude, and latitude, is known; or with his Telefcope he fhall find the Pofition of fome notable telefcopical Star, inferted in his Map, to fome known fixt Star, whofe place in the Zodiack is well defin'd.

Having by this means found the true diftance of the Moon, and having obferved well the apparent Diameter of it at that time with a good Telefcope, it is eafie enough, by one fingle Obfervation of the apparent Diameter of the Moon with a good Glafs, to determine her diftances in any other part of her Orbit, or Dragon, and confequently, fome few Obfervations will tell us, whether fhe be mov'd in an Ellipfis, (which, by the way, may alfo be found, even now, though I think we are yet ignorant of her true diftance) and next (which without fuch Obfervations, I think, we fhall not be fure of) we may know exactly the bignefs of that Ellipfis, or Circle, and her true velocity in each part, and thereby be much the better inabled to find out the true caufe of all her Motions. And though, even now alfo, we may, by fuch Obfervations in one ftation, as hereat London, obferve the apparent Diameter and motion of the Moon in her Dragon, and confequently be inabled to make a better ghefs at the species or kind of Curve, in which fhe is mov'd, that is, whether it befphærical, or elliptical, or neither, and with what proportional velocities fhe is carried in that Curve; yet till her true Parallax be known, we cannot determine either.

Next, for the true diftance of the Sun, the beft way will be, by accurate Obfervations, made in both thefe forementioned ftations, of fome convenient Eclipfe of the Sun, many of which may fo happen, as to be feen by both; for the Penumbra of the Moon may, if fhe be fixty Semidiameters diftant from the Earth, and the Sun above feven thoufand, extend to about feventy degrees on the Earth, and confequently be feen by Obfervators as far diftant as London, and St. Helena, which are not full fixty nine degrees diftant. And this would much more accurately, then any way that has been yet ufed, determine the Parallax, and diftance, of the Sun; for as for the Horizontal Parallax I have already fhewn it fufficiently uncertain; nor is the way of finding it by the Eclipfe of the Moon any other then hypothetical; and that by the difference of the true and apparent quadrature of the Moon is lefs not uncertain, witmefs their Deductions from it, who have made ufe of it ; for Vendeline puts that difference to be but $4^{\prime} \cdot 30^{\prime \prime}$. whence he deduces a vaft diftance of the Sun, as I have before fhewn. Ricciolo makes it full $3^{\prime} .00$. but Reinoldus, and Kircher, no lefs then three degrees. And no wonder, for if we examine the Theory, we fhall find is fo compligated with uncertainties.

Firft,

MI CROGRAPHIA.

Firf, From the irregular furface of the Moon, and from feveral Parallaxes, that unlefs the Dichotomy happen in the Nonagefimus of the Ecliptick, and that in the Meridian, occ. all which happen fo very feldom, that it is almoft impoffible to make them otherwife then uncertainly. Befides, we are not yet certain, but that there may be fomewhat about the Moon analogus to the Air about the Earth, which may caufe a refraction of the light of the Sun, and confequently make a great difference in the apparent dichotomy of the Moon. Their way indeed is very rational and ingenious; and fuch as is much to be preferr'd before the way by the Horizontal Parallax, could all the uncertainties be remov'd, and were the true diftance of the Moon known.
But becaufe we find by the Experiments of Vendiline, Reinoldus, \&c. that Obfervations of this kind are very uncertain alfo: It were to be wifht, that fuch kind of Obfervations, made at two very diftant fations, were promoted. And it is fo much the more defirable, becaufe, from what I have now fhewn of the nature of the Air, it is evident, that the refraction may be very much greater then all the Aftronomers hitherto have imagined it : And confequently, that the diftance of the Moon, and other Planets, may be much leffe then what they have hitherto made it.

For firft, this Inflection, I have here propounded, will allow the fhadow of the Earth to be much fhorter then it can be made by the other Hypotbefis of refraction, and confequently, the Moon will not fuffer an Eclipfe, unlefs it comes very much nearer the Earth then the Aftronomers hitherto have fuppofed it.

Secondly, There will not in this Hypothefis be any other fhadow of the Earth, fuch as Kepler fuppofes, and calls the Penumbra, which is the fhadow of the refracting Atmofphere; for the bending of the Rays being altogether caus'd by Inflection, as I have already thewn, all that part which is afcribed by Kepler, and others after him, to the Penumbra, or dark part, which is without the umbra terre, does clear vanifh; for in this Hypothefis there is no refracting furface of the Air, and confequently there can be no fhadows, fuch as appear in the ninth Figure of the 37. Scheme, where let ABCD reprefent the Earth, and EFGH the Atmofphere, which according to Keplers fuppofition, is like a Sphære of Water terminated with an exact furface EFGH, let the lines $M F, L B, I D$, K H, reprefent the Rays of the Sun; 'tis manifeft, that all the Rayes be tween $L B$, and I D, will be reflected by the furface of the Earth BAD, and confequently, the conical face B OD would be dark and obfcure; but, fay the followers of Kepler, the Raysbetween MF, and $\mathbf{L B}$, and between I D , and K H , falling on the Atmofphere, are refracted, both at their ingrefs and egrefs out of the Atmophere, nearer towards the Axis of the fpærical fhadow CO, and confequently, inlighten a great part of that former dark Cone, and fhorten, and contract, its top to N. And becaufe of this Reflection of thefe Rays, fay they, there is fuperinduc'd another fhell of a dark Cone F P H, whofe Apex P is yet further diftant from the Earth :: By this Penumbra, fay they, the Moon
is Eclipfed, for it alwayes paffes between the lines X_{2}, and 34 To which Ifay, That if the Air befuch, as I have newly fhewn it to be, and confequently caufe fuch an inflection of the Rays that fall into it, thofe dark Penumbrais F Y Z Q HXVT, and OR P S, will all vanifh. For if we fuppofe the Air indefinitely extended, and to be no where bounded with a determinate refracting furface, as I have ihewn it uncapable of having, from the nature of it; it will follow, that the Moon will no where be totally obfcured, but when it is below the Apex \mathbf{N}, of the dark blunt Cone of the Earth's fhadow:Now, from the fuppofition, that the Sun is diftant about feven thoufand Diameters, the point N , according to calculation, being not above twenty five terreftrial Semidiameters from the Center of the Earth: It follows, that whenfoever the Moon eclipfed is tot ally darkned, without affording any kind of light, it muft be within twenty five Semidiameters of the Earth, and confequently much lower then any Aftronomers have hitherto put it.

This will feem much more confonant to the reft of the fecundary Planets; for the higheft of Jupiter's Moons is between twenty and thirty Fovial Semidiameters diftant from the Center of Fupiter; and the Moons of saturn much about the fame number of Saturnial Semidiameters from the Center of that Planet.

But thefe are but conjectures alfo, and muft be determin'd by fuch kind of Obfervations as I have newly mention'd.

Nor will it be difficult, by this Hypothefis, to falve all the appearances of Eclipfes of the Moon, for in this Hypothefis alfo, there will be,on each fide of the fhadow of the Earth, a Penumbra, not caus'd by the Refraction of the Air, as in the Hypothefis of Kepler; but by the faint inlightning of it by the Sun : For if, in the fixth Figure,we fuppofe ES Q and GSR,to be the Rays that terminate the fhadow from either fide of the Earth; E SQ coming from the upper limb of the Sun, and G SR from the under; it will follow, that the fhadow of the Earth, within thofe Rays, that is, the Cone GSE, will be totally dark. But the Sun being not a point, but a large area of light, there will be a fecondary dark Cone of fhadow EPG, which will be caus'd by the earth's hindring part of the Rays of the Sun from falling on the parts GPR, and EP Q. of which halved fhadow, or Penumbra, that part will appear brighteft which lyes nearef the terminating Rayes G P , and EP, and thofe darker that lye neareft to G S, and ES : when therefore the Moon appears quite dark in the middle of the Eclipfe, fhe muft be below S,that is, between S and F; when the appears lighter near the middle of the Eclipfe, fhe muft pafs fome where between R C and S; and when fhe is alike light through the whole Eclypfe, the muft pafs between R Q, and P .

Obferv. LIX. Of multitudes of frall Stars difcoverable by the Telefcope.

HAving, in the laft Obfervation, premis'd fome particulars obfervable in the medium, through which we muft look upon Caeleffial Objects, Ithall here add one Obfervation of the Bodies themfelves; and for a fpecimen I have made choice of the Pleiades, or feven Stars, commonly fo called (though in our time and Climate there appear no more then fix to the naked eye) and this I did the rather, becaufe the defervedly famous Galileo, having publifht a Picture of this Afterifme, was able, it feems, with his Glafs to difcover no more then thirty fix, whereas with a pretty good twelve foot Telefrope, by which I drew this 38 Iconifm, I could very plainly difcover feventy eight, placed in the order they are ranged in the Figure, and of as many differing Magnitudes as the Afterisks, wherewith they are Marked, do fpecifie; there being no lefs then fourteen feveral Magnitudes of thofe Stars, which are compris'd within the draught, the biggeft whereof is not accounted greater then one of the third Magnitude ; and indeed that account is much too big, if it be compared with other Stars of the third Magnitude, efpecially by the help of a Telefcope; for then by it may be perceiv'd, that itsfplendor, to the naked eye, may be fomewhat augmented by the three little Starsinmedi. ately above it, which are near adjoyning to it. The Tolefoope alfo difco, vers a great variety, even in the bignefs of thofe, commonly reckon'd, of. the firft, fecond, third, fourth, fifth, and fixth Magnitude ; fo that fhould they be diftinguifh'd thereby, thofe fix Magnitudes would, at leaft, afford no lefs then thrice that number of Magnitudes, plainly enough diftinguilhable by their Magnitude, and brightnefs; fo that a good twelve foot Glafs would afford us no lefs then twenty five feveral Magnitudes. Nor are thefe all, but a longer Glafs does yet further, both more nicely diftinguifh the Magnitudes of thofe already noted, and alfo difcover feveral other of fmaller Magnitudes, not difcernable by the twelve foot Glafs: Thus have I been able, with a good thirty fix foot Glafs, to difcover many more Stars in the Pleiades then are here delineated, and thofe of three or four diftinct Magnitudes lefs then any of thofe fpots of the fourteenth Magnitude. And by the twinkling of divers other places of this Aflerifme, when the Sky was very clear, I am apt to think, that with longer Glaffes, or fuch as would beara bigger aperture, there might be difcovered multitudes of other fmall Stars, yet inconfpicuous. And indeed, for the difcovery of frall Stars, the bigger the aperture be, the better adapted is the Glafs; for though perhaps it does make the feveral fpecks more radiant, and glaring, yet by that means, uniting moreRays very near to one point, it does make many of thofe radiant points confi-

K k
cuous,
cuous, which, by putting on a lefs aperture, may be found to vanifh; and therefore, both for the difcovery of the fixt Star, and for finding the Satellites of Fupiter, before it be out of the day, or twilight, I alwayes leave the Object-glafs as clear without any aperture as I can, and have thereby been able to difcover the satellites a long while before; I was able to difcern them, when the fmaller apertures were put on; and at other times, to fee multitudes of other fmaller Stars, which a finaller aperture makes to difappear.

In that notable Afterifmallo of the Sword of Orion, where the ingenious Monfieur Hugens van Zulichems has difcovered only three little Stars in a clufter, I have with a thirty fix foot Glafs, without any aperture (the breadth of the Glafs being about fome three inches and a half) difcover'd five, and the twinkling of divers others up and down in divers parts of that fmall milky Cloud.

So that tis not unlikely, but that the meliorating of Telefopes will afford as great a variety of new Difcoveries in the Heavens, as better Microfoopes would among fmall terreftrial Bodies, and both would give us infinite caufe, more and more to admire the omnipotence of the Creator.

Obferv. LX. Of the Moon.

HAving a pretty large corner of the Plate for the feven Starrs, void, for the filling it up, I have added one fmall specimen of the appearance of the parts of the Moon, by defcribing a fmall fot of it, which, though taken notice of, both by the Excellent Hevelius, and called Mons olympus (though I think fomewhat improperly, being rather a vale) and reprefented by the Figure X, of the 38. scheme, and alfo by the Learn'd Ricciolus, who calls it Hipparchus, and defcribes it by the Figure Y, yet how far fhort both of them come of the truth, may be fomewhat perceiv'd by the draught, which I have here added of it, in the Figure Z, (which I drew by a thirty foot Glafs, in october 1664. juft before the Moon washalf inlightned) but much better by the Reader's diligently obferving it himfelf, at a convenient time, with a Glafs of that length, and much better yet with one of threefcore foot long; for through thefe it appears a very fpacious Vale, incompaffed with a ridge of Hills, not very high in comparifon of many other in the Moon, nor yet very fteep. The Vale it felf ABCD, is much of the figure of a Pear, and from feveral appearances of it, feems to be fome very fruitful place, that is, to have its furface all covered over with fome kinds of vegetable fubftances; for in all pofitions of the light on it, it feems to give a much fainter reflection then the more barren tops of the incompaffing Hills, and thofe a much fainter then divers other cragged, chalky, or rocky Mountains of the Moon. So that I am not unapt to think, that the Vale may have

Micrographia.

Vegetables analogus to our Grafs, Shrubs, and Trees; and moft of thefe incompaffing Hills may be covered with fo thin a vegetable Coat, as we may oblerve the Hills with us to be, fuch as the fhort Sheep pafture which covers the Hills of Salisbury Plains.

Up and down in feveral parts of this place here defcrib'd (asthere are multitudes in other places all over the furface of the Moon) may be perceived feveral kinds of pits, which are fhap'd almoft like a difh, fome bigger, fome lefs, fome fhallower, fome deeper, that is, they fem to be a hollow Hemijphere, incompaffed with a round rifing bank, as if the fubftance in the middle had been digg'd up, and thrown on either fide. Thefe feem to me to have been the effects of fome motions within the body of the Moon, analogus to our Earthquakes, by the eruption of which, as it has thrown up a brim, or ridge, round about, higher then the Ambient furface of the Moon, fo has it left a hole, or depreffion, in the middle, proportionably lower; divers places refembling fome of thefe, I have obferv'd here in England, on the tops of fome Hills, which might have been caus'd by fome Earthquake in the younger dayes of the world. But that which does moft incline me to this belief, is, firf, the generality and diverfity of the Magnitude of thefe pits all over the body of the Moon. Next, the two experimental wayes, by which I have made a reprefentation of them.

The firft was with a very foft and well temper'd mixture of Tobaccopipe clay and Water, into which, if I let fall any heavy body, as a Bullet, it would throw up the mixture round the place, which for a while would make a reprefentation, not unlike thefe of the Moon; but confidering the ftate and condition of the Moon, there feems not any probability to imagine, that it fhould proceed from any caufe analogus to this; for it would be difficult to imagine whence thofe bodies fhould come; and next, how the fubftance of the Moon fhould be fo foft; but if a Bubble be blown under the furface of it, and fuffer'd to rife, and break; or if a Bullet, or other body, funk in it, be pull'd out from it, thefe departing bodies leave an impreffion on the furface of the mixture, exactly like thefe of the Moon; fave that thefe alfo quickly fubfide and vanifh. But the fecond, and moft notable, reprefentation was, what I obferv'd in a pot of boyling Alabafter, for there that powder being by the eruption of vapours reduc'd to a kind of fluid confiftence, if, whil't it boyls, it be gently remov'd befides the fire, the Alabafter prefently ceafing to boyl, the whole furface, efpecially that where fome of the laft Bubbles have rifen, will appear all over covered with fmall pits, exactly fhap'd like thefe of the Moon, and by holding a lighted Candle in a large dark Room, in divers pofitions to this furface, you may exactly reprefent all the Phanomena of thefe pits in the Moon, according as they are more or lefs inlightned by the Sun.

And that there may have been in the Moon fome fuch motion as this, which may have made thefe pits, will feem the more probable, if we fuppofe it like our Earth, for the Earthquakes here with us feem to proceed from fome fuch caufe, as the boyling of the pot of Ala$\mathrm{K} \mathrm{k}_{2} \quad$ bafter $_{3}$

Micrographia.

bafter, there feeming to be generated in the Earth from fome fubterraneous fires, or heat, great quantities of vapours, that is, of expanded aerial fubftances, which not prefently finding a paffage through the ambient parts of the Earth, do, as they are increafed by the fupplying and generating principles, and thereby (having not fufficient room to expand themfelves) extreamly condens'd, at laft overpower, with their elafick properties, the refiftence of the incompaffing Earth, and lifting it up, or cleaving it, and fo fhattering of the parts of the Earth above it, do at length, where they find the parts of the Earth above them more loofe, make their way upwards, and carrying a great part of the Earth before them, not only raife a fmall brim round about the place,out of which they break, but for the moft part confiderable high Hills and Mountains, and when they break from under the Sea, divers times, monntainous Iflands; this feems confirm'd by the Vulcans in feveral places of the Earth, the mouths of which, for the moft part, are incompaffed with a Hill of a confiderable height, and the tops of thofe Hills, or Mountains, are ufually fhapd very much like thefe pits, or difhes, of the Moon: Inftances of this we have in the defcriptions of AEtna in Sicily, of Hecla in Iceland, of Tenerif in the Canaries, of the feveral Vulcans in Nenp-spain, defcrib'd by Gage, and more efpecially in the eruption of late years in one of the Canary Illands. In all of which there is not only a confiderable high Hill raifed about the mouth of the Vulcan, but, like the fpots of the Moon, the top of thofe Hills are like a difh, or bafon. And indeed, if one attentively confider the nature of the thing, one may find fufficient reafon to judge, that it cannot be otherwife ; for thefe eruptions, whether of fire, or fmoak, alwayes rayfing great quantities of Earth before them, muft neceffarily, by the fall of thofe parts on either fide, raife very confiderable heaps.

Now, both from the figures of them, and from feveral other circumflances; thefe pits in the Moon feem to have been generated much after the fame manner that the holes inAlabafter, and the vulcans of the Earth are made. For firft, it is not improbable, but that the fubftance of the Moon may be very much like that of our Earth, that is, may confift of an earthy, fandy, or rocky fubftance, in feveral of its fuperficial parts, which parts being agitated, undermin'd, or heav'd up, by eruptions of vapours, may naturally be thrown into the fame kind of figured holes, as the fmall duft, or powder of Alabafter. Next, it is not improbable, but that there may be generated, within the body of the Moon, divers fuch kind of internal fires and heats, as may produce fuch Exhalations; for fince we can plainly enough difcover with a Telefcope, that there are multitudes of fuch kind of eruptions in the body of the Sun it felf, which is accounted the moft noble Ætherial body, certainly we need not be much fcandaliz'd at fuch kind of alterations, or corruptions, in the body of this lower and lefs confiderable part of the univerfe, the Moon, which is only fecundary, or attendant, on the bigger, and more confiderable body of the Earth. Thirdly, 'tis not unlikely, but that fuppofing fuch a fandy or mouldring fubftance to

Micrographia.

be there found, and fuppofing alfo a poffibility of the generation of the internal elafical body (whether you will call it air or vapours) tis not unlikely, I fay, but that there is in the Moon a principle of gravitation, fuch as in the Earth. And to make this probable, Ithink, we need no better Argument, then the roundnefs, or globular Figure of the body of the Moon it felf, which we may perceive very plainly by the Telefope, to be (bating the fmall inequality of the Hills and Vales in it ${ }_{2}$ which are all of them likewife fhap d, or levelled, as it were, to anfwer to the center of the Moons body) perfectly of a Sphxrical figure, that is, all the parts of it are fo rang'd (bating the comparitively fimall ruggednefs of the Hills and Dales) that the outmoft bounds of them are equally diffant from the Center of the Moon, and confequently, it is exceedingly probable alfo, that they are equidiftant from the Center of gravitation; and indeed, the figure of the fuperficial parts of the Moon are fo exactly fhap'd, according as they fhould be, fuppofing it had a gravitating principle as the Earth has, that even the figure of thofe parts themfelves is of fufficient efficacy to make the gravitation, and the other two fuppofitions probable: fo that the other fuppofitions may be rather prov'd by this confiderable Circumftance, or Obfervation, then this fuppos'd Explication can by them; for he that fhall attentively obferve with an excellent Telefope, how all the Circumftances, notable in the fhape of the fuperficial parts, are, as it were, exaitly adapted to fuit with fuch a principle, will, if he well confiders the ufual method of Na ture in its other proceedings, find abundant argument to believe it to have really there alfo fuch a principle; for I could never obferve, among all the mountainous or prominent parts of the Moon (whereof there is a huge variety) that any one part of it was plac'd in fuch a manner, that if there fhould be a gravitating, or attracting principle in the body of the Moon, it would make that part to fall, or be mov'd out of its vifible pofture. Next, the fhape and pofition of the parts is fuch, that they all feem put into thofe very fhapes they are in by a gravitating power : For firft, there are but very few clifts, or very fteep declivities in the afcent of thefe Mountains; for befides thofe Mountains, which are by Hevelius call'd the Apennine Mountains, and fome other, which feem to border on the Seas of the Moon, and thofe only upon one fide, as is common alfo in thofe Hills that are here on the Earth; there are very few that feem to have very freep afcents, but, for the moft part, they are made very round, and much refemble the make of the Hills and Mountains alfo of the Earth; this may be partly perceived by the Hills incompaffing this Vale ${ }_{\text {s }}$ which I have here defrrib'd ; and as on the Earth alfo, the middlemoft of thefe Hills feems the higheft, fo is it obvious alfo, through a good τ_{e} lefcope, in thofe of the Moon; the Vales alfo in many are much fhap d like thofe of the Earth, and I am apt to think, that could we look upon the Earth from the Moon, with a good Telefoope, we might eafily enough perceive its furface to be very much like that of the Moon.

Now whereas in this fmall draught, (as there would be multitudes if the whole Moon were drawn after this manner) there are feveral little Ebullitions,

Micrographia.

Ebullitions, or Difhes, even in the Vales themfelves, and in the incompaffing Hills alfo; this will, from this fuppofition, (which I have, I think, upon very good reafon taken) be exceeding eafily explicable; for, as I have feveral times alfo obferv'd, in the furface of Alabafter fo ordered, as I before defcrib'd, fo may the later eruptions of vapours be even in the middle, or on the edges of the former; and other fucceeding thefe alfo in time may be in the middle or edges of there, ơc. of which there are Inftances enough in divers parts of the body of the Moon, and by a boyling pot of Alabafter will be fufficiently exemplifid.

To conclude therefore, it being very probable, that the Moon has a principle of gravitation, it affords an excellent diftinguifhing Inftance in the fearch after the caufe of gravitation, or attraction, to hini, that it does not depend upon the diurnal or turbinated motion of the Earth, as fome have fomewhat inconfiderately fuppofed and affirmed it to do; for if the Moon has an attractive principle, whereby it is not only fhap'd round, but does firmly contain and hold all its parts united, though many of them feem as loofe as the fand on the Earth, and that the Moon is not mov'd about its Center; then certainly the turbination cannot be the caufe of the attraction of the Earth; and therefore fome other principle muft be thought of, that will agree with all the fecundary as well as primary Planets. But this, I confefs, is but a probability, and not a demonftration, which (from any Obfervation yet made) it feems hardly capable of, though how fucceffful future indeavours (promoted by the meliorating of Glaffes, and obferving particular circumftances) may be in this, or any other, kind, muft be with patience expected.

FINIS.

THE TABLE.

Pag.
I Obfervat. I. Of the point of a Needle.

2

ADefcription of it : what otber Bodies bave the flarpeft points: of the ruggednefs of polifht Metal. A 3 defcription of a printed point. Of very fmall mriting, and the ufe of it for fecret intelligence: the caufe of the courrnes of printed lines and points.

Obferv.2. Of the Edge of a Razor.
Adefcription of it: the caufes of its roughneß: of the roughneß of very well polifbt optick Glajfes.

Obfer.3. Of fine Lawn.
A defcription of it: A filken Flax mention'd, an attempt to explicate the
6 Phænomena of it, with a conjecture at the caufe of the gloß of silk.

Obferv. 4.. Of Tabby.
A hort defcription of it. A conje-
7 Clure about the reafon why silk is so fufceptible of vivid colours: and why Flax and Hair is not. A conjecture, that it may perbaps be poffible to Jpin a kind of artificial silk out of fome glutinous fubfance that may equalize natural silk.

Obferv. 5. Of water'd Silks.

The great unaccurateness of artificial works. A defcription of a piece of sater'd silk; an Explication of the caufe of the Phænomena: the way by which that operation is perform'd:
fome other Phænomena mention'd 10 depending on the fame caufe.

Obferv. 6. Of Glafs-Canes.

The exceeding fmalne β of fome of thefe Bodies By what means the hollowneß of the efe Jmall pipes mas difcover d: jeveral Phænomena of it men- 11 tion'd. An attempt to explicate them from the congruity and incongruity of 12 Bodies: what thofe proprieties are. A 13 bypothetical explication of fluidity: of the fluidity of the air, and Jeveral other 14 Phænomena of it : of congruity or in- 15 congruity; illuftrated with feveral Ex-1 6 periments:what effects may be afcrib'd 17 to theje properties: an explication of 18 the roundneß of the furface of fluid Bodies : bow the ingreß of fluid bodies 19 into a fmall hole of an beterogenious 20 body is hindred by incongruity; a multitude of Phænomena explicable 2 I bereby. Several 2 ucries propounded; 1. Concerning the propagation of light through differing mediums. 2. Con- 22 cerning Gravity. 3. Concerning the roundneß of the Sun, Moon, and Planets. 4. Concerning the roundne β of Fruits, Stones, and divers artificial Bodies. His Highneß Frince Rupert's 23 way of making shot. of the roundne $\beta 24$ of Hail. Of the grain of Kettering stone, and of the sparks of fire.5.Con- 25 cerning pringine/s and tenacity. 6. Concerning the original of Foun- 26 tains; feveral Hijfories and Experiments relating thereto. 7. Concerning 27 the diffolution of Bodies in Liquors. 8. Concerning the univerfality of this 28 Principle: what method was taken in making and applying experiments. The explication

The Table.

explication of filtration, and feveral 29 other Phænomena; fuch as the motion of Bodies on the furface of Liquors; $\sqrt{\rho}$ -
30 veral Experiments mention'd to this purpofe.Of the beight to which the mater may rije in thefe Pipesjand a conje-
31 cture about the juices of Vegetables, 8 the ufe of their pores. A further explication of Congruity:And an attempt of folving the Phrnomena of the frange Experiment of the fuppenfion of the
32 Mercury at a much greater beight then thirty inches. The efficacy of immediate contact, and the reafon of it.

Obferv. 7. Of Glafs drops.

several Experiments made with

34

 theje finall Bodies. The manner of the breaking and flawing of them, expli-35 cated by Figures. What other bodies moill be flawed much in the fame manner: Jome other tryals, and a defcription of the Drops themfelves: fome conjectures at the caufe of the Phrnomena, indeavoured to be made pro-
36 bable by feveral Arguments and Experiments.An Experiment of the expanfion of Water by beat, and fhrinking by cold: the like Proprieties fuppos'd in
37 Glaßdrops, and what effects proceed from them: the feven Propofitions on which the conjectures are grounded. Experiments to Jhew, that bodies ex38 pand by beat. The manner of making Thermometers, and the Inftrument
39 for graduating them. The manner of graduating them, and their ufe: 0 ther Experiments to prove the expan-
40 fion of bodies by heat.F our experimental Arguments to prove the expanfion
41 of Glaß by beat: further provid by the Experiment of boyling. Alabafter; wobich is explicated. An explication of the contracting of heated Glaßup-
42 on cooling. An explication howo the parts of the Glaß become bent by fudden cold, and hers kept from extrica-
ting themflelves by the contignation of the Glaf drop; which is further explicated by another Experiment made with a bollow Glaß ball: the reafon of ${ }^{43}$ the fying afunder of the parts further explicated: that tis probable the \int e bodies may have many flaws, though not vifible, and why: how a gradual heating and cooling does put the parts of 44 Glaß, and other bardwed bodies, into a loofer texture.

Obferv. 8. Of Fiery Sparks.
The occafion and manner of making this Experiment: divers Obfervations Set down in order to the finding out the reafons: Some conjeciures concerning it, which are endeavoured to be explicated and confirm'd by feveral Experiments and Reafons: the Hypothefis a little further explicated. Some obfervations about the Globular Figure: and an Experiment of reducing the filings of Tin or Lead to exactly round Globules.

Obferv, 9. Of Fantaftical Colours.
The texture of Mufcovy Glaß; its Figures:mbat other Bodies are like it: that it exhibits feveral colours, and hom:-Several obfervations and Experiments about thofe colours: : the reafon why on this occafion the nature of co- 49 lours is inquir dinto. A conjecture at the reafon of thefe colours explicated 50 by feveral Experiments and Reafons: Firft, by continual cleaving the Body till it become colour'd. secondly, by producing all kinds of colours mith two flat Plates of Glafs. Thirdly, by blowing Glaß So thin in the Lamp, till it produce the fame eflect. Fourtbly, by doing the fame with Bubbles of divers other tran/parent Bodies: the reafons of the colours on nealed steel, where by the way the canfes of the 52 hardning 5

The Table.

52 hardning and tempering of Steel, endeavour'd to be fbewn and explicated by feveral Reafons and Experiments: the reafon of the colours on
53 Lead, Braj, Copper, Silver, \&ec. other Inftances of fuch colour'd bodies in animal fubftances: Several other diftinguifhing Obfervations. Des Cartes
54 Hypothefis of Colours examin'd. An Hypothefis for the explication of light by motion, indeavoured to be explicated and determined by feve-
55 ral Reafons and Experiments: three diftinguibhing Properties of the moti56 on of light. The dijtinguifhing Properties of a trafparent Medium [that there feems to be no Experiment that proves the Inftantancous motion of
57 light] the manner of the propagation of light through them. Of the homogeniety and heterogeniety of tranfparent Mediums, and what effects they caufe on the Rayes of light, explicated by a Figure: an Exami-

58

 by a plain surface, which caufes COlours. An Examination of the like effects produced by a 乃perical surface: the ufe that may be made of thele Experiments, for the examination of Several Hypothefes of Colours. Des60 Cartes Hypothefis examin'd. Some
61 Difficulties taken notice of in it. What feems moft likely to be the caufe of colour: that propriety is indeavoured
92 to be ßiewn in a Glaß ball: that the reflection is not neceflary to produce
63 Colours nor a double refraction: the Hypothefis further examined, botb in 64 the pellucid Medium and in the Ege. The definitions of Colourssand a fur-
65 ther explication and examination of 66 the Proprieties of laminated Bodies; 67 by what means they conduce to the production of Colours.

Obferv, 10. Of Metalline Colours.

68 That all colours Jeem to be caus'd by
refraction. An Hypothefis confonant bereunto, explicated by Figures. How 69 feveral Experiments; of the fudden changing of Colours by Chymical Liquors, may be bereby explicated: bom 70 many wayes fuch Chymical Liquors may alter the colours of Bodies. Objections made againft this Hypo-71 thefis of two colours only, indeavoured to be anfiwer'd, by feveral Reafons. and Experiments. The reafon mhy $\geqslant 2$ fome Colours are capable of being diluted, others not : mhat thofe are: that probably the particles of moft metalline Colours are tranparent; for this Several Arguments and obfervations are recited: howo Colours become in- 73 capable of diluting, explicated by a Similitude. An Inftrument, by which 74 one and the fame coloured Liquor at once exhibited all the degrees of colours between the paleft yellow and deepeft red: as likerije another that exhibited all varieties of blues: \int everal Experiments try'd with there Boxes. An Objection drawn from the 75 nature of Painters colours anfwered: that diluting and whitening a colour are different operations; as are deepening and blackening: why fome may be diluted by grinding, and fome other by being tempered mithoyl; feveral Experiments for the explica- 76 ting of fome former Affertions: why 77 Painters are forced to make ufe of many colours : what thofe colours are: and how mixt. The conclufion, that 78 moft coloured Bodies feem to confijit of tranjparent particles: that allico- 79 lours diffoluble in Liquors are capable of diluting: Some of mixing, pphat a frange variety may thereby be produc'd.

Obferv. 11. Of the Figares of Sand.
of the fubftances and Soapes of 80
L 1 common

The Table.

common and other sands: a defcription of a very fmall she ll.

81 Obferv. 12. Of Gravel in Urine.
A defription of fuch Gravel, and 82 fome tryals made with it, and conjectures at its caufe.

Obfer. 13. Of Diamonds in Flints.
A defcription and examination of fome of them, explicated further by 83 Cornifh Diamonds: feveral Obfervations about reflection and refraction: and fome deductions therefrom; as an explication of moitene/s; that the Air bas a fronger reflection then Wa-
84 ter. Hom feveral Bodies may be made tranparent : an explication of the 85 Phænomena of Oculus Mundi. of the regular Geometrical Figures of 86 Several Bodies: an bypothetical expli87 cation mentioned: the method of profecuting this inquiry.

Obferv 14. Of frozen Figur e.

The Figures of hoar Froft, and the 89 ortices on mindows: Several Obfervations on the branched Figures of 90 Urine: the Figures of Regulus Mar9I tisfellatus, and of Fern. Of the Fi92 gures of Snow. Of frozen water.

Obferv. 15. Of Kettering Stone.

$$
93
$$

90 Confiderations thereupon : fome Conjectures about the medium and pro97 pagation of light, and the conftitution of fluid and tranjparent Bodies. Se98 weral Experiments to prove the porougneß of: Marble, and fome other Stones. An account of fome Experiments to this purpofe made on an

Oculus Mundi : fome other Confide-99 rations and Experiments about the poroufneß of Bodies: fome other Con- 100 fiderations about the propagation of light and refraction.

Obferv. 16. Of Charcoal.

Of two fort of Pores to be found 1 IOI in all Woods and Vegetables; the Shape of them; the number, thick$n e \rho$, manner and ufe of thefe Pores. An explication of the Phænomena 102 of Couls. The manner of charring Wood, or any other body. What part of Wood is combuftible. An Hypo- 103 thefis of fire explicated in twelve 104 particulars, wherein the ACtion of the Air, as a Menftruum, in the dif folution of all fulpbureous bodies, is very particularly explicated, and 105 fome other Confiderations about the Air propofed: the examination of a piece of Lignum foffle fent from 106 Rome, and fome conclufions thence deduc d.

Obferv. 17. Of Wood, and nothar 107 Bodies, petrified.

Several Obfervations of wucrs kinds of thefofubftances. A more par-108 ticular examination and explication of one very notable piece of petrified Wood; and fome Conjectures about the caufe of thofe productions : Several Obfervations made on other $\mathbf{I} \circ 9$ petrified Bodies, as shells, \&c. And IIO fome probable Conclufions thence de- II I duc'd, about the original caufe of 112 thofe Bodies.

Obferv.18. Of the Pores of Cork and other Bodies.

Several obfervations and Confl
derations about the nature of Cork: II4 the number of Pores in a cubical Inch,

The Tabde.

Inch, and feveralCoufiderations a115 bout Pores. Several Experiments and Obfervations about the nature of Cork: the Texture and Pores of the Pith of an Elder, and feveral other Trees: of the Stalks of Burdocks, Teafels, Daifles, Carret, Fennel, II6 Ferne, Reeds, \&c. of the frotby texture of the Pith of a Feather: fome Conjectures about the probability of values in thefe Pores. Argued alfo from the Phænomena of the fenfl117 ble and bumble plant: fome obfer120 vations on which are inferted.

121 Obferv. 19. Of a Vegetable growing on blighted Leaves.

122 Several Obfervations and Exa123 minations made of them: Several i 24 Confiderations about frontaneous 125 generation arijing from the putrefaction of Bodies.

Obferv. 20. Of Blew Mould and Mufhromes.

126 The defcription of feveral kinds 127 of Moulds. The method of proceeding in natural Inquiries. Several Confiderations about the nature of Mould and Mufbromes. 1. That they may beproduc'd mithout feed. 2. That they feem to bave none. 3. That Salts,\&c. are foap'd intooas 128 curious figures without a feed. 4 . Of akind of Muforome growing in a Candle: A more particular explication of this laft fort of Mufbromes.
1295. Of the figure and m anner of the production of petrified Iceicles: jeveral deductions from the fe Confiderations, about the nature of the vegetation of Mould and Mufbromes.

131
Obferv. 21. Of Mofs. The defcription of feveral forts of

Moffes; upon this occafion feveral Conjectures, about the manner of the production of the e kinds of Bodies, are binted, and fome of them explicated by a Similitude taken from a 133 piece of Clock-work. The vaft diffe- 134 rence of the bigneßsof vegetable Bodies; and the probability that the leaft may comprebend as curious contrivances as the greateft. Of mul- 135 titudes of other Moulds, Mofles, and Mufbromes, and other vegetating Principles, in Water, Wood, \&c.

Obferv. 22. Of Sponges, and other fibrous Bodies.

Several obfervations and Conje- 136 C7ures about the making of thefe Bodies; andfeveral Hiftories out of Authors. Scarce any other Body bath 137 fuch atexture; the fibrous texture 13^{8} of Leather, Spunk, \&xc. (2phich are 139 there defcrib'd) come neareft to it. That upon tryal with a piece of Spunge and oyl the neceffity of re- 140 piration could not be alter d.

Obferv. 23. Of the Form of Seaweed.

From the curiouly fhap'd surface of this sea-weed, and fome others, is conjectured the polfibility of $\mathbf{I} 41$ multitudes of the like.
gail
Obferv. 24. Of the Surfaces of fome Leaves.

Thedefcription, 1. Of the bald surfaces of Leaves. 2. Of the downy surfaces of feveral otbers. 3. Of the gummous exfudation, or fmal! tranparent Pearls, difcovered 14^{2} with a Microfcope in feveral others. An Inftance of all which is afforded in a Rofemary Leaf.

Obfervs

The Table.

Obferv. 25. Of the ftinging

 Points of a Nettle.143 A defcription of the Needles and feveral other contrivanoes in the leaf 144 of a Nettle: boro the finging pain is created: upon this feveral confidera. tions about poyfoning Darts are fet down. An Experiment of killing Effs, and Fibbes with Salt. Some conjectures at the efficacy of Baths; the ufe that may be made of injecting into the
145 Veins. A very remarkable Hifory out of Bellonius; and fome Confiderations about Ataining and dying of Bodies.

Obferv. 26. Of Cowage.

The defcription of it out of Parkin146 fon: an Experiment made of it: a defcription, and fome conjectures at the caufe of the Phænomena.

Obferv. 27. Of the Beard of a wild Oat.
147
148
The defoription of its fape and 149 properties: the manner of making a 150 Hygrofcope with it; and a Conje${ }_{51}$ cture at the caules of thefe motions, 152 and of the motions of the Mufcles.

Obferv. 28. Of the Seeds of $V e$ wice Looking glafs.

153 The defcription of them.

Obfer, 29. Of the Seeds of Time.
154 A defcription of them. A digreffion about Natures method.

Obferv. 30. Of Poppy Seeds.

155 The defoription and afe of them.

Obferv. 31. Of Purlane Seeds, $x 56$
A defcription of thefe and many other Seeds.

Obferv. 32. Of Hair. $x 57$
The defcription of feveral forts of 158 Hair; their Figures and Textures: the reafon of their colours, A deforipti- 159 on of the texture of the skin, and of 160 Spunk and Sponges: by what paf-16x fages and pores of the skin tran/pira. tion feems to be made. Experiments to prove the porou/ne/s of the skin of Vegetables.

Obferv. 33. Of the Scales of a 162 Soale.

A de/cription of their beautcous form.

Obferv. 34. Of the Sting of a Bee. 163
A defcription of its flapee, mechas 164 ni/me, and use.

Obferv. 35. Of Feathers. 165 166
A defrription of the Sbape and cu- 167 rious contexture of Feathers : and fome conjectures thereupon.

Obfer. 36. Of Peacocks Feathers.
A defcription of their curious form 168 and proprieties ; with a comjecture at 169 the caufe of their variable colours.

Obfer. 37. Of the Feet of Flyes,

 and other Infects.A deforistion of their figure,parts, 170 and ufe; and jome confiderations 171 thereupon+

Obferv.

The Table.

172 Obfer.38. Of the Wings of Flyes
After what manner, and bow fwift173 ly the wings of Infects move. A de. fription of the Pendulums under the x_{74} wings, and their motion: the foape and ftructure of the parts of the wing.

175 Obfer. 39. Of the Head of a Fly.

1. All the fase of a Drone-fly is nothing almoft but eyes. 2. Thofe are 176 of two magnitudes. 3. They are Hemi/pheres, and very reflective and fmooth. 4. Some directed toraards ave. ry quarter. 5. Horn the Fly cleanfes them. 6 Their number. 7.Their order: 177 divers particulars objerv'd in the dif: 178 fecting a bead. That tbefe are very probably the eyes of the Creature; ar. gued from feveral Ob/ervations and 179 Experiments, that Crabs, Lobfters, Sbrimps,feem to be water Injects, and to be framed musb like Air Infects. 180 Several Confiderations about their manner of vifion.

Obfer. 40 . Of the Teeth of a Snail.
181 A brief defcription of it.
Obferv. 41. Of the Eggs of Silk. worms.

182 Several Oblervables abost the Eggs of \ln fects:

183 Obferv. 42. Of a blue Fly.
184. A defcription of its outmard and inmoard parts. Its bardine/s to indure $18{ }_{5}$ freezing, and feeping in Spirit of wine.

Obferv. 43. Of a water Infect.
186 A defcription of its /bape, tran/pa. rency, motion, botb internal andpro-
greflive; and transformation. A Hiffo- 18, ry (omerobat Analogus cited out of Pifo. Several Obfervations about the 188 various mayes of the generations of Injects: by mbat means they att fo 189 Seemingly mijely and prudently Seve- 190 ral Queries propounded. Poff(cript, 198 containing a relation of another very ${ }_{92}$ odd way of the generation of Infects. An objervation about the fertility of the Earth of our Climate in producing Infects, and of divers other majes of 193 their generation.

Obferv. 44. Of the tufted Gnat.

Several observables about infects, and a more particular defcription of 194 the parts of this Gnat.

Ob.45. Of the great belly'd Gnat, 195

A bort defoription of it.

Obfer. 46. Of a white Moth.

A defcription of the featbers and 196 mings of this, and feveral other In. 197 fedts. Divers Confiderations about tbe 198 roings, and the flying of Infeets and Birds.

Obf. 47. Of the Shepherd Spider.
A defcription of its Eyes: and the fockets of its long legs: and a Conje. 199 Cuure of the mechanisal reafon of its fabrick; together with a (uppofition, that' tis not unlikely, but Spiders may have the make of tbeir invard parts exailly like a Crab, which may be 200 calld a mater Spider.

Obfer.48. Of the hunting Spider.
A hort defcription of it; to which is anmext an excellent Hiflory of it, ${ }^{20 *}$ made by Mr, Evelyn. Some furtber $\mathrm{Mm} \quad$ Obfer.

The Table.

202 Obfervations on other Spiders, and their Webs, togetber with an examination of a mbite Suhflance flying up and down in the Air after a Fog.

Obler. 49. Of an Ant.

That all fmall Bodies, both Vegetable and Animal, do quickly dry and wither. The beft remedy 1 found to bin. der it, and to make the Animallye fitll 204 to be obferv'd. Several particulars related of the adtions of this Creature; 205 and a fhort defcription of its parts.

Obf. 50. Of the wandring Mite.
206 A defcription of this Creature, and of another very fmall one, mbich rffu-
207 ally bore it company. A Comjecture at the original of Mites.

Obferv.5r. Of a Crab-like Infect.
208 A brief defoription of it.
Oblerv. 52. Of a Book-worm.
209 A defoription of it; where by the way is inferted a digreffion, experimentally explicating the Phænome210 na of Pear!. A confideration of its digefive faculty.

Oblerv. 53. Of a Flea,
211 A bort defcription of it.
Obferv. 54. Of a Loufe.
212 A de/cription of its parts, and fome
2 I 3 notable circumftances.

Obferv. 55. Of Mites.

The exceeding fmalne β of fome Mites, and their Eggs. A defcription 214 of the Mites of Cbeefe: and an inti-
mation of the variety of forms in other Mites, with a Conjecture at the rea- 21 s fon.

Ob. s6. Of fmall Vine-Mites.
A defcription of them; a ghos at their original; their exceeding /malne/s compar'd with that of a Wood- 216 lonfe, from whench they may be fupposid to come.

Obferv. 57. Of Vinegar-worms.

A defoription of them, with fome 217 confiderations on their motions.

Obf. 58. Of the Inflection of the Rays of Light in the Air.

A hortrebear fal of feveral Phze- 218 nomena. An attempt toexplicate 219 them:the fuppofition founded on two Propofitions, both which are indeavoured to be made out by feveral Experiments. What denfity and rarity is in reppect of refration: the refraction of Spirit of Wine compared with that of common Water : the refraition of Ice. An Experiment of making an Vndulation of the Rays by the mixing of Liquors of differing denfity. The explication of inflection, mechani. cally and hypothetically: mhat Bodies bave fuch an inflection. Several Experiments to Joeno that the Air has this propriety; that it procceds from 222 the differing denfity of the Air: that the upper and under part of the Air are of differing denfity: fome Experi- 223 ments to prove this. A Table of the firength of the (pring of the Air, an. /mering to cach degree of extenfion; when firft made, and when repeated. 224 Anotber Experiment of compreffing 225 the Air. A Table of the ftrength of the 226 Air, anfrocring to each compreffion and expanfion; from which the height

The Table.

227 of the Air may be fuppos dindefinite; 228 to what degree the Air is rarifidd at any dijtance above the Surface of the Earth: bow, froms this, Inflection is

229

230 explain'd and leveral phænomena Earth is compsid near the denfity; mably Experiments and obferuations and of the twinkling of the Stars.
233 Several Phanomena explicated. Some Queries added.

1. Woether this Principle may not be made ufe of, for perfecting Optick 234 Glaffes? What might be boped from it if it were to be done?
2. Whether from this Prinsipls the apparition of lome new Stars may not be explicated?
3. Whetber the beight of the Air may be defin'd by it?
4. Whether there may not fometimes be fo great a di/parity of denfity between the upper and under parts of the Air, as to make a reflecting Surface?
5. Whether, if fo, this will not explicate the Phænomena of the Clouds. An Experiment to this purpofe?
236 7. Whether the Rayes from the top of Mountains are not berded into Carve-lines by inflection? An Argument for it,taken from an Experiment made on St. Paul's Steeple.
6. Whether the dijfance of the Planets mill not be more difficult to 237 be found? What mayes are moft likely to recilifie the diftance of the Moon: the way of fitting Telefcopes for fuch Obfervations. How to make the Obfervations, and how from them to ${ }^{3} 3^{8}$ find the true diftance of the Moon at any time. How the diflance of the Sun may be found by two 0 b fervators. The 739
roay by the Dicotomy of the Moon un.
certain. That the dijfance of the Moon may be le/s then it has been bitherto /uppos'd. Kepler's Suppofition not so probable: the explication of 240 the Phænomena by another Hypothefis.

Obferv. 59. Of the fixt Stars.

Of the multitudes of Stars di/co. verable by the Telefcope, and the variety of their magnitudes: 78 . Stars diffinguifht in the Pleiades: that there are degrees of bignefs even in the Stars accounted of the fame magnitude: the longer the Glaßes are, and the bigger apertures they will indure, the more fit they are for theje difcoveries: that tis probable, longer Glaffes would yet make greater difcoveries. 5. Stars 242 difcover'd in the Galaxie of Orion's Stoord.

Obferv. 60. Of the Moon.

A defcription of a Vale in the Moon; what call'd by Hevelius and Ricciolus, and hom def crib'd by them: with what fubftances the bills of tbe 243 Moon may be cover'd. A defcription of the pits of the Moon, and a conjeIture at their caule : two Experiments that make it probable, that of the fur= face of boyl'd Alabafter duft feeming 244 the moft likely to be refembled by eru. ptions of vapours out of the body of the Moon : that Earthquakes feem to be generated much the fame may, and their effeds feem very fimilar. An Ar。 gument that there may be fuch variations in the Moon, becaufe greater bave been obferv'd in the Sun:becauje the filbfance of the Moon and Earth feem much alike: and becaufe 'tis probable the Moon bas a gravitating principle: this is argued from feveral particulars. The rea/on mby feveral pits are one mitbin anather. The u/e ${ }^{245}$ that may be made of this Inflance of a gravity in the Moon.

$E R R A T A$.

IN the Preface，Bage 7．line 18．read feet：line 34．read Gilbert，Harvy．

Page 13．Tine ult，read tafle：p．34．1．18．r．fmall lens ：1．penult．r，that proceeds from：p．40．1．44．r．mben jor： p．48．1．34．r．broadef：p．57．1．39．dele be：p．62．1．36．r．water－drop：p．64．1．9．r．duction of G A C F：I．35．7．im－ prefsions：p；96，1．33．r．compofe：p．100．1．II．r．Merfennus：p．1061．8．rextreamiy ：p．Irol．8．r．as ；1．12． x．thofe ：p．112．1．32，r．Aldronandus，Wormius：p．121．1．9．dele of：p．128．1．43，dele from：p．129．1．18．r．fift place： p．130．1．29．r．derial memftumm：p．136．1．39．r．knew how：p．144．1．2，r．parts of the：p．147，1．36．r．look＇d on： p．161，1．13．r．body：p．162．1．17．dele only：p．166．1．11．r． 22 ：1．12．dele the Semicolon：1．17．r，place： p．867．1．40，r．22：p．172．1．18．r，and firte for the：p． 198.1 .17. r．and an artific．p． 215 ．I．ult．r．and from the：

なだ

 RES
L. JOST

Ouchbindersi

MICROGRAPHIA:

OR SOME
 Phyjological Defrriptions OF
 MINUTE BODIES MADE BY

 MAGNIFYING GLASSES.

 MAGNIFYING GLASSES.
 W I TH
 BSERVATIONS and INQUIRIES thereUpon.

By R. HOOKE, Fellow of the Royal Society.
Non poffis oculo quantum contendere Linceus, Non tamen idcirco contemnas Lippus inungi. Horat. Ep. Lib. I.

[^0]:

[^1]: E 2
 round

[^2]:

