Digitized by the Internet Archive in 2018 with funding from Wellcome Library

BOOK of NATURE;

 O. R, T H E
H I S TORY of I NSECTS:

Reduced to diftinct Classes, confirmed by particular Instances, Difplayed in the Anatomical Analyfis of many Species,

Ileustrated with CopPER-PLATES。 INCLU̇DING

The Generation of the Frog, the Hiftory of the Ephemerus, the Changes of Flies; Butterflies, and Beetles;
WITH THE

Orginal Difcovery of the Milk-Vessels of the Cuttle-Fish, and many other curious Particulars,
By J O H N S W A M M ER D A M, M. D.

The LIFE of the AUTHOR, by HERMAN BOERHAAVE, M. D.
Tranflated from the Dutch and Latin Original Edition,
By T H O M A S F.L L O Y D.
Revifed and improved by NOTES from Reaumur and others,

	O $\quad \mathbf{H} \quad \mathrm{N} \quad \mathrm{H} \quad \mathrm{I}$					

L O N D O N:
Printed for C. G. SEYFFERT, Bookfeller, in Dean-Street, Soho.

To the RIGHT HONOURABLE
 G E O R G E

EARlof MACCLESFIELD,

PRESIDENT

Ofther ofal societ y,

This W O R K

Is moft Humbly Infcribed,

> By His Lordship's

Mort Devoted Humble Servant,

The EDITOR.

$$
\begin{aligned}
& 2+2+2
\end{aligned}
$$

$$
\begin{aligned}
& : \quad: \quad \because \therefore, \quad \therefore \quad, \quad, i j
\end{aligned}
$$

$\because 29193 \cdot 9$

$$
\begin{aligned}
& \text { T H E } \\
& \text { L I F E } \\
& \text { O F }
\end{aligned}
$$

JOHN SWAMMERDAM.

JA MES Theodorus was born in Swammerdamme, a village of Holland fituated upon the Rhine, between Leyden and Woerden; and removing afterwards to Amfterdam, where he carried on the timber trade, obtained the furname of Swammerdam from the place of his nativity. In this laft place heaven bleffed him on the laft day of January in the year mDCvi, with a fon, who was called John James Swammerdam, who followed in that famous city the bufinefs of an apothecary. As this John was very ftudious of natural hiftory, and very well fkilled in feveral branches of it, fo he diligently improved every opportunity of cultivating it, which his refidence and way of life afforded ; and for fifty years together fpared neither pains or expence in procuring proper materials for that purpofe. And indeed his collection was very magnificent, his houfe being full of animals, infects efpecially, vegetables, and foffils, though without the leaft confufion, every thing being difpofed in its proper place and order. But the chief ornaments of his mufeum were curiofities from both the Indies, and particularly the porcelain of China and Japan. Both citizens and ftrangers viewed this collection with admiration; and the greateft princes, that paffed through Amfterdam, vifited it, as one of the things beft worth their attention in that famous city. Many of thefe, delighted with the fight of fo beautiful a fpectacle, offered to purchafe it, but were furprifed at the price, the poffeffor valuing it at fixty thoufand Dutch florins; though after his death, when his curiofities were fold publickly in fingle lots, they fcarce fetched one fixth of that price.

This great naturalift, and Barentje Corver, daughter of John Janfz Corver, were the parents of John Swammerdam, who was born at Amfterdam the twelfth of February mdcxxxvir, and lived to be the celebrated author of this valuable work.

His father intended him for the church, and with this view took care to procure him early inftructions in Latin and Greek; but our author, after a ferious examination of his own difpofition and talents, thought himfelf unequal to fo important a tafk, and brought his father to change his former intention, who thereupon confented to his fon's applying himfelf to phyfic ; but as he kept him at home till he fhould be properly qualified to engage in that ftudy, he frequently employed him in cleaning his curiofities, and putting every thing in its proper place. This occupation infuired our author in
a manner from his childhood, with a tafte for natural hiftory, fo that not content with the furvey of thofe curiofities that his father had purchafed, he foon began to make a collection of his own by catching fome, and buying or bartering for others, all which he difpofed in certain claffes; and compared with the accounts given of them by the beft writers. However, when grown up, he very ferioufly attended to his anatomical and medical fudies, but all the while with a mind bent on attempts of the greateft importance. Accordingly he fpent both day and night in difcovering, catching, and examining, the flying infects proper to thofe two different times, not only in the province of Holland, but in that of Gueldres, and in the the province of Utrecht. He ranfacked with this view the air, the land, and the water; fields, meadows, paftures, corn grounds, downs, waftes, fand hills; rivers, ponds, wells, lakes, feas, and their fhores and banks; trees, plants, ruins, caves, uninhabited places, and even bog-houfes, in fearch of Eggs, Worms, Nymphs, and Butterflies; in order to make himfelf acquainted with the nefts of infects, their food, manner of living, diforders, changes or mutations, and their feveral ways or methods of propagation; and, indeed, while yet a very young man, he had made more difcoveries in regard to all thefe particulars, and obtained more certainty, than the known authors of all the preceding ages put together. This, however incredible it may appear to fome, is notwithftanding matter of fact. Perfons properly qualified to judge of his fuccefs, have honoured it with the fame teftimony.

Our author, thus initiated in natural hiftory, came to Leyden in the year mDCli, to purfue his ftudies in the Dutch univerfity, of which he was admitted a member the eleventh of October, and attended affiduoufly for two years together the lectures in furgery of the celebrated John Van Horne, and thofe in phyfic of Francis Sylvius de la Boe; and his progrefs in thofe noble ftudies was fo anfwerable to his diligence, that on the eleventh of October mbclxifi, he was admitted a candidate of phyfic in that famous univerfity, after undergoing the examinations prefcribed on that occafion. Our author, on his arrival at Leyden, contracted a friendfhip with that great anatomift Nicholas Steno, and ever after lived with him in the greatelt intimacy. He likewife commenced a friendfhip with Rynier de Graaf, another eminent anatomift ; but emulation, or rather envy, afterwards changed it to an inveterate hatred. The curiofities of anatomy now began to make a confiderable impreffion on our author, formed it feems by nature herfelf for the cultivation and improvement of that noble fcience; fo that having gone through his courfes with the moft fudden and unexpected fuccefs, he immediately. began to confider how the parts of the body prepared by diffection, could be preferved and kept in conftant order and readinefs for anatomical demonftrations; as fuch a diícovery would free him not only from the trouble of repeated diffections, but likewife from the difficulty of obtaining frefh fubjects, and the difagreeable neceffity of infpecting fuch as were already putrefied. And herein he fucceeded, as he had done before, in his nice contrivances to diffect and otherwife manage the minuteft infects. Sylvius, the moft diligent anatornift of his time, made good ufe of this our author's great art and indefatigable induftry; but was chiefly delighted at his extraordinary fkill in diffecting Frogs; for Swammerdam had demonftrated to him by actual experiment, fo early as the fifteenth of January of this year, that in this animal the air at the time of infpiration could be derived to the artery and pulmonary vein, and thence to both regions of the heart. See Sylv. Difp. Med. VII. §. Lxxix. - LxxxyiII.

After this our author made a journcy into France, where he fpent fome time at Saumur, in the houfe of Tanaquil Faber, and made a variety of obfervations upon infects. It was there, that on the nineteenth of June mbclxiv, he difcovered, by means of very flender tubes, the valves of the lymphatic veffels, which he immediately fent, on the twenty-eighth, delineated with his own hand, to his friend Steno, who he then thought refided at Copenhagen. See his treatife on Refpiration, page 90, 9r. He afterwards wrote to Thevenot on the twenty-fourth of September in the year following, that perhaps the -famous Frederick Ruyfh might have feen thofe paintings before he publifhed his own on the fame fubject: this he mentioned to Thevenot, on occafion of his fending him from Paris to Amfterdam, the little treatife on thofe valves which Ruyfh publifhed the fame year at the Hague. But Swammerdam barely hinted this, without directly charging Ruyfh with plagiarifm, which he owns it is impoffible for him to prove; on the contrary, he expreffes a great deal of affection for his rival in this difcovery, and fays, he is fincerely rejoiced at his having the honour of it. And no doubt Swammerdam did no more than juftice to Ruyfh's merit on this occafion, as this laft, long before the edition of his book, had fhewed thefe valves to others, and even to Bils. But the letters directed to Steno at Copenhagen, could not reach his hands in Holland, where he then refided, but very late; and if Ruyfh had feen them, how could he have had the affurance to publifh the drawings taken notice of, without mentioning Swammerdam, who was then living, and even on the fpot. Among other things, our author, during his ftay in the neighbourhood of the Loire, obferved and defcribed the flying infect called Libella or Dragon Fly, and likewife fome Hemerobia or Day Flies. From Saumur he went to Paris, where he lived in the fame houfe, and in the greateft friendfhip with Steno. He likewife contracted an intimacy with Melchifedec Thevenot, a very worthy gentleman, and formerly the French king's minifter at Genoa, who moft hofpitably received and entertained him and Steno at his pleafant country feat of Yffi, at a few miles diftance from Paris, and thereby afforded our author an opportunity of making further obfervations upon the infect creation. Not fatisfied with this piece of politenefs, he in confideration of Swammerdam's fingular abilities, and the great pains he had taken to cultivate them, made him a moft liberal offer of every thing he thought requifite to promote his ftudies. Our author ever retained a grateful memory of thofe favours, and others which he afterwards from time to time conftantly received from this great refpecter of merit; and a little before his death owns in one of his letters, that he had never found in any other perfon, fo true, faithful, and fure a friend. Thevenot introduced his gueft to a great many other gentlemen, who met frequently at his houfe with a view of cultivating the arts and fciences; but in all their affemblies our author continued for a long time, notwithftanding all the company's entreaties, a filent auditor only, till his modefty being at laft overcome by repeated importunities, he found himfelf obliged to give one and then another fpecimen of his manner of diffecting infects, and of fhewing their inward parts; by which he gained great applaufe, as by his tacit kkill he effectually filenced the talkative ignorance of others. Thevenot, moreover, ftrenuoufly recommended our author's kill^{2} to that great man Conrad Van Beuningen, a fenator and burgomafter of Amfterdam, and at that time that republick's minifter at the court of France ; who obtained leave for Swammerdam at his return home, to diffect the bodies of fuch patients as fhould happen to die in the hofpital of that city: and our author improved
himfelf greatly in anatomy, by making the proper ufe of fo favourable an opportunity.

But this was not the only opportunity which providence threw in our author's way at this time, as the principal phyficians of Amfterdam had formed a college, and had agreed to meet together every other week in order to confer on medical, but chiefly anatomical fubjects, and to make experiments relative thereto. The obfervations of this fociety of learned men were afterwards publifhed by Cafper Commelin, in the year mbclxvi and lxvir, before Swammerdam had been created doctor of phyfic; notwithftanding which, he was the firft to furnifh materials for it. It was he, and he alone, that made in the faid college, with his own hand, a drawing of the fpinal marrow, publifhed by Blafius at the fame place; and on this occafion he wrote to Thevenot the following particulars. I. That the fpinal marrow confifts entirely of fibres. II. That thofe diftinct fibres meet and terminate in fome part of the brain. III. That there iffue fibrous nerves from the fibres of the fpinal marrow. IV. That the pia mater is altogether extended into hollow fheaths. V. That all thefe things may be eafily feen, by fuddenly placing the yet warm fpinal marrow along with the vertebræ containing it, in cold water, and breaking the vertebre with great caution from the marrow, after having fuffered both to remain in that fituation during the fpace of a day and a night. This letter was written the firft of April mDCLXVI; our author at the fame time tried many experiments by injecting the veffels of living animals with various liquids. See de Refp. page 103 and 107. He even made fome chemical experiments on the cold fermentation produced by mixing together the falt of urine, and the fpirit of glauber falts, ibid. p.ini. He then too compofed that laborious effay on refpiration, which he was to maintain on his declaiming for his degrees in phyfic. We may be convinced by reading this performance, that he only purfued fuch things as he thought of in his own way, and of whofe truth he had fatisfied himfelf, and could convince others by experiments, without borrowing any affiftance from other writers. Having finifhed this differtation, he came back to Leyden to take out his degrees; and took occafion of his ftay there to cultivate a moft intimate friendfhip with the famous Van Horne, who had been formerly his preceptor in the ftudy of anatomy. With this gentleman he then practifed this ufeful art, and prepared a great many things in many various ways, while both publickly owned a community of fentiments and difcoveries. The profeffor moft liberally fupplied all kinds of materials, the other directed the work, and at the fame time made with his own hands the moft mafterly drawings of each difcovery, which he immediately forwarded with fuitable obfervations to Matthew Slade. Nothing here was wanting to carry on fo laudable an undertaking. Van Horne's liberality contributed the fubjects, the inftruments, and every other expence; and Swammerdam's wonderful fkill was day and night employed in making proper ufe of them. It was at this time, and on the twenty-fecond of January m dC Lxvii, that in Van Horne's own houfe, Swammerdam firft injected the uterine veffels of a human fubject with a ceraceous matter, which moft ufeful attempt he afterwards improved and perfected. The twenty-fecond of February of the fame year, he was admitted to his degrees as doctor of phyfic, after having publickly maintained his diatriba or thefis on refpiration; which was then conceived but in fhort and contracted arguments, but appeared the March following with confiderable additions in a volume from the printing-houfe of Gafbekios, with a dedication to the illuftrious Thevenot, and adorned with a frontifpiece of a molt elegant
figure of the reciprocal copulation of the hermaphrodite houfe Snail. John Baptif Van Lamfweerde publifhed in oppofition to this of Swammerdam another moft vehement differtation, which he entitled, "An Exfpiration of Swammerdam's Syftem of Refpiration;" but this attempt fell fhort of its author's expectation : for though Swammerdam's book may contain fome things out of the way, they will be readily excufed by equitable judges, in confideration of the many curious and juft obfervations that are to be met with in every part of that work. Another occupation of Swammerdam's at this time was to blow up with air the parts of the body firt properly evacuated and cleanfed, that by drying in this fituation they might afterwards retain it, and fo at all times afford an opportunity of obferving and defcribing them. This certainly muft be allowed one of the moft ufeful inventions in anatomy, as by it we can erect and ftiffen parts, which would putrefy on lying one upon another, and which if injected with wax would be rendered obfcure and confufed. It was thus our author cultivated anatomy with the greateft art and labour, in conjunction with the celebrated Van Horne ; but a quartan ague, which attacked him this year, brought him fo very low, that he found himfelf under a neceffity of difcontinuing his anatomical ftudies, which on his recovery he entirely neglected, in order to give himfelf up to the ftudy of infects. In the year mDClxviir the great duke of Tufcany being then in Holland with Mr. Thevenot, in order to fee the curiofities of the country, came to view thofe of our author and his father, and furveyed them with the greateft delight, and his ufual tafte and attention for natural hiftory. On this occafion Swammerdam made fome anatomical diffections of infects in the prefence of that great prince, who was both a lover and a moft fkilful judge of fuch things, and who was ftruck with admiation at our author's great fkill in managing them, efpecially at his proving that the future Butterfly lay with all its parts neatly folded up, in a Caterpillar, by actually removing the integuments that covered the former, and extricating and diftinctly exhibiting all its parts, however minute, with incredible ingenuity, and by means of inftruments of an unconceivable finenefs. On this occafion his ferene highnefs offered our author twelve thoufand florins for his fhare of the collection, on condition of his removing them himfelf into Tufcany, and coming to live at the court of Florence. In this certainly the prince acted very wifely, as thofe curiofities would be in the greateft danger of being loft or becoming ufelefs, if not preferved and fhewn by the great genius that had collected them, and who was alone capable of Chewing every article, and exhibiting them to the greateft advantage; but Swammerdam, who hated a court life above all things, rejected his highnefs's propofal. Befides, he could not put up with the leaft reftraint in religious matters, either in point of fpeech or practice. In the mean time, he had the happinefs of difcovering in the diffection of an overgrown Acipenfer, a very large pancreas, which, by difcharging its fluid contents into the firft inteftine through a great many fpacious and open-mouthed channels, gave a moff fatisfactory opportunity of examining this, at that time, fo famous and much-talked-of fluid, in which, on the ftricteft examination, he could difcover no acid tafte, but rather a bitterifh ranknefs, refembling that of gaurus, or pickle made of fifh.

This our author affirmed publickly, contrary to what had been before advanced by de Graaf and Sylvius. He alfo made fome obfervations in the hofpital, but merely as fupplementary additions to his other inquiries; for he now made the nature and properties of infects his chief ftudy, and purfued it with infinite diligence, and without the leaft relaxation; fo that in the year mDCLXIX, he publifhed a general hiftory of them, a work equally remarkable for
the author's great boldnefs in the attempt, and happy fuccefs in the execution. This performance he dedicated to the honourable the burgomafters of Amfterdam. But as he was entirely bent on perfecting this work, and collecting of infects from every quarter of the world, and then difpofing them in feparate boxes in order to form a compleat catalogue, which was attended with great and conftant expences, without the leaft return. Our author's father, who had always kept him at home, and fupplied all his expences, began to take offence at his proceedings; for though he was now above thirty years old, and confequently had fpent the beft years of his life, he had not as yet engaged in any bufinefs that could ferve to render him eafy and independant. His father on this account omitted no opportunity of reproving his fon for this his thoughtlefs way of acting, which he would have had him change for the practice of phyfic ; but inftead of prevailing on him by his remonftrances, they only ferved to make him redouble his endeavours according to his difpofition, that he might the fooner finifh the great tafk in which he had fo couragioufly, though perhaps unadvifedly, engaged; all the while ftriving to divert his father's anger, by promifing him, that as foon as he had completed his undertaking, he would in good earneft apply himfelf to the practice of phyfic. : But his father feeing no probability of his fon's accomplifhing his purpofe, nor yet of being able to divert him from it by fair means, threatened him feverely that if he did not immediately exert his talents as a phyfician, but obftinately perfifted in his anatomical ftudies, his expenfive refearches after infects, and his experiments of that kind, he would neither fupply him with money or cloaths; and to fhew he was in earnef, he immediately deprived him of the means of purfuing what he had begun. Our author therefore, though exhaufted with continual labours, and moreover afflicted with a continual bad ftate of health, at laft confented to take his father's advice, the juftnefs of which he now began to perceive; but his bad health rendered him quite unfit to bear the fatigues ufually attending the practice of phyfic, fo that he thought it was proper that he fhould retire into the country for fome time, in order to recover his Atrength, and with a view of returning to his bufnefs with new force and fpirits. But he was fcarce fettled in his country retirement, when in the month of June mDCLXX, he relapfed into his former occupation, the torrent of his genius that way being fo much favoured by the folitarinefs of the place, and the favourable opportunity of examining infects in their very haunts and fcenes of propagation. Thevenot, in the mean time, informed by his correfpondents in Holland of the difagreement between our author and his father, and the bad confequences that might probably attend it, did all that lay in his power to engage the former to retire into France, where he moit generoufly offered to provide him with every thing requifite for the purfuit of his favourite fudies. But whatever impreffion this propofal might have made on the fon, the father forbid him to accept of it, as appears by a letter of his to Mr. Thevenot, dated the thirtieth of October of the fame year. The fon upon this, to oblige and appeafe his incenfed father, made an accurate furvey of every curiofity in the latter's grand and numerous collection, put all things in their proper places, and compofed a moft exact catalogue of them with infinite pains and labour, and a confiderable lofs of time, which he ever after feverely regretted. The year following, mDCLXXI, having gone through this tedious and difagreeable tafk, he was about publifhing his treatife on the Chameleon and Hemorobion, or Day-Fly; but afterwards thought proper to defer the publication of thofe pieces, fo that they did not appear till the year cxxv,
though he had formerly printed fome part of them in Ruylenburgh, and even in France, fo early as the year mdcluvir.

On the firft of May Lxxir he. fent to the Royal Society of London three plates and fix figures, in which he had reprefented the womb of a human fubject, dedicating them at the fame time to that learned body. To them he added fome moft curious drawings of the fpermatic veffels, the tube of the womb, and the ovary. All thefe curious pieces had been fketched out in profeffor Van Horne's houfe by the twenty-firft of January, mdclxvir, though not finifhed or illuftrated with proper explanations till the feventh of May mbclxxi. Thus for the firft time was publifhed a fpecimen of a method, by which both arteries and veins, and their finet ramifications, can be filled with a ceraceous matter, which not only renders thofe parts perfectly vifible, but even incorruptible: and our author, to procure due credit to his drawing, fent with them the uterus itfelf prepared according to this his new method. His motive in all this proceeding, was to have the opinion of learned and equitable judges of fuch kind of performances. Another thing he had in view, was to convince the world that it was indebted to him as the firf inventor, for the difcoveries relating to the fpermatic veffels, which the celebrated Van Horne had before publifhed in his Prodromus. But above all things, he by this means endeavoured to refute what Regnier de Graaf had written againft him, with the greateft bitternefs, concerning fome difcoveries in regard to the organs of generation; and for this purpofe he appealed to the judgment of the members of the Royal Society, to whom, as far as it concerned him, he gave full power and authority to decide the controverfy.

About this time he made a great many other very ufeful anatomical difcoveries: in particular he diffected a great number of fifhes, with a view chiefly of difcovering their liver, pancreas and melt; and in the courfe of his inquiries very often found in fome a very large pancreas, with a great number of fpacious and wide-mouthed ducts opening into the inteftines: but above all things he applied himfelf with the greatef diligence to find out by every trial that promifed any fuccefs, the true nature and properties of the pancreatic fluid, of which he fent many bottles full to the celebrated Charles Drelincourt, then profeffor of anatomy and phyfic in the univerfity of Leyden. All thefe particulars may be feen in the fecond part of the Private College of Amfterdam, publifhed by C. Commelin in the year mbcixxin ; for there is fcarce any thing in all that performance, for which the world is not indebted to our author ; who there very mildly and modeftly refutes de Graaf and Sylvius's accounts of the pancreatic fluid, though he formerly ufed to treat with great harfhnefs thofe who contradicted his fentiments, as appears in the literary controverfies he before this had maintained with de Graaf, Gafper, Bartholin, and others. But religion and piety had by this time got the better of our author's warm and ftubborn temper. Happening to read fome books which the then famous Antonia Bourignon had a little before publifhed, they made fo great an impreffion upon him, that a ftrict compliance with all the duties of a good chritian was now become his principal concern. He began to hate and fhun all thofe things which men moft covet and run after, but bent his endeavours more particularly to fupprefs the unruly paffions of the mind, and above all that infatiable ambition which makes us fo defirous of a fuperiority over others, and which therefore, as the root of all evil, he was defirous utterly to extirpate and deftroy. All this time Antonia Bourignon happened to be in Holftein, accompanied by John Tielens,
a native of Amfterdam, with whom Swammerdam had been long acquainted. He therefore writ to his friend the eighteenth of March mpclexint, to beg he might procure him Antonia's good will, and leave to write to her on his fpiritual concerns; and having obtained this favour, he accordingly writ to her the twenty-ninth of April following, and received an anfwer to his letter dated the feventeenth of Auguft. Her advice wrought fo great a change in him, that at that time he thought of nothing but of obtaining from God a holy peace of mind, fincerely grieving that he had loft fo much time in the fervice of the world. After this he writ many more letters to Antonia, who very gracioufly anfwered them. About this time he was, if I am not miftaken, the firft that difcovered a thing of very great importance, for he found that the hernia in both men and women, never proceeds from a rupture of the peritoneum, but that the peritoneum alone is extended over the part where the feminal veffels, enclofed in one cafe or fheath, but which before this lay clofe under the peritoneum, fall from it towards the fcrotum. Now, if in this cafe the peritoneum happens to infinuate itfelf into that wide paffage, by which the fpermatic cord falls down towards the teftes, it there, whatever caufe may prefs it, forms a facculus cæcus, or blind bag, on account of its wonderful extenfibility, and the fmoothnefs of the cavity made for it by the defcent of the fpermatic cord. The ecphyfis once formed, grows larger and larger, as the caufe which firft produced it increafes; and continuing to keep clofe to the feermatic cord, follows it towards the fcrotum, above the os pubis, and along the outfide of the mufcles. If this ecphyfis ftops at the groin, it forms what is called a bubonoceles; but if it defcends to the fcrotum, an ofcheoceles; befides which, it obtains a variety of other names, from the different fubftances that may happen to fall into it, fuch as the omentum, the inteftine, air or water. The fame is the cafe in women, except that the defcent is made along the femoral veffels, (See Schraderi, Obferv. Decad. II. Obferv. Iv. v.) where there is a very exact drawing to reprefent the nature of this diforder. Many eminent perfons have fince made pretenfions to the honour of this difcovery, but the account I have given of it appears the moft probable. In this book too there is another obfervation of our author equally important; for he there mentions his having feen two cicatrices in the ovary of a woman, that had been brought to bed of twins; which it is duely to be remarked happened at the fame time. In the fame collection there is our author's contrivance for preferving the parts, or anatomical preparations in balfam. For all thefe reafons, the editor thought proper to dedicate this work, publifhed in mDClxxiv, to Swammerdam, who was the chief contributor to it. Our author, moreover, in the year m dC LXXIIr, had exhibited to the illuftrious Arnold Syen, profeffor of botany in the univerfity of Leyden, the feminal little bags of Fern, and the delineations he had made of them. I intreat the reader to view and confider attentively the defcriptions and figures contained in this book, and compare them with thofe given a long time after by fome of the greateft botanifts. There cannot be a greater refemblance between two eggs, than there is between our author's performance this way, and thofe that followed. The fame things might have been feen in France, nor is it impoffible that they might have been defcribed there too. The laft day of September of this year, our author finifhed his treatife on Bees, which proved fo fatiguing a performance, that he never after recovered even the appearance of his former health and vigour: and indeed it was an undertaking too great for the frongeft conftitution, to be continually employed by day in making obfervations, and
almoft as conftantly engaged by night in recording them by drawings, and fuitable explanations. This being fummer work, his daily labour began at fix in the morning, when the fun afforded him light enough to furvey fuch minute objects; and from that hour till twelve he continued without interruption, all the while expofed in the open air to the fcorching heat of the fun, bearheaded, for fear of interrupting the fight, and his head in a manner diffolving into fweat under the irrefiftable ardors of that powerful luminary. And if he defifted at noon, it was only becaufe the ftrength of his eyes was too much weakened, by the extraordinary afflux of light and the ufe of microfcopes, to continue any longer upon fuch fmall objects, though as difcernible in the poftmeridian, as they had before been in the antemeridian hours.

This fatigue our author fubmitted to for a whole month together, without any interruption, merely to examine, defcribe, and reprefent the inteftines of Bees, befides many months more beftowed upon the other parts; during which time he fpent whole days in making obfervations, as long as there was fufficient light to make any; and whole nights in regiftering his obfervations, till at at laft he brought his treatife of Bees to the wifhed-for perfection: a work which all the ages from the commencement of natural hiftory to our own times, have produced nothing to equal, nothing to compare with it. Read and confider it, and then judge for yourfelf. Our author, the better to accomplifh his vaft unlimited views, often wifhed for a year of perpetual heat and light to perfect his inquiries, with a polar night to reap all the advantages of them by proper drawings and defcriptions. In his effay on the Hemorobion, or Day Fly, he ingenuoufly owns that this his treatife of Bees was formed amidft a thoufand torments and agonies of heart and mind, and felf-reproaches, natural to a mind full of devotion and piety. On one hand his genius urged him to examine the miracles of the great Creator in his natural productions, whilft on the other, the love of that fame all-perfect Being deeply rooted in his heart, Atruggled hard to perfuade him, that God alone, and not his creatures, was worthy of his refearches, love and attention. The diftrefs of mind our author felt upon this occafion, was fo fevere that as foon as he had finifhed his book upon Bees, he put it into the hands of another, without knowing or giving himfelf the leaft concern about what might become of it. It appears however, that he at the fame time wrote two letters to Paul Boccone, on the conftruction of falt water or fea ftones and corals, which are to be found in the nineteenth and twentieth letters of the faid Boccone's natural obfervations. After this Swammerdam grew almoft altogether carelefs of the arts he had been hitherto fondeft of. He hạd conceived this diftafte for wordly affairs above two years before, though he had ftruggled againft it in favour of his book on Bees; but now he could no longer allow his mind any other occupation befides that of loving and adoring the Sovereign Good, to whofe honour alone he openly declared, he began and directed his many and great labours in the cultivation of natural hiftory, from which he now entirely defifted merely to devote all the little uncertain portion of life that remained, to the fincere practice of every chriftian virtue. His temperament was of the melancholy kind, which phyficians have obferved to be very firm in its purpofes, and our author's natural difpofition was encreafed by a quartan ague, fo that he prefevered in his refolution, in which the authority and advice of Antonia Bourignon fixed him beyond a poffibility of relapfing into his former worldly way of thinking. He therefore refolved to withdraw himfelf entirely from all converfation with
the world, but had firft the prudence ferioufly to examine, what would be neceffary to maintain him in his retirement. This he found to amount yearly to four hundred Dutch florins or gilders, without having any thing but his curiofities to raife fuch an income by. Thefe therefore he immediately refolved to fell, in hopes the produce of them put out to intereft, would be fufficient to anfwer his demands. The firft he applied to on this occafion, and the only perfon perhaps who knew any thing of our author's private intentions, was Thevenot, whom he requfted to publifh and forward the fale of thofe things, which he had fpent fo much time and labour in collecting, and formerly fo much loved. Thevenot did all that lay in his power to ferve his friend, but to no purpofe; for however valuable the treafure, no one was to be found in France willing to purchafe it, though our author was often flattered with the hopes of its felling to advantage. This difappointment made Swammerdam apply to another friend. This was Nicholas Steno, who having renounced the religion of his country, was become a member of the church of Rome, had obtained a bifhopric as a reward for his change, and to induce him to continue in it, and now lived at the court of Florence. Swammerdam wrote to him to know if the grand duke was now as willing, as he had formerly been, to purchafe his curiofities. In anfwer to this letter, the new convert's zeal made him ufe every argument he could think of to make our author, after his own example, conform to the church of Rome, and remove with his collection into Tufcany, promifing him for certain, that the great duke would let him have for his curiofities the price of twelve thoufand florins, which his highnefs had formerly offered, and let him want for nothing, that could make life eafy and agreeable. But our author looked upon thefe conditional offers as the greateft indignity that could be offered him, and accordingly bitterly reproached his friend Steno for endeavouring to prevail upon him in a manner he utterly detefted, telling him withal that his foul was not venal ; and Bourignon being confulted on the occafion, advifed him by all means to reject Steno's propofals. Our author agitated by fuch a feries of hopes and difappointments, made ufe of the little leifure that remained on his hands, in arranging and adorning his curiofities; rendering them as durable as poffible, and compofing a complete catalogue of them, fo that in his mufeum thus fettled, the materials and the contrivance, the dignity of the fubjects, and the vait pains taken in procuring, preparing, and exhibiting them, vied together for the preference. Thefe treafures confifted chiefly of infects and anatomical preparations from human fubjects. The former our author fet the higheft value upon, and no wonder, as he had fpent fixteen years in collecting and preparing them, with infinite pains and expence. The fight of his mufeum was alone fufficient to prove, that what all former authors had publifhed on this branch of natural hiffory, amounted to nothing more than a dry catalogue of names, and fome external figures, without affording any certain and ufeful knowledge. Whereas our author alone had collected near three thoufand fpecies of infects, that had no relation one to the other, and had examined every one of them, and difpofed. them all in claffes aocording to their real and natural characters; he had even diffected many of them with that fkill and dexterity peculiar to himfelf, and having with unwearied diligence traced them through every the leaft period of their changes from the egg to the Butterfly, faithfully recording all his obfervations, taking care at the fame to prepare and keep by him the minute originals as inconteftable vouchers of his indefatigable induftry in examining them, and his fcrupulous veracity, relating
what he had difcovered. Nay, that nothing fhould be wanting to perfect his difcoveries, he ufed himfelf to hatch, in a manner found out by, and only known to himfelf, the little eggs of infects, in order to difcover the obfcure manner of the exiftence of their firft rudiments, the progrefs of thefe rudiments to life, the firft motions of the infant animalcula, and by what endeavours they at laft broke their eggs, and opened themfelves a paffage into the world. While thus employed, he at length publifhed at Amfterdam the twelfth day of July moclxxv, his hiftory of the Ephemerus, or DayFly; which he began in France in the year lxiv, continued in Guelderland in the year lxvir, but did not perfect till this time, that he made it public. However even this, he did not attempt without Bourignon's approbation. This was the laft offspring of our author's great genius and application, after which he entirely renounced all thoughts of human affairs, to think of nothing but his fpiritual concerns, which he imagined he could not fo well promote in any other manner, as by going to confer perfonally with Bourignon. Accordingly, having firft obtained her leave for that purpofe, he fet out the autumn following from Amfterdam for Slefwick in Holftein, where fhe then refided, arrived there the thirtieth of September, and fpent fome time in her houfe. Mean while the Lutheran divines of that country, utterly averfe to Bourignon's undertakings, were for making her quit Holftein, which made her think of afking the king of Denmark's leave to take fhelter in his regal dominions. Swammerdam having taken upon him to execute this commiffion, fet out for Copenhagen, in company with another of her difciples, the twentyfifth of March, mdclxxvi. Here he faw Steno's mother, now far advanced in years, but reaped no other benefit by his journey, his Danifh majefty not thinking proper to grant Bourignon's requeft. After this our author made but a fhort fay at Slefwick, from whence he fet out for Amfterdan the fixteenth of June following. On his coming home, he had the mortification of finding that his father's difpleafure at his paft conduct, inftead of being appeafed, was grown more violent on account of his late undertakings. Another and greater fubject of affliction was, the marriage of his fifter Joanna, who had hitherto kept houfe for her father fince he had buried his wife; for the father on this occafion had refolved to break up houfe-keeping, and to live for the future with his fon-in-law, Our author therefore now found himfelf under the fad neceflity of fhifting for himfelf by the month of May following. How great, alas! muft have - been his diftrefs! He had neither money nor any thing of value except his mufeum, which he had already fo often endeavoured in vain to difpole of ; and his father did not propofe to allow him more than two hundred florins a year. On this occafion he formed a defign of retiring into the country, and flattered himfelf with the hopes of being able to provide for himfelf that way. The moft noble John Ort of Nieuwenrode Breukele, \&xc. had contracted a friendfhip of a very long ftanding with our author, and had often entertained him at his pleafant country feat with the greateft hofpitality and politenefs, and even invited him to remain there for good and all, and purfue his ftudies without interruption. But Swammerdam never till now found himfelf under a neceffity of putting his friend's fincerity to the teft ; however he little expected the refufal he now met with, and which, as it convinced him of the little dependance to be had on the promifes of men, greatly contributed to increafe his former anxiety. But his father dying this year put an end to his troubles, by leaving him a fufficiency to live, in a manner fuitable to his own inclinations, for now he faw himfelf freed from all
bufinefs, but that of ferving God, which alone he delighted in. But his joy was foon interrupted, when the father's fortune came to be divided, and his mufeum to be difpofed of, the fifter claiming more of the inheritance than came to her fhare, and the chief direction of the fale, while Swammerdam for the fake of peace and quietnefs, and in order to get the fooner into his long wifhed for retirement, fubmitted to her unjuft pretentions. Neverthelefs, the vexation attending this family ftrife, joined to the uninterrupted fervour of his devotion, brought a tedious diforder upon him. This was a double tertian ague, which afterwards continued without intermiffion, and then changed in different manners. Whilft this fit of ficknefs continued, he got up but feldom in the day time, and for three months together that the flow fever continued, he never went out of his houfe; he was even a whole twelve month without making a fingle experiment. At laft his diforder, again changing to a tertian ague, feemed to abate, and then entirely left him for fome days. His friends neverthelefs, and among them doctor Matthew Slade, a moft learned phyfician, and one whofe advice had the greateft weight with our author, could never prevail upon him to ftir from his bed-chamber. He would often excufe himfelf by faying that folitude and retirement could alone extirpate the relicks of his diforder; when Slade, Ruyfh, Schrader, Hotton and Guenellon, who all of them frequently vifited him in the quality both of friends and phyficians, attempted to perfuade him to the ufe of medicines and frefh air for the recovery of his former ftrength and vigour. But he at laft put a ftop to their importunities by an obttinate filence. However as the things he formerly took moft delight in, were now become odious to him, and he had no further hopes of being able to difpofe of them in France, he wrote to his friend Thevenot, who had again invited him to his houfe, that he would accept of his kind offer, provided he would immediately difpofe of his curiofities for him, and permit him to live quite unknown and retired. But here too our author was again difappointed, fo that at laft he advertifed a fixed day in the month of May following; mDCLXXX, for the fale of his curiofities, article by article, to the beft bidder; fo great a defire he had of getting rid of them, notwithftanding that he had feen that his father's mufeum, when fold in fingle lots, had not produced above a fixth part of what his executors expected it would have fold for. But whilft our author was taken up in this manner, his old diforder broke out anew with worfe fymptoms than had hitherto appeared, an emaciated countenance, hollow eyes, a flow continued fever which eating always increafed, and a fwelling in his feet, legs, thighs and belly, attended with conftant and uninterrupted pains. All this time his friends durft not make the leaft mention before him of his former ftudies, nor did he himfelf ever fpeak a word of them; for he now utterly detefted as vain and infignificant the things he formerly moft delighted in. Thevenot, informed of the languifhing condition he was in, offered him the jefuit's bark, then greatly talked of for its efficacy in curing fevers, and Swammerdam defired he might fend him fome of it, and fome fpecific againft the dropfy, if he knew of any. But at laft finding himfelf grow worfe and worfe, he made his will the twenty-fifth of January mDCLxxx, and left Melchifedeck Thevenot, formerly the French king's minifter at Genoa, all his original manufcripts belonging to the natural and anatomical hiftory of Bees and Butterflies, with fifty-two plates belonging to them, and ordered all thofe valuable papers then laid up in the houfe of Herman Wingendorp at Leyden, to be delivered to the legatee within a year after his death; but earneftly recommended that his treatife on

Bees fhould be publifhed in Dutch as well as Latin, as difplaying the wifdom and power of God in fo particular a manner. The little portion of life, that he enjoyed after this difpofal of his worldly concerns, he gave entirely to his fpiritual ones, fpending his whole time in acts of love and adoration of the Supreme Being, and thus ended his courfe the feventeenth of February following. He conftituted Magaret Volckers, wife of Daniel de Hoeft, doctor of phyfic, his heirefs, and her and Chriftopher Van Wyland his executors, but Van Wyland dying foon after, the truft devolved wholly into the hands of Madam Volckers.

As foon as our author's executors had performed the laft rites due to their deceafed friend, Mr. Ort at their requeft gave Mr. Thevenot notice of the legacy left him in Wingendorp's hands; for Swammerdam being little verfed in the Latin, in which notwithftanding he was defirous of feeing all his works publifhed, had given them to Wingendorp to tranflate into that language, as he had before done our author's writings on the uterus. Thevenot on this wrote feveral times to doctor de Hoeft, to defire he fhould immediately caufe his legacy to be delivered him ; but Wingendorp, who was poor, and lived by his tranflations into various languages, after endeavouring by a thoufand frivolous pretexts to make a property of what he had only been entrufted with, at laft openly declared he would return nothing till compelled to it by due courfe of law. Upon this therefore a tedious and troublefome lawfuit enfued, in which however Thevenot at laft obtained a decree in his favour in May mbclxxxif, when Swammerdam's papers in the hands of Wingendorp were delivered to Burcher de Volder, a celebrated profeffor of anatomy and mathematics, whom Thevenot had engaged as a friend to take his intereft in hand, and without whofe diligence and prudent management, it is poffible that Thevenot would have loft his legacy. As foon as Thevenot heard of his friend's fuccefs, he gave orders to have the writings in queftion publifhed in Dutch, but foon altered his opinion, and fent for them. He then attempted fome alterations in them, as I could difcover by the erafements made here and there with his own hand ; but in this he fell fhort of anfwering Swammerdam's intentions, though probably only for want of abilitics fuitable to fuch a tafk. Be that as it will, this valuable treafure, after Thevenot's death, was purchafed by Joubert the king's painter, whofe heirs afterwards fold it at the inconfiderable price of fifty French crowns to the illuftrious Jofeph du Verney, with whom they lay hid and difregarded for a long time. At laft a report prevailing that the anatomy of infects was coming into great vogue, and that a hiftory of this part of the creation, compofed by the great anatomift juft now fpoken of, was upon the point of appearing at Paris, I requefted William Sherard my gueft at that time, and moft intimate friend, to obtain fome certainty for me in regard to this report, as he was then about making a journey into France. Accordingly on his arrival at Paris, he wrote that Swammerdam's works were in the hands of Monfieur du Verney, and cven fent me fome copperplates after the drawings of our author, which when I examined, ferved only to excite my ambition of afferting the right of my country to the honour of having produced the originals, and making without lofs of time all the inquiries I judged neceffary for that important end. At laft, by the affiftance of the reverend Mark Guitton, and the cminent William Roell, profeffor of anatomy at Amfterdam, both then refiding in Paris, I fo far fucceeded, that they were purchafed for me the twenty-fixth of March,

xiv The LIFE of JOHNSWAMMERDAM.

March, mbccxxvii, at the price of one thoufand five hundred French florins, and I received them complete the fame fummer. As foon as I had got them, I read them; and having diligently examined them more than once, I carefully digefted them, and had the fatisfaction of feeing that nothing was wanting except a few pages of the text in the treatife of Bees, which a note in the margin obferved was not to be repaired; however, on looking narrowly for them, I had the good fortune of finding them elfewhere. Upon this, I fhould have publifhed them directly, but for the infatiable avarice, and unbounded audacioufnefs of the printers, who make nothing of reprinting things as foon as they appear, to the great lofs of the firft publifhers. However, I have at laft fucceded in guarding againft fuch foul treatment, and return my hearty thanks to all thofe who fo generoufly contributed their affiftance on this occafion. And now I mult own, that it is with the greateft pleafure I find myfelf enabled by this valuable work to challenge all thofe nations, who fo liberally reproach us Dutchmen with a dullnefs that requires the inventions of others to fharpen it, to produce before able judges, any thing equal to this performance of one of our countrymen. This inftance will, I believe, be fufficient to convince mankind that we have among us uncommon geniufes, who have made the moft important difcoveries, and fiderlike, have furnifhed themfelves alone both the workmanfhip and materials. However I. muft in juftice own, there is now in France fuch another bright fun, who by his light not only fhews, but adds grace and dignity to every object he is pleafed to fhine upon. I mean that prodigy of our age, and glory of his country, the illuftrious Reaumur. God grant this great man life to go through, and many years to furvive, his great undertaking.

I examined with the greateft care and attention all the letters, and other writings of Swammerdam, that I could lay my hands on, in order to find out the methods taken by him to perfect thofe beautiful difcoveries, by which he has fo far exceeded all authors in the fame way; and I fhall here candidly relate the fruits of my perquifition. For diffecting of very minute fubjects, he had a brafs table made on purpofe by that ingenious artift Samuel Muffchenbroek. To this table were faftened two brafs arms, moveable at pleafure to any part of it, and the upper portions of thefe arms were likewife fo contrived as to be fufceptible of a very flow vertical motion, by which means the operator could readily alter their heigth as he faw moft convenient to his purpofe. The office of one of thefe arms was to hold the little corpufcle, and that of the other to apply the microfcope. His microfcopes were of various fizes and curvatures; his microfcopical glaffes being of various diameters and focufes, and from the leaft to the greateft, the beft that could be procured, in regard to the exactnefs of the workmanfhip, and the tranfparency of the fubftance. His way was to begin his furveys with the fmalleft magnifiers, and from thence proceed by degrees to the greatef; and by nature and ufe was fo incomparably dexterous in the management of thefe ufeful inftruments, that he made every obfervation fubfervient to the next, and all tend to confirm each other, and complete the defcription. Thefe no doubt were talents very uncommon, though no lefs requifite in an obferver of fuch things. But the conftructing of very fine fciffors, and giving them an extreme fharpnefs, feems to have been his chief fecret. Thefe he made ufe of to cut very minute objects,
becaufe
becaufe they diffected them equably; whereas knives and lancets, let them be ever fo fine and fharp, are apt to diforder delicate fubftances, as in going through them they generally draw after them, and difplace, fome of the filaments: his knives, lancets, and ftyles were fo very fine, that he could not fee to fharpen them without the affiftance of the microfcope; but with them he could diffect the inteftines of Bees with the fame accuracy and diftinctnefs, that others do thofe of large animals. He was particularly dextrous in the management of fmall tubes of glafs no thicker than a briftle, drawn to a very fine point at one end, but thicker at the other. Thefe he made ufe of whenever he had a mind to fhew, and blow up the fmalleft veffels difcovered by the microfcope; to trace, diftinguifh, and feparate their courfes and communications, or to inject them with very fubtil coloured liquors. As to the infects themfelves, he ufed to fuffocate them in alcohol or fpirit of wine, in water, or fpirit of turpentine, and likewife preferved them for fome time in thefe liquids, by which means he kept the parts from putrefying, and confequently collapfing and mixing together; and added to them, befides, fuch ftrength and firmnefs, as could not fail of making the diffections far more eafy and agreeable. When he had divided tranfverfely with his fine fciffors the little creature he intended to examine, and had carefully noted every thing that appeared without further diffection, he proceeded to extract the vifcera in a very cautious leifurely manner, with other inftruments of equal fubtility; but firft took care to wafh away and feparate with very fine pencils the fat with which infects are moft plentifully fupplied, and which always occafions fome damage to the internal parts, before they can be extracted. This laft operation is beft performed upon infects whilft in the Nymph fate. Sometimes he put into water the delicate vifcera of the infects he had fuffocated, and then fhaking them gently, procured himfelf an opportunity of examining them, efpecially the air veffels, which by this means he could feparate from all the other parts whole and entire, to the great admiration of all thofe who beheld them ; as thefe veffels are not to be diftinctly feen in any other manner, or indeed feen at all without damaging them. He often made ufe of water injected by a fyringe, to cleanfe thoroughly the internal parts of his infects, then blew them up with air and dried them; by which means he rendered them durable, and fit for examination, at a proper opportunity. Sometimes he has examined with the greateft fuccefs, and made the moft important difcoveries in infects that he had preferved in balfam, and kept for years together in that condition. Again, he has frequently made punctures with a fine needle in other infects, and after fqueezing out all their moifture through the holes made in this manner, filled them with air by means of very flender glafs tubes, then dried them in the fhade, and laft of all anointed them with oil of fpike, in which a. little refin had been diffolved, by which means they retain their proper forms for a very long time. He had fo fingular a fecret for preferving the very nerves of infects, that they ufed to continue as limber and as perfpicuous as ever they had been. . As to Worms in particular, his way was to make a fmall puncture or incifion in them towards the tail, and after having very gently, and with great patience fqueezed out all their humours, and great part of their vifcera, inject them with wax, fo as to give and continue to them all the appearances of living, healthy, and vigorous creatures. He difcovered that the fat of a!l infects was perfectly diffolvible
in oil of turpentine, and that they could not be preferved in balfam : and this difcovery he always made the greateft fecret of, becaufe the fat of infects when melted, and then dried, looks like lime fcattered over the parts, fo as to obfcure the vifcera, and make it utterly impoffible to examine them; but then, however confufed and immerfed they might have been before, they fhew themfelves after this procefs very plainly and diftinctly, on being long and thoroughly wafhed with fair water. Very often he fpent whole days in cleanfing of its fat in this manner, the body of a fingle Caterpillar, in order to difcover the true conftruction of that infect's heart. His fingular fagacity in ftripping off the fkin of Caterpillars that were upon the point of fpinning their nefts, deferves particular notice. This he effected by letting them drop by their threads into fcalding water, and fuddenly withdrawing them, for by this means the epidermis peeled off very eafily; and when this was done, he put them into diftilled vinegar and fpirit of wine mixed together in equal portions, which, by giving firmnefs to the parts, gave an opportunity of feparating them with very little trouble from the exuvix or fkins, without any damage to the vifcera, fo that by this contrivance the Nymph could be fhewn wrapped up in the Caterpillar, and the Butterfly in the Nymph. All thefe wonders he performed by the light of the brighteft mid-day fun, and had brought his arts to fuch perfection, that he could exhibit whenever he thought proper, the manner in which infects were enclofed in infects, and were to be extricated from their enclofures. He could at laft change the Caterpillar to a Chryfalis at his pleafure, and alfo could as he pleafed forward, ftop, and regulate its motions. He affirmed nothing but what he faw, and was able to demonftrate every thing he affirmed. He in good earneft followed Lord Bacon's advice; for his opinions were the fruit of his experience, and he could effect the very things, whofe exiftence he maintained. Obfervations alone, made with the moft wonderful patience by experienced fenfes, affifted with the fitteft inftruments, led him into the method followed by nature in all her operations; and he fo fcrupuloufly adhered to that great guide, that whenever he formed a rule from particular obfervations, he did it with fo much caution, as to let it include thofe particulars only, from which he had deduced it, and extracted his canon. In explaining the works of nature, he ufed to reafon by comparing his obfervations with one another, and never admitted the ufe of a general application of them upon any other occafion. Thus he began, carried forward, and perfected without any affiftance, in a private and middling ftation of life, more difcoveries than all the writers of all the preceding ages. By thefe means he found there were little creatures that breathe at the tail, and others that govern themfelves in the water by the help of a little bubble of air, which they expand at pleafure to afcend to the furface, and comprefs in like manner, when defirous to fink to the bottom; and can regulate it in fuch a certain manner, that they can fufpend themfelves in any part of the water they choofe. Some again he difcovered, who have their legs fixed to their jaws; and others in which the penis of the male receives in copulation the vulva of the female, and a few which are of both fexes at once, and act reciprocally, upon each other as fuch at one and the fame time. In fine, from fuch an infinite number of new and uncommon obfervations, he formed a fyftem fuperior by many degrees to any thing of the kind that had as yet appeared. He even collected the materials upon which this fyltem was founded, rendered them durable, and digefted them, in order to have always at hand undeniable vouchers for the truth of

The LIFE of JOHN SWAMMERDAM. xvii

every thing he advanced. Such a fabrick had never been raifed before, yet it was raifed by him in fo mafterly a manner, that it might have ftood ages. But, O hard fate of induftry! after having been driven himfelf to offer his curiofities to fale more like a beggar that had nothing to give, than like a man who offered infinitely more than he afked, and this too without fuccefs; his heirs, after his deceafe, made propofals of felling them all, his anatomical preparations, his infects, and his inftruments, for the trifing fum of five thoufand florins, without finding any one intelligent enough to buy them for his own ufe, or generous enough to purchafe them for that of the public. Alas, what a lofs was this, never to be repaired! Thefe wonders of art and nature, by being feparated and fcattered into different hands, loft all their value, to the irretrievable difhonour of an age, the moft remarkable of any that had as yet ever been for ftudies of this nature. As for you, my readers, I muft inform you of the obligations you owe, on the prefent occafion, to the great Gaubius, who from his fincere love to the republic of letters, tranflated all the works I now prefent you, from the original Dutch into Latin, that the curious of all nations might have the better chance of reading them ; and perhaps it would have been a hard matter, if not impoffible, to find another tranflator equal to the tafk. The facts I have here related are collected from the hiftory of the times, from a repeated perufal of Swammerdam's works, and from the letters written or received by him. An accurate and well-digefted collection of all thefe papers fupplied me with materials for writing his life, and I intend to depofit them all, as well as the original drawings made by his own hand in the moft elegant and mafterly manner, in the public library of the univerfity, there to remain as an eternal monument of our author's merit, and of my exactnefs and integrity in writing his life, and publifhing his labours; and, in fine, that fuch as take delight in things of this kind, may by this means have an cafy opportunity of fatisfying their curiofity. It was thus I acted in regard to the pofthumous works of the celebrated Vaillant. Farewel reader.

THE

A UTHOR's PREFACE.

CURIOUS reader, before I proceed to lay my obfervations before you; I muft moft humbly requeft, that you will not be difpleafed, if in all this work I have only made ufe of my own obfervations, as a folid and immoveable foundation to build upon, and that from them I have deduced certain conclufions, folid theorems, and claffes digefted in due order. For as long as neither nature herfelf exhibits any thing in oppofition to thefe theorems, nor other writers produce experiments to contradict them; we may reft affured of the truth of what I have delivered; but then we mult not wander beyond the limits of fuch obfervations, nor by fraining them too much, make them extend to things not as yet fufficiently difcovered. Otherwife, as nature is utterly inexhauttible, we fhould be in danger of falling into errors; and indeed it is generally our own fault that things of themfelves fufficiently clear and evident, become obfcure, anid even impenetrable to us: Thus a perfon would be guilty of a great miftake, who, after running over all the animals he knew, never to be at once male and female, fhould from thence conclude, that both fexes are never found in one and the fame fubject; whereas the contrary appears in Snails, which are all capable of impregnating as males, and conceiving as females, but with this reftriction, that the fame Snail cannot act upon itfelf; fo that a mutual intercourfe of two is requifite to carry on the bufinefs of propagation, as I many years ago demonftrated before a numerous company. As therefore all the experiments I have hitherto made, agree perfeclly together, and mutually fupport each other, there is the lefs reafon, till fomething appears in the nature of things to break the thread of my fyftem, to be flartled at the objections of others, who never made the fame obfervations, and are not perhaps properly qualified to make the fame experiments. But if hereafter any thing fhould occur, that I may have reafon to think deferves to be added to what I have already advanced, or exceeds the bounds to which I have confined myfelf, or appears repugnant to my former obfervations; I promife faithfully to publifh them, though they fhould abfolutely deftroy the principles I have laid down, provided that they ferve to confirm and illuffrate the truth. And I moreover earnefly requeft all thofe who love truth as I do, and are equally anxious to find it out, to affift me on this occafion with their favour and advice.
But as the moft eminent amongft the ancient writers on this branch of natural hiftory, have propofed two different manners in which infects undergo their mutations; one known by the name of Nymph, and the other by that of Chryfalis, calling Nymph that change of the Worm, under which it exhibits the form of the infect that is to iffue from it; and Chryfalis, that other change which fhews no figns of the future infect; I muft
forewarn my readers that I fhall by no means admit two different fpecies of changes, as I can plainly and diftinctly difcover in the Chryfalis, as well as in the Nymph, all the parts of the future infect, and can even give ocular proof of their exiftence. And as to the parts not appearing externally in the Chryfalis as clearly as they do in the Nymph, and the former having a gold colour, which I never obferved in the latter, it is not a thing of confequence enough to make me alter my opinion.

But perhaps the reader, as yet a novice in the hiftory of infects, may not rightly underftand what I mean by the words Nymph and Chryfalis, I muft refer him to the figures of this work, where he will find the Nymph of the Ant reprefented under number v. Tab. XVI. and the Chryfalis of the nocturnal Butterfly, under the fame number v. Tab. XXXIII. For the fake of greater perfpicuity, I obferve the fame order in Tab. I. XII. and XXXVIII. where I place before my readers other fpecies of Nymphs that fhall be defcribed in their proper places, and afterwards fummed up under one view, in the general comparifon of mutations, with which I intend to conclude this work. Farewell.

E L E G I A I N H O N O R E M

 D. JOANNIS SWAMMERDAMII, M.D.

 D. JOANNIS SWAMMERDAMII, M.D.
 Nature Infectorum Indagatoris indefeffi, incomparabilis.

Allocutio ad Harveum $\ddot{\sim} \pi$ árv.

FLOS \& honos Anglix gentis, quo, judice Phobo, Nil quicquam eximius terra Britanna tulit ;
Artis delicium noftre, quo fofpite quondam Sidera tangebat vertice celfa fuo;
Define jam gemitus, tua jam fufpiria ceffent,
Quod multa abftulerit ter fcelerata manus,
Quêis miranda tibi levium fpectacula rerum
Scripta, atque in varios corpora verfa modos:
Quêis tibi Nympharum \& fulvæ Chryfallidos ortus
Depicti, \& Gryllus papilioque fuit:
Ecce alium, data damna tibi qui farciet olim, Inventifque addet non tibi vifa tuis.
Non hunc parva latet magni Formica laboris, Angufto quamvis tramite carpat iter.
Hic quis amor, quis Hymen illis, quæque ofcula novit, Quâ foveant natos fedulitate fuos:
Non fugit hunc mifera \& male nata Diaria, quamvis Vix detur medium vivere poffe diem;
Quæ poftquam teneris volitavit in ære pennis, Sævis præda avibus, pifcibues efca cadit.
Nec Scarabæus aquæ, feu pervolat ille paludem, Seu celer, ad fundum, mox rediturus, abit;
Sed bullâ, mirum vifu! rediturus inani,
Quam villofa intus caudula clufa tegit.
Nec tu, dire Culex, mediis feu degis in undis, Aëra feu pinna liberiore petis.
Novit A pum fexus, ortus, connubia, novit Quam telam in cera fedula fingat Apis.
Et negat ulla novas Infecta affumere formas,
At vermi inclufas delituiffe docet.
Quam fupui, quando narrantis ab ore pependi, Cum mihi monftraret plurima quam ftupui!
Gaude, Vegta, tuis illum quod vexeris undis, Et quod capta tuo flumine præda fuit.
Non Aldrovandos jam clara Bononia jactet,
Nec mihi Moufetos Anglus ad ferat:
Gefneros etiam fileat Germania tellus,
Nefcio quid majus Terra Batava dabit.

Idem utcunque Latinè redditum.
Ad Lectorem.
Videris ut, Lector, librum ©o perlegeris, ingens Quem Swammerdammi cura laborque dedit; Quo tibi natura Infecti morefque patefcunt, Unica cui nomen donat babere dies.
Negligere illius curam fuge. Nofcere at ipfum Te cupe, quamque fugax ipfe brevifque fies.
M. Siadus, M. D.

CONTENTS.

SUBSCRIBERS NAMES.

His Royal Highnefs Geor Ge, Prince of Wales.
His Royal Highneis The DUKE.
His Royal Highnefs Prince EDWARD.
B.

T/HE Right Honourable the Countefs of Bleffington.
The Right Honourable the Earl of Bute.
Mr. Brandenburg, Apothecary.
Mr. Barber.
Mr. Benjamin Booth, Fleet-Street.
Mr. Britland.
Mr. Baker.
Mr. Banks.
Mr. Bates.
Mr. Brown.

c.

The Right Honourable the Earl of Carlifle.
The Right Honourable Lord Charles Cavendifh.
Henry Coddington, Efq;
Mr. Carpenter.
Mr. Carter.
Mr. Cape.
Mr. Clayton.
Mr. Collins.
Mr. Cooper.
Mr. Cooke.
Mr. Cutler.
D.

Mr. Davidfon.
Mr. Charles Davidfon.
Mr. Davids.
Mr. L. Day.

E.

Mr. Earle.
-_Ellis, Efq;

William Ellifon, Efq;
Mr. Ertcourt.
Mr. Evans.

H.

Baronet de Hemert.
Mr. Charles Harris of Paddington.
Timothy Hollis, Efq;
Charles Hinuber, Efq;
Dr. Jofeph de Hillmer.
Dr. Hampe.
Mr. Harfcher.
John Hannam of the Middle Temple, Efq;
William Harris, Efq;
Mr. Hilfon.
Mr. T. Harris.
Mr. Houfeman.
K.

Mr. J. King.
Mr. T. King.
Mr. W. King.

L.

The Reverend Mr. William Langhorn, of Cumberland.

- Lloyd, Efq;

Mr. Lloyd.
M. Long.

Mr. Laws.
Mr. Levet.
Mr. Leewen.

M.

- Mafon, Efq;

Mr. C. O. Mencke, at Drefden.

SUBSCRIBERSNAMES.

N.

P.

Mr. Payne, Mews-gate.
Mr. John Piggot of Inlington.
Mr. John Poyner, Apothecary at Iflington.
Mr. J. T. Pierce.

- Porter, Efq;

William Porter, Efq;
George Porter, Efq;
R.

John Richards, Efq;
Mr. Richards.

- Richardfon, Efq;

William Rivers.
Mr. Read.

S.

The Right Honourable Lord Southwell.
The Honourable Mr. Tho. George Southwell.

- Sands, Efq;

Dr. Smellie.
Mr. Sweighaufer.

- Scot, Efq;

Mr. Scot.
Mr. J. C. Seyffert, at Dre§den.
Mr. Strange.
Mr. Saunderfon.

T.

- Taylor, Efq;

Mr. Taylor.
Mr. Turner.
Mr. Townfend.
Mr. Tomkin.
V.

Mr. Vane
Mr. Veer.
W.

Wright, Efq;
John Wright, Efq;
Mr. William Wright.
Mr. Winfton.
Mr. Williams.
Mr. White.
Mr. Wills.
Mr. Wilkifon.
Mr. Wilton.
Wr. Wilfon.
Mr. Williamfon.

- Wats, Efq;

Mr. Wats.
Mr. Wilkey.
Mr. Watfon.
Mr. Watkins.

- Walker, Efq;

John Walker, Efq;
Mr. Ward.
Mr. Warton.
Y。
John Younge, Efq;
Mr. Young.
Mr. Yeates.
Mr . Younger.

P A R T I.

CHAP. I.

THE defign and diftribution of the work. C H A P. II.
The fingle foundation of the changes obferyable in known infects, hewn to be the Nymph ; with an explanation of the manner in which Worms and Caterpillars become Nymphs

C H A P. III.
The manner in which the true knowledge of the Nymph, the real foundation of all the natural changes obfervable in infects, has been obfcured and corrupted; with an illuftration of the fubject, and an entire reftitution of its original truth

10
CH A P. IV.

Of the four orders of natural changes, to which we refer, nearly, all the fpecies of infects, as having the fame fole principle of change

THEFIRSTORDER.

Of the natural changes, or flow accretions, of the limbs

18
A catalogue of the infects which are referred to in the firf order of natural changes, called the Nymph-Animal

20
The natural changes of the firft order of infects, exemplified in the Loufe; with an explanation of what relates in general to the other three orders
A letter to Mr. Thevenot, containing the diffection of the Human Loufe
The external parts ib.
The internal parts
The conclufion of the letter to Mr. Thevenot
37
An explanation of the changes of the firf order, which are exhibited to view, by the affiftance of figures, for which the Loufe is produced as an example
3^{8}
Of the arborefcent Water-Flea
A particular treatife on the Scorpion; which likewife belongs to the firft order of natural changes

41
The natural hiftory of the covered Snail, illuftrated by accurate drawings
C H A P. I.

Of the fhell and foft part of the Snail in general, and particularly of the four horns which fpring from the upper part of its head, and of the eyes that appear in them ; with a defcription of the confruction and motion of there parts

> C H A P. II.

Of the lips, mouth, teeth, tongue, palate, œfophagus or gullet, and certain mufcies of the Snail

48
Of the tafte, fmell, and certain actions of the Snail

C H A P. IV.
Of the frructure and ufe of the verge or lip of the Snail, and of its refpiration and found, with other experiments: alfo of its glands, veffels, and what it has in the place of feet

50
C H A P. V.
Of the actions, ftrength and life of the Snail. How it is to be killed for diffection, with further experiments; and an account of the effect that Salt has upon this creature

C H A P. Ví.
Of the internal parts of Snails; and firf of the heart, its auricle, the vena cava, and aorta. And alfo of the blood, and its perpetual circulation. Of the difference of the flimy humour from the blood of the cavities of the verge, and alfo of the facculus calcarius; or bag of alkaline matter. To which is added; a curious experiment, pertaining to the motion of the mufcles
5^{2}
C H A P: VII.
Of the bile, ftomach, inteftines, and falival veffels of the Snail.

C H A P. VIII.
Of the genitals, penis, uterus; tefticles, ovary, and other parts fubfervient to generation 56

C H A P. IX.
Of the manner in which Snails mutually performing the bufinefs of coition

Of the brain and nerves, and in what manner thofe parts have their mufcles, whereby they are moved backiward and forward, in the body; a wonderful particular not hitherto known in any animal

60
C H A P. XI.
Of the mufcles of the body and fhell, which is the bone of the Snails: in what a wonderful manner this fhell is formed on the infide, and how it is increafed and nourin?ed. Lafly, how the Snail moves in its egg

> C H A P. xil.

Of the Hermit-fifh, and Pinna Marina. Of the inward turnings or convolutions of the turbinated fhells. Of the Voluta or Cylinder, the Concha Veneris, and Pencil, and fome other fhells of the Snail kind66

The little Turbo
68
The fmall flatted Snail 69
The oval Snail
ib.
C H A P. XIII.
Of the garden Snail, the houfe Snail; and that of fields or path-ways 70
Of the garden Snail ib.
Of the common houfe Snail 71
Of the field or path-way Snail $\quad 72$
C H A P. XIV.
Of the common water Snail, alfo of an uncommon and viviparous kind of water Snail;

C OM T

aid of the flatted water Snail, and the nuicles of the river Vecht. Allo a remarkable obfervation on the common Snail
Yhe common water Snail
The wonderful viviparous cryftalline Snail 75
Of that fpecies of the Sea Snail, called by the
Hollanders Aliekruyk
Of the fimall water Turbo
Of the umbilicated marble Snail
The flatted Snail
The fmall flatted Snail
Of the frefh water Mufcles, found in the rivers in Holland
ib.
The method of cutting various images in fhells
A. Letter from the author to the moft illuftrious Mr. Thevenot, on the anatomy of the Cancellus or Bernard L'Hermite 86
The external parts of the Cancellus or Hermit
The internal parts

TIIESECOND ORDER.

Of the natural changes, or flow accretions in the limbs and parts of infects
9^{2}
A Catalogue of the infects, which are referred to the fecond order of natural changes; called the Nymph-Vermicle

93
An example of the fecond order of natural changes, which I call the Nymph-Vermicle, in the Dragon-Fly

97
Of the Nymph-Vermicles of the DragonFly

99
Of the flying water Scorpions, which belong to our fecond order

101
The external parts ib.
The internal parts 102
The natural hiftory of the infect called the Hemerobios, Ephemerus, Diaria, or DayFly, extracted from J. Swammerdam's account of it, formerly printed in Dutch, under the title of the life of the Ephemerus 103

C H A P. I.
The Ephemerus is produced from an egg ib. C H A P. II.
The egg of the Ephemerus produces a little Worm with fix legs, called the bank-bait by filhermen

104
C H A P. III.
Of the life of the Vermicle or Worm of the Ephemerus, when out of the egg, and of its food

CHAP. IV.
How long the Vermicle or Worm of the Ephemerus is winged, why it is called the efca or bait; and how long it lives 106

$$
\text { C H A P. } V \text {. }
$$

Defcribes the external parts of the efca or bait, its colour, and the difference in its manners and difpofition

107

> C H A P. VI.

The anatomy of the internal parts of the Ephemerus

> C H A P. VIT.

The figns by which to difover, whether the Ephemerus is to ty in a flort time; as alfo

E N T S。

what may prevent it, and to what order of natural changes it belongs

C H A P. VIII.

How and in what a wonderful manner the Worm is tranformed into an Ephemerus ib.

C H A P. IX.
How long the Ephemerus lives, and what haftens its death

117

> C H A P. X.

That the Ephemerus kind flies three days, and fometimes four: certain other fpecies are alfo defcribed

18
THE THIRD ORDER.
Of the natural changes or flow accretions of the parts of infects

II9
A catalogue of the infects which belong to the third order of natural changes, called the Nymph

12 I
The third order or clafs of natural changes, according to the firft fpecies or method, which we have called fimply the Nymph, exemplified in the Ant

126
Of certain other kinds of Ants, fome of which fpin like Silkworms $\$ 30$
A very curious hiftory of the Rhinoceros or horned Beetle, illuftrated with accurate figures
1_{3}
CHAP.I.
Of the places wherein thefe Beetles live, of their generation, eggs, Worms, and food; how long they are feeding; with various other uncommon incidents. 132 C H A P. II.
The name of the Worm out of which the Rhinoceros Beetle is produced, alfo its external parts, difpofition, and motions; that it loves heat, and that it cafts a fkin, with other incidents tending to illuftrate this fubject 134

C H A P. III.
The anatomy of the Coflus. The manner in which it is to be killed. Its blood, heart, fat, pulmonary tubes, throat, ftomach, fpinal marrow, and the nervus recurrens. Whether the Coffus is eatable. How it may be feafoned or preferved, with fome uncommon obfervations

136
C H A P. IV.
The manner wherein the Worm is changed: how its inward parts are transformed in their increafe and growth, and the wonderful metamorphofis of the Worm into a Nymph. Alfo the method whereby the points of refpiration, or breathing holes, are tranfpofed: to which are added, many uncommon obfervations

CHAP.V.
In what manner the Nymph is filled with a fuperfluous moiture, which afterwards evaporates. The anatomy of the Nymph. How, on cafting oif its 隹in, it becomes a Beetle; with fome wonderful difooveries in natura! hiftory

CHAP. VI.

144
The difference between the male and female Rhinoceros Beetle, after the Nymph cafts its

C $\mathrm{O} N \mathrm{~N}$

ikin; and is changed into cither of them. Of the points of refpiration, the eyes, the brain, the optic nerves, the pulmomary tubes and pneumatick bladders. Of the heart, and of the genital organs of the male and female ; with a moral conclufion
A particular treatife on the Culex or Gnat, which likewife belongs to the firft method of the third order of natural changes called the Nymph

153

P A R

ACatalogue of infects, which are referred to the fecond method of the third order or clafs of natural changes; called the Chryfalis a An example of the fecond fpecies or method of the third order of natural changes, called the Nymph-Chryfalis, or Aurelia, exhibiting that fpecies of the nocturnal Butterfly, or Moth, whereof the male is winged
The anatomy of the common diurnal and variegated Butterlly

C H A P. I.

A defrription of the external parts of the Caterpillar, and a diffection of the internal, fo as to give a fatisfactory account of the blood, mufcles, kidney-flaped parts, ftomach, gullet, clofed guts, filk-bags, fat pulmonary tubes, heart, brain, and nerves

II

$$
\mathrm{C} \text { H A P. II. }
$$

The manner in which the Caterpillar is changed into a Chryfalis or Aurelia, with the true explanation of what the Chryfalis is. This chapter contains alfo fome anatomical obfervations, and fome other curious remarks concerning the Chryfalis and Butterfly

13
The anatomy of the Chryfalis two days after it has caft its fkin
The fame at fix or eight days old 17
At twelve or thirteen
ib.
At fixteen or feventeen
ib.
In what manner the Aurelia affumes the form of a Butterfly

18
C H A P. III.
Containing a defription of the internal parts of the male and female Butterfly, defcribed in the preceding chapters

21
An animal in an animal, or the Butterfly hidden in the Caterpillar ; which is a third particular example, ferving as an additional illuftration to the fecond method of the third order or clafs of natural changes

24 THE FOURTH ORDER.
Of natural changes, or hlow accretions of the limbs

30
A catalogue of infects referred to the fourth order or clafs of natural changes, called the Vermiform-Nymph

34
A. finguiar example of the fourth order of mutations, exhibited in a Fly; whofe metamorphofis, or natural accretion into the firft form of its limbs, and other parts, is called a Vermiform-Nymph

E N T S:
A treatife on the hiftory of Bees, or an accurate defcription of their origin, generation; fex, oeconomy, labours, and ule I59 A delineation of the trunk or frout of the Warp, as feen from underneath 195
The firft, fecond, and third obfervation on the female Bee 206
The fourth 207
The fifth 208
Some peculiar oberations relating to the hiftory of Bees

T II

The furprifing hifory of the infeet calicad Mufca Tabanus, or more properly, the Afilus or Cad-Fly.

43
C HAP. 1.
The external figure of the Worm, from which the Gad-Fly is produced, reprefented in its natural fize, alfo as it appears when magnified by the microfcope; with the manner of its carrying its legs, by a mooft wonderful contrivance, in its mouth, and of its breathing by the tail 44 C H A P. II.
Of the actions or motions of this Worm, the places where it is found, its food; and the manner of killing the Worm for diffection

CHAP. III.
The anatomy of this Worm, giving an account of its teeth, ftomach, inteftines, falival vefiels, pulmonary tubes, fat, heart, brain, and muficles

CHAP. IV.

The wonderful manner vherein this Worm paffes into a Nymph, and of the parts thas are feen in the Worm, when it is ftript of its skin; and the fame parts afterwards clearly fhewn in the Nymph 51

> CHAP. V.

The anatomy of the Nymph, the fat, the pulmonary tubes, the fomach, and inteftines: the wonderful changes obfervable in the ovary, mufcles, fpinal marrow, and other internal parts which inferinibly come in fight

> C H A P. VI.

Of the true manner in which the Nymph breaks out of its outer and imner coats, to that, by a kind of vifible refurrection, the creature afterwards affumes the form of a Fly. Alfo of the pulmonary tubes and inteftines, the coats of which are drawn off, and left in the exuviz

57
CHAP. VII.
Treating very particularly of the Gad-Fiy, and its external and interial parts, as weil male as female
A letter written by the author to Mr. Thevenot, on the nature and anatomy of the Worm bred in rotten cheefe, or the Acarus, and called by us the Mite; and of the Fly proanced from is
$\mathrm{C} \quad \mathrm{O} \quad \mathrm{N}$

The external parts of the Mite
Of the difpofition of the Mite
An anatomical defcription of the internal parts
An account of the manner by which Mites get into cheefe, and caule it to rot, inftead of being caufed by or formed themfelves out of rottennefs; with many other uncommon obfervations

68
The manner in which Mites are changed into Nymphs

71
The manner in which the Nymph of the Mite breaks from its membranes, and afflumes the form of a Fly
Of the genital parts of the male and female Mite-Fly, and the manner of their coupling

The manner in which thefe Flies lay their eggs, with an account of the membranes they throw off, on leaving the Nymph ftate 75
The hiftory of the Worms found in the tubercles and fiwellings of the leaves of the Willow
In what manner the eggs of thefe litlle creatures come into the leaves of the Willow tree 79
Of other infects found in the tubercles of Willows, and how they come there
A particular defcription of certain infects, which live between the firt and fecond coat of the
Willow leaves, and which are changed into Beetles

83
An account of fome fmall Worms that are bred within the new and tender leaves of Willows, and afterwards change to Flies 85
Of Worms which are found enclofed in tubercles like rofes, which appear on the tops of Willow branches, and likewife in many of the dwarf Willows that grow upon heaths and commons

86
Of certain Worms without feet found in the Hazel-nut
Of Worms found between the two coats or fkins of the Alder leaf
ib.
The fame fubject continued, hiftories of infects that are found in fruits, tubercles, or warts, and leaves of plants. An obfervation on the common Thiftle growing in the fields of Holland
Of Worms found within the tubercle or fwellings of the ftinging Nettle
Of the Worms which are found in the downy excrefcences of Oak trees 91
Of fome little infects which are found concealed in the tubercles or fwellings of Oak leaves, in fo artful and wonderful a man-

E N T S.

ner, that the foregoing relations muft yield the preference to their hifory $\quad 92$
Of certain Worms that feed within the fpongy excrefcence of the Dog-rofe 95
An obfervation made on the black Poplar, ${ }^{1} 674$ ib. Of the footlefs Worms of Cabbage leaves, which properly belongs to the fourth order of natural changes
Of the Worms called Moths 99
Of certain Worms that, like Moths, live in cells, feeding on the leaves of Pear trees, Apple-trees, Plumb-trees, and Cherry-trees

Of certain Vermicles or Worms, whofe eggs are lodged in the bags wherein munk is brought to us

101
Of certain Worms which lie in little tubes or cells

102
A particular treatife on the Frog and its young, exhibiting its hiftory, and comparing it with infects
Man himfelf compared with infects, and with Frogs

104
A particular treatife on the generation of Frogs
105
Of the manner in which young Frogs or Tadpoles grow in their parents eggs, and are in due time hatched or delivered from them

II 2

Of the circulation of the blood in a full grown Frog

120
Experiments on the particular motion of the mufcles in Frogs, which may be alfo in general applied to all the motions of the mufcles in men and brutes

122
A comparifon of the changes in the Clove July-flower, with thofe in Infects during their Nymph fate . 122
A general analogy or comparifon of the mutations and accretions, as to parts and limbs, as well in Eggs, Worms, and Nymphs, as in Infects themfelves: and alfo in thofe mutations, and accretions, which we obferve in an animal of the red blood fpecies, and of a vegetable clearly exhibited at one view 138 A PPENDIX.
The anatomy of the Sea-Sepia, or Cuttle-Finh, infribed to the moft excellent Francis Redi, phyfician to the Great Duke of Tufcany ; a moft indefatigable fearcher into the miracles of nature
${ }^{1} 39$
A treatife on the Phyfalus 150
An epiftolary differtation on the Felix Mas, or Male Fern of Dodoneus 15 5

B OOK of NATURE;

O R2 T H E

HISTORY of INSECTS.

C H A P. I.

The defign and diffribution of the work.

AFTER an attentive examination of the nature and fabrick of the leaft and largeft animals, I cannot but allow the lefs an equal, or perhaps fuperior degree in dignity. Whoever duly confiders the conduct and inftinct of the one, with the manners and actions of the other, muft acknowledge all are under the direction and controul of a fupreme and fingular intelligence; which, as in the largeft, it extends beyond the limits of our comprehenfion, efcapes our refearches in the fmalleft. If, while we diffect with care the larger animals, we are filled with wonder at the elegant difpofition of their limbs, the inimitable order of their mufcles, and the regular direction of their veins, arteries, and nerves; to what an height is our aftonifhment raifed, when we difcover all thefe parts arranged in the leaft, in the fame regular manner. How is it poffible but we muft ftand amazed when we reflect that thofe animalcules, * whofe little bodies are fmaller than the fineft point of our diffecting knife, have mufcles, veins, arteries, and every other part common to the larger animals? Creatures fo very diminutive, that our hands are not delicate enough to manage, or our eyes fufficiently acute to fee, them; infomuch that we are almoft excluded from anatomizing their parts, in order to come at the knowledge of their interior conftruction. Thus, what we know of the fabrick of thofe creatures reaches no farther than to a fimple enumeration 'of the parts which we have before obferved in larger creatures. We are not only thus in the dark, in attempting a difoovery of the conftruction of the leaft animalcules, but we even gain very little knowledge of the wonderful texture of the vifcera of the largeft
animals: for as the point of our diffecting knife is not minute enough to feparate the tender parts of the fmall animals, it is not lefs unfit to be ufed in difcovering the extremities of the nerves and veins in the larger.
As our knowledge of both fpecies of animals is fo far limited by our ignorance, and as we have not hitherto had fuch a fufficient number of experiments as are neceffary to form a proper judgment of their elegant ftructure, and the admirable difpofition of their parts, we may eafily fee how rafh and precipitate their opinion is, who efteem the larger creatures only as perfect, and the lefs as fcarce worthy to be claffed with animals; but, as they fay, produced by chance, or generated from putrefaction; rendering, by fuch reafoning, the conftant order of nature fubject to chance. But as it happens to the fmalleft of animals, for inftance, to thofe produced from the egg of the Acarus which is fo minute, as fcarcely to be vifible, fo alfo it is with the largeft animals ; their origin is not more obvious or more vifible, perhaps it is rather more obfcure, and they derive their being from a lefs vifible beginning. Nor let any man imagine that I fay this without conviction, fince I have found by diligent inquiry that the largent animal is not in its firft formation bigger than the rudiment of an Ant ; and therefore, unlers the Great Creator had fet certain bounds to the growth of every kind, which it cannot exceed, I fee no reafon why the Ant might not furpafs in bulk the largeft. Perhaps, their fizes proceed in proportion to the greater or lefs ftrength of the heart, by which the parts muft be extended, againf the preffure of the atmofphere. Notwithftanding the fmallnefs of

[^0]Ants, nothing hinders our preferring them to the largeft animals, if we confider either their unwearied diligence, their wonderful ftrength, or their inimitable propenfity to labour ; or, to fay all in one word, their amazing and incomprehenfible love to their young, whom they not only carry daily to fuch places as may afford them food, but, if by accident they are killed, and even cut into pieces, they, with the utmoft tendernefs, will carry them away piecemeal in their arms. Who can fhew fuch an example among the largeft animals, which are dignified with the title of perfect? Who can find an inflance in any other creature, that may come in competition with this? But in the entrance of this work it is not my intention to explain the form and wonderful pro: pagation of animalcules, which feem to be exanguious or to have no blood: I hall treat in general of the manner of their furprifing metamorphofes; and at the fame time fhew, that they not only refemble other animals in the increafe of their parts, but that they exceed them by infinite degrees. This being done, the particular obfervations concerning thore animalcules fhall be fully explained in their proper order and place. But before I proceed to them, it will be neceffary to prefix a general differtation on their nature.

That I may make good the promife which, twelve years ago, I made to the public in the preface to my book of Refpiration, (and which I have been unhappily hitherto hindered from fulfilling by ficknefs, and other impediments,) I am now to fhew the particular change of the Ca terpillar into a Chryfalis; as alfo, the nature and various forms of thofe animalcules, which are faid to be exanguious, before and after their change into Nymphs: but I judge it extremely neceffary to eftablifh firft fome certain propofitions, and to explain the order of their changes. This, fully underfood, will contribute to a clear and diftinct perception of the irregular and various appearances of infects; fupplying the place of a pencil, and reprefenting, as it were, in their true colours, the variations of them; fetting each in a juft light, and in their native drefs. Thus fome certain and fixed principles will be fupplied to the ingenious, who are curious in thefe things; and the obfervations, of which I fhall give a confiderable number, will remain as a firm foundation and fure fupport for all thofe experiments that thall be made concerning them, or all that poffibly can be made. Nor does it appear to me a matter of fmall moment to have difcovered rules and theorems in the nature of things, by the affiftance of which all thofe
metamorphofes of infecte, which have the ap: pearance of fiction and fancy, and differ in form and ftructure infmitely from each other, are reduced to one foundation and kind only; including in three or four orders of changes all the various fpecies. This may be perceived in the firf rudiments of thofe creatures which appear to us under the form of eggs.

The true nature of the metamorphofes of thefe animalcules feems to have been fubject. to the fate of fome valuable picture, which, by length of time, being foiled and clouded with dirt, no longer hhews the true form of its figures, but has an appearance altogether different; fo that it muft be cleaned, and its original luftre reftored, if we would difcover its true appearance. In the fame manner here, before we can explain the pofitions and the feries of the changes, and illuftrate them by particular examples, it is neceffary we fhould reftore this excellent appearance, or, if I may fo fpeak, that curious picture, exhibiting the natural forms of infects: which, by the learned as well as others, through length of time, has been fo foiled and obfcured, that the beautiful and genuine changes of thofe animalcules do not appear properly what they are, but rather fomewhat elfe, or at leaft, are feen in a confufed manner. Thefe muft therefore be cleared from the falfe traditions of philofophers, by our theorems, as by the genuine tinct of nature, and reftored to their native beauty.

We fhall now proceed to the four diftinet things which are to be treated of in this work. In the firft place, we hall confider the Nymph as the original ground of all the transformations of infects, or exanguious animals; but, left any one fhould miftake the ufe of the word transformation, I here add, that both in this, and in every other part of the enfuing work, I intend no more by that term, than the gradual and natural growth of thofe creatures. Secondly, we fhall fhew by what means it has happened, that the knowledge of the Nymph, or original ground of thofe natural changes, has been fo obfcured and darkened. This we fhall take care to clear up and reftore to its former ftate. Thirdly, we fhall eftablifh four feries or orders of thofe changes, taken from nature, to which all the metamorphofes of the exanguious animalcule may be referred, as depending only upon one foundation. Laftly, the order of the natural changes of their parts will be confirmed by particular examples in the infects themfelves, together with the figures of them, and the whole clearly and diftinctly explained.

C H A P. II.

The fingle foundation of the changes obfervable in the known infects flewn to be the Nymph; with an explanation of the manner in which worms and Caterpillars become Nymphs.

THOUGH; amongft all the mutations of nature which deferve our attention, none appears more furprizing to the generality of mankind, than that by which a Caterpillar affumes the form of a winged animal, it in reality deferves no more admiration, than any other change in the forms of Bees, or the tranfformation obfervable in plants. This will evidencly appear to any one, who, having examined the real nature of fuch metamorphofes; will obferve how exactly they agree, not only with the growth of animals which undergo no fuch change; but alfo with the fhooting or budding out of plants and flowers. Whatever difficulty we find in this, is merely an effect of our own miftaken notions ; and our admiration arifes from our ignorance of the nature of the Nymph or Chryfalis. In this the little animal lies, like the flower in its bud. Before I proceed farther on this head, it may be proper to obferve, that thefe words, Nymph and Chryfalis, fignify the fame thing, and that there is no difference in the nature of the fubjects to which they are applied.

To advance toward my purpofe, I muft re:peat, that the reader is to take particular notice; that to acquire a fatisfactory knowledge of the mutations which happen in the eggs of infects in general, as well as in the worms or Caterpillars in particular hatched from them, he muft firt clearly and diftinctly comprehend the nature of the Nymph, Necydalis, Chryfalis, or Aurelia. Though we muft allow that there appears, as it is generally called, fome accidental difference between the plain unadorned Nymph, and that form of it, which, from its bright gold colour, iscalled an Aurelia, or Chryfalis; upon muture confideration, this will be found merely accidental; without any difference in the internal conftitution of their parts, fufficient to alter in them what is commonly called the effence of things. This great truth being once underftood of infects in general, may be afterwards applied to every particular fpecies of them: for inftance, to the Silk-worm, whofe Nymph or Necydalis is never called Nymph by naturalifts; but only Necydalis and Chryfalis, though it is in fact a Nymph, and is called Chryfalis merely on account of the external difference in colour.

That we may fucceed the better in examining the nature of this Nymph; or Chryfalis, upon which, as upon an inmoveable bafis; the doctrine of all the changes obfervable in infects is to evidently founded, that the jarring opinions of all the naturalifts who have hitherto wrote upon the fubject, muft appear utterly vain; it is neceffary to obferve, that the Nymph, or Chryfalis, is nothing more than a change of the

Caterpillair or worm; or, to fpeak more properly, an accretion, growth; or budding of the limbs and parts of the Caterpillar or worm, containing the embryo of the winged animal that is to proceed from it. The Nymph; or Chryfalis, may even be confidered as the winged animal itfelf hid under this particular form. From whence it follows, that in reality the $\mathrm{Ca}-$ terpillar, or worm, is not changed into a Nymph or Chryfalis ; nor, to go a flep further, the Nymph or Chryfalis into a winged animal; but that the fame worm or Caterpillar, which, on cafting its fkin, affumes the form of a Nymph or Chryfalis, becomes afterwards a winged animal: Nor, indeed, can it be faid that there happens any other change on this occafion; than what is obferved in chickens, from eggs which are not transformed into cock or hens, but grow to be fuch by the expanfion of parts already formed: In the fame manner the Tad-pole is not changed into a Frog, but becomes a Frog, by an unfolding and increafing of fome of its parts.

Hence it follows, that in the Aurelia, and more particularly in the Nymph, fo called by Ariftotle* with the greateft propriety, there are not only all the parts and limbs of thelittle winged animal itfelf; but, what is more furprifing, though 'till now unnoticed by any author I have met with, all thefe parts; or limbs, are to be difcovered, and may be fhewn in the worm itfelf; on flripping off its fkin in a careful manner. If therefore we retain the name of Nymph; afed by Ariftotle, the worm at this period may be confidered as marriagable, and, if we may make ufe of thefe expreffions, entering into the connubial ftate. We may further fhevi this, by confidering that the worms; after the manner of the brides in Holland, fhiut themfelves up for a time, as it were to prepare, and render themfelves more amiable, when they are to meet the other fex in the field of Hymen. Since therefore the word Nymph expreffes the nature of the thing better than any other, as will more clearly appear hereafter, we fhall adopt it on this occaffon to avoid confufion, and to be the better underfood: for though the words Chryfalis and Aurelia are employed to exprefs the fame thing, they properly imply fome external differences, which we have already named, and fhall hereafter treat of more at large.

That elegant difpofition, and diftinct framing of parts, which I have mentioned, is particularly obfervable in the Nymphs of Ants, Tab. XVI. No.v. Flies, Tab. XLI. fig. II, and Bees, Tab. XXV. fig. vi. as will appear upon infpecting their figures in Tab. XVI. XLI. and XXV. For fome accidents, as they are
called, fuch as colour, firmnefs of the parts, and the like excepted, thefe Nymphs reprefent exactly, and in a furprifing manner, the little winged animals they are to produce; and even in the fpace of two or three days after they have caft a very thin fkin , all thofe parts appear in moft of them.
This accurate agreement, or rather this famenefs of the Nymph with the little animal it covers in the prefent form, has given room to fome who have written on this fubject, to call the Nymphs of Ants, Flies, and Bees, by the names of Ant-fhaped, Fly-fhaped, and Beefhaped Nymphs. This we fee in Ariftotle, in the place above cited: He fays, "When they " have received the out lines of the flape which "they are afterwards to wear, at this period " they are called Nymphs." Even the learned Mouffet, though in his book of Infects he beftows a particular chapter upon the Chryfalis, there denies that any diftinct parts are to be obferved in it, yet is not to be underftood as including the Nymph in that affertion; he does not even make the leaft mention of it: and, indeed, thofe diftinct parts are fo evident in the Nymphs of infects, as fcarce to leave the leaft room in any to doubt, but that they are the very animal which they fo evidently reprefent. This certainly muft be the reafon why the Nymphsare often call'd Chryfallides and Aurelix by the fame author, in the courfe of his work ; though no defcription is given of them in the chapter we have here named.

As errors never are confined to thofe who firft fall into them, the incomparable Harvey ${ }^{*}$, by committing the fame miftake with Mouffet in his notions concerning the nature of the Chryfalis, has ranked the Nymphs of the Bees in the number of them. With the fame Mouffet, Ariftotle and Aldrovandus have explained the difficulties which occur in following, by a nice examination, the tranfmutations of this clafs of infects, by a fyftem more ingenious and fubtil, than agreeable to truth and the nature of things; fince both he and Ariftote + , Aldrovandus, and numbers of other authors, have imagined, that the Nymphs of Bees are fo far from containing the parts of the future infects; that they can only be looked upon as the eggs which are to produce them.

Tho' there are fome flight external differences between the Nymph and Chryfalis, which we have already obferved, the Chryfalis notwithftanding ought to beconfidered as a Nymph; there are alfo fome external differences amongt the Nymphs themfelves, which it is likewife proper to take notice of in this place. Thus, there is by far a greater agreement between the Nymph of the common Ant and the Antitfelf, than there is between the Nymphs of Bees, or of Flies, and thefe winged infects refpectively; fo that there appears the fame difagreement between Nymphs of one kind and another, as between thefe and Chryfallides. Butasall the fedifferences are merely accidental, as will hereafter more plainly appear, little regard is to be paid to them; notwithflanding Ariftotle, who at the fame time that he afferts a fimilitude, in point of hhape, between
the Nymphs and the little animals to be ef:pected from them, fo far denies fuch a property in the Chryfallides, that he reprefents them merely as the eggs of thofe infects to which they belong \ddagger.
That we may treat more accurately of the Chryfalis, or Aurelia, which is indeed nothing more than a gold-coloured or gilded Nymph, and neither is nor ought to be called fpecifically or diftincty by this name, nor can at all times, feeing all the Nymphs which are called Chryfallides have not this bright outfide; this Chryfallis, I fay, in the fame manner as has been fhewn of the nymph, " not only contains all " the parts of the future animal, but is indeed that animal itfelf". This truth, however, is contradicted among the antients by Ariftotle, and among the moderns by Harvey, and numberlefs other writers. As we have obferved that the Nymph of the Ant differs from that of the Bee; and this latt from the Nymph of the Fly; we remarked alfo, that the Nymph generally known by the name of a Chryfalis, differs from all thofe beforementioned. That this may appear the plainer, for example, in the cafe of the Butterfly's Chryfalis, Tab. XXXV. fig. vi. and vin. it will be proper regularly to demonftrate, not only the differences by which the Nymphs of the Ant, Bee and Fly may be diftinguifhed from one another's, but thofe variations likewife by which the Butterfly's Chryfalis is diftinguifhed from there Nymphs; and the differences alfo, by which all thefe Nymphs and Chryfallides vary from the infects they are to produce. By this means we fhall be enabled to attain a perfect idea of that moof remarkable property, by which they perfectly agree with each other. This property we affirm to confift in an exact reprefentation of the future animal, and of all its parts.

The firt property then, by which the Nymph of the Ant, Tab. XVI. No. v. agrees better with the Ant, than the Nymphs ofFlies, Bees, or Butterflies, do with thofe infects refpectively, and by which property, of courfe, the Nymph of the Ant differs from the Nymphs of the three other infects before-mentioned, confifts in this ; that the common Ant, which has no wings, but only anten$n æ$, or horns, and legs, affords as clear and diftinct a reprefentation of thofe parts, when hid under the form of a Nymph, as when it afterwards appears in its own proper and perfect fhape ; excepting only, that the legs and horns, which in the Nymph are folded up in a delicate manner, Thew themfelves at large, and in another fituation, in the Ant itfelf. So that the different difpofition of thefe parts, in the ant and its Nymph, which every one muft allow to be an article of little confequence, conftitutes all the difference that there is between them. Neverthelefs, the overlooking of this truth, the moft important of all in the theory of infects, in the cafe of their Chryfallides, has been the great reafon why the true knowledge of the nature of this fpecies of Nymph has been buried to this time in obfcurity, to give way to a fancied metamorphofis.

The other difference, or that which is remarkable in fhape between the Fly, Tab. XLI. fig. II. and its Nymph, and between the other infects already mentioned, and theirs, confifts chiefly in this, that the wings which in the common, or more farce Fly, appear ftretched out and expanded over the body, are folded up in the Nymph, and lie clofe along its fides, and between its legs. This is alfo the cafe in the common Ant; whereas both in the Fly and its Nymph, the horns, and probofcis or trunk, are almoft the fame in every refpect.

The third difference, or that which is obferved between the Bee and its Nymph, Tab. XXV. fig. vi. and the infects already named, and their Nymphs, is this, that the legs and Nymph of the Bee, which, befides horns, has four wings, and a little trunk turned up towards its body, carries thofe parts in a different pofition, from that wherein they are feen in the Bee itfelf, and in 2 manner which makes it difficult to difcern them. The wings, like thofe of the common Fiy, Tab. XXXVIII. fig. iv. are folded up, and lic clofe along its fides, and between its legs; but the little trunk, fo difficult to be obferved in the common Fly and its Nymph, is very confpicuous in that of the Bee, where it lies delicately difpofed between the contracted legs of the embryo.

As therefore all the parts of thefe Nymphs may be eafily diftinguithed in them, though occafionally with fome accidental differences; fo one thing is equally common to all of them, namely, that each of them clearly expreffes the infect which is to be expected from it, or is rather already that very infect; which in the manner of the Caterpillar, the better to explain the difference between the Nymph and the future infect, is now preparing to caft off a 1 kin, to become from a Nymph, a winged animal; in the fame manner as it had caft one off before, from a Worm, to become a Nymph. Thefe operations of nature Libavius* has fufficiently explained in the Silk Worm, and faithfully reprefented in his clegant drawings.

It is, moreover, worthy to be obferved, that the legs, wings, trunk, horns, and every other part of the animal, are covered with a membrane of equal thicknefs, in every place where they do not lie upon each other. This is the reafon why, in the Nymphs of infects, almoft all the members appear free, flexible, and capable of motion; for there is a face between all there parts acceffible to the air; and they neither touch, nor can adhere to one another. This alfo is the reafon, why the free fpace produces a flight flade between fome of the parts, affording the curious eye an opportunity of determining exactly the figure of the infect's little body, and all its limbs; to this caufe alfo, we are to attribute, that the Nymphs become of a particular colour, as foon as they have gone through their neceflary change, and appear of a perfect milky whitenefs.

In the Chryfallides, fome of which, like the other Nymphs, affume this milky hue at the time of their change, but afterwards become fpotted with gold, or entirely cloathed in that rich colour, it is a more difficult matter, on a bare furvey of their outfides, to difinguifh the parts of the infect one from another. Their legs, wings, and the relt are folded up, and as it were packed together in a moft intricate manner: and this difficulty has been the caufe, as will be hereafter fhewn, of the principal miftakes of writers on this fubject.
It is likewife worthy to be obferved, that the Nymphs of all the three infects we have here taken notice of, the Ant, the Fly, and the Bee, immediately after their change becone tender and flexible, and indeed fluid, in a manner like water itfelf; fo that they lofe all their former ftrength and vigour: this made Gaza, with great reafon, call them invalids, as the learned Aldrovandus has obferved, fince they remain in this condition almoft to the end of this period of their life. Mouffet feems to have taken notice of this foftnefs in fome Chryfallides, the caufe of which we fhall explain in its due place, with the neceffity there is for it. That author's words are, + "When Fliny fays that "t the body of the Chryfalis is hard, I imagine he " means the Caterpillar." The fkins which are thrown off by the Nymphs here mentioned, are fo twifted and folded together, that, without a delicate hand, and a great deal of experience, it is a hard tafk to difplay them properly; this will appear when we come to relate our obfervations upon Bees, the curiofity of which has a right to command the admiration of mankind.

We now proceed to the fourth difference, or that which belongs peculiarly to the Chryfalis, and, like the reff, is only accidental, though a great deal more remarkable. That the reader may know what Chryfalis we are about to compare with its Butterfly, and after wards with the Nymphs of the Ant, and the Fly and the Bee, and, lafty, with thefe infects themfelves; we are to inform him, that we fhall take for our prefent example that Chryfalis, of which Mouffet \ddagger gives a drawing in number XII of his diurnal Butterflies, which is the fame with that defcribed by Goedaert, in the twentyfirft experiment of his firft part, and which I have reprefented feveral ways in Tab. XXXV of this work.

The difference between this Butterfly and its Chryfalis, as well as between the other Nymphs heretofore mentioned, and their animacules, is as follows. The wings, which in the Butterfly arife from the fhoulders, are very large, and hang over the back of its body, in the Chryfalis, Tab. XXV. fig. vir. are gathered up and folded into the flape and fize of half the nail of a man's litte finger, and are turned in towards the belly, againft which they lie of an equal thicknefs, $m m$.

The trunk, which in the Butterfly is contracted and curled up into the fize and flmape of the head of a fmall pin, and lies between its wings, appears in the Chryfalis beautifally expanded along its belly, between the two wings $d d$. In the Chryfalis alfo, the legs, $f f$, $g 3$, by a moft inimitable contrivance, the caule of which, with the reafons for it, we fhall hereafter deliver in our felect experiments, which are placed on both fides clofe to the trunk, quite otherwife than in the Butterfly; and finally, to compleat this fcene of wonders, the horns, i, which in the Butterfly are ftretched out at full length over the eyes, lie over the legs in the Chryfalis; fo that upon the whole, all the parts of the infect, the body, wings, horns, legs, and trunk, are to be found as well in the Chryfalis, as in the Nymph, in the former, indeed, the feet are lefs difcernable than in the latter; but the fame difference is equally obfervable in the refpective infects.

The $1 k$ in which contains the Chryfalis, is much thicker in thofe parts which cover the limbs on the outfide, than in thofe which ferve only to keep them afunder; befides, all thefe parts are fo evenly and elegantly faftened as it were to and upon one another, that they exhibit an uniform and equable contiguity of parts. For this reafon they are, with the greateft difficulty, to be diftinguifhed from one another, and that only by a fingular method, which I fhall explain to the reader in its proper place. This difficulty not only prevented Mouffet from giving us an accurate reprefentation of the Chryfalis in the place juft cited *, but induced him to deny, with Ariftotle, that there are any parts in the Chryfalis difcernable by our fenfes. He fays, "the Chry"falis has neither mouth, nor any other part of " the fucceeding infect, that can be perceived.".

Libavius, is under as great a miftake on this fubject + ; for, though in treating of the Necydalis, he allows it fome traces of wings, and alfo of horns, he denies that any ditinct limbs are obfervable in it; his words are thefe, "On the fore part there are marks " of legs and horns; and on the back part, " towards the fides, fome faint reprefentations " of wings." But a little afterwards he fays, "You cannot perceive any diftinct limbs."

Goedaert is as much at a lofs as thefe authors, abcut the true nature of the Chryfalis. He is at great pains to make out in it fome refemblance of the human face; and he gives a drawing of it, under this idea, in his figures of chryfallides. He fhould rather have given us that elegant form, which really appears in the Chryfalis, than have endeavoured to amufe his reader with idle fpeculations, the more productions of his own fancy. Nor is this all his error ; he gives us an unnatural reprefentation of the caterpillar itfelf, in the place already
cited; for that Caterpillar is not covered with hair, but with little prickles, and is very nearly of the figure reprefented in his 26 th experiment.

Is the limbs of the Chryfalis, faftened together in the manner already mentioned, harden by degrees, or its skin, which at firft was foft and tender, gradually dries up, and becomes, as it were, of a horny fubftance, it gradually alfo changes the greenith hue which it had before, for a gold colour, and all the parts lofe their motion; till at laft this Chryfalis, or properly the Butterfly, which has lain its time under the form of this Chryfalis, cafting off its hardened skin, breaks forth in the very fhape in which it lay hid under it, without having fuffered any change during its confinement, unlefs this, that its tender parts, which were fluid like water, and immoveable, through an excefs of humidity, have with time acquired firmnefs and ftrength; juft as it happens in the Nymphs already defcribed.

When the Chryfalis has caft off its skin, the wings vifibly expand to their true dimenfions in a moft furprifing manner; and the legs and other limbs unfold themfelves, and affume the direction and form we fee in the Butterfly \ddagger

This expanfion of the wings being very fudden, and therefore difficult to be juftly ob. ferved, or underftood as it deferves, unlefs by perfons accuftomed to experiments of this kind; it is no wonder that the moft happy geniufes, the immortal Harvey, for example, and numberlefs others, fhould have fallen into an error on the occafion, affirming that this metamorphofis is not external, or occafioned by any growth in the wings of the Chryfalis; but that it is altogether internal, not only in regard to the wings, but to all the other limbs; infomuch that Harvey takes upon him to fay, that the Chryfalis affumes a new form in every refpeit, and therefore calls it a perfect egg. The truth is, this fuppofed transformation does not take place either internally or externally in the Chryfalis; this is proved by the moft careful experiments, with which his doctrine totally difagrees. Nor does he fucceed better in explaining, than he had, in imageining this metamorphofis, which by his denying any growth of the parts, and fubftituting an imagination of his own, becomes utterly incomprehenfible. There remarks are to be confidered here as occafionally introduced; for as we intend to defcribe in our felect experiments, the manner in which thefe wings and the other limbs grow, and to demonftrate alfo what changes happen from day to day in the egg and Chryfalis of the infect, both of which we have found to be of the fame nature, till the Caterpillar iffues from the former, and the Butterfly from the latter, we fhall at prefent enter no further on this fubject.

Let any one attentively confider thefe accidental differences, by which the Nymphs of infects differ amongft themfelves; the Chryfalis from its Butterfly, and the other Nymphs from their refpective infects heretofore mentioned; as alfo, thofe qualities by which the Nymphs agree both with their animalcules, and amongft themfelves; and he will plainly perceive, that the Nymph and Chryfalis do not differ in the leaft in this nature, or as to the interior confitution of their parts, fince both diftinctly and exactly reprefent the form of the infect, which is to be expected from them. We allow this reprefentation to be more diftinct and obfervable in the Nymph, than in the Chryfalis; but even this depends in a great meafure upon the good fight and dexterity of the obferver. An indefatigable examiner muft at laft reach the deepeft my fteries of this fcience ; and thus an affiduous application has rendered it familiar to me to exhibit, in every fpecies of Chryfalis, all the parts of the fucceeding infect. But, left any oppofer fhould take it into his thoughts to object with the great Harvey, that there is in this cafe a perfect egg, which time may transform, and to which it may give limbs, we can anfwer, that we can perform this operation equally at different times, in the very inftant of the change, or in the beginning, as eafily as in the middie and end of it; and even on the very Worm, before it becomes a Chryfalis. There is no kind of Chryfalis, (however ftrange, unnatural and ludicrous the the figures may be, which Goedaert and others have found out for them, in the wild fallies of their imaginations) in which we are not able to demonftrate all the parts of the future infect; and this as evidently, as in the true Nymph. It appears therefore to be beyond all doubt, that the Chryfalis differs from the Nymph only in colour, and the difpofition of its parts, or, as the philofophers term it, per accidens.

But it will be asked, perhaps, how it happens that limbs fhould be more confpicuous in the Nymph, which is evidently the very infect itfelf, than in the Chryfalis, though equally worthy of that name? and why, in the latter, the parts are not fo faftened, as it were, to ench other, as in the former. It may be demanded alfo, for what reafon the skins caft by the Nymph fhould be much thinner, than thofe thrown off by the Chryfallides, which part with theirs in the fame manner that the chicken leaves the fhell of its egg. To all this I can only anfwer, that thefe things are hardly, if at all explicable; the nature of them depending entirely on the pleafure of their Creator; and the reafons of this variation being hidden in his impenetrable wifdom, whofe providence has beftowed on his animal productions as great a variety of cloathing, as it has pleafed him to form diftinct fpecies of fuch beings. It appears therefore that in thefe and other as true re-
fearches, we fhould endeavour, by all means, to explain difficulties by reafons drawn from the nature of things themfelves, not from the fcanty ftorehoufe of our imaginations. Otherwife, by deviating though ever fo little from: that rule and order, which is firmly eftablifhed throughout the whole creation by the all-wife, and powerful author of it, it is impoffible we fhould not go aftray at every ftep, and lofe ourfelves at laft in the wrong paths, directed by our own feeble and imperfect reafon.

As the foregoing queftions deferve great attention, I hall propoie that folution of them, which nature herfelf feems to authorize and fupport. We may obferve, that the Nymph of Ants, Flies, and Bees have a much flenderer body than the Chryfalis before fpoken of; and from this it appears reafonable to fuppofe, they nould have a much tenderer skin. The Nymphs, befides this, are always confined to moift places, where their exterior covering cannot readily harden: do not the Nymphs of Ants lie hid under the earth? and thofe of Flies in putrid flefl, the excrements of animals, and other moift places. As for the Nymphs of Bees, they are always found furrounded with moifture, inclofed in wax, and covered befides, like Silkworms, with a thin membrane: befides this the Nymphs of Bees, at the time when they enter upon their period of change, have all their parts fo exceffively moif, that fometimes they weigh twice as much as the Bees that are produced from them.

It is obfervable, indeed furprifing, that the humours conftituting this moifture muft be diffipated by infenfible perfpiration, before the milky limbs of the infect can move themfelves in the leaft; and all this while the creature difcharges no excrement. This Arifotle has remarked in exprefs words *.

On the other hand, the Chryfallides of diurnal Butterflies (I fpeak here in general, and do not confine myfelf to one kind of Chryfalis) go through their changes in the open air, with the greateft part of their bodies deflitute of any webb to protect them againft the inclemencies of the weather; for this reafon their outer fkin will naturally grow hard, and therefore may be caft off, as has been already taken notice of, without being liable to fhrink up, or lofe any thing of its original form. Befides, the fkin of the Horned Beetle, Tab. XXVIII. fig. vi, viI, viIt, which is likewife found under the earth, is fo very fine, that in point of thicknefs it is greatly exceeded by the coat of the common Chryfalis.
If any one fhould afk, if it is for the fame reafon that the Chryfalis itfelf grows hard, and the Nymph continues in its former fate of of foftnefs? and why, on the one hand, the Nymph is covered with a thin fkin, and its limbs adhere but little to each other; whereas, on the other hand, the Chryfalis is furrounded by a kind of hard fhell, and all its
parts are in a manner faftened together, fo as to form one fubftance? I mut acknowledge, that I cannot fatisfy his curiofity. For as the Nymphs of Bees, when expofed to the open air, die as foon as it begins to harden their flkin; and on the contrary, the Chryfallides fare no better when confined to a moift fituation; I cannot be brought to think, that things, which are produced by nature every year, in a moft wife, regular, and conftant manner, fhould be left fo dependant upon chance, and the ftate of the air and weather : I willingly grant, however, that it is moifture alone which hinders the Nymphs from growing hard, and that the Chryfallides cannot but harden in an open, airy, and dry fituation. But if, after all, we confider, that the Ikin in which the Chryfalis is wrapped up, is not throughout of the fame ftrength, but thicker in thofe parts which are expofed to the air, than in thofe which are out of the reach of its influence, as ferving only to cover the inner furfaces of its members; whereas it is the reverfe in the Nymphs, whofe covering is throughout nearly of the fame thicknefs, and therefore lefs able to protect the enclofed infect from the drying qua-
lity of the air; thefe things, I fay, being duly confidered, I cannot by any means allow; that the prefervation of moifture, or the hardening of theNymphs and Chryfallides, jult taken notice of, depend at all upon chance ; unlefs I fhould be fatisfied to give up my reafon fo far as to imagine, that the very being of there little animals depends upon chance likewvife; and that they fpring fpontaneoufly from corruption; and in this blind manner wilfully doubt of nature's great attention and wifdom, fo con-fpicuous in her manner of preferving and cloathing this part of the creation. I conclude, from all this, that there is no effential difference between the Nymph and the Chryfalis; and that the variation which appears, confifts only in this, that the fkin of the former is more thin and tender, and that of the latter thicker and harder; to which I may add, that in the Nymph all the parts of the future infect may be eafily feen, whereas in the Chryfalis they are lef's diftinct. That thefe are the principal differences, will appear evidently hereafter, when I treat thofe fubjects feparately, and in a more ample manner.

The manner in which Worms and Caterpillars become Nympbs.

HA V IN G laid down the fole foundation of all thofe changes which are obfervable in infects, and fhewn that this confifts in nothing but the Nymph, into which, at their proper feafons, all the Worms of flying infects and Caterpillars are changed, or, to fpeak more properly, from which they fhoot out or bud; a change which appears in all, except fuch infects as remain in their eggs, till, without paffing through any intermediate fate, they have acquired their full vigour, and attained their proper degree of perfection; to which may be added, thofe infects alfo, which, hiding the real fhape of the Nymph under the refemblance of an egg, iffue from it complete animals, as thall be hereafter explained. Thefe things being proved, it appears neceflary that, before we pafs to the other propofitions, we fhould enter upon and explain the manner in which this change is produced, illuftrating it with the figures of thofe infects that are the fubjects of it.
But as in the forms of thofe infects which fhoot out or bud into Nymphs, there is not only an amazing, but in a manner an infinite variety ; and confequently it would be impracticable here to defcribe them all; I fhall particularize only thofe, which differ moft remarkably from each other, and confider them as they have, or have not legs.

We obferve, that of thofe infects which become Nymphs or Chryfallides, fome have no legs, Tab. XVI. fig. II. fome have fix, Tab. XXVII. fig. v. and others a greater number, Tab. XXXIV. fig. II. and Tab. XLIV. fig. III. And as this difference between the various
fpecies of infects is particularly remarkable, if we compare them together; fo there occurs a no lefs obvious difference on account of the various number of legs in thofe we have ranked under the third fpecies, viz. that of infects which have more than fix: but in thefe many feeted infects, the fix foremof deferve our chief attention, as does in the infects that have no legs, that part of their body, which in other animals is called the chef:

That it may appear upon what grounds we have adopted this method of claffing infeets, according to their having or not having legs, and according to their having fix or more, it will be very proper to obferve, that in thofe Worms which have no legs, that part of them, which we have called their cheft, never undergoes any change, or alters its fituation; and that in the Worms and Caterpillars which have legs, be the number more or lefs, the fix foremoft never come off, or change their places in any fenfible manner; Goedaert, in direct oppofition to truth, would have us believe they do, but experiments fhew the contrary. In moft Worms and Caterpillars, not to fay in all, the fix foremoft legs are conftantly preferved by the infect, and that without the leaft change in their pofition: and what is yet more furprifing, in feveral Worms which have fix legs, the alteration in their legs is fo fimall at the time that they fhoot out into Nymphs, Tab. XX. fig. v. that it cannot by any means be difo tinguifhed or obferved, whatever metamorphofes the former naturalifts, without any exception that I know of, have idly and extravagantly imagined on this ofcafion,

As therefore the experiments we have made, have, like the rifing fun, diffipated this thick and dark cloud of imaginary metamorphofes, the whole truth thereby appearing in the cleareft and moft evident light ; in the fame manner, by purfuing the fame caufe, with that readinefs and confidence which fuch guidances deferve, we fhall readily underftand the moft obfcure and difficult changes which happen in thofe infects that have no legs. As we have refolved in this work not to depend upon inductions of one thing from another to prove the affertions, we fhall abide firmly to the chain of our experiments, and, in confequence of this method, advance, that the wings, horns, and other parts which Worms without legs feem to acquire about their chefts, at the time of their mutation, are not truly produced, during the period of mutation, or, to fpeak moreagrecably to truth, during the time of the limbs fhooting or budding out; but that they have grown there by degrees under the 1kin, and as the Worm itfelf has grown by a kind of accretion of parts, and will make their appearance in it upon breaking the skin on its head or its back, and thereby give it the figure of a Nymph, which it would afterwards of itfelf affume, Tab. XXV. fig. v.

Hence it is, that we can with little trouble produce the legs, wings, horns, and other parts of an infect, which lie hid under its skin while in the fhape of a naked worm, which has neither legs nor any other limbs. This we have fhewn in the prefence of the celebrated Mr. Thevenot, a gentleman whofe unufual fagacity, in every branch of polite learning, is above praife. We had the good fortune of changing before him the Worm of a Bee into a Nymph, by breaking the skin upon its head, upon which all the parts hid under it made their appearance ; and we fince have had equal fuccefs in demonftrating to the fame gentleman, and the illuftrious Lawrence Magellotti, a curious fearcher into the fecrets of nature, all the parts of the Butterfly clearly and diftinctly in the original Caterpillar. We have fince difcovered alfo a method of changing, at pleafure, the Caterpillar into a Chryfalis.

To comprehend in a few words the reafons, foundation, and manner of thefe natural changes, and at the fame time to iliuftrate them by a palpable fimilitude, I need only briefly remark, that " the Nymph or Chryfalis" (I here fpeak only of infects without legs, the change that happens in the-reft, being, as will hereafter appear, fo eafily underftood as to require no explication) " is nothing more than a little "Worm, which, the growth of legs, wings, " and other limbs hid under its skin being " perfected by time, at laft burfts that skin, " and cafting it off, gives us a clear and dif" tinct view of all thofe parts." This change, which has been prepofteroufly called a tranfformation, or metamorphofis, and by fome a death and refurrection, is no more myfterious or furprifing, than what happens, when "one
" of the meaneft plants, defpifed and trodden
" under foot, gradually fwells on every fide;
" and after producing a bud, by burfting the
" little cafe containing it, prefents an elegant " and beautiful flower."

We might likewife compare, in this place, the fanguiferous animals with infects; as in refpect to the accretion of their limbs there is not the leaft difference to be found between thefe large creatures, and the little worm we have compared with vegetable fubftances: but amongit all the animals of that tribe, none agree fo exactly or obvioufly in thefe changes with the infect tribe, as Frogs. Thefe creatures are changed into a true Nymph, known by the name of a Tadpole; as will more fully appear hereafter, in the explanation of our plates, and in comparing together the Tadpole, the Nymphs of Worms, and the little cafe in which flowers are produced, Tab. XLVI.

The fame changes therefore, which we obferve in vegetative animals, are equally obfervable in fenfitive ones, fo as to afford us in all God's works the moft manifeft proofs of his infinite wifdom and power, which man can neither imitate nor comprehend: for as the foundations of all created beings are few and fimple, fo the agreement between them is moft furprifingly regular and harmonious, every thing confpiring equally to fill us with fentiments of admiration and reverence for the great Author of nature.

The ferious confideration of the preceding truths, will fet in a juft light the great error of thofe, who, from there natural and intelligible changes in bodies, have endeavoured to explain the refurrection of the dead; whereas that great operation not only far furpaffes the powers which we fee in nature, but has not any thing in common with the natural changes of which we have been fpeaking: the refurrection is a fubject of faith only, which gives a certain and undoubted knowledge of things beyond the reach of our fenfes. Thefe animalcules do not die, as man does, in order to rife again; all that happens to them is, that their limbs become improveable at the time of their tranfmutation, which, however, happens in fo furprifing a manner, that it is no wonder obfervers, at firft fight, hould take the production to be a real refurrection from a dead animal. This is all that can be offered from what we know of infects, in proof of the refurrection of the dead; which is altogether another thing, than that idle and imaginary death of thofe animalcules, or the transformation, as it is called, of their limbs. Nor are thofe authors lefs miftaken, who, from thefe natural changes, which they idly call metamorphofes, have endeavoured to afcertain the transformation of metals; as amongft others, the moft learned Sir Theodore Mayerne has not feared to advance this abfurd notion in the dedicatory epiftle prefixed to Mouffet's treatife on infects. His words are: "Moreover, if
" animals are tranfmuted, why may not me"tals be tranfmutable?"
To finifn this inquiry, as it is much more eafy to comprehend the change of the fix-legged Worms, than that of the Worms without legs, of which we have hitherto been fpeaking; feeing the former only acquire wings, Tab. XLV. fig. xxiv, xxv. and its limbs are feen to fhoot or bud out, in the fame clear, diftinct, and gradual manner with the correfponding parts of piants and flowers, fo as to agree more perfectly with fuch vegetation, and with the change fpoken of in Frogs; than what happens in the Worm without legs; fo it cannot but appear furprifing, that men of the greateft fenfe, learning and experience, who have at all times been indefatigable in obferving thefe changes, fhould have fo long continued under a miftake, in regard to the true manner in
which they are performed; fubfituting all along, to a fimple but elegant fcene of wonders, the wild flights of their unnatural fancies. Hence it is, that the doctrine of infects remains to this day buried in the profoundeft obfcurity, fo as that not only thofe look upon it as a myftery, who have few opportunities of being acquainted with fuch fubjects, but even thofe alfo who have made this ftudy their regular employment, and were the beft qualified to purfue it with fuccefs, fuch as Aldrovandus, Mouffet, Libavius, andGoedaert; indeed, Imight fay all who have hitherto applied themfelves this way, have been fo far deceived as not only to doubt and waver in their opinions; but influenced by prejudices obftinately to remain infenfible to the ftrongeft conviction, that the moft obvious and convincing experiments could afford.

$\begin{array}{lllll}\mathrm{C} & \mathrm{H} & \mathrm{A} & \text { P. III. }\end{array}$

The manner in wobich the true knoweledge of the Nymph, the real foundation of all the natural changes obfervable in injects, bas been obfcured and corrupted; weith an illuffration of the fubject, and an entire refitution of its original truth.

HA V I N G manifeftly proved in the preceding pages, that the Nymph, or Chryfalis, is nothing but the very infect which may one day be expected from it; and having proved beyond contradiction, that the former lies hid within the worm, or its skin, in the fame manner as the tender and growing flower is wrapped up in its bud; fo that as the flower breaks from the furrounding cup, the limbs of the enclofed infect, by the power which fwells and fhoots them forth, muft, in the fame manner, at laft burft their prifon, and make their appearance, which appearance alone conftitutes the nature of the Nymph, or the knowledge of the foundation upon which all thofe natural mutations depend. All thefe things, I fay, having been abundantly demonfrated, I can have no pleafure in giving a long and pompous catalogue of thofe authors, who have entertained different opinions of the matter, nor in refuting thofe ftrange fancies with which they have obfcured and perplexed this moft valuable branch of natural hiftory. Befides, what purpofe could fuch a difcuffion ferve, but to lead us fill further from the conclufion of this our fecond propofition, fince the fimple explanation of truth, is the beft method of oppofing and overturning falfhood?

However, as Mouffet's elaborate performance on this fubject, is in a manner univerfally read by thofe who fudy the nature and the changes of infects, and is not only founded on the experiments of the author himfelf, and of his learned friends Wotton, Gefner, and Penn; but in part extracted alfo from upwards of forty authors, of which the learned Aldrovan-

[^1]dus is one; and as the author follows fo forupuloufly the rules laid down by Ariftotle, that he farce ever deviates from them, it is incumbent upon us to mention what he propofes in his claborate treatife, where he lays down the changes that occur in the Silkworm, as an example of thofe which happen in all other infects; and gives fuch an account of thofe changes, as neither reafon nor experiment can warrant. His words are thefe: ** It is very "remarkable that in this metamorphofis which " is performed by means of an Aurclia, the "Silkworm's head becomes the Butterfly's " tail ; and the head of this laft the tail of " the former; and the fame thing happens in " all the other Caterpillars that become Au"reliæ." In another part of the fame + performance, where he treats purpofely of the Chryfalis, he fays as follows: "It has nei" ther a mouth, nor any diftinct limb." Now as all thefe notions are directly oppofite to the clear and diftinct obfervations we have made, and already delivered, it would be fpending time to little purpofe to dwell any longer upon them; they have been already fufficiently refuted. We need not be now furprifed that this learned Englifhman, who could be guilty of fo great an error (which fome eminent countrymen of his own have before taken notice of in a performance called, "A catalogue of the plants that grow in the " neighbourhood of Cambridge,") fhould not have taken the leaf notice of the manner in which fuch fanciful changes are performed, though in the fame chapter he with great reafon aftirms, contrary to Ariftotle's opinion, that

[^2]the Chryfalis is not the egg of the Caterpillar. His words are: "To conclude, what is there " here in common between an egg and an "Aurelia? The former has neither life nor " motion, and is difcharged from another " animal; the latter is not difcharged by any " animal, but is only changed from one thing " into another." However, though Mouffet denies that the Aurelia is an egg, he has not courage enough to call it an animal; he confiders it only as a kind of medium, or mean condition, between two animals; or as a third being between the Caterpillar and the Butterfly ; faying, " It appears neverthelefs by " what I have already faid, that the Aurelia is " not an egg ; the truth is, that it is to be " called a kind of tranfmutation, and not a ge" neration of the Caterpillar into an Aurelia, " and of the aurelia into a Butterfly." But as this difficulty, contrived by his own imagination, has rendered utterly inexplicable what otherwife might be very eafily explained, he has recourfe, as is ufual in fuch cafes, to the immenfe power of the Crentor, and after this concludes the fubject in the following words: "I well know how the Ariftotians perplex " themfelves in this cafe with a wonderful " transformation, and at laft are obliged to " refer us to God's indeterminate power."

But we leave to the wildnefs of their own genius, thofe learned men, who rafhly affirm that the true notions of every thing that appear in infects, as well as in other bodies, are to be found in the eminent writers of antiquity. $\mathrm{Na}-$ ture, that indulgent parent, exhibits,' all that relates to them, to us, every fummer, in the plaineft and fimpleft manner; nay, fhe gives us an opportunity of demonftrating thofe her proceedings, and that in the moft fatisfactory manner, in the very depth of winter, by the help of the artificial heat of a foove, or any like continuance. Let us rather take a fpecimen or two of the unworthy manner, by which the genuine reprefentations of thefe changes, which are no more than the natural chootings of the limbs, that at laft thereby come to make their appearance, have been confounded and obfcured, even by men who have fpent their whole lives in refearches into the nature of animal generation in general ; and have applied themfelves more particularly to find out the nature of thofe changes obfervable in infects.

The firft I fhall mention, is that fecond Democritus, the celebrated Harvey, who, againft the current of the moft convincing experiments, boldly affirms with Ariftotle, that the Chryfalis (though it be indeed the very infect) is a perfect egg, from which of courfe the infect may, by the help of transformation, be afterwards expected to fpring. Take his own words: * "S Such are likewife the feeds of " many infects, (called worms by Ariftotle) " which being at firft produced in an imperfect " ftate, fearch out their food; by which being
"" nourifhed and increafed, from a Caterpillar "they become an Aurelia, and a perfect egs " and feed from an imperfect one." By this, he not only with Ariftotle calls the Chryfalis a perfect egg, which, according to the fame author, is neither a Caterpillar nor a Butterfly, but feems to give into Mouffet's falfe and abfurd opinion, who affirms, that the Chryfalis is a kind of medium, or middle being between the Caterpillar and the Butterfly. This paffige of Harvey's fhews us, that he was not acquainted with thofe infects which proceed immediately from an egg in a ftate of perfection, without ever appearing in the form of worms, Caterpillars, or Nymphs; or at leaft that he imagined the mutation they undergo is performed within the egg; and that therefore their generation is the fame in all refpects with that which he has defcribed as proper to Chickens within the egg of the Hen; or with that other generation which he attributes to the worms of infects ψ, which fpring from eggs, and which he reprefents as perfectly agreeing with the generation of Chickens.

But although this great philofopher calls the Chryfalis a perfect egg, he neverthelefs does not affert that the infect proceeds from the chryfalis, as from an internal and hidden principle, in the fame manner that he affirms the chicken fprings from the Hen's egg, or that the infect is formed by one part of egg, while it only receives the matter of its increafe from the other part; which he fays is the cafe in the generation of Chickens. Nay, his opinion on this occation is far more rational and folid, for he admits it, with Ariftotle, as an axiom: \mp " That the animal is not made out of the " worm, as out of an egg, from a part of it; " but that the whole worm grows, and bé"comes an articulated animal," without confidering that Ariłtotle calls the Aurelia an egg. Now if we compare the paffage which Harvey has adopted from him, with the fcene which nature every year prefents to us, we fhall find the words contain a true definition of the Nymph : but as both Harvey § and Ariftotle ** have here befides fancied a metamotphofis, which they call "a diftribution of one thing " that is to be altered into many ;" and which in another place ++ Harvey has expreffed by the following periphrafis: "In the generation " that is performed by a metamorphofis, things " are produced as it were by the impreffion " of a feal, upon the matter of them, or by " this matter's being caft into a mould, the "whole of it entirely transformed." This account is not only falfe, but altogether degrades and darkens the true fyttem of thofe natural mutations: no fatisfactory explication can be drawn from it, of any manner in which thefe fancied metamorphofes, and imaginary transformations, can be faid to happen.
But the better to underitand Harvey's doctrine of infects, which, however, does not

[^3]reach the outer limits of this branch of natural hitory; and at the fame time, to fhew what egregious miftakes we are apt to commit, the moment we abandon the folid arguments furnifhed by experiments, to follow the falfe lights ftruck out by our weak and imperfect reafon, I hall here give his imaginary account of this matter, as I find it in his book upon this fubject *, in his own terms,
"There are two ways," fays he, " in which "we obferve one thing to be made out of " another (as out of matter) both in art and " in nature, efpecially in the generation of "animals; one is, when a thing is made " out of another, already in being, as a bed " out of wood, and a ftatue out of ftone; "when, for example, all the fubject-matter " of the workmanfhip exifts, before the work" man begins the work, or attempts to give " give it any form. The other way is, when "the ftuff receives both being and form " at the fame time. As therefore the works " of art are performed two ways; the one " by the workman's dividing, cutting and par"ing away the matter prepared for thofe ope" rations, fo as to leave behind, like a ftatuary,
" the figure of the thing he intends to make: " the other, by the workman's adding and " moulding, as well as paring away, the mate"rials, and at the fame time tempering the " matter itfelf, fo as to produce. like a potter, " the figure; which, for this reafon, may be " faid to be made, rather than formed. In the " fame manner it happens in the generation " of animals; fome of which are formed and " and transfigured out of matter already di. " gefted and encreafed for this purpofe, all the " parts fpringing out together diftinctly, by a " kind of metamorphofis; and thus forming a " perfect animal, while other animals are made " piece by piece, at firft deficient both as to " fize and fhape, afterwards receive both by " degrees, from the fame matter out of which " they were originally formed. In thefe laft " animals, one part is made firft, and the other " parts, by means of this firft, as the princi"ple of the animal's exiftence. This procefs " of nature, we call an epigenefis, or accretion " of parts, on account of her forming the parts " gradually one after another; and this is more " properly called generation than the other. "The generation of infects is performed " after the firft manner:" when the worm, by a metamorphofis, proceeds from the egg; or the rudiments are formed out of matter in a fate of putrefaction (by growing too dry or too moift) " and thefe rudiments produce, as " by a metamorphofis, a Caterpillar grown to "its full fize, or an Aurelia, a Butterfly or " a common Fly of its full fize, fo as never to " grow bigger. But the more perfect fangui"ferous animals are formed by an epigenefis, " or a fuperaddition of parts; and after their " birth, grow to a ftate of adolefcence, and " arrive at their perfection. Chance or for-
" tune feems chiefly to pride in the production "of thofe animals, which owe their form to "the power of a pre-exiftent matter; which " matter is the firft caufe of their generation, "rather than any external efficient; for which "reafon thofe animals are more imperfect, " and perpetuate themfelves lefs, both as to " number and likenefs, than fanguiferous land " or water animals; which, by deriving their
"being from an univocal principle, (that is, " from other animals of the fame kind) keep "up an eternal fucceffion; and the caufe of " of this we attribute to nature, and a vegi" tative power.
"Some animals, therefore, are produced of " themfelves from matter digefted fpontane"oufly, or by mere chance, as Ariftotle feems " to advance in the virth book of his metaphy"ficks, chap. 9. Thofe animals, to wit, " whofe original matter can give itfelf motion, " fuch a motion, by accident, as the feed gives "itfelf in the generation of other animals. And " the fame thing happens in the generation of " animals, that is obfervable in the works of "art; for fome things which are produced " by art, are likewife brought about by acci" dent, as health ; other things that are made by " art, are never made otherwife, as a houfe.
"Bees, Wafps, Hornets, or Butterflies, and " whatever other animals are generated by " metamorphofis from a creeping infect, are " faid to be the offspring of chance, and there" fore never to keep up their fpecies. But the "Lion or Cock are never produced fpontane" oufly or by chance, but are the work of. " nature; wherefore they do not require a " fuitable matter, or fome other divine power, " fo much as a fimilar form.
"In the generation by metamorphofis, ani-" mals are fafhioned as it were by the im"preffion of a feal, or framed in a curious " mould, all the matter of which they confift " being transformed; whereas the animal which " is produced by way of epigenefis, or accre" tion, at once attracts, prepares, digefts, and " makes ufe of the ready matter; it at once "grows and acquires its form. In the former, " the plaftic power divides the fame fimilar " matter, arranges it when divided, and re"duces it into limbs; from fimilar making it "diffimilar, or forming diffimilar organs with "a fimilar fubftance. But in the latter, whilft " it produces in order different parts, and thofe "parts differently difpofed, it requires and ". makes different fubftances; and fubftances are " varioufly difpofed, the better to fuit the dif" ferent parts that are to be generated."

This is the doftrine of Harvey; and this his differtation contains almoft as many errors as words. This may appear furprifing in one fo well verfed in enquiries of this kind, where truth can only be afcertained by experiment: notwithftanding all his errors, we mult do his great merit in other refpects juftice; his diligence in ftudying nature was very great, and
he therefore deferves not only our praifes, but thofe of all mankind; and the candid manner in which he ufually offers his opinions, is yet more praife-worthy; for he thus moll ingenuounly fpeaks, in the preface to that performance I have been juft now mentioning:
"Therefore, (generous reader) I do not ex" pect you fhould take my word as to the man"ner in which the generation of animals is "performed: I appeal to your own eyes as "witneffes and judges of what I advance. For " as all perfect fcience is built upon fuch prin"ciples, as are derived from the obfervations " of fenfe; you ought ftrennoufly to endea"vour, if you have a mind to become tho"roughly acquainted with what relates to ani" mals, to attain this knowledge, by frequent "diffections of them. If you proceed other"wife, you can only acquire a fpecious and "wavering opinion, but no certain and folid "f fcience."

To conclude, it is not our intention to refute one by one, in this place, all this ingenious but miftaken author's propofitions; feeing this is abundantly done already, by the evident truths we have produced; neither will the dignity of fo great a name, eafily admit of fuch a cenfure, (in abftaining from which, we only follow the example himfelf has given us in the cafe of that famous anatomift Fabricius ab Aquapendento, whom he fpares in the fame manner, and on the fame account.) Neverthelefs, I cannot avoid again inculcating at leaft one principle; that whereas the Nymph is indeed the animal itfelf, and by no means the egg, the whole and only mutation which happens here, is nothing more than a flow evaporation of the fuperfluous moifture ; for by this all Nymphs are neceffarily changed.

Thus it happens, that during this evaporation, before explained in the Nymph of the Bee, the limbs which were before tender, weak, and fluid like water, are freed from the fuperfluous moifture which deprived them of motion; whereby the latent infect is enabled to force its exterior covering, and, having caft it off as the Bee does, or forfaken it as is done by the Butterfly, to make ufe of the moifture which remains, to expand its wings and other parts.

The Nymph therefore, during the firft days of its change, refembles a man who has loft the ufe of his limbs, by a collection of faline or other humours about his joints, and does not recover them, till fuch hurtful moifture is diffipated by nature, or by art. Nature and art have the fame effect upon tumified members, and upon what we call Nymphs; fo that on evaporating the fuperfluous humidity of thefe latt, by the means of nature, or by an artificial heat, they may be brought forth in the form of infects, even in the depth of winter.

In fine, as it is utterly crroneous to fuppofe, that the whole mafs of the Worm is transformed into the Nymph, and after this the Nymph into a winged land or water animal ; fo, on the
other hand, nothing is more certain, than that all the limbs of the Butterfly, the common Fly, and fuch other infects, do actually grow in the Worm; in the fame manner as the limbs of other animals: fo that nothing can be more repugnant to truth, or be fo little fupportable by any folid arguments, as this notion of a metamorphofis: for it is not in the Nymph alone, but in the very Worm, or Caterpillar: Tab. XXXVII. fig. II. 1II. and IV. we can lay before the eye all the parts of the future infect. Thofe parts are by no means generated fuddenly and all at once, as has been fuppofed; but grow leifurely one after another, till all of them having airived at a fate of perfection, the Worm gives itfelf motion; and breaks its dkin; the inclofed limbs having generated by degrees, from the motion of the moifture, and their own contraction, fwell and eafily cafts its fkin, and fuddenly difclofes all its limbs to our view. In this inflation, (fhooting out, budding, or vegetation; and, as it were, changing of the nutriment of the new limbs, which have gradually grown, or have been produced by an epigenefis, or accretion of the parts, and not at all by a metamorphofis) confifts the fole foundation of all the changes which we remark in infects. We call the creature in the fate of this natural mutation a Nymph, becaufe this kind of infect; on cafting its skin, may be faid to refemble a bride or Nymph , who, in many countries, leifurely prepares and adorns her perfon for her intended fpoufe. But we utterly deny what Goedaert has in feveral places advanced, that there is any refemblance between the Nymph and an infant in its fwathing clothes; as alfo its likenefs to any other figure than that of the future infect ; for the Nymph not only reprefents clearly and difinelly all the parts of the future infeet, but is, in reality, the infect itfelf; and this, not dead or buried, but, as Libavius has already obferved of the Necydalis, actually living and feeling, though unable to give any indications of life, except by the motion of its tail or belly; for in many we find thefe parts are not affected with any moifture, nor undergo any change, but what arifes from the cafting off a very thin skin, fo that they cannot lofe their former power to move.

Allowing therefore as a certain truth, as it really is, what has been already advanced in this work concerning infects, not only all that Harvey fays upon the fame fubject, in the extracts we have given, and all the errors that flow from thence, fall to the ground; but likewife that common opinion of philofophers, that the gencration of infects is fortuitous, and which Goedaert's editors feem to have fathered, or rather to have forced upon him, appears utterly groundlefs ; feeing it has no other foundation, than that idle and imaginary metamorphofis, which neither exifts in nature, nor can fairly be deduced from Harvey's (in many places) contradictory arguments. This great man muft have eafily feen the weaknefs of his
own repugnant notions, had he not been too much prejudiced in favour of the opinions which they were calculated to fupport or explain, if the refpect we owe him will, after all, permit us to think he really gave into this abfurd notion. Perhaps we may with more juftice aflure ourfelves, that he proceeded on this bccafion, in the manner that people generally proceed in confidering things that are difficult to be underftood and accounted for; that is, by fancying fomething, which feems, on mature deliberation, beft to agree with the mature of things, as Ariftotle had long fince directed, in his treating of the generation of Bees*; his words are, " That the generation " of Bees is performed in this manner, feems " not only agrreeable to reafon, but to what " appears to happen in the generation of other in" fects of this kind; however, the obfervations " hitherto made are not fufficient to give us a cer" tain knowledge of what it isthat really happens. "When we have acquired that certain know" ledge, we muft truft our fenfes, rather than " our reafon, by which we are to be guided, " as far only as what it demonftrates, agrees " with what our fenfes afcertain." Daily experience fhews us, how many and how great errors this method of philofophifing hath produced; fo that an author would do much better to own his ignorance ingenuoufly, than to lead aftray, by unnatural phantoms, thofe multitudes of credulous readers, who, idly thinking that all true learning is to be found in books, never give themfelves the trouble of immediately confulting nature herfelf: perhaps we ought rather to pronounce fuch idle followers of knowledge well worthy of this punifhment, for neglecting the opportunities of finding it in the things themfelves with which they are defirous to be acquainted.

Having Shewn in fome meafure on how uncertain a foundation Harvey's account of the natural mutations of infects is erected, it remains to confider with what grofs errors, and palpable falfhoods, Goedaert has defiled them: but at the fame time we own with fatisfaction, that this author alone obferved and difcovered, in the fpace of a very few years, more fingularities in the Caterpillar kind, than had been done by all the learned men who treated the lame fubject before him. Notwithftanding this, we cannot help faying, that not only he was not free from miftakes, but that he has made fome fuch important ones, as can fcarcely, if at all, be excufed : not to mention his not having had the leaft notion of the true nature of the Nymph. But as we have refolved to examine on a fucceeding occafion, feparately, all the errors of this author, we thall produce at prefent only two of the moft glaring; upon which, as upon a frail and flippery foundation of ice, all his experiments are built. Nor thall we do this with any other view than that of making truth appear the more ftrong and plain, by being compared with fallhood; for the more
naked truth is propofed, the more powerful if is to fubdue errors.
In the firft place Goedaert is under a very great miftake, when he advances, that the Caterpillar can be changed, before it has reached the full term of its growth; adding alfo, what is ftill more apt to lead people aftray, that the mutation effected in this manner is very incomplete and unnatural. But let us attend to his own words, in the firft volume of his fingular obfervations on the wonderful mutations that happen in the Caterpillars, page 12 of the Dutch edition. "I have befides obferved," fays he, " that, whenever the Caterpillars effect "a mutation, before they have been fufficiently " fed for that purpofe, and have reached the " full term of their growth, they never receive "a perfect form in confequence, of fuch pre" mature change, but are mifhapen and mife"rable, with fhort and fhrivelled wings, like a " piece of fcorched parchment; whereas other" wife, in lefs than half an hour, thefe ufeful "parts expand themfelves, and acquire their " proper beauty, with a variety of elegant co" lours. Hence it happens, that the unhappy " infect, not being able to make any ufe of "thofe imperfect wings, is much more mi"ferable than it was before its change, being " obliged to creep upon the ground, where it " at laft perifies for want of proper nourifhment." Afterwards, in his twenty-eighth experiment, it appears, that on the flrength of the foregoing hypothefis, having for feveral days fupplied a Caterpillar with food, though all the time preparing for its mutation, be breaks out into the following words: "If I omitted giving it "food, but for one day, it immediately fet " about changing; for which reafon I took " care not to make it faft any longer, as fo " premature a change was likely to produce but " an imperfect Butterfy; for it is remarkable " of all Caterpillars in general, that as foon as " they find their food fail, they prepare for a " mutation; but if it fails of its food before " the term appointed by nature, the infect pro"duced is both imperfect and tender; fo that "to have a fucceffion of complete Butterflies, " the Caterpillars muft be provided with food, " till they refufe it of their own accord, in " order to enter upon the bufiness of muta"tion." At length, after having given in the eighth experiment on the ftrength of a mere conjecture, the example of a nocturnal Butterfly, which was, in his judgment, the weaker, becaufe its Caterpillar had been deprived fooner than it ought of its ordinary food; in the fifty-ninth experiment of the firft volume, and afterwards in the thirtieth of the fecond, he in a manner opens the fource from which he derived all thofe his miftakes; for after defcribing a very miferable animal, that was neither a Caterpillar nor a Butterfly, according to the idea he had idly formed of it in his own fancy, he adds, "The reafon of all this is, that " the Caterpillar had entered upon the bufinefs
" of mutation, before it had taken its proper " quantity of nourifhment." As this argument appeared to him moft inconteftible and evident, he afterwards, in the twenty-ninth and thirtieth experiments of his fecond volume, where he defcribes fuch another imperfect animal, and one with wings; does not mention one word of this falle propofition, but paffes it over in filence, as if fufficiently proved, and not liable to contradiction.

Since in the places here cited two animals are exhibited, one of which, namely, the female, is always; by an invariable law of nature, tranfmuted without wings, Tab. XXXIII. fig. vI: whillt the other, which is the male, never appears without them. No. vi. not only the genuine foundation of all natural mutations is overturned, and rendered obnoxious to chance, by the idle comments which we have extracted from Goedaert, but the road to truth is alfo rendered impracticable, at leaft to the unfkilful.

Goedaert himfelf. could not avoid the confequences of fuch rafh and idle fictions; he has thence fallen into two other miftakes. The firft is feen in the pains he muft have been at to fupply his Caterpillars with food as long as they required it. The fecond, his omitting, on this account, fome very curious experiments; for, infatuated with his own prejudices, he neglected the true knowledge he might have acquired by his experiments, to adopt a falfe reafoning; fo that he could never afterwards by his experiments come to know, that the fpecies of Caterpillars he defrribes, are never changed after any other manner; the male Caterpillar becoming conftantly a tender infect, furnifhed with wings, and the female a coarfe and big-bellied one without any.

The obfervation made in the place here cited appears to be of the utmoft importance, viz. "That the male of the nocturnal Butterfly is " is always provided with wings, whereas the "female never has any;" fo that the male can enjoy the fweet refrefhments which the free air affords, and ramble at pleafure over the fmiling fields and fragrant flowers, when, on the other hand, the care at home, and management of the fruits of wedlock, are committed to the female only; for which reafon, fhe is always found with the hinder part of her body thruft out, in order, as it were, to induce the male to do his duty; nor does the male feem indifpofed to perpetuate his fpecies. Nature, therefore, intended to afford us in thefe infects the moft friking examples of an affectionate mother, and a careful father; and perhaps, as the flothful were formerly refered to the ant, as a pattern of induftry, married people, that neglect the duties of their ftate, may, with equal propriety, be defired to confider this other little infect as a model of conjugal folicitude.

As it fufficiently appears from our experiments, which contradict thofe of Goedaert, (though that very obfervant author has taken the right method in making them, and hath
given tolerably accurate figures) what faile confequences he has deduced from thence, and, by that means, rendered the frongert bafis of the origin of infects wholly fubject to chance ; we fhall now reftore this foundation, whereon, as on a rock, depends the whole fabrick of the tranfinutations of infects, and fhall lay down the following as undoubted axioms. Firft, that the Caterpillar cainot be changed before the time appointed by nature, that is, the laft moment of its growth. Secondly, that although Caterpillars may be transformed before they leave off feeding, yet this has no effect to caufe any change in their form. We muft however acknowledge that fome difference in fize may arife from hence, which we muft obferve hath not been noticed by Goedaert, nor, hitherto, by any other perfon. Wherefore, thirdly, we by no ineans think it neceffary that the Caterpillar fhould be fed until it ceafes to eat of its own accord; for at the time when it is to undergo a change, the bufinefs of feeding is not only unneceffary and difficult, but entirely ufelefs. Confequently, the conclufions of Goedaert before mentioned, have not been drawn from the nature of things, but from his own falfe and chimerical notions. For he, not having examined his experiments with deliberation and diligence, deceived himfelf and others.

We may take it for granted, that as foon as the Caterpillars have arrived at their utmoft growth, that is, when all the limbs under the flin have grown to a proper fize, they have not only power and ability, but alfo, if I may be allowed the exprefiion, a free and abfolute will to begin their mutation, with this reftriction only, that they cannot omit or avoid it ; fince the budding limbs, which demand, as it were, to be changed into the Nymph, in procefs of time, burfts the fkin, though they can feed for a confiderable time afterwards: but then, as I have before obferved, this further feeding is of no other ufe but to make the creature larger or fmaller, for from that time not even the leaft of their limbs is increafed in length. This Harvey hath alfo remarked, in his treatife of the generation of animals. From hence it alfo follows, that thefe animalcules, now grown to perfection, attaining the age of maturity, and fit for the copulative ftate, apply themfelves folely to propagating their fpecies, in the execution whereof fome particulars are fo aftonifhing, that they deferve everlafting admiration.

Nature performs the whole procefs of generation in thefe infects in fo clear and open a manner, that by the affiftance thereof it fhould feem as if we could penetrate into the true foundations (though hitherto buried in darknefs) of the generation of other animals, which we fhall evidently demonftrate, when we have time and opportunity for further experiments.

That

That we may give our opinion on this head in a few words, it feems very probable, that in the whole nature of things there is no generation that can be properly fo called, nor can any thing elfe be obferved in this procefs, than the continuation, as it were, of the generation already performed, or an increafe of, or addition to, the limbs, which totally excludes the doctrine of fortuitous propagation. Having eftablifhed this principle, it is eafy to explain the reafon that a man, deprived of hands and feet, may have a found and perfect offspring. Hence, alfo, we may determine that famous queftion, whether, in order to produce a complete iffue, a feminal particle drawn from every member of the body be abfolutely neceflary. Moreover, the reafon is evident, how Levi, being yet in his father's loins, paid tythes long before he was born: for he was in his father's loins, when Melchifedeck met Abraham. Laftly, even original fin (in the opinion of a very learned man, to whom we have occafionally communicated the myfteries of our experiments) may ftand on this principle as on a firm foundation, fince all mankind have been laid up originally in the loins of their firft parents. But, fince others claim the right of explaining fuch myfteries, we fhall enter no further into this matter, but come to another error of Goedaert, intending to difculs the reft, when we have occafion to examine any more of his experiments; for it is not our intention to build on another's foundation.

A further error of Goedaert appears in the 77 th experiment of the firft part, in the words following: "What is more particularly wor"s thy of our notice in thefe infects is, that " wherever the legs are fituated in the Cater"p pillar, there is placed the back of the ani" malcule that is to arife by tranfmutation : " and on the contrary, where the back of the "Caterpillar was, there, are the legs in the " animalcule to be produced from thence.
"This metamorphofis, adds he, (which ren-
"ders him the more blameable) is per"formed in a chort fpace of time, fo that it " may be diftinctly feen; becaufe immediately "after fhedding its fkin, this change appears "to the eye." From hence may arife a proper opportunity of explaining accurately and carefully the true tranfmutation of the Caterpillar into the Chryfalis; but as this matter is (as far as hitherto is neceffary to be explained) very evident, from what we have on feveral preceeding occafions faid thereon, we fhall here pafs it over in filence; and the rather, becaufe we have determined to treat this matter profefledly in the following fheets; for we thall fhew from reafon, and illuftrate by figures, after what manner, and in what place, every limb of the Nymph and Butterfly are difpofed and arranged, which we have before actually laid before the eye, in the prefence of Magalloti and Thevenot, by fhewing all the limbs of the Butterfly in the Caterpillar. There-
fore, to prove the fallity of what we have citelt out of Goedaert, it is fufficient only to repeat, that the fix fore legs of the Caterpillar are never changed or tranfofed in any remarkable manner. And though Goedaert thought himfelf fuperior, with refpect to the fharpnefs of his fight, to Mouffet, Harvey, and others (whofe thoughts on this fubject were conjectural) and has afferted the contrary to their doctrine, vet nothing is more certain than that not only he, but thofe who boaft to have feen it, were grofsly deceived. This deception may poffibly arife from two caufes: the firft is the fwift fhedding of the fkin; whence it happens, that the limbs, hitherto hidden, fuddenly appear, and are difpofed in a form quite different from what they were in the Worm: the fecond may be owing to fome protuberances and fwellings; which are on the back of the Caterpillar, and; as foon as the fkin is fhed, have the refemblance of legs. Indeed, a perfon more quickfighted than Goedaert, may be deccived by this, fince the change of the fkin happens fuddenly, and, as it were in the twinkling of an eye: wherefore, even the more modern authors, who wrote moft accurately on this fubject, have difcovered nothing elfe, than that the ikin is firft broken on the head and back. This is plain from that very elaborate treatife of the generation of thefe infects, publifhed by Francis Redus, principal phyfician to the grand duke of Tufcany, in his own language, in the year 1668; wherein he has proved, by the ftrongeft arguments, that no infects are generated by putrefaction. This doctrine we fhall not only willingly grant this eminent phyfician, but further we fcruple not to affert, that putrefaction is, in a great meafure, produced by thofe very infects which are fuppofed to arife from it: but of this matter more at large hereafter.
In order to fhew the origin of thofe fwellings on the back of the Caterpillar which impofed on Goedaert, as fo many fignals of changing their legs, it muft be obferved, that many of the Caterpillars, whilft they are changing, caft off from thofe hairs wherewith their bodies were before roughened and briftly, a very tender, and, as it were, membranous fheath; after which, the finer part of thofe hairs appear like fo many linen threads in the Chryfalis. But fince this Caterpillar of Goedaert's is covered with hairs which are more like briftles than linen thread, it follows, thofe hairs and the reft of the body having thed their fkin, form in the Chryfalis the figure before mentioned, and appeared as if the legs were tranfpofed. This is what led Goedaert into another error: for if he had known thefe feveral particulars, he might have eafily inveftigated the origin of thofe filken yellow threads, which he tells us he faw in the Chryfalis, and which are defcribed in the 2oth experiment of the firt part.

It is not only very certain that the clange of the Caterpillar into a Chryfalis may be perceived by the eye, but our experiments proceed
fo far, that, by following nature, we are able to produce the Chryfalis from the Caterpillar ftate. Nay, it is in our power to keep back this tranfimutation, or to retard the fame to any degree we think proper, though it happens fo fwiftly and fuddenly, and therefore, undoubted credit ought to be given to the feveral matters we publifh here concerning this change. Hence it is, that we can now exhibit to public view many Chryfallides, reduced to almoft one half; this, among feveral other myfteries of nature, we have flhewn before his ferene highnefs Cofmus the third, grand duke of Tufcany, when he, by a fpecial mark of diftinetion, was gracioully pleafed to vifit us, and to approve of our experiments.

But to have done with the errors of Goedaert, which we have hitherto been fetting right, we fhall lay down the following as undoubted truths. Firft, that the legs of the Caterpillar, or Worm, are never tranfpofed to the back. Secondly, that the Caterpillar is not changed into another animal, though, in procefs of time, the legs themfelves grow in the fame
manner, as the wings of ayoung bird, or feet of a Tadpole. Thirdly, that no natural transformation happens in thefe infects; but that this whole change, (in finding out the nature whereof, authors have cominitted fo many errors, and proceeded, as it were, blind-fald, like the combatants of old) confints only in this, that the limbs of the Caterpillar, or Worm, by an accretion of the parts, grow infenfibly under its skin; and when the latter is fhed, the former appear plainly and diftinctly to the fight, but they cannot be moved at firft by the little animal; the reafon of which is, becaufe they are fluid like water, and cannot acquire fufficient ftrength, unlefs they evaporate it for fome days before.

But this does not hold in all Worms, fince there are many which lofe no part of their motion. To render this matter the more clear, we fhall now proceed to the third propofition, defiring the reader to confider it attentively, as it is a matter of the greateft importance, and of very great extent.

C H A P. IV.

Of the four orders of natural changes, to which we refer nearly all the Species of infects, as having the fame fole principle of change.

HA V IN G hitherto, from the nature of things, examined and drawn, as it were, a juft and elegant picture of the true origin of thefe appearances, or, as they may be called, fudden buddings and hootings into limbs in infects, and by that means, fhewn how this fubject hath been difgraced and obfcured by chimerical notions, and the idle traditions concerning thefe changes; having likewife cleared the fubject from the impurities wherein it was involved, by eftablifhing it on a frong and firm foundation, which cannot be fhaken by any force; and in our opinion, can no more be fet afide in favour of fortuitous chance, than a Lamb can be generated by a Wolf, or an Eagle by a Dove, we fhall now proceed to the pofitions themfelves, or to the feveral orders of thefe changes; whereby, as with the genuine tinct of nature, we flall endeavour to illuftrate the picture before us, and reftore the amazing and wonderful appearances of infects to their true fplendor and native beauty. Thus fhall we more clearly be fenfible of, and, with greater devotion and more humble reverence, meditate on the omnipotent wifdom and fuperlative goodnefs of God in the accretion, fuftenance, and change of the minuteft animalcules, which form a celeftial hoft as the angels.

If we diligently attend to this true bafis of all the changes of infects, that is the Nymph, it will be eafy to comprehend the reafon why all the fpecies, tho' fo many in number, together with their changes, agree and terminate in this one particular ; wherefore it feems fuper-
fluous to dwell longer on the explanation of them. If again we more ferioufly confider after what various ways this Nymph hides itfelf under the manifold forms of thofe infects, fo as to elude the fharpeft eye; it will become neceffary to view this Nymph in every light, under all its accidental appearances. And herein we fhall not follow as a guide the delufive traces of our own ingenuity, or admit the inventions of fancy, but purfue only the various and natural phromemena of the Nymph. There are four orders which comprehend the whole clafs of infects, fo that we cannot fee one, which may not be referred to one or other of them, efpecially if we can fee its change.
The firft order will comprehend thofe infects, which, with all their limbs and parts, proceed inflantly out of the egg, and grow infenfibly, until they attain a proper fize; after which they are changed into the Nymph , which undergoes no other change but that of its skin.
Of the fecond order are thofe hatched with fix legs, and which, when the wings are gradually perfected, are alfo changed into Nymphs.

The third order is, when the Worm or Caterpillar comes forth from the egg either without any legs, or with fix or more, and its limbs afterwards grow under the skin, in a manner imperceptible to our fight, until at length it cafts that skin and refembles the Nymph, or Chryfalis.

The fourth order is, when the Worm likewife proceed from the egg, either without F
any, or with fix, or more legs, and in an invifible manner grows in its limbs and parts under the skin, and does not fhed this skin, but acquires the form of a Nymph under it.

Having laid down thefe general propofitions,

I thall hereafter diftinctly and at large, defrribe the Nymph under thefe four different orders; and at the fame time fhall lay it before the eye by particular examples, illuftrating every defcription; but in the firft place, I fhall enumerate the infects which belong to each order.

The FIRST ORDER.

Of the natural cbanges, or flow accretion, of the limbs.

AS on the one hand it appears, from the niceft experiments, that all infects proceed from an egg, that is laid by an infect of the fame fpecies, with whatever warmth fome philofophers have maintained the contrary; fo on the other it muft be obferved, that fome infects iflue therefrom inftantaneoufly, and, as it is faid, perfect in all their parts, as almolt all the kinds of Spiders, and many more. Others, on the contrary, undergo fome changes before their parts are finifhed, which is the property of a great number of Worms and Caterpillars; for when thefe infects affume the form of a Nymph or Chryfalis, under this fhape they fuffer another change, or rather, the fame evaporation of the fuperfluous moifture which the animalcule fuffers in the egg when it iffues from thence, or which they themfelves have alfo fuffered in their egg, before they underwent this change,

Hence it is, that as fome infects come from the egg perfect in all their parts, Tab. I. fig. iI. a. fo, on the contrary, others are forced from thence imperfect as it were in their feveral limbs. But as the former often change their skin, though they be not afterwards transformed into Nymphs, which are difcoverable by certain new limbs, before they grow mature, and are rendered fit for generation, fo the latter fometimes caft their skins, and when they throw off the laft, under which they acquire the form of a Nymph, and are furnifhed with new limbs, Tab. XVI. they likewife attain to maturity; after which neither the former nor the latter infects caft their skin or grow, but apply themfelves, with all their ftrength, to the bulinefs of generation ; and then, pleafed as it were with their paft employment, they die in peace, unlefs it be fo ordered by nature, that they are obliged to feed their young, and for that purpofe muft neceffarily live fomewhat longer. Indeed, moft infects are found of fuch a nature, as fcarcely to live more than four hours after the time of their laft change, and the bufinefs of generation is over: fo that nature feems to exert her utmoft frength upon this occalion, and the beginning of life in one little animal is the end of it in another, as we fee every day in the motion of the weights affixed to clocks, one of which defcends whilft the other afcends. But we fhall treat more fully of thefe matters in their proper place.

To explain our obfervations on the egg fomewhat more amply, and as far as may be
proper in this place, we muft add, that we have remarked, that the infects which proceed inftantaneoufly, or perfect, from the egg, as well as thofe which iffue from thence in the form of Worms, are difpofed and placed in the fame egg as clofe as can be, and without any food in their power, in the fame manner as the Worm and Caterpillar lie fill and compofed, without the leaft food, when they have put on the form of a Nymph, as we have obferved. This will be clearer when we come to the fourth order of tranfmutation.

Further, as the Worms and Caterpillars beforementioned, when changed into Nyinphs, are fluid like water, and fwoln on account of their limbs being extended by a fuperfluous moifture; and as they cannot move, although they live and breathe; fo we have found, that our animalcules lying in their egg, and being alfo fluid like water, are incapable of the leaft motion. Wherefore, as the infect formed from the Nymph, or rather the infects themfelves, hidden under the form of Nymphs, do not appear, till thefe redundant humours have been diffipated, and their limbs have acquired fufficient ftrength to burft the outward skin; fo likewife thefe animalcules, which are protruded from the egg, either perfect or imperfect, do not part with thefe their eggs or coverings, before the fuperfluous moifture is expelled, and their feeble limbs have acquired fufficient ftrength, fo as to be able to break through the outinoft skin, wherein they are involved as in a Chell, and to quit it, as foon as it is burft or perforated.

If we attentively confider what has been hitherto advanced, which is indeed of great moment, and productive of many ufeful conclufions, we fhall be inclined to determine, that thofe eggs, wherein the animalcules lie Atill without food, in the figure of Nymphs, and which, for that reafon, often have the form of the animalcules that are to proceed from them, ought not, properly fpeaking, to be called eggs, but Nymphs in the form of eggs, or oviform Nymphs. The former infect, for this reafon, though yet in the egg, may not be improperly called a Nymph-animal oviform, or in the appearance of an egg ; as the latter may be denominated an oviform Nymph-vermicle, or Worm-Nymph. Nay, the egg, as it is called, or rather, the coat wherein they are wrapped up, ought to have the appellation of their skin, rather than that of the fhell or
egg wherein they are to be generated or formed: but we have already touched upon thefe obfervations concerning the skin in the foregoing pages, when we treated of the Nymphs and Chryfallides cafting their skin.

As our intention is to offer fome rules and orders of tranfmutation, which comprehend all the changes that happen in the infects known to us; we fhall fix our eyes firt on the changes of thofe infects, which iffue infantaneoufly, as it is faid, out of the egg, and which have already gone through the whole procefs of their change, or accretion, of their limbs in their mother's womb; that is, when by the continual increafe of their invifible yet effential parts, as they are called, they have become perfect animals in the egg, they have undergone no other change out of it, except only the evaporation before mentioned; nor are they to be afterwards fubject to any other change or accretion into a Nymph, which is alfo performed only by evaporation.

This we fhall offer as the firft, fimpleft, and plaineft method of change in infects, and from this we fhall proceed by degrees to fuch as are more obfcure, complete, and difficult of comprehenfion, mentioning fome fo intricate, that, it feems to many, they cannot be explained at all. This notion hath been fo eftablifhed by cuftom, that for want of a more proper term, the bodies have been called eggs; fince to a perfon, who views them flightly and fuperficially, not even the leaft veftige of any diftinct limb appears in them.

The firft order of change then, according to our fyftem, is, when the infect, lying in the egg or flkin without food, after fome days evaporation and diffipation of the fuperfluous moifture, creeps out of it, perfect in all its parts, fo that afterwards it is not changed into a Nymph, nor undergoes any other remarkable mutation. But fince this infect, before it hath arrived to its full bignefs and proper growth, by means of the food that is given it, is fometimes obliged to caft its skin, like the Worms or Caterpillars that are changed into Nymphs; and fince, under the laft change of the skin, its limbs alfo undergo fome tranfmutation; it is therefore the infect ought to be confidered as a real Nymph, at the time it is in its laft skin; for when this is caft, it is obferved to be fit for generation, and to have come to its maturity and full vigour, and not before.

Since therefore fome infects are changed after they have caft the laft skin, which may be exemplified in the long-legg'd Spider defcribed by Goedaert; we fhall, for this reafon, confider this infect as a kind of Nymph, and for diftinction fake call it a Nymph-animal. Not that we would have any perfon tied down to make ufe of the terms we have offered, being fatisfied, if the orders of thefe clanges be as diligently, accurately and diftinctly obferved as they are in nature, for in this lies the principal and only knowledge.
If we further ferioufly attend to this change, we fhall plainly fee, that it not only agrees
with the accretion of the limbs in fanguiferous animals, but alfo with that epigenefis, or fuperaddition, obfervable in plants or vegetables; this therefore we would have underftood of the orders of changes, and fhall accordingly make the like application.

To give fome inftances of what happens in fanguiferous animals, none feems more proper for that purpofe, than the accretion of the limbs in a Frog, Tab. XLVI. a. for as the young Frog is very vifible, by means of the black fpot which we fee in the egg, fo we find that this is nothing but the very animal, in the fame manner as we have flewn in infects. But as the infects are not produced with their food, fo no other difference can be difcovered in this cafe, than that the young Frog iffues forth with its proper aliment ; and it is alfo found to be wrapt up in a certain membrane like the infect, though it ftill feeds for five days within it.

Further, as the Frog, immediately after the burfing of this membrane, finds matter to feed upon, for it lies in the midf of it, fo likewife are the infects readily fupplied with nouriflhment, when their eggs are broken; fince fome of them are placed within, and the rent without, and upon the fubftance on which they are to feed.

To purfue the analogy, as the Frog proceeds from its egg without legs; fo we fee a great many infects creep out of their skins without them. And as the legs and the reft of the Frogs limbs increafe in procefs of time, fome within, and others without the skin, fo that at length it refembles a Nymph of the fecond order, in the fame manner we fee, that all the limbs of infects, as well thofe that are in, as thofe that are out of the skin, grow by degrees, until they are changed into real Nymphs.

Lafly, as the Nymph of the Frog beforementioned cafts its skin in procefs of time, and expofes to open view its hidden limbs, which we faw through the skin before, and by degrees attains its full maturity and ability for generation: fo, after the fame munner, we obferve, that the Nymphs of infects after fome time caft their skins, and hew their covered limbs, and, like the frogs, are rendered capable of propagating their fpecies.
But we fhall treat this matter more at large in the following fheets, when we lay before the reader our own moft remarkable experiments on Frogs; the principal part whereof has been performed before the grand duke of Tufcany, the fublimity of whofe noble and accomplifhed mind, is infpired with a generous and benevolent affection for the liberal arts and fciences.
Let us now confider the vegetable kinds, Tab. XLVI. a. for as we fee thefe grow from a feed, which infolds fome leaves, or a very tender fprout ; in like manner, we find that infects ripen into a fuller and ftronger habit from their feed, which contains all their limbs, or rather the animal itfelf wrapt up in the skin.

For the fame reafon that plants come in time to maturity, and fwell under the cover wherein the flower lies, as the infect does in the Nymph: fo likewife we obferve, that infects infenfibly approach to a more perfect maturity, and by flow degrees fpring in their covering, or the Nymph, in which are all their limbs, as the flower is placed in its proper covering: this we fhall hereafter demonftrate in the Clove Julyflower, Tab. XLVI. b.

Lafly, as flowers at length break out from their husks, and become capable of producing new ones by generation and running up into feed; in like manner infects proceed from their Nymph, as the flower from the husk, and are alfo rendered fit for generation and repofiting
their ferm. And as propagation is performed in plants, by the union of their feed with the moifture of the earth's womb, infects perform the act of generation, by the conjunction of the fruitful, and, as it were invifible particles of the male's fperm, with the confpicuons, vivifick, and fenfitive feed in the female. This feed of the female continues and perfects the life, motion and fenfe which it enjoys, when the fpermatic virtue of the male is thrown into it ; and it is in this continuance of motion that the fruitful conception of the feed is properly faid to confift : but we fall hereafter explain this matter more at large, by particular examples.

A catalogue of the infects wbich are referred to in the furt order of natural changes, called the $N y m p h$-animal.

HA V I N G explained our firft and moft fimple order of changes, in which we have confidered the animalcule, which comes perfect from the egg, as a real Nymph when it is about to caft its laft fkin; it now remains, that we fhould give a catalogue of infects which belong to this order: and upon this occafion we fhall briefly enumerate fuch of them as we have in our cuftody, as we fhall do alfo with regard to the Nymphs, Chryfallides, and diftinct fpecimens of the four orders, together with feveral other things not unworthy the fpeculation of the curious, which we preferve in our cabinet, and by the affiftance of which we are able to demonftrate to the eye every thing hitherto, and that Mhall hereafter be, advanced.
To the firft order of tranfmutations belongs the Spider *, which proceeds immediately from its egg, and has no vermicular.ftate; this has been alfo obferved by the moft accurate Martin Lifter, who in his elaborate treatife on Spiders fays, "Thefe are hatched from the eggs, "perfect and complete in all their parts." Chap. II. Of the generation of Spiders.

I keep, for this purpofe, the largeft of all Spiders, that is, the venemous, Brafilian kind, which has crooked, black, very fharp and big claws, or rather darts, and alfo has two arms, which are in all refpects like fhanks or legs.
I alfo have the great downy Phalangium, or Tarantula.

Alfo a very remarkable Spider which Dr. Padbrugge fent me from the Cape of Good Hope. It is of the colour of fcarlet velvet, and covered thick with a fine down, in which is the colour. It is as big as a grain of a fmall French bean, with an oblong body, and broad breaft ; it has fhort legs, except the two foremoft pair, which are very long; the fecond pair
are fomewhat fhorter; the third is very fhort; but the fourth or laft is fomewhat longer, and all of them are covered thick with red hair. The breaft is fo clofely united to the belly, that they cannot be feparated from one another; therefore this Spider is in that refpect like a Lobfter; it has two fhort arms, and two ruddy tranfparent ftings or darts, but its eyes can't be feen on account of the thicknefs of the hair.

I have alfo the American fpecies of Spiders, which has rough, thick, and very long legs in comparifon of the body; the belly is fomewhat fwelled and briftly, its darts are very much bent and crooked like claws, but the arms are fhort in comparifon of the legs, being not above a third part of the length of the fore pair. It has eight eyes, which are neatly ranged in two rows; its breaft is like an oval fhield ; it turns the eyes to the extreme parts, and bends itfelf a little on the infide, behind the joint of each leg or Chank, in the fame manner as the fkin finks between the ribs in lean and thin people; but this is common to a great many Spiders big and little.

I have alfo one of the Holland fpinning Spiders, which, in colour and figure, refembles Mouffet's largeft fpinner, but it is not half fo large. I have obferved in this fpecies, that each of its eight legs confifts of feven joints ; thus the firft joint at the breaft is very fhort; the fecond is much fhorter and formed like a ball ; the third is the longeft of all; and it is for the fake of this only, that the other joint feems to have been made, that this third joint may be moved with the greater eafe and expedition; the fourth is fomewhat bent, and by degrees grows thicker ; the fifth is the longeft except the third; the fixth and feventh decreafe in proportion, whereof the latter is provided

[^4]with two large, crooked, black claws, accompanied by others of a fmaller fize*. The animal makes ufe of all thefe to run down the web, and to guide and govern it.

I cannot determine, whether the Englifh Spiders have the fame properties, as Lifter fays pofitively, "All Spiders have three joints " in their legs." But fince this gentleman thinks that all Spiders have two antennæ, or horns, which are inferted in the head next to, and above the darts, I fhould not agree with him in this affertion; for though I have never feen the Englifh Spider, yet I can eafily fee from other foreign kinds, and their limbs, that this is repugnant to the nature of Spiders. In order to folve this difficulty, I fhall briefly relate what I have obferved, concerning this matter, in my Spinner. By examining the Spider before defcribed, I found that thofe two joints, and all the other legs, are fixed to the breaft; but with this difference, that the place of their connection with the breaft is higher, on account of the thicknefs of the hair ; and this I judged to have been done, left they fhould impede the action of the limbs, wherewith the fpicula or darts are united, and that thefe joints may move with more cafe. I have alfo obferved, that they confift of fix, or perhaps of feven joints, which I flall not pofitively affirm; wherefore they are, for this reafon, like legs, as Dr. Lifter has alfo obferved, where he fays, "Thefe, like feet, confift of certain joints."

But what deferves the greatef attention, is, that every one of thefe has a claw fixed to the end of it, that is fomewhat crooked and blackifh: wherefore, thefe may very properly be called the fifth pair of legs; and the rather, becaufe they have their mufcles on the infide, as the other legs have, and are rough with hair and prickly briftles. However, many reafons induce me to think, that they ought not to be reckoned among the legs, fince in the whole tribe of Spiders they are not fhaped in this manner, but in a great many they refemble the claws of Lobfters and Scorpions. This is vifible in the Flea-Spider, in which thefe limbs very nearly refemble a pair of tongs or pincers, only that they want the great toe, as appears by one now in my cuftody; I am obliged to refer to this, as nothing remarkable or ufeful can be obferved at this time, for I am writing this in the month of December; but I can demonftrate this fo clearly, in another fpinning Spider I have, that there can be no room for doubting: for firf, we may fee two darts or arrows in this; then, thefe arms are formed with fuch wonderful art, as not to be inferior to the inimitable workmanfhip which we admire in our own hands.

Thefe arms are divided into different joints, at the end of which we fee a fmall concave and convex part, covered with hair : this re-
fembles, in afpect, a piece of the white of an egg divided into four parts. At the end of this fmall part, there is in every arm a litule rifing fomewhat like a finger. There are alio on thefe finall hairy parts, others worthy our obfervation, each of which is joined on the inward concave fide, to the bafis of thefe hairy parts, fo as that the latter may protect, and, for the greater fafety, hide the former. The firft of thefe parts is divided into two joints placed one upon the other, to the lower of which is joined a real but obtufe ferceps, of a mixed light red and blackihn colour, whereby the arms are connected together. To the other joint, which is fomewhat higher, is joined an obtufe or blunt little claw, of a colour inclining to a bright red. We further find, that another fmall, and, as it were, blunted part, is articulated at the root of the firit part, whereon lies the forceps; on the end of this are three fmall toes or crooked claws, which are not placed, nor formed, in the fame manner, and whofe moving mufcles are hidden in the fmall blunted part. Thus it is plain, that thefe arms are differently framed, according to the different kind of the Spider.

From thefe inftances, therefore, it is clear as the light at noon day, that thefe limbs or members ought not to be called antenna, feelers or horns, but real arms, and that neither Spiders nor Scorpions have any horns. But as the brachia, or arms, before defcribed, are formed with amazing art, I have therefore thought proper to preferve them dried ; in order to have them ready to hhew on any occafion.

I likewife obferve, that the long-footed Spider has no feelers or horns, but its arms are provided with, at leaft, one crooked black claw, that reaches beyond the end of the arm. The legs, with refpect to the joints, are like the legs of the fpinner before defcribed; and what is properly called the foot, feems to be divided into two feveral joints, that have two claws at the end of them. But I cannot further inveftigate thefe matters at this time, being now in the midft of winter, and having no Spiders, but fuch as are dried and preferved; in which, but efpecially in the large venomous ones, that I keep, it is very evident that Spiders have no horns or feelers.

I alfo have Lifter's fmall crimfon Spider, but as this is alfo dried, we cannot difcover the proportion of the ends of the arms, but we may fee that they are fomewhat thicker than the legs.

I obferve in the green, fmall, and long-bellied Spider, of that illuftrious Englifhman, that thefe arms have likewife a plain claw at the end of them. The fame is obfervable in other Spiders which I have, nor is there any that has not the fore joint armed in the manner beforementioned.

[^5]I think, I obferve a very remarkable texture in the arms of the Wolf Spider, which I cannot now thoroughly inveftigate.

As to the Spider's teeth, I do not find that they have been hitherto defcribed by any author, fince the parts fuppofed to be teeth, are, in reality, the creatures weapons or darts, by which it takes and kills little animals, afterwards fucking their blood. But to fpeak firit of the darts, it is to be obferved, that they are two crooked, kind of horny, and fharp parts, like the claws of birds of prey, and are fituated in Spiders immediately under the eyes: but they are articulated with two ftrong, firm, kind of horny and mufcular fubftances, which are obferved to be fixed under the bottom of the breaft, in which the eyes are placed. I have feen clearly in my Spinning Spider, which is like that of Mouffet, as I before obferved, that thefe firm little bones grew on the infide, like certain blackifh eminences or juttings like teeth, between which the ficula, or darts, were fecurely and fafely inclofed, as the moveable blade of a knife is in the groove of its handle.
I have not, on the narroweft infpection, been able to find the leaft opening in thefe darts, by which the infect might eject any venomous liquid; fuch an opening as we fee in the teeth or ftings of the Worm called the Sica, or Sicarius, or Affaffin, or fuch as it is faid are to be feen in the teeth of Vipers. I have not even been able to find any apertures in the ftings of the biggeft venomous Spider called Phalangium, though as long as half a joint of the firft finger.

Neither could I ever perceive that Spiders, however irritated, difcharged any virulent matter, though I have fpared no pains or attention to obferve them. Doctor Lifter alfo feems to have made the fame remark, and I fhall willingly fubfrribe to his opinion; till experience may inform me otherwife.

It is very furprifing, that fuch ftrong and folid mufcles fhould be contained in the horny fubftance of thofe parts, to ' which the ftings are faftened. I have a method of extracting thefe mufcles entire, in anatomizing the infect; and the fame may be obferved of the mufles ferving to move the claws of Crabs. No doubt, thefe parts agree much with the internal claws or pinchers of Scorpions, who likewife carry them under their eyes; and was it true that Spiders, on wounding any animal with their darts, difcharged a poifonous liquor along them into the wound fo made, we might then fay, that the darts of this infect and that of the Scorpion were perfectly alike; excepting this, that the Spider's weapons are placed on the fore part of its body about the mouth and breaft, whereas that of the Scorpion is fixed to its tail; befides, the Spider has two darts, and the Scorpion only one. But it is above all things worthy obfervation, that in the Spider with two eyes, thefe darts are joined and formed into real forceps, as the indefati-
gable Litter has obferved, and I have myfelf difcovered this to be the cafe in fome long footed ones which I dried: fo far therefore thefe parts agree in make with the internal forceps of Scorpions.

As to the true and proper teeth, I have found them fituated forward on the lower part of the thorax, immediately under the points of the darts, where they fhut one clofe to another; in the fame manner that I have obferved in the little crabs, and as may be feen in the Cray-Fifh. They are alfo fafhioned in the fame manner, but of a fubftance not fo horny. On pulling out thefe teeth, it appears that they are united with certain other little pieces; which may not improperly be called articulated brifles. We have here therefore a fatisfactory folution of the phenomenon, fo judicioufly obferved by doctor Lifter, viz. that there may be found in the excrements of Spiders, fome particles of the Flies they have devoured. His words are, "You would imagine they only lived by fuck"ing the juices of the Flies they catch, if you "were to view nothing but the dead carcaffes " of thofe Flies; but if you attentively exa" mine the excrements of the Spiders, you " will find in them particles of their fkin or "coat." Spiders, therefore, actually devour fome parts of their prey, and fuck the juices from other parts of it, which they can eafily and conveniently do, when they fqueeze it between the denticular procefs of thofe parts, where their darts are inferted, and draw in its blood and juices. They are able to do this the more eafily, as their darts terminate oppofite to their teeth; for under the teeth there may be obferved a little piece like a lip, and this procefs covers fome part of them.

As to what regards the eyes of thefe creatures, I cannot at prefent examine them to my fatisfaction, the days being fhort, and the weather very cold and cloudy; befides which, I have but one of thefe Spiders in my cabinct, placed there for the fake of obferving, whether the fevereft froft would not entirely ftiffen it, as is the cafe with Butterflies, and common Flies. But as I had doctor Lifter's work, it induced me to undertake the diffecting of this fingle Spider, though I had at firft intended to fay nothing of Spiders in particular at this time. I difcovered that its two uppermoft eyes were fomewhat bigger than the others. This difference is very ftriking in the Flea-Spider, as it was evident from a drawing I formerly took of this laft infect; in which I have reprefented its ten eyes. But neither can I now examine that kind of Spider fo accurately as I could wifh. Which way foever the fact may lie, I find the two eyes that are placed above the eight others, are reprefented very fmall in my drawing.

I have carefully examined alfo, whether in the afperæ arteriæ of the Spider, there were any openings; but I could find none in the thorax, nor any which ran into the belly: I only difcovered in this kind of web Spider an oblong member,
member, like the penis of many animals, fituated in the middle of its belly, on the outfide of its body, on a very prominent place near the thorax; and near this member there were two yellowifh fpots in the form of moons, covered with a fofter fkin than the other parts of the belly.
But not to dwell too long upon thefe parts, the following are the principal of the others, which occurred to me on examining this Spider; befides eight eyes fituated in the head and thorax, and on the fore part under the eyes, the darts with their joints; behind and under thofe darts in the thorax, appeared its mouth and teeth; then beyond thefe were two arms with their claws, and after thefe eight legs, each with feven joints and two claws at their extremities; add to thefe the belly, with its peniform member, and the down, and fharp briftly hairs, with which the fkin both of the body and legs are all over covered.

I cannot yet fay much of the internal parts, but I may affirm, that I faw very diftinctly the murcles of the legs, claws and darts; I could likewife perceive that the thorax was quite full of mufcles, fo as hardly to contain any thing befides the mouth, heart, and fpinal marrow; but I have not obferved thefe mufcles of the thorax diftinctly enough, to be able to affirm any thing certain concerning them.
The mufcular integument of the beily was very eafily feparated from the inteftines which it contained; and under this there appeared an elegant piece of net-work, like an omentum or cawl, confirting of globules delicately fixed to one another, and of a whitifh purple colour.
On opening this omentum, I thought I could perceive the abdomen, which was fhaped like the tendril of the vine ; then firft appeared pretty diftinctly the inteftines, through which there ran here and there whitifh veffels, which I took for productions of the afpera arteria. Next there came in fight a tranfparent yellowifh mafs of a globular figure, which might be taken for a ftring of eggs, if the peniform particle or member already obferved had not indicated the creature to be male; and confequently this fomething elfe.

The little bag, in which the Spider carried the fuff for its web, like foft glue, was twifted into many coils of an agate colour; and upon breaking it, the contents were eafily drawn out into threads : but as I made all thefe obfervations in hafte, and in the firft diffection of a Spider that I ever fet myfelf about with attention, I neither can, or dare vouch, for the perfect certainty of them all. I refer to fome other opportunity a more careful furvey of this moft curious fubject.

In the mean time, we have great reafon to be concerned that doctor Lifter did not think proper to finim his excellent work with the anatomy of all thefe parts; which would certainly have been a moft valuable addition to fcience. He has laboured ftrenuounly in the
other parts, every where giving proofs that he wrote his hiftory in an accurate and regular manner from his own obfervations. This is the reverfe of what the generality of modern writers practife, who do nothing but plunder each other, and then, like ÆCop's crow, adorned with the feathers of other birds, and weakly glorying in their borrowed finery, perfuade themfelves that what they have pillaged from others, is the offspring of their own brain, though they do not fo much as underftand it. We may the more readily excufe fuch high notions in them, when we know they are no more than the monftrous productions of a heated imagination.

Of the Flea Spider I preferve two kinds. Thefe feize their prey by a fudden leap, and therefore nature has provided them, as well as other Spiders, with eight eyes, and a moft acute fight: it is more dificult to judge of this fight in the Spiders that make webs; for fo far from taking notice of a finger put clofe to their eyes, they neither exprefs any concern at it, nor attempt to run away; whereas, let the mof minute animal fall into their nets, they immediately perceive, and lay hold of it. This apparent infenfibility on the one hand, and readinefs of perception on the other, has made fome philofophers think the web Spiders had no eyes, but received information only concerning their prey, by the tremulous motion of their web. When thefe gentlemen further confider, that what look like cyes in Spiders, never appear when viewed with the microfcope of a reticular form, as is the cafe in the Scorpion: they more roundly deny that they have any cyes. But it by no means follows from the web Spider's never leaping upon its prey, or from its never running to it, unlefs when taken in its net, that it has no eyes; and this conclufion muft appear yet weaker, on confidering that eyes are as diftinctly perceivable in this kind, as in the Flea Spider, and withal are difpofed in the fame manner. As to the argument drawn from the parts which look like eyes in web Spiders, not being formed in the reticular manner, as in other infects, it is equally unfatisfactory : for what difference is there between its eyes being placed fingly in different parts on the furface of the body, as in the Flea Spider, and their being gathered into one net as in other infects? befides, the eyes of Spiders thus fcattered, are much larger than thofe which form the netted eyes in other infects; fo that, every thing duly confidered, there is reafon to affirm, that Spiders have a more perfect fight than the generality of other infects, except the Libella or Dragon Fly, which appears to have very large, or very numerous complex eyes, fo as to afford an opportunity of trying upon it many curious experiments. Thus, has nature difplayed her wonders, even in thofe little animals, which, at firft fight, appear to many beneath their notice ; at the fame time that fhe ordains the largeft animals to proceed originally from
principles, or eggs, as little confpicuous as thole from which thefe minute infects derive their beings: this we have already obferved.
But let us return to the Flea Spider, in which the providence of nature is very confpicuous, having fupplied it with a thread by which it may fwing, and be fecured from any fudden fall; if at any time it fhould fail in the fprings it makes: however, this thread becomes an obftacle to its catching any, except very little, animals, when it has remained any time in the fame place. Though this infect makes ufe of no net to catch its prey, it fpins itfelf, like many other Spiders, a web to fly to, and to hide in, on being purfued. Another thing worthy our notice in the Flea Spider, is, that on pointing your finger to it at a diftance, it wheels and turns itfelf about every way you move and turn about the finger; and runs off, on your putting the finger nearer. Laftly, as I have already obferved, there are amongft the Flea Spiders which I keep in my cabinet, fome, the extremities of whofe claws are found like the forceps of Scorpions, except that they are not jointed, but fhut in a manner like the forceps of the Cray-Fifh.
I have befides thefe a Hedge Spider, which, to hatch its eggs the better, carries them about, as it were, in a cafe, with wonderful folicitude and affection; infomuch, that when the fkin forming this cafe, which hangs to the hinder part of its body, is by any accident broke off, the little infect feeks after it with as much earneftnefs and induftry, as a Hen for her loft Chickens; and when found, faftens it again to its place with the greateft marks of joy. A defcription of this Spider may be feen in Harvey's Treatife on the Generation of animals, and more perfectly in doctor Lifter, who with great propriety calls it the Wolf Spider *.

I preferve alfo in my collection, fome bags in the fhape of eggs or pearls, in which Spiders put up their eggs, and hang them, as in a bafket, to the beams and floors of houfes. I have fometimes obferved fmall Flies to come from thefe nets, and have by me fome of the Flies thus produced. It would demand too much compafs, for this place, to enlarge at prefent on this fubject as much as it deferves.

To conclude, I preferve likewife that fpecies of long-legged Spiders, which Goedaert, to whom the learned world are obliged for the drawing of about four hundred infects, has exactly defcribed, in the forty-ninth experiment of his fecond volume. He there, in the drawing of this infect, moft evidently demonItrates, that it is a true Nymph at the time when it is about to throw off its 1kin for the laft time ; for its legs at this period are lengthened in a very remarkable and furprifing manner. The accurate Lifter has alfo remarked, that Spiders fometimes are not fit to enter upon the bufinefs of generation, till they are almoft
two years old; which, no doubt, proceeds fron this, that nature intends they flould fo long continue growing, before they part with their laft skin, and with it, the form of a Nymph. Before this time they are not fit for generation, and after they are, they never change their ! kin.

We are likewife greatly obliged to the late accurate James Hoefnagel, painter to the emperor Rudolphus, who has left us the drawings of thirty-five Spiders, and of about three hundred other infects of different kinds ; which drawings, taken after the life, have been fince publifhed from copper-plates, with the privilege of his imperial majefty, and are in no refpect inferior to thofe of Goedaert.

Wenceflaus Hollaar has alfo applied himfelf to this fudy, and deferved well of the publick, by his moft exact drawings of the infects preferved in the Arundel Mufæum. It were greatly to be wifhed, that all thofe who would be thought to have any extraordinary knowledge of infects, did the fame, that by their joint labours this branch of natural philofophy, which is by no means of the leaft account, may be brought to perfection. A thorough acquaintance with the difpofitions and actions of theie little animals, would enable us to form the better judgment of the difpofitions and manners of innumerable others.

Before I quit the confideration of Spiders, I think it will be agreeable to thew in what manner thofe kinds which fpin webs, or live upon Flies, get from one tree to another, which they will do; even when feparated by a running water. It will be firft proper to mention, that the Spider's thread is by no means fingle, but almoft always double, and fometimes even ten or twelve fold. This may be eafily feen by throwing down a Spider, and immediately examining the thread to which it hangs. Or it may be obferved, with ftill greater eafe and certainty, by feparating the hinder part of a Spider from its fore part, and then drawing out the thread, and afterwards examining it. As therefore the Spider's thread is generally made up of two or more parts, after defcending by fuch thread, it afcends by one only, and is thus enabled to waft itfelf from one height or tree to another, even acrofs running waters; the thread it leaves loofe behind it, being driven about by the wind, and fo fixed to fome other body. This opinion of Spiders making ufe of a double thread, has already been advanced by Henricus Regius, profeffor of medicine at Utrecht, and that eminent naturalift Francifcus Redus.

But the accurate doctor Lifter produces fome diffierent obfervations on this fubject ; he fays, that Spiders, in this cafe, fhoot out their threads. His words are as follow: "Some "Spiders thoot out their threads in the fame " manner that Porcupines do their quills, with " this difference only, that whereas the quills

[^6]" of the latter are entirely feparated from their " bodies when thus thot out, the threads of the " former remain fixed to their anus; as the fun's "rays to its body." And in another place, " Spiders that are middle-aged, or of a mode" rate bignels, truft themfelves to gentle winds " by means of a thread, and thus endeavour, " as it were, to afcend into the clouds, and " the upper regions of the atmofphere." As to the firft of doctor Lifter's affertions, I cannot at prefent take upon me either to countenance or contradict it; I only wifh he had explained himfelf more clearly; for how is it poffible that the thread of a Spider, which is fo fine and flender, fhould be fhot out with force enough to divide and pafs through the air? Is it not rather probable that the air would flop its progrefs, and fo entangle it, and fit it rather to perplex and obftruct the Spider's operations? I know very well, that a man may drive out his urine to a confiderable diftance, in the form of a flender thread; but this urine is a liquid, which is not the cafe with the Spider's thread; befides, it does not appear that the Spider carries all the matter of which it compofes its threads, in a fingle cavity, fo as to be able to throw it fo far, if it could do it, even in a folid form. Moreover, there feems requifite for this purpofe a great Atrength of mulcles, and a confiderable exertion of fuch ftrength; whereas that part of the Spider from which its thread iffues, does not appear to have any mufcles: there are conjectures only, which time will overthrow or confirm.

As to doctor Lifter's laft affertion, there is no great difficulty in comprehending it. I have myfelf often obferved fmall Spiders fupported and driven about in the air, by means of a thread, in the fame manner with that little paper machine called a kite, with which children divert themfelves. If therefore doctor Lifter, in faying that Spiders when come to their full growth thoot their thread, means only, that they let it fall loofe from their bodies, to be taken hold of by the wind, and lengthen it by a continual fending out of the matter that compofes it, there can be no objection to his doctrine. For my part, nothing more as yet appears to me on this occafion, than that all Spider's threads are drawn from the infect's body, by its own weight or effort, without any compreffion while it defcends or moves forward, as the threads of the SilkWorm are drawn, and by no means ejected, from the bags in which the matter forming them is lodged. I can yet morc eafily comprehend how, Spiders without giving themfelves any
motion, may, by only comprefing their anos, fpin out a thread, which being driven by the wind, may ferve to waft them from one place to another.

The dart of the Tarantula is faid to occafors a peculiar frenzy *, which the fame authors fay is cured by mufick, but this feems an impofition. A very curious gentleman lately arrived here from Italy, has affured me, that it is looked upon as a mere fable, even in the country where the creature is moft common; and that none but the lower fort of people, beggars and vagabonds, pretend, on being hurt by thofe venomous creatures, to find any relief from mufick. They pretend this, that by impofing on the credulous, they may live without betaking themfelves to honeft labour. And thus we fee amongft ourfelves, the people called Gypfies, by fetting up for prophets, prey upon the ignorant and illiterate.

To finifh what I have to fay in this place concerning Spiders: I am to obferve, that doctor Lifter very accurately divides them into what he calls fowlers, viz. fuch as take their game in nets, or by ftinging it, and into hunters with eight eyes, which he diftinguifhes from thofe with two eyes and long legs. Doctor Hooke has favoured us with very curious drawings of the beft kind, and I intend to publifh diffections of them on fome fucceeding occafion ; that fo the hiftory of thefe infects may, by our joint labour, be brought to the perfection it deferves, and fupply us with new motives to love and reverence God, the author of all the miracles we obferve in them : this fhould be the fole end of all our endeavours and ftudies.

I hall next refer the Acarus of to the firft order, of mutations, as it iffues from its egg, perfect in , every thing but fize, which it afterwards acquires by degrees.
In the fame order too I thall place the common Loufe + , which has a Nit for its egg; but as this iffues very fuddenly from its egg, or rather, as what we call the egg is in reality the Loufe itfelf, which only waits to be freed from the fuperfluous moifture that furrounds it, to efcape from its cover; it is an eafy matter to conceive, how this little infect can multiply fo faft, that people fay in fport, but it is no more than a jeft, that a Loufe may fee its fourth generation in the fpace of twentyfour hours \S. Thefe Nits mutt be laid in a place that is warm, and moderately moift, to produce any thing. This is the reafon that many Nits laid on the hairs in the night-time, are deftroyed by the cold of the fucceeding day, and fo flick for feveral months,

[^7]till they at laft come to lofe even their external form.

In examining a Loufe by the microfcope, its white veins and other internal parts appear, as likewife a mof wonderful motion in its inteftines, on account of the tranfparency of the internal parts of this infect. When the Loufe feeds, the blood is feen to rufh like a torrent into the fomach, and its greedinefs is fo great, that the excrements contained in the inteftines, are ejected at the fame time, to make room for this new fupply. But I fhall treat of thefe infects in particular, as foon as I fhall have finifhed what I propofe faying in general of there that belong to the firft order.

What I have already mentioned is but by way of parenthefis, that my countrymen might know fomething of the ftupendous actions and conftructions of fo fmall an animal, and be thereby incited to praife the author of nature, who has here placed in one point of view fo many and fo great wonders. The great ufefulnefs of the microfcope will alfo appear from the preceding obfervations, fince, by difcovering to us the mufcles, veffels, and internal parts of $f 0$ fmall an infect, it acquaints us with the incomprehenfible perfections of that great being, who could not only create, but impart life and motion to fo minute organs. There is another advantage alfo in microfcopes, viz. that in tranfparent animals, they give us a much more perfect knowledge of the motion of their inteftines, than any we can obtain in other creatures by diffecting them. This benefit of the microfcope has been already taken notice of by the illuftrious Hooke, in his Micrographia, or collection of obfervations made with microfcopes, a work lately publifhed in Englim, and dedicated to his Britannick majefty.

I have reafon to believe, but for want of fufficient experiments I dare not as yet affirm, that the Lice of other fanguiferous animals, and the Lice of infects, with thofe that live upon plants, or ramble about the fields, belong to the laft mentioned order or clafs*. Mean time it will appear evident, in treating of the fourth clafs, that there are fome tree Lice, defcribed by me under the title of animalcules,
found in the excrefcences of the black poplar, which belong to the fecond order.

Neither can I affirm, that the Tick, or Ricinus of Aldrovandus, though placed by me in this clafs, does really belong to it; though I have in my collection a good fpecimen of this infect.

I likewife refer the Bug which lies in bedfteads and furniture to this firf clafs; as alfo the Crab-Loufe, though I have not as yet made experiments fufficient to determine perfectly the nature of this laft infect.

I have alfo in my collection the Lonfe of the Whale, which is almoft an inch long, and half an inch broad, of a very fingular form, and all over covered with a thell + .

After thefe, I rank the Flea \ddagger in the firf clafs. This infect alfo fprings from a Nit, in the which it elegantly changes to a red colour, like other infects in the Nymph fate; the changes it undergoes, while as yet in the ftate of the Nit, and the manner in which it from white becomes black, are eafily difcernable by the help of the microfcope: nor are thefe obfervations of little ufe or importance, as I fhall hereafter prove at a proper feafon. I have been told that Doctor Lewenhoeck obferved a Flea at Delft, which, about the end of fummer, iffued from an egg in form of a Worm, and then fhut itfelf up in a cafe till the enfuing month of March; but I fhall not as yet affirm the certainty of this obfervation; neither fhall I determine whether the Flea wore in its cafe the figure of a Chryfalis, or a Nymph; if it did, the infect muft belong to the third, and by no means to the firt order. I fhall ufe the firft opportunity of exactly obferving this infect, fo as to know the certainty of what has been advanced concerning it, as fuch enquiry cannot be attended with any great trouble \S.

I likewife place in this firft clafs an infect which is generally found in cifterns where rain water is kept, and which Goedaert has defcribed by the name of the Water-Loufe, as may be feen in the third volume, letter X. But as the ftructure and difpofitions of this little animal differ greatly from thofe of the com-

[^8]mon Loufe, though it be at the fane time equally fingular and remarkable, I have given drawings of it, both of its natural fize, and as the microfcope reprefents it, in the fpecial treatifes on infects of this firft clafs, under the name of the water arborefcent Flea *. Thefe drawings are exhibited in Tab. XXXI, and a complete defrription of the infect immediately follows that of the Loufe.

I now pafs to the Afellus, or wood Loufe, which is found of all fizest, and may, partly for that reafon, and partly for others, be ranked in this firft clafs. I have in my collection three kinds of this infect ; the firft is the common ground Afellus; the fecond has great, black, prominent eyes, a diftinct head, and a thorax like a hood; the third kind is very remarkable for folding itfelf into a ball when handled, and remaining for fome time in that pofure.

I likewife preferve feveral skins thrown off by Afelli, floughs or dead skins, which fill exhibit the exact figure of the infect. Thefe floughs produce a great fermentation, when mixed with acids; whence we may jufly infer, that they contain a great deal of alcaline falt, and therefore may be of great fervice in curing the dropfy, ftone, and gravel in the kidneys.
I likewife have in my collection fome fea Afelli. I give them this name, becaufe they are found in falt-waters. The largeft of thefe is one that meafures two inches and a quarter in length, and one inch and a quarter in breadth; it confifts of eight rings, of a firm and bony fubftance. I have likewife a very fmall Afellus of the fame kind, which I caught in the North fea near Petten. Doctor Padbrugge fent me from the ifland of Ternate, another fpecies of Afellus, under the name of the fea Loufe. It is almoft half an inch long, confifts likewife of eight rings fomewhat coloured, and, like the Sea Hedge-hog, or Echinus, has a border of fmall prickles; but thefe infects have no legs.

I preferve alfo fome other kinds of fea Afelli, more curious than there already mentioned, amongft which there are four, whofe fhape is like that of the Shrimp. The firft of thefe, which is the biggeft, is an inch long, has a flender body, feven legs on each fide, like the ground Affellus, and large horns which meet in a fharp point; the laft ring of the body in this fpecies is much longer than the reft, and running out into a three-pointed extremity. The fecond and third kinds are much fmaller, but almoft of the fame ftructure. The fourth differs from the three kinds already mentioned in this, that its fore legs are much longer than its whole body, and thefe are divided into four very diftinct joints. It is likewife the finalleft of the four kinds, not ex-
ceeding half an inch in length, even when its claws are ftretched out to their grcateft extent.

I preferve alfo a broad fea Afeiluss fent to me from Iceland; it is an inch long, half :un inch broad, and compofed of feven rings, in cluding the head and tail. Its antennx or horns are fharp and Chort, its eyes are brown, its fix foremoft legs are armed with harp and crooked claws, and near its tail, on both fides, are two flat fins. Olaus Borrichius obferves, that the whole body of this infect appears to be fupported by a fimple bone, not unlike in fhape to a fimall date, but of a horny or cartilaginous fubtance. I have fome of the fame, kind but very fmall, which I took in the falt-water river that runs by Amfterdam. I can alfo fhew a very uncommon kind of fea Afellus, which I caught nearPetten; it is fcarce an half inch long, of a globular but fomewhat oblong form, refembling a pear, with a pretty long tail, and fome fins. I preferve with there fome Scrophulx, which belong to the genus of Afelli. The firf of thefe I caught on the coaft of the North fea; it is very fmall, always runs, and fometimes fwims flantingly, and when afhore leaps as the Flea does.

Amongft the Scrophulx which I have taken in the frefh waters and rivers of Holland, is to be mentioned, that kind which is called Snel. This has a pretty way of running flantingly, and if we may believe the tales of fifhermen, it readily kills the Perch, by running itfelf fuddenly into the gills of that fifh. We have no experience to confirm this tradition. I know, indeed, that this little animal is furnifhed with arms fufficient for the purpofe: being held in the hand, it excites a kind of tingling: now the gills of Perches, and indeed of all finh, are fo tender and delicate, that it is almoft impoffible they fhould not die on receiving wounds in that part, through which all the blood of finh is circulated, in the fame manner that the blood of other animals is all circulated through their lungs. This kind of Scrophuia is found equally in frefh and falt waters.
After thefe follows properly the Worms, which fome have called the inteftines of the earth. Thefe proceed immediately from the egg, and do not afterwards undergo any change, coming forth at their full perfection. The females, from their firf hatching, have their little eggs, which are very diftinct and perceptible. I obferve, that this genus may be divided into many fpecies.

Though it is no hard tafk to diftinguifh in feveral kinds of Worms and Caterpillars the males from the females, by carefully examining them, but chiefly by difiection, to fee if they have any eggs within them, yet they fel-

[^9]dom copulate while in the Worm ftate; fo that Goedaert feems to advance a paradox, when, in the feventy-fourth experiment of his firtt part, he reprefents as a male Worm, an infect which he afterwards, on its having undergone the ufual change, callis a female, in the feventy-fifih experiment. This is the fame as if an infant, who we called a boy, we fhould afterwards, on his arriving at the flate of maturity, denominate a woman. But I thall fpeak more of this hereafter. In the mean time I mult remark, that my reafon for animadverting thus freely on the miftakes of others, is, that fucceeding writers may take the fame liberty with me, by which means truth will at length univerfally triumph; for I am well aware how much we are apt to be pleafed with our own conceits, and how often deceived by that fondnefs, fo as to take them for the true reprefentations of nature. However, I have no great reafon, I think, to dread the fevereft inquiry into my obfervations, fo that I with pleafure give them up to the examination of thofe who fhall think it worth their while to compare them with the things themfelves, which is the only method of coming to a certainty, in inveftigating what belongs to the animals of which I have been treating. Neverthelefs I muft candidly own, that many of the particulars I have mentioned as yet, appear fo obfcure to me, that I can at moft but confider myfelf as a novice in this bulinefs; befides, that words are wanting often to exprefs the wonders which occur in the ftudy of infects.
Scorpions * belong to this clafs of the infect kind; they are produced from an egg like the Loufe, as will appear in the account I fhall give of them in particular, after the hiftory of the water arborefcent Flea.
I am of opinion aifo, that the Leech + is to be arranged in this clafs, though I have no particular experiments to confirm that opinion, except its being found of almoft all fizes. It is very remarkable how firmly this infect will faften itfelf to the fides of the glafs veffels in which it is kept, fo as not to be feparated from them without the greateft difficulty. This, I apprehend, it effects by preffing its body clofe to the glafs, and then fwelling it in the middle, fo as to repel the water in which it fwims. Thus, if we ápply to a flone a round piece of leather, with a fltring fixed to the center of it, and then pull this fring, the fone and leather unite very firmly together \ddagger.

Ir refer alfo the Scolopendra, or Centipes, to this clafs, as I have met with this infect of all fizes, and could never yet difcover that it chang-
ed its form. Thave got one of the largef kind, which is even a fpan long, and was fent me from the Eaft Indies. I preferve alfo other kinds of this infect, as the Lybian Scolopendra of Mouffet, and the water Scolopendra, and in fine, fome Juli, or Gally Worms, which we ought to rank with this kind.

After thefe infects follows the Snail, as proceeding directly from an egg, and not being liable afterwards to any change. I preferve a fort of Snail, in which, on cutting off the head, is found a ftone, called the frail ftone, faid to be ferviceable in the gravel and Atrangury. Under this fone we always find the heart, which retains a pulfation, and is, with the veffels that fpring from it, of a very white colour. As on cutting off the Snail's head, this fone is always to be met with, it feems probable, that it ferves for the fame ufe as the O_{s} Sterni does in other animals: it is further obfervable, that nature has formed Snails in fuch a manner, that they void their excrements at their neck, breathe at their neck, and have there alfo all the parts fubfervient to generation. I have obferved alfo, that every Snail is both male and female; in a word, a perfect hermaphrodite : the penis is formed like that of the Whale, and is of a furprifing length. But I fhall hereafter treat of all thefe particulars more at large. The Englifh authors, who publifhed a catalogue of the plants that grow in the neighbourhood of Cambridge, have already obferved, that Snails are hermaphrodites.
To come to a conclufion, I preferve alfo ini my cabinet the teeth of Snails, which are flexible, and of a horny fubftance; as likewife the heart of a Snail with its auricles, preferved in a balfam, and properly infected.
All the infects hitherto mentioned iffue directly perfect into light, and are never changed into motionlefs Nymphs; for their eggs, without any intermediate ftate, afford young infects exactly like the old ones, which grow to their due bignefis in time, whilft their limbs acquire firmnefs and ftrength. Nor do they in this refpect differ from thofe othér animals, which Harvey tells us proceed from a perfect egg, though before they attain their full growth, they may be obliged to change their fkins, and fome of them in their laft change of their fkin undergo fome further changes: for this reafon I have confidered them as Nymph animals. Befides, fome of them, like mankind and quadrupedes, hatch their eggs within their bodies, and are therefore viviparous. This is the cafe with Scorpions, and fome fpecies of Snails.

[^10]The natural changes of the fryt clafs. or order of infects, exemplifed in the Loufe; with an explanation of wobat relates in general to the otber three claffes.

THAT I may give a fingular and fatisfactory fpecimen of the firt clafs of infects, I fhall here infert a letter, formerly wrote with great care to Mr. Thevenot, as it contains a complete and exact account of the limbs and parts of a Loufe, both internal and external. This example, by which I propofe to illuftrate the firtt clafs of infects, and the examples I fhall give, in their due places, for the other three claffes, will enable the reader to form a competent judgment of the changes, which all other infeits undergo, according to the different claffes to which they belong. It muft be allowed, however, that whatfoever pains we may take to arrange them, there will ftill remain, even amongft thofe of the fame clafs, very remarkable differences; and fome of thofe differences will be in the mutations they undergo. This will moft clearly appear from our experiments relating to the fourth clafs, in the cafe of the worm-like Nymph of of the Afilus Fly, and in the egg-like Nymph of the common Fly; between which there is no fmall difference, though they belong to the fame clafs, and are liable afterwards to the fame changes. This accidental difference may alfo be feen on looking over the figures of animalcules, which I have given under each kind in the fpecial hiftories of the three other claffes. It appears very ftrikingly in the Cryfallides of Caterpillars, as they are exhibited in the defigns of the indefatigable Goedaert; for though they all belong to the fecond mode of our third clafs, yet one Chryfalis differs in many particulars from another: this difference is, however, far from being what is called effential, it only confifts in fome part of the external forms.

From the firt clafs of our changes, we fhall now felect the Loufe as an example, and reprefent by figures, the changes which happen in its parts, till it comes to its full growth. The Libella, or Dragon Fly, will ferve us for the fecond clafs; and the Ant for the firt mode of the third; the nocturnal Butterfly for the fecond. Lafly, we fhall give the common Fly as a fpecimen of the fourth clafs; and I flall afterwards illuftrate there feveral changes by the accretion of the limbs in a Frog, and the budding out, or- fhooting, of the parts of a flower.

Though the foregoing natural changes, and the comparifons of others which will be made in treating of them, may be thought fufficient for giving a clear idea of the practices of the infects contained under the four claffes, into which I have arranged them, and of the differences between each clafs; neverthelefs, I fhall add to the firt clafs, a feparate and fatisfactory account of the manner wherein the parts of Snails grow and are changed. I hall
do the fame by the Ephemeron, or Fly of one day, in the fecond clafs. In the third clafs I fhall exhibit, according to the firft mode, all the changes of the Bee, with a complete diffection of that infect and the horned Beetle; and the fame both in defcriptions and by figures of the common day Butterfly, according to the fecond mode of the third clats. Laftly, I hall give in the fourth clafs an account of all the changes which the Afilus, or Gad Fly is fubject to, and illuftrate them with plates. I fhall, befides thefe, infert various other hiftories, all which will not only throw a light upon each other, and reprefent clearly and diftinctly the changes of the four claffes in the exact manner wherein they happen, but, what is much more advantageous in this kind of ftudy, they will difplay fuch miracles of wifdom, power, and goodnefs in the great Creator, as cannot fail powerfully to incite us to love and adore him. This, indeed, is the great purpofe I propofe to myfelf in my inquiries concerning thefe natural mutations.
To fet forth clearly and diftinctly the orders of the tranfmutations in the Loufe and Dragon Fly, the nocturnal Butterfly, and common Fly, and to exhibit more plainly the changes of each of them ; as alfo that I may be able to demonftrate thofe, wherein the orders of the changes agree or difagree among themfelves: I hall ufe the fame number, and obferve the fame rule in explaining the five refpective figures. For though there be not the fame neceflity to proceed in the fame manner in fetting forth ali the figures of the changes and accretions obferveable in thofe infects; as for example in the change of the Loufe, which is only a fimple augmentation ; yet, fince we fee five diftinct changes in the Libella, or Dragon Fly, and other infects, whofe figures we exhibit before they attain their full age, and are rendered fit for generation, we have been, as it were, obliged to treat the Loufe in the fame regular manner, in order to render the whole more exact and uniform, as we have before done in comparing the Frog with the flower or vegetable increafe.
We have not obferved that method alfo in the particular hiftories of Bees and the reft, as well becaufe their anatomy are fubjoined to thofe accounts, as that the claffes we have advanced, feemed calculated to exhibit a certain general rule, whereby all the changes of infeets produced by nature may be tried and examined.

Finally, every thing marked in numbers in the explanations of the figures, is delineated in its natural bignefs; but the Animalcules, to whofe figures the numbers $1,2,3,8 \% \mathrm{c}$. are affixed, are reprefented as they are magnified by the microfcope; while fome others that are
charatterized by $\mathrm{I}, 2,3$, are reprefented to the life. This has appeared to me the proper method of proceeding in this affair, for two reafons; firft, left the order of the number thould be broke by increafing or diminifhing the figure ; fecondly, becaure fome of thefe infects are fo large of themfelves, that there is no need of a microfcope to delineate them.

To follow nature as near as we could, we have put the white animalcules, or little animals of our four claffes on a black ground, which we have not done with refpect to the other coloured ones. This appeared the more neceffary, as Goedaert reprefented a briftly Caterpillar, the figure whereof we have in one
of our tables, without any hair at all, which error was probably owing to his not laying it on a black ground, whence its white hairs were not difcernible.

To make the rule of our four claffes the ftronger, we have alfo been careful to felect animalcules that are fo well known, that there is no neceffity to illuminate them with colours. And we are confident, that our figures are fo accurately executed, that it would be unpardonable to daub them with paint. We come now to treat of the Loufe, which I now intend to do, comprehending the whole doctrine concerning it in the form of a letter.

TO THEMOST ILLUSTRIOUS

Mr. T H E V E N O T,

Formerly embaffador from the king of F R A N C E to the republick of GENOA.

Most illustrious Sir,

THE omnipotent finger of God is prefented to you in the following fheets, in the anatomy of a vulgar and loathed infect, the Loure; wherein you will indeed find miracles heaped on miracles, and will be amazed at the wifdom of God, moft clearly manifefted in a minute point. Let the world admire the mafterly ftrokes of Apelles: here you will find the complete fabrick of the vifcera of all the animals in the world, formed with the moft exquifite workmanhip, and abridged, as it were, in a particle of a line in meafure. What mortal, illuftrious fir, can attain to this by reafon? what other hand, but that of God, can inveftigate and frame fuch things ? The fipirit and grace of God, which he beftowed on mankind, has rendered fome capable of fearching into fuch fub-
lime miracles and fecrets, and to lay them open to the view of others. Though the Ægyptian Magi could imitate the other miracles which God performed by Mofes, they were not able to produce thefe animalcules by their magick art, as the facred writings teftify. * "Aaron " ftretched out his hand with his rod, and " fmote the duft of the earth, and it became " lice in man and in beaft ; the magicians did "fo with their inchantments to bring forth " lice, but they could not; then the magicians " faid to Pharoah, this is the finger of God." I cannot fo properly, illuftrious fir, offer thefe obfervations to any other as to you, fince I know no other that fets a due value on fuch things, according to their dignity.

The EXTERNALPARTS.

BEFORE I exhibit the internal parts vifible in this fmall and defpifed animal, I fhall defcribe its external parts, and fhall fhew every thing remarkable in the head, thorax and abdomen.
The fhape of the fore part of the head is fomewhat oblong, that of the hind part fomewhat round; the fkin is hard, and being ftretched, is tranfparent like parchment, and has hereand there briftly hairs. At the extremity of the fore part is the probofcis, or fucker, Tab. i. fig. Iv.a. feldom vifible, fince it is always drawn to the infide; I fhall therefore defcribe it when I come to the throat and fomach. On each fide of the head are the antennx or horns $b b$, which are alfo covered with a fkin like parchment.

Each of thefe is divided into five joints, elegantly covered with briftly hair, and fevera! white veffels are feen through thefe horns. Behind thefe are the eyes $c c$, which feem to want thofe hexagonal divifions obfervable in other infects, and they appear to be incompaffed with fome few hairs.
The neck is very fhort, the breaft is divided, as it were, into three parts; in the middle of which, on the back fide, appears, as it were, a fmall fhield. On each fide are placed fix legs $d d$, each of which confifts of fix joints, fome larger than others: they are very delicately adorned with briftly hairs, and many whitifh veffels are feen through them. The ends of their legs are armed with a fmaller and larger ruddy and
pellucid claws ce, ferving thefe infects in place of a finger and thumb; for by the former they take hold of a perfon's hair, and by the latter, they are able to afcend and run nimbly. Under, at, and upon the breaft, where it is joined to the legs, and, as it were in the very center of it, there appears a flort whitifh groove or channel, which is confpicuous through the middle of the abdomen, appears of a brownihh colour, fig. v. vi. and has very frong motions. On either fide of this groove or channel are two bright little parts, like the larger before defrribed, whofe appendages they are, and which rife confiderably on the infide of the breaft, and are there alfo tranfparent.
The abdomen is divided into fix parts, and at the end of it, on the under part, the body terminates as it were in a cloven tail. Befides
there in the middle of the lower part of the belly, there is to be obferved a whitifh fpot like a point, which is alfo tranfparent, and moves diftinctly up and down. On the fides and extremities of the belly, which is all over hairy, are obferved fome pellucid, ruddy, little bodies; and over the whole belly, a great number of white veffels are vifible, fig. Iv. gg. The like are difcernable in the back and breaft. The skin of the abdomen is made like the ends of our fingers, confifting of fmall grooves, but this fructure does not hold through the whole, and not at all at the extremities of the abdomen; for there, as well as in the whole body, it is fomewhat firm, like clear parchment, and. when roughly preffed, it makes a noife and breaks.

The anatomy of the INTERNALPARTS。

TO obtain a perfect knowledge of all thofe parts, which I have hitherto mentioned in general, there is no other way but to diffect the creature. I fhall therefore now give an exact defrription of all the minutix relating to the internal parts; for by this means we fhall have a complete idea of the external alfo.
If we begin the diffection in the upper part of the abdomen, and cautioully open the skin there, blood immediately iffues from the wound, and this being received into a fmall glafs tube, Tab. II. fig. I. aa, and viewed with a powerful microfcope, is feen to confift of tranfparent globules, as cows milk: the fame has been likewife difcovered in the human blood for feveral years; it is found to confift of ruddy globules fwimming in a clear liquor.
It is, however, a matter of doubt, whether the blood in its veffels has any globules, for when drawn from them it may eafily acquire that figuré; this may at leaft be afferted of the ruddy part of the blood. I have therefore often refolved to put a fmall glafs tube into the artery of a dog, and with a microfcope to view the flowing blood. For thus, by analogy, it may be poffible to determine with fome certainty, whether the human blood, before it is taken out of its veffels, contain any globules. I am the more in doubt concerning this matter, becaufe there are veffels difcovered in the body, which appear much finer than the globules themfelves vifible in the blood. By this means alfo may be known the true difference between the arterial and venal blood; for in the latter only, I have hitherto obferved thefe globules, having never examined the former: Nor thall I pofitively affert, that there are originally globules in the Loufe's blood, for they may be eafily formed by the intermixture of the blood with the fat, and fome wounded particles of the vifcera or bowels, which confift of a congeries or heap as it were, of globular parts; as I thall fhew in its proper place. Wherefore, more time ought to be fpent in
this anatomy, than I can devote to it at prefent, being engaged in many other ftudies.
Tab. II. fig. II. Immediately under the skin are certain mufcular fibres, which move the annular divifions of the abdomen. I have obferved three difinct kinds of thefe mufcles; fome a little broader a, others narrower b, and a third fort with two bodies c. One may fee that thefe mufcles extend themfelves from one annular divifion to another, and that fome are much fhorter than others. This little animal is very full of mufcles, particularly at the extremities of the abdomen ; fince the motion is ftronget in that place, and the refpiratory points or orifices for refpiration are placed there, by the affiftance of which the Loufe takes in the air, and by a manifert act of infpiration and expiration, draws it into the body, and again difcharges it. When thefe mufcles are drawn from the body, they feem as if they confifted of but one fibre, but if they are dried upon a thin and clear glafs, and wafhed with fpirit of wine, which takes off the impure fat that adheres to them, their fibres and joints appear diftinctly to be made up of globules.

Under thefe mufcles the fat and the trachex, or air veffels, come in view ; nor could I ever hitherto difcover any veftige of a heart in this upper part of the abdomen, as is ufual in other infects, wherein the heart is always placed in the upper part of the abdomen and back; but I found clearly by this diffection, that the Loufe otherwife agrees in all its parts with other infects, as will hereafter plainly appear; therefore I have more diligently fought for the heart, but in vain: this may probably be owing to its extreme fmallinefs, fince it is very difficult to find it in the larger infects, as in the Horfe-Fly. There is alfo another impediment, which is, the ftrong and continual agitation of the fomach in this infect, being hardly a moment at reft, from which there arifes an unavoidable inconvenience in inveftigating the heart.

The particles which I take to be the fat of the Loufe, are for the moft part very fmall, but extremely numerous, though we may difcover it in a larger fpecies or kind of fat particles; the figure of the fimalleft kind of particles is ufually globular, but that of the greater is more irregular. They are of a clear tranfparent colour, like gelly, but all the other parts of this animal are not of that colour.

The ramifications of the trachea, afpera arteria, or windpipe, conftitute the principal part of this infect; a very confiderable number of them are found in the head, breaft, belly, legs; nay, and in the antenna or horns. We may likewife obferve, that they are connected and fupported by the fat, as I have found in other infects: and thefe are the white veffels which are feen through the tranfparent body, as I have obferved in the hiftory of the external parts. The reafon that thefe pulmonary pipes are feen through the skin, is, that they are of a filver colour, or light bright mother of pearl, and therefore afford a very agreeable fight, whilft the animal lives. They conftantly keep this colour, nor will they ever fade, for their ftructure is fuch, that they remain always open.

As to their compofition, it confifts of a double matter; a part is compofed of rings, which refemble the cartilages of the trachea, or windpipe, in man. It appears very diftinctly by the microfcope, that thefe rings often bend themfelves round, in order to form a cavity and open pipe, Tab. I. fig. vif. a; but this does not happen fo often as in other infects, becaufe the rings of the Loufe are fhorter: they are alfo more curled and twined b, in likenefs of a Serpent, and feem every where interrupted c. It may alfo be obferved, that where the afpera arteria, or wind-pipe, is divided into branches, there thefe rings are largeft d, but they are afterwards infenfibly divided into fmaller e. The other part of thefe veffels is membranaceous, and is fituated in the interftices of thofe rings; and by its affiftance the rings may conveniently bend and turn themfelves, as is known to happen, particularly in thofe wonderful motions of the ftomach, which is furrounded by a great number of air-pipes.

I have hitherto omitted examining whether thefe pulmonary, pipes within the body, likewife fhed a little fkin at the time the Loufe cafts its coat, as I have obferved to have happened in the Bombyx, or Silkworm, and in almoft all other infects. However, the fmaller thefe pulmonary pipes are, the fewer rings they have, until at length they appear like more membranaceous threads.

I may venture to affirm, that the pulmonary pipes cannot be more conveniently viewed in any fpecies of animals that I have hitherto known, without diffection; fo that we cannot contemplate their fituation and courfe, with greater admiration, in any animal than in the Loufe. But I have by me a very curious and familiar apparatus, by the affiftance of which, I
can at any time demonftrate it with the greateft certainty.

Tab. I. fig. 1v. The orifices of the XIV pulmonary pipes are feen in the outward flkin of the Loufe; one (1) of which is on either fide of the breaft; and on each fide, on the extremities of the abdomen are placed $\mathrm{fix}_{3}, 2$, $4,3,5,6,7$, which I exhibit in the figure in one fide only. I have alio thought I fometimes faw one pair of air orifices between the fecond and third pair of legs ; however, I will not be pofitive in this matter.

Tab. I. fig. vili. Thefe orifices are the refpiratory points, one of which is fituated on one fide, between the firft and fecond pair of legs, and fix on the extremity of the belly, 1 , 2, 3, \&c. thefe points fwell a little there, like a fmall nipple $a a$, and in their circumference, feem to have a flight rim or border, which appears fomewhat ruddy and tranfparent as the place itfelf wherein they are fixed is alfo of a light red and bright colour ; they are a little bent towards the infide, and immediately after the tegument of the extremity of the abdomen fwells out. All the points are like that which I have obferved to be placed in the breaft. b.

Tab. I. fig. iv. From every refpiratory point there iffues a branch of the trachea $b b b$, which foon after forms a vifible anaftomafis or inofculation with fome branch of the trachea, that proceeds from another point, and both clofe into one canal: the fame holds alfo in all the XIV apertures of the lungs; fo that the airs which is drawn into the body by one refpiratory point, may be fpread through the whole. Nor is it there only that the pulmonary pipes unite, but this holds equally in thofe which are in the back, belly, and breaft; which laft is diftinguifhed by three manifeft ramifications that are joined together underneath. This matter hath been already elegantly delineated by doctor Hooke, in his incomparable Micrography; however, he could have no knowledge of thefe ramifications by any other means, but that they appear vifible through the body.

I am further inftructed by the diffection, that the pulmonary pipes may be difcovered not only in the head, breaft and abdomen, but they reach alfo to the inteftines, the ovary, fpinal marrow, brain, and, in fine, to all the internal parts of the body of this animal; all which, as I have diftinctly feen, fo I can demonftrate them to others, with the affiftance of certain experiments which God enabled me to invent in the ftudy of anatomy, that the miracles of his works might be known: for we have not even the leaft thing from ourfelves, for it is God that giveth us ingenuity.

Thefe things being well underfood, I might proceed to defcribe the other parts; as firft, the ovary, which appears next after the former, being a part placed upon the fomach itfelf: but fince method requires us to treat, before thefe, of thofe parts which affint digeftion, and tend to the nourifhment and prefervation of the body, and afterwards of thofe which ferve for
generation. I fhall now defcribe the probofcis, or fucker, the throat, ftomach, inteftines; and other adjacent parts. I hall after thefe treat of the ovary, brain and nerves, and then add fomething concerning the outward fkin, with which I fhall conclude this anatomical defcription.

The Loufe has neither beak, teeth, nor any kind of mouth, as doctor Hooke defcribed it, for the entrance into the gullet is abfolutely clofed: in the place of all thefe, it has a probofcis or trunk, or, as it may be otherwife called, a pointed and hollow aculeus or fucker, with which it pierces the skin, and fucks the human blood, taking it for its food into the body. But this probofcis cannot be fhewn; on account of its extreme fmallnefs ; nor can it be diftinguifhed, unlefs a perfon happens to fee it by chance.

At the extreme point of the head, when preffed out artificially, and with a particular attention, there appears an obtufe prominence, Tab. II. fig. III. a. which being hoilow in the middle of the infide, bends back into itfelf, and goes into the body, but has no aperture or opening. From this the proborcis b, or fucker, is obferved fometimes to proceed, and wherefore this part is, as it were, the fheath or cafe of it, wherein it is laid up.

I cannot illuftrate this fructure or machinery by a more proper example, than by that of the horn of a fnail, which is likewife turned into itfelf on the infide, and is again ftretched out, but there is no perforation: wherefore, if the probofcis or fucker was placed at the end of it in this infect, inftead of the real eye which we fee in the fnail; one might in fome meafure form an idea how the probofcis, or fucker, is wrought in this infect, and worked up with admirable art by the fupreme architect of the univerfe.

If the whole little fheath or care be afterwards examined, Tab. II. fig. IV. c. it is obfervable, that the upper end of it is thicker than the lower, and is fwollen like a muhhroom; fo that it appears from hence, that the little foot on which it fands is fmaller than its top. When one prefles the probofcis, or fucker, and its fheath on the outfide, we fhall find that the end of the latter is abfolutely blunt and refembles the head of a pollard willow tree, haing all its branches cut off; we fee alfo that there are here and there certain pointed parts or claws d in it, which, as well as the fheath, and the probofcis or fucker, are of a light brown colour, and are tranfparent. I fhall prefently Ahew the ufe of thefe claws; there is alfo a crooked probofcis or fucker e in the middle of them. The outward skin of the fheath which is annexed to the probofcis, and from which its head is prominent, is of the fame texture with the reft of the skin that covers the Loufe; for it confifts of grooves and pellucid globules, as I fhall explain hereafter, when I treat of the skin.

If we examine that part of a Loufe's head at the time when it is feeking out forne pore of fweat in the hand, wherein to fix its probofcis or fucker, a fmall line of a pale brown colour is then prefented to us; which appears vifible through the head, and has its fore part more deeply coloured. This little line is nothing elfe but the theath itfelf; with the probofcis hidden in the infide.

But before I explain the ufe of this probofcis or fucker, and its manner of rifing, it feems neceffary to defcribe the figure, fituation, colour, texture and motion of the gullet, ftomach, and inteftines: for thus the method whereby the probofcis performs its fuction, will be more eafily underfood. The œfophagus or throat is a very fmall canal, fig. III. f, which one cannot fee at any other time, but when the blood afcends through the probofcis or fucker into the mouth, and paffes through this into the ftomach. It is fituated a little behind the eyes, and feems to be carried up above the brain : the reafon that I think fo iss, becaufe it appears there very clearly at the time of fuction; fo that probably it runs immediately under the skin of the head. In the neck it is fomewhat enlarged g, and afterwards it grows fmall again in the back \dot{b}, untill it terminates in the ftomach, near which I have obferved it, like a very fmall, clear, and trañfparent thread, wherein a perfon that diffects it fometimes obferves blood, and fome other fubftance, which appears like the contents of the ftomach. I difcovered the whole gullet, in the action of fucking, as before defcribed; for it is a very difficult matter to difcover it in any other manner, becaufe in the upper part of the back, and alfo in the head and neck, it is very ftrongly connected with the adjacent parts.
The ftomach, fig. in. ii, is lodged partly in the breaft and back, but the greateft portion of it is in the abdomen. When fwollen with blood it appears of a dark brown colour, which is vifible through the skin, and is either a faint red, or a full or bright brown, as the contents of the ftomach are more or lefs changed. Where the ftomach joins the breaft above, its figure refembles a fork with two teeth; thefe are two hidden appendages of $k k$ the fomach, which go deep into the breaft, and on either fide near the gullet and fpinal marrow, and reach to the firft pair of legs. Thefe are thofe two blackifh, tranfparent and coloured parts, which I have mentioned in general in the hif tory of the external parts.

The part of the fomach connected with the abdomen deferves particular confideration; it is formed like an oblong bag, which is here and there continually contracted and again extended. When it is empty, it is colourlefs, and the ftomach and its appendages are tranfparent. But as the ftomach fills, the colour is feen plainly through the outward skin. It manifeftly confifts of two coats, the outward is thicker, the inner very thin, as it is in all
infeets,
infects. Nay, it is probable that it has three coats, and that the third is mufcular.
The outward coat of the fomach is furni!hed with fo great a number of pulmonary llll pipes as can hardly be expreffed in words. The iarger branches are very confpicuous in it, but the fmalleft cannot be difcovered, except by the affiftance of the beft microfcopes. On the contrary, the inward coat is very thin; the third, which, I fuppofe to be fituated between the two former, comprehends without doubt, the mufcular fibres of the ftomach, by the help of which it performs its wonderful motions. The coats of the fromach, efpecially the outmoft, appear to confift of very many globular little grains, which are very irregular in form; but whether thefe little grains properly belong to the texture of the flomach, or whether they are rather particles of fat, which cover the fomach, whereby the pulmonary pipes are gently moved, I could not well difcern ; only this I know, that the greater part of them, when often touched, retire from the flomach.
Underneath, in the abdomen, on a little rifing or prominence, nearly in the middle of the ftomach, there is feen a certain little part m, which doctor Hooke apprehends may be the liver; but I fhould rather take it to be the pancreas, or fiveet-bread, though there want fufficient arguments to prove it. Its colour is not properly whitifh, but fomewhat inclining to yellow; and it is fo ftrongly connected with the fromach, that it cannot be eafily feparated from it. If this be laid before the microfcope, it may eafily be divided into many little grains like glands, but thefe are not very tranfparent. When it is accurately viewed by the microfcope, the pulmonary pipes alfo appear in it. The fubftance of this little part is more firm than that of the reff, for when it is extracted from the body and dried, it is but little diminifhed. It is of a very irregular figure, and is tormed divers ways in almoft every Loufe, being fometimes greater and fometimes lefs; but it is always finifhed in the fame general manner, by reafon of its bendings and fituation over the fomach, as is evident from the five different figures of theie little parts, which I have delineated to the life from the microfcope, in fig. v. I, 2, 3, 4, 5, of Tab. II.

At the lower region of the ftomach is feen the pylorus, fig. III. n. and immediately from this, the inteftinum tenue or fmall gut 00 , which is extended on each fide, and formed like the fomach: this is alfo provided with a great many pulmonary pipes. At the end of this fmall gut, which is for the greatef part bent in a ferpentine manner, or like the letter S, are difcovered four fmall veffels $p p p p$, which the fagacious and excellent anatomif Marcellus Malpighius, has called the fwollen veffels in Silk-Worms; but thefe are fraighter and lefs inflected in the Loufe; they are confiderably long, and of the fame texture with the inteftines. Thefe four little veffels, are properly four inteftina cæca, or blind guts, which I have
found in all infects; wherefore, by inference, I call them here by this name, though I never have had the fortune to fee their extremities. They open into the inteftine, from whence they arife at the place juit mentioned. After thefe appears the little inteftine colon q, and at the end of that, there is a manifeft dilatation or extenfion Pr , which is the cloaca, or place where the excrements acquire their figure; for they are very irregular, and not like thofe of other infects, which are ufually formed in a fingular and regular manner. Within this dilatation appears the inteftinum rectum s, which fhews its aperture, as the anus fituated upon the belly between the divifion of the tail t; and juft under this the skin is very briftly.

As to the motion of the ftomach, it is truly admirable ; infomuch that one might fuppofe it an animal within an animal, by reafon of the ftrong agitations, contractions, dilatations, corrugations and expanfions, all which belong to it, and ftrike one with amazement, the whole being plainly feen through the body. Thefe appear plainly at the time when the fomach is full of food, but theyare beft of all feen, when the blood paffes into it at the time of fucking; for then it is fometimes obferved, that the remainder of the old aliment is mixed with the new, and is fhaken and agitated up and down, and on every fide, in the ftomach. This may be feen the more diftinctly, as the colour of the contents is more dark.

Hence one may eafily conceive what ftrange changes and emotions the pulmonary pipes on the fomach undergo at that time, and after what various ways the air contained in them is preffed, moved, propeiled, and fo purified; changed from its firft nature, and rarified within the creature. But who can difcover, by the moft diligent refearches, the ufe of the air in that place? furely no one. Yet very wonderful motions are obferved on this occafion, particularly in that little part which I called the pancreas or fweet-bread; for this being connected with the ftomach, muft obey all its motions. That any perfon may form to himfelf an idea of the motion of the ftomach, I have drawn three figures of it. When contracted, it is feen as at number 3, fig. vi. Number 2 fhews how its contractions are changed, and after what manner it dilates, is apparent from number I. Thefe motions are continually repeated by turns, and undergo an infinite number of variations.

As to the method whereby the Loufe fucks the blood, and conveys that nourifhment into the ftomach, it is performed thus, by the affiftance of the probofcis, and its aculeus or point. Firft, if the Loufe has abftained from food two or three days, it becomes very hungry, which is difcoverable from the empty ftomach, and becaufe the creature is then wholly tranfparent; in this cafe, immediately as foon as he is placed on the hand, he feeks for food, which he will the fooner and more readily find, if the hand be firft rubbed until it grows red.

Then the Loufe turns his head; which lies between the two fore legs, to the fkin, and diligently fearches for fome pore of fweat: when he finds it, he fixes his aculeus, or fucker, therein; a little after this, the blood is obferved, through the microfcope, to afcend to the head, in a very rapid, and, as it were, frightful ftream.
The Loure has at that time matter enough to feed on in any pofture, for if it finds any hairs on the hand, by which it does not defire to defcend, it fays in that pofture, and fucks with its head down, and its tail elevated. I have likewife obferved that it fometimes fucked with its belly upward, that is, when the hair it took hold of was bent down ; and then the motion of the ftomach, and pancreas, or fiweet bread, might be feen moft beautifully by the help of a microfcope.
But I fhould think the principal ufe of the claws, which I have defcribed to be fituated at the end of the fheath or cafe of the aculeusor fucker, is to affit the creature in fucking, and that the aculeus ferves for this purpofe; for whilf thefe are ftrongly fixed in the fuperficies of the inner fk in, and in the extremities of the pores, they enable the Loufe to ufe its aculeus the more freely, and to move it at difcretion, when the end of its fheath is placed firm and immovable.

Sometimes, whilit the Loufe was fucking, I have ftrongly pulled the skin of my hand afide, that by this means the fheath, or rather its claws, together with the aculeus or fucker, might be bound faft in the skin, and the Loufe could not difengage itfelf. This affords indeed a very agreeàble fight. This I did with a defign, that if I could thruft the Loufe out of its place, I might the more plainly fee the aculeus: but I could never accomplifh my defire in this particular, though I had then almoft wifhed to have three hands, that I might the better find what I wanted. There are fome fpeculations and refearches in anatomy that will not bear writing, fince they almoof diftract the mind.

When the Loufe is employed in fucking, a very fmall rivulet, Fig. 1II. u of blood immediately appears behind the aculeus or fucker, which is feen through the tranfparent head. Between and before its eyes, on the middle of the head, there is obferved alfo a confiderable dilatation x, for the jaws are there remarkably expanded, by the blood continually afcending. Thefe parts are fo fwifly contracted again, that there fcarce remains the leaff fign of blood after a moment, and both are performed with fuch velocity, that the dilatation can hardly be diftinguifhed from the contraction; wherefore I do not know how to explain this matter more properly, than by the fudden ofcillation of the pendulum of a clock. Behind the eyes, a fmall rivulet of blood is likewife obferved to run down within the head : this paffage may be properly called the efophagus or gullet, fig. III. f, which lies behind the jaws, and grows wide again in
the Loufe's neck as has been hewn before y. I have chofen to exhibit all thefe as one continued canal, that my defcription may be the more clear.

After the blood has afcended to the j.wws, and comes to the gullet, we obferve that it is immediately conveyed to the fomach, and that the bifurcated appendages, as well as the Romach itfelf, are at once filled with it. The motions of the ftomach are then remarkably increafed, its mufcular parts being difended; for as thefe mufcular parts are then ftretched, they have an opportunity of contracting themfelves again. Wherefore it is immediately obferved, that the excrements in the large guts begin likewife to move; nay, it ufually happens that the Loufe difcharges them duriog the fucking:

The food being thus reccived into the ftomach, is agitated about in a wonderful manner; it is moved up and down, and by contractions and dilatations, which are not to be defrribed, then performed by the fomach, is, as it were fifted. After this, it is feen, that the contents firft begin to divide into parts in the back or hinder portion of the ftomach, and they then appear like raifins preferved in jars, and are thus diftributed through the body. However, this is a falfe appearance; it arifes from hence, that the skin being divided into many grooves, is not equally tranfparent every where, and that fome difference is in this refpect feen through it, becaure the giooves are not equally tranfparent with the intermediate parts. Nay, the particles of the internal fat not being uniformly vifible through the skin, and obfcuring the brightnefs of the skin, conduce likewife to deceive the fight, as if the retreating blood entered into many peculiar veffels. To this may be added, that the blood has not at that time a homogeneous or equal colour, for its parts feparate from each other. From thefe appearances, before I had accurately examined things, I thought that the blood was diftributed out of the ftomach, through various veffels, into the other parts of the body; but I afterwards obferved that this phenomenon arofe, as well from the blood itfelf, as from the different colours of the parts through which it was feen, and which I then took to be veffels. Perhaps others, efpecially doctor Hooke, who firt prejudiced me in favour of this opinion, have fplit on the fame rock. I have not as yet made this experiment in the fmalleft Lice, in which more peculiarities may probably be feen, than in the larger kind.

I have likewife refolved to receive the blood, when changed in the fomach, into a glafs tube, and then to view it in the open air, or in fome dark place by candle light; but this I have not hitherto done, being hindered from making this, as well as many other experiments which I had a mind to try. In fome hours after feeding, the contents of the fomach are obferved to become infenfibly more brown or blackifh, and
to diminifh flowly: wherefore the inteftines are afterwards feen to be more and more diftended with excrements, which fometimes lie in them regularly divided, as it were, into globules. The reafon of this is; that the inteftines do not, at one and the fame time, contract themfelves about the frces, and therefore they caft or extrude them out of the body at different times. I have already treated of the mufcles of the abdomen in this infect, I hall now proceed to the parts of the breaft.

In this part, and in the back, are feen feveral mufcles, which move the legs and head; and hercin are alfo vifible the appendages of the ftomach, and a great number of pulmonary pipes and particles of fat. In the fame view is alfo feen the gullet and fpinal marrow, together with the nerves arifing from thence, of which I fhall now fpeak diftinctly.

In the middle of the back is feen a certain tendenous point, under the fmall fhield there fituated, where the skin does not appear to be fo tranfparent as in the reft of the body. This fhield feems there to be hollow, being thruft down into a little pit. At this point almof all the mufcular fibres are feen to concur, and their motion and contraction are here very vifible. As to the appendages of the ftomach, and other parts of the breaft and back, we have before treated of them at large.

The fpinal marrow is properly fituated in the breaft, and therein reaches to the infertion of the laft pair of legs. When this is difcovered, it is eafy to judge what that fhort whitifh groove is, which appears through the breaft, between the appendages of the ftomach; for thefe appendages are placed on both fides of the final marrow.
The ftructure of the fpinal marrow iffelf, does not differ much from that found in the Worm, from which the Scarabæus Naficornis, or Horned Beetle, by the ancients confecrated to Mercury, is produced, as is manifert from the hiftory and figures of the latter. It confifts of three remarkable fwellings, expanfions or dilatations, fig. vir. $a a a$, fom which, on either fide, we obferve three nerves $b b b$ to arife, which reach to the mufcles of the fix legs; but underneath, or in the hinder part of it, I diftinguifhed fix nerves $c c$ iffuing, which doubtlefs are diftributed through the reft of the vifcera, to give them life, fenfe and motion. The loweft of thofe little knots, whereof the fpinal marrow is compofed, is formed in a different manner from the upper ones, which are alike.
The membrane which covers the marrow is interwoven with a great many pulmonary pipes, and feems to be compofed of irregular and globular little parts $d d$, in the fame manner as we have fhewn in refpect of the coat of the flomach : and this texture, together with the great number of pulmonary pipes belonging to the part, afford a very agreeable fight in the living infect.
I could difcover no fibres in the nerves, which arife from the pofterior part of the marrow, though I viewed them frefh with the
microfoope ; they feemed indeed to be made un of a homogeneous, bright and tranfparent mat \rightarrow ter, and at their fides were hung a great many pulmonary pipes; with particles of fat.

The origin of the marrow, where it is connected with the brain, is feen like a fine thread e. But in all other infects this beginning of the marrow is perforated, and through its aperture or cavity the gullet paffes.

The brain of the Loufe is Thaped like a pear $f f$, and is divided into a right and left part. The dura mater, furrounding it, is formed like the membrane that covers the marrow, and is provided with pulmonary pipes and particles of fat $g g$. I can very eafily at any time fhew the marrow, but the demonftration of the brain muft be obtained rather by chance, than with any premeditated defign or art; it is clearly feen when by any accident it happens to be ftript of the parts wherewith it is covered.

The optic nerves $b b$ are fhort, and the eyes $i i$, which are connected to them, are fo fmall, that I could not diffect them to my fatisfaction; as well becaufe this operation is but aukwardly performed under mifcrofcopes, which magnify objects fo much, that all inftruments are too coarfe for this purpofe. Thus much, however, I diftinctly faw, that this black part in the eyes might be feparated or lifted up from them; which part in other infects I call the tunica uvea, not being fituated on the bottom, but on the fuperficies of the eye; after this appears the tunica cornea; this feemed divided as it were into hexagons, as it is in other infects, though the other was not: but that I would not affirm for certain, for we are not to fuppofe or imagine, but to purfue by our fenfes, and difcover the actions and productions of nature. This opinion, however, does not pleafe fome anatomifts, who therefore efteem all comments on the brain merely as ingenious fancies. The younger Bartholinus, who, fpeaking of the fiction that filkworms had no brain, expreffes himfelf thus: "Behold, how many are pleafed " with their own blindnefs! who, although "t they are blind, and fhall for ever remain fo, "yet cry aloud they can fee, fince thefe their " contemptible works, which ought to be re" moved from their kyes, and buried in obli" vion, are lafting monuments of their cloudy "" arrogance; for by this means they might " afterwards feek for the light of truth."

Whether Lice are diftinguifhed by the parts of generation, into males and females, as other infects are, I could not difcover. Heretofore, indeed, I had fometime remarked that Lice get upon each other; but this I could not obferve while employed in this diffection. I found an ovary in every one of forty, which I diffected; this almoft inclined me to think that thefe little animals are Hermaphrodites; and perhaps they really have in each animal a penis and an ovary together, in the fame body, as I have found in fnails. Whether indeed it be fo, is ftill a fecret to me, for though I faw the ovary very diftinctly, I could difcover no penis, notwith-
flanding the great hopes I had of finding it, from having obferved that all kinds of infects have very large organs of generation.

The ovary is extended through the whole cavity of the abdomen, fo that with its appendages it reaches even to the breaft. It has an opening diftinct from the end of the inteftines, for as the upper part of the fundament is placed in the divifion of the tail, in which the abdomen ends; fo on the contrary the vagina or mouth of the ovary opens into the lower part of the abdomen, where the body is divided as it were into two parts, Tab. II. fig. viit. as may be feen in doctor Hooke's figure. The ends or extreme appendages of the oviduct or egg-paffage are like two tubes $b b b b$, naturally joined in one point; this I have flewn in the figure by one fide: In the oviduct c are feen at once perfect eggs d, and their rudiments e or principles; fo that in one ovary I have counted ten larger and forty four fmaller eggs, together making fifty-four. In the uterus I faw one perfect egg, which was fallen down ready for birth; at that time thefe little eggs are called Nits. In my figure of the ovary there are fifty-one eggs.

The ovary is double $f f$ in all Lice, and every part of it is fubdivided into five oviducts $g g$, which on each fide end in one common canal; next comes in fight the uterus b, in which the egg i acquires its full perfection. Where the uterus ends, is feen a facculus or bag full of a glutinous matter $k k$, opening in that part into the uterus; this is defigned for faftening the eggs, whilft they arc laying; the fame may be likewife obferved in many other infects, and particularly in Bees. I muft acknowledge that I have not feen the glutinous matter contained in this bag; but I infer, from the fituation and fructure of the part, that the bag was defigned for keeping fuch a fubftance: After this appears the neck of the uterus l, and therein is a fmall dilatation or expanfion; by means of which, the ovary immediately opens itfelf into the outward womb, as may be feen at the letters $a a$.
The oviducts embrace the eggs fo clofely, that fcarce any difference is obferved between them m, nor can we feparate the oviducts from the eggs, without great labour; when we do this, a great many bags of fat iffue from thence, which obftruct the fight. It therefore has appeared to me, that the ftructure of the oviduct is the fame with that of the fomach and inteftines ; though the texture of this part is neverthelefs more delicate, and that the glo-
bular particles proceed from thence with greater eafe, than in the other vifcera. The oviducts are provided with many pulmonary pipes n, of which, as we have already obferved, this little animal has a very large number, though no bigger than a point; its ftructure and vifcera, which excel all human art, the greateft genibifes ought to be amazed at, as I have here, though briefly; yet clearly; explained and demoinfrated. I am perfuaded that I might make many more difcoveries in it, if I had more time for that purpofe, fince I have completed this diffection, and difcovered thefe remarkable miracles in this mictocofm or little world, in the fpace of fix days. If the learned Daniel Heinfius had fearched for thefe things in nature herfelf, and not in his own fancy, and in books, he would not have written fo poor an encomium on this infect.

As to the fructure of the external skin of the Loufe, it affords many particulars worthy of obfervation, nor is there any thing that bears a greater likenefs to it, than ftiff and tranfparent parchment: it is in feveral places marked with fmall grooves or channels, in the fame manner as the ends of our fingers; which, when viewed with the beft microfcopes, really feem to be fo many divifions of pulmonary pipes. But the lens of the microfcope muft, for this purpofe, be carefully managed, for as it is turned one way or another, different things are feen: one cannot bring the lens nearer, or remove it further, by the leaft diftance, but fomething is immediately perceived by the fight, which was not obferved before. Globular particles, fig. ix: a, fometimes appear in the place of chan- nels, or oblong pipes $b b$, though the eye is always fixed on the fame part; then between the grooves themfelves, where the skin is fimply membranaceous, globular particles c are likewife obferved. In other places, as in the extremities of the abdomen, the fructure of the skin is different, for there it feems to be compofed as it were of irregular fquares; Tab. II. fig. x. d, wherein circular grooves e may be feen in one part; in another globules f; in a third, both globules and grooves g, nay fometimes the plain tranfparent skin only is feen full of points $b b$; all which, as we have before obferved of the oblong grooves, are reprefented according to the tranfparency of the parts, which have not been yet totally feparated from the inner furface of the skin; or juft as the microfcope is moved, fomewhat nearer to, or further from the skin.

Conclufion to Mr. THEVENOT:

All there things, moft illuftrious fir, while I viewed them. I have carefully delineated with my own hand, as you may fee by the figures annexed. I fhall now leave you to judge, whether chance, by any right, can claim even
the leaft part in the moft artful frructure of the fmall point of the univerfe, which is here exhibited; fince fo many and fuch different miracles jointly proclaim in it the divine omnipotence. Wherefore though this animal is
of no advantage to the body, yet it is able to raife our thoughts to God; fo that by ferioully contemplating the divine Majefty, and the glittering rays of his miracles, in this little animal, we may, with the moft fubmiffive humility, change and contract our vain pride into as frmall a point.

Then we fhall obfrerve the finger of God in thefe things, and frall obtain an effect, which none of the forcerers can imitate, or reduce into act : for the moft fmall and humble may drive away the devil, and rob him of his ftrength.
The miracles of God are magnificent in every thing he has created; and even the fmalleft of them are the hoft of the Lord of

Ifrael; wherewith he does fervice to his people by chatifing them, when their fins are grown to an height ; that they may repent and acknowledge the fupreme hand, which punifhes our offences, as we are taught at large in the facred writings. I fhall conclude this difcourfe with obferving, and fhall always firmly maintain, that the miracles of nature are open books, whereby we are all reduced to our eternal origin, nor are we ever elevated above nature and created beings, until we conftantly love God, and renounce all that is not God.

The end of the woonderful anatomy of the Loufe.

T A B. I.

Explains the changes of the firft order or clafs, which are laid before the eye, by the afjitance of figures; for wobich purpofe the Loufe is produced for an example.
N. B. The numeral letters diftinctly fhew, after what manner the tranfmutations fucceed each other: fome of the figures are exhibited as they are magnified with the microfcope; and let the reader obferve in general, that we have likewife followed the fame rule in the examples of the fecond, third, and fourth orders or claffes of our changes of infects.

No. I. Is the Nit or little egg of the Loufe delineated in its natural fize, wherein the Loufe is contained, being yet cloathed in its firft coat or skin. The fame may be feen in fig. I. as magnified with the microfcope.
II. The empty fhell of the egg, or the Nit's coat, caft off by the Loure, after it has crept out of it. It is reprefented magnified in fig. ir.
III. The Loure itfelf juft excluded from its egg, or coat, where it is evident, how this animal has crept out of the membrane wherewith it was covered, in a fate of perfection; fo that it is not obliged to undergo any other change, but afterwards grows to a larger fize, and muft often change its skin. Wherefore we have called the Loufe in this form, an oviform Nymph animal; becaufe it comes from its coat perfect in all its members.
IV. We reprefent the fame Loufe fomewhat larger, and cloathed as it were in its third or fourth skin, which is likewife to be caft off foon after.
V. The Loufe, having attained the full term of its increare ; in which period we have confidered it as a Nymph animal; becaufe it is then in the laft skin that it will caft, and indeed we find fome infects in this firft order, which are fill fomewhat changed about the time of cafting their laft skin; which is fufficiently evident, among other examples, in the longipede or long-legged Spider; the legs of which grow much longer, at the time it is cafting its laft skin. After this is caft, the infects of this firt order grow no more, nor are they any ways changed; as may be more
eafily underftood from the figures of the fubfequent examples of the four orders, under the fame numbers v and vi .
VI. The Loufe, having attained its perfect maturity and full growth, fo that is now fit for generation, and is arrived to the fate of puberty. Fig. iII. reprefents it magnified by the microfcope.

Fig. I.
The Nit or egg of the Loufe delineated with a microfoope.
a. An oviform border or extremity, which furrounds the Nit's head; within which are feen certain fmall cups, like uvulx, of no exact or determinate figure. Thefe little cups are fomewhat bent, and they again fwell in the middle, as it were into a whitifh top. It is obferved alfo that thefe little cups do not intirely fill the inward parts of the border or circle that furrounds the head.
b6. Two tender little fwellings or pimples, wherein the Loufe's eyes, whilft its limbs are yet moift and foft, are fituated. Thefe eyes grow infenfibly browner, and become vifible through the flkin, and at length grow entirely black.
c. A certain white pellucid little part, fituated in the middle of the Nit, which we have often obferved to beat regularly like the heart; and this is the little part reprefented by the letter b. in figure vi. and called by us the pancreas, as it moves up and down with the ftomach.

Fig. II.
Th e egg-/bell, or empty Nit, and the firft skin caft by the Loufe.
a. The border or extremity of the head burft afunder with its little cups, and driven back by the Loufe creeping out at the upper end.
6. The other part of the caft and empty fkin of the Nit, from which the border of the head was feparated; fo that it refembles an empty tankard, having its aperculum or cover taken off.

Fig. III.
The Loufe lying on its belly, and magnifed with the microfopope.
On its head is feen a fhining fkin, together with fome little holes and divifions. On the
breaft or back is an elegant delineation of a fhield, which is painted in the middle; and the glittering fkin is alfo obferved to be here variegated with little holes. The legs, which are fixed to the breaft, are full of little fwelling's or pimples, like fhagreen fkin, but they are loft by degrees towards the end of the legs. There are many hairs betweeen the claws of the legs. It hath been difcovered by the microfcope, that at the extremity of the abdomen, the skin likewife appears painted and rugged, with little grains like fhagreen as before mentioned; but I have at length difcovered with the beft microfcope, that the skin really confifts of irregular fquares, globules, \&cc.

Of the Arborefcent Water Flea *.

After the Loufe I have likewife in this firft order, placed the Arborefcent Flea, whereof I now intend to treat particularly. This infect, which I here delineate larger than the life, Tab. XXXI. fig. I. a. is the fame that in fig. II. I have reprefented alfo larger, yet in a fide view. In this, befides the outward form of the body, which is fquare as it were, I fhew an eye in one fide of the head, fig. ri. a. and under it a fharp beak c. On the breaft are feen arms, divided into branches 66 like the boughs of trees; and in the abdomen there is a tranfparent fubftance, with the legs and tail; and in the hinder part of the body, its legs appear placed as it were on the middle of the back.

But if this animal be reprefented in the form wherein it fhews itfelf to the naked fight, you would fay it had only one eye; for the eyes, by reafon of the fmallnefs of the head, feem to be joined to each other. They are fituated in the beak of this infect, and this beak is likewife very fmall and fharp-pointed. The ftructure of the eye is feen by the microfcope, to be reticulated, or made like a net, fuch as we fee in the eyes of other infects, and the beak is not only fmall and fharp, but alfo tranfparent: and it feems probable, that this little animal fucks in its food, by the help of this little part, as is ufual with other aquatic infects, which feed themfelves with their hollow beak, or tubular aculeus or fucker.

Of all the parts of this animal, its branching arms, and the motion it makes with them in the water, deferve out greatef attention. They arife undivided from two, as it were, fimple trunks, which, like the flhoulder bones, fpring from the fhoulder blades, and are each divided into two branches; each of thefe is again fubdivided into three different joints. At the firt and fecond joint, reckoning from the fingle trunk, there arife on each fide a little branch, almoft like a hair ; and at the third or extreme joint, three fuch buds or fhootings are placed, which alfo feem to be again divided into other

But though thefe arms are very remarkable, and worthy of confideration, the motion produced with them by this infect deferve yet greater notice. For this is threefold; firft, the little creature can, with their affiftance, move in a ftraight line ; whilft it conftantly waves its ramified arms, as a bird its wings in the air, fometimes upward, fometimes downward, and fometimes on one fide, and all the while moves forward in a ftraight line.

A fecond motion is like that of the fparrow, for as thefe, by expanding and again contracting their wings, pafs with an uneven motion through the air, and fometimes defcend, and immediately after are carried aloft again; fo this little animal, by friking the water now and then with its branching arms, obtains a like unequal motion, and fometimes dives as it were to the bottom, and again rifes up to the furface. Thefe arife from the alternate ceafing and repetition of the motion; the animal by this means moving in a different manuer. Since, therefore, the motion of this little creature is not at that time very irregular, it happens that it is continually feen to jump in the water, its head always tending towards the furface, and its tail ftretched downward.
I cannot find a more proper example of the third kind of motion in this animal, than the whirling or turning about of that kind of pidgeons, which, from this whirling or gyration of the body, are called tumblers. For as thefe tumblers, when whirled about in the air like a bail, feem for a time to be deprived of their motion, and fall as it were downward towards the earth; fo this little creature, inclining its head down into the water, and at the fame time raifing the hinder part of its body upwards, moves itfelf as it were in a circle, without any interruption in the motion of its arms, which it ufes upon this occafion as oars. Hence it happens, that the parts of its body, though in perpetual motion, and naturally always funk into the water, are fometimes feen under and fometimes above it; which is a very pleafant joints.
fight, and may be compared to the turning of a wheel about the axle-tree of a chariot.
In regard, therefore, of the motions before explained, by which this little animal feems to approach rather to the nature of Fleas than Lice; and on account of its wonderful arms, which are made like the boughs of a tree, I think it may be properly called, as I have named it, the Arborefcent Flea.
The fructure of this infect's belly likewife deferves as much confideration as its breaft and arms: if we view it on the outfide, it will feem to be of a rhomboidal form ; but in reality, the part which refembles the belly, is nothing more than a tranfparent skin full of fcales or fleells, fig. II, d, which is joined together in the back or pofterior part of the body, but in the fore part is divided into two fegments which open from each other; and thus it forms, as it were, a little open cafement, through which the animal can move his real belly and tail in and out. Therefore this rhomboidal skin which covers the infect, is only its fhell, through which its real body is feen, as this fhell is tranfparent. This fo far agrees with the teftaceous animals; but it differs from them widely with refpect to its diftinctly vifible motions, which it has with the abdomen and tail. I have often obferved that it fretched out its tail through the opening in its skin or fhell beforementioned, and pulled it in again. This fubftance, or the body and tail, are waved and turned round like the letter S; in the middle is feen a fmall tranfparent inteftine, and in the fore part are feei feet which are tranfparent, formed almoft in the fame manner as the articulated brifles in Shrimps, and having the like, as it were, tremulous or jumping motion, wherewith this animal, as well as the Shrimp, can change its place ; though this office is performed in general by its arms, to which, however, the legs feem to be fomewhat affiftant. The extremity of the tail is divided into two fharp and fiff briftly hairs f, on which, at a little diftance, grow two other fimilar ones. The eggs b are placed on the back of the body, which I affirm as certain for this reafon, becaufe, foon after this infect hath caft them out, very fmall whitifh infects are feen fwimming in the water, which are of the faime nature with the full grown ones, nor do they undergo any other change, except that they grow bigger; as I have fhewn to happen to Lice, in the example of the changes of the firft order.
In figure III I thew all the parts hitherto defcribed, except only the eggs which are caft out, with this difference, that a little of the fore part of the body, which was before reprefented laterally, is here delineated; fo that the motion of the inward body and tail through the rhomboidal hell, or skin, may be feen the more exactly. The feet alfo may, by this means, be feen more plainly, being here ftretched out beyond one fide of the skin; which I fhall make more clear, and explain more particularly hereafter by letters.

The colour of this infect inclines fomewhat to red in the full grown; and is like that of beef, which has been fome time fleeped in water. The outward ftructure of the skin that covers it agrees, in fome meafure, with the reticulated and checquered hell skin of the fcaly fifh; though I could hitherto fee no fcales in it, having never viewed it through microfcopes, which, in the moft powerful manner, magnify the bulk of objects: but it is tranfparent like the skin of the Shrimp, or as the fhells of very fmall Mufcles and young Cockles. The extreme part of the branching arms is like Hen's feet, but their divifions are not fo diftinct.
I have frequently the infect I have been hitherto defcribing, in cifterns of rain water, when no rain hath fallen for a long time; but when thefe infects have plenty of rain, they can fcarcely be feen, becaufe they divide themfelves here and there to every quarter. I have found them likewife in running water, and in moorifh or fenny ditches, wherever any of the clear water has ftagnated on the fediment at the bottom. They fometimes remain feveral days on the furface of the water, and fometimes are feen at the bottom only; but we feldom or never fee them at reft. They change their skin like Lice, and the caft skin refembles the infect itfelf fo exactly, that you would fay, you faw it alive. I keep by me fome skins of this fort, which are very curious.
I remember when I was in France, in the foreft of Vincennes, that I faw fo great a number of thefe infects in a watering-place for horfes, that the water appeared as if changed into blood; which, indeed, terrified me at firft, but it afterwards gave me an opportunity of inveftigating the nature of thefe infects more accurately, and made me cautious not to pafs too rafh a judgment on things that are obvious and familiar to us; for this leads us into innumerable errors and prejudices. It is not impoffible that thofe who affirm that bloody rain has fallen, have been deceived in the fame manner. Is it not poffible, that fuch red drops might iffue from infects, at the time they come frefh from the Nymphs, which diftil a bloody fluid? This feems to happen, efpecially when fuch infects are more than ordinarily multiplied in any particular year, as we often experience in the Butterflies, Flies, Gnats, and others.

The celebrated Florence Schuyl, who was profeffor of phyfic in the univerfity of Leyden, long after this incident communicated to me the like obfervation concerning bloody rains. He informed me, that being once intent on his ftudy, he heard a noife, of which, as it increafed by degrees, he was defirous to know the caufe; and that he was foon fatisfied in this particular, for that one of the maid-fervants ran up to him, and told him, in an interrupted fobbing tone of voice, that the waters of Leyden were turned into blood. Upon
this, he went directly in a fmall bark to the places he had mentioned, put fome of the bloody water into a glafs, and, upon viewing it carefully, obferved that it was common water, and abounded with little red animals. Thus his fudden fright was changed into a lafting admiration. Before I treat of other matters, I fhall difclofe a method, to the diligent fearchers into nature, by which I have difcovered thefe and fuch like aquatic infects in water, which, when found, may be examined more accurately.
To find fingle infects in water, I know nothing more proper than the glafs veffel commonly called an urinal ; for if its empty belly be fomewhat narrow, the finalleft animal fwimming in it muft be feen by us, fince the water itfelf contained in it fupplies the place of a microfcope. As the glafs, therefore, is wider or narrower, fo we fee the little animal reprefented lefs or greater. But it muft be oblerved, that this augmentation is not vifible, except only when the animal fwims on the oppofite fide of the glafs. When the infects are once obtained, they may be removed into fmaller glafs bottles, wherein the parts may be feen much more diftinctly: nay, the microfcope, confifting of only one convex glafs, may upon this occafion be ufed to advantage. Befides there, we have likewife other helps to magnify thefe little creatures: we have caufed very fmall round bowls to be made of glafs with divifions, in which we have, by the help
of a microfcope, viewed the infect, having only a little water, to the utmof advantage; and gained a very diftinct knowledge of all its parts. It may likewife be very conveniently examined by the microfoope, if it be placed in a fmall drop of water, dropped upon white paper; provided one takes care to avoid the brightnefs produced by the water. If the infect fhould happen not to be diftinctly feen upon a white ground, we may change the white into yellow, green, blues or any other: colour: we have, \cdot for this purpofe, put our little glafs bowls before mentioned, into a cake or compofition of flarch and blue, into foot, vermillion, and other paints; and by this means our endeavours have been crowned with a fortunate event. Since, therefore, the method we have been hitherto explaining, has been very ufeful to ourfelves in difcovering a great many water infects, and viewing their parts with the help of a microfcope, we no longer defire to conceal it, but communicate it for the fervice of the public. To this we fhall add, that among all the kinds of microfcopes which have been invented, none is better than that which has only one lens. But fince we owe the benefit of this inftrument or contrivance to that very great and incomparable mathematician, Mr. John IEudden, fenator of the city of Amfterdam, we efteem it our duty to do this renowned gentleman honour; and to give him public thanks for the favour he has done us in this refpect.

A particular treatije on the Scorpion, wowich likewife belongs to the furf clafs or order of natural cbanges.

NEXT in order under this head, come the Scorpions, which are viviparous, according to the obfervation of Dr. Francis Redi; his words are thefe: "The thoughts ' of the great Ariftotle were juft, who is of " opinion that Scorpions are generated by the ' conjunction of the male and female; the "Scorpion not laying eggs, like other infects, " but bringing forth little Scorpions alive and " perfect in their fpecies: and of this opinion " are alfo Pliny, Líb. II. Cap. xxv. and Ælian, "Lib. VI. Cap. xx; and the fame thing has " been accurately obferved by Thomas Fure' nius, and by the very learned John Rhodius, " in their medical obfervations. "As, therefore, I had nothing to follow or " avoid, I began at once my experiments; " and having brought a large quantity of Scor" pions from the mountains of Piftoix, in " Tufcany, I felected fome of the females, " which, by their fize and roughnefs, are "eafily diftinguifhed from the males, and on " the 2oth of July put them in feparate glafs " veffels, and kept them without food; fome " of them died before they brought forth their " young. But one of thofe on the 5 th of " Auguft brought forth, not eleven, as Pliny
" and Ariftotle have imagined, but thirty-eight
"Scorpions, well fhaped and of a milk-white
"colour, which every day changed more and " more into a dark rufty hue. Another fe" male in a different veffel brought forth " twenty-feven of the fame colour, on the 6th " of the fame month ; and the latter, as well " as the former, feemed fixed, as it were, to " the back and belly of the female. On the " 1gth all there young ones were living, but " afterwards fome of them died daily, fo "c that I loft all foon after, except two which " furvived until the 24 th of Auguft, and " then they died alfo.
"In the mean time, I had a mind to fee " how thefe infects were placed in the pa"rent's womb before their birth. Having, "therefore, opened fome of tham, I found " different numbers, yet never lefs than " twenty-fix, nor more than forty; all which " hung on an oblong thread, and were covered " with a very fine and delicate membrane, " in which one Scorpion was very clearly " diftinguifhed from another, by a certain par"tition refembling a fine film." Thus far Dr. Redi, in Exp. Circa Gener. Infect. But the defrription given by him does not at all
fatisfy me, fince his defription of the uterns and its oviducts is not fufficiently exact ; nor does he take any notice of the place where the oviducts are connected with the uterus, and form one common excretory duct. I finuld likewife be glad that the extremities of the oviducts had been examined by him, and that he had defcribed the rudiments of the eggs contained in them. He fhould have told us, what that oblong thread is of which he makes mention, and which was doubtlefs one of the oviducts. The membrane; likewife, which feparated the Scorpions from one another in the oviduct, could be no other than the membrane which covers the foetus of this infect, and ought indeed to be called the proper egg of the Scorpions. It is probable that he found this egg in the extremities of two oviducts; though his words import, that there was only one oviduct, which he calls an oblong thread; which feems to me fcarce probable, fince we are taught the contrary from the analogy there is between the uterus and oviducts in all in-- fects. And when he makes mention of a partition, which, like a very fine film, feparated the young Scorpions, he feems in that place to divide an oviduct: but the author, ingenious as he is, fpeaks here fo perplexedly and obfcurely, that it feems as if he intended to propofe an enigma for fome future Adipus.
I am perfectly fatisfied that Scorpions, which I have never known to be refered to any order, ought to be inferted in the firft of my plan, with this difference only, that they are brought forth alive; whereas the Loufe only lays eggs or nits, from which its young afterwards proceed. The Scorpion is, therefore, like the viviparous Snail, which excludes its eggs in its own body, and afterwards brings forth its young alive, but at different times and intervals ; whereas the Scorpion has thirty-eight young ones together at one birth, which afterwards, by degrees, increafe and grow bigger.
As the truc figure of the Scorpion has not yet been given by any perfor, that I know of, I thall here reprefent their natural fhape. And that I may the more accurately execute this, I hall divide the Scorpion into the head, breaft, and belly. The Scorpion's head feems jointed, as it were, to the breaft, as I have found in all the dried Scorpions that I have feen hitherto. In the middle of the breaft, or in the head connected to it, are two eyes; and a little further towards the fore parts, there is likewife another pair of eyes, placed as it were in the forepart of the head. Under thefe are obferved two fhort arms, forceps or pinchers, Tab. III. fig. I. a, which the Scorpion, doubtlefs, makes the fame ufe of as others animals do of their teeth, and wilh which it breaks its food, and thrufts it into its mouth. Thefe four fhort forceps, and the four eyes above them, have never, to the beft of my knowledge, been obferved or defcribed by any perfon, but hitherto entirely neglected. The Scorpion can at pieafure put back thefe forceps or teeth
into its mouth, fo that none of them may be feen.

Under the breaft are eight articulated legs $b b$, each divided into fix joints, the two hindmoft of which are each provided with two crooked claws, and the legs have here and there fome hairs. At the foremof extremity of the head are two flagella or whips, or crooked arms like pincers $c c$, compofed of four joints, the outmoft whereof is fortified, as it were, with a thumb, by the contraction of which the forceps is formed. This joint is thick and ffrong, and contains fout mufcles, as we likewife obferve in the claws of Lobfters. The belly is divided into feven little rings d, from the loweft of which arifes a tail compofed of fix joints, which are briftly and formed like little globes e; the laft of thefe joints is armed with an aculeus f, or fting.

Dr. Redi fays, he faw that the Scorpion difcharged a very fmall drop of water through the fting in its tail; which I fhould eafily believe, fince the poifon infufed by Bees through their fling into a wound, likewife confifts of a very clear liquor. And this makes me fufpect that the external fing of the Scorpion, in like manner as in Bees, is no more than the Theath, wherein the true aculeus or fting is concealed. I once undertook to examine this matter in a dried Scorpion, but fince the loweft ring of the tail, from which the fing hangs, became hard as a horn by drying ; I could not accomplifh my defign according to my wifhes. I obferved therein, however, two fmall tubes, which feemed to end in a facculus or little bag, that carried, I fuppofe, the poifon, and had on the fore part two aculei or ftings; but all thefe things were fo confured, that I would not prefume to affirm any thing certain concerning them. If I had had the Scorpion alive at that time, and ready at my hand, it would have been very eafy to have clearly difcovered this matter.

In another kind of Scorpion, fig. II. I faw that the two foremof crooked arms aa differed very much from thofe which I have before defcribed; for the forceps were, in comparifon to the former, very fmall, and ended in a flarp point. On the fore part of the head were, like thefe, two forceps or teeth beforementioned; and above thefe on either fide were three eyes, fo that there were fix in all. In all other particulars it was like the former Scorpion; unlefs that in the reft of its limbs there was here and there fome very flight difference, as is feen in the figure. This little Scorpion was very delicate, and it may be eafily known, from the fmallnefs of the forceps, that this kind have lefs ftrength than thofe of the former; but then the longer they are, the more conveniently they can take hold of their food.

As the larger the animals are, we can attain to the more accurate knowledge of them; I fhall now reprefent again, in a very large Scorpion, all the parts which I have defcribed in
the two former ; particularly thofe two brintly tecth, or foremoft forceps, fig. III. a, are in this feen very clearly; as alfo its two foremoft eyes b, of which there are fix on each fide of the head, fome gradually lefs than others. In the middle of the head, where it is connected with the breaft, are two cyes, which may be diftinguifhed cafieft of all, and which have therefore been alfo obferved by all authors; who, notwithftanding, feem to take no notice of the twelve other eyes. The head, breaft, belly, tail and fing, together with the legs, forceps, hair and claws, are likewife much more confpicuous in this than in the two former. The fix joints of the legs are exactly in this the fame as they are in the fmaller Scorpions. The crooked arms of this alfo confift of four joints, and carry forceps of an horrible bignefs; but there is a peculiar difference in the tail, fince it is divided into fix joints in fmall Scorpions, and in this had only three: I doubt, however, whether this be fo by nature, fince I think I could perceive that the tail had been broken, and glued on again before it came to me; but all the articulations were not joined together. The colour of this Scorpion is very black, like pitch.

I have another Scorpion almof the fame fize with the laft, having a tail compofed of five joints, whereof I have the fame fufpicion that I had of the former, that is, that it is not natural to it ; for I am thoroughly perfuaded, that in all kinds of Serpents the tail confifts of fix joints. The latter was brought me from America, but the former very large one, the figure whereof I have given before, from the Eaft-Indies. The figure of the American Scorpion is like that from the Eaft-Indies. Doctor Padbrugge, governor of the Molucca illands, has this year fent me a drawing of a peculiar Scorpion, which was of a light red, but is now grown of a blue or sky-colour; its tail is com-
pofed of fix joints, and in other particulars it differs not from the very large one which 1 have reprefented, only that it is not half fo large.
In Holland there is found a certain fpecies of Scorpions, which are very fimall, and no bigger than a Bug; they likewife refemble it in the hinder part of the body, which is divided into eleven fmall rings, and wants a tail. They have fix legs, each of which confifts of four joints. The breaft, which is connected with the legs, is diftinct from the head ; the forepart of which has a pointed beak covered with hair. They have likewife many eyes, which are diftributed over the fides of the head : the crooked arms are placed before the eyes, and fpring from the head like the antennæ or horns in Butterflies, being compofed of four joints, including the forceps, the ftructure whereof is the fame with that of the Scorpion's before reprefented in fig. 11. All thefe parts have on them fmall, brifly hairs, and are of the fame colour with the common Scorpions of Germany and Italy. The arms before-mentioned are very long and large, in comparifon of the fize of this animal ; nor can there be a more agreeable fight than the remarkable motions it makes with their affiftance, when it changes place, and moves itfelf like a land Crab. This infect is often found in benches, chefts and coffers, that have not been cleaned for a long time, where, in my opinion, it maintains itfelf on thofe little animals which there multiply in the duft, and of which there are many kinds; feizing them, I fuppofe, with its forceps, and fwallowing them for food. I have likewife found this infect in fcarlet cloth, which had been kept long in a cheft. I have nothing farther to fay of this animal ; I have defcribed it according to the parts that I have found in it, when fixed on a needle and dried.

The natural biflory of the covered Snail, illuffrated by accurate drawings.

> The I N T R O D U C T I O

THOUGH the Snail was reckoned by the Jews among unclean animals, which they were forbid to ufe as food, they did not fcruple the application of it to other purpofes. The royal pfalmift borrows a moral fimile from it, and prays, that the wicked may "con" fume away like a Snail;" and, however impure and flimy, it muft notwithftanding claim the confideration of thofe, who are defirous of being acquinted with the wonderful works of the creation.

There are many chriftian nations who place Snails amongft the dainties of the fecond courfe, but they are only thofe of a particular kind. In, Holland no Snail is ufed for this purpofe, but the valved kind found in the fea or other waters, the mufcles being of a pretty tenacious fubflance. The way of eating them,
is boiled and well feafoned with falt; and no part of them taftes ftrong except the liver.
Other nations, as the Italians, Germans and French, eat the garden Snail, efpecially at the feafon, that, after a faft of feveral months, it has cleanfed itfelf of all impurities; for during this period, there grows upon the mouth of the fhell a covering, compofed of a fubftance not unlike plafter, which hinders the earth or any kind of dirt from getting into it. In this manner this kind of Snail paffes more than feven months, from autumn to fpring, without any motion or food.
The fhells, blood, and opercula of the Snail kind have likewife their ufes in medicine. Amonght the opercula of Snails, that called Blatta chiefly deferves our attention; it belongs to the Murex or purple Snail, and as it comes
to us from Byzantium, a town in Africa, where the art of dying purple formerly flourifhed, it has obtained the name of the byzantine Blatta. However, this word Blatta is now made ufe of, to fignify the opercula of all kinds of fhell fifh without diftinction, though there are fo many and fo great differences in this fingle part, that an entire treatife might be wrote on it alone; and certainly fuch a treatife might be very ufeful, as well as entertaining.
My intention, at prefent, is to treat of the Snail, known by the name of the vine or covered Snail, and defcribe its manner of living and propagating its fpecies, which I have made myfelf acquainted with by a very exact diffection: by means of this, I fhall, among other things, prove, that in this creature both the brain and fpinal marrow have their proper mufcles; and foll likewife fhew in what manner this, in appearance, fo contemptible a creature is provided, by the greaten of all wonders, with eyes; that may not only be difinctly known for fuch, but even felt; and how it is at once both male and female in the fame body; as alfo how it proceeds by generation, from an egg, like other animals. Hence will appear the folly of that common opinion, which makes them proceed from flime or mud, a fancy which could only find place in the empty heads of thofe, who, inftead of ftudying God's wifdom, power, and goodnefs in his works, fpend their lives in reading books which mifreprefent them, or at beft, only reprefent them at fecond hand, flealing from one another.

Hence alro it will appear, that this animal is to be ranked in the firft fpecies of my four natural orders of mutations, in which infects proceed immediately from an egg, without paffing through any intermediate fate, as I fufficiently have defcribed in the general hiftory of infects.

I fhall here defcribe that kind of Snail, to which the inhabitants of Brabant and Flanders have given the Spanifh name of Caracol. It would be an endlefs task to treat particularly of every fpecies of Sinail, Cockle, Periwinkle, and other creatures of this kind, that are found with or without fhells, though all belong to the fubject we have in hand; fince for this purpofe, it would be requifite to call all nature together, and fearch the feas and rivers, and every part of the earth.

Neverthelefs, I hall take notice, in the proper place, of what I have occafionally feen and obferved in other kinds of Snails; fuch as the houfe Snail, which has a little ftone for its fternum; likewife the common Snail, which we meet with in path-ways, without any fhell like the firft. I fhall alfo fay fomething of the garden Snail, the frefh-water Snail, the Crab, or falt-water Snail, the mother of pearl, and fome other kinds of Snails, which I have had opportunities of feeing and examining. Some of thefe live upon trees, and there are others, but very farce, which have the fpiral line defcribed by thin fhells turned the contrary way.

C H A P. I.

Of the Joell and Soft part of the Snail in general, and particularly of the four borns wwhich Spring from the upper part of its bead, and of the eyes that appear in them, with a defcription of the confruction and motion of thofe parts.

BEFORE I begin to fpeak of the body, or foft part of this creature, I thall fay fomething of the fhell or hard part: this is prepofteroully called its houfe, if we take that word in its proper and common fignification, feeing it is the very skin of the Snail, without which it would be as impoffible for it to live, as for a Lobfter, or a man who had been flayed, or a tortoife drawn out of its covering. This cruft therefore ought to be confidercd as the bone of the Snail, in which all its mufcles are inferted, as the mufcles of quadrupedes are fixed in theirs. This is very obfervable in fea Mufcles, as I fhall in its proper place accurately demonftrate.

To pafs now to the foft part of the Snail's body; it is to be obferved, that what appears of this part, when it moves forward with its fhell, is about three inches and a half long, and almoft two inches broad. In the fore part of its head appear four horns, two greater,

Tab. IV. fig. I. $a a$, and two leffer $b b$, without any fpots at their extremities. Under thefe horns we may perceive its external lips, and its mouth c, and between the firft and the fecond horn is the perforation d, from which iffue the organs of generation, when they fwell up for that purpofe; at other times this hole is fo nicely clofed as not to be difcernible. Behind, towards the edge of the fhell, is a thick border or lip, which on every fide, both within and without, adheres firmly to the external edge, and internal furface of the fhell; but this part is like the skin, which in naked Snails hangs under the fore part of the body; and under which, as under a veil, they hide their head and horns when they are touched. In this lip or border there are on the right fide two openings, one of which f ferves for the creature to difcharge its excrements, and the other g to breathe. In the body there evidently appear thofe flat and broad fringes bhb, by the help
of which, chiefly, the creature moves: they confift of very ftrong mulcles, for which reafon I call them the Snail's feet, as refembling in fome meafure the feet of Bats and Ducks; whofe claws are connected to each other by a membrane. This fort is covered underneath with a thin skin, and the upper part is bent, with a number of glandulous fots or warts of different forms, amongft which there run a great many veffels: but I ihall hereafier fpeak more at large of thefe particulars.

Fig. II. If after having taken the foregoing furvey, we entirely frip off its fhell, or rather ftony bone c, from the tender part of its body, we fhall find the flefhy part which heretofore lay hid, is exactly of the fame fipial form and fhape, fig. 1. k, with the fhell that covered it, but then it is perfectly tender, without the leaft fenfible hardnefs.

Here all the inteftines, in a manner, appear through the extremely thin and tranfparent membranes of the body, which are all over fpread thick with veffels: for the hard furface being once removed, the leaft puncture made in the skin that remains, is followed by the effufion of the Snail's blood, like a mucous humour, of a pale purple colour. This can only happen from the body's being all over pervaded by a great number of veins and arteries, fo that on dexteroully clipping the fmalleft portion of its foot or border, you may perceive little ftreams of blood iffuing from the wound.

To remove the fhell or bone of the Snail, it is beft to ufe a pair of flat pincers, by means of which the fhell or bone may be gradually broken and torn away, till we come to the part where the mufcles of the body are inferted into it. Tab. VI. fig. II. a. The tendons of thefe mufcles muft afterwards be feparated by a flat Spatula; we muft then proceed as we begun, by gradually breaking and tearing away the remains of the fhell, till there are but one or two twifts left ; out of which the little tail in which the body terminates may be then drawn without any difficulty.

All the four horns, Tab. IV. fig. I. $a a, b b$, agree with the upper part of the skin of the body, in being adorned with little glandulous unequal grains, fig. v. eee, like fo many warts; but thofe on the horns appear the finalleft and moft exquifitely divided. The horns themfelves, when viewed through a microfcope, look as if they confifted of a greenifh tranfparent fubftance, like veal gelly, through which appear fome whitifh fpots; there I take to be the glands made ufe of by the creature for the fecretion of its flimy or mucous humour. This flimy matter ferves to moiften conftantly not only the whole body, but the horns; and in my opinion, the conftant moiftening of the latter is extremely necefliary, confidering how often and how fwiftly the Snail is obliged to fretch them out and pull them back again; an
exercife which, without fuch a contrivance to keep them flippery, could never be pera formed.

Though all four horias are very remarkabie, the two uppermoft and longeft deferve our particular confideration, both on account of the power of motion given them by the fupreme architect, which is very fingular, and exceeds a!! human art ; but more efpecially becaufe they have evident eyes, appearing like two blackifh points, in their extreme ends: they at times ffretch thefe eyes in a manner not to be defcribed, yet by a regular motion, out of the body; and fometimes they hide them by a very fwift contraction in the cavity of the abdomen.

I know, indeed, that many who have laboured to invertigate the nature of thefe little creatures from fpeculation only, have given the name of eyes to thefe blackifh fpots vifible in the tips of the horns; but their own fancy has afterwards made thofe very perfons change their opinion, when they faw that the Snail ftruck thofe horns almoft againft every object, and that they fhewed no figns of quicknefs of fight. But the knowledge of nature cannot be acquired by reafoning only, for unlefs we make experience go hand in hand with reafoning, we fhall err allour lives*. I fhall therefore lay afide all conjecture, and defcribe thefe eyes and their membranes, humours, mufcles and nerves; as I have feen them, that the hidden, and for ever to be celebrated miracles of God may be made manifeft to all lovers of his works, who have not opportunity to fearch themfelves into thefe matters.

Thofe who thirft moft after true knowledge, are with reafon afraid, left the poifon of falities fhould be offered to them, inftead of the food they feek of true knowledge.

To methodize and fet all thefe things in a clearer light, I have fubjoined the figures of all thefe parts immediately after their defcription. The firft thing that deferves notice in the examination of the upper horns, is their extremity, in which three particular little parts are obfervable. The firft of thefe little parts is placed in the middle, and is a very black fpot, Tab. IV. fig. I. aa. This is the real eye of the Snail, fig. v. a. The fecond is the optic nerve of this eye b, which, by a certain production like a little globe, fwells and appears through the skin. The third, conflitutes the extreme end of the mufcle of the eye c, whereby the external skin, which is equally extended thereon, is firt bent in or drawn back, when the Snail endeavours to draw its eyes into its body. This motion always begins about that part or divifion of the eye d, which lies in the middle between the mufcle and its nerve. But as the apex or end of this mufcle is fomewhat more prominent than the eye or its mulcle, it therefore firft receives all injuries, whenever the creature happens to frike its little horn

[^11]againf any thing. Thus the eye is defended and kept fafe. Moreover, thefe extreme ends of the horns are ftretched fmooth, and have a bright furface, fomewhat red, and full of prominences or little warts; but the glands eee appear to be fituated a little lower, between the globular production of the horn, and they are likewife divided on the infide by very fmall whitifh points. The furrows or ridges vifible at the bottom between thefe glands, are the veffels which carry the glutinous humour to all thefe parts, and again bring it back from them. And that thefe mufcles and nerves may lie convenient, the whole horn is hollow f on the infide; fo that if it be diffected tranfverfely, the extremities of thefe parts prefent themfelves on the infide.

To have a more clear idea of this matter, it is neceffary to open the Snail, for which purpofe you muft have a fmall and fharp-pointed pair of fciffors; one of the points of thefe fhould have a little ball made of fealing wax fixed on it, to prevent the inward parts from being wounded. Then, after opening the middle of the back, the body mult be cut to the verge of the Snail, Tab. IV. fig. I. e; after this direct the fciffors forward, and diffect the skin as far as the fore part of the head, between the two upper horns. The diffection being thus made, the firft thing to be met with, immediately under the skin, is a certain mufcular delicate membrane, which is very thin and fine; it covers all the inward parts, and is provided, here and there, with mufcular fibres, which rur acrofs from one fide of the body to the other, and are inferted into the fides of the fhell; you may alfo then fee the ftomach, organs of generation, and the like. Afterwards the brain, which lies on the upper part of the ftomach and over the gullet, prefents itfelf; and immediately afterwards, the horns themfelves drawn back, with their mufcles in the abdomen.

Having thus briefly touched upon thefe matters, I fhall proceed to explain and defcribe by figures, how thefe four horns, Tab. IV. fig. vi. $1,2,3,4$, are circumftanced, when they are drawn into the body, and their inward fides are turned out; for which purpofe, each of the horns has its proper mufcle. The two upper and largeft horns have their particular mufcles $a a$, each of which is connected by its proper tendon to the two mufcles which move the middle of the body, and thefe are afterwards with them inferted by their tendons into the fpiral part or folding of the fhell, Tab. VI. fig. II. $b h, n n, a$.

The two lower horns, not being of fuch importance as the upper ones, are provided with two fmaller mufcles $b b$, which arife from the larger $c c$, and draw in the lips of the fnail. This is likewife reprefented in Tab. VI. fig. II. $l l, m m$.

The manner in which the horns are twined and ftretched out of the body, is a much more difficult thing to be defcribed; though I think, indeed, that the inward coat, or mufcular part
of the horn, performs that office, with the affiffance of fome other fmaller and adjacent mufcles, as well as fome ftronger ones, whereby the fore part of the head, and the skin of the frail is moved towards the outfide. The true action, which I think the inward annular muicles have, feems to confift in this, that fome of them are fucceflively contracted and ftiffened after others, by which means the horn is continually rolling out, and one fmall portion of it is pufhed after the other ; to this action, the periftaltick motion of the inteftines, as far as the latter is performed by the contraction of the annular mufcles, bears fome, though perhaps a diftant, refemblance.

But the optic nerves deferve more confideration, both on account of their texture and their motion. Before I defcribe thefe, I fhall take occafion to fay fomething of the brain, from which they arife. The brain d confifts of two globular little parts, and, by this property, is divided into two portions, as it is in man. The firft is placed in the head; but becaure this, as well as all the other parts of the fnail, is, in a wonderful manner, moved fometimes backward and fometimes forward, no fixed or certain place can be affigned to it. I therefore fhew both the brain and optic nerves in the fituation wherein I have delineated them. The hinder part of the brain, is drawn in Tab. IV. fig. vi. e, to the skin of the fnail's head, and is fituated a little above its fhining tooth f; for the brain, together with all the parts of the gullet and mouth g, and alfo the fomach and falival veffels $i i$ are driven to this depth into the body, by the ftrength of a mufcle appointed for that purpofe; but when all the parts are again rolled or turned out, we may then fay, the brain is placed at the fore part of the head. Hence it is evident, that the motion of the brain in this creature ought to be obferved as a thing worthy of the higheft admiration; wherein both the wifdom and infinite power of the almighty are manifeft: fince he has been pieafed to render this part, which in man and other animals he made immovcable, by enclofing it in a hard bone, capable of motion in the fnail, by the power of its mufcles.

The optic nerves of the firft pair of horns having firal originations $k k$, arife on both fides from the brain, which has been fo contrived by the omnipotent wifdom of God, that they might conveniently obey, and evolve or turn themfelves out, when the horn is, in fo ftupendous a manner, protruded forth out of the body; and to prevent the leaft diforder from this egrefs and regrefs, the omnifcient creator of the univerfe hath involved and fortified thefe nerves with ductile membranes $l l$ and ligaments, with fo much art, that no fuch diforder is ever to be feared. Nay, left this nerve fhould be in any danger, when it is turned up and down inwardly in the cavity of the moveable horn, the wifeft of all architects has conftructed that part of the mufcle which is fixed to the extremity of the horn in fuch a manner, that
at the fame time it performs the office of a fheath or cafe, wherein n the nerve lies in perfect fafety, fo that it appears to be faintly vifible through it; it may, however, be difengaged from this covering, and then its fipiral windings appear fo admirably conftructed n, that any perfon who contemplates this prodigy of nature, muft be aftonifhed and fitruck with amazement.
That mufcular, and at the fame time membranous, little part which covers the nerves, is fo tender in this place, that it may be very eafily feparated, and divided into parts, with the point of a needle, or with an ivory bodkin; after which the mufcle refembles as it were a grey delicate membrane, Tab. IV. fig. vi.o. The nerve itfelf fwells by degrees into a globular form p, at the end of which is placed an eye q; of which I fhall prefently fpeak particularly.

The little nerves r of the two lower horns, do not arife directly from the brain, but have fome parts intervening ; but as to the twifted nerves s, which are conveyed towards the fore part of the skin, to the root or bafis of the horns, they have there the fame texture with that of the nerves that belong to the upper horns, though they have no eyes in the ends of them. The fame order, in every refpect, the fame wifdom and providence, are manifefted in the conftruction of thefe lower, as we have before mentioned in relation to the upper, pair of horns.
The two fmaller of thefe little nerves fpring immediately from the bafis of the brain, and are difpatched in the fame manner as to the larger hornst. In fine, all the mufcular parts of the palate, mouth, and jaws, which 1 fhall hereafter defcribe particularly, are furnifhed with two fmall nerves v, which adminitter to their motion ; thefe I have reprefented in Tab. VI. fig. I. at the letters $b b$, where may be feen the method in which they are bent, when the brain is moved forward.
Fig. vir. a. The eye itfelf is very confpicuous, and in fome degree of the form of a round onion; but is a little flate or fmooth on the verge, and fivells fomewhat into a point where the fight is exerted. But I could not obferve that the eye has more than one coat, which covers it on the infide, and which I call the uvea; if this uvea be in the leaft, ever fo lightly, touched, it makes the place it lies on very black, like ink: this I fhall fhew more clearly hereafter, for I now only defcribe the eye, as it appeared to me through a microfcope. I here likewife thew the grey mufcular membrane $66 b$, which covers the eye; and I alfo exhibit the manner, wherein the circumference of the cye is connected with it : the optic nerve c is here reprefented likevife larger than natural, and its texture and form are fhewn; and after what manner the eyes are placed thereon. Here is likewife fhewn how the inverted horn d is connected
to all thefe parts, and the cavity e it paries through ; as alfo after what manner, and in what place, it is protuberant f; on account of the mufcle which diaws it back into the body of the creature; and which is there fixed in the end of it.
I have obferved five diftinct and vifible paits in the cye of the Snail, as clear as the fun at noon ; firft, the external coat, which i call the uvea; afterwards on the infide, the aqueous, the chryftalline, and the vitreous, humours, with the arachnoide tunic. But who can credit this? for it feems indeed improbable that on a point not bigger than the nib of a writing pen, fuch exquilite art, and fo many miracles, fhould be difplayed. But what is there that equals the power of God, who is the contriver and creator of all thefe things? nor can there be any room for chance here, unlefs in the opinion of thofe, who deftroy and reject the fleps of natural knowledge, left they fhould afcend in her paths, and be led to the wifeft of architects; and, by contemplating even the moft minute of his works, be incited to proftrate themfelves with a facred reverence, and moft profound humility before him, bidding adieu to their own opinions and former life, which, without the love of God, has been hitherto addicted only to the world.
If the uvea be viewed with a microfcope, it has the appearance of a turnip roafted in the fire, until it is very black, and burft in fome places; and has fome vifible funall fibres, which connect it with the adjacent parts. But when this eye and its, coat are put, with a very fine pencil, into the fourth part of a drop of water, for more water would overflow it, and, after ftirring them a little, they are cautioufly and flowly touched; the water at length becomes black likewife, and fhews the remains of the particles fwimming in it: the fane thing will happen alfo if an experiment be made on the uvea of the human eye. But when all the moifture is wiped off clean, and a little wound is made in the eye with two fine and very fharp needles, Tab. IV. fig. vini. a, the aqueous b humour will be obferved to burft out from thence. If this eye be afterwards prefs'd more roughly, you will fee a more clammy humour iffuing from thence c; which is properly the vitreous humour. And lafly, after that, the chryftalline humour, which is of a harder confiftence, and of a plane round figure d; it is limpid, tranfparent and fhining ; but it does not run out, until you break the arachnoide coat, which covers it, and which is the fifth part of this eye. From thefe obfervations we learn clearly, how "the "" invifible things of God, from the creation of "" the world, are clearly feen, being underftood "" from the things that are made, even his eter"" nal power and godhead, fo that they are " without excufe, becaufe that when they " knew God, they glorified him not as God." "Rom. i. 20, 2 I.

The ufe of the eye in the Smail, and the manner wherein it exercifes its vifual faculty, is a matter of great difficulty to inveftigate. The grey coat, Tab. IV. fig. vir. bbb, which is the expanfion of the mufcle of the eye, and may be very much dilated and contracted, feems to me to move various ways; nay, that it ferves as a cover like our eye-lids: but the bignefs or fmallnefs of the pupil or foramen, or aperture of the uvea, and in what manner it is contracted or dilated, as light and objects vary, I have not hitherto been able to obferve, nay, I never yet faw the pupil of the eye in a Snail; nor flould any wonder at this, if in the human eye, though fo big, the foramen or aperture of the pupil is no larger than a Pidgeon's quill; what a fimall and fine aperture then muft the pupil have in this little point, and how few rays can pafs into it? however, I don't doubt but the pupil is contractable and dilatable; for I have obferved the ciliary duct there, by which, when the pupil is dilated, the eyes of the Snail can receive the humors, and collect external vifible objects, which, after paffing the humors, are afterwards received in the retina, placed underneath at the bottom of the uvea, by the optic nerve; which is the caufe of vifion. Hence it may, perhaps, be juftly inferred, that the fight of the Snail mult of ne-
ceffity be very dim; for we ourfelves do not fee clearly in the day-time, if we go into a houfe out of the open air ; the pupil of our eye is by that contracted in fuch a manner, that fewer rays of light are collected in our eye. Nay, perhaps the Snail does not receive the rays of light and objects but at a diftance, and only fees them through a cloud as it were, and cannot diftinctly know them near at hand; as the man born blind is faid in the gofpel to have feen men like walking trees: I could not at leaft hitherto obferve, that the Snail fees well the things which are near it, notwithftanding all the attempts I made for this purpofe. In the eye of the Mole I have likewife feen, even without a microfcope, the three humors beforementioned, but they are there larger, and eafier to be diftinguifhed, though it is probable even this creature cannot fee diftinctly under the earth.

I fhall conclude this chapter with admiring the Arange and remarkable things which I have fhewn in it, from the cleareft experiments, and which feem to me the more admirable, the more diligently I meditate upon them: God truly every where fhews that he is worthy of the moft humble adoration in all his works, which we may and ought diligently to fearch into, but can never fully comprehend.

C H A P. II.

Of the lips, mouth, teeth, tongue, palate, cefophagus or gullet, and certain muscles of the Snail.

BETWEEN the two lower horns of this creature are feen its lips on the outfide, Tab. IV. fig. I. c, and whilft the Snail draws them afunder, the intermediate skin is obferved to be fet like the edge of a faw, as it were with prominent little teeth. This can never be feen better than while the Snail is eating, or when the mouth, palate, and jaws, together with the outward skin, are taken off and diffected. In this cafe, Tab. V. fig. I. the teeth b immediately appear behind that skin a; and in a boiled Snail they are rendered very vifible, Tab.IV. fig. Iv. r, becaufe the skin and lips become thus contracted. Thefe teeth are connected by a certain horny concretion, Tab. V. fig. II. a, the teeth themfelves being all made of a horny fubftance; and they are of a light red colour. Since therefore all thefe teeth are connected one with the other, they ought to be efteemed, in fome meafure, as one tooth. They are eight b in number, and fome are larger and more prominent than others, as appears by the microfcope. This little part is made in the form of a circle c, its convex fide lying on the infide upwards, towards the fkin, to which it is flrongly connected; but its toothed concave fide, with which it bites, is directed on the outfide. In the middle of the
convex furface of this tooth, there is a fmall furrow, in which fome of the mufcles that move the whole are fixed. The tooth afterwards becoming infenfibly membranaceous, expands itfelf like a pretty large pyramid or bodkin, fig. I. c, and in that form confitutes a great part of the palate, which, on each fide of this expanfion, is beautifully variegated with fmall ruddy points: thefe here and there fhew little parts that are fomewhat hard, and of a horny fubftance, and ferve to prevent the inward part of the body from being wounded or hurt, in cafe the Snail fhould at any time fwallow any thing too hard or rough. But this cannot be feen, unlefs the inward parts of the mouth be firft diffected, and taken out feparately. Then two fmall, narrow holes or apertures d are feen on the upper and under part in the palate, which convey the faliva out of its ducts into the mouth.
In the lower part of the mouth, or where our lower jaw is placed, are, in the Snail on the fore part, two fmall flefhy fubftances e, which may be called the inward lips, for they contribute greatly to direct the paffage of the food; that is, to carry it towards the gullet, and thruft it down. Behind thefe, a certain very delicate and tender membranous crooked cartilage prè-
fents itfelf to view; at the loweft and inward part of which the tongue, Tab. V. fig. nir. a, and its mufcles take root. The tongue itfelf lies under the concave fold or winding of this cartilage, fig. i. f, and is covered therewith when the Snail fwallows its food, juft as the epiglottis in us covers the top of the afpera arteria or wind-pipe, when we are eating, left any thing fhould flip into the wind-pipe. This texture of the tongue in the Snail approaches yet nearer to that of the tongue of the Serpent kind, which in the fame manner fhuts itfelf up in fuch a cavity. The tongue of the Snail is thus placed in a remarkable cavity, and its bafis or root lies in the cavity of the neck towards the belly, where it is obferved to fwell like a fpheroid or oblong globe, fig. III. b; but a little on the infide of that part where the tongue appears, there is feen a very delicate mufcle, which draws the tongue together with the whole mouth, palate, jaws, and even the brain itfelf, inwardly into the belly, or at leaft into the neck. See Tab. IV. fig. vi. and Tab. VI. fig. ${ }_{11}, e, f, g$.

On the tip of the tongue of the Snail c, there is a little horny bone, cut, as it were, into two or three very tender little teeth; with
which, as with a hook, the Snail, when it is about to eat, firft lays hold of the fmall herb, and immediately after fuddenly fnatches and pulls the piece into its mouth; afterwards it nips them pretty faft with its teeth, fo that the noife it makes in biting and eating may be fometimes heard very diftinctly. The Snail will fometimes fwallow a piece as big as an hemp-feed. Thefe parts of the mouth have three mufcles remarkably delicate, by the affiftance of which they are, at the creature's pleafure, moved out of the cavity of the body. Thefe mufcles are fixed in the lower fide of thefe parts d, which are reprefented invertedly in this figure. As thefe creatures are moft immoderate devourers of vegetables, the keep= ers of vine-yards in the wine countries anxi-oully gather them, when the vine puts forth its tender buds and firft leaves, and tread them under foot. This I have feen tranfacted as a work of great confequence in France. We may therefore reckon Snails as a part of the hoft of God, wherewith he can chaftife bad people in the fame manner as he did the Ægyptians, with voracious infects of the fame nature.

Of the tafe, fmell, and certain actions of the Snail.

IFor a confiderable time kept in my chamber, and provided with neceffary food, feveral Snails: thefe were inclofed in a box, placed in a wooden bowl, and covered with a mat full of holes, through which they could ftretch their necks, that I might be able to find out their manner of acting, and fometimes view them with a microfcope. I fed them with radifhes, lettuces, forrel, mallows, and other fucculent and dried vegetables, which, after keeping them a little in water, I gave them frefh every evening; for they naturally eat in the morning and evening, and they love juicy and frefh herbs much better than old and withered ones. From this I obferved, that they had a nice appetite and tafte, as well as other creatures, for which purpofe they have alfo guftatory nerves.

They have likewife a very quick fmell : this I obferved, when I moved a little frefh food towards them, for they immediately perceived it by the fcent, and crept out of their little fhells and came to it. Thus they were kept alive; but as they were in a dry place in my chariber, I at length obferved they did not thrive there for want of dew and rain; nay, that fometimes they loft their appetite, fince they would lie contracted within their fhells, and were hidden entirely in their horny fkin. But I at length found out a method of giving them rain, as it were; which I did, that they might come into the light again, and feek
fuch food as I laid before them. From this I obferved how little we are able to do by our own boafted powers; who, from our very miferable infirmities, cannot, I will not fay, make, or even accurately examine, but fcarce can with our beft diligence give thefe animals due food or nourihment.

In order to give them water in the manner before mentioned, I made ufe of a brafs tube, to which was annexed, by a worm, a fmall globe of the fame fubftance, which was pierced with fine fmall holes, and had been originally made for the purpofe of watering fome plants, for feeding other infects. This machine forms a very beautiful kind of rain, that falls in little drops. As foon as the Snails feel this little rain, they immediately begin to creep: in the mean time, it is pleafant to fee with what velocity they can turn in their little horns, and hide them in the infide of their body, as foon as the little drops fall upon them; fo exquifite a fenfe have they in thefe tender parts, and indeed the whole body. This creature is very timorous, and retires into its thell, when it finds itfelf difturbed by the leaft thing that it is not ufed to. If it be ftruck or handled, it not only retires very baftily into its fhell, but it immediately covers its whole body with a glutinous moifture.

Whether Snails have the fenfe of hearing, I could not difcover by experiment; indeed, I have not obferved any fign of it in them,

0
though
though I have made a very loud and haft noife about them. I find, however, that many creatures, to whom authors have denied this faculty, enjoy it perfectly; for example, the

Camelion. I have likewife observed that Frogs and Fifhes have this fenfe; nay, Fifth have a wonderful labyrinth of the ear for that purpofe.

CH A P. IV.

Of the fructure and use of the verge or lip of the Snail, and of its respiration and voice, with other experiments: aldo of its glands, volfels, and what it has in the place of feet.

HAVING defrribed the eyes, mouth, and teeth, and treated of the finell and tate of the Snail; it is proper I fhould now treat of the aperture, through which the parts of generation occafionally difclofe themfelves. This I hall confider, when I come to freak of thorpe parts themfelves, but previoully to that, I fall fay fomething of its lip, or the flefhy verge at the head, and of the apertures in it, as alto of the fringed margin of the body, and the little excrefcences vifible on thole parts, and of the veffels that run between them.

Tab. IV. fig. I. The verge that furrounds the whole body of the Snail is not fo broad within as on the outride, and is connected very clofely to the extremity of the hell both inwardly and outwardly. As this is provided with a great number of mufcles, it accordingly acts with various motions, fuitable to the diffferment intentions of the Snail. Hence it is, that its true figure cannot be determined, for it is continually contracting, expanding, and changing its form. Where it is annexed to the upper part of the Snail's body, it exhibits two fingular incifions like two little tongues; and underneath the right fire of the belly, it has a remarkable aperture, Tab. IV. fig. I. g, which ferves to take in air ; befides which, it has another f, whereby the frees or excrement are voided, as if by a fall, oblong and curled inteffine. The colour of this verge is white, with certain yellow foots, grounded, as it were, on a pale tramfparent green. On the infide, where it is joined to the fhell, it is of a blackif colour, fomewhat approaching to blue. It has different ufes, as appears both from what has been hitherto fid, and from what I hall hereafter observe, when I come to treat at large of the Snail's bone.
On the infide, this verge is arched, as it were, and reaches with its cavities upwards, towards the pointed extremity of the body, to the windings of which, the fe cavities are adopted. Above, in the inward furface of the border, there are feveral veins, Tab. V. fig. Iv. a, which run there naked or uncovered. But below in its cavity, almoft underneath, on the left file, and in the declivity of the body, is placed the heart c, which may be feen to beat, even through the external fin, before that part is taken off: I have therefore marked its figure from the origin with points, Tab. V. fig. Iv. l. This
heart and its veins are continually reffefhed with the air, which the Snail impels into it through the aperture of its verge, Tab. V. fig. Iv. b : for as the Snail rolls its body out of the hell, fo in proportion it drives the air into the cavity of its verge; and again, according as it draws back its body into the fell, fo it likewife expels the air from thence. This may be efteemed fomething analogous to refpiration, as I have fhewn in the year 1667, in my treatife on that fubject, and exemplified patticularly in the cafe of the garden Snail.
When the Snail has crept out of its hell, and is put into water, the air contained in the cavity of this verge makes it frwim on the furface; but when the Snail is within its flong fling, and the cavity of its verge is clofed and compreffed, it finks to the bottom, if it be thrown into the water. But if the Snail, as it lies in the water, creeps again out of its fhell, the cavity of the verge is immediately filled with the water ruffing into it, which then does the bufinefs of air, which would have been inpelled thither; hence it happens, that by a new kind of respiration, this water is fometimes moved within and fometimes without the fhell, according as the Snail rolls its body out, or draws it into it.

The Snail has no voice, nor makes any noife, except that it produces a kind of hiffing when touched with a flick, or any thing ellie, and fuddenly draws in its body; for then, as the aperture through which the air is conveyed, is in a manner foot up, it cannot readily get out; and this caufes the hiffing found.

Sometimes it happens that, do what we will, we cannot get the Snail out of its fuel, in order to make this experiment, by which we might fee that the air is forced into and out of the body, through the aperture of the verge. But if you have a mind to make the experimont, and observe in what a wonderful mannee this aperture then flouts and opensitelf, you mut trike the fell a little on the hinder part with the back of a knife; then immediately the Snail, compelled to it by the pain that it feels, will creep forward, and will plainly thew the opening through which the air paffes, torethe with the manner of its refpiration.

The extreme fringed margins of the body are planted as it were with numerous gland ilar tubercles or excrefences, Tab. IV. fig. x. 6 bb;
from which the mucus or flimy moifure iffues. Thefe tubercles are covered with a great number of veffiels, which run between and furnifh them with matter for the fliny humour. Thefe glands project beyond the furface of the skin, and are covered as it were with white tranfparent points, between which, as between ridges, or in furrows, the veffels are feen to creep. This order is contrary to that which the all-wife Creator of the world hath chofen in the leaves of trees; for in the latter, the veins and nerves are ufually fomewhat prominent, and the fucculent part is depreffed and placed between them.

The greatef part of the fubflance of thefe fringed margins confifts of three membranes. The firft and uppermoft of thefe is a glandular skin; the middle one is a glandular, but thin, membrane; and the loweft is a fomewhat thicker membrane fmooth and flippery. Under thefe the body of the Snail is interwoven with ftrong mufcles, by the help of which, and with a fingular kind of motion, refembling, as it were, the waves and billows of the fea, it moves at pleafure its fhell and whole body. Thefe fringes therefore perform the office of feet in this little animal, and they may be properly called the general foot of the body. This whole part is tender and fpungy ; yet, when it is pricked wihh a needle, it can contract its mufcles with fo much force, that it draws up and joins itfelf together, fo as to become as hard as leather.

The part of the body which lies under there is very white, and is covered with an even? skin, which feems to me more tender' than the former; but it is glandular like that, and is fitter for motion, by reafon of its finienefs. If the Snail be fuffered to creep, this motion may be obferved very beautifully; for if the glars be inverted, as the Smail is creeping on it, this admirable motion will be perfectly confpicuouss it refembles fmall waves, which, when agitated with a gentle wind, flowly follow each other; nor can I explain this motion by a more proper example.

As to the motion of the animal firits being obferved, like fmall globules moving from the head to the tail, and again from the tail to the head, in a naked Snail thrown into the water; it is indeed a mere chimerical notion, invented by thofe philofophers who make no experiments to guide them, but grow pale over their books only. The reaion of the appearance which gave birth to the opinion, is this, that when the Suail is thrown into the water, fome air always remains fixed in the mucus of the body, which never fhews any regular or determinate motion, although it really has a very ftrong one; for the little bubbles always retain their order and fituation among themfelves, though they are contracted and expanded with the body ; that is, they are heaped one upon another, and again feparated from each other from time to time.

C H A P. V.

Of the actions, and of the frength and life of the Shail. How it is to be killed for diffection, with further experiments; and an account of the effect falt bas on this creature.

WHEN Snails are difpofed to reft, fo as to remain quiet without any motion of their verge or foot, they difcharge a great quantity of llimy matter from their bodies, which, when dried, anfwers the purpofe of a couch or hammock, in which they relt. This they do in the day-time, and they will lie in this manner as long as it rains, or the atmofphere continues cool; for nothing diftrefies them more than drought.

From this we learn alfo, that their flimy humour, which, at other times is clear and white, is more coloured, or has greater variety of tincts, the lefs of it they have in their veffels and glands.

Thefe creatures are very fond of company at the time they are increafing their fhell, for then hundreds of them gather together in fhady places, that they may be at leifure for that bufinefs, lying quiet and clofe to each other, efpecially for fome days before they begin to copulate; as I flall flew in its proper place.

Life is very ftrong in them, infomuch that they will live fix or feven days under water.

Nay, if they are wounded, and even dragged from their skin or fhell, they will ftill live four days, provided they are put into water. They are fo ftrong, that they can very eafily creep forward, and move themfelves to all quarters, with another Snail fticking to their fhell ; nay, one will fometimes draw two others. The period of their natural lives cannot be certainly determined, but I am inclined to think they live to a very great age, which may be probably conjectured from the flow increafe of their fhell: on the furface of their fhells are feen a very great number of the fame kind of marks, Tab. IV. fig. II. s, obfervable in a cow's horn, from which the country people compute the age of that creature.

The diffecting Snails has coft me great labour; for this operation is very difficult, and muft be performed whilf they are, living. If we fprinkle the Snail with falt, it is not confumed, as is generaily thought, but only killed, and then the frong contraction of the mefcles draws up all the internal parts to fuch a degree, that nothing can be feen dininetly. All
the flimy bumour is then difcharged out of the body; fo that I obferved, that the fermatic parts themfelves were rendered three times finaller in this fpecies of Snails, which is indeed very worthy of obfervation. Salt therefore feems to me to be a matter proper for cleaning the Snail, for by this means all its humours are difcharged. The infect might otherwife be rubbed over with fome purgative medicines, in order to try what effect they would produce; and, indeed, the fuccefs of fuch an experiment would be of fome ufe in the medicinal art. I have often refolved but have not had opportunities to try it. I think that the act of purging in our inteftines is performed in the fame manner, that this effect is produced on the outfide of the Snail; for the acrid, pungent, and provocative ftimulus, irritates all the glandular parts of our inteftines; and thefe parts are fituated on the skin of the Snail, whereby they throw off and difcharge the humours contained in them; and at the fame time wafh away, as it were, every thing they find offenfive. This is manifect in the faliva, which is copioufly difcharged from our falival ducts, when any acrid and ftimulating remedies are held in the mouth. This any perfon may experience very clearly, if he chews the roots of pellitory of Spain.

I cannot therefore agree that purging is peculiar only to a few particular medicines, which the practice has felected for that purpofe; or that particular humours are expelled from the body, by fuch as are commonly called fpecific purgatives; as if thefe knew, from reafon and judgment, how to diftinguifh water from phlegm, and the latter from all other fuperfluous humours; and to fecrete this only, and throw it out of the body. Whereas, it is more agreeable to experience, that, that matter only is difcharged, wherewith the body abounds moft, and which is more than any other copious in its vefels at that time. If this be fo, it will be fufficient to oblerve, in regard to purgatives, whether they be hot, dry, cold, or moilt; nor will there be any further neceffity to load the memory with new-invented names and fictitious diftinctions.

It is improper to put Snails into fpirit of wine, oil of :turpentime, or any other fuch liquors, in order to kill them ; and though I have fometimes killed other infects with the vapour of lighted fulphur, that they might remain whole for the diffection; yet I have fancied the fitteft and beft contrivance for this purpofe, is to kill the Snail flowly, or by cegrees, by keeping it under the water. This method is attended with this great advantage, that the Snail never contracts its mufcular parts; which, on the contrary, are beautifully expanded: for the water penetrating into the orifice, of its glands, mixes with the flimy humour there; and; at the fame time, by dilating, furprifingly expands the whole body. Hence I have found that many parts, which otherwife are hidden, or cannot be inveftigated, but by great labour, become vifible with great familiarity, as the aperture of the genital organs with the penis and uterus, the teeth alfo, and the form of the verge or extremity of the body, the glands and other parts are all rendered confpicuous on account of the water contained in them; the Snails are, therefore, by this means, rendered fit for diffection.

Some curious perfons feed this kind of Snail in their gardens, and at their country feats, as I remember to have feen at the Hague and Culenburgh, in the kitchen gardens of the illuftrious counts Maurice and Waldeck; and in many other places, particular in grotto's, which are adorned with fea productions. The propereft time for removing thefe Snails is in the winter, for then they lie clofe in their fhells without motion, and are defended therein by a particular kind of operculum, or cover, formed by a hardened quantity of the flimy moifure vented for that purpofe, which very exactly clofes up the entrance into the fhell. If they are to be fent from place to place in fummer, the beft way is to fend them wrapped up in a quantity of frefh herbage; when they are defigned to be eat, they fhould be put into a bag, and chopped ftraw fcattered between them, by the pricking of which they are prevented from creeping out of their thells.

C H A P. VI.

Of the internal parts of Snails; and fry of the beart, its auricle, the vena cava, and corta. And allo of the blood, and its perpetual circulation. Of the difference of the limyy bunour from the blood. Of the cavities of the verge, and alfo of the facculus calcariuss, or bag of alkaline matter. To which is added, a curious experiment, pertaining to the motion of the mufcles.

AS I have hitherto been taking a furvey of many of the external, and of fome of the internal, parts of the Snail, I propofe to go on now to a defcription of its fhell : but then it will be moft proper to difcourfe of that, ifter I hall have defcribed thofe parts, from whence the fhell itfelf derives its nutriment and growth. As I have already gone through
the examination of the principal internal parts, I fhall not confine myfelf rigidly here to the order ufually obferved by anatomifts, who commence their inquiries with the belly or head; they do this to get rid of thofe parts, which would firft taint ; but no noxious fubject is to be feared in this cafe, and the animal itfe!f being fimall, I have chofen rather to treat firft
thoroughly
thoroughly of thofe parts, which were firft obvious to me. Neither need I be uneafy, if I have delineated one part fomewhat larger, and the other fomewhat lefs; the microfcope not admitting of greater accuracy: and indeed this avails nothing in our attempts to inculcate a knowledge of the fubject, unlefs fome particular points may be more diftinctly underftood, if on that occafion, the parts are exhibited a little larger than the life.

The beft manner of diffecting the Snail is, the fhell Tab. IV. fig. II. i, being pulled off, to begin at the verge of the body, fig. I. e; which alfo thould be cut off from the left fide, with a fine pair of fciffors ; in the doing this, taking care not to pierce the apertures g, fituated on its right f, thefe fill remaining unhurt, the verge is to be feparated from the body, which vifibly adheres to it below; for otherwife, unlefs thefe apertures be carefully avoided, the outlet of the inteftines, and the paffage of the alkaline bag, will be equally injured.

In this management, what firf meets the eye, is the skin of the fubjacent body, which is concealed by the upper and under part of the verge, or a membranaceous fubftance, as with a covering, being much more delicate about that place, and of a whitifh or palinh colour, and compofed of oblong mufcular fibres. If you have nicely feparated this part of the internal skin, you will fee the tranfverfe mufcles lying under it ; which, though not altogether colourlefs, are in fome degree tranfparent; and on both fides, in the foft or bending part of the belly, there will be obferved certain mufcles refembling a faw, which ftretch their tendons above the peritonæum; but the fmall mufcle, running tranfverly, is fituated above the peritonæum, under which it lies. All thefe mufcles ferve to prefs the body inwards, and to move forwards the contents of the inteftines, and of the fpermatic veffels.

But if after this the verge, together with its membranaceous parts, be drawn backwards over the bending of the body, and then cut off from the place where it adheres, then immediately appear the veins, Tab. V.. fig. Iv. a, which run beneath toward the verge b, and the heart c, with its auricle d, and the vena cava juft dawning out of it ; together with the various cavities, in which the air is moved, and fome other fmall parts befide, fuch as the alkaline bag e, and its duct lying next to the inteftine, the inteftinum rectum f itfelf, the liver, and certain parts belonging to the fpermatic veffels. Some of thefe I hhall now defribe in their order, and of the others afterwards in their place. Firft, of the heart.

The heart is fituate in the middle of the Snail's body, near the extremity of the arch of the verge, which furrounds the whole body; and at that place, a little to the left, in the bending of the body, by reafon of the thinnefs of the inteftine membranes, which are perfectly tranfparent, Tab. IV. fig. I. l, it is difcerned moving. It is included in an ex-
tremely thin bag or pericardium, in whofe cavity there is ample abundance of watery moifture, as clear as the pureft chryftal. The pericardium being diffected, immediately appears the beating heart, Tab. V. fig. IV. c, with its auricle d; which, being of a membranaceous and exceeding delicate texture, is feen to be interwove within, with divers as well flefhy as membranaceous fibres, in the fame manner as is feen in the auricles of the heart of a man, and other animals. The heart itfelf is of a flefhy fubftance, and of a pale reddifh colour, exhibiting a mufcle, which for the fpace of a day will continue wafting away into water, and yet not be cleared from all its blood. The external fuperficies of the heart is fmooth, and it is fhaped like a pear; but the internal parts are uneven, with feveral flefhy columns, hairs, and fibres, much the fame as we obferve in the hearts of men and brutes: hence it is that the heart may be eafily diftinguifhed by the many finufes and angles in it, and it is very fibrous. At its entrance, near the auricle, there adhere two little femi-lunar valves c, which ferve to hinder the blood from returning into the auricle. But as there is only one auricle to the heart, fo is it only found in one cavity; and agreeably to this, there are alfo found two kinds of veffels there, namely, the veins and arteries. The veins, above the auricle d of the heart, are confpicuous without much pains, and in particular the vena cava may be obvioufly feen; out of which others, juft fpringing forth, are interwoven amongtt one another after a furprifing manner, and form an elegant kind of net-work. The arteries are not difcovered without greater difficulty, nor can they ever be feen, but at the firft opening of the body. The beginning of the aorta, or great artery, is about that place without the belly, where the heart is united to the calcarious bage; and the great artery derives its origin from the cone, or more acute extremity of the heart, and is a little dilated, at its very beginning, as
is common in finhes; immedi is common in fifhes; immediately from this part it difperfes its ramifications every way, both through the internal parts of the body, and outwardly among the membranes, equally backward to the fpire, and forward; firft, indeed, refpecting thofe parts it borders upon, namely, the calcarious bag e, the inteftines, the liver, the ftomach, and the fpermatick veffels; then immediately proceeding to the coat invefting the liver, and then to the mufcles, nerves, and little glands of the skin. I have delineated b fome of the more remarkable ramifications, only with their divifions, and have
marked the reft of its marked the reft of its body, and its fpiral fhape, with points iiii, that the fituation of thefe parts might thence be underftood.

The blood contained in the heart, and its arteries, appears of a whitifh colour, inclining fomething to blue; and hence it differs very much from that of men and brutes; for the
blood of all thofe is of a deep red; but, as the blood in fmall animals, excepting thofe only which live in the bowels of the earth, as many as I have known of them, want that purple colour; for this reafon then authors, who are only wife in their own fpeculation, have called them animalcula exfanguia, or animalcules without blood, though even in fome human bodies, there has been obferved fometimes white blood in the arteries. The blood of the Snail is of a glutinous confiftence, clammy, and pituitous or phlegmatic ; if poured into water, it fhews itfelf like a sky-coloured cloud, which gradually expands, and grows more and more tenuous, and at length quite vanifhes; and is indeed a very pleafant fight.
The blood which remains from the nutrition of the membranes, returns through many extremely fmall veins toward the heart, there to undergo a new concoction. Thefe veins are chiefly fcattered about the external parts of the body, and are there very confpicuous; for thofe veffels which we fee there, are almoft all confpicuous, as they may be feen among the pointed little glands of the verge. All thefe veins converge in one large trunk called the vena cava; which, as we have juft faid, may very plainly be feen on the internal fuperficies of that arched membranaceous part of the rim or fringe of the Snail, Tab. V. fig. iv. b; for the veins run off, under and through this verge or fringe, and afterwards difcharge their contents into the auricle d of the heart; which then, by its contraction and fyftole, again protrudes this blood into the heart c; and the heart, with a manifeft circulation, again ejects it into the arteries, and thofe again into the veins; that the motion may never be interrupted, but the blood maintain its courfe through the body. Hence the pulfation of the heart is firt difcerned in its auricle; but afterwards in the heart itfelf; thofe veins which fpring. from the vena cava, are formed and difperfed with fuch wonderful artifice, in the aforementioned membrane, that I have determined to fet forth an accurate drawing of them; to the end, that the works of God may be fo much the more clearly underftood, and more firmly impreffed on the memory.

The heart, with its auricle, is never more diftinctly feen, than when it is cut open through the vena cava, diftended with a blaft, and then half dried ; but if it be dried too much, it is lefs forcibly contracted; and its internal fabric and fmall valves cannot be fo conveniently viewed. But feeing thefe veffels all contain a whitifh or lightly-coloured blood, from which they may be eafily taken for nerves; it is therefore expedient that they be firt filled with an injection of fome coloured matter; which operation, by reafon of the exceeding fmallnefs and finenefs of thofe parts, is indeed a very curious and difficult task.

For thofe who delight to engage in fuch a procefs, there are colours of that fort which fubfide; and thofe ought to be mixed with fo fine a liquor, that it may pafs through the pores of the veffels, and fly off into the air. But if any one ufe a liquor of a fimple colour, then they will be all of one tinge, nor can any thing be diftinctly exhibited to the eye. I might explain many of the operations and artifices requifite to the perfecting this matter; but this part of the work, beyond my expectation and defign, has grown redundant enough under my hands already.

The difference between the blood and the flimy humour in the Snail is very remarkable, and may be obvioully known only by the colour and confiftence; for though the blood is thin and fluid in the veins, it becomes tenacious after it is taken out of thofe veffels. Nay, although it be immediately thrown into water, it does not mix therewith, unlefs it be fhook a little. On the other hand, the flimy humour fecreted by the glands, takes a long time before it is diffolved in water, becaufe it is tenacious and thick; and this is of a white colour, and may, therefore, by thofe qualities, be eafily diftinguifhed from the blood; whenever the wounded Snail is thrown into the water, in order to mix the blood and this flimy humour with it.

The blood, being laid upon white paper, leaves no glofs; whereas the flimy humour covers it, as it were, with a bright varnifh, like filver; it may therefore be mixed with colours, to give them a glofs. Thofe, who eat Snails, efteem their blood very highly, and call it their liquor, taking particular care that it fhould not be loft; and I think they, as well as thofe who eat oyfters, have fome reafon for fo doing.

After what manner the flimy humour diftils from the glands of the skin, may be feen in this manner ; the skin muft be wiped with fpungy blotting paper, until none of the flimy humour is feen, or till the whole is cleared off; then the skin mult be taken between the fingers and preffed gently; and if this be done under the microfcope, the flimy humour will be feen to come out infenfibly, from the glandular pores of the skin, like clear and minute points; thefe, by continuing the preffure, will become fmall drops; and thefe, in fome time gathering together, will form a confiderable collection of this matter ; fo that the whole skin will be moiftened, and become glutinous.

The cavity of the arched verge, in which the air moves, forms a round bow or arch, occafioned by the membrane's expanding itfelf againft the fhell; but this happens only when the Snail lies in its fhell; for when it is taken from thence, the membrane of the verge immediately flips into the parts underneath; fince it is no longer fuftained by this fupport againft the fhell, being connected to the latter only by the toughnefs of the mucus,
or flimy humour. If this membrane be again fwelled up from its aperture for air, it will be obferved to expand itfelf very beautifully againft the fhell. This cavity in the right fide of the body reaches to the turn of the inteftines; but in the left fide, where the heart is fituated, it goes according to the windings of the liver, and follows the turnings of the latter, unto the third and fecond convolutions of the inteftines in the body.

In this arch of the Snail's verge; near to the heart and its auricle, there is feen, Tab. V. fig. iv. e, a certain oblong, triangular little part, to which the heart c is fixed and united, there being nothing between them but the pericardium. But on the outfide it fwells, Tab. IV. fig. I. n, through the fkin; and is very vifible in a boiled Snail, when taken out of its fhell, fig. Iv. o. This latter likewife fhews the figure of the body at that time, that is, the convolutions p of the liver, and after what manner the verge contracts itfelf q. The colour of this little part is like that of grey afhes mixed with water. On the hinder part it is connected, Tab. V. fig. v. l, very frongly with a certain part of the inteftines and liver; but that part of it which is feen through the outmoft mem-
brane which covers the body, is obferved to be interwoven with many veffels. On the other fide, its colour is more waterifh m than where it is of an afhy-grey, and connected to the pericardium k.
I firf thought that little part was the fpleer, but when I viewed it more accurately, I obferved that it difcharged itfelf into a pretty large duct, which runs near the inteftinum rectum, or ftraight gut, fig. iv. f, and in my opinion opens into it. I therefore now believe this part to be a glandular little body, or a facculus or bag, whereby the calcarious matter of the blood is drained from the body, and depofited in the inteftinum rectum, or ftraight gut; and accordingly we find that fuch a matter is there fometimes mixed with the excrements. If this little part be diffected, and put into water, it exhibits a glandular fubftance; but as it abounds with a grey calcarious humour, it makes the water muddy. On the fide oppofite to the intertine it appears fomewhat bright; and feems to confift of a glaffy fubftance; it has the fame afpect in feveral places; alfo in the middle, where it feems divided into little grains, which are vifible underineath : it taftes like afhes:

C H A P. Vili.

Of the liver, bile, fomach, intefines, and Salival veffels of the Snail.

THE liver, which for the moft part lies in the hinder portion of the fhell, forms a fpiral convolution there with the inteftines, Tab. V. fig. vi. a; as may be feen on the outfide, Tab IV. fig. 1. k. It is further divided into divers lobes, Tab. V. fig. vi. $b b b$, according to the different courfe of the inteftines, which make as many divifions in it, as they have turnings and windings. Befides thefe, the liver is very full of greater and fmaller veffels, which are difperfed thirough every part of it, fig. ix. a. It has likewife its particular thoracic or chyliferous ducts, fig. viII. a, which difcharge themfelves into the inteftines, without any intermediate gall-bladder; in the fame manner as in Horfes, Pigeons, and other animals, which are faid, though without any foundation, to have no bile. I could perceive no remarkable bitternefs in the bile of the Snail:
The liver itfelf feems to confirt of fmall equi-diftant little grains, called glands by the great anatomift Malpighius; to whofe judgment we ought to give great credit, fince one can fcarce find his equal in anatomical knowledge. The liver is of a dark brown colour, a little approaching to green: the hardriefs and fubftance of it, are like thofe of the fpleen in a man. It abounds with a juike or humour of a yellowifh green colour. In the upper part, where the liver turns round, its outward coat, which is covered with little whitifh
points, grows greener. It has very feiw lobes on the infide. Nothing is more favoury in a boiled Snail than the liver, which, I think, is alfo very eafy of degeftion: whereas, on the contrary, all its mufcles are hard and tough, except the fpermatic veffels, which are likewife very pleafant eating.

The Snail's ftomach, fig. vi. c, is placed in the cavity of the neck and belly, and confifts, as in man, of three coats, notwithitanding its being very tender and thin: it is alfo provided with veins and arteries. It is of a white tranfparent colour like parchment; but when diftended with food or air, it has the colour of the moft tranfparent membrane: when empty, it appears full of oblong grooves, Tab. V. fig. Iv. n, which exhibit an agreable fight ; for they are fo many contracted mufcles, which corrugate the coat in this manner. The ftomach grows narrow by degrees, fig. VI. d, and forms by that contraction its lower orifice, called the Pylorus. After this follows the fmall gut $b b b$, between which the liver is principally fituated. After thefe inteftines have turned themfelves two or three times, then they form the inteftinum rectum, or fraight gut e, which opens, with its foramen, into the Snail's verge f. About the firal convolution of the body is obferved g a place, where the bile difcharges itfelf into the beginning of the intentines; which appears more evidently, if thofe biliary ducts are fomewhat feparated,
fig. viil. a; fo that the whole region of the ftomach b, frmall c and great guts d, be parted from the liver. If the inteftines and the liver be inverted, fome of the parts before-mentioned may be feen more diftinctly; that is, the liver itfelf, fig. vir. a, and the fmall guts in their natural fituation b; then the inteftinum rectum, or ftraight gut c, and the ftomach d.

And here we muft obferve, that two very beautiful veffels run, fig. iv. oo, along the ftomach and the gullet, or cefophagus, which difcharge themfelves into the upper part of the palate of the mouth, fig. I. d. Thefe veffels are of the fame fructure with that part of the epididymis in man, which lies upon the tefticles, and they are of the colour of an agate. On the infide they are hollow and contain a clear liquor, which they difcharge by two fmall apertures which open into the mouth. They are, therefore, plainly the falival ducts of the Snail, fuch as are likewife obferved in man and brutes, and are fituated either near the fame place, or a little lower.

Thefe two little vefiels arife from two fmall, clear, and fnowy parts, fig. Iv. $p p$, joined together in the middle, and divided into various little lobes: you would eafily believe that they were nothing more than fat. A beautiful little veffel q runs through the whole furface, which brings them nourifhment and moitture, and, arifing out of a very high place under the verge, where the body begins to bend, comes to this part, and gives a great many branches to each of thefe fmall parts. There little parts are likewife, by the help of different veffels, which feem to be fo many fmall and tender filaments, laterally connected with the ftomach. The falival ducts themfelves are, by certain fingular veffels or ligaments, alfo connected with the flomach. I firt indeed thought that this fmall part was the pancreas, but experience has taught me the contrary, and likewife that it is not fat ; for it cannot be melted by fire, nor is it inflammable, if put on a bit of glafs and applied to a lighted candle.

C $\quad \mathrm{H} \quad \mathrm{A} \quad$ P. VIII.

Of the genitals, penis, uterus, teficles, ovary, and otber parts fubfervient to generation.

THE fermatic veffels are placed not only in the fore part of the neck, belly, and back of the Snail, but being twifted like vine tendrils, follow the convolutions or windings of the body itfelf, and extend themfelves to the extreme end of the liver; fo that they may be jufly reckoned amongft the moft remarkable parts of the body. Before they can be feen, the fkin murt be diffected, and fome of the membranes and mufcles removed; and among the latter there is a very elegant mufcle, which, with many fibres, reaches obliquely from one fide of the body to the other, and fhews itfelf beautifully upon the ftomach, and thofe parts that ferve for generation.

The male and female organs of generation are both in the fame Snail, and the penis and uterus, being naturally united, grow firmly together; fo that many of the parts are common to both. The fmall parts, from the ftructure of which it is known that they belong to the male organs, are the penis, Tab. V. fig. x. a, with its fharp, twifted, oblong appendage, which, at the extreme end, is round, in the form of a pear $b 6$. To the female parts belong the uterus $c c c$ and its ovary $d d$, which opens into the cavity of the uterus; that the little eggs may be increafed and covered with moifture therein, as may be feen very beautifully in the Ray-Finh; nay, and in fome degree, in the uterus of Hens. But in other animals, as in Tortoifes, Lizards, and Camelions, there is found a greater agreement in this refpect, with the Snail, than I could obferve in fowls.

As to the parts which have a mutual communication among themfelves, to thele may be referred the tefticles: thefe are, as it were, a congeries or heap of oblong filaments e. Then the hidden appendages of the uterus f, and a certain common duct between the penis and the uterus, Tab. V. fig. x. g. Afterwards there is an oblong vas deferens, which opens at the end by a fmall tube into the uterus i, and has a little ball in the form of a pear at its extremity k. Laftly, there is a very beautiful curied veffel l, of the fame fructure with the epididymis in man and quadrupedes, which being twifted in, like a little chain, difcharges itfelf by a fmall tube m, into the beginning of the uterus and end of the ovary.
Having enumerated thefe things in general, I fhall now treat of each part in particular, and affign the reafon why I have called fome of them common to both organs, and others proper to one or the other. As to the penis a, it is nervous and of a mufcular texture, confifting, as it were, of three parts; the firft is a mufcular membrane, then the inward conftruction, wherein, as in a prepuce, the penis may move up and down; and laftly, the internal porous membranes, which trufs up the penis on the infide. Hence it is, that if the penis be cut off in the act of coition, no more than the outward membrane which covered it, and out of which it ftretched itfelf, remains in the body. It is all white, and is firm, and, as it moves up and down very eafily on the infide, fo it as eafily moves through the aper-
ture of the genitals out of the body, and can enlarge and fiffen itfelf for that end. For this purpofe it has not only a mufcular texture, but it is likewife provided with a peculiar mufcle 0 , by the ftrength of which it is thruft out.

The act of coition is performed in this manner ; firt, the outward aperture of the genitals opens itfelf in the right fide of the neck, fig. xvir. a; which, when it has more and more infenfibly dilated and expanded its orifice, then the two inward orifices, as well of the penis as uterus, fig. x vili.b, creep out of the body. Then the penis erecting itfelf, fig. xix. c, and purhing foftly out of one of thefe orifices, comes in fight; but the other aperture, that of the uterus, lies open d, to receive the penis of the other Snail at the time of coition. So that the penis e of the one Snail is put into the aperture of the neck of the uterus f of the other; and again, the penis of the latter b is likewife reccived by the aperture of the uterus g of the former. Each of thefe Snails being therefore excited by a reciprocal ftimulating impetus to venery, each impregnates and conceives, fertilizes and is fertilized, and ejects and receives the femen.

After coition all thefe parts are drawn into the body; for which purpofe the penis has a fomewhat long and even mufcle, Tab. V. fig. $x . p$, which is inferted under the tranfverfal or oblique mufcle of the abdomen, where the verge of the Snail's body is: and that this part fhould not want fenfe, it has likewife a nerve q.

The parts of the uterus have alfo their nerves and mufcles, fome of which may be feen in the neck, near the root of the four horns. The matrix itfelf is a tender, oblong, white and curled ccc little tube, which appears moft remarkable when it is diffended, fig. xv I. r, with air or wind; for then it turns itfelf into very admirable convolutions, being jointed to a ligament, fig. x. $n m n$, which connects all its folds, and is of a ftronger ftructure than the membranous and hollow parts of the tube of the uterus. This feems defigned for fome particular ufe; for it appears full of glands, fo that I firft took it for the ovary itfelf: for indeed all the veins of the uterus, of which there are many, are faftened in this ligament, and pafs through it towards the uterus. But, in other refpects, neither the uterus nor ovary, fig. x. dd, have any thing remarkable in them, as long as the former has no eggs in it. The ovary is not vifible, unlefs it appears like an oblong, white, tender, foft and triangular little part, and contains a fubftance like the melt of Perch. So fmall and invifible are the little eggs of the Snail before coition!

Again, the uterus is faftened near the verge of the Snail, and is there connected with the upper part of the abdomen. There are likewife fome mufcles which ferve to contraci the uterus, a larger one s, and a fmaller t, which is inferted behind the long mufcle p of the
penis. The uterus has alfo its nerve ov there; as will appear more clearly in the defcription of the brain ; where it will likewife be fhewn that thefe mufcles alfo give fome afififance to move the brain on the inner part.

That the penis and uterus in the Snail have many parts in common between them, I am inclined to affert, for this reafon ; becaufe thefe parts are forced to move their contents through common paffages, as is feen in the fperm from the tefticles, and on other occafions. Thefe tefticles e, as we have before obferved, confift of a clufter or heap of oblong filaments; and the fame holds in almoft all fpecies of this genus of infects: it is even fo univerfal, that it takes place in man and quadrupeds; for their tefticles are formed of fuch filaments. There are fixty-fix of thefe threads in the Snail: they are of a whitifh colour, and, in their inward flructure, refemble hollow tubes, each being clofed up at its extremity. They arife from two trunks, and are divided in a wonderful manner, as it were, into twigs, Tab. V.fig.xi. x. The femen is of a fnowy colour, and of the fame thicknefs and clamminefs as in the males of Bees. I know nothing that bears a greater refemblance to this part, than the pancreas of fifh; a defrription of which I have inferted in a work of Commelinus, which I publifhed; and I have delineated the figures with my own hands.

The hidden appendage, fig. $x . f$, of the uterus is a very beautiful, white, nervous and mufcular part, of a firmer fubftance and texture. If it be diffected, it muft be done very cautiouly and with an even hand: it is then difcovered, that at the root or bafis in the hinder part, it has, fig. xir. y, a globular and round little part in the form of a pear; from which arifes a fharp, hard and crooked fyyle, not unlike a fharp awl. This little bone being taken out and viewed with a microfcope, refembles a tranfparent, glittering, very fmall, fcale of a fifh deprived of its fkin. At the root, fig. xıII. a, on the hinder part, where this little bone is connected to the globular little part, it exhibits fome incifions or fiffiures covered with coats, which penetrate inwardly from the external parts into its cavity. I have counted fourteen of thefe incifions: it appears, in general, equal and round b, and ends tomewhat fharp like a needle : then it forms, in its circumference, four margents or prominent borders c, between which are feen fome remarkable ridges and furrows. This appears very plain when this minute part is diffected, fig. xiv. e; for then it is manifett that it is hollow on the infide ; fo that a hair put into it, almoft entirely paffes through it. Within the cavity of this little bone, there is contained a limpid or clear humour ; but where its root is connected with the globular part, fig. xiri. b, it is all hollow and very tender, fo that it is eafily broke in that part, if it be handled in the leaft roughly or carclefisly. It ferments
ftrongly
ffrongly with aqua fortis: hence I call it an alcaliine little bone.

I could not find out the ufe of this little part. I thought indeed at firf that it was the penis, but experience convinced me of the contraïy. It is however certain, that it is of fome ufe in gencration; for after coition, fuch little parts are commonly found where the Snails have been together. I have obferved alfo the fame thing in other kinds of Snails, till at lengh I made ufe of it as a fign to difcover whether the bufinefs of generation had been over. In fome Suails which were not given to venery, I found this little part fo fimall, that it was hardly one fourth fo big as that already defcribed: it was like a point, flender, fhort, and tender. In fome it was larger, in others fmaller, that is, as far as I could judge, the nearer they approached to the time of generation, or the further they were from it. It is fometimes partly yellow, but for the moft part it is tranfparent and very white; it feems, however, to be fubject to accretion, like corals, as I fhall demonftrate more clearly in the Snailftone. I remember to have fometimes feen in a Cuttle-finh, an entire little bag full of fuch white finall parts, which lay there free and difengaged among a glutinous humor, but they confifted of a very foft fubftance, and were much larger. This fifh has gills likewife, and other fuch wonderful parts; fo that this animal deferves very particular confideration, though much could not be hitherto known or faid concerning it.

The common little tube that lies between the penis and uterus, Tab. V. fig. $x . g$, is not very remarkable; I only obferved that it was hollow. But that other, vas deferens $b b$, feems to fupply more ample matter for fpeculation, both becaufe it opens into the uterus i, and that it has a little ball or globe k in the form of a pear, which contains a fluid of a pale purple colour, fomewhat glutinous, and not thin. This little ball lies next to the heart in the body; fo that the great artery is carried round that pipe
with which the ball is connected; but what ufe this little part is of, I could never hitherto difcover. I once obferved, that the little bone before-mentioned, penetrated into this veffel, almoft as far as its aperture into the uterus; but, to the beft of my remembrance, I had then irritated the Snail at the time of coition, fo that it drew in thefe parts of generation ; for which reafon I afterwards ufed to diftinguif, in a particular manner, thofe Snails which had exercifed coition. Of what ufe this little globe or ball is, I am ignorant; I hould, however, be inclined to believe, that this is the part wherein the Purple-fifh carries that precious dye, wherewith the garments of monarchs, and other great perfons, were coloured purple in the times of the Romans. To this the facred writings allude, when they fay, " that the rich man was cloathed in purple."

I am likewife at a lofs to know of what ufe the curled little veffel l is. I obferved, however, that it is diftributed into various little branches z, which, like fo many tubes, arife from the oblong, round, and acute little part, placed near the extremity of the fpiral liver, and there joined to the liver itfelf. But if this little part be divided, and opened or unfolded, with the top of an ivory bodkin filed fharp, and fomewhat foftened by feeping it in water, by which means it does not offer fo much violence to the parts as a needle, it appears like a little tree or fhrub adorned with leaves, Tab. V. fig. xv. a; with this difference only, that its extreme parts are ftudded, or emboffed and fwollen, hollow on the infide, and full of moifture, which is probably conveyed by degrees into that curled fmall veffel refembling a chain; but then the matter contained in this little part is more white and compact, and better digefted.

Laftly, we muft obferve that moft of the parts hitherto enumerated, are placed behind in the fpire of the fhell, and are there feen through it in feveral places.

C H A P. IX.

Of the manner in wwich Snails mutually perform the bufnefs of coition.

HA V I N G hitherto, in part, thewn the method whereby Snails generate, I fhall now give you a full defcription thereof; fince it is a matter very worthy of notice that, an hermaphrodite little creature fhould have need of a companion for the purpofe of generation.

The Snails gather together for fome days before their coition, and lye quiet near each other, eating very little in the mean time; but they fettle their bodies in fuch a pofture, that the neck and head are placed upright. Thus, whilft the thell of each refts upon the earth, with its double head, the Snails are raifed up-
wards, and they fupport themfelves erect, by the extreme ends of the fringes and verge of their bodies, in the fame manner as it is faid Serpents engender, that is, in an erect fituation, and twifted about each other.

At that time the verge, or its aperture, is continually open to take in the air; but the opening of the genitals in the neck is fometimes obferved to be alternately open and contracted. This action is performed in the fame manner as the agitation of the outer parts of the vulva in Dogs and Hens, when they defire coition. The Snails being thus animated, foftly approach each other, and apply their bodies
one to the other, as finoothly as the palms and fingers of both hands can be grafped together: aid by this means, not only their bodies, but their necks and heads, are raifed up and preffed clofe to each other. Then are feen the moft wonderful motions of their heads and eight horns, which furpafs all imagination; like Turtles, they are continually obferved to kifs each other, and to join lip to lip. The horns are affected with fuch various motions, that one can fcarce think, how they can poffibly have fo many and fuch different mufcles. Another circumftance that deferves notice is, that when they touch each other in the leaft with their horns, they immediately draw them in, or move them up or down again, or fideways; and thefe motions are often repeated.

Thefe motions fometimes continue for three days, during which time the Snails turn in and out, and join together their genitals, fo that the penis and uterus, of each, are fometimes feen to hang entirely out of the body. But fince I cannot obferve that Snails have organs proper for feeing and difcovering things near and at hand, but only for remote objects; hence it is, that for want of this knowledge, I cannot obferve their coition but by chance. For though they very often fhoot their genitals, like an arrow out of a bow, yet the coition is fcarce performed once in three times. This miftake feems to happen the oftener, becaufe every Snail carries its penis in the right fide of its neck: it muft therefore happen before they have turned their refpective heads crofs-wife towards each other, that they often attempt a coition unfuccefsfully. But they have leifure enough to repeat this bufinefs, fince they feel for a long time the incentives of their venery, though they have already gone through the bufinefs of coition ten or twelve times before. Nay, I have known fome of them indulge their venereal defires three weeks afterwards, and that they repeated them again in fix weeks after that.

But when they affociate in coition, as they fhould do, each of them ftretches its penis, together with the orifice of the uterus, entirely out of the body, which is not done by erection only, as it is in quadrupedes, but principally by turning the inward parts out, as happens in the penis of Drakes. The firft thing that opens in the Snail is the aperture, that lies in the neck between the upper and lower horns, Tab. V. fig. xvir. a; then the inward parts of generation are obferved to come out like two apertures, fig. xviir. b; fo that by this means the lower horn is puthed out of its place, Tab. V. fig. Xvili. $k:$ afterwards thefe parts are very fuddenly thrown out of the body; yet fo as that the aperture of the uterus appears firft, fig. xix. d, and immediately after the penis, the thicker part of which turns out firft, and afterwards the fhaip part c. After this begins the coition, and the two lower horns are then fo far thruft out of their places, that they touch and prefs each other l.

There parts are afterwards remarkably fwelled by the humours that flow towards them, fo that they refemble the clammy white of the boiled egg of a Lapwing, which, being mixed as it were with a tranfparent whitenefs, makes a very agreeable fight, refembling an agat. For the appendage of the penis, fig. x. 66 , is obferved to run fo far, and by the clearnefs of thofe parts, is fo evidently feen, that its motion is alfo obvious to the eye.

After coition the parts before-mentioned may be ftill perceived for a quarter of an hour hanging out of the body, that is until their fwelling has fallen, and then it is furprifing to fee what wonderful motions the penis has. But if any one fhould in the mean time handle thefe parts, the Snail endeavours to draw them in by force, but however much it ftretches all its nerves, yet it cannot by any force bring them in, unlefs they firft become flaccid. A certain lympid moifture then diftils from thefe parts, which foon coagulates, and becomes tenacious and firm in the air. The upper horns being always bent like a circle in the venereal act, are obferved not to move much, unlefs that they are fometimes drawn in, and again ftretched out. After all is finifhed, the little creature, having wantonly confumed the ftrength of life, becomes dull and heavy; and thence calmly retiring into its fhell, refts quietly without much creeping, until the furious luft of generation gathers new ftrength, and effaces the memory of the uneafinefs fuffered after the former coition.

In a Snail, diffected a little time after the act of generation, I obferved that the penis was fmaller, but the uterus a little more expanded and glutinous in its cavity. The ovary was manifeftly fwelled, and was longer, thicker, and larger, fo that it now feemed full of ferm like milk. Afterwards, however, I faw it much larger, and filled with more glutinous moifture. But in five weeks after coition, the ovary became yellow, and like real glue; yet the eggs were very foft like llime, and were fcarce vifible. When I afterwards viewed the ovary in fuch a boiled Snail, every thing was callous, and as far as I could difcern, an infinite number of little eggs prefented themfelves in both the Snails, which had copulated with each other. The uterus itfelf was likewife at that time much more expanded, and became, as it were, glandulous; fo that when thrown into the water, it fwelled very much. When the eggs were held a little while in the hand, the fingers fuck together. Therefore the ovary, the longer it pafled after the time of coition, became more tenacious, compact and yellow; for all the eggs of the Snails are covered with very clammy membranes, and are, at length, perfected in the uterus. They cannot remain in the ovary, fince this is placed between the fpiral part of the fhell, and throws its eggs into the cavity of the uterus. Some Snails lay their eggs up and down on the ground, others tie them all together like a chain. I have feen a
little chain of eggs of this kind, which the vulgar thought dropped down from heaven, and therefore immediately framed a great many fuperfitious fables concerning it: fo far is ignorance the mother of error. The tefticles, after coition, are found deprived of their fperm. The blind appendage of the uterus likewife, in the beginning, though not very much, became afterwards contracted, and had thrown off its bone. The common tube between the penis and uterus fuffered no change. The vas deferens was more dilated, and in it, as I have faid, I found the little bone. Hence it is probable, that this little bone, at the time of coition, carries fome of the fpermatic humour
through the upper tube of the vas deferens into the uterus; whilft the penis, in the mean time, throws its fperm from the inward part into it. To conclude, the little part in the form of a chain had undergone no change, unlefs that on the fide near the fpiral convolution of the liver, the veffels that it diftributed there, were here and there very unequally dilated and filled with a calcarious humour; except that fome little round whitifh membranes, which appear perforated in the middle, and marked with a black foot, were here and there obferved fluctuating in its hollow canals, which refemble the leaves of trees.

C H A P. X.

Of the brain and nerves, and in what manner thofe parts have their mujcles, wobereby they are moved backward and forward in the body; a wonderful particular not bitherto known in any animal.

1T is with very great difficulty that any certain and fixed place can be affigned to the brain of the Snail, as I have obferved in the beginning of this account; fince, like other parts, it has its mufcles, whereby it is fometimes drawn forward, and fometimes backward in the body. This motion of the brain is fa wonderful in this little creature, that it deferves the moft ferious confideration. Since I have never hitherto, nor do I know, that any other has, obferved any thing like it in any kind of aninimal ; I fhall, for that reafon, minutely defcribe the brain, and reprefent it by a figure, as I have feen it in a Snail, which I killed flowly under water. The brain is placed upon the ftomach itfelf, which, together with its gullet, always paffes through the aperture which the brain forms there. And this is not peculiar to Snails only, it holds likewife in Silkworms, and in all other infects that I have hitherto examined. Hence it is, that when the fomach, with the gullet, and all parts of the mouth, are drawn up on the outfide, or down on the infide; the brain being always placed upon the flomach, is transferred hither and thither with it. Since therefore all parts of the mouth may be, according to the diffection of the brain before-mentioned, drawn forward and pufhed out; I fhall, in the firft place, expofe to view all the parts of the jaws, mouth, and palate, Tab. VI. fig. I. a. Left the ftomach and its oefophagus thould interfere in my giving a full and exaEt reprefentation of the brain and nerves, as they really are, I cut the flomach about the gullet b, by which means the brain is feen immediately. It confifts of two parts like little globes, and is therefore divided into two parts: from each of thefe globes arife a certain part of the final marrow, refembling on each fide a large nerve $d d$, both which parts are fituated in fuch a manner as to leave a gap or aperture for the paffage of the ftomach.

Thefe parts, fringing from the brain, conftitute the true principle or rudiments of the fpinal marrow, and they meet again a little lower, and form a confiderable knot, Tab. VI. fig. I. e; from which, afterwards, arife all the reft of the nerves that are diftributed in the lower part of the body. There we are to obferve, that the fpinal marrow is double, not only in this creature, but alfo in man himfelf, and in quadrupedes; with this difference only, that in the latter it is prefently joined together by a certain intervening band, and immediately after inclofed in a common membrane. Nay, all the nerves in the latter, that arife from the marrow, form, each in its courfe, certain little knots or fwellings, which are therefore at leaft more numerous there. The fame is feen in Silkworms, in which the two originations of the fpinal marrow are many times tied.

This fwelling of the fpinal marrow in the Snail has its mufcles likewife, by the help of which it is moved up and down in the body. Its firft mufcle is very fmall f, arifing from a coat which covers the fwelling or production: from thence, paffing under the ftomach and brain, is at length inferted by its tendon, in the lower region of the parts of the mouth, a little above the root of the tongue; therefore it can move this little knot and the brain towards the fore parts. The reft of its mufcles, which draw it back again to the hinder parts, are common to the inward lips; for the mufcles of the latter run on each fide over this fwelling, and fix fome of their tendons therein, though they are otherwife inferted in the horny fubftance of the Snail. After thefe mufcles have paffed over the fwelling or production of the fpinal marrow, they acquire a little nerve from that part which gives them the power of contraction. To avoid confufion, I have here exhibited only a fmall part g of thefe mufcles, with their little nerve, which is afterwards extended
further
further from thence towards the fpiral turnings of the Suail's body, being there probably of ufe to provide for feveral other parts.

We further obferve two nerves $b b$ arifing from the brain, which are diffributed into the feveral parts of the jaws, mouth and palate, and probably ferve for divers ufes. But the optic nerves $i i$ which have the eyes placed in their extremities, fwelled out in form of little globes, are extremely beautiful. Behind there are difcovered two other nerves $k k$, which reach, each with three ramifications, to the fore parts of the skin, and to the bafes or roots of the upper horns; and afterwards alfo give two little nerves $l l$ to the lower horns, which are of the fame ftructure with the nerves of the upper, and are alike terminated with globular ends. Beyond thefe a pair of very tender nerves, Tab. VI. fig. I. mm, fpring from the brain, each of which being divided into two branches, runs to the mufcles of the fkin of the head, and is inferted in each fide of the Snail's lower horns. Laftly, two larger nerves $m n$, are difcovered, which run under the parts of the mouth, jaws and palate, and diftribute themfelves over thofe parts, and are defigned probably for motion or tafting, or for both.

Again, fome of the nerves which fpring from the fwelling or production of the fipinal marrow, are inferted in mufcles, fituated in each fide of the neck 00 , to which they give motion. Others, on the contrary, are fent away to the fpermatic veffels p, and to the coat and mufcles q, which cover and move them. Some nerves alfo iffue $r r$ from thofe fwellings, which are diftributed in the mufcular parts that move the fides of the body. Above, on the right fide of this little knot, there arifes an oblong little nerve, which is defended by a like mufcle, and reaches to the uterus s. This murcle may probably alfo ferve to move the fipinal nerves on the infide. Behind the for-
mer are two other oblong nerves, one of which bends back under the little nerve of the uterus; but the other, being again divided into two branches, is inferted in the verge of the body is $^{\prime}$ at the upper part of which are ftill feen fome mufcular fibres, which iffue from the traniverfal mufcle of the abdomen, which is fituated within, under the arch of the membrane of the verge. On the other, or left fide, a like nerve is obferved alfo v, which has the fame infertion, and ferves for the fame ufe, that is, to to give fenfe and motion to thofe parts. In the left fide we are likewife to obferve, what manifold and ftrong nerves are tranfmitted to all the middle and lower parts of the body. We will firf examine thofe in the middle. Some nerves are there inferted, Tab.VI. fig. I. x, between the tendons fig. II. $n n$ of that flrong mufcle, which moves the middle of the body, and thofe are fent away to the feveral mufcles that run near it. A confiderable number of little nerves befides yyy are obferved, fome of which are long, others fhorter, and fome are divided into two, others into three lateral branches: there defcend to the lower verge or foot of the body, in order to give it the power of feeling and moving. I have exhibited none of thefe nerves in the right fide, to prevent confufion z.

Here we fhall conclude the prefent chapter. Now, reader, judge whether God has not fhewn himfelf as magnificent and aftonifhing in the the texture of the brain and nerves of the Snail, as in the formation of the fimilar parts of man ; excepting only the mind and principle or feat of the underftunding. As thofe do not appear to the diffecting knife, fo they are lefs proper to come into our analogy or comparifon; for thofe only obferve and inveftigate corporeal and fpiritual things, and thence defcend to the deepeft abyfs of the wifdom and fecrets of God.

C H A P. XI.

Of the mulcles of the body and gell, which is the bones of the Snails: in what a wonderful manner this bell is formed on the infide, and bow it is increafed and nouribed. Lafly, bow the Snail moves in its egg.

THOSE who have feen diffections, or have any knowledge of anatomy, know, that the hiftory of the mufcles cannot be accurately underftood, before the bones in which they are inferted are firft known. For the latter are fixed points, towards which every thing in the body, that has a ftrong motion, is drawn and moved. And though the naked Snails have properly no bones, yet they have a certain extremity, wherein mufcles are inferted; as I fhall fhew in its proper place.

That wife architect, who alone framed and reduced all things into order, has likewife eftablifhed different rules in the compofition of
animals, by the affiftance of which he has purfued the fame ends and purpofes, how greatly foever the ways and means to arrive at thofe ends differ in various inftances. In fome animals the bones are found placed in the body, with flefh fpread about and affixed to them, as in a man, quadrupedes, and in fome birds. In others, we can only find cartilages, wherein mufcles are inferted, as in the Ray-fifh and fome others. The Cuttle-fifh has only one bone in its body, except the nofe or frout. In fome, which are fo fmall that they have no confiderable bones, the mufcles are inferted in the skin itfelf, or they meet together in certain
callous or firm points, which are formed for that purpofe, and which, in particular places, are as hard as the fofter part of a Cow's horn. Though the methods hi hherto mentioned, tending to one and the fame end, differ greatly among themfelves, the wife Creator of the univerfe has, befides, invented many others much more wonderful: in fome animals he has formed bones manifeflly on the furface, and put flefh between them with the moft exquifite art, as in the Cray-fifh, Crab, and many others ; and he has likewife followed the fame rule in moft kinds of Infects, and likewife in this kind of Snails, to which the fhell is as a real bone. The immenfe power and wifdom of God fhew themfelves greateft and moft profound in thofe little animals, to which he has given both an horny fhell, and the harder coat of a Crab; fo that the mufcles of the fofter part are inferted in the flelly fubfance of their bodies, whilft that very judicious architect has inferted the reft of them in a hard bone, which covers their body, and is continued therewith out of the fhell, as may be obferved in the Hermit-fifh. Though the Tortoife lives in a little houfe as it were, and carries its bones, like the fhell-fifh, on the outfide, yet God has again eftablifhed a different order in that creature, fince he has given it two forts of bones, fome which grow contiguous with the bone that covers it, and others which are fixed to it by the help of joints; fo that by this means the mufcles are in this creature ftrengthened with a double infertion. And as this exhibits a very uncommon object in a living Tortoife, fo the futures of the bones, which conflitute the outward fhell, are worthy of particular obfervation; for, in my opinion, they differ from the futures of the bones of all other creatures whatfoever; as I can demonftrate by a fhell that I keep in my collection. But fince this animal alfo lays egge, that are covered with fhells, which I have feen in great numbers in the body; and fince thofe eggs muft be emitted through a very fmall aperture in the bone, on one fide of the tail, through which they can by no means naturally pafs, it is beyond all manner of doubt, that the futures of the bones in this creature, muft, at the time of the exclufion of the eggs, feparate from each other. Anatomifts, with all their force, oppofe the notion of fuch a thing happening in human fubjects at the time of delivery. I fhall not pronounce, for certain, how this matter is, but I believe monf firmly, that fuch a temporary feparation happens in Tortoifes.

To return to the bones and mufcles; we muft obferve, that the mufcles are not fimply inferted in the bone, but that a certain part of the bones themfelves confitutes one of the extreme ends of the tendons of the mufcle, fo that the mufcles fixed in each fide in the bones have two bony extremities. Every mufcle therefore confifts of three parts ; the middle part is flefh, but the two extremities are the white, membraneous, firm, and fibrous
joints of this flefh, which become bony where they are inferted in the bone; or otherwife remain hard and compact, or become fofter and more tough, according to the different nature of the parts to which they are joined, and which they are confituted to move. Hence it happens that a mufcle is fometimes inferted in a mutcle. Nay, which is furprifingly fingular and uncommon, Mr. Stenon has demonftrated to me, and to my very efteemed friend Dr. John Oort, in the eyes of birds, after what manner a mufcle paffes through a mufcle by its tendon, as through a pully, fo that the perforated mufcle can draw to itfelf, or let loofe the perforator, according as the tendon of the later, paffing through the former, fhould be brought nearer or removed further; than which fructure fcarce any thing appears more admirable.

After what manner the mufcles are inferted in the fhell or bone of the Snail, and united therewith, appears moft manifenty when that houfe of the creature is opened, for it is then obferved, that all the principal tendons of the mufcles of its body, run, fome a little lower, others fomewhat higher and deeper, towards the firal part of the fhell, and are fixed, Tab. VI. fig. II. a, in the fhell itfelf, or hard or ftony bone of the Snail. This may be feen particularly in that winding or finus of the fhell, which is the fecond from its lower aperture; I mean that through which the Snail throws out its body and verge or foot. There may, after this, be further obferved, the infertion of the two longen mufcles 66 of the Snail, which ferve principally to move that great and fmooth verge or border of the body, by the affiftance of which, as with a broad kind of foot, the Snail creeps forward, and moves from place to place; but this muft be done with a very flow pace, according to the proverb, "Slower than a Snail." Thofe mufcles in the middle of the body, where they are for the moft part inferted, form a flrong tendon; between which, towards the hinder parts, is feen here and there fome moifure, which is yellowifh, pretty thick, and contained in peculiar little cells, of the ufe whereof I am hitherto entirely ignorant. Backward, under the extreme part of the fhell, we fee the fibres of thefe mufcles c run, which are inferted in thetail of the creature, or loweft extremity of the fringe, which is moved by them. Moreover, there is feen the parts, Tab. VI. fig. II. d, wherein all the tendons of the mufcles of the verge, that furrounds the upper part of the Snail's body, have their origination. And thofe, together with the tendinous skin that covers the whole fipiral part of the body, afterwards afcend to the laft or extreme point of the flell, but are no where further inferted; they are only curled, and there they contract the extreme end of the liver, and move it occafionally, together with the inteftines. Above, and near the infertion of thefe, is feen a fmall mufcle e, which draws in the parts of the jaws and mouth, and the cartilage, with which the tongue is covered, together
together with the palate, and fome other parts annexed. I defrribe and rep:efent this in fuch a manner, that the bafis of the tongue g, and its forc-pointed extremity f, which is armed with a kind of horney teeth, may be clearly dintinguifhed; although they are all neceflarily put fomewhat out of their natural fituation. Afterwards appear thofe two admirable mufcles $b h$, which, by turning in the two upper horns through their cavity, draw the eyes back into the body; the curled foldings ii of the optic nerves are found to be tranfparent through thofe mufcles, and are feen to run towards the eyes. The eyes themfelves feem like two black points $k k$, over which a certain part of the horns thus drawn in fill appears: under the former, are feen two plain, equal, or fmooth mufcles $l l$, which draw the lips and fome other parts of the mouth into the cavity of the body; at the fides of there appear a pair of mufcles $m m$, which are inferted in thofe of the lips beforementioned, and ferve to draw back the two lower horns into the cavity of the Snail's neck. Between the mufcles hitherto defcribed, are found two very wonderful and ftrong mufcles $n n$, which are inferted with two firm and tough tendons in the middle of the body; this is varioully and ftrongly moved by them, and is raifed or elevated into the orifice of the fhell by their power ; between the tendons of thofe mufcles is the proper place of the fpinal marrow in the Snail, which from thence diftributes its nerves to all the adjacent parts; the latter fupplying the nervous fluid or moifture, and giving the power of moving and contracting; as may be feen very diftinctly in the body ittelf. But after what manner the bone of the little habitation or fhell of the Snail is formed, and what windings, partitions, cells, divifions, and cavities it has; this truly fingular piece of art may be traced very eafily in a natural fhell, as I have endeavoured to exprefs its ftructure, according to nature, with all the accuracy of which I was capable. Laftly, the extreme edge of the fringe or foot of the Snail, Tab. IV. fig. II. $q q q q 9$, in which I have delineated all the mufcles hitherto mentioned, deferves to be carefully regarded. The flefh, and the fibres and tendons are of a fpotefs white, fo that there is not much difference in this refpect between the flefhy and the tendinous part, unlefs for the fmallnefs and folidity of the fibres.

Thofe parts being, in the firft place, thus explained and underftood, I fhall proceed to defcribe and to expofe to fight the inward parts of the fhell. The firft part which deferves confideration, is the outward orifice of the fhell, fig. III. a; which being by little and little contracted and twined round, forms its fecond divifion b, and thence afterwards afcending further, it forms a third c, and at length a fourth d, and a fifthe, which is the laft, and has the extreme end of the liver placed in its cavity.

If any one diffects the fhell with a frne faw, made of a fimall piece of a watch fpring, and afterwards breaks open all the inward cells and divifions with a harp pointed forceps, he will fee very beautifully how this turning about or winding on the infide is effected; and how the five feparate lodgements in the fhell are compofed and twifted in a fpiral form, as I lave reprefented from the life, in Tab. VI. fig. iv. numbers $1,2,3,4$, and 5 .
The fell of the Smail makes as beautiful a figure, if it be prepared in the following manner; it is to be cut fo that the inward poof, or the columella or pillar, about which all the cells and inward divifions are turned, remains alone; in this care, in the upper end of the pillar, where the fifth and laft lodgement is opened, there is feen a finall aperture, fig. v. a, which paffes b through the whole pillar, from top to bottom, and is always larger and wider at the entrance of the fhell, than where the decreafing windings are terminated. Thefe apertures are feen yet plainer, if the loweft part of the pillar be taken off, fig. vi. c, and the pillar itfelf confidered apart. In many kinds of thefe bony habitations, there apertures of the pillar are very plain, from this caufe, that all the windings of the fhell have each their particular and diftinct divifions, which are faftened and joined together in their twiftings: we are to except from this account, fuch thells as have no winding, and are therefore called tubules or tubular fhells.
For thefe reafons, therefore, this kind of fhelly covering muft be conceived as a certain oblong, hollow, fharp, and fiexible tube, which if rolled and turned round a fmall iron line or wire, and afterwards this thread or line were drawn away from it, would fhew fuch a perforated pillar, which would be the more exaft, if all thofe foldings, together with their inclofures, were applied clofely to each other, and faftened and united together. And after this manner are almof all kinds of fuch little fhelly habitations built, in whatever wonderful manner they appear to be turned or conftructed. This I myfelf have found, by frictly examining many different kinds of them which are in my father's mufrum. This appears however much clearer in fome fpecies than in others, in thofe fhells, particularly, which are called tubules, and which are twifted, Tab. VII. fig. v.b, only at their extremity. This conftruction is fo plain as to be beyond all manner of doubt. I fhall therefore hereafter exhibit other kinds of fiells in their proper places, that the difference may he known as far as pofitible, and by the feweit examples.
From each of thefe larger habitations may be formed as many fmaller as can be defired, provided we firft break off the pillar and the internal ridges, and afterwards make them even and fmooth with a file. This is indeedcontrary to the order of nature, for the always proceeds from the lefs, Tab. VI. fig. vil. d, to
the greater e, and fo on to the greateft f. I have prepared by art in this manner the dictinct little hells which I here exhibit as gradually augmented. And that the method whereby this increafe is performed by nature may be conceived, I fhall now defcribe and explain how this habitation of the Snail is increafed and augmented.

In this fpecies of Snails, I could never difcover the rudiment of the fhell in the egg itfelf; but by obferving other kinds I have found that the little egg laid by them produced always a very fmall but perfect Snail; and any perfon may know, from reafon, that it muft happen thus, fince the Snail's mufcles would not be otherwife ftrengthened by any infertion, which no body in his fenfes would even have thought; but I follow experience, as the only guide in this cafe. In other Snails I have often, through the outward fhell, feen the little Snail lying in the egg, and moving very diftinctly, before it came out, which I have been fo happy as to thew to the illuftrious Van Beuningen, our ambaffador and conful. One remarkable thing is, that as foon as the Snail is come out of the egg, it is perceived to be fo large, that it feems wonderful how it could lie and move, fo preffed and wrapped up, in that elliptic and narrow cavity of the egg-fhell.

Again, fince the water Snails themfelves likewife move in the egg for fome days before they come out of it, hence one is inclined to conjecture, that the young Snail does not leave the thell of its egg before it has arrived at a certain degree of growth; at which, having its little fhell fufficiently hardened, it is in a condition to creep out of the egg, and to increafe its flefh and bone, or hard covering, with the food it receives. This may likewife be feen in other animals, which bring with them into the world flefh and bones out of the uterus, and only perfect them infenfibly, by the ufe of their fucceeding food. By this means, the Snail's thell is nourifhed, as well as its fofter parts; though the former is done in fuch a manner, as to lead one to think that it is differs in fome meafure from the latter.

It is befides this worthy of notice, that the fhell of the Snail has its particular periofteum, by which it is covered and inclofed. And the fame may be obferved outwardly about the horns of ftags, for thofe are likewife inclofed in a peculiar coat, which they rub off againft the trees, and in procefs of time wear away, that is, after the horns have acquired their full ftiffnefs, and the skin that furrounds them is no more nourifhed. I have found this membrane fo ftrong and tough in the fhells of fome Snails, that it. would not yield to aqua fortis; but the fhell itfelf, rather than the periofteum, was corroded thereby. This membrane is likewife very confiderable in the fhells of fea Mufcles, for to this the Mufcles faften thofe filaments by which they hang together, and fix themfelves fo as to prevent their being carried away with the
tide. The filament I fpeak of iffues from their body, and is very broad in the forepart, almoft like a piece of a leather, wherewith fome perfons draw on their fhoes; and by the afliftance of this, the Mufcles are not only joined to each other, but likewife cling firmly to rocks,wood, ftones, fea-weeds, or any thing that is near them. Thofe filaments in other kinds of Mufcles, as in the Pianna Marina, are called Byffus, and are that matter, of which, as of filk, that kind of very fine linnen ufed to be made, which, according to Rondeletius, was called Byffus, and in which the rich man mentioned in fcripture was clothed.

In the Snail whereof I here fpeak, the membrane before-mentioned is pretty ftrong, and it is vifible every where in all the notches of the fhell, and their interftices, Tab. IV. fig. iI. s. In other fhells of the fame fpecies, I have fometimes found it worn out, by the creatures frequent creeping through fony places; but it is always confpicuous near the aperture out of which the Snail creeps. If thofe who delight in natural curiofities, or have mufrums, find a fhell ftripped of this invefting membrane, they conclude that it was rolled in the fea long after the death of the creature originally contained in it.

I have fometimes obferved that the Snail, being about to inlarge its habitation, firft cleared away this periofteum with its little teeth, nay, that it bit off fome fmall pieces therefrom, and fwallowed them; however, I have obferved alfo, at other times, that the Snail cleaned the edge or margin of its thell with its teeth, if it was covered with films, and that the Snail happened to reft for any confiderable time. I have likewife often found that the Snail, when it remains quiet for any time, forms films of that kind, and befprinkles them with a calcarious matter, and then thofe films will ferment with vinegar, as well as the fhell itfelf, when worn or rubbed in the duft. And indeed all thefe experiments evidently demonftrate that this habitation is the real skin, or rather the hard or ftony bone of the Snail, which covers it on the outfide.

But if this ftony fhell be accurately examined, $i \stackrel{i}{2}$ appears to confift of numerous fmall, tranfparent, and as it were membranaceous coats, which have infenfibly petrified, or affumed the nature of fone; as may likewife be obferved in Craw-fifh immediately after they have caft their fhells, and in the bony fkulls of men, which are at firft only thin membranes, but are afterwards turned by degrees into bone. Thefe membranes are at firft like water, and afterwards grow folid and increafe, when many fibrous and angular particles grow by degrees under them, as may be feen moft evidently in the heads of abortive children. The fame things may be obferved in the Snail's fhell, if it be lightly calcined, and then put under the microfcope.

As to the method, whereby fuch a fhell is increafed, the following are the chief particulars, the Snail's whole body is furnifhed with glands, from the orifices of which flows up a kind of mucus or thick matter, like fmall and fine rays; which, like fo many threads of fillk or velvet, are joined together in one common cruft or furface, and in procefs of time are condenfed, and acquire the hardnefs which we obferve in the fhell. This mucus or thick humour then, is the firft matter which grows into a membrane, and afterwards into a ftony skin. Its filaments are very confpicuous at the places where the windings of the fhell are applied to each other.

The outward fcale or enamel of the teeth, in men as well as in beafts, likewife confifts of innumerable very fmall and very fine filaments joined together, which I have found in fome teeth hard and polifhed, like real fone; though the teeth are at firft but a kind of mucus or thick humour, and afterwards become membranous, and at length fully hard. I have feen the rudiments of teeth in abortions of five months old, which, together with their filaments, I now keep, and can fhew in them this fingular confruction.

My moft refpected friend, Mr. Stenon, has likewife difcovered fuch filaments in oyfterfhells, and made my father a prefent, for his mufeum, of a fhell which was buried for a long feries of years under ground, in the mountains of Italy, and, by length of time and moiture, infenfibly had feparated, as it were, into many tender and fmall fhells: from this it is evident, that the fhell irfelf was formed of thofe, in its growth, in the manner I have explained. In corals I have found nearly the fame method of accretion ; that is, that they are firft thin membranes, which, by an infenfible increafe of the little grains joined together; petrify; as may be feen in a work publifhed by Mr. Boccone, of corals, in which are two letters of mine treating of the fame matter.

If you likewife view the tendons of the Snail's mufcles, which are inferted in this part of the fhell, you will find that they have grown hard as a fone there; which is indeed eafily known, both from the winding of the fhell's pillar, which becomes larger by degrees, and from the infertion of thofe mufcles in the fhell. In hens likewife, and in peacocks, the tendons of the mufcles are offified, or become by degrees hard as bones. Thefe tendons, efpecially fuch as are taken out of the lower parts of the foot, are made ufe of, by fome with us, for toothpicks.

The opercula of the fhells, Tab. IV. fig. III. m, have almof the fame origin, though their fubftance approaches nearer to chalk or plafter than to a flone; nor is it fo hard, but is more fpungy than the fhell, and therefore is made thicker; but I have obferved, that when the operculum or cover is finifhed, and the creature enters deeper into the fhell, it afterwards, under the membrane of the fhell's operculum, pro-
duces, fometimes two, fometimes three menbranes, of which fome are thicker than others, and are more or lefs calcarious. About the center of this operculum, is likewife feen a membranous filament, which connects all thofe membranes with the operculum, as if they were faftened with a needle and thread. When the creature frames its operculum or cover, it retires by degrees more and more into the fhell, fo that the verge equally fhuts up its whole cavity, and afterwards preffes out the chalky moifture, with the affiftance probably of the facculus calcarius, or calcarious bag which we have defcribed.

The principal part of the body that promotes the increafe of the fhell, is that verge of the Snail, which the creeping in of the Suail caufes to fwell fo far beyond the extremity of its little habitation, as that creature wants to ftretch and enlarge it, thus it preffes by degrees a glutinous humour out of the glands of the body, and thereof immediately forms a membrane confifting of filaments, which it afterwards makes thicker and thicker, until it at length attains a due hardnefs and firmnefs, by the preffure of the circumambient air. For this membrane is at firft fo weak and foft, that it breaks through on the flighteft touch; and this is the reafon why the halictations of Snails are found fo often uneven with fars, and fwellings on their furfaces.
If it fhould happen that the fhell be preffed in by a fall, or by any other means, or be wounded or broken, thefe Snails know fo well how to mend and confolidate it by degrees, by the application of the petrifying humour, that it becomes more firm than it was before in the places which fuffered the injury. The outward furface by this becomes very unequal and tuberous, but the inward fmooth and polifhed. Something like this is alfo obferved in the fractured bones of animals, which nature can confolidate again with a callous fubftance ; but even thofe are then alfo unequal on the furface after fetting. We fometimes meet with ribs of mutton in the fame manner, which it is very certain have been formerly fractured. I have feen the fame thing in different bones of men and other animals. I have fometimes broke a Snail's fhell fo that I could put my little finger in the hole that I made, which, notwithftanding, I have found filled up again in four days: fo that the fame means of accretion and tranfmutation, to all intents and purpofes, are obferved in the Snail's fhell as in the bones of other animals, with this only difference, that the vefiels of the former are not confpicuous; which may probably be owing to their finallnefs and delicacy, and be, caufe the blood contained in them is white: but this makes no difference.

Another thing alfo very worthy of greater admiration is, that this fhell will, even under water, whether it be frefh or falt, petrify or become hard as a flone, however much it has been like a fluid humour in the beginning. This
may be feen in river and fea Snails. But what feems to me a greater paradox is, that fome infects frame their fhelly coverings, and weave their little nets under water, like Silk-worms, out of fmall and glutinous filaments; fo that thefe threads, which are fpun from a fine and fubtle humour, acquire their firmnefs, tenacity and hardnefs even in water, as well as the threads of Silk-worms do in the air. I can fhew tome very rare and uncommon experiments on this head in the water fhell-fifh which I preferve. Let me add, that I have feen a Snail die the third day after I had taken it out of its fhell; though in feparating it I had hurted
none of the blood veffels, and had likewife carefully left untouched that part of the fhell wherein the mufcles were inferted; but that Snail before its death preffed out a certain membrane round the whole furface of its body. This membrane was the fame in all refpects as that on which I have made the preceeding experiments, and was intended by nature to fupply a new fhell. In the beginning the Snail was very fprightly ; but afterwards it infenfibly languifhed more and more, and at length, contracting itfelf under its verge, it died. Here end my obfervations on this fpecies of Snails.

C $\quad \mathrm{H} \quad \mathrm{A} \quad$ P. XII.

Of the Hermit fis, and Pinna Marina. Of the inzward turnings or convolutions of the turbinated hbells. Of the Voluta or Cylinder, the Concha Veneris, and Pencil, and fome otber hoells of the Snail kind.

IF all the things I have advanced in the preceding chapter be attentively weighed and confidered, it will appear clear as the light at noon, that the Snail's Thell is its real bone, without which it cannot live. Hence it appears what an idle fable that is which is eftablifhed even amongft thofe who ftudy fhellfilhes, when they fhew fome of the Crab kind in their mufeums, adding at the fame time that they pafs from one fhell to another, devour the animals that lived in thofe fhells, and keep them for their own habitations. They dignify them with founding names and additions, as Soldiers, Hermits, and the like ; and thus, having no experience, they commit grofs errors, and deceive themfelves as well as others with their idle imaginations.

Some years fince, when I was at the Hague, I employed fome fifhermen who lived at Scheveling, to bring me all the ftrange fifhes which they fhould catch. It fo happened that among the reft they brought many fmall Crabs, Tab. XI. fig. I. a; each of which lived in a kind of twifted, round, fmooth and polifhed fhell; but when I viewed the animals themfelves more accurately, I obferved that they refembled Crabs only in their fore part, that is, they had four feet $g g$, and two forceps, of which the right e was much ftronger and thicker, than the left f. I further faw there two tender feelers or horns $d d$, and two prominent eyes c; and under the latter there were placed fome other fmall parts. The inward part or body of this Crab was fixed to the pillar of the fhell, by the tendons of its mufcles, but otherwife it was foft and confolidated, as in Wilks and other Marina or fea Snails.

Ariftotle and Ælian tell us, that in fome fhells there are both a Crab and Snail together; hence the Crab has got the name of Pinnophylax or fhell-keeper. Thefe anthors likewife harbour another ingenious opinion,
which is, that the Crab provides food for its companion the Snail; fo that thefe two little animals live it feems, and have all neceffaries, in common, which is an admirable thing, and which has given fome authors occafion to frame feveral parables, and make various moral reflections. It is beyond doubt that this animal they defcribe was likewife a fpecies of the Cancellus or Hermit Crab, one part whereof, that which provides neceffaries, and creeps out of the fhell, is covered with a hard cruft; but that which remains within the fhell is the foft and tender part of the body; and as the fhell ferves in this part inftead of a skin or covering, there was therefore no need of a teftaceous cover or cruft, as we have already obferved with refpect to the Cancellus.

The Pinna is a feecies of the Oftracodermon, and is at this time called Vinne in the Netherlands, by thofe who have a curiofity for things of this nature ; becaufe, perhaps, the animal living within feeks its prey by violence, and catches and kills lefs creatures with its forceps. It may poffibly alfo have its name from hence, that its fhell is commonly as thin as the fin of a fifh, and when ftript of its skin, is tranfparent like the fcales of fifhes. This fhell is contracted into a fharp or pointed end on one part. In my father's múeum are many fecimens of thofe fhells, which are called by fome prickly Mufcles.

I hall not deny that fmall Crabs are frequently found in the fhells of fea Snails, when their inhabitants have been killed and taken out of them; nay, and fometimes Star-fifh are found in the fame manner, for 1 faw this very thing in the town of Petten, on the fea coaft. But this happens only by chance, and thefe little animals cannot fay long in thofe habitations; when hunger begins to incite, they go out for food. Thus, when I was looking for infects, I have, in company
with Mr. Thevenot, and Mr. Stenon, found feveral fmall Crabs in the river Seine, in the bones of fome ox's skulls which had been thrown into that river.
The thell in which the Hermit abovementioned lies, is on the infide twifted into the like windings as the operculated Wilk ; I fhall therefore omit its figure in this place. But that the diverfity of the windings may be known, in fome meafure, in other fhells, I fhall now reprefent the inward windings of the turbinated kind. The common Turbo is of a very elegant ftructure; it begins at the bafis with broader windings, Tab. VII. fig. . $1 . a$, and, rifing by degrees obliquely, like a circular ftair-cafe, converges into an acute point b, and thus forms various cells and lodgments.
But the figure of the Voluta, or that called the Cylinder Snail, is much more beautiful, becaufe the convolution or winding is more complicate and intricate; its entrance, fig. II a, growing narrower b by degrees, forms another round c, which afierwards, being fill twifted or convoluted d round its pillar, produces beautiful and regularly fpiral tendrils, which grow narrower by degrees, and at length are lof. This ftructure truly merits admiration, for all things are there fo beautifully divided and feparated by inward divifions and cells, that they exhibit a labyrinth of miracles, into the inward cell of which we cannot obtain admittance, unlefs we firft pars round all thefe windings. Nor can any one difcover its wonderful elegance, unlefs guided by the Ariadnean thread of an unwearied refearch into the works of God. The Almighty gives knowledge as the price of labour, which the heathens themfelves have declared.
No lefs admirable are the finufes of the Concha Veneris, with which the women in Hoiland adorn the ftrings tied to their keys, and polifh their whitened linen after bleaching. This fhell is confructed with various convolutions, and unufual and amazing windings, like tendrils; and toall thofe convolutions of the inward part of the fhell, the body is fitted and made to agree by its bendings and windings. I have already explained in the Snail before defcribed how this is done. Its entrance, Tab. VII. fig. III. a, is beautifully fortified and divided into little teeth like thofe of a faw; fuch as are likewife obferved to be placed on the infide about each winding, as far as the extremity b of the fhell, which terminates in a very fharp and fmall point. But all thefe remarkable things cainot be exhibited in a fingle figure.
In the Penicilli Marini, which the French call pencils or plumes, the moft wife architect has difpofed their windings in a very different manner : they begin in the orifice, fig. iv. a, of the Penicillus, and infenfibly form
another lodgment or apartment, with their notched or denticulated bendings; then as it were, diminifhing by degrees, and rifing again with broader convolutions, they form a third lodgment c; afterwards they decreafe more and more, and make a fourth d, fifth e, fixth f, and feventh g compartment. The laft is like a little ftring or tuft of filaments, and is properly the firf rudiment from which the Penicillus begins to increafe, and whence, by a gradual augmentation, it acquires or raifes all the reft of the compartments.

In the cabinets of the curious, there is kept a certain fpecies of Snails, which agrees in its internal conftruction, well enough with the Cornu Ammonis. This confifts of a fimple little tube, fig: vir. a, rolled into itfelf, very large before, narrower behind, and ending in a very fmall point. It differs from molt other fhells of Snails, becaufe it is divided on the infide into numerous compartments, by delicate partitions; which are tranfparent even on the outfide, 1 , $2,3,4,5,8 c \mathrm{c}$. In the fore end, the partition which is hollow like a faucer, is naked or plain to the eye, and has a fmall hole pierced through it there a *. If this hole be accurately viewed, it is found actually to open into the tubular appendage of the partition, which appendage or tube is inferted in the opening of the fecond partition, and the tube of the fecond into the aperture of the third, the third into the fourth, and fo afterwards to the end of the fhell.

All thefe things appear plainer, if the outward fhell of the Snail is picked off; for then the ftories or partitions, Tab. VII. fig. viif. $b 6$, fituate in the Snail's tube, are feen very plainly, as well as the little tube or fiphunculus, that reaches from the firft partition to the aperture and tube of the fecond, and the tube of the fecond to the third, and fo to the extremity of the Snail: all which may be feen about the inward fide of the curvature c of this creature very diftinctly. But fince thefe things cannot be fo diftinctly exhibited or underftood under its natural fize, I have thought it advifeable to reprefent, of thefe, feveral partitions confiderably magnified ; in which figures, the acetabulum or partition appears firf in its compafs, fig. ix. ddd, and on the infide its inward fold, hollow like a fpoon. On the upper part of this is feen e a little aperture formed with the moft exquifite art. Behind this aperture is feen the tubular appendage of the acetabulum or partition, which, on the upper and lower fide of that partition, is fretched out, like the crooked handle out of a certain fpoon, and is received very exactly into the aperture and tubular appendages of the partition, fig. x.g, and this again into the aperture and tube of the third b.

[^12]What has been hitherto faid, is far from completing the artificial ftructure of this wonderful Snail: for as this Cornu Ammonis becomes fmaller by degrees, fo do its partitions, and their tubes iiii become lefs, until at length they become invifible. I obferve likewife, that there tubes of the partition are not connected together, but are only contiguous, and are put into each other, in the fame manner as the tubes of telefcopes, which receive each other in fuch a manner as to be freely moveable. But on the contrary, the acetabula or partitions themfelves increafe with the Snail's fhell, and are united to it. I preferve fome of thefe acetabula, which fhew their very elegant ftructure, if their tubes are joined together; for which purpofe, and that they mould not be eafily loft, I keep them together bound with a filver thread.

This Snail therefore agrees with all others in regard to its ftructure, and its thell confifts of one crooked tube. It differs, however, from the reft only in that the apartments or cells are placed in a different manner, and have perforated handles : thefe may be faid to form the pillar of this Snail, fince they exactly receive each other.

I never faw this fhell with its Snail but empty only in my father's cabinet. I fhould therefore be very glad to know, by what means the body of this little creature, which inhabits that fhelly houfe, is placed there, and whether it extends through all thofe apertures from cell to cell, and is interfected, as it were, in fo many places; or whether it lives only in the extreme apartment, and is inferted with its mufcles in the tubes of the fhell. But however much I wifh to be gratified in this particular, I thall never, probably, accomplifh my defire. It would therefore be proper for thofe who vifit foreign countries, for the fake of commerce, to import fuch things; for though they have never fo little curiofity or tafte for thefe fludies, they ought to endeavour to make the works of God manifeft to pofterity, and by due care they might profit more than by any other means whatfoever.

The great Indian Nautilus is nearly of the fame ftructure with the Cornu Ammonis, and therefore I had once thought to give its figure in this place : but fince it is found in many of the cabinets of the curious, and of the fame ftructure with this, I fhall defift from my intended purpofe, and the rather, becaufe the celebrated Aldrovandus has left us a pretty neat and exact figure thereof.

Let it fuffice, that I have annexed the figures of the two tubular Snails, or teftaceous tubes already defcribed, which afford an example, from which the manner of conftructing all the thells of Snails may, in fome meafure, be underftood. All the difference obferved between them arifes from the variation of their convo-
lutions only: to which, if we further add fome outward ornaments of ridges, hollows, windings, plains, tubercles, depreffions, extenfrons, impreffions, and colours; and lafly, that the cavity of the pillar fometimes grows together entirely, as I have likewife fometimes oblerved in the fhell of the garden Snail; it is then eafy to reduce all the geometrical figures, curves, oblique and right angles, in all kinds of Snails, to one fpecies, that is, to an oblong tube, which is curved, curled, or bent in and out, and grows in this ftate.

The tubular fhell-fifh before-mentioned*, exhibits the moft fimple articulation of all the kinds, for in their beginning they are ftretched out, like a plain tube, Tab. VII. fig. v. a, or little inteftine, and are turned or bent round moftly near the end b. And hence arifes that cavity, fig. vi. c, whereof I fpoke, when I treated of the cavity of the pillar. But thefe tubular creatures grow together, fometimes ten or twenty, in fo perplexed a manner, that nothing certain can be diftinguifhed concerning them, fince nothing appears to our view but ends or tops, windings and little apertures.

I fhall further add, that almoft all kinds of Snails and fhell-fifh are twifted towards one and the fame fide; nor can many be found, at leaft very feldom, the convolutions whereof go, Tab. VII, fig. xı, a, in a direction contrary to the others. In frome fpecies of oval Turbo's, and fome others, this is fometimes found ; and fuch fhells, for this reafon, that they are lefs common and more efteemed, are carefully kept in the cabinet of the curious.

The little Turbo.

I found fome years ago a fmall Snail between the bark and wood of an old willow-tree, the fhell whereof refembled a fea Turbo, and from a fomewhat broad beginning, terminated Tab. VIII. fig. I. a, infenfibly in a fharp-pointed top. This Snail is never feen in the day time, except in rainy weather; it then always hides itfelf under the bark, or in other Thady places, and refting there, it faftens that part of its fhell by which the body creeps forward, to the wood, the other acute extremity being obliquely directed upwards. The fhell of this Snail is likewife curled or convoluted in an inverfe manner; and what merits great notice is, that its genital organs are placed in the left fide of its neck, in an order contrary to all other Snails. But I have fometimes obferved the convolution of the fhell to be inverted in the Purple-fifh. It is therefore probable that whatever Snails have their fhell twifted in an inverted manner, have likewife their genitals in the fame fituation.

I have very feldom feen this Snail with its Thell larger than I have expreffed it in the figure; nor have I found that part b of its body, which

[^13]creeps therefrom, larger than there fhewn: for when this part turns out, it carries its little thell like a pyramid obliquely on its body. It has four horns, whereof the two upper ones have their eyes in their extremities. The two lower do not appear fo diftinctly, being only two obtufe or blunt little fwellings. The two upper horns and the eyes are large, in proportion to the bignefs of the creature. The aperture of its verge, through which it breathes, is likewife in its left fide. Its Chell is twifted into feven fpiral lines, and is adorned on every fide with little ribs or ridges, fo that, by this means, very beautiful wrinkles or folds appear in this fhell, which has likewife its periofteum to cover it.

The internal parts of this little creature agrees in general with thofe of the common covered Snail. The parts of the jaws, mouth, and palate, and all the falival veffels and the ftomach, are alike in both. The brain lies on the gullet, and may likewife be beautifully diftingu!fhed, but in its ftructure. it approaches more to the brain of the common water Snail, which I have reprefented in Tab. VIII. fig. Iv. Its pointed liver fills the extremity of the fhell, and, like the latter, it is likewife twifted, but its ftructure is glandulous. The orifices for the penis and uterus are opened in the left fide, fo that the penis, erecting itfelf, fprings from a place directly oppofite to that in the common Snail. But it appears from this perfection of the genital parts, that the creature, though fo minute, has already attained its full fize. The ovary likewife appeared to me pretty diftinct. The purple facculus or bag, was likewife very vifible, as well as the little part in the form of a chain.

I preferved this Snail alive fome days, by giving it lettuce in a glafs veffel, into which I had poured alfo fome drops of water, during which time it moved the whole day. At other times, when the weather is hotter, this fpecies eat chiefly at night. In the month of June I found it under the bark of willows.

If its fhell be viewed with a microfcope, the aperture, Tab. VIII. fig. II. a, of the inverted twift, through which the body paffes, and the opening b of the pillar, and the ridges of the furface, or the ribs ccc, appear clearly to the eye.

The finall flatted Snail.

Under the bark of willows is likewife found another fpecies of fmall Snails, the fhell, fig. III. a, of which is fomewhat of a more fimple ftructure, and fo thin that it is all over tranfparent. The Snail contained in this died for drought before I could diffect it. Its fhell was all tranfparent, by reafon of its exquifite finenefs; fo that the dead body of the Snail ap-
peared through it, diverfified with fome colours and fpots.

The oval Snail.

In the rufhy grafs of ditches, and on the water-lilly, when its leaves reach to the furface in rivers, there is found a certain fpecies of Snails, which refide there on account of the cool air and moifture, where they may at any time feek out for their food: but they go to feed chiefly late in the evening and early in the morning, and in the heat of the day they remain quiet near each other under the fhade. Their fhell which they carry on their bodies, is of an oval figure, marked with many hollows or furrows, and adorned, Tab. VIII. fig. iv. a, with a periofteum of a pale red colour. The hinder part is fo tender, that when roughly handled, it is very eafily broke, and this is rolled into a double fpiral part b. The body of the creature that creeps c out from thence is marked with points or black fpots, and in the fore part it ftretches out two blunt or obtufe d horns, under which are feen two others fmaller.

In the mouth of this Snail is a pretty ftrong tooth, which is extended into a horny little bone, and expands itfelf through the whole inward part of the mouth. The aperture of the verge is on the right fide, and the orifices of the genital parts open at the fame fide in the neck. The ftomach is of a pale colour, and is variegated with black points or fpots ; hence it appears upon the whole gray. The falival veffels which run near the gullet under the brain are very remarkable and large, in proportion to the fize of the animal, and are fpeckled or fpotted like the ftomach. The liver is the fame as in the common Snail. The heart is placed in the left fide, and there lies the lime bag alfo, which is very large, and full of round white globules of various fizes. The brain and nerves are like thofe of the common covered Snail. The penis appears fhort, but if the membrane, by which it is erected, be opened, it is found bent on the infide like the tendril of a vine, and is feen to be really very long. The fructure of the uterus is the fame with that of the common Snail; but on one fide of it is a fmall part that I never faw in that Snail. After this follows the yellow facculous bag defigned for the glutinous moifture; and at length the fmall part in the form of a chain, which is very black like pitch. The purple pearl-eyed little knot appears half round in this Snail, though it is really fomewhat oval. I could not difcover more parts in this little creature, though I obferved that it had the fame mufcles as the common Snail; nay, that two of them were defigned to pals underneath through the brain, for the purpofe of drawing in the parts before mentioned.

C H A P. XIII.

Of the garden Snail*, the houfe Snail, and that of the fields or path wayss.

AL L the external and internal parts of the garden Snail, which is a handfome little creature, are the fame with thofe of the larger Snail, only that they differ a little here and there in refpect of ftructure and colour. Since therefore the difference is not fo great in regard to the reft, I fhall here briefly explain the only one that is in the genital parts. The apertuie of the genital organs, Tab. VIII. fig. v. a, is placed in the neck, fomewhat lower than it is in the larger Snail. The uterus $b b$ and its ligament c, and the bag which holds the glutinous moifure, are like thofe of the larger Snail d. There is, moreover, no difference in the clain-like little part e. As I began this inquiry in the month of June, which was indeed far advanced, the little eggs f were feen more diftinct in the ovary, near the extreme fpiral part g of the liver; thefe eggs were, in my opinion, to be carried from thence through the chain-like little part into the uterus, and to be covered all over with the glutinous moifture. The purple little knot b was of a colour almoft approaching to a pale yellow, and contained a ftronger fubftance than in the larger Snail. The other tube or pipe i, which in the larger Snail opens into the uterus, was in this flretched out further, and the alcaline little bone was, in a fituation directly contrary, thruft into it. In the larger Snail, likewife, I have found this tube fometimes in the fame fituation. This little part was moreover formed, where in its beginning it is connected with the uterus k, in the fame nanner as it is in the larger Snail. The imperforated appendage l of the uterus has likewife the fame ftructure, but is of a more gray colour: the tefticles m likewife, were like thofe of the covered Snail, but confifted of longer filaments, and were divided only into fix veffels. The alcaline little bone n was of a fructure entirely different, and wanted thofe four little ribs, which I have before exhibited in the magnified bone of the larger Snail, but was very beautifully decorated with little holes, and little prominences that met all together. It was however full as big as the little bone of the other Snail, and may likewife be ftretched further out of the body, for it ftood on a longer little knot, the neck whereof was much longer, and likewife of a gray colour. The penis oo feemed longer and more acute, and I have here delineated its only mufcle, Tab. VIII. fig. v. p, which draws it in. This was placed in the fame manner as in the large Snail. Moreover, the common duct q between the
penis and uterus did not differ in refpect to its ftructure. But this Snail twifted about the fharp end of its penis in the diffection, and curled it into various turns r, which I never faw fo clearly and diftinctly in the other Snail.

There is great difference between the manner of coition in the larger Snail and this of the garden ; the penis of this latter is rolled out further, and is more erected and much longer; it has at its origination the fame glands the skin is provided with. 'The coition of the garden Snail continues longer than that of the larger Snail. And the whole penis of one Snail is put as far as its extremity into the body of another; hence thefe two penis's are fometimes feen, fig. vi. a, twifted together in a very wonderful manner. But this winding is not feen fo beautifully as I have delineated it, unlefs the Snails are drawn a little afunder; for then is perceived the wonderful manner whereby the penis of one Snail b rolls itfelf round the penis of the other, and enters into the uterus c, whilft the penis of the latter is, in its turn, twifted round that of the former d, and likewife put into the orifice of that creature's uterus e. But if thefe Snails are pulled away from each other at the time of coition, the whole penis's, long as they are, being drawn from the orifice of both Snails appear in fight, and each creature afterwards turns them in in a wonderful manner, and after a fhort time draw them back again into the body.

But as each Snail has its genital parts in the right fide of the neck, their heads are applied to each other crofs-ways at the time of coition, and confequently the body and horns of each Snail have a contrary fituation at that time. For in the body of the former Snail f, the opening and divifions of the verge whereby it draws the air, are vifible; but in the latter Snail nothing is feen of them g, for this Snail is placed in a different manner.
Thefe garden Snails are of the moft common kind. Their fhell is grounded on yellow, and is divided lightly by fpecial fmall furrows; it is alfo adorned with tawny or black rings, which furround it nearly in the courfe of the fhell's fpiral turns. It is alfo covered with a very thin membrane or periofteum, which is black or yellow in the fame places where the fhell itfelf is painted in that manner, and it likewife preferves its colour when the membrane is taken from it.
Each of thefe Snails has alfo four horns, of which the two upper ones only have eyes.

[^14]It was therefore an idle fancy in fome perfons, to think that the Snail ufes its horns, as a blind man does his ftick, that is, to find out the way it is to creep through, or to try and diftinguifh, by its touch, whether objects are hard or foft. The head of thefe Snails, in that part of it where the lips are fituated, refembles, in fome meafure, the head of a cat ; and when well viewed, it appears like it in feveral refpects more evidently.

The common boufe Snail.

The naked houfe Snail, which is found in moift cellars and about the tops of-cifterns, is naked and has no fhell, but is covered with its skin only. In this particular it agrees with that part of the covered Snail, which creeps out of the fhell. On the outfide it is provided with four horns on its head; the two uppermoft whereof have eyes at their extremities, Tab. VIII. fig. vir. aa, which are fituated a little within the margin, on that fide which lies towards the eminence placed on the back. The two lower horns $b b$ are fmaller and have no eyes. There is further feen on its body, that eminence or velabrum $c c$ which is fixed to the back, and runs along the reft of the body; and the body is furnifhed with oblong, acute, and tender glandules, and variegated with black lines and fpots. But the horns, head, neck, and whatever reaches beyond the eminence, are adorned with many fmaller and more delicate glandules. On the right of the declivity of the neck appears an apperture d, through which the genital organs pufh themfelves.

The eminence on its back itfelf, is of a different colour from the reft of the body, for it is adorned with chanelled or crefted little grains, and it is moreover very beautifully variegated with black fots. This is not common to all houfe Snails, for they differ much in colour. Towards the fore part, at the head, the eminence is loofe and free, but for the moft part, it is kept very clofe to the body, unlefs when any one provokes or vexes the Snail in that place; for then it raifes and moves it different ways; and I have, for that reafon, drawn it as elevated in the figure. On the hinder part, towards the back, the eminence is very ftrongly joined to the body; but in its right fide opens an aperture, Tab. VIII. fig. vil. e, whereby the Snail draws air and breathes, and difcharges its foeces; for which ufes the verge is likewife appointed in the covered Snail, and with this verge the eminence agrees very much, fo far as it is placed on the fore part of the body. The hinder part of the body is not very remarkable, only in refpect of the different ftructure of its glandules. Moreover, in both fides of the body is obferved a fmall, black, unequal margin. In fine, there is on the hinder part, above the tail, a prominent fubftance f like a Cock's comb, which is indeed difpofed in a different manner in the field Snail. The Snail fecretes a glutinous humour from this part.

If any one opens the eminence at the mouth of the air paflage with a little pair of fciffors, he will fee that the inward skin is made on the infide like a net; which ftructure feems to be produced by the veffels diftributed through it, as I have likewife before thewn in the verge of the covered Suail. This little net may be feen very beautifully through the aperture of the eminence on a clear day, when the Snail opens it ; for the creature can contract it fo clofely, that not even a veftige of an aperture appears. In the cavity of this eminence, on the left fide of the body are feen the heart, which beats, together with its auricle and pericardium, and likewife other cavities through which the air paffes. But when you remove this little net from its place, you will fee a fmall fone underneath, which is called, by authors, Lapis Limacis, the Snail ftone, and is faid to ferve for various ufes in medicine. This little fone may properly be called the os thoracis, or breaft bone of the creature, for it is placed in the middle of the thorax and back. It is of the figure of a fmall hollow, and fomewhat long fhell, fig. viif. a. and being connected in its circumference with various membranes, and on the upper fide with the little net, it is thus kept in its place. It is fometimes obferved to be altogether membranous, but fometimes it is pretty thick and all ftony, and it ferments with an acid; at other times, again, it becomes ftony only here and there, and is obferved to be interwoven b, as it were, with veffels which are filled with ftony little grains. Hence one may underftand the manner of its production, which is from the coagulation of the ftony particles; in like manner as is obferved in the membranes which the covered Snail frames, when it lies fome time at reft. Thefe flelly ftones are found in younger, as well as full-grown houfe Snails, and I have fometimes found in the largeft, very fmall and membranaceous ones, interwoven with various petrified veffels; and often in fmaller ones, I have found them formed of folid ftone. Hence I am inclined to think, that the Snails change this their little ftone yearly, in the fane manner as Craw-fifh change thofe two femi-convex and plain ftones, which are likewife placed in their thorax, and are improperly called Crabs eyes.

Near the heart is obferved a facculus calcarious, or lime bag, not much different from that which we have defcribed in the large Snail. Afterwards the ftomach, inteftines, and genital parts prefent themfelves in the abdomen. The fomach is indeed pretty large and ftrong, and confifts of three diftinctly vifible coats. The innermoft is wrinkled into plaits, and is of a yellow colour; the middle one is mufcular; the outermoft is fomewhat corrugated or rough, with very beautiful partitions, efpecially when the fomach is empty. Directly before are feen the falival veffels, which, as well as thofe out of which they fpring, are forter than in the larger Snail, but they are of the fame texture. The inteftines pafs twifting or wind-
ing through the liver, which is placed between them, but they are much lefs rolled and turned in this than in the larger Snail, fince they are ftretched according to the length of the body, and are not obliged to follow the convolutions of a fhell. The liver is divided into many lobes, and confifts only of minute glandules.

The genital parts in this Snail are worthy of particular notice, fince they fill the whole belly: but I thall treat of thefe hereafter, when I hhall briefly defcribe the parts of the head, neck and breaft. The head prefents a tooth, vifible in the mouth like that of the larger Snail, and all the parts of the mouth are alfo formed in the fame manner as we have there related. The brain likewife, the fpiral marrow, and the nerves, which are placed in the neck, do not differ much, and are eafily difcovered. The mufcles which move the upper horns inward, are much more brown or blackifh than in the larger Snail; but the reft, and likewife thofe which pafs through the thorax, have fome flefh, as well as their white tendons, and are both inferted in the fkin , which is very thick, and where the eminence lies: nor are there any bones in the Snail, in which the mufcles fhould be inferted. A mufcle is therefore here inferted in a mufcle, and one dilates another, which is a very admirable thing to fee in animals.

The organs of generation in this Snail, open by three diftinct apertures in the neck, Tab. VIII. fig. Ix. a, which unite in one paffage on the outfide. The firft opening is peculiar to the penis $b b$, the fecond to the uterus cccc, the third to the purple bag, which is very fhort in this Snail. The penis is ftrong and very nervous, and it lies in a little kind of a purfe, which may be diftended by the breath, that the penis may roll itfelf out from thence. On the hinder part or fide of the penis iffues a fmall filament e, which is connected with that of the uterus $f f f$. This ligament of the uterus abounds with many granules, which are white, and unequally divided ; thofe, at firft fight, I took for the ovary in the larger Snail, thinking that the little eggs were conveyed through certain hidden channels out of it into the uterus: but I now obferve, that it has a peculiar kind of tube in this Snail, which opens into the hinder part of the cavity of the penis, and conveys its matter into it. The uterus wraps itfelf round this ligament, and is greatly ftrengthened by its connexion therewith, though this connexion is formed in the beginning only by fmall intervening membranes.

The uterus in the Snail which I diffected, was very much diftended and fwollen $g g$ with little eggs; nay, its texture feemed more ftrong and firm, than when nothing is found in it. On the hinder part lay the glue-bag $b h$, very much dilated and expanded into lobes, which were again ftudded in a peculiar manner. When I viewed them with a microfcope, I obferved, that they were all full of very fmall fpheroidal globules, whereof fome were bigger
than others. The chain-like little part $i i$ was ftretched ftraight, or upright enough. The ovary was fallen down \dot{k}, and deprived of its eggs, fo that nothing was left in it but the membranous inclofures. All the eggs, in my opinion, had defcended through the chain-like tube into the uterus, and were to be immediately there covered with moifture, by means of the faculus that fecretes that fluid: this I fhall explain more at large, when I hall fpeak of the field Snail. Nor did the eggs, notwithftanding, fluctuate freely in the uterus, but they all lay firmly fixed on one fide, which makes me ftill doubt to advance what I have faid of the ovary and eggs as true and certain. But I hope thefe things will hereafter be made plainer. I fhall therefore proceed to the field Snail, the anatomy of which will throw great light on this matter.

Of the field or path-way Snail.

The common Snail of the path ways and fields differs from the houfe Snail, chiefly in refpect of the ftructure of its external skin, and in a peculiar kind of verge which furrounds its body; to which may be added, the fiffure that is in the extremity of its tail, out of which a certain glutinous humour is fecreted: but there is no difference in the internal parts. I have delineated the field Snail, which I here exhibit, in the form it has when contracted. Thus its two largeit |horns, Tab. IX. fig. I. a, may be feen, except a fmall part thereof, which is covered by the eminence or velabrum. On the right of this velabrum is feen an aperture b, whereby the Snail draws the air and difcharges its excrements: the fame may be obferved likewife in the houfe Snail. In the cavity of the eminence, the skin is alfo white and reticulated, as it is in the houfe Snail. The external texture of this eminence confits of fine glandular granules, or little grains, which are far from being orbicular ; they are ftriated as it were, and rendered unequal by fome tubercles, though thefe Atriæ or furrows are not as remarkable in this as in the houfe Snail. The reft of the body is furrowed as with pretty confiderable wrinkles; hence it is that many glandular protuberances appear in it, which are of a triangular form, and rife up obliquely, and are divided $c c$ by many fmall glands. The body is, moreover, adorned with a full, or gloffy, red verge $d d$, which is beautifully divided and fubdivided by black furrows, fome of which therefore are more confpicuous than others. This Snail can extend itfelf to three times the length that I have here reprefented; and then the divifions of the skin before defcribed acquire as it were another form, by the force of its expanfion. The whole body is of a deep brown, mixed with a ruddy colour ; but thefe Snails differ very much with refpect to their colour.

As its internal parts are organized, and circumftanced much in the fame manner as in the houfe Snail, I mall now briefly defcribe only the ftructure of the genital organs, and add the
conftruction
confruction of fome of the internal parts, which I have here alfo delineated. The genital organs are thruft out of the neck, in the fame manner as in the houfe Snail, and are found to be likewife placed behind the parts of the palate and mouth, Tab. IX. fig. II. a. On each fide the larger horns $b b$ may be feen when drawn in ; they appear under the divided skin of the head. Behind the proper parts of the mouth, and above the gullet d, is placed the brain e, which is formed of two fmall parts like globes, applied clofe to each other. Immediately after appears the origin f of the ftomach, together with the falival veffels $g g$, which are here reprefented as clipt or cut off near the gullet. After thefe are obferved two glandular corpufcles $b h$, from which the falival veffels arife. Then at length is prefented to our view the fomach, with its veffels i, which are of a pure white, like the colour obferved in the inteftines $k k$. The windings of the inteftines furround the liver lll , which confifts of fmall glandules, equally divided and interwoven with very white veffels. It fends forth the gall-bag m, which is large, and difcharges itfelf into the finall guts that are next to the ftomach.

The beginning or rather end of the genital organs is feen in the skin n of the neck, and their mouth or opening appears there in the outward skin ; which, however, I have not exhibited in this place, that the other parts might be the more diftinctly vifible. The firft thing that prefents itfelf is the peniso, which, being twifted like a tendril of a vine, opens with a kind of tube p into the cavity of the uterus. Nothing of this kind is obferved in the houfe Snail, but in the covered Snail there is likewife a common duct, and the penis is extended longer. Behind the penis is feen a remarkable pear-fhaped bag q : this is the purple-bearing bag; it is very large in this Snail; and contains a delicate juice. It opens by a fmall tube r into the cavity of the skin of the penis, by means of which the latter erects itfelf.

The origination s of the uterus is pretty thick and ftrong, and after it grows fmaller t, it
twifts and bends itfelf, and goes into the body of the uterus zuuu, as it does in many other Snails: But the ligament of the utcrus is not feen in this; its place is occupied by feveral whitifh veffels, which are connected xixx by a fmall kind of membrane, that ties the curled windings of the uterus. About the end of the uterus, where the bag of glutinous moifture $y y$ is joined to it, is feen a place where the chainlike tube is inferted, or fixed in the uterus: nay, it further appears, how this tube runs through and over the liver, and under the fmall guts α, and is connected with the ovary β, which is here empty. This ovary is divided into two parts, as it is in other creatures. The divifion, however, is not fo remarkable in thofe Snails, which have not exercifed venery, as it is in the ovary, which I here exhibit alone, fig. int. a. I therefore reprefent this ovary big and expanded, as I think I faw it fome monthis after coition. For it is then obferved, that this little part confiderably increafes, Tab. IX. fig. 11I. a, and that the eggs $b b$ are made vifible therein. I have likewife obferved this increafe in the ovary of the fhelly Snail. But the eggs, it feems, are afterwards difcharged out of the ovary, and defcend through the chain-like little tube c into the cavity of the uterus, to the hinder part of which the former is joined, fig. II. z. But as the paffage of the eggs is fo near to the bag of glutinous humour, I therefore think, they are there covered over with a little of it, and that when they grow larger, they get more of it, and, at length, attain their full bignefs in the uterus. But I could never hitherto find eggs in the chain-like little part, as I have already mentioned in the defcription of the houfe Snail ; nor could I fee that they are conveyed through it. I fhall therefore defer advancing this opinion as an undoubted truth, until I fee it myfelf; though I think, at the fame time, the matter may moft probably happen fo. The heart likewife is feen in its natural fituation γ, as alfo the manner in which it is furrounded by the bag $\delta \delta$ of calcarious or limy matter:

C H A P. XIV:

Of the common wiater Snail, alfo, of an uncommon and viviparous kind of water Snail; and of the flatted water Snail, and the mujcles of the river Vecbt. Alfo a remarkable obfervation on the common Snail.

THE common water Snail, which I find every where at the edges of ditches in Holland, differs much both from the common covered, and from all other Snails. It is diftinguifhable, not only in regard to the outward skin or fhell, but alfo with refpect to its eyes, and the apertures both of the verge and the genital organs, which are all confpicuous on the outfide. There is alfo a ftill greater difference
in the internal parts ; all which I fhall now briefly enumerate.

The fhell, which is in the form of a fpheroid in the large Snail, is in the water Snail rolled in an oblong form like that of the Turbo, Tab, IX. fig. Iv. a. But there is ftill a greater difference in its eyes; for as the latter in the common Snail are at the ends of the horns; on the contrary, they are found in this
aquatic or water Snail, to be fituated at the bottom or bafis $6 b$ of them, but they are not provided with any vifible mufcle to move them. Even the horns themfelves, which end in Charp points $c c$, are only weakly drawn in occafionally ill order to become fhorter.

In fome of thefe Snails, I faw with amazement that there were two eyes, placed near each other on the right fide of the creature, each of which was provided with its own proper chryftalline humour. This, I think, is very remarkable, and ftrongly demonftrates the manner wherein the eyes may be multiplied in infects, as I hall hereafter demonftrate, when I thall treat of Bees. The nerves of the eyes in this water Snail are lefs vifible than in the common kinds; nor do they arife immediately, as is faid, from the brain, but from a little nerve which lies towards the fore parts of the head. In other refpects the eye itfelf does not differ from that of the covered Snail, only that it is bigger, and in a manner pear-fhaped, or like an onion. The chryftalline humour is likewife larger in this, however diftinguihably lefs the little creature may be in itfelf.
The opening d of the verge is very worthy of confideration, and has divers mufcles, by which it is dilated and contracted. The Snail fometimes gathers this aperture into an oblong tube, and ftretches or protends it above the furface of the water, in order to draw in and expel the air. This may not only be feen but heard alfo, by the noife which the Snail makes in moving the water. Nay, by the affiftance of this aperture, through which the air is conveyed into the inmoft furface of the membrane of the verge, and into the cavity of the body itfelf, the Snail makes a beautiful figure fwimming in the water.

This creature can likewife immerge or dive to the bottom of the water, if it comprefles the internal air. This is effected in the fame manner as when the air is compreffed in a glafs with water in it ; for little perforated glafs globules fwim at firft in the water, by the affiftance of the air contained in their cavity : all thefe little globules fubfide as foon as the fimall quantity of air contained in them is condenfed; which happens by the common preffure of the air, that is above the water in the glafs; but they emerge or rife again to the furface, as foon as the finger or any thing that ftopt it, is removed from the mouth or orifice of the glafs. This is a pleafant experiment, and I have found it very true, according as it has been defcribed by Cornelius Confentinus, in his platonic circumpulfion.

In the fame manner does this Snail fometimes dive under water, and again fwim to the furface, by properly managing the quantity of air in its body in fuch a manner; the later, being as heavy as the water, it can difficultly be fupported on the furface, and is again depreffed to the bottom by the leaft compreffion of the internal air. But when the Snail expels all the air out of its body, which it will do if it
be pricked with a tharp-pointed little needle, it will not then be able to fwim up to the furface of the water, but by creeping flowly. So that from hence it is probable this creature would die, if any thing like it fhould happen in dirty or miry ditches; fince, in that cafe, it could not reach the furface of the water, until after fome days, and would therefore be fuffocated for want of refpiration.

There is likewife a great difference, with refpect to the external skins or coats of the genital organs; all the parts of generation in the covered Snail iffue out of one opening only, whereas in this aquatic or water Snail, all thofe parts and the entrances or mouths of each are diftinct. The penis indeed rolls out and erects itfelf from the neck through a peculiar aperture. Tab. IX. fig. iv. e. But the opening of the vulva is difpofed, by the wife Architect, immediately under the tube of the verge f. The verge itfelf likewife differs greatly from that of the common Snail ; it is fmaller, more hollow, and capable of greater motion; but then it is fitted on the infide to every part of the extremity of the fhell gg , in the fame manner as it is in the common Snail. The tooth h, and little tongue which is feen under it , are of the fame texture in this as in the common Snail; unlefs that the tooth it more equal, and not divided into fo many confiderable notches.

The internal parts likewife differ much both in colour and ftructure: but the greateft difference is in the ftomach, which is membranous in the covered and other Snails, as it is in men and in quadrupedes; but in this water Snail it is of the fame ftructure in all refpects with that of the Hen or Cock kind; fo that one would think the real ftomach of a Hen is here reprefented, without any difference, but that it is much fmaller. Moreover, the colour of the craw or crop is a dark or obfcure gray. The gullet of this paffes likewife the chink or crevice of the brain, which is a very agreeable fight in this admirable creature: For fince the fwellings or productions of the final marrow, are, by the addition of a certain heterogeneous yellow matter, here diftinguifhed, all thefe parts are therefore the more diftinctly vifible. Hence it is, that one may, with greater eafe and certainty, eftablifh the anatomy of the water Snail, than that of the covered Snail ; for in the former are many coloured parts, by means whereof the mufcles, and many other parts, efpecially thofe of the palate and mouth, may be eafily diftinguifhed.

The falival veffels of this are like thofe of the common Snail. The liver is likewife compofed of vifible glandules, and rolled into the like firals. The heart alfo, with its pericardium, is placed in the fame order. The veffels on the verge, on the contrary, are not 10 difinctly vifible. The lime bag is of a pale orange colour. All the mufcles are inferted in the outer part of the fhell and its pillar.

The organs of generation likewife differ: the penic in this water Snail is very broad; it is
like an oblong tongue; and refembles, in fome meafure the penis of a Drake. The mufcles likewife are ftronger, and more diftinct and numerous than in the common Snail. The uterus is divided into three parts, and opens with two mouths into another, which is under the verge; The firft part is of an afhy gray colour, and like the belly or rough tripe aforefaid in beafts that chew the cud; then the uterus becomes more glutinous, and receives fome expanfion from the chain-like tube; to which likewife adheres the bag of glutinous moifture, and alfo another little part which may be taken for the ovary. Moreover, the chain-like tube is larger here, but where it is connected with the ovary and liver, it is of the fame ftructure as in the covered Snail, unlefs that thofe white ftuds, which I obferved in the covered Snail, are of a yellow colour in the water one. The purple little knot is alfo here of a full orange colour, and opens into the vulva by a fingular kind of tube, as in the naked Snails. I have not feen the egg, but I faw fome relaxed, round and tranfparent little parts in the body, which I thought to be properly glandules. Under the organs of generation, near the fomach, I obferved a certain ftrong plait or fold of veffels, of which a confiderable number were detached towards the liver.

The fomach, when opened, very beautifully exhibited its two ftrong mufcles, and in its cavity were found fome hard feeds of water plants; by the help of thofe the Snail probably grinds its food, as Hens and Pigeons do with little ftones, bits of lime, and other things which they devour. I have been informed that a Duck or Drake has fwallowed a piece of gold, called a piftole, and diminifhed it by attrition to fixteen grains; and hence arofe the flory that the Oftrich can digeft iron, as Harvey well obferves.
The food which thefe Snails moft eat is water plants. I have maintained them for fome days with lettuce, with which they were fo greatly delighted, that they eat all the larger leaves of it when they had been fome days without food. But they were then continually thrufting out their tongues, from which I concluded that they were hungry. I likewife fed the Snails fometimes with ryebread, which they would greedily feed on, if it was firft foftened with water. At thefe times may be very diftinctly feen the manner of their eating, efpecially if the bread be cut into fine thin pieces. The next day, after I had laid this bread before them, they prepared for generation; fo that I hhould conclude from thence, that bread yields them the moft copious and effectual nourinhment. The Teredo or Worm which eats fhips bottoms, is alfo delighted with bread.

On the fhell of this kind of Snail, I have fometimes found a great number of eggs, which were laid by another Snail of the fame fpecies. They lay inclofed in an uniform, oblong, and pellucid glutinous fubftance, and they were likewife tranfparent as chryftal ; but after a few
days there appeared in the middle of them a very fmall gray Snail, which continually rolled or turned about in the fame manner, as a bit of wax does in a bottle full of water, when the bottle is gently turned up or inverted. Almoft in the fame manner did this water Snail turn fpontaneoufly in its fhell, and fiwimming in a limpid humour or moifture, feemed to adhere to no place. The third day after thefe eggs were laid, the Snail contained in them began to grow yellow, and afterwards they became gray.
This Snail fwims with the fame body, Tab. IX. fig. Iv. ii, with which it iflues out of its egg. This is done in the manner following: firt, the Snail lies upon its back in the water, and turns the whole length or level of is body againft the furface of the air that preffes on the water, and having afterwards firft bent its whole body, it moves it forward in the fame manner as the common Suail does; and by this means, fwimming in the water, this creature gocs forward, though very flow, and affords a very agreeable fight. But left the heat of the fun fhould injure it, the little creature fecretes a quantity of mucus or glutinous humour out of its body, by the help of which it is defended from the injury of the diurnal rays, and is rendered more fit for füimming ; and it can move and turn itfelf to all parts in the water as occafion requires.

In order to diffect thefe Snails, it is neceffary firft to take them out of their hells; then they will die in two days, and are fo much fwollen with the water which they imbibe, that their organs of generation fometimes come naturally in fight, and their diffection may eafily be perfected. But if you wound thofe parts which moft abound with the glutinous humour, nothing can be done to any purpofe afterwards.

I have delineated this Snail in the form it is, in when it creeps near the fide of the glafs in the water, and afcends to the furface; and there, having lengthened the aperture of its verge, Tab. IX. fig. Iv. d, as into an oblong tube, and ftretched it out of the water it breathes.

The rwonderful viviparous chryltalline Snail.

The miracles which I am now going to advance of this water Snail feem fo incredible, that I hould not wonder if they fhould be deemed impoffible, or reckoned among the fabulous tales of the poets metamorphofes. For my own part, though I faw them, I was fo aftonifhed on this occafion at the inexhaufted fund of wifdom manifeft in the works of God, and his admirable art and immenfe power, that I cannot fince help thinking on them every moment. I thought I had already fo accurately fearched into the whole nature of Snails, that I could at length form many remarkable and certain obfervations, and from thence frike out fome general rules. But the further I advance in inveftigating the wonderful works of

God, the more and more I find they all as far exceed the bounds of human ingenuity and underftanding, as mortal man, who in reality is nothing, is from being able to difcover fully the infinite and incomprehenfible perfections of God.

The water Snail, which I here exhibit, Tab. IX. fig. v. a, naked, without a fhelly covering, is found in great quantity in the ditches of Holland, and in large frefh-water rivers; it lies moft commonly in the fandy fords or fhallows of the latter, or where there are any ftones. It creeps in ditches near and among the water plants, and in mud, which it takes as food; and alfo in white clay, in which I firft found it. Hence it becomes dirty, and is often fo covered with a cruft of filth, that all the beauty of its fkin or covering is almoft loft. I have therefore broke off the fhell from the body of the creature, and only reprefented the Snail without it. But becaufe the fhell has alfo a fingular and remarkable ornament, and exhibits fomething truly worthy of obfervation, I fhall afterwards delineate it in the manner it was found, whole, and without any imperfection in the uterus, and appeared under the microfcope. Though I have found in rivers fome of this kind of Snails, which were lefs than thofe which I exhibit in the figure, and hàd little dirt upon them, yet I never was fo happy as to fee the beauty of their fhell wholly free of filth.

The things that demand notice on the outfide of this Snail, are the head, Tab. IX. fig. v. b, its horns $c c$, the eyes $d d$, the aperture of the uterus, the branchiæ or gills f, the verge g, the convolution or winding of the body b; and laftly, the verge, which ferves as a foot $i i i$, whereon is placed the operculum or cover of the fhell k. The head b is diftinguifhed from the heads of all other Snails, becaufe it is thretched more out of the body, and is more vifible; nor is it at any time drawn back to the infide, but only fhortened a little by the wrinkles of the fkin. In the fore part is feen a 'mall aperture, which is the mouth; the horns $c c$ are fharp at their extremities; and at their root or bafis, where they fpring on each fide of the head out of the body, are fixed the eyes, which are placed fomewhat higher than in other water Snails, and therefore agree in fome degree with the eyes of fhelly or teftaceous animals. All thefe parts are very beautifully variegated with yellow fpots on a black ground. On the right fide of the uterus or vulva, is feen an extremity or edge, which the Snail fometimes protends out of its fhell under the verge. It is of a mufcular texture, and may therefore be expanded and contracted at the difcretion of the Snail. This is the reafon why I firft took it for the aperture of the verge. Above the head are feen five appendages under the verge, which, I think, are the branchiæ or gills. The verge very nearly approaches to that of other Snails; but it has not fuch a flrong and remarkable motion, though it is of
a tougher; more firm, and more tenacious tex ${ }^{2}$ ture. The convolution of the body is the fame as in other Snails.

The verge, or loweft part of the body, whereby the Snail creeps, is more worthy of notice; for the operculum or cover is annexed to it. This operculum is neither bone nor ftone, but approaches rather to the nature of claws or talons; it is therefore in the purple Fifh kind, called the unguis or claw, and the unguis adoratus; becaufe when burnt it fmells like caftor or beaver, and is ufeful in the fuffocation of the womb, or fits of the mother. If the operculum or cover of the Snail whereof we here fpeak, be burnt, it has no difagreeable fmell. Its ftructure is elegant: it con* filts, as it were, of many rings, fomewhat round, and differing among themfelves principally in the brightnefs or obfcurity of their colour. On the infide it is hollow like a fhell : the tail of the body, annexed to this cover, is fixed thereto with ftrong mufcles; by the help of which the operculum or cover may be bent, folded, nay, complicated towards the mouth and horns, when the Snail betakes itfelf to its fhell; and by means of this, as it were, little door or entrance, which it carries about it, it fecurely hides itfelf in its fhell, fafe from all common dangers. This the Snail does as foon as it perceives the leaft unufual motion in the water, for I never knew a more timorous creature than this. It naturally creeps very flowly, and fwims in the water with its body oppofite to the furface of the air, as I have before related of the common water Snail.

Thefe are the external parts of this Snail; but the internal parts that we have obferved in it are indeed fo many miracles, fo many ftrange and unheard of things, as probably never, hitherto, came into the mind of any perfon. I therefore invite and require all atheifts, who do not fcruple to affign the generation of fmall animals to accident or chance, to this fplendid entertainment, that they may learn to give the praife and glory to God alone.

When one attempts a diffection of this Snail, it immediately draws itfelf fo much back into its fhell, and preffes its operculum or cover down fo clofely, that one cannot put the point of a little needle into it. You muft therefore break open the flell, which is very firm, with a flat forceps, and take the Snail out with your hands. Then it will be obferved that its mufcles are ftrongly inferted in its fhell, and principally in the foremoft or anterior part of it. Whilft this Snail lives, its diffection can fcarcely be performed, fince it bends or winds its operculum or cover, Tab. IX. fig. vi. aa, againft the fore parts of the body in fuch a manner, that the former is doubly folded; befides, both the mouth and horns b are in fome meafure drawn in.

The diflection ought to begin next to the vulva c, and the verge fhould be opened there with a little pair of fciffors; after which four
different parts come at once in fight ; thefe are a fmall margin very beautifully folded d : the end of the inteftinum rectum, or ftraight gut e; then the branchix or gills f, fome of which appear out of the verge in the former figure: and at length the uterus g, which I have here delineated as diffected and opened together with the living fétus contained in it; for the young are brought forth alive by this Snail.

The verge lias not a fingular or remarkable aperture as in the other land and water Snails, but the whole is almoft open on every fide: the Snail however knows how to move the mufcular parts of the verge, and to fwell them out of the fhell in fuch a manner, that by this means it draws the air into its cavity ; and this air is afterwards expelled from thence again, when the Snail hides itfelf in its fhell. Thus may this fmall complicated margin be very eafily feen; the doublings or winding plaits or wrinkles of it arife, in my opinion, from the bending and contraction of the body. If this little part d be diffected, it appears to be only a congeries or heap of tranfparent, chryftalline, and equal globules, which are of a ftony nature, and make a crafhing noife under the diffecting knife. The horns, the upper furface of the mouth, and many other parts of this creature become petrified, and therefore alfo make a noife like fand, when they are chewed a little in the mouth. I mixed fpirit of vitriol with them, and it caufed a very ftrong fermentation.

This firft obfervation is, therefore, very fingular, and merits particular confideration. We fee how the omnipotent God could frame a little being, which confifts, as it were, of fmall ftones, and yet can move, agitate, contract, draw in and extend thefe its parts; becaufe mufcles and their tendons are inferted in and run through them. But who can defcribe how the veins, arteries, and nerves are there interwoven and difpofed? Nobody truly, but He alone who made all there things. That congeries of chryftalline globules, in particular, which is fo copious in the horns, that one can hardly find a place wherein the parts aforefaid may not be conceived to be fituated; fo that even from thence it appears clearer than the light at noon day, what exquifite arts and unheard-of miracles the moft fagacious Architect has hidden in the immenfe volumes of his works.

If the inteltinum rectum or ftraight gut e in this Snail be opened, it is ufually found to be full of an earthy gray fubftance, and divided on the infide by many membranous and nervous partitions or inclofures like little valves, and grows larger and larger continually, until at length it paffes the liver and fmall guts, and ends in the fomach, which feems to be like a fimall tube or pipe. The excrements which this Snail throws out, are a congeries of oval
particles, linked or joined together, fuch as are found in the inteftines themfelves.

The parts which I call the branchix or gills, Tab.IX.fig. v. and vi. f; are likewife very wonderful; they are difpofed in a neat order, they are of equal length, and are placed at the fides of the inteftinum rectum or ftraight gut, which they accompany for a great way into the inflexion of the body. If you view them with the affiftance of glafies, they refemble a comb with broad teeth, though in foftnefs and delicacy they are like little membranes. At firft I thought that thefe little parts were membranous expanfions of the uterus; but from their fituation and fructure I afterwards found that they agreed more with branchix or gills.

The uterus, which, as we have faid, is reprefented, fig. vi. g, open here, is fituated in this Snail where the fraight gut is feen in the common covered Snail. When I opened it gently, I immediately met under its upper coat, which it has in common with the coat of the verge, a congeries of oblong little parts, fig. vil. a, which were very numerous, and differed fomewhat in their length, figure, and thicknefs; and when I removed them from their places, I found they were all alive, and were fo many living little Worms, as there appeared particles of that fort. On the infide of thefe Worms was feen an oblong tranfparent afh-gray coloured furrow or ridge. When I began to diffect one of thefe Worms, two, nay three, and fometimes four inclofed Worms of the fame kind iffued forth * ; having almoft the fame figure, that is, a thick head, fig. viir. a, and fmall tail b, like young Frogs or Tadpoles. The former Worms indeed moved fomewhat flowly, but the latter being put into water, fwam very fwiftly, and very frongly twifted about their little tails. I muft confefs the fight of thefe aftonifhed me, as I never expected to have met fuch, and fo many miracles in one little creature, or that I fhould have been fo well convinced of my own ignorance and blindnefs in a fingle fubject.

All thefe Worms exhibited a roundifh little part, tranfparent through the middle of their body; but at the tail appeared fome foft little points almof like hairs. I could not find any excrements in them. The little creature itfelf, viewed in the fun with a microfcope, feemed to confift entirely of fmall grains of fand. When I had afterwards taken all thefe parts from their places, a new miracle prefented itfelf to me: I obferved that the whole tube of the uterus likewife confifted of chryftalline little ftones, which were as numerous and as thick and clofe together, and difpofed in the like order as I have before related they were about the fkin, the complicated margin and horns. Hence I really think that this little creature may be properly compared to the coralline cruft which furrounds hard coral ; for

[^15]the fkin which covers the branches of corals, is almoft of the fame ftructure, and may likewife be eafily feparated from the hard coralline fubftance underneath. Nay, the ends or tops of coral are alfo of the fame foftnefs; and I have found them flill tender after the coral had been out of the water fome months: this I have before obferved in the letters that I wrote on coral. In the common water Snail I likewife faw here and there fome little round chryfalline parts, which I think were likewife globules of fand of the fame nature. In the ftraight gut of that Worm, out of which iffues the Gad-fly, I obferved fomething like this, as I fhall defcribe and reprefent when I come to its hiftory.

When I afterwards opened the uterus, I was more aftonifhed: I found a fmall Snail in it ${ }^{*}$, in every refpect perfect, which had already broke out of its membranes, and fhewed the fame difpofition and the fame manners with the larger one its parent. Thus I learned that this little creature brought forth young Snails alive, as big as common peafe, Tab. IX. fig. 1x. a, which had their fhells and covering pretty hard; and that they were likewife complete and perfect in all their parts.
This fhell, fig. x. b, afforded fo beautiful an appearance under the microfcope, that nothing like it can be imagined. It was twifted into four fpiral parts, whereof the innermoft diminifhed its windings by degrees, until it ended in a pretty blunt point, almoft refembling a top. Moreover, the coat was covered with a periofteum, and was very elegantly and neatly adorned with feven rows of brifly hairs $c, \mathcal{E}^{\circ} c$. Some black fpots were here and there likewife feen, which were produced from the tranfparent body on the infide. It was further divided by many fpotted or fpeckled little lines and other furrows; and alfo by little ribs that were notched and full of filaments; all which I have not delineated, left the figure Should have grown too big: nor have I leifure enough at this time to enter upon fo many things.
Thefe things convince me moft clearly, that the fhell or ftony covering of the body is the Snail's real fkin; fince it has, even in the uterus, not only its own proper coat, but its hair. We are taught from thence alfo, beyond contradiction, that all thefe hard fubflances are nourifhed and fuftained as well as the Snail's fofter parts. For which reafon the ftony chryfalline little grains before defcribed, are fewer and fmaller in the young and tender Snail than in the more grown one.
I find this fhell, together with its animalcule, free and difengaged on every fide in the uterus, and not involved or rolled in fuch csats as form the fecundines. Hence one might, in fome meafure doubt whether this part, which I call the uterus, were not rather the cefophagus,

NATURE; or,
and that therefore this animal had been cinlit devoured by the Snail. But when I diffected another Snail, I found twelve perfect eggs therein, fticking in the uterus; each of which had its little navel-Aring; Tab. IX. fig. xi. $a n$, and fome of them had two bb. The ftrings were fomewhat broader near the egg, but where they were connected with the uterus, they were like a fmall filament. They adhered almoft in the middle of the uterus to a fimall feam or future.

The fix firf eggs, which are placed in the fore part, each contained a Snail, however fmall, with its fhell and food; the little body of this Snail lay extended out of the fhell among the alimentary fubftance. The firft egg had a larger Snail, but the fecond, third; fourth and fifth a fmaller. In the fixth I only faw a fmall point, the fhell whereof was not yet confpicuous.

In the other fix little eggs, which were fomewhat fmaller than there, there was nothing to be feen, becaufe their tendernefs made them tranfparent, and they were of one colour. On opening, them I found that there was a more tenacious liquor contained in them than in the former.

The fix foremoft eggs were as big as common peare, and were invefted with a very tender and fine chorion and amnion, through which one might fee the Snail within coc languidly moving itfelf. Moreover, the whole amnion was filled with the moifture beforementioned, which is the creature's true nourifhment; and the Snail likewife fwam in the amnion, as the human feetus does in the mother's womb. As the Snail grows bigger, this humour is diminifhed in proportion.

When I had broken the membrane of an eagg which contained one of the fmalleft Snails, I found that the creature taken from thence, Tab. IX. fig. II. d, was as big as the head of a common pin; but it did not move out of, nor go into its fhell : for its mufcles were yet too tender, and fome of its parts had been probably broken off.

If this egg was raifed or lifted up by its fring, the Snail within remained in its fituation without motion; but when the egg, which lay out of the uterus for one, two, or three days, was thus kept fufpended by its ffring, then the Snail within fell to the bottom of the membrane e which conftituted the egg. Hence one may conclude with certainty, that the clufter of veffiels was broken on the infide, though it could not be feen, becaufe all things are here limpid, white, and very tender. The humour or fluid itfelf, that is, the nutritious juice wherein the Snail fwims, is limpid, though it ftill approaches fomewhat to the colour of whey, and when put into the water it becomes more thick or muddy; but if it has remained in the water fome days, then it ex-

[^16]pands itfelf like glue, and at length it becomes clearer by the addition of the imbibed water.
When I placed this little Snail under the microfcope d, I faw its eyes very black like pitch, fig. xil. $a a$, but the reft of its body was colourlefs, or for the moft part white ; the horns b are fomewhat blunt, the mouth c is open, all the reft of the body d is fretched out of the thell; I found the operculum or cover e annexed to the hinder part of its tail, but the Thell f was adorned with the like elegant apparatus and hair as I have reprefented in the tenth figure.
From hence, therefore, it is very evident in what manner this Snail, together with its Hhell or ftony cover, is likewife by degrees increafed, augmented, and become larger in the uterus. This obfervation is indeed of fuch impoitance, that no body can defire any more worthy of notice. Whoever reads thefe things muft be obliged to confefs, that the power of the Almighty cannot be known, by clearer and more convincing proofs, in any part of his works, than in thofe minute animalcules, wherein that great Architect has inclofed and hidden fo many wonderful parts, and thewn fuch exquifite art, that exceeds all human induftry; fo that one may employ his whole life in the diffection of the finalleft of all animals. For this reafon I look upon the whole of my defcription to be like a delineation of the fun, defaced with coarfe materials; and therefore it is no wonder that the wife men of the heathens, when they had feen fome miracles concerning the nature of women, cried out, "O! Being of beings, have mercy on me."

I have not accurately inveftigated the remaining parts of the Snail, becaufe I only diffected two pretty large ones, and a fmaller one of this fpecies, and becaufe it happened only by chance, that I began this wonderful diffection, which deferves more than any other to be completely perfected; great numbers of thefe Snails may be found at any time. I fhall for the prefent briefly relate what more I faw of them.
I have obferved that this Snail has no teeth, but inftead thereof it has a probofcis, trunk, or little tongue, by the help of which it feems to take its food in as by fuction, as is the cafe in butterfies, and fome kind of beetles. This little tongue is fo elegantly formed, that it can fcarce be exactly defcribed, and as difficultly be reprefented in a figure ; in the forepart it is of a bright or pellucid red colour; furrounded on each frde with many fmall parts, like the branchix or gills of fifh, or like a comb with a double row of teeth. There little parts grow paler towards the hinder fide, and are of a horny fubftance, fuch as the little tongue has in its divifions.

The gullet is like a fmall filament. I have not diftinctly feen the ftomach, becaufe I had broken fome of the parts, but the part I took
for the ftomach was like a membranous lietle inteftine.

The ovary is in every refpect like that of hens, only that its eggs are not fo large: I took thefe eggs in the beginning for a congeries or heap of chryitalline globules; but when I had dried them upon glafs they contracted, which is not a property of the ehryftalline granules of this little animal ; I found them alfo foft in handling and biting them, I have nothing to fay with certainty of the penis, though I faw fomething like one.
The liver confifts of diftinct vifible glandules, fomewhat like pears, and I confefs that the glandules of the liver hever appeared plainer to me in any animal. As to the other parts of the abdomen, I have not yet either feen or examined them. The brain and nerves are conftructed in a very different manner from thofe of all other Snails that I have hitherto fearched into; neither have I inveftigated the eyes, fince, with refpect to thefe, this little animal agrees in fome meafure with cruftaceous animals, as Crabs and Lobfters: hence I thought I fhould have found fomething in it, like the eyes of the Hermit Crab, which I obferved to be like thofe of Bees. The cornea tunica of the eye was in this alfo divided into little fquares.

I have not been able yet to difcover how this egg comes out of the ovary into the uterus, for the bottom of the latter feems to be fhut up; but whether there be a tube in it there, as in Frogs and Tortoifes, I am hitherto ignorant; I am at as great a lofs to know what time the egg afterwards remains in the utcrus, before the little creature is difclofed from thence as a perfect Suail. If we confider the remarkable fize of the fhell, we may reafonably conclude that the egg lies there a long time. Hence 1 fhould think that fuch fmall Snails and eggs may be found in the uterus at any time of the year. As to the Snails themfelves, I now know how to get a great number of them, nor will it be difficult to exhibit their feetus.
Who can explain after what manner this egg is fecundated? or how life and motion are communicated to all its parts? fo that, like a clock, having been produced with all its wheels or limbs by its parent only, and having life and motion from the male fperm, it continues ftrong and vigorous, until its little chain be unwound: fo we may term the death of all thofe who have life and breath. Thefe things are known only to that moft fagacious Being, who has numbered and meafured the chryftalline globules, the hairs of the fhell, and all the parts of this little creature's body, nay of all animals, and who has given life and motion to every thing.

On the twelfth of March, in the next year after I began thefe obfervations on the viviparous Snail, I collected a great number of this kind, which I put into a large bafon full of rain water, and fed for a long time by the
help of fome potters earth diffolved in the water. On the thirteenth of the fame month I opened one of thefe Snails, when I found nine living Snails in its uterus, each inclofed in its proper membrane; though the humour of the amnion was almoft confumed, which I looked upon as a certain fign, that their birth was near at hand. The larger of thefe feetus's were placed foremoft in the uterus, and the lefs next in order. When I had afterwards cut them out of the uterus, and put them into frefh water, I found they lived to the eighteenth of March, moving themfelves, and fwinming like Snails more grown; nay, their manner of fwimming was much more beautiful; but as I then had other matters to attend, I poured them and the water out together, nor have I fince obferved any thing further in them. The largeft of thefe Snails were fomewhat lefs than thofe that are reprefented in Tab. IX. fig. Ix. and the reft were fill lefs in proportion.

On the twenty-firft of March I opened another Snail of that kind, in which I found forty-four larger, and fome very fmall feetus's, each inclofed in its membrane, and placed in a regular order in the uterus: fome days after this I diffected three others, in one of which I reckoned fixty-five Snails, in the fecond fix-ty-feven, and in the laft feventy-four, the fmalleft of thefe young Snails were not bigger than the point of a little needle. When I afterwards viewed them in a dark place by candle light, I obferved that they fwiftly and very beautifully moved and twifted themfelves round in the humour or liquor of the amnion. But I found no eggs in the uterus of thefe lart ; hence I learned that thefe feetus's were arrived to their full perfection, and afterwards only increafed, that they might in fome months after be in a condition to be brought forth by degrees, and by this means give way to new eggs to be again received into the uterus at that time.
Wherefore at whatever time of the year, you open thefe Snails, you will always find them pregnant, either with eggs or living Snails, or with both together.

On the twenty third of March I obferved
that fome of thele Snails, which I kept in a larger vefiel filled with water, had brought forth feveral young Smails of equal fize or bignefs. In fome days afterwards I again faw that other young ones were brought forth; fo that by this means, and fiundry obfervations, I learned by very certain experiments, that thefe Snails continually bring forth throughout the whole year. When in the month of June I opened fome of thofe that had brought forth, I found many ruidiments of eggs in them, and fome eggs of the fecond degree, which were already fo perfect, that the feetus might be difcovered in them; nay further, fome eggs were fill more perfect ; they lay in the uterus, and the young of them were to be produced foon.
In the month of June almoft all my Snails died, becaufe I neglected to give them frefh water, and therefore in order to preferve them for fome time, I put them into firit of wine among others which had perifhed fome weeks before. I afterwards fhewed above fixty young Snails, in the uterus of one of thefe to Dr. Huygens, who, on his return to Paris, honoured me with a vifit; at which fight he was greatly aftonifhed, and highly admired the ftupendous and impenetrable fecrets of nature.
On the twenty-fourth of July I weighed one of thefe viviparous living Snails that was frefh taken, and it weighed five drachms ; in its uterus I found many eggs, in moft of which was to be feen a moveable whitifh fpot or point, but in the reft of them Snails of a larger fize were obferved, fo that all the larger Snails were then already hatched. Then I began to clear the fhell of this Snail of its dirty cruft, and I found the periofteum underneath unhurt. Its colour was then yellow mixed with green, and it was variegated with light red furrows and ridges; when the periofteum was pulled off, the fhell appeared white, and the ribs or ridges appeared of a purplifh red. I have delineated a fhell of this kind in its natural bignefs, in Tab. IX. fig. xiri, where the ftructure, windings, fibres, and aperture of the pillar may be clearly and diftinctly feen in it.

Of that Species of the Sea Snail,

THough many fpecies of fhell-fifh, of the Snail kind, are found in Holland, I do not know that any of them are eat, except only this fea kind, which is of the genus of the Turbo, and is called Aliekruyk ; nor do we eat them at all times of the year, but only between Eafter and Pentecoft, and a few days after. At this feafon, hogfheads of thefe Snails are carried into cities, and, being firft 'boiled with water and falt, are fold out by meafure. Seafaring perfons in particular, and thofe who defire to provoke thirft by falt meat, eat thefe Snails,
taking them out of the fhell with a needle or little pin, and then they drink a large draught. For my part I do not like the tafte of them; nay, they feem to me to affect the palate with too much faltnefs, and a kind of rank flavour. The liver is the moft favoury of all their parts; in the reft they eat hard and tough, and are therefore ufed, as I have faid, rather for whetting the thirft, than as food. Their entrails alfo are fo full of dirt and fand, that they crafh between the teeth.

There

Thefe fhell-fifh are found very numerous on the fhelves or fand banks near the fea, where the mufcles are alfo found, and among the latter they are frequently fold; but they have alfo peculiar and proper places, in the fea, where they ftick together in large heaps. I have fometimes taken them from the piles of timber, on which they are often fixed in the fea, and fometimes I have pulled them from large willow fumps, which were formerly laid on the fhore, to break the violence of the waves; between thefe ftumps, and among fones, are fometimes found many other rare water infects, as the Pulmo Marinus, or Sea Lungs, the Urtica Marina, or Sea Nettle, a fpecies of the Echinus, the Stella, or Star-fifh, Tubuli, or Sea Worms, Afelli Marini, Sea Wood-lice, and others. The maritime coaft of Holland is the only place I know wherein one can make thefe ufeful obfervations, for all other coafts in general are fmooth and plain, or covered even with fand.

That this fhell fifh may be better known, I fhall firft defribe its external, and then its internal parts. Among the external parts I reckon the fhell, which is the ftony skin of this Snail, as well as of all other infects that inhabit fhells, it is on the outfide invefted with a periofteum, which appears very beautiful in young ones, becaufe no part of the fhell has been in them worn out or rubbed off. Underneath, where this Snail, Tab. IX: fig. xiv. a, creeps out of the mouth, the door or entrance of its fhell, the latter is a little globular b, but it lofes this figure by degrees, after it is rolled five times, $1,2,3,4$, 5, and is terminated in a fharp point. The external furface of this fhell is rough and unequal, fince from its mouth or entrance to its acute end, it is folded and curled with thirtyone little ribs or furrows; which appear like fo many threads above the furface c. I have not met with this exact appearance in all of them, as it feems in many to be worn out and obliterated with age ; for the older ones have polifhed fhells; and are divided, fig. xv. d, only by fome rings or wreaths of divers forms and colours; unlefs thefe fhells may probably belong rather to another particular fpecies, which I think is moft probable. As to the colour of the fhells, it is a light red in the formerfecies, but in the other it is mixed with green and afl-gray. and fometimes red, purple, blue, or whitioh. The internal furface of the thell is all equal and fmooth, it is of a dark brown in both fpecies, fomewhat inclinable to a bluih purple.

The fhells of thefe Snails are frequently eaten through, by fome of the largeft Sea Worms *, as may be feen particularly in the upper or pointed extremity, for it is frequently found gnawed there in confiderable holes, in fuch a manner, that the whole figure of the fhell is obliterated in that part; nay, I found from
experience, that thofe wormis fometimes perforate into the inward texture of the fhell, and there form various crooked and oblong hollows, Tab. IX. fig. xv. e, which fometimes penetrate into the cavity itfelf, fo that the Snail is obliged to draw up the hinder parts of its body:

I have found feven fuch Worms in one fhell, the Snail whereof was fill living and unhurt. I here exhibit one of thefe Worms, fig. xvi. a, if this Worm be viewed with a microfope, it is found to confift of many annular incifions, which are adorned, fig. xv11. $c c$, with fmall hairs on each fide ; in the middle are feen two veins of a bloody colour, which extend their little branches on either fide towards the interfections of the body. In the fore part of its head a are alfo fome hairs, which are placed there like antennæ or horns: the like b are feen alfo at the tail. All thefe Worms had a very thin skin; they were of a tender conflitution, and moved but very little. Whether this might have proceeded from my hurting them, by ftriking them with a hammer, or was natural to them; I cannot fay. In the foulnefs which adheres to Oyfters, I faw a fpecies of larger worms, whicli were not in figure very unlike this fmaller kind; and, like the Glow-worm, hhined in the dark.

All thefe fhell fifh feem to be fubject to this Worm as a difeafe, fince few of them are met with, whofe fhells are entire and found at the end of their convolutions or windings; for the fhells are always invefted there with a dirty or filthy afh coloured fubftance, wherewith they are more or lefs infected, and in which thefe worms feem by degrees to fix themfelves, fo that at length they feize on the fkin of the fhell fifh, as their proper habitation and food, though the Snail fill continues to live in it. This hell has very hard and folid joints, as appears in its fpiral pillar, which is likewife very thick; hence it is that the Snail may be eafily difengaged from it, fince the fhell flies in pieces like a flint, if it be ftruck ever fo lightly with a hammer:

The body of the Snail, which creeps out of this fhell, but is by its mufcles very frongly annexed to the pillar of it; the head and mouth, Tab. IX. fig. xvili. a, are nearly like the Snails, and fo are the horns $b b$, and eyes $c c$: The colouring of the fkin only differs, for it is variegated with black furrows and fpots on a white ground: in regard however to the colour of the two fpecies, there is fome difference to be obferved. Behind, at the verge of the body $d d$, is the Suail's operculum or cover ρ, which it fuddenly draws in at pleafure, and by this means fhuts up its fhell, when it meets with any thing unufual : the creature provides for its fafety in the fame manner, when any thing is fuddenly prefented to. its eyes; fo that I may venture to affirm from hence, that this is the only fpecies of Snails that I know, wherein any

* This is a common accident to fhell fifh : not only worms gnaw the fhells, but the large fhell fifh of fome kinds hare a kind of bony engine, with which they pierce the fhells, to get at the creature for their food. When it was doubted, whether foffil fhells were real, or exuvia of animals, or reprefentations of them, from the fportings of nature; fhells taken out of the earth thus pierced by Pholades, were produced, and the objections ceafed.
manifeft figns of fight appear ; though in the mean time the eyes of this fnail do not, in refpect to the parts which are common to the eyes of all Snails, differ any thing from thofe of others. On the infide, at the edge of the finell, is feen the verge, which furrounds the whole body, and is pervious to no air: this I have remarked alfo in other fpecies of Snails. On the right fide of it are two other apertures, one of which ferves to evacuate the foces, through the other the genitals are extended. And there are all the outward parts of this little creature. Moreover, this Snail is of a very ftrong conftitution, for it can live ten or twelve days in the open air out of the water. I have alfo obferved, when I was fometimes in the month of September in the town of Petten, where thefe Snails are found in great plenty, near the fea piles or fea marks; that they ftuck quietly on the dry land, after the tide was out, and on its flowing, were again buried under the water; fo that they may, on this account, be confidered as real amphibious creatures. The fhell f wherein I exhibit this Snail, belongs to the fecond fpecies, and fhews its fafciæ or wreaths nearly worn out. The operculum or cover confifts of a flexible horny fubftance, fig. xIx. g, which is compofed of filaments applied to each other, and rolled like the firal convolutions of fome fhells.

1 fhall give but a brief defcription of the internal parts, both becaufe I employed only half a day in examining them, and becaufe they do not differ much from the entrails of other Snails. To begin at the mouth, we muft obferve, that all the parts of the jaws and palate are in this Snail of a bloody or purple colour. In the middle of the mouth is feen the tongue, Tab. IX. fig. xx. h, included in a fingular kind of cavity, the whole of which it feems may be extended together out of the body; in the refpects of colour and ftructure it does not differ much from the tongue, which I have delineated and defcribed in the Sepia or Cuttlefinh; but it differs very much from the latter in this, that it is almoft two inches long, and at the fame time beautifully convoluted or twifted i into fpiral bendings, like a ferpent clofely rolled together, and is thus placed on the infide in the body, fo that it paffes with the gullet under the brain. The brain is fituated behind the feveral parts of the mouth and palate, over the tongue and gullet, and ferves thofe parts before defcribed as a kind of pully, through which they are tranfmitted. The part of the tongue which is in the body is cartilaginous, and fo artfully and beautifully formed, that I could not delineate it fully in ten days; for which reafon I exhibit it only in its natural fize. In the hinder extremity the tongue is of a fofter texture, and there includes a white matter in its cavity, which, when expofed to the air, dries away and vanifhes, contrary to what happens in the upper part. The ufe of this tongue will be manifedt
to any perfon who inveftigates it with more experiments.

On either fide, near the tongue, are feen the falival ducts, which arife from whitifh and branchy glandules, and reach to the jaws behind, under the proper parts of the mouth and palate ; and immediately under the gollet, two glandulous white little parts likewife come in view, the ufe of which I do not know: under thefe, on each fide, are feen nerves iffuing out of the brain, of which the optic nerves are the moft confiderable. The cyes, for the ufe of which thefe are appropriated, have three fuch humours as I have before defcribed at large in other Snails; the only difference is, that where the eye adheres to the skin, it is furrounded with a kind of white narrow circle, which I have not indeed obferved in other Snails.

The ftomach likewife is provided in the fame manner, as it is in the garden Snail, and when it has decreafed into a fmall inteftine, it afterwards proceeds according to the convolutions of the fhell, and by its fpiral and pyramidal windings, furrounds the liver, which is of a dusky colour, fomewhat approaching to that of musk. The liver confifts of pretty large vifible glandules, which feem to communicate one with another, in form of a hrub; as foon as this inteftine has paffed through the liver, and the whole circuit of the fhell's convolutions, it forms the inteftinum rectum, or ftraight gut, wherein I have obferved the excrements divided into quadrangular globules.

The heart with its auricle is fituated toward the left fide. All the blood veffels are of a whitifh colour, and refemble a Spider's threads: this is a very great beauty in the inteftines of this little creature. I could not fee the facculus calcarius, or the calcarious bag, nor the chainlike little part. Nay, feveral of the genital parts could fcarcely be diftinguifhed in this fubject, for I began this diffection and examination in the firt fpecies of thefe Snails, at the end of the year, that is in September. But the purplebearing oblong little tube, together with fome of the other entrails, were diftinctly feen to be of a very elegant ftructure; all which I muft pafs over now, and fhall refume this diffection at fome other convenient time.

> Of the fmall water Turbo.

Some fmall Turbines are commonly to be met with, Tab. X. fig. I. a, in the places where the wonderful Snail, laft defcribed, is found. There feem to agree entirely in ftructure and conftitution with the viviparous Snail, nor do they obviounly differ from it, only that their fhells are fomewhat longer. I have not yet found them of fo large a fize as I could wifh, and as I have not them now alive, I cannot exhibit the figure of this creature, I therefore hope that the benevolent reader will be fatisfied with the figure of its fhell only.

Of the unbilicated marble Snail.

This little Snail, which is variegated in the manner of marble, inhabits the frefh-water rivers of Holland, and therein adheres to fmall ftones: I have found it in the Vecht, beyond Amfterdam. It is frequently found about pieces of brick-bats and tiles, or pot-fherds, broken pieces whereof have been thrown into the water. In the fore part, where the fhell gathers into a fpiral form, fig. in. a, it refembles an umbilicus or navel; then it bends or rolls round in an oval winding, and becomes more expanded b. It is of a green yellow colour, variegated with a reticulated black ground like marble. The Snail that lives within is very tender, and as it died before I had brought it home and opened it, I cannot fay much concerning it, nor exhibit the figure of its body. I faw that it had two oblong and fharp horns, and two black eyes. The ftructure of its tongue is almoft the fame with that of the wonderful Snail. It had pretty ftrong little inteftines. Its body, which was contained within the extreme fpiral part of its fhell, was of an obtufe figure ; becaufe, probably, this fhell was very thick, firm, and folid. To the lower part of the body adhered a calcarious operculum or cover, which had a kind of fwelling or peculiar production where the mufcles were inrerted into it, fo that it refembles the fhoulderblade in the human fkeleton. On the outfide it was twifted fpirally like the fhell itfelf. On the inner part, where this Snail creeps out of its fhell, the opening or entrance, which is formed like a crefcent, only was open, and over-againft it I obferved a certain greenifh fpot, which refembled in fubftance the fhell of mo-ther-of-pearl, and was likewife of the figure of a crefcent. To this fpot the operculum or cover applies itfelf, when the Snail creeps out of its fhell.

The flattened Snail.

Since many fpecies of Snails are found in the rivers of our part of Holland, I fhall briefly defcribe only one kind of the water race, which is to be found there very common, both in falt and frefh water, as alfo in pafture grounds and near the high-ways. Its body is gray or blackifh. On or at the fore part of the head are obferved two lips, Tab. X. fig. iir. $a a$, joined together, under which is the Snail's mouth, formed in the fame manner as it is in the common water Snail. Under the mouth there is to be obferved a part of the body, which I call the verge or foot $b b$, becaufe it ferves it to creep with. The Snail frequently expands this verge in fuch a manner as to cover the lower part of its lips and mouth therewith. A little higher in the head are two black eyes $c c$, fituated at the bafis $d d$ of the horns. Thefe horns are very fharp in the fore part, but broader behind, and the Snail can
contrait them in fome degree, but it cannot abfolutely draw them back into the body.

When its body e is pufhed forward out of the fhell, it is confiderably long and nender: Near the fhell is obferved a part of the verge, which the creature can raife out of the water when it fwims; fo that by, means thereof, it may draw the air into its body; the verge therefore has for this purpofe a fufficiently large aperture, Tab. X. fig. III. f, in which is feen the openings g defigned for the organs of generation.

Its fhell or hard skin is twifted or rolled about in a wonderful manner, and on the left fide it is fmooth or flat $b b$. It is invefted with a diftinctly vifible periofteum, and is divided by very fmall incifions, tibs and furrows. But if this fhell was fo foft as that it could be rolled out, an oblong tube might be made of it. On the right fide it is concave or diverging as it were from itfelf, but on the infide it is rolled into itfelf, fig. iv. a, and therefore leaves a fmall aperture in the middle, which I call the cavity of the pillar:

This Snail is a kind of intermediate fpecies between the common water and viviparous Snail, as will appear from its diffection now to be exhibited. It is very difficult to diffect it, for it cannot be killed without hurting it, and it will not admit of being diffected alive. However, I do not doubt but I may be able to furmount this difficulty, by the invention of fome proper apparatus for that purpofe, which I the more ardently wifh for; becaufe as foon as one begins to break open the fhell of this Snail, it immediately difcharges a purple fluid or humour, which diffufes itfelf throughout the infide; even through the vifcera. If you kill it in fpirit of wine, it likewife expels this purple fluid out of its body; but when it dies naturally in a little water, it fhews no purple, becaufe the colour then probably vanifhes by the changing the difpofition of the parts. Wher this Snail is drowned in milk, in which however it will live for fome time, it is notwithftanding found that the purple humour does not remain in the veffels appropriated to it by nature: and though I faw the heart beating, yet I never found this purple liquid in it or its auricle. Hence I am inclined to think; that this liquor is contained in a kind of facculus or bag, which I have feen in other Snails, but could not hitherto difcover in this.

The fhell being gradually and carefully broken off from the body, the diffection fhould commence from the aperture of the verge. It will then appear, that this Snail agrees greatly with the wonderful fpecies; for the verge is likewife here provided with a fimilar fmall margin beautifully folded, and made in the fame manner as in the Snail before-mentioned ; for in its texture is likewfe found a very great number of fuch chryftalline globules, which crafh and make a noife under the inftruments. On the other, that is on the right fide of the verge, is alfo obferved a congeries of fuch Worms, as I have in like
manner obferved in the viviparous Snail; and if thefe Worms be diffected, a great many fmaller ones, with thick little heads iffue from them, which will likewife fwim with very great velocity, and they alfo are ftronger in their life and motion, than thofe which I have defcribed in the account of the viviparous Snail.

Thefe Worms likewife creep with very great fwiftnefs; firft ftretching their head forward, and then, with great force, drawing the reft of the body after it. Their greateft ftrength is in their mouth, which may probably have a kind of feet, as I have feen in other little creatures, and thall hereafter defcribe and cxhibit in figures. Thefe Worms are much fmaller in this than in the wonderful Snail. When I was certain of this fact of the Worms, from obfervation, I kept fome thoufands of them in the water, wherein I kept thefe Snails enclofed in a large glafs veffel, and I faw that they moved fiviflly. The little part of this Snail which contains thefe Worms in the upper part of its membrane, is on the infide of a bright yellow colour; and, in my opinion, may probably be accounted analogous to the purplebearing bay in other creatures of this kind; but this I fhall not affirm certainly.

This Snail agrees with the common water Snails with refpect to the external ftructure of the mouth and teeth. It wants an operculum or cover, but as to moft of the vifcera it is likewife like them. Its ftomach is formed in the fame manner as that of the Hen. The brain is fituated alike, though there is fome difference in the nerves. The heart is placed in the left fide of the body. But there is one peculiar thing in this, which is, that the liver confirting of glandules, is, not protended to the extreme cavity of the fhell: I have found there a fmall part which was filled or crammed as it were with myriads of the thick-headed little Worms before defrribed. The chain-like little part follows next, behind which is placed another glandulous purple-coloured finall part, and after this again is feen another yellowifh little
part near the uterus, which is of the like firuc. ture with that in the water Snail, arid opens with three tubes into the hinder pait of the neck. The penis is formed in the fame manner as in the common water Snail, nor has it any thing peculiar in it, only that where it is extended out of the body, three fmall folded parts are feen, the middle whereof is very beautiful, and is, in fome meafure like a nufhroom, fupported by a fmall foot, and divided on one ficid.

The fmall flattened Snail.

This Snail is in moft refpects like the former, nor does it differ from it, except that its hell is on each fide almoft fmooth, and is concave, and adorned with a fmall kind of margin, Tab. X. fig. v. a, by the addition of which it happens that the furrows or little ribs in the furface of the fhell are bent in a different manner. It is feldom found larger than it is here reprefented. There is alfo fome flight difference in the external part of the body. The horns are flefh-coloured, though the body itfelf is blackifh. The fhell of this Snail put in the fun is almoft all tranfparent, but particularly in its internal windings, which are on every fide fained with purple. The punctum faliens, or beating heart, is obferved to be deeply tinctured with the like colour. But if the body of this Snail, after it has crept out of the fkin or fhell, be pierced with a finall needle, and the needle afterwards extracted, it draws back its body very deep into the fhell; and then it is obferved, that a juice of a purple colour infenfibly diftils out of the wound. This I take to be a certain fign that this little creature has purple blood. Whether this fame thing holds in the foregoing Snail, is yet to be difcovered as alfo in a fmaller one; the fhell of which is likewife probably fo thin as to be tranfparent. This and the former Snail are found in the ditches in Holland, as well as near the highways and in pafture grounds.

Of frefb-water Muscles, found in the rivers in Holland.

IN the river Vecht above Amfterdam, and in other rivers, is frequently found a fpecies of Mufcles, which are indeed buried in the clay and mud next to the banks, but they lie free and difengaged, and ftretch out their fharppointed part. When the bottoms of the Vecht or neighbouring ditches are cleaned, there mufcles are found in great numbers. I difcovered three fpecies of them; a larger fort with thin and broad fhells; a fraller more oblong, and with thicker fhells; and a very large kind, which is of a fomewhat different texture.

I only examined the middle fpecies of thefe, that is, thofe which are moft common. There do not open themfelves much, they only make the two wings or lips of their bodies to fwell a little out of the fhell, and by this means they can
fill themfelves with the river water. Befides, they emit out of the fhell fome fmall ruddy apiculi, or fmall points, with fharp extremities; and, as thofe are on the hinder part covered with a blackifh fubftance, they refemble fo many fharp and black little fpines, made like the papille that are obferved on the furface of a Cow's tongue.
I had intended to complete the whole anatomy of thefe Mufcles; but when I opened two of them, all the parts that I found in them were fo ftrange, and fo much unknown to me, that I defifted from my purpofe for that time. For, as I had never before accurately diffected any fpecies of Mufcles, I faw that it would have taken up a very long time to have finifhed this bufinefs, and I was then deeply engaged in other matters. I therefore referve this work
for a more proper opportunity. But I fhall now briefly relate what appeared at firff figlt to me on the inner and outfide of this Mufcle, and in its fhell, and fhall, in particular, explain fome things concerning the infertion of its mufcles ; whereby the hiftory of what I have before faid of the Mufcles being inferted in the fhells of the Snails, will be confiderably illuftrated.

When the fhell of this little Mufcle is carcfully broke in little pieces with a forceps, and feparated in the part where the Mufcles are inferted, then offers itfelf to view in the creature, its lips, and with this the verge; there wind about the whole body, and cover it as it were with two wings or lips. One of thefe is obferved to be, Tab. X. fig. vi. a a , bent back to the fide of the body. On the lower fide of it , and likewife on the other fide of the body, are feen papillie as before mentioned $b b$, tinged with a black colour, which may eafily be wiped off with a bruhh. The papillæ feem to me to be the extremities of fo many tubes or trunks, whereby the Mufcle draws into its body, fmall particles of mud and nlime, for the gullet feems to communicate with them. On each fide of the body are four branchix or gills, each confifting of three membranes, the middle whereof is formed like a bull-rufl mat, and is compofed of longitudinal and tranfverfe filaments, and may be feen through both the external membranes. All thefe filaments feem to me to be tubes, through which the blood moves as it does in fifh. The largeft veffels are fituated in the lower part of the mufcle; and from thence arife, I think, thofe tubes, which, whoever purfues them fo far, will find pretty ftrongly connected with the papillx that draw in the food. On each fide, the Mufcle Tab. X. fig. vi. cccc has four fuch larger branchix or gills, and four other fmaller ones, $d d d d$, placed towards the hinder part.

The body itfelf confifts of two parts, a hard e and foft f. ThefeI take to be the thorax and abdomen. The harder part is made up of a congeries of many mufcles, which run from one fide of the body to the other, with flrata or layers of long fibres, and being then carried over the foft part towards the branchix or gills, and wings or lips, they afterwards give various murcles underneath to the belly. The thorax rifes into a point, and is of a colour fomewhat approaching to yellow. When opened it exhibits many mufcular fibres running tranfverfely from one fide to the other, from which the thorax obtains its hardnefs and frength. Under this is placed the brain covered, with a bright-yellow membrane; but the fpinal marrow and nerves are white, and they are divided into branches which are detached in great numbers to the mufcles.

I find four different parts in the abdomen, a liver, fat, an aflhy-gray fubftance, and feveral membranous and mufcular expanfions. The part which I take to be the liver, is very large; it confifts of a congeries of fmall oblong glan-
dules, which are placed near the hepatic veffels, and refemble fo many uvulæ refting on their little fupports. Its colour is a blueifh red, and where the vefflel is thickeft, a glutinous matter is contained in it. There is a great quantity of what I call fat in the abdomen; it is divided into fmall glandulous little knots, and is of a bright white colour, fo that one would take them for little eggs, only there is fo great a quantity here, that it reaches even to the fpinal marrow. Many membranous and mufcular expanfions are likewife feen in the belly, but whether they are interwoven with veffels and nerves, or with mufcular fibres, I cannot exactly determine. To conclude, there is likewife a great quantity of anh-coloured matter, diftributed among the fat: we find the fame fubftance depofited round the larger veffels of the branchix or gills, and in many other places.

I could not hitherto difcover cither a heart or a ftomach in this creature, but fhall referve both for further inquiries. The principal mufcles that arife from the back are here very ftrong, and divided into many tendinous fibres, and are firmly inferted in the flkin or fony fhell of the creature, fo that by this means various holes and cavities are obferved to be formed in the fhell, becaufe fome of the tendons are fixed in it deeper than in others. Out of the back arifes, among others, a very beautiful fmall mufcle, which paffes through the fhelly part that joins the two valves of the fhell together, as through a pully, and is afterwards inferted in the flarp-pointed extremity of the fhell: but the mufcles are not fo ftrong about the acute extremity as elfewhere. The fame are likewife very fhort, which is the reafon that this Mufcle can open the valves of its fhell but a little way; fo that if you attempt to ftretch them further, even with the leaft force, they immediately break.

On the infide of the fhell are obferved five particular parts, in which the mufcles of this creature are inferted, that is in the fore part of the acute extremity, where the infertion is indeed broad and formed into a circle, Tab. X. fig. viI. a, but not very ftrong. The Mufcle is very ftrong at the thick end of the fhell, becaufe the mufcles are there very firmly united with the fony bone: but one may there fee four little apertures b funk in the fhell, wherein the tendons of the mufcles are united with the fhell, or rather change into a fhelly fubftance. The mufcles of the lips are inferted, but not ftrongly, almoft in the whole circumference of the fhell next to its extremity $c c c$. We obferve that the firial worm d of this fhell fweils fomewhat beyond its arched cavity. There are alfo two eminences $e e$, by the help of which both valves of the Mufcle are very firongly joined together as by ginglymus; which, together with the parts wherein the murcles are inferted, make a very beautiful appearance in fome other fpecies of Mufcles, and are wonderful in the larger fhell-fifh of this kind. This thell is on the infide like that of mother-of-pearl. On the
outfide it has various convoltions or little ribs, formed like crefcents, and is furrounded on every fide with a ftrong yellow-green membrane or periofteum.
I. have nothing more to fay of this and the other creatures, as I only flightly made thefe particular experiments, that I might, as far as time would permit, illuftrate the hiftory of the covered Snail by the defcription of fome other kinds. I have examined into thefe things, that the reader, myfelf, and all mankind may learn to know God by his wonderful works, and adore and love him as the fupreme Deity
and the great Creator of nature. Doing this, we fafely purfue the feps of Chriit, in and by whom every thing we do muft be acceptable to God: but if we do not follow or imitate him, we are like thofe carelefs fervants, who buried in the earth the talents commited to them, which God grant may not be our cafe; and may all perfons, according to their refpective abilities, extol and praife him ; for which end I have communicated thefe obfervations as my mite, and wifl they may anfwer the intended purpofe.

The method of cutting various images and figures in foells.

BEFORE I conclude the hiftory of fhellfinh, I fhall firft fubjoin a method, whereby thells may be engraved and adorned with little pictures and figures, which is indeed a bufinefs of exquifite art. Take yellow wax, and mix a little Venice turpentine with it, to make it more clammy, then add as much lamp-black with it as will make it very black. With this wax melted in a fpoon, we may make any figures we think proper, on the furface of the fhell, to be carved ; then we cover thofe parts that are left uncovered with wax, with aqua fortis, which may be conveniently done by the help of a skewer, with a fmall piece of linen wrapt round it. If this be continued for a fhort time, all the parts of the fhell that are free from the wax will be eaten by the aquafortis, and in thofe places covered with wax will be left an higher furface. And by this
means the fhell may be adorned with various figures, and apartments or divifions, which appear to be externally made thereon. But if after the wax is fcraped or taken off by melting it, any corners or uneven parts fhould chance to remain, they muft be planed and perfected with the inftruments wherewith figures are engraved. Thus three, four, or five eminent figures may be executed one over another, according to the thicknefs of the fhell, and the places which we would have elevated, are firft covered with melted wax. But the place which the aqua fortis corrodes with its acrimony, ought to be wafhed with common rain water. Other corroding liquors are not fo proper for this purpofe as aqua fortis, becaufe they leave after them a fandy fubfance like chalk, which produces a roughnefs that renders the appearance lefs agreeable.

The end of the biftory of Shell-fish.
A letter from Gobn Swammerdam to the moft illuffrious Mr. Thevenot, on the anatomy of the Cancellus or Bernard L'Hermite.

Illustrious Sir,

WHEN I had the honour of your company for fome days in Yffi-ftreet, it often happened that fome miracles of nature excited us to admire the great Creator, who is aftonifhing in all his works. We have alfo debated on the fame fubject often, when you refided in Holland, and I have fhewed you various uncommon experiments on bees and other fpecies of infects. But fince the fecrets of nature have, by the many inftruments and contrivances which I have invented, become clearer and more known to me; and fince I can in one day inveftigate what I have before fpent a whole week on; I can theriffore now add a great deal to the difcoveries I formerly made. This you will be convinced of from the defcription of the internal and external parts of the Hermit Crab, which I firft obferved fome ycars ago at Scheveling. For, as Dr. John Oort, governor in Nyenrode, fent me a large
veffel of thefe creatures, which, the better to preferve them for fome time, he had taken care to throw into fpirit of wine inmediately after they were caught: I cannot help giving you a full defcription of what I oblerved in them, and what obligations 1 an under both to my old friend, the governor of Nyenrode, who is greatly delighted with the works of God, and to you, illuntrious fir, who keep me continually employed in thefe matters, and engage and perfuade me to fearch into them. All mankind will admire the fupendous examples of the immenfe greatnefs of the wonderful works of God, which that fupreme architect exhibits to our contemplation in the variety of the things which he has created, that we may acknowledge his wifdom and infinite power in the works of nature, and be induced to love him moft ardently, and above all things.

The fimermen who get their living in the fea of Scheveling, take there feveral ftrange creatures, as well in common nets as in drag nets, which they either throw again into the fea, or leave on the fhore, fince they can get no profit by them. This is the reafon that it is not yet known, how many and what wonderful creatures there are, to which the eternal power of God has affigned the falt waters as their habitation. I with many more men had fuch an ardent love for the fciences, as you and the governor of Nyenrode, our friend, for thus the knowledge of natural fcience, and the hidden caufes in phyficks would, by degrees, become known; and the incitements to
our duty, by which we are ordered to love our Creator with all our heart, would be doubled. I am greatly obliged to you, becaule when you were in Holland, you ordered many Itrange creatures to be brought me from Eg-mont-ftrect, which we afterwards examined with our common and dear friend Dr. Stenon. But I fear my long preface makes me troublefome to you, by delaying the expofition of what I promifed, and the gratification of your eager curiofity. I fhail therefore now relate to you in order, what I have obferved in the fpace of two days in the Hermits tranfmitted to me, and what ftupendous things I faw in them.

The external parts of the Cancellus or Hermit.

IN the open veffel wherein my Cancelli or Hermits were inclofed, I faw fome of them had broken out of their fhells, and that others ftill lay in them. The fhells of the largeft were as bigas a chefnut, but thofe of the fmalleft were not bigger than a large pea. The creatures themfelves who inhabit the infide were large or fmall, in proportion to the fize of their fhells. But all thefe fhells were of the fame figure, form, and habit, only that there was fome fmall, and, as it is called, accidental difference, in refpect to the colour and lines. Some of the Hermits which ftill lay in their fhells, were difengaged from the fhell, fo that they were affixed, by the ftrength of their tail only, in the laft firal windings of it ; but in others I faw very diftinctly that in the middle of their body they were joined in the fame manner to the 隹ll itfelf , and this is a property common to Mufcles and Snails. Hence, it appeared to me moft certain, that the fhell was as much the true skin of the Hermit as it is of the Snail.

Hence it feems matter of wonder that the learned Rondeletius fhould write of the Cancellus or Hermit in this manner: " Bernard
"L'Hermite fe loge toujours dans les coquilles "d'autrui, et qui'l n'en a point de propres;" that is, " the Hermit always inhabits the fhells "of other creatures, nor has it any of its " own." I obferve in the covered Snail, that by the help of its mufcles it is not only affixed to the fhell, but even the tendons of thofe Mufcles increafed with the fhell, and are actually transformed into it, in the fame manner as the tendons of the feet of Cocks and Peacocks are infenfibly offified through age. The fame thing is alfo obferved in the Hermit, for the tendons of its mufcles, firmly adhering to the firal pillar of the fhell, where the pillar forms its fecond fpiral winding, are obferved to be all joined to that rocky fubitance. But as the tendons do not occupy a great face with their infertions; therefore the body of the dead Her-
mit quits them : and this was probably the reafon that the great Rondeletius, following the doctrine of Ariftotle, has not obferved this matter. As all thefe fhells have one and the fame figure and ftructure, it is manifeft even from hence that they are proper to thefe creatures only, and are increafed and augmented with them, as is the cafe in Snails and all other creatures that inhabit fhells. I am therefore certain, that all Hermits which belong to the fame fpecies have likewife fimilar fhells; for I am taught by experience, that there are many fpecies of Hermits that are not only very different from one another, but alfo live in different kinds of fhells; this I have feen in my father's collection, and in many other mufeums.

The fhell of the Hermit is moreover furrounded with a very thin periofteum, and hence arifes a new argument, which confirms, that the fhell is the fkin of this creature, which, with its periofteum, covers it on the outfide. So that therefore the Hermits, as well as Beetles and cruftaceous creatures, have their bones placed on the outfide round their flefh, though there is ftill fome difference. This periofteum is very thin, nor can it be better or more perfectly feparated, than by fteeping the fhell fome days in lye, and rubbing it lightly with aqua fortis, for thus it parts from the hell. By this method the periofteum may likewife be very eafily feparated in fome other fhells. But it is fo thick and remarkable in fome kinds, that there is no need of this experiment. In other fhells, again, which are rolled over rough ftones, or that have been drawn through rocky and fandy places with their inhabitants, this periofteum is wholly worn off, and cannot therefore be then difcovered in them.

Some of thefe fiells were very finooth and beautifully coloured, Tab. XI. fig. I. a, and glittered like a looking-glafs. A fpecies of the Fucus Marinus, rifing with fmall points, covered the largeft of them in fuch a manner, that the whole figure of fome were obfcured and hid,

[^17]nor could the firal windings of fome of them be feen b. Moreover fome holes appeared behind the points, and alfo fome very fingular litthe grains of fand, fome of which were likewife covered with the Fucus. Other holes were obferved likewife full of fofter purple coloured eminences. In fome of the fliells a foft fea mud was found, in others a very hard one, the figure whereof was likewife fpoiled by winding round the creatures. I likewife faw that a fubftance adhered to the internal furface of one fhell in fuch a manner, that there was no void face either in the entrance or mouth in the fore part, or a little higher in the fhell; only where the tendons of the mufcles were feparated from the fubftance of the fhell. I oblerved further, that Worms had pierced the fhells in fome places, and how fome of them had been broken and again joined together. Thefc fhells are ufually moft beautiful when the Hermits are fmalleft in them, for they are not then covered. In fome other young ones of thefe, the periofteum appears of a very remarkable figure and beauty, where the fhells are not yet covered with the accreted matter; as I have obferved in fome fmaller water Snails, in which the whole periofteum was very delicately adorned with briftly hairs. Let what has been hitherto faid of the fkin of thefe creatures fuffice. I fhall now explain the other parts of the Hermit, and that they may be the more eafily underfood, I thall divide the creature into four parts, the head, thorax, abdomen and tail, and thall afterwards defcribe every thing remarkable in each.

In the upper part of the head are feen two eyes, Tab. XI. fig. I. c, and on one fide of the latter, two horns or antennæ $d d$. Underneath appear fome articulated brifly hairs, and alfo a mouth and teeth. The eyes are oblong, fomewhat red, and in their aperture of a dark green colour: they are articulated on both fides with the head, by the affiftance of a certain dentated ring, which confifts of a like fubfance with the fhell that furrounds the thorax and feet, and the other part of the eye is again articulated with the head. This upper part of the eye is likewife very hard underneath and in the middle, but it is foft above, where the cornea tunica is placed. The horns are compored each of three joints, whereof the largeft are thofe which are joined to the head on each fide of the eyes; from thefe the horns infenfibly grow very fhort, and terminate as it were in fmall briftly hairs. In this thin and tender part of the horns I reckoned above one hundred and twenty very fine and delicate articulations, each of which was likewife adorned on each fide with two pair of fine hairs. In the larger Crabs thefe articulations are very diftintly confpicuous, and when the Crabs are boiled, the horns may be divided into as many plain and fmooth rings as they have articulations of that kind. Between the firft and fecond joint of thefe horns of the Hermit, there is a fmaller
rigid or hard appendage, beautifully adorned with briftly hairs.

Between the horns, under the eyes, appear a beautiful pair of rough hairs, which confifts of three joints, whereof the upper one is the broadeft. Under thefe are feen the teeth, which are two little, hollow, white, oblong bones, and are furnifhed with frong mufcles, wherewith they are moved. Between thefe teeth is placed an external bone, by which the creature takes its meat, for which purpofe it has not only two arms or forceps e, f, but many articulated rough or briftly hairs, of different ftructures, which cover the mouth on the lower part. There are two very fmall, fmooth, broad, ruddy, fhaggy brifles, or rough hairs of this fort, each of which has one joint only. There is afterwards another pair of larger briftles of the fame conftruction, each of which has two joints. There is alfo a third pair, not fmooth or broad; but with thefe, on either fide, are two pair of fuch little parts likewife articulated, and every hair of this third part in the fame manner confifts alfo of two joints. The fourth pair is fomewhat fmooth and broad, and thefe are compofed of three joints; to thefe are alfo joined another pair, each hair of which has two joints. There is in like manner a fifth pair, that are likewife double, that is, a larger one, compofed of four joints ; and the other, which is joined to the former, confifting of three. Laftly, there are underneath, near the thorax, a very large pair of briftly hairs, like two legs, each of which confifts of fix joints, and has alfo on each fide a fmall part added to it with two articulations. So that computing the whole, there are here twelve pair of imall parts beautifully interwoven with briftly hairs, which meet together when the Hermit fwallows its meat, as is manifert from their fructure and fituation.

The thorax underneath is divided in the middle as it were by two teftaceous little bones, with which the two arms and the four fore legs, Tab. XI. fig. I. gg, are articulated. And in order to fee this diftinctly, it is neceffary to take the whole Hermit out of the fhell, and to lay it on its back. Then four articulated briftly hairs are feen between the eyes. fig. II. a a; but the other briftly hairs before defcribed cannot be feen diftinctly, until after thefe are removed out of their places, becaufe they are covered by them. Near the eyes two horns $b b$ come in fight, and afterwards two arms are feen very diftinclly, of which the left with its forceps c, is always lefs than the right d, though both are compored of five tertaceous joints; to the uppermoft of which is likewife joined by articulation a fmall part, which may be called a thumb, and from this the forceps of this creature have their origination.

The four fubfequent legs $e e$ confift of fix joints, which are alfo like the arms adorned with prominent notches, briftly hairs, ruddy fpots and furrows. And further, with the thorax
are joined two other pair of fmaller parts like legs: and in the middle, between each pair of thefe, are obferved fome peculiar little bones, whereby thefe legs are joined to the thorax. The firft pair of them, Tab. XI. fig. iI. $f f$, has indeed five joints, and, in other refpects, it is of the fame ftructure with the arms or forceps, and has, like them, a very fmall thumb. The other pair likewife confifts of five joints, and is very worthy of notice ξg, becaufe the firft pair of thefe joints, that next to the thorax, or the fifth, if you compute from the extremities, is perforated with two fmall tubes, iffuing from the abdomen, through which the femen or eggs are fecreted; which indeed deferves very great confideration. The upper part of the thorax, or back, is furnifhed with a fmall hield; behind which is placed fuch another, but lefs. On the fides of the thorax the cruftaceous covering of the back is thin, and if it be raifed up, which may be done without diffecting it, the branchiæ or gills are obferved underneath, placed on each dide of the thorax.

The abdomen is foft, and has no fhelly or cruftacious covering; fince the fhell itfelf is its coat, and does the office of that hard fkin. The body is in this part bent near the duct of the fpiral windings of the fhell; with which it is furrounded: But this bending of the body is not fo remarkable as in Snails; becaufe the body of the Hermit is not extended through all the turnings of the fhell. The abdomen has on the right fide three teitaceous briftles $b b b$, each of which confifts of two joints. Rondeletius, in his Hermit, feems to delineate fix fuch little parts, which are interwoven or planted with little eggs or fpawn like beads.

Among many things worthy notice in the belly, what deferves moft particular confideration is a certain eminent or prominent point i, which is naturally the firft thing obferved in the thorax, and is as the center, wherein all the tendons of the mufcles, and that part of the abdomen meet; and by the help of which, the Hermit is in that part fixed in his fhell or ftony fkin, fo that it can never go entirely out of it. Though its thorax, and the hinder part of the abdomen and the tail adhere to nothing, and that there is fuch large room or fpace in the fhell, as that the Hermit can freely move itfelf therein; yet the thorax is forced to remain fixed in the Mell, like the Tortoife in its houfe or fhell.

The tail of the Hermit is alfo furrounded with a cruft k. That this may appear the more plain, I have delineated it larger than it naturally is. This tail confifts of two teftaceous articulations, Tab. XI. fig. III. a, to which are added at the end a verge as in Snails b, which forms the third joint, and ferves to hide the fundament: for the inteftinum rectum c terminates there in the fecond joint. On each fide of the tail are three pair of teftaceous little
bones $d d$; which, like the arms, are larger on one fide than on the other, and beautifully decorated with fmall hairs. The Hermit makes ufe of them when it finds an enemy approaching, to hide itfelf in the fhell, or when it defires to reft; for then by their affiftance it lies fixed in the hinder parts of the fhell, or draws itfelf back into it. But if the Hermit draws to it, or contracts thefe little parts, it can then. protrude its tail forward into the entrance of the fhell, and thus it evacuates its excrements. For this purpofe, I think, nature has given it fo large a fhell ; the hinder windings whereof are not all filled with it, as we have before obferved. The fame is found in Snails that inhabit fhells; which, for that reafon, difcharge their excrements through their neck, and have not a very moveable tail. Thefe little bones of the tail are formed, fome larger than others, in proportion to the fpace in the fhell, for this is larger on one fide than on the other. In the fame artificial manner are built the wheels of french chariots made for afcending.

The interial parts.

Receive; illuftrious fir, this brief defcription of the external parts of the Hermit Fin, and permit me now to pafs to the internal, beginning with the abdomen, becaufe I have begun the diffection there. When the abdomen is opened, the firft thing that appears is the outer and inner fkins, which are glandulous; and immediately under there is feen a flefhy membrane: After thefe integuments are diffected or taken off, a great number of whitifh filaments prefent themfelves; which are delicately and orderly placed on very numerous and beautifully digefted parts, in form refembling inteftines, fig. iv. $g \mathrm{~g}$. As I purfued the courfe of thefe white filaments to their origin, I faw they were blood veffels, though of a white colour like a cob-web. What I firft took to be the inteftines were all appendages *, fometime plain; and fometimes divided; which were of a tubular ftructure and whitim colour, and contained a matter feparated into diffimular parts, and condenfed into a ferum and coagulum. Thefe appendages were fo numerous as to cover almoft all the abdomen; but they were all connected by the blood veffels, which I was obliged to break open with great attention, in order to difcover their origin and beginning: Thus I at length difcovered that thefe were on each fide united, Tab. XI. fig. v. $b b$, into two common ducts, which grow near the ftomach where the pylorus is placed, and are terminated in many unopened tubes $i i_{\text {. }}$ What ufe thefe appendages are of, and whether they ferve inftead of a pancreas, which is formed in that manner in many Fifh, may be more accurately inveftigated in the larger Crabs.

[^18]Among thefe appendages, at the bottom of the mufcles of the abdomen, appeared an inteftine; which, without any winding, ran ftrait from the ftomach towards the tail ; and whereof I have here delineated, fig. III. e, only a fmall part, fomewhat augmented beyond its natural fize. It was full of gray excrements, which, when viewed with a microfcope, confifted almoft entirely of fmall chryftals, which were regular grains of fand. The ftomach alfo contained partly the fame fubftance, and partly fome little fibrous membranes. Its upper part is placed near the back, its inferior in the thorax. It is in ftructure partly membranous, and partly cruftaceous: its bones are very beautiful. Above, below, and on each fide, it has many mufcles, by which its parts are connected and moved. On the infide, in the cavity of the ftomach, I faw three diftinct teeth, of a moderate fize, each of which was divided into feveral fmaller teeth : the teeth were of a pale lemon colour, but it was changed by degrees into a dark green, in that part where they terminated in little teeth or divifions. Two other teeth-like little parts, which were uneven and notched, adhered alfo to the cavity of the ftomach. This obfervation is certainly very worthy of notice, that the little creature, living like a Snail in the fhell, is furnifhed with a double apparatus of teeth; for it has two teeth forward in the extremity of the mouth, and five others in its ftomach.

Where the inteftinum rectum or ftraight gut begins, I faw the cæcum or blind gut moderately long, and beautifully twifted, Tab. XI. fig. III. f, which I firft took for the extreme appendage ; but as I found it loofe and difengaged in all the Hermits I diffected, I therefore believe it is the cxcum. I fhould not, however, venture to affirm this for certain, becaufe I have not diftinctly feen its blind or imperforated extremity; for all its contents were coagulated and feparated by the fpirit of wine, and the place wherein the inteftine itfelf was feen, appeared fo tranfparent, that I could not obferve that particularity. Befides, it was not like the appendages on account of its contents, nor was it inferted in the middle, but fomewhat on one fide of the inteftinum rectum.

In the abdomen, on each fide of the appendages, there were two fmall, genital veffels, fig. vi. $a a$, whereof that in the right fide was the larger: both were, in many places, beautifully twifted into fpiral windings $b b$, and they proceeded thence curled, till they at laft terminated in a narrow tube c. It appeared likewife how there, in their end, pierce or perforate the laft pair of legs, fig. II. $g g$, in the middle of the fifth joint, which refembles a bone or thell with a confiderable tube, fig.vi. d. This I have delineated larger than it naturally is. This perforation appeared to me very plain, when I fqueezed the contents through it, and feparated and unbound the tube itfelf. In it was a fubfance of a whitifh colour, and when examined with a glafs, it feemed all to confitt of very
fmall regular little parts, like round globules. I could not difcern whether theie were the rudiments of eggs, or the globules of a male's femen; fince in all the ten that I diffected, the fame ftructure was obfervable in the genital vefiels. The windings of thefe fpermatic ducts. were likewife connected by means of blood veffels; and when I opened them, they were ten inches and an half long. Thefe are all the entrails that I faw in the abdomen; only that in the bottom of the belly were placed feveral mufcles, towards which the nerves iffued from the fpinal marrow. Part of the tendons of there mufcles terminated in the point, fig. II. i, above defcribed; where the creature is fixed in its skin or fhell, fo that with their affiftance, the Hermit may draw in and hide itfelf in the fhell. Between the appendages I faw many little drops of fat floating, which refembled the oil boiled out of the fat of Whales fwimming in water.

If the thorax be opened above in the back, the firft part that is there feen is the ftomach, with its mufcles, which is of a remarkable fize in this creature, and is really fituated under the back, though I have, for method fake, defcribed it in treating of the abdomen. Behind this ftomach, above the place where the inteftine arifes; is fituated the heart, Tab. XI. fig. viri. $a a$, which refembles an irregular little piece of flefh, and becomes fomewhat pointed. It is of a ruddy colour there; but underneath and at the fides it is white. I perceived four veffels b iffue from it above, andtwo c below; and one of the two lower ones was larger and thinner than the other; which however confifted interchangeably of fomewhat thicker fides, and fent off fome vafcular fprigs d. On. the outfide of the furface of the heart I obferved b feveral little holes; but on the infide the heart was fibrous, and furnifhed with its pillars or columns like the human heart. I difcovered only one venticle in this creature, as is the cafe in the generality of Fifh; but I could not fee its auricle. Moreover, I obferved how the whitifh veffels in this heart, were diftributed up and down through the body, efpecially towards the branchiæ or gills, one of which I have reprefented magnified e.

There are here, as I have obferved, eleven branchix or gills on each fide of the body, fo that they make twenty-two in all. They are fituated at the fides of the thorax, between there long cavities, which there form the articulations of the legs. They are of a pyramidal figure, rifing from a broad bafis $f_{\text {, }}$, and ending in a fmall pointed top g. Each of them is, at the upper end, divided into two other parts, each of which confifts of a great nurnber of fmooth or plain lamellæ b or layers, which are applied clofe to each other like the leaves of a book, and each of them is divided from the others very deeply, which makes indeed a very agreeable fight. The ftructure of the branchiæ or gills is partly cartilaginous and partly membranous; and their blood-
veffels are extended near the cartilages. .Moreover the beginnings of the appendages are feen very beautifully in the thorax, as has been before obferved.
After thefe little parts, together with the fomach, heart and inteftines are removed, the fpinal marrow prefents itfelf to view: it is placed entirely at the bottom of the thorax, and is not inclofed in a bone. It extends itfelf through the lower parts of the abdomen to the tail of the creature, and there terminates in the mufcles of that part. In order to defcribe this matter the more exactly, it muft be obferved, that the brain, Tab. XI. fig. IX. $a a_{\text {, }}$, from which this marrow arifes, is fituated immediately under the articulations of the eyes in the head, which is very fhort, and joined to the thorax. This brain is feen to be there divided into a right and left part. Above the brain appear the optic nerves $b b$, which are found to decuffate over it, and to proceed towards the eyes, as I fhall now fhew. Underneath, out of the bafis of the brain, arife two ftrong nerves c, which properly conftitute the origin of the marrow in the thorax: thefe nerves are placed at a confiderable diftance from each other, in order to give a paffage to the gullet, which is very fhort, and reaches from the mouth to the ftomach. The brain is therefore placed over the gullet, and the gullet again, as well as the fomach and inteftine, are lodged upon the marrow in the thorax and abdomen. Thefe two originations of the marrow are again united a little below, and there form a remarkable fwelling or knot d, out of which many nerves iffue, which are diftributed over the mufcular parts of the thorax as well as the brachia and legs. In men and quadrupeds fuch clufters are never feen in the body of the marrow, but always in the nerves after they have iffued out of that part; but this is indeed the fame thing in effect, for as the marrow itfelf is as it were a bundle of nerves, and is double in all fpecies of animals, it is the fame thing whether thefe clufters are found in the marrow, which is a kind of thick and compound nerve, or in the nerves iffuing from thence, which are the feparate portions of the marrow. Whoever accurately confiders the marrow in man and other animals, will indeed moft clearly obferve this analogy; though Malpighius himfelf does not feem to have obferved it, when he fuppofed there was fo great a quantity of brains in the marrow of filk worns. After the marrow has formed this clufter in the Hermit, it becomes fimple again, though its two parts may, notwithftanding, be pal pably diftinguifhed ; but thefe are fo nearly applied and contiguous to each other, that they are as if they were but one. Afterwards is difcovered another clufter of marrow, and a third, fourth, fifth, nay, a fixth, eceee; the nerves of this laft are detached to the mufcles of the tail. The nerves which arife out of thefe little clufters, are almoft all beftowed on the mufcles of the
abdomen; whereas on the contrary, thofe that iffue from, the marrow itfelf, Tab. XI. fig, Ix. ff ; are likewife diftributed to the vifcera. It is likewife worthy of notice after what manner the nerves decuffate one over another, which I demonftrate in thofe nerves which iffue before the laft clufter out of the narrow g, and are detached to the mufcles of the abdomen.

After the optic nerves have iffued from the brain, they are inclofed in the annular b cruft of the eye, and being again confiderably expanded in the latter, they thus proceed to the verge of the cornea tunica, and there terminate like fpheres, or in globular forms. No humours appear any where in the whole cye; like thofe found in the cyes of men, quadrupedes, birds, and terreftrial or water Snails; but it is obferved to be of a texture entirely different, which is very worthy of attention. If the cornea i be taken from the eye, there is immediately feen under it a kind of limpid matter, fig.x. k, which is the colour of jelly, and is divided in a very elegant and regular manner. What part this is, and whether it has its origin from fpirit of wine, I cannot exactly determine, as I never faw any thing like it in any infects, whofe eyes are of the fame ftructure. I fhall therefore at a proper time examine this little body, in the larger Crabs diffected alive.

But before I proceed further, it is to be known, that the cornea tunica is divided like a net, in the fame manner as in the eves of infects, but thefe reticulated divifions arc here much deeper. I find every divifion to be hexagonal, as well in this Hermit as in infects. Moreover, all thefe divifions wind themfelves above in a fpherical figure, which however is not here very remarkable, fince the ariolx or little beds of the divifions, are very fmall and fmooth. On the infide, in the hexagonal cavities of the divifions of the cornea, was fixed the glutinous matter before defcribed, which was there divided in the fame manner as the cornea itfelf. Under the latter appeared a great number of little fibres, fig. ix. l, which are placed on the internal furface of the eye, in the fame manner as the feeds of the plant turnfol are fixed in their cups. All thefe fibres, which fupport the glutinous matter aforefaid, are connected together by the help of a membrane of a black colour on the infide, but above of a tranfparent green on account of the matter; I therefore call it the uvea tunica.

The ftructure and fituation of thefe formed as it were an inverted pyramid, with its fmall point turned downwards; but when I feparated thefe little fibres from each other, they appeared above as black as pitch, Tab. XI. fig. x. m, but below only of an obfcure or dark brown n, and pellucid in the middle 0 : all of them terminated at length in a gray fubifance, and under this the extremity of the optic nerve came in fight.

When I viewed thefe fibres with a microfcope, I found each of them confifting of
other
other fibres, fig. xr. $p p$, all which were compofed as it were of regular globules placed near each other. Between thefe little fibres there appeared alfo fome fmall membranes, interwoven likewife in feveral places with globules, between which fome veffels appeared creeping in various directions.

The cornea tunica, which is entirely pellucid, is very beautifully fituated on this eye, and flews a greenifh tranfparent uvea underneath: where the eyes face each other, the cornea is beautifully divided, fig. Ix. i, and the cruft is there extended further; fo that the cornea is placed on the eye like a little cap, lying on the head obliquely.

After what manner fight is performed in the eye of the Hermit, and what effects are produced by the rays of light which pafs through the cornea, and the glutinous fubfance, and are afterwards ftopt by the uvea, and thence communicate their motion to the pyramidal inverted fibres; this, illuftrious Sir, I leave to your difcerning and moft correct judgment, not doubing but you will give me the folution of fo peculiar a problem.

What I have here briefly related, Sir, it all I have been able, in this fhort time, to difcover in thofe Hermits, which the governor of Nyenrode fent me in fpirit of wine. I offer you thefe obfervations in token of, and to preferve, our mutual friendfhip, and as an example of the divine miracles, which ought to be adored in all animals. Indeed; if we diligently fearched into nature, we fhould for ever find more remarkable and more ftupendous miracles, which hitherto lie hidden and wrapped up in the clouds of our ignorance. I hope to be at fome time able to go through an accurate examination of the Caterpillar kind ; in which, indeed, mifery, death, and the grand and fplendid refurrection of the body may be fo clearly demonftrated, that we fhall fee them as it were painted before our eyes, and muft be obliged to cry out in amazement, that the great God, the parent of all nature, exceeds and furpafies all praife, all eulogies, and all titles of honour, in his miracles, which can never be defribed acecording to their dignity.

The $S E C O N D \quad O R D E R$.

Of the natural changes, or of the flow accretions in the limbs and parts of Infects:

HAV IN G explained the firft clafs of riatural transformations in infects, we fhall now pafs to the fecond, which, though fomewhat more obfcure, may yet with due attention be clearly and diftinctly underfood. But before we proceed to explain this fecond clafs, to which innumerable infects are to be referred, it is neceflary to obferve, that in this order another fpecies of transformation conftantly precedes, which is indeed common to the two following, which are the laft claffes of mutations.

In order to underftand accurately the preceeding kinds of tranfmutation in this, as well as in the two laft claffes, we muft call to the attentive reader's mind what has been faid in the beginning of this work, where we treated of the firft kinds of changes; that is, that fome infects iffued perfect out of the egg, and others imperfect. As we have referred the infects, which come perfect from the egg, to the firf clafs of tranfmutation, it is very necefflary to know, that this fecond, and afterwards a third and fourth, or laft clafs of mutations, precedes the completion of the parts in thofe which iffue imperfect in fome of their parts out of the egg. Herice it is, that in the firft order or clafs of changes, is peceived only one Nymph as it were, which we have obferved is the egg or little creature itfelf. In the fubfequent claffes, on the contrary, we fhall obferve as it were two Nymphs in the courfe of the changes, and therefore two fpecies of thofe changes alfo fince another
kind of Nymph precedes the egg, or the oviform Worm of the Nymph.
That all thefe things may be perceived the clearer, we muft briefly obferve, that a little Worm always precedes this fecond and all the fucceeding orders of tranfmutations. After this Worm has been in its egg or firft cover in the form of a Nymph, it increafes by degrees in its limbs, and in procefs of time becomes fo perfect, that at length it puts on another habit of a real Nymplh, and again becomes fluid like water in all its parts, and weak and feeble, or deftitute of ftrength, as it was before, when it was in the form of an egg. Hence it has happened, a matter not hitherto obferved, that not only the ancient errors concerning thefe metamorphofes remain to this day, but even thofe moft diligent fearchers into nature, the fagacious Francis Redi and others, declare they have feen the caft skin, under which all the limbs and parts of the infect increafed; but never doubted concerning the metamorpofes, at which we greatly wonder.
To fpeak now in particular of our fecond clafs of changes, it will be very proper to obferve, that the accretion of the parts undergone in procefs of time by the Worm, which is commonly found to have fix legs, is infenfibly and by degrees perfected by the evident external addition of matter; fo that after fome changes of its skin, we at length obferve wing; to fprout infenfibly out of the body, to fwell and become fit to open and bloom, as a tender,
fmall, foft, delicate hull of a flower does out of a plant. Again, as in the other two changes, under which we fhall fee the Vermicles or Worms transforned into real Nymphs, the infects are deprived of motion, and as it were of neceffity lie unmoved for fome time; foo on the contrary, the infeit, under this change, advances, ftands, walks, runs, leaps, and cats, nor is it ever deprived of motion, only that it refts a little at the time it is to caft its skin; and then ftupendous changes happen in fome of them, as. is fufficiently manifert. in the Ephemera, or Dayfly. In others, on the contrary, the change is fo inconfiderable, that it is with great difficulty obferved, only about the protuberant wings, as is the cafe in the Earwig.

Since therefore the infects which come under our fecond clafs of changes, are not at any time deprived of motion, and yot have fome of their parts well ordered, and compounded like other Nymphs: for thefe cogent reafons we are induced to think, that the infect may, at the time it exhibits its limbs and parts in the manner aforefaid, not improperly be called a Nymph-vermicle ; for the. little creature, whilft it is and remains a real Vermicle or Worm, has notwithftanding fome of its parts difpofed, and in an admirable manner beautifully compofed, juft as they are in the Nymph flate.

Our fecond order or clafs of changes is therefore thus; theVermicle on Worm having caft off the habit of a Nymph, which it bore, without
food in its egg, increares infenfibly by the help of food fupplied from without, difclofing many and more vifible parts, until it afterwards puts on as it were the form of another Nymph; but this without lofing its motion, and it afterwards comes out of that as a winged infect; and having now attained as it were the mar-riage-ftate, becomes fit for generation.

This is the fpecies of Nymphs, to which we have given the fecond place among the natural orders of changes, fince the mutation in quention is not very intricate, nor is it obfcure or difficult to be underffood; nay, it may with
thefe rules be compeheded thefe rules be comprehended eafily, and it approaches very nearly to the firt order or clafs of changes, wherein we faw the creature iffue immediately out of its egg or coat; nor does it indeed differ greatly from that order.

As this change is fo clear and evident, and as it agrees fo much with the budding and
blooming of a flower, we have blooming of a flower, we have therefore thought proper to compare this, and the other fubfequent changes, to this budding of plants. This is the more proper, becaufe, as the increare happens on the outfide of the creature, fo it is likewife obferved to happen in other infects on the infide, and under the skin; which has been fufficiently fhervn in the preceding pages, and fhall be explained more at large hereafter. To conclude, as this change is very elegant, and very worthy of confideration, it comprehends alfo a great many infects under it.

A catalogue of the infects, which are referred to the fecond order or clafs of natural cbanges, called the Nymph Vernicle ${ }^{*}$.

TO. this our fecond order or clafs of changes we refer firt the Dragon-fly, called the Mordella, or Orfodæna, by Junius; by Mouffet, Libella; and by Aldrovandus, Perla. I preferve feventeen Species of this genus, nine very large, five of a middle fize, and three very fmall ones, which, becaufe they are tender and delicate, are dignified by fome under the particular name of Virgins. One of the fmalleft fpecies is well defrribed by Goedaert, but as this author
neither delineates neither delineates in its figure, nor takes any
notice in its defcription of thof notice in its defcription of thofe fwellings in the back, wherein the wings are inclofed, it is evident he did not know the nature or difpofi-
tion of this Nymph. Befides, the third figure tion of this Nymph. Befides, the third figure which he gives us of it, mifreprefents nature according to the fancy of an imaginary brain. I never could find that it has hitherto been defrribed by any other author. Among the figures publifhed by Hoefinagel, who has given us the delineations of ten fpecies of the Dragon-fly, there is found none of the Nymphs before mentioned; it is certain, however, that they were in general not unknown to authors. We find that Rondeletius knew the Nymph of the

Dragon-fiy, though he very improperly called it the Cicada or water Grafshopper. In like manner we believe that the Mordella is the water Locuft of Mouffet. This is moft certain, that the Forficula Aquatica of Johufon, or otherwife the Pulex Marinus of Mouffer, is the true Nympha of the Mordella. The Scorpius Aquaticus alfo of Redi is nothing elfe but the Nymph of the Perlia or Dragon-fly, but belonging to a fpecies which we reckon among the
larger Virgins. larger Virgins.
I keep in my collection, fix kinds of the Nymph Vermicle, from which Dragon-flies have their origin; there are one very large, three of a middle fize, and two fmall. I have likewife a Dragon-fly, which was to have undergone a change immediately, and in which one may obferve, in what a wonderful manner the wings are wrinkled and folded in the tubercles on the back, wherein they are enclofed. I preferve befides the ovary of the Dragon-fly, which is perfectly like that of finh, divided into two parts, one whereof is placed in the right, the other in the left fide of the abdomen.

[^19]The fecond infect which we reckon in our fecond clafs of changes is the Grafshopper. I preferve one and twenty fecies of them male and female; thefe are nine larger, fix middling, and as many fmaller ones, whereof fome are confpicuous by their fcarlet wings, others are cloathed in purple, others in azure, and others have elegant greenifh wings. I preferve alfo fome Nymphs, fome Vermicles, and fome little eggs, from which proceed the Grafshopper and Locuft kinds. Amongft the largeft fpecies, I have the great deftructive African Locuft, which has a cowled or hooded breaft, and two very long legs, which, as they have hexagonal thighs, are provided alfo with a double row of ferrated and long teeth; the internal wings glitter with a deep purple colour. This belongs to thofe fpecies, which do not fhew their colour except when they are flying. I have alfo the Locuft of the Molucca iflands, which Dr. Padbrugge fent me. It has a very flender body like the Cavallucus of Redi, and the tail is bent downwards. Its wings are long, and of various beautiful colours like the Peacock. The neck is of uncommon length, and fupports a fhort head. That gentleman fent me alfo a figure of the Molucca Bruchus, or Grub, the body whereof is as big and as thick as a Hen's egg, and is beautifully interwoven with veins like ribs, but the legs are very fhort in proportion. I preferve with thefe the Spanifh Locuft, which differs from the African only in its fize, except that the veins in its wings are difpofed in a different manner, and the colour is reddifh. I have alfo the African Locuft with fhort legs, and Gort thick horns, wherein one may, in a remarkable and diftinct manner, fee the prominent eyes. Among the middle fpecies I preferve the Mantis or divining Locuft, which was likewife brought from the Molucca iflands. Of this authors invent many idle ftories; one is, that when it is afked the way by travellers, it fhews it. "This little creature is reckoned " of fuch a divining nature, fays Mouffet, that "" when a boy asks for the way, it ftretches its " foot forward and fhews it, and is feldom or never miftaken." The other Locufts that I preferve are of the middle fize, and moftly french; they are adorned with a wonderful variety of colours, as with fo many newfafhioned garments: hence they pleafe the eye greatly with their natural ornaments, but they do not fhew their colour except when they fly.

It is remarkable what fmall difference there is between the Worm or Nymph Vermicle of the Locuft, and the Locuft itfelf: this confifts only in one thing, that the wings, which in the Locufts are expanded and fpread over the body, are on the contrary enclofed in the Nymph, in four little clufters, wherein they are quite folded into each other, in like manner as in the Worm of the Dragon-fly. It was this folding and reparating of the wings, that, in my opinion, made Ariftotle, Pliny, Hieronymus, Aldrovàndus, Mouffet, Johnfon, and
other curious fearchers into thefe fecrets, call the aforefaid Vermicles of Locufts, featherlefs or unfledged Locufts and Bruchi. The fame creatures they afterwards, when their wings began to fwell, called Attelabi ; and to thefe, when by the increafe of the bulk of their bodies, efpecially thefe of the females, they began to hop flowly, but were not yet able to fly, they gave, not to mention many other names, the appellation of Afelli. The word Attelabus properly fignifies the Nymph of the Locuft when able to walk. We fee feven feecies great and fmall of thefe Nymphs, out of which the Locufts iffue. In the figures of the induftrious Hoefnagel, which exhibit fifteen fpecies, we likewife fee there a delineation of the Nymph Vermicle of the Locuft. When I confider all thefe experiments, I cannot imagine for what reafon Goedaert fhould write, that Locufts had their origin from a Chryfalis; fince Aldrovandus and Mouffet, and all other authors make mention of unfledged Locufts, and their opinion is fupported by, and agreeable to, experience.

I preferve alfo a three-fold ftomach of a Locuft, which is very like the ftomachs of animals that chew the cud, and particularly has that part of the ftomach called Echinus, very diftinctly vifible. I do not therefore doubt but Locufts chew the cud, as well as the animals juft mentioned: indeed, I perfwade myfelf that I have feen this.

I have likewife in my poffeffion, the oblong eggs of Locufts and their entire ovary, which is interwoven with filver-coloured filaments, which are doubtlefs ramifications of the afpera arteria, and alfo with veins and arteries. But the eggs are all as it were horny, and of a brown colour: many of their firft rudiments alfo being white and yellow, and covered with a thin coat or skin. I preferve thefe in particular cells in my cabinet.

The female Locufts are furnifhed with Charp tails, which the males have not. According to Aldrovandus, they pierce the ground with thefe tails, and bury their eggs under it. I can demonftrate this tail to be quadruple, nay, quintuple.

I preferve alfo the teeth of Locufts, and the coat or skin which the Nymph Vermicle cafts, when the wings of the Locufts begin to fwell. No man can form any idea, by what means a very thin skin is then feparated from the long and fmall horns of the Locufts; nay, and from the eyes and teeth, and the fharp-pointed claws. In this period the Locufts are fo foft and delicate, that their legs may be bent like wax, and formed into any figure, and in that condition may be dried and preferved.

I have alfo wings of Locufts which I ftopped in the act of their exclufion; fo that by this means one of their extremities is difplayed or rolled out, and the other ftill folded together and wrinkled. With there wings the Grafshoppers and Locufts, when they have gone through their change, make that crackling noife, as Cafferius has very juftly obferved. We alfo find
that the males of Locufts only make this noife, not the females: indeed fome fpecies make this noife with their wings only, and others by ftriking their wings and legs together.

The Locufta Pulex, or Flea Locuft, follows. This little creature is found hid in that fpumous matter, which we fometimes fee lying indifcriminately on the furface of all kinds of plants*. In this fpume + it acquires in time four tubercles on its back, wherein the wings are enclofed. I have two fpecies of this infect, and it was likewife known by Mr. Ray, who defrribed the plants growing about Cambridge. It has not teeth like the Locufts, but has only a fubtle fharp-pointed probofcis or trunk, like Grafshoppers, on its breaft.
We refer alfo to this fecond clafs the Gryllus Sylveftris, or wood Cricket ; in which infect we alfo obferve that the male only fings, or makes a noife. I remember that I once faw a whole field full of thefe finging Crickets, each of which had dug itfelf a hole in the earth, two fingers deep, and then fitting at the entrance thereof, they made a very difagreeable noife with the crafhing and tremulous motion of their wings; when they heard any noife they immediately retired, trembling, into their little caverns.
The houfe Cricket is the next to be reckoned in this fecond clafs; fince this, like Locufts, has alfo its wings enclofed in little cafes, as long as it remains in the habit of a Nymph.

We likewife rank the common Grashopper in this clafs. For although the larger Grafshoppers are not found in our part of the Netherlands; we, notwithftanding, by inference from the lefs to the greater, refer them to this place; and the rather, becaufe the very diligent Aldrovandus hath left us a delineation of this Worm, with its tubercles on its back, wherein the wings like a flower in its cup are enclofed; as this Worm is called Tettigometra by him, it is the real Nymph of the Grafshopper. I preferve a very rare and curious exotic Grafshopper, the head of which is formed like a long and deep epifcopal mitre, fo that it appeared four fifths of an inch above the eyes, exhibiting us a wonderful work of God in the theatre of nature. We muft alfo obferve again, that the male Grafshoppers only can fing, and we can fhew their tympanum, and alfo the little part that modulates or tunes the voice, or impels the air againft the tympanum.

The Gryllo Talpa or Mole Cricket, or the Talpa Ferrantis Imperati, likewife belongs to this clafs; fince, like the infects hitherto defcribed, it has four tubercles on its back, wherein the wings are enclofed. We have the Worm of this infect with and without tubercles, as
alfo the infects themfelves, with their wings difplayed. The induftrious Goedaert has deicribed the egg of this infect. We can alfo fhew its teeth, and the manner wherein the wings lie complicated in their tubercles.

In this I alfo reckon a little creature, which is found in the tubercles of the leaves of the black poplar, though I might have defrribed it in the fourth order or clafs, becaufe it bas a more fecret method of changing. It is delineated in figure xxiv. of Tab. XLV. To this order I likewife refer another infect, which is likewife reprefented in fig. vir. of Tab. XLIV. and is found in the tubercles or fwellings of willow trees.
The next we exhibit is the Indian infect, fufficiently known by the name of Kakkerlak, which we think likewife belongs to this fecond clafs. As we have obferved the tubercles beforementioned in its wings, though not having attained their full bignefs their wings did not appear perfect ; for the fame reafons, we think we fhould refer to this order that fpecies of Beetles which are commonly found about bakers ovens, and, according to Fabius Columna \ddagger, in kitchen dirt. They agree altogether with the infects juft now mentioned, called Kakkerlak, and are the fame that are defcribed by Mouffet under the name of Blatta. We preferve two fpecies of them, together with their Nymphs, wherein the tubercles fcarce began to fwell.

Next follow the flying or land Bugs, which we find in fields and trees. I preferve twentyfix fpecies of them in my mufeum, together with a larger Indian one, which are very beautifully adorned by nature with variety of colours; and as with their luftre and gaiety they wonderfully pleafe the eyes, fo they are very difagreeable to the fmell. Hoefnagel alfo has figured eleven kinds. Among thefe which are in our cabinet, we reckon the cruciate, the fcarlet, the red marked with black lines, the green, the black, the yellow, the globular, and that which has a fharp-pointed breaft.
To this clafs twe likewife refer the fying water Cimices or Bugs, of which we preferve four full-grown ones, and one Nymph. Thefe, like all the reft, carry their weapon in their mouth, and fing vehemently therewith, as I have fometimes experienced myfelf, though I fuffered no injury thereby.
We refer alfo to this order or clafs fome infects that are very tender and flow-paced, having fix flender and admirable legs, and long and acute horns, and a confiderable thick body; from the hinder part whereof, about the tail, fpring two briflly and fharp-pointed hairs, and they have likewife a fharp fing, as the Cimices

[^20]or Bugs, fo that they feem likewife to belong to that genus. I could never hitherto obferve there little creatures to change: but they are found on various plants, and there become often immoveable. Laftly, I preferve a very flender kind of Fly, which firft iffues from a Worm which was in the body of that creature, tranfformed into a Nymph of the third clafs. But if this Fly creeps out of the body of this infect, after preparing a paffage for itfelf through a fmall hole which it makes with its teeth, then all the body is hollow, and the dead infect remains in the fame fituation as if it were ftill living *. Thefe little creatures, hitherto not accurately enough examined, are improperly called the Lice of plants. I have fome of them, and alfo the flies that come from them.
We likewife place in this order the water Tipula, of which I preferve many fecies, and one of the Nymph. Thefe infects are worthy of the greateff attention, on account of the wonderful lightnefs wherewith they run on the furface of the water. They have an aculeus or fing, like Bugs, in their mouth. I preferve befides another fpecies of this infect, which is of a wonderful delicacy, and of a very fingular ftructure, and very flow-paced.
In like manner we infert in this clafs the water Scorpion, which has alro an aculeus or fling in its mouth. I preferve two fpecics of it, the larger whereof is defcribed by Aldrow vandus under the name of the water Tipula, and the lefs by Mouffet retaining the name of the water Scorpion. I have a Nymph of the fmaller fpecies, in which may be feen how the wings bud or difclofe themfelves by degrees, as is the cafe in the Nymphs of the Dragon-Fly in this fame clafs.

The common water Flies are likewife of this order. Of thofe I preferve four fpecies, and we have often fpoken of the Nymphs and Worms out of which they iffue when fmall. Thefe, like other water infects, likewife have their fing in their mouth, and they defend themfelves therewith, whenever they are attacked or taken. 'Thefe Flies are called amphibious Bees by Aldrovandus, and are very accurately defcribed by him. They are alfo called wild Bees by Johafon: nor do I doubt but thefe are the fame with the Marinæ or Sea Bee, which has been defrribed by Dr. Pifo, and is now in the poffeffion of Vander Linden, doctor of phyfic; but it appears to be nothing elfe but a piece of fponge. The learned Mouffet calls thefe Flies Notonedtr, becaufe they do not fwim on their belly, but on their back; and he feems to have likewife delineated the water Bug among the Notonectr, faying, that it is probable men learned the art of fwimming on their backs from them. How far this may be admitted, let others determine.

As all the infects hitherto enumerated have winge, fome of them flying in the day-time and others at night, it is eafy to conceive that they may be very fpeedily generated in all ftanding waters. And therefore in fummertime a kind of trembling motion is frequently obferved to be excited even in the fmalleft ditches of water by the motions of infects. But we thall fpeak of thefe matters more at large in their proper places.

Laftly, we likewife refer the day Fly, Ephemera, to this order: its eggs and ovary, which is like that of fifh, we preferve in our cabinet. We alfo have in our poffeffion the Worm and Nymph Vermicle, and alfo the Ephemera itfelf, both male and female. We can from there objects demonftrate how the wings are rolled and folded in the tubercles of the Nymph Ver~ micle, for there is an admirable difference between the foids of thefe wings, and the complication of the wings of the Dragon Fly. We alfo obferve the like difference, with refpect to the difpofition of the wings in other infects, as will be fhewn from our particular obfervations, to the praife and glory of the moft admirable Creator. After this; we fhall in its place, from the courfe of our experiments, affign a reafon, why the wings in the fe infects are difpofed in fuch a particular manner, the knowledge of which will doubtlefs be acceptable to the reader.

I preferve likewife the one day Flies, fixed in fuch a pofition, that it is very cafy to perceive the method whereby they caft a very thin skin like a fhirt from their whole body, which is wonderful to look upon, and difficult to be expreffed in words. At one end of this skin they roll or turn themfelves out, as the foot is taken out of the moe, and at the other end they turn it off in the fame manner as a man takes off his glove by turning the infide outwards. All this will become evident, when we defcribe our particular obfervations on this fupendous miracle of the Nethertands, and what we have remarked concerning the uncommon, very fwift, and as it were horary changes of this little creature; that they may afford perpetual matter of meditation on the incomprehenfible wifdom of God, and regular order of nature. In the mean time, we think what Dr. Augerius Clutius hath not fcrupled to affirm, very improbable; and that is, that the Ephemera, or day Fly, is produced from a Chryfalis, and he has likewife exhibited the figure of this Chryfalis contrary to all truth. We obferve that its figure is fubjoined or added alfo to the track of Goedaert ; but there are delineated upon the fuggeftions of a weak fancy. This will be very evident, when the infecis themfelves, which the learned Andrew Colvius fent us, are compared with thofe figures.

[^21]I have

I have in my poffeffion feveral fpecies of the Ephemerus collected in France and other places; among which I can fhew the leaft fpecies of the Hemerobius or Ephemerus, called in Dutch Mut ; the wonderful changes whereof I have fhewn as a matter of the higheft fpeculation, to the moft noble Thevenot, the illuftrious patron of all our ftudies, in the road that leads from Amfterdam to Sloten.

Before we conclude this order, we fhall refer the Earwig, Forficula, or Auricularia thereto, which creature, with its wings vifibly expanded, and its Nymph-Vermicle are alfo preferved in my collection.

We clafs or arrange in this order all the infects that we have hitherto defribed, which are excluded from their eggs under the form of a Worm, and in procefs of time are augmented or increafed into Nymph-Vermicles and fo on. Nor can we fufficiently wonder that this order of change has not been hitherto ob-
ferved or reprefented to our knowledge by any perfon. So that upon confidering how little the naturalifts have taught us concerning thefe creatures; we are obliged; not without fhame; to confefs, that they were wholly ignorant of the nature of moft infects. For, if we may exprefs the matter as it really is in a few words, the names only of the faid infects are mentioned in the books of the naturalifts; and if you except thefe, nothing remains but the falfe and imaginary inventions of a dreaming and chimerical brain. As I am not afraid to declare this generally, I would always except the induftrious Goedaert, who has faithfully delineated, and, in fome meafure, according to truth defrribed the changes of the Ca terpillar kind; as alfo the moft accute Redi, who has, by irrefragable arguments, proved; that no creatures are produced by putrefaction; and lafty, fome accomplifhed Englifhmen, the chief of whom are John Ray and Martin Lifter.

An example of the fecond order or clafs of natural changes, which I call the Nymph-Vermicle; in the Dragon-Fly.

${ }^{\text {No. } 1}$EXHIBIT here; Tab. XII. the Vermicle or Worm of the DragonFly, as yet lying in its firft coat, in which, when enclofed, it is called an egg. Many of thefe eggs, placed near each other in the fame manner as they are fituated in the divided ovary of the Libella, I here exhibit delineated to the lifes This ovary perfectly agrees with that of fifh, efpecially that of the Herring; and confifts in like manner of numerous eggs, which are of an oblong figure, as may appear from thofe difperfed here and there in this figure. The eggs enclofed in this ovary are at length thrown into the water by the parent infect, out of which afterwards iffue many fimall Vermicles with fix legs; and thefe having attained the full period of their growth, caft their skins, and becomes fo many Dragon-Flies, like the parent.
II. To fhew the method wherein this happens, I have likewife, for the fake of order, delineated to the life the coat of the egg out of which the Worm of the Fly has made its way.
III. I afterwards in the third place, fhew the Vermicle or Worm from which the DragonFly is produced, by the power of accretion alone, but I have not delineated it fo frall as it is when it comes firft out of its egg, but fomewhat larger, and in the form it has when it has been fed for fome time. I fhew its eyes, together with two prominent horns in its head: in the breaft underneath are obferved fix fhaggy legs, each of which is divided into four joints; and the extreme joint of each is furnifhed with two claws. The belly is divided into ten rings, the laft or loweft of which has fome briftly, rigid and prominent little points. It is agreeable to obferve in this Worm how its limbs come
imperfect out of the egg, which is likewife a property of the Vermicles of the third and fourth order or clafs of tranfmutations, as thall be afterwards fhewn in its proper place. And it is for this reafon I call the little creature, whilft it remains in this imperfect form in the egg; an oviform Nymph-Vermicle, as I have explained more at large above; and this obfervation I would have inculcated and underftood once for all, in the courfe of the fubfequent orders, as I fhall repeat it no more.
IV. I reprefent this Vermicle fomewhat older, fo that about the end of the thorax, where that part is connected with the belly, four membranous buds or follicles like flowercups are obferved to fpring, fwell, and as it were branch out of the body: thefe four follicles or membranous bags contain the wings, which increafe in the fame manner as the cups of plants and trees do with their flowers and fruit. But if any one fhould at this period diffect thefe bags, he would find nothing in them but a watry humour or ichor, becaufe the wings, too tender yet for fight, have not acquired their ftrength and perfection, in the fame maniner as in the cups of flowers and fruits when they are firft diftinguifhable; nothing is found but a moifture or clammy liquor.
V. I afterwards demonftrate this little creature in the flate wherein it has attained its full bignefs, together with its four bags or follicles, which are confpicuous on its back, and are increafed to their due fize; at this time I find the wings perfect in them, but folded in each other; nay, we may likewife obferve all the colours and varieties of painting of this creature now tranfparent through the skin:
where-
wherefore, as the infect is and remains yet a Vermicle or Worm, and has fome of its parts enclofed in a skin and deprived of motion, like a Nymph of the third order or clafs, I have called it in this period a Nymph-Vermicle. In what manner this Nymph cafts its skin, is fhewn in the fecond figure, Tab. XII. fig. In.
VI. Laftly, I exhibit the fame Vermicle as it is when arrived to its laft degree of perfection; in which form it is called the Perla, Libella, or Dragon-Fly, and by increafing becomes a perfect creature, becaufe it has acquired its full age and is now fit for generation. As at firft it was a creeping and fwimming Worm, it is now become a flying Worm or inhabitant of the air. Moreover, its change, or properly the accretion and expanfion of its parts, is, with refpect to its eyes, wings and tail, extremely admirable, but the legs undergo no change.

I firft obferved thefe Worms, out of which the Dragon-Flies are produced in the river Loire at Saumur, behind the houfe of the very learned Dr. Tanaguil Faber, whofe gueft I had then been, and who likewife greatly loved to fearch into fuch natural miracles. I afterwards found them in many other frem rivers, fmall pools, fenny ditches, and other ftanding waters, and in fome places in fuch great numbers that the whole bottom was as it were planted with them. They can both creep and fwim, but they do not move fwiftly. They have likewife a fharp fight, and they immediately throw themfelves to the bottom, if any one comes to the places wherein they live, or when they perceive the leaft uncommon object. Their food is foft mud, and a fine earthy fubftance ; wherein they live. They are produced by the Libellæ or Dragon-Flies, for thefe are likewife ufually about waters, and in thofe places perform in a very wonderful manner the bufiness of generation. Numerous Dragon-Flies are likewife found in the fields and forefts, where there are numerous fmaller Flies; for, like birds of prey, they hunt after and devour the latter in the air.

If the eggs which the Dragon-Flies throw into the water be examined with a microfcope, they appear of an oblong figure, Tab. XII. fig. I. and in the fore part terminate in a point: in this part they are alfo adorned with a kind of little cups, with protuberant points, fomewhat refembling the cups which we have delineated in the Nit or Loufe's egg, and they are blackifh in the extreme fore end. At the hinder part the egg terminates in an oval form, and has a glittering furface; befides this it has nothing fingular in it.

When the Worms which iffue out of thefe eggs have grown to the form of a NymphVermicle, they then remove out of the water to a dry place, as into the grafs, to pieces of wood, or a ftone wall, or any thing elfe they meet with; and therein firmly fixing the acute claws, Tab. XII. fig. II. a a, of their legs, they continue immovable a very thort time. It is
then obferved; that the skin firt opens in their head and back; and out of this opening they exhibit to view their real head and eyes b, and at length their fix legs $c c$; whilft in the mean time the hollow and empty skin or flough of the legs remains firmly fixed in its place; after this the enclofed creature creeps forward by degrees, and by this means draws firft its wings and then its body out of the skin, and proceeding a little further, fits at reft for fome time longer as if immovable. In this time its wings begin by degrees to expand themfelves, and to make fmooth and even all their plaits and folds. The body is likewife infenfibly extended, until all the limbs have obtained their juft fize and bignefs. As all thefe things are perfected by the force of blood and circulating humours; and by the affiftance of the air impelled by refpiration, the creature cannot the firf moment fly, and therefore is forced to ftay in the fame place, until all its limbs are dried by the circumambient air and fun. Thus the Dragon-Fly enters upon a more noble life than that it had hitherto led in the water, for in the latter it was obliged to live in mifery, creeping and fwimming flowly, but now it wings the air.

It is very feldom that thefe changes of infects. are prefented to view by nature, and it happened by mere chance that I obferved them for the firt time : one of thefe Vermicles adhered to a fone wall in the river Loire, and it was fo foftened by the waves dafhing againft it, that it could only half perfect its change, fo that I took it partly free, and partly yet fixed in the skin. I once afterwatds faw this change in the large kind of Dragon-Fly, which had crept to land out of a fmall lake, and caft its skin fitting in the grafs. In the fmalleft Dra-gon-Flies, which are very numerous in Holland, and of which Goedaert has defrribed the mutation, it is not fo difficult to difcover this matter, as I have long ago fhewn it to many, and amongft the reft to Dr. Matthew Slade.

Another thing worthy of obfervation in thefe creatures is, that they muft hunt and feek after their food flying in the air, for which purpofe nature has given them two large eyes, which make almoft the whole head, and are like glittering mother-of-pearl. They have moreover four remarkable membranous filver-coloured wings, with which, as with oars, they can turn themfelves like fwallows with a prodigious velocity to all parts of the air. But to this the very long tail that they have is alfo conducive, for with this they fteer and govern themfelves with great art, and prepare themfelves a certain path through the air. Mouffet, who erroneounly afferted, that thefe creatures were produced from rotten bull-rufhes, fpeaks howrever very rationally of them, when he fays: " They form one of the greateft beauties in all " nature, being fuperior by far to all art."

The eyes of the Dragon-Fly are of a reticular ftructure, and are divided by a double feries of interfections, as I have defcribed in another place. Within the mouth are to be
feen two teeth, covered with a beautiful lip; with thefe the creatures bite fiercely when they are taken : and it was probably for this reafon that Junius gave them the name of Mordellx. But whether their bite be venomous, or raifes a blifter in the skin, I have not hitherto obferved.

Since the Dragon-Flies have very large and long wings; and, on the contrary, very fhort legs in proportion, it is not agreeable to them to walk on the ground, and the more, becaufe when they walk, they do not raife their wings, nor keep them clofe on their back, like the Butterfies. For which reafon they always choofe dry branches of trees, on which they pitch when they want to reft or have catched their prey, which they feize with their fix legs in the air, convey into their mouth with their two foremoft legs, and then break it in pieces with their teeth. In this they do not fpare the melliferous Bees; they catch them in the air and deftroy them. Theie Flies cannot be kept alive long in a box, unlefs they are fed every day with Flies, which they likê to eat. They are greatly delighted with the rays of the fun, to which they are indebted both for life and motion; for, when the heavens are cloudy, and the air obfcure, they reft and do not eat, having then very little motion.

The thorax, on the infide, where the wings are fixed to the fhoulder blades, exhibits a large number of mufcular fibres, which ferve to move the legs and wings. Through there fibres pafs the heart, gullet, and fpinal marrow, the greateft part of which are placed in the loins and belly. But as I have not hitherto perfected the exact anatomy of thefe creatures, I cannot advance any more particulars concerning them. The fomach is fhaped like a pear; I have once feen it full of food, and at another time full of air. The palmonary veffels are likewife numerous here. One may likewife diftinctly fee the mufcular fibres, which I never faw agitated with any remarkable motion.

The male hath its penis placed about the beginning of its belly, the female on the contrary has the orifice of the vulva, in the extremity of her tail ; but I have not accurately viewed thefe parts, fince, in order to make the diffections, I fhould have taken out the entrails of thefe infects firft, that I might preferve the whole form of their bodies. This may be eafily done, if one takes out the vifcera, and afterwards fprinkles the parts, which are ftill wettifh on the infide, with plaifter of Paris, or unflacked lime, which imbibes the moifture.

By this means a very elegant fpecimen of the tail, breaft, and eyes, may be preferved; and this contrivance is likewife made ufe of by painters and engravers. There is upon all thefe occafions a neceffity for a cautious and circumfpect dexterity, which cannot be acquired but by frequent exercife, and is not to be taught by words.
Though the Dragon-fiy is, in every refpect; a wonderful creature, and haš its genital organs placed in a very fingular manner in its body ; its act of coition in particular exceeds or furpaffes all the powers of our imagination. The male, fluctuating and rifing up and down in the air, and cutting it with many convolutions, knows how to ftretch or hold out its tail with wonderful velocity to the female, Tab. XII. fig. 11I. a, who places it between the divifion of her head and eyes, and guides it into her neck, and then, clofely embracing it with her legs, receives it very pleafingly b; then the immediately bends and turns her body toward the breaft of the male c, where the mafculine organs of generation are placed near the upper part of the belly; and thus continually flying and panting, they perform the bufinefs of coition in the air. By this means the extremity of the female's tail is bent back, towards the middle of the male's body, that is toward that part where the penis lies, which is received by the vulva of the female, placed in the top of her tail; but that the female may the more conveniently reach to that part, the male flortens himfelf as it were, and bends and contracts his tail confiderably.

The female being thus impregnated, after fome time dips her tail into the water, and throws her eggs into it. Thefe eggs, as I have already obferved, are oblong, and while they are fmall and imperfect, they are fomewhat tender and whitifh, but afterwards they by degrees grow hard and yellow, having a blackifh point at their end. How long fuch an egg remains in the water before the Worm is produced from it, is as much unknown to me, as how long it is increafing from that time until it changes its skin; but. I hhould think two years are neceffary for this purpofe, fince I have obferved that thefe Worms were at the end of the fummer very far from a fate of perfection。 I have fometimes feen in France fo great a number of them in a clayey ditch that had no water plants in it, that they covered the whole bottom.

Of the various Jpecies of the Nymph-Vermicles of the Dragon-Fly.

AS I have obferved in the general enumeration of thefe creatures, that I kept fix of the Nymphs, one of which I have before delineated, Tab. XII. N°. v. I hall now reprefent and briefly defcribe four others. The firft belongs to one of the largeft Dragon-Flies, in the head whereof are obferved two equal, but
not reticular eyes, fig. iv. a a ; before thefe are placed two horns $b b$, and under the latter may be feen the three divifions of the mouth, whereof the two upper are provided with teeth c, which may be moft properly called fo, only I think them too delicate and tender. Underneath at the breaft are fituated fix legs, which have
two fharp claws $d d$ at their extremities, and are variegated with green, yellow and other coloured fpots. In the upper part of the back, under the fhoulder-blades, may be feen very diftinctly four membranous cups, wherein are enclofed ee the wings folded into each other; fo that it is hard to underfand how or by what means fuch ftrong, broad, long and remarkable wings as the largeft Dragon-Fly has, could be contained within fo narrow a compars: But this matter will be eafily underftood by any perfon who attentively confiders what a large number of leaves lie folded up in the globular cup of the double poppy; for the wings beforementioned agree very well with thofe leaves in the manner of their lying.
The abdomen is divided at the margin of the belly into various tharp and rough divifions $f f$, the rings whereof are, where they branch out, adorned with many tranfparent colours. The tail is divided as into five parts, which, whilft the little infect lives, refemble fo many pyramidal rough prickles or ftings g, each of which cafts it fkin, when the Nymph affumes the form of a Dragon-Fly: thefe ferve principally to clofe up the fundament, and are likewife an ornament to the hinder part of the body. But in the males they have another ufe, that is, to keep the creature in coition firmly fixed to the head of the female, and join themfelves with the neck of the latter, as I have exemplified in the third figure of the middle Libella, Tab. XII. fig. in. In my laft obfervations I alfo remarked, that the branches or ramifications of the Afpera Arteria likewife fhed a coat or fkin : and in this refpect it agrees with all other fpecies of Nymphs, and with the Worms and Caterpillars of Butterflies and other infects.

The other Nymph Vermicle that I exhibit is likewife of this fpecies, from which the middle Dragon-Flies are produced. It has all thofe parts I have before fhewn in the largeft. The lips only and teeth are placed in a different manner, and are obferved to be longer, fig. v. a, though they may be likewife lengthened or drawn out in the largeft Nymph. The legs alfo are fhaggy b; the follicles or bags are likewife diftinctly feen on the back c, as well as the rings of the abdomen, and prickles or ftings in the tail d. I found the former largeft Nymph in a ditch upon fome water plants, after it had firft crept into the grafs and caft its fkin. In the Nymph juft now defcribed the wings were fo perfect, that they might be fpread open or difplayed in the hand.

The third fpecies I exhibit is not found in Holland, except in the diftrict of Utrecht. I firft found this Nymph on the othe: fide of Paris in the river Seine, where many ox skulls had been thown into it, and thefe being filled with mud afforded the Nymph habitation and gourifhment. I likewife found there many river Hermits, which probably prey upon thefe and the like infects. This is probably the little
creature that Redi calls the Marine Scorpions and delineates without follicles or bags of wings, becaufe he had not feen it completely perfect. Of the fame nature with this infect is alfo that which Rondeletius calls the Marteau and river Libella. In the head of this infect.are likewife obferved two cyes, without divifions; before which are two articulated horns or antennæ, fig. vi. a. It has fix legs, which are long enough for the bignefs of the body $b b$. The four bags or follicles annexed to the fhoulder-blades are preffed together clofe and even; and are beautifully marked, Tab. XII. fig. vi. $c c$, with intercurrent veffels. The body is divided into rings, and is all over briftly d. The tail was painted with green and yellow, and divided as into three triangular appendages e. This little creature fwims fafter than the former Nymph; but the Fly again iffuing from it, has a flower motion, and prides itfelf in very beautiful wings, which are varioufly painted, according as thefe Nymphs differ among themfelves. Whoever attentively views the wings of this Dragon-Fly, will fee that their nervous divifions are much clofer than in the wings of the largeft and middle fpecies; nay, this differs from them in this, that it folds its wings like the diurnal Butterflies, when it lies any where to reft.

I have a Spanifh Dragon-Fly, which has tharp pointed wings, and therefore differs from all others; for the wings of ours are for the moft part oval, and terminate in a roundifh extremity. It has likewife very large hairy horns or antennæ. I have myfelf delineated to the life another kind of Dragon-Fly fent from Africa, which had fpotted wings. I likewife have feen a third fpecies, which had very long and broad wings, and but a fmall body in proportion: but the wings were conficuous and remarkable for fome paintings on them like dried vine-branches, and exhibited a fpectacle of the moft exquifite art and admirable elegance. I have therefore delineated this in its natural fize, and can fhew a preparation of it to this day.

The fourth fpecies of there Nymphs is found every where in the waters in Holland, but efpecially in the narrow ditches; out of which, with the water plants, fuch Nymphs may be taken almoft every year, not excepting even the winter. They do not differ much from that juft now defcribed, as is manifeft from the figure, fig. vii. This Nymph, having caft its skin, produces a very fmall Fly, with filver-coloured wings, and a blue and black body. This kind has alfo a flow motion, and almoft perpetually fies about ditches. This fpecies of Dragon-Fly has the fame method of generation with the largeft and middle kind, for both perform the bufinefs of coition in the air. But I muft confefs I never faw the manner wherein thefe Flies that iffue out of the Nymphs delineated in fig. vi. propagate their fpecies.

Of the fying Water Scorpion *, which belong to our fecond clafs or order.

THE EXTERNAL PARTS.

OF the water Scorpion which I occafionally mentioned in the general enumeration of infects, I have not feen more than two kinds. Thefe I fhall now feparately defcribe with figures, to illuftrate the defcription. The firft, which is the fmalleft and moft common of the two, is, like the greateft part of the other more perfect infects, divided into a head, a thorax, and an abdomen. In the head are placed the eyes, and under thefe is the mouth, which is of a round form, Tab. III. fig. Iv. a. The head is of a pale red colour, and of a very hard and firm texture. The eyes are hexagonal and reticular: The fting which lies in the mouth, as in a freath, is hollow, and of a bright red colour. In the upper part of the thorax, which refembles the head both in colour and texture, we find four wings, and in the lower part as many legs, befides two claws placed forward towards the head. The upper wings 66 are of the fame colour with the thorax; and it is remarkable, that the fore parts of thefe, by which they are joined to the fhoulder blades, are of a ftronger and firmer texture than the hinder parts, which are in a manner membranaceous; and full of delicate vefiels. Thefe upper wings are inferted fo clofe to the lower pair, and cover them all over fo exactly, that at firft fight no one would imagine the infect had two pair. This difpofition of the wings preferves the under pair from getting any wet, though the creature fhould remain a whole day under water. Thefe under wings are of a pale cot lour $c c$, and of a membranaceous texture, with little yellow and red veffels or pulmonary tubes moft elegantly diftributed through them. The upper part of the abdomen, which thefe wings cover, is of a deep and clear red colour, like vermilion, and is thick fet with hair, fo as to afford a very agreeable fight. The legs have feveral joints, and each ends in two claws $d d d d$. Thefe are almoft of the fame fhape with thofe of the land Scorpions ee, only they have no forceps or pincers; but the firt point is fo flexible, and the infect has fuch a command of it, that it ferves the fame purpofe. The abdomen, whofe fhape has been already defcribed, is underneath of a pale colour, and terminates in a forked tail, which when opened, is exactly like the figure I have here given of it f. The thorax and abdomen of this infect are fo unufually flat and thin, that one
would be apt to fufpect nothing was contained within them \dagger.

There is nothing more remarkable in this infect, than that it conftantly appears covered with a prodigious number of nits of different forts and fizes, though perhaps we may with more reafon confider them as fo many little creatures, which live and grow by fucking the Scorpion's blood. Thefe are fomewhat of ail oblong figure, approaching to round, and have a fhining; and as it were bloated furface, without any of the rings obfervable in moft infects. The neck is oblong and fhaped like a pear, with the fmall end ficking in the Scorpion's body. The colour of this infect is a mean between that of vermilion and purple; and when it is pretty well grown, there appears within it an elegant tranfparent fpot or particle, Tab. III. fig. Iv. g.

This fpot or particle induced me to confider with more attention this minute and hitherto unregarded infect, and even to undertake the diffection of it . But who would imagine that on this examination it fhould prove a perfect and furprifing infect? This is however a certain fact: and thus in that infinite variety of works, by means of which God is pleafed to make himfelf known to us, we ever meet with new matter of admiration and aftonifhment.

This little creature being extracted from the fhell that covered it, looks like a young Spider before it has left its egg. On the fore part is the head, fig. v. a, and on its head are the eyes b : under the eyes are placed its little legs elegantly coiled and folded $c c$; but they appear much more diftincly on turning the infect on its back $d d$; and in this fituation alfo it beft appears with what art thefe legs are laid up in the fhell, and all over covered with hair. The colour of this little creature is, as I already obferved, a mean between that of vermilion and purple; and this colour fhews itfelf through the coat or fhell, which is tranfparent. I cannot determine to what fpecies of infects this is to be referred; nor can I fay to what fize it grows, or by what kind of creature it is thus depofited on the water Scorpion in the form of an egg, there to receive life and growth. Neverthelefs, I cannot but look on the difcovery I have made as very interefting, fince it proves that there are in the nature of things eggs which acquire a fenfible growth by an

[^22]entraneous nourifhment, unlefs perhaps fome naturalift fhould choofe to confider this as a complete infect, rather than as an egg: nor ihall I ftrenuoufly oppofe this opinion, feeing that in all cafes the egg is in reality no other
than the infect itfelf, which remains in that ftate till it has acquired ftrength fufficient to break its prifon, and live without fuch a covering.

THE INTERNAL PARTS.

AMONG the internal parts of the water Scorpion, the organs of generation feem to be thofe which beft deferve our attention, and which I have accordingly moft attentively examined. The contents of the ftomach and intentines were of a green colour, but thofe vifcera when emptied appear of a tranfparent white, with here and there fome tranfparent glandules of the fame colour. Behind the pylorus are fome varicous or knotty veffels. The abdomen is all over covered alfo with particles of fat of a moft bright white, which look as if they were divided into many appendages of the nature of the inteftina cæca.

The number of pulmonary tubes is here very confiderable, compared with that which is feen in the generality of other infects. The larger branches of thefe tubes are of a yellowifh colour, and the fmaller of a filver white. Their openings lie under the wings on each fide of the abdomen. The breaft contains two air bladders. The fpinal marrow confifts of very few joints.

The parts of the male fubfervient to genesation appear of a moft delicate and exquifite contrivance, fo as to deferve our moft fpecial notice; and the diffection of them took me up fo much time and attention, that in taking drawings of them I at firft overlooked the penis. This is placed backwards near the infect's anus, where there are feveral other parts worth examining. The root or nervous body of the penis, Tab. III. fig. vi. a, which is of a white colour, lies a little higher up in the abdomen, I have reprefented it here as it appears when taken out of the body. This root of the penis, after having made many ferpentine turns, divides into four tubes, two of which conftitute the vafa deferentia, whilft the other two perform the office of the veficulæ feminales in other animals, and open into the cavity of the root of the penis, where they difcharge the matter prepared by them. I have given an exact drawing of the vafa deferentia; one of them I have reprefented as it appears moft curioufly convoluted in its natural ftate b; the other as it looks when drawn out c. Thefe vafa deferentia are confiderably wide and fpacious, but not equal to the veficulx feminales. It is probable thefe veffels are adapted by nature to fecrete a feminal matter different from that prepared by the tefticles; for they are largely fupplied with glandules to anfwer that purpofe, and confift of a confiderably thick and jpongy fubftance. As the vafa deferentia approach the tefticles, they grow lefs and lefs by degrees, fo as to form two flender tubes $d d$,
and this portion of them alone feems to claim the name of vafa deferentia, as they do nothing but convey the feed from the tefticles: thefe tefticles confift each of five diftinct bodies, feparated on all fides, oblong, white and glandulous $e e$, with which are united as many feminal veffels twifted and coiled one over another very elegantly, and in a great variety of directions $f f$. I have reprefented one of them as it appears when feparated from the reft, and extended g. The veficulæ feminales are fomewhat fhorter $b b$, but they are a little wider than the vafa deferentia. The former contain an aqueous feminal matter, which in the tefticulary veffels, the glandules of the tefticles, and even the vara deferentia themfelves appear of a fhining white. From this we may conclude that the mechanifin of there genital parts refembles greatly that of the fame organs in the Rhinoceros Beetle, which I fhall hereafter defcribe. Indced in refpect to the vafa deferentia, the tefticulary veffels, and the veficulæ feminales, they are not unlike thofe of the human fpecies; and this refemblance is very worthy our notice, in order to difcover the general analogy between animals by a careful comparifon of their organs, as exhibited to us in accurate diffections.

Among the parts of the female fubfervient to generation, the moft confpicuous is a furprizing kind of ovary, divided on each fide into five oviducts, one of which I fhall here reprefent, and in part the reft being fimilar, fig. vir. a a. The eggs contained in thefe oviducts are of fo curious a ftructure, and placed with fo much art, wifdom and judgment, that I muft own I never met with any thing contrived more nicely, or more elegantly difpofed. That this contrivance and difpofition may appear the more diftinctly, I fhall firft defrribe the egg itfelf, which in thape greatly refembles the feed of the carduus benedictus. This egg is a little oblong, of a yellow colour, with its lower furface fomewhat convex, fig. vin. a. The edges of the upper furface are elegantly adorned with feven flender branches, not unlike fiff briftles very red at the points b, and white in the middle e, fo as to afford a very entertaining appearance. That theie briftles may be in no danger of creating confufion in the ovary, or of wounding it, or the eggs, or receiving themfelves any damage by bending, the briftles of the firft egg, or that which is next to the aperture of the ovary, lie flat againit the edges of the fecond egg, fo as to form a kind of bed for the lower and convex furface of it c. The third d and all the other
other eggs are orderly placed in the fame manner, fo as to afford ample matter for admiring and adoring the all-feeing Architect, who fo wifely formed and difpofed them.
Thefe water Scorpions live in the water all the day, out of which they rife about the dufk of evening into the air, and fo flying from place to place often betake themfelves in queft of food to other waters. This is always their courfe when the ditches in which they inhabit, come to be dried up. This affords us a fatisfactory reafon for the great number of infects that immediately appear in the fmalleft collections of water, fince they may very well get thither when it is dark, fo that the opinion which afrribes to putrefaction the power of forming infects, muft by this inftance of the water Scorpion's nocturnal tranfmigrations appear more and more frivolous and unneceffary. I have in fact been told by a perfon who took great delight in fifhing, that he has found the eggs of fome kinds of Fifh fticking to the wings of Ducks, who by this means he with great reafon imagined might ferve to repleinifh the waters on the top of the higheft mountains with the infects proper to that element.

The Nymph of the water Scorpion remains in the fame place where it was produced, till the wings are full grown, when fie immediately fallies forth in fearch of a companion of the other fex, with whom fhe may carry on the great bufinefs of propagation, and multitiply the fpecies.
The Water Scorpions of the larger fpecies differ but little from the fimaller, which I have hitherto defcribed. The body of the larger kind, Tab. III. fig. ix. a, is much longer and fharper than that of the other; and its limbs are more diftinct and confpicuous. It is aifo of a paler colour, fomewhat more gray, but inclining to red. As to the claws in this fpecies there is in them fomething very remarkable; the joints from which they fpring are furnifhed each with two fharp proceffes $b b$, in order to receive, and as it were theath thefe fharp claws when bent againft them. The legs alfo are much longer, and are made like fiff and flender briftles $c c$; but the membranous extremities and ornaments d of the wings differ greatly. I have not examined the internal parts of this fpecies:

The natural bifory of the infect called the Hemerobios, Ephemeris, or Diaria; extracted from 7 . Swammerdam's account of it, formerly printed in Dutch under the title of, The Life of the Ephemerus:

WE fhall leave out in this extract all the pious meditations and religious fentiments with which the original is fo liberally furnifhed, as they would fwell this work into too large a bulk, and do not properly belong to the defign of it às a natural hiftory. The author publifhed at that time his obfervations on that furprifing infect, to give us wretched mortals a lively image of the fhortnefs of this prefent life, and thereby to induce us by the help of frequent admonitions to afpire to a better: and wie hope we cannot in juftice be accured of defeating his well-meant labours by abridging them in this manner, feeing his book, which he himfelf publifhed, is ready to be had by any one that chufes to read every thing he has faid on this fubject. It contains alfo a
great number of Dutch fentences in verfe, and in profe, of which it would be almof impoffible to give a proper verfion fit to appear in public; and to interrupt the work with Dutch quotations, would be fpoiling the regularity of the work. That the illuftious Thevenot; whom Swammerdam himfelf firt charged with the edition of this work, intended to proceed in the fame manner, appears very plainly from a Frerich traniflation of the natural hiftory of the French Ephemerus, which has fallen into our hands amongft other manufcripts relating to this fubject. We fhall therefore proceed in this defign of giving the reader all that relates to its hiftory, and nothing more, without any further apology.

$\mathrm{C} \quad \mathrm{H} \quad \mathrm{A} \quad$ P.

The Ephemerus is produced from an egg*.

'THIS infect, Tab. XIII. fig. xv. has four wings, two little antenne or horns, fix legs, and a very long and hairy tail ; it lives at the utmoft but five hours. This furprifing creature appears every year for three day fuc-
ceffively fluttering on the furface of the water, at the mouths of the Rhine, the Mcufe, the Wael, the Leck and the Yfel, about the feaft of St. Olophius and St. John; but this continued appearance is kept up by a fucceffion of

[^23]them, for thofe which begin to live and flutter towards the noon of the firft day, are dead before night, and the fame happens the fecond and third days; which being expired, no more of them are to be feen till the returning year again renews this three days wonderful fight.

At this time the female of the Ephemerus, fig. viri, after having thrown off her coat or flough, iffues from the water and difcharges into it both her ovaries, Tab. XV. fig. 1II. But this is not done till the has for fome time fluttered upon the furface of the water in a very curious and furprifing manner, beating it with her wings all the time.

It is at this time the female like a fifh difcharges her eggs, which the male, Tab. XIII. fig. xv. who firft quits the water, and afterwards divefts himfelf on the land of a very thin skin, fig. xili. and xiv. invigorates by ejecting on them his melt or feminal milky fubftance.

I hall in the fucceeding pages defcribe in a full and accurate manner how this act of generation is performed, how thefe infects rife from the water, and how they free themfelves both in the water and on the land of their old skins.

The firt time I obferved this furprifing infect, was in the year 1661, on a branch of the Rhine running by Culenburg. But Clutius who has likewife written of thofe infects, fays they are to be found at Aarnhem, Zutphen, on the canal called Vaart near Utrecht, at Rotterdam, and in many other places. Doctor de Mey, a moft reverend and learned divine, has likewife given us an exprefs treatife on this fubject, as appears by the appendix to Goedaert's hiftorical obfervations. Nor has the obfervation of thefe infects been confined to our times, fome of the greateft naturalifts of antiquity have
made mention of them, as appears by Pliny; Ariftote, Elian, and others who have written on thefe fubjects. We find this little creature defcribed in their works by the name of the Hemerobion, Ephemerus, and Diaria, as appears by many paffages in their works, as likewife by Augerius Clutius's work, publifhed in the year 1634, of which I juft now made mention.

The eggs of the female Ephemerus dropt into the water, and there impregnated by an effufion of the male's fperm, in the manner we have defcribed, gradually fink to the bottom. But this is effected in fuch a manner, that the eggs are fcattered over the muddy bottoms of rivers by the motion of the waters. The figure of the eggs themfelves does not a little contribute thereto, as they are of a plain convex thape, Tab. XV. fig. I. and are thereby the apter to difperfe in their defcent. This appears by placing a few of them on the point of a knife, and then letting them fall gently into water, for they immediately feparate of themfelves in a very curious manner.

It is hard to fay, and God only, who gives thefe infects life and motion, knows how long their eggs lie at the bottom of the waters where they are depofited, and how long it is before the contained infects break through the f kin that furrounds them, and perform as it may be called their firft moulting. It is not improbable that thefe things might be experimentally afcertained by dredging for them at different feafons, or keeping their eggs in a veffel full of water with a fufficient quantity of mud at the bottom. For the prefent we muft be fatisfied to obferve that the eggs of the Ephemerus produce, after an unknown time, a little Worm with fix legs. This is the creature fifhermen call the bank-bait.

C H A P. II.

The egg of the Ephemerus produces a little Worm with fix legs, called the bankbait by fifbermen.

ON fearching the bottoms of waters frequented by the Ephemerus, fome time after it has laid its eggs, we find a multitude of little Worms with fix legs, which differ in nothing but fize from thofe that are more grown. But this is not to be found till a long time after the parent infects have made their appearance, for the growth of this little infect is fo flow, that in the beginning of June in the year following, about which time the bait turns to an Ephemerus, they are fcarce three quarters of a Dutch inch long, Tab. XIII. fig. I. which is but about the third part of the length of the full grown Worms, fig. I11, that have complete wings, and are juft upon the point of making ufe of them.

Befides two kinds of Worms remarkably differing in bignefs, a third is obferved to be
produced at the fame time from the mud, fig. II. which is bigger than the leffer kind by almoft two thirds, and is a third part lefs than the largeft kind. Nor is this difference between thefe Worms in refpect to their various age, all we obferve, for thofe of the fame age differ greatly both in length and thicknefs. When the largeft kind of thefe Worms is about three thumbs breadth long, in the beginning of June, when they are about to begin to fly; the middle kind is not completely two long; and the fmalleft is farce a thumb's breadth in length.

There is another remarkable difference between thefe Worms of the Ephemerus, which is, that the fmalleft kind, fig. 1 . not only is without wings, or thofe prominences which cover the wings, but it does not even hew the
leaft figns or veftiges of any fuch part : whereas, on the contrary, in the other kinds of thefe Worms, the little fheaths of the wings, fig. ir. begin at that time to appear, and in the largert
kind are as confpicuous as poffible, fig. HII . refembling a little flower, that increafes by degrees, and is ready to break out of its cup.

C $\quad \mathrm{H} \quad \mathrm{A}$ P. III.

Of the life of the Vermicle or Worn of the Ephemerus; when out of the egg; and of its food.

IT is very worthy of notice, that thefe Vermicles or Worms never, or but very rarely, are obferved to fwim at the bottom of the river, or even in the middle of the water. They can indeed fwim very fwiffly, and move and throw themfelves eafily into ferpentine windings in the water, whilft their head is bent foinetimes up and fometimes down; the reft of the body advancing with the like twifting convolution and ferpentine motions. But, notwithfanding they have this in their power, they are always found near the banks of rivers, and they live there in the moft quiet parts. The more mud there is in the bottom, out of which they firft rife, the greater number of thefe Worms is ufually found. But you can very rarely catch them lying on the mud or adhering to it, but they live within the mud or clay itfelf in hollows made oblong and fmooth. Thefe are bored, not obliquely or downwards, but always parallel to the horizon : therefore, Vander Kracht fays right in Clutius, that thefe infects live in feparate little cells.

As the Bees, therefore with wonderful and perhaps inimitable art form their habitations with wax ; in like manner do the Worms of the Ephemerus make thefe holiow tubes, Tab. XIII. fig. v. a, or long holes for their refidence, and bore them in the mud, in proportion to the bulk of their bodies. Hence, when there Worms are expelled out of their holes, fo that they muft creep on the plain or finooth bottom, which does not fupport every part of their bodies, they immediately lofe their ability to go forward, though they are even furrounded with water, and are able to fuftain or bear themfelves up by fwimming. This I have experienced, when I had drawn a great number of there Worms out of their holes, in order to diffect them; they always feil on their backs, and, as if they were in a fwoon, could not turn themfelves again: whereas, on the contrary, when they are in their little holes or burrows, they can creep very quickly backwards and forwards, and move themfelves every way as they have occafion. I obferve that it is common to all kinds of Worms which live in thefe kind of cells or holes to be able to move very quickly into their retreats, and when they are taken out of them, to faint as it were away. This I have obferved in the Worms which live in hollow trees, and allo in thole which are found
in fruit, in the tubercles of the leaves, and in the galls or warts of plants. It is very worthy of obfervation, that the Coffus or Worm of the great Beetle, whenever it is taken out of its houfe, covers its whole body with a web, by the help of which it forms a new hole for itfelf in the wood; for it could by no means pierce or make a hole, unlefs it were provided with fome kind of ftay or fupport to lean againft by preffing its body in that part, and finding a due refiftance:

The bait or Worm of the Ephemerus is fo weak when out of its hole or little tube, that if at any time it ceafes to move, when fwimming in the water, it immediately finks to the bottom in confufion, and there lies on its back.

We are to remark further, that as foon as the Worms of the Ephemerus have iffued out of their eggs, they prepare to build their cells or houfes, which we have obferved are long and horizontal hollow tubes or caverns made in the clay or mud. But they make thefe tubes by degrees larger and larger, according to the fize of the body, fo that by this means the full grown Worms are always found in larger, Tab. XIII. fig. v. a, the young ones in fmaller tubes, $6 \stackrel{b}{b}$.

The all-wife Creator has given them parts appropriated to this purpofe; their two fore legs are formed, in fome meafure, as they are in the Moles and Mole Crickets. Thefe Worms have jaws likewife, which are provided wich two teeth fomewhat like the forceps or claws of crabs, and thefe ferve very well to affint in making thofe holes in the mud.

Hence you will immediately fee them piercing or boring, when they are thrown into a little mud mixed with water. If you do not give them a fufficient quantity of the mud, they will neverthelefs continue to undermine what they have, at one time hiding their head, and at another their body, and afterwards their tail, attempting to prepare new cells.

The fifhermen fay, they are certain from experience that thefe Worms, when the water finks from the brink or edge of the river, always bore holes through the mud into a lower and deeper part, and that they likewife go to higher places, when the water rifes. This, I think, they are under a neceffity of doing, fince they have feveral air-pipes in their trachex, by the help of which they frequently draw new air, which is neceffary to their life. This they could

Ee
not
not do, if they were confined at too great a depth when the water rofe higher.
I have often obferved that when they were drawn ont of their cells and put on the wet fand, they have chofe rather to creep out of the water, than go to the bottom under the fand. This might poffibly be owing to the want of mud, and the warmth of the water, which is probably injurious to them.

As to the food of thefe creatures, it is very difficultly difcovered, unlefs by the diffection of them, which taught me that they live on clay or mud only. Whenever you open them, you will always find mud both in the ftomach and in the fmall and great guts. Thefe Worms are therefore in this refpect like the Moth, which feeds on the fame fubftance of which it makes its habitation.

C H A P. IV.

How long the Vermide or Worm of the Epbemerus is winged; why it is called the efca or bait; and bow long it lives.

HA VING confidered the egg, the Worm, and the food of the Ephemerus, the next thing is to fee for what face of time this Worm is fed or nourifhed: and though it feems a thing impracticable to determine how long any creature which lives in the earth under water is in feeding, yet this problem may be folved by confidering the different bignefs of thofe Worms which I have beforementioned. Since the fmalleft kinds of them, when fed for one year, in which time the largeft kind prepares to fly, is three quarters of a thumb's breadth in length, and the middle fpecies is then only one half; it follows, that every Worm is feeding three years before it becomes fit to undergo its change, becaufe the largeft kind of Worms which begin this change, are two thumbs and a half long.
The largef day Worms when fully nourihed or fed, regularly go out of their cells into the water, and thence afterwards rife into the air, as I hall explain hereafter. As cvery creature has its enemy, there have many; the fifh perfecute them immediately after they go into the water, in order to undergo their change ; and when this is accomplifhed and they rife out of the water into the air, the birds immediately hunt after and prey on them. This has been obferved by the failors, fifhermen, and others, who live near the Rhine, fo that they learned from hence to ufe thofe little creatures as a bait to catch fifh. And hence it is that thefe Worms are called by the name of bait or bankbait, near the village of Duerftede, Culenburg, and in other places. This has likewife been the reafon that thefe creatures, when they afterwards began to fly, have been called by the name of the flying bait. But this creature is called Haft at Rotterdam, Schoonhoven, and Dordrecht, the moft ancient city in Holland, as foon as it becomes capable of flying. Hence has arifen the common proverb among the Dutch, "Het iffer zoo dicht als haft," to indicate a very numerous multitude, becaufe thefe little creatures at the times of their change, fly fo thick together in fwarms, that thay can no more be counted than the falling flakes of
fnow.

There Worms afford a very good bait for firhing at any time of the year, if the weather be favourable for that purpofe'; for fince they live three years in the mud before they are changed in fo wonderful a manner, like Silkworms, into flying creatures, they may be eafily taken out of the banks at any time of the year for the fportman's purpofe. But this cannot be conveniently done when the waters have rifen high, for it is then neceffary one fhould go naked into the water, which I have fometimes got done, that I might have an opportunity of inveftigating the nature and difpofition of thefe infects, and be able to examine anatomically the internal parts. When the fifhermen ufe this Worm, they fix the hook in the head, which is its hardeft and moft firm part. And as it is very long-lived, by the perpetual motion it makes in the water, it becomes a very proper bait to allure the fifh to fwallow the infidious hook.
How very durable the lives of thefe Worms are I could thus form a judgment: I have fometimes pierced one of them with a little needle, in order to dry and preferve it when dead, but it has been ftill living the day after, though it had been a whole night in a little veffel of urine, into which I had thrown it in order to kill it. But however tenacious they are of life, when they are taken out of their cells, and put into water mixed with clay they cannot live more than two days. Therefore, whoever defires to keep thefe Worms alive ought to put them in nothing elfe but moif fand or wet clay. By this means I have known the largeff live four days, and the fmaller eight. But when they are all covered with water, they cannot by any means continue alive, for they muft have air.
If any one defires to fend thefe Worms abroad, the beft method is to tie together fome tubes made of the largeft bull-rufhes, and to put the Worms into them; for otherwife they can fcarce be fent well, becaufe by running up and down at random, they hurt each other. By this method they may be likewife eafily carried to other rivers, as fifh are carried from one place to another.

C HAP.

C H A P. V.

Defrribes the external parts of the Efca or bait, its colour, aid the difference it its mamners and dijpofition.

HAVING accurately examined the Worm of the Ephemerus, I obferve that it is divided into fourteen annular divifions; the firft conftitutes the head ; the three fubfequent the thorax ; and the other ten the belly, with the tail annexed.
In the head, Tab. XIII. fig. Iv. a, the eyes are very confpicuous, being invefted with a uniform and fmooth coat, and covered on either fide with briftly hairs. When the Worm is on the point of changing its old skin, we obferve this fmooth coat to part or feparate by degrees from its eyes, and the eyes when the little creature begins to fly, appear reticular as they are in Flies. A little lower under the eyes are feen two tender horns $b b$, terminating in fharp points, and articulated or divided into joints. Under thefe are feen a pair of dentated forceps or jaws c, conftituting the creature's mouth. About the origin of thefe jaws, underneath, feveral more hairy and membranous little parts appear, which are fomewhat like thefe that we obferve in Crabs and Shrimps.
To the firft ring of the thorax are fixed the two fore legs d, the ftructure whereof, and the joints of which they confift, merit great notice. The frructure is in fome meafure like that obferved in creatures that borrow under the earth. Hence the frongeft motion which thefe legs have is outward, by which they can the more conveniently pierce and remove the earth, like Moles in making their cells.
Every leg is compofed of four joints, and terminated by a fingle claw. The firt joint is affixed to the breat; the next to this is fomewhat crooked, as is likewife the third, which confifts of a matter fomewhat more bony and horny than the others, and is armed with prominent brown red little points like teeth, and furrounded laterally with numerous hairs. The fourth joint is very fmall, and is armed with a fmall claw. The mufcles likewife, and their infertions may be feen very difinctly here, by the help of which the bony joints are beautifully moved.

To the fecond divifion of the thorax, which is the third ring of the body, and properly conflitutes the loins, and is covered both above and below with a fhield of a horny little bone, is annexed a fecond pair of legs, Tab. XIII. fig. iv. d, which confifts of five joints and one claw; and are here and there furnifhed alfo with hairs. Somewhat behind thefe, the follicles or little fheaths e, wherein the firft pair of wings are concealed, are feen on each fide. Thefe fleaths are here and there interwoven with air veffels, which appear on their external furface, like
common little veitis or nerves: When the Worm is juft going to caft its skiil, the internal or under wings are folded in a wonderful and elegant manner, and appear through their external coats or follicles.

There appers on the third ring of the thorax, which is the fourth of the body, the infertion of a fecond pair of wings, which are much leffs than the firtt pair, and are wholly covered by them. This firft pair likewife partly covers the hindermoft or laft pair of legs, which confift like the others of five joints and one claw, and are adorned with numerous hairs.

The firft ring of the abdomen, or the fifth annular incifion of the body, is all even and fmooth, nor is it joined to the legs, the wings, or any other part. To the fix following rings are affixed very beautiful branchix or gills $f f$, perpetually fluttering, and beating up and down with a tremulous motion. By the help of thefe Clutius erroneoully thinks the Worm fwims; but thefe parts are undoubtedly the branchix or gills of the creature. In Lobfters, Crabs, and Cuttle-fifh, which approach in many refpects to the ftructure of infects, we coniftantly find thefe little parts framed and fituated in the fame manner, with this difference only, that in Crabs and Lobfters they are enclofed in a hard fhield, wherewith the back is covered, but in thefe as well as in the Cuttle-fifh, they are fituated higher on the body than in the Ephemerus. In the figure of this Worm given by Crachtius, twelve gills are expreffed on each fide. This error feems to have arifen from a wrong view, fince there are only fix on each fide, the whole only make twelve.

The eighth and ninth divifions of the belly, which conftitute the twelffl and thirteenth rings of the body, are all even and friooth. Thefe are fucceeded by the tenth or laft, that is, the fourteenth divifion of the body. This is adorned with three hairy and briftly tails, Tab. XIII. fig. IV. g, to which are alfo added two crooked appendages, which are not fo remarkable in the females; but in the males they are likewife accompanied with fome other little appendages underneath.

As to the colour of thefe Worms, the fmalleft appear of a pale blue with a tinge of green. This, however, cannot be properly faid to belong to the creature itfelf, but is rather owing to the vifcera which are feen through. The eyes of all thefe Worms are of a blackinh brown colour, and the back is fpeckled with pale brown fpots, which increafe by degrees with its age. The mouth is palifh, and is furnifhed with redifh brown teeth; of this colour are alfo
the forceps or jaws which are bencath them, having two teeth and conffituting part of the mouth. The horny parts and the claws of the legs are likewife of a reddifh brown.
The exuberant wings infenfibly change their pale colour into a yellowifh one, which, in procefs of time becomes a bright blue, and at length a brown black. The whole body of the creature is by little and little flained with a pale yellow colour, and the blackifh fpots in the back, where it conftitutes the upper part of the belly, are changed by degrees into a deeper colour.
The difference between thefe creatures with refpect to their fex is another point very worthy of notice. For the eyes, Tab. XIII. fig. iv. a, of the male, are twice as large as thofe of the female, fig. III. but the body of the male is commonly much lefs than that of the female, which is the cafe in infects in general, as far as I have obferved; and it feems to be ordered very prudently fo by nature, or more properly, by the very wife Creator, in order to give the due room to a large number of eggs. The male in this fpecies has the tail very long,
and befides he has three or four other appendages, placed partly on the fides, partly under them, which can fcarce be diftinguifhed in the females. The male that I exhibit in fig. Iv. of Tab. XIII. is the largeft of all I have feen, though much larger females may be found.

As to the difpofition and manner of this infect, I can fay little from my own obfervation: but one thing I may venture to affirm, that among all the fpecies of infects, I never faw any one more mild, gentle, or innocent. For in whatever manner it is treated, it is always calm and peaceful, and when left to itfelf, it immediately goes to work, and begins to dig a cell for its habitation. I have obferved indeed in the fmalleft fpecies, that when rudely handled, it bends its head towards its breaft, and makes itfelf fomewhat fiffer. Of all the actions of this creature none is more admirable than the agitation of the branchix or gills, Tab. XIII. fig. iv. which adhere to either fide of its body, for there are fo orderly, diftinctly, and continually fhook and vibrated, that the mind, when intent on thefe incomprehenfible movements, is filled with aftonihment.

C H A P. VI.

The anatomy of the internal parts of the Ephemerus.

HAVING briefly defcribed the egg, Worm, food, age, external parts and difpofition, fo far as I obferved, of our little infect, what fhould naturally come next into confideration would be to explain its change. But as this is performed fo haftily, that it confifts almoft only in the cafting of two coats or skins, and the difplaying or unfolding of fome limbs and parts before covered, in order to underftand the difference between the fwimming Worm and this flying infect the more diftinctly, I think it better to defcribe its internal parts firt ; and the rather, becaufe all thefe parts under both forms of this creature may be in this account taken notice of.

Though in defcribing the internal parts of the Efca orWormof the Ephemerus, I Ihallenterupon them in a method not yet obferved by any perfon that I know of; yet, according to the example of Clutius, I fhall not complain of the fcarcity of books, treating of this fubject, nature herfelf being the beft interpreter of all her works: books are to be admitted no further than as they exprefs the truth of what fhe reprefents to our fenfes. I am therefore in pain for thofe, who, relying on the experiments related by others, frame innumerable fictions, and therewith deceive their readers with themfelves. It cannot be poffible that any perfon relying on his own undertanding and judgment, hould, in fuch a variety of experiments, follow the Atraight path of truth, and with an unprejudiced and candid judgment pafs a juft fentence on the obfervations of othere, efpecially fince we ob-
ferve that the moft certain experiments are obftinately rejected by many, unlefs they correfpond with their own opinions or prejudices. I fhall build only on what I have feen, though I may in this perhaps be blamed; for that not having had a fufficient number of the Worms, I have not been able to bring their diffection to the utmoft perfection, fo that in this refpect I cannot every where fatisfy my own inquiries. But I have long fince learned, that the works of God are as inexhauftible and incomprehenfible as his own perfect nature; fo that thefe things ought not to be contemplated by us for any other purpofe, than that we fhould be humbled by a due confcioufnefs of our ignorance, and be obliged to adore their Creator, and love him truly.
In order to make the obfervations I have to offer as clear as poffible, I fhall at the fame time declare the method, which I made ufe of in the year 1670, to determine the true diffection of the feveral parts; for it is by no means my intention to deceive either mylelf or others. Before I proceed to the defcription of the internal parts, I fhall, in order to affift the memory, briefly enumerate what parts are obfervable outwardly in the Worm of the Ephemerus, as alfo what inward parts I found in the male, and what in the female.
The external parts of the Worm are the head, fkull, horns, eyes, teeth, mouth and tongue, together with their hairy membranes, which are like thofe in the Crab kind. The breaft, legs, claws, wings, belly, and what ap-
pertains to it; the twelve upper branchix or gills, the ten lower oars that ferve the creature for fwimming, the tails with their appendages, and laltly, the apertures of the pulmonary tubes under the breait.

The inward parts of the male are, befides the blood and membranes, mufcles and fat, the fomach and inteftines, the pulmonary tubes, the heart, the final marrow, and the fpermatic veffels.

In the female I find all the parts juft recited, with only this difference, that inftead of fpermatic veffels an ovary is here feen, furrounded with fmall membranes, which are interwoven with very many pulmonary tubes.

As I have not yet accurately examined the internal parts of the head and eyes, for want of a fufficient number of Worms and Flies, I fhall not fay much concerning them, nor of the parts of the thorax, the latter being for the moft part filled with the mufcles of the legs and wings.

If the male Worm of the Ephemerus, which it is eafy to diftinguifh from the bignefs of its eyes, be firft laid on its back on a finall piece of a fir board, and then faftened with the fmalleft needles that can be had on black paper or a fmall piece of linen, we immediately fee a thin and watry humour diftilling out of the wounds in the skin, which is the real blood of this infect. And yet it is not red, as is the cafe in Earth-worms, the blood of which, as well as that of quadrupedes, is tinged with that colour. I don't know a more proper inftrument to open the fkin than a fine and fmall pair of fciffors, for little lancets, though never to Tharp, are not fit for this purpofe, becaufe they always pull and tear the parts afunder, and efpecially if the membranes be not equally hard.

When the skin is after this gently and deliberately feparated with a fine fharp-pointed pen-knife from the parts underneath, an interior very thin and membranous skin immediately appears. If this be afterwards cautioufly removed, the mufcles of the belly prefent themfelves to view, as well thofe which extend from one divifion to another, with ftraight fibres of the body, as thofe which are protended obliquely and acrofs: other mufcles are alfo feen, which ferve to move the branchir or gills. The coat or other fkin is likewife fibrous, and feems to be joined to the mufcles before defcribed.

After the mufcles appears a very fine and delicate membrane affixed to them, which I take to be the peritonæum. About and under this appears a quantity of fat, confifting of finall, fine, and white veficles, which contain a real fat in the form of fluid oyl. Whoever views thefe veficles without a microfcope, may naturally take them for the fat itfelf, whereas they are only thin and very tender bags containing it, as is the cafe in man and other animals. This will be very plain, if thefe pingueferous bags, which are of equal bignefs, be
viewed with a microfcope. The younger the creatures are, the more confpicuoufly they exhibit this fat, fince it then lies here and there difperfed on the membranes, nor is it heaped together fo thick as in the older ones.

After obferving thefe, we come to the fomach, Tab. XV. fig. v. and to the inteltines which are continued from it. Here is prefented to view the œfophagus, or otherwife the tube of the upper orifice of the ftomach, which defcends like a fine filament from the mouth or jaws through the back and thorax, and enters and is connected with the upper part of the fomach. Where this little tube is connected with the ftomach, it becomes narrower and cloffer a, as may be feen about the lower part of the ftomach, or towards its lower orifice b.

Though the ftomach c confifts of divers parts, yet it feems throughout to be formed of a thin and tender membrane, corrugated on the infide, and full of reticulated or net-like folds or plaits. On the outfide it exhibits a fmooth furface, and is expanded regularly, efpecially when it is fwollen or filled with food, or if it be artificially diftended with air, by the help of a finall glafs tube. No veins or arteries are feen in it, for the blood of thefe infects is of a watry colour, and therefore does not diftinguifh the veffels containing it from the other parts; this is the reafon that thefe creatures were called exanguious or without blood.

It is however obferved, that the fomach c is provided with many tubes which refemble blood-veffels. But if they be well examined with a microfcope, it appears they are branches of the pulmonary pipes, Tab. XIV. fig. I. $a a$, for they give little air canals, not only to the ftomach but to all the external as well as internal parts of the body. Hence, even the legs and their claws have air tubes. The inteftines, Tab. XV. fig. v. joined to the under part of the ftomach, appear to be threefold in regard to their form and ftructure : there appear, ift, the crooked or fmall gut $d d$; then 2 d , the colon e; and laft, the rectum f. Within the fmall gut, fomewhat further towards the hinder parts, are obferved fome lunated wrinkles, not unlike thofe little vales of the finall guts in the human fpecies, which the anatomifts call annulares. A little below where the colon e, rifes out of the former, are feen feveral oblong furrows, which are very fine in the living creature, and refemble fo many long mufcular villi or hairy parts extended in the cavity of the inteltine, correfponding in fome meafure with the echinus, which is a natural part of the ftomach of quadrupedes: then the rectum follows this, and is folded very elegantly, until it terminates at the external parts of the body with a pretty large orifice, through which the fæeces are difcharged.

The ftomach c is fituated between the fourth and fifth annular divifions of the body, and there, together with the fmall gut, takes up the whole foremoft region of the belly, that is, the $6,7,8,9,10$, and itth incifions. But
the other three divifions, namely, the 12,13 , and 14 th, contains the intefinum rectum et craffum, or the thick and ftraight gut. As the Itomach has a great number of fmall air-tubes, fo the inteftines have alfo the fame, but moft efpecially the rectum, which has vaft numbers of them, where its two mufcles, Tab. XV. fig. I. i, , which force out the excrements are fituated.
As the food of this Worm is mud or clay, the flomach and inteftines are ufually found filled with it. This mud is found almoft always to fhew itfelf both through the fomach and inteftines, and indeed through the whole body, but more particularly fo in the back. And hence, as the body is fo tranfparent, it follows, that the Worm does not appear to have always the fame colour, fince the mud is fometimes paler, fometimes greener, and fometimes more flefh-coloured, as it is more or lefs digefted or changed in the ftomach and bowels.

As the time approaches when the Worm is to undergo its final change, and put on the form of a flying infect, no more mud is found in its inteftines. The fame likewife happens in the Coffi or Worms of Beetles, and in BeeWorms and Silk-Worms, as alfo in other infects, for they all at that time become clear as chryftal. Some infects are all their life-time tranfparent, fo that their veffels, the vifcera, and their motions may be at all times feen and diftinguifhed in the body.
Of the inward parts of the Ephemerus, the moft worthy of notice are the pulmonary tube, and the afpera arteria trachex or windpipe, Tab. XIV. fig. I. $a a$, as it is called in birds and quadrupedes, and in the human fpecies. This trachex does not proceed in the prefent infect from a fimple trunk, as in man or other animals, bat confifts of two principal trunks, which are placed on each fide of the body running in a ferpentine manner, nor are they diftributed in the breaft only as in us, but throughout the head, belly, legs and wings, fo that by their means the ftomach and inteftines, together with the mufcles and nerves, are all fupplied with air. As this appears to us a very wonderful thing, becaufe we do not underftand the reafon of it, it moft evidently teaches us how devoutly and religiounly we ought to adore God in all his prodigious works, which are equally inexhauttible and impenetrable.

The pulmonary tubes * in this infect, as well as in the others that I have examined, confirt of innumerable little rigid and curled parts, which are artificially joined together like twifted or fpiral rings, and are fo clofely linked to each other by the help of their tender and delicate invefting membranes, that they can eafily retain the air, and convey it to all parts of the body.

When the Worm changes its skin, I fhould imagine that thefe pulnonary pipes likewife caft their covering, though I have never hitherto been able to fee it ; for at the time when I began thefe experiments no fuch thing aps peared to me. ${ }^{\lambda}$ The change or catting of the skin of thefe pipes is fo remarkable in SillkWorms, that it amazes the underftanding; for in the very fhort fpace of time wherein that creature cafts its skin, fome hundreds of there pulmonary pipes in the infide of its body, caft alfo their tender little skins, which are all compounded of fuch twifted rings.

The colour of thefe pulmonary tubes or pipes is like that of mother-of-pearl, but fomewhat inclining to gray; but the more frequently the skin is changed, it becomes by degrees of a clearer and more tranfparent whitenefs. They are therefore much whiter in the flying creatures than in the Worms which precede them. They are diftributed through the whole body, in order to convey the air, which they carry as well to the internal as external parts of the infect. Hence thefe two moft confiderable and remarkable trachex, Tab. XIV. fig. I. $a a$, which are placed in the Worm on each fide of the body, diftribute their ramifications and branching air-pipes all over it; that is, in the head towards the nerves and brain 66 ; in the thorax $c c$ to the mufcles of the legs and wings; in the abdomen $d d d d$ to the obliquely afcending and ftraight mufcles, as alfo to the fpinal marrow eee; and to the fmall guts or feminal veficles $f f f$ of the male; to the hairy branchire or gills $g g$; to the ftomach, Tab. XV. fig. v. c, and the inteftines, Tab. XIV. fig. i. b; to the fkin $i i i$; to the cont of the wings $k k$; to the ovary, Tab. XV. fig. I. $1 l$: in the female alfo to the coat that invefts the ovary $m m$; to the eggs themfelves. fig. vir. n, as is feen when they are taken out of the body, and even to the heart itfelf.' Fig. Iv. $00 . t t$.

I have found it a difficult matter to difcover the external aperture of thefe pulmonary pipes, fince they do not open into the mouth or throat, as in other creatures. For which reafon the nearer they approach the head, the fmaller they become, when it would be natural to fuppofe they would become larger and more capacious. At length, after repeated inveftigations, I perfwade myfelf that I obferved that the little apertures or entrances of there pipes opened underneath in the fide of the breatt; almoft in the fame manner as I afterwards difcovered them alfo in Locufts, in which lart mentioned infect thefe apertures may be eafily feen. But as the Ephemerus lives in water and mud, therefore its trachex muft be opened by narrower orifices, on which account it is more difficult to difcover them.

From thefe experiments it appears moft evident, why the Worms of the Ephemerus or Day-Fly, when the water of the river increafes,

[^24]rife likewife higher, and go to other cells, for they very frequently want frefl air to breathe. And for the fame reafon, when the water is lower, they muft be likewife found to defcend deeper; for they would then become too dry, and their cells or habitations would be dried and fhut up.

The pulmonary pipes hitherto defcribed cannot, in any infect, be examined better than in the Worms, when they have been dead fome days, as their vifcera are then growing black; for then they exhibit a very beautiful appearance to the eyes, becaufe they are of the colour of mother of pearl, or filver when cleaned by boiling; alfo, as they confift of a fomewhat hard and firm fubtance, fo that they do not foon putrefy: hence they alfo retain at that time their form and roundnefs.

If the breaft and belly of thefe worms be viewed with a microfcope, the whole abdomen is feen to be interwoven with white filver-coloured veffels. In order to difcover whether there be really any air in thefe veflels, they muft be put into a little drop of water, and preffed with the point of a needle, for thus the enclofed air will immediately fhew itfelf. When thefe infects are diffected under water, and fome of the pulmonary pipes are cut off with a fine pair of fciffors, they immediately rife to the furface of the water; the fame thing may be feen about their broken ramifications; the extremities of which are then carried upwards. In a Worm that has been dried, having been divided in the middle, thefe air-pipes are moft eafily difcovered, becaufe they always in that cafe remain open from the force of their curled rings, though all the other parts grow perfectly hardened.

Amongt the many things which may be obferved concerning thefe pulmonary tubes, it is particularly worthy of notice that fo great a number of them are diftributed towards the branchix, Tab. XIV. fig. I, or gills, fo that three principal branches $p p p$ of the air-veffels may be feen in thofe which I have reprefented as cut off: the middle one of thefe branches is alway blackinh $q q$, except in the centre of it, which is whitifh and tranfparent ; the other two run on either fide of the middle black one, and diftribute a large number of filver-coloured veffels $g g_{5}$ through the branchix or gills. Thefe veffels are not well diftinguifhed by their colour, becaufe the fix branchix or gills, Tab. XIII. fig. Iv. $f f$, through which they are conveyed from each fide of the body, are white and very tranfparent. Under thefe, on each fide, are obferved five rowing fins, Tab. XIV. fig. I. rrrr, of a yellow colour, by the help of which the Worm fwims.

I made during my diffections fome further oblervations on thofe branchix and their veffels, but as I do not know where the papers are, the obfervations have alfo entirely llipped out of my memory. Hence I am ignorant what ufe that feathered little part ss is of, which is feen under the firit as yet entire pair, and whether
it be likewife found about the other branchia or gills. Neither do I know the proper communication between thefe branchiæ and the airpipes, Tab. XV. fig. iv. 00 , between the latter and the heart t. I cannot therefore fay any thing more with certainty concerning them than what may be gathered from the figure. I omitted, to prevent confufion, delineating in this all the air-pipes which are about the heart, having exhibited fome of them only entire, and others cut off or broken $v v$.

Indeed, in my figures I have not always obferved the proportional magnitude of the parts, fince I looked upon that as a work of great labour and little ufe, and therefore I have not fcrupled fometimes to delineate one part larger than another. Befides, I never intended to publifh thefe experiments, without being firt revifed; and this I have afterwards thought the more neceflary, becaufe from that time I acquired a greater knowledge of the parts of thefe infects, and became more capable of afcertaining their anatomy. I hope the benevolent reader will kindly pardon the imperfections of this work, which I mult confefs are innumerable; for what man is able to defcribe, even with the uninterrupted labour of many years, all the miracles that are to be met with in this little infect.

The heart, Tab. XV. fig. Iv. $t t$, is found to be placed in the upper part of the body in the back, as it is in Silk Worms, Bee Worms, Coffi, or Worms of Beetles, Caterpillars, and other infects of that nature. It is fomewhat protuberant $x x x x$ in feveral places, and it is fo in Silk Worms alfo, as has been obferved by the diligent Malpighius. But this author does not feem to me, as far as I can learn from my own experiments, to have fairly from this drawn his conclufion that this infect has more hearts than one. I have difcovered the motion of the heart but very inaccurately in the Ephemerus, and only in that part of it which I here reprefent in the figure; but I have entirely forgot, againft which of the annular fections it was placed in the back.

The fpinal marrow, Tab. XIV. fig. I. y y y, is wonderful and very worthy of notice in this, as it is in all other infects that I have diffected; it confints as of eleven knotty tubercles, fomewhat long and oval. The firft of thefe knotty little parts ferves inftead of a brain, out of which * ${ }^{*}$ the optic nerves may be very diftinetly feen to arife and fpread themfelves. In the fame manner I have obferved, that the reft of the nerves iffue from the ten fubfequent little knots; but thefe that arife from the lower knots, are not fo numerous as thofe from the upper. The fpinal marrow is moreover found to be here and there beautifully ftrengthened with ligaments $z z$, which are compofed partly of a ftrong horny fubftance, and partly of tendinous wreaths or fafcix. This is the cafe in the breaft in particular, for there the final marrow fends out a great many nerves to the mufcles, $\alpha \alpha, \beta \beta$, which move the legs and wings: the
fame thing happens about the mufcles of the branchix, Tai. XIV. fig. I. $c c$, and rowing fins.
From cach little knot, Tab. XIV. fig. I. ee, of the fpinal marrow, there conftantly iffue two flronger nerves, which unite and become more fwollen when they approach the fubfequent nerve ; for which reafon the final marrow appears every where divided and open. But while it is in its ftate of nature contained within the body, that gaping does not appear; becaufe the nervesare there only fimply contiguous to each other, and do not therefore appear to be far diftant from each other; as I have fhewn in the fixth figure, Tab. XV. in which the final marrow, as it is naturally contained in the body, and the fourteen annular incifions of the creature wherein the marrow lies are delineated.

If any one has a mind to view the fpinal marrow, without hurting or injuring the creature, let hinn fill the body with air blown in through the hinder part: for thus the marrow will be by the force of the fwollen inteftines fo ftrongly preffed againt the tranfparent skin, that one may conveniently view its natural fituation and form, even with the naked eye, as well as with a microfcope. But this contrivance can be ufed in the males only.

The fpinal marrow, as well as the other parts of the creature, has its air-pipes, and indeed a great number of them ; fo that the brain and nerves are continually as it were ventilated with injected air. I do not doubt but the marrow has veins and arteries, though I never faw them ; for in Silk-worms I have clearly feen various fmall veffels ípring from, and approaching to the heart, which I have even filled with a coloured liquid. But whether they were veins or arteries, I cannot yet affirm.
The fpermatic veffels, Tab. XIV. fig. I. or genital organs, are as confpicuous in the male of thefe Worms, the day before it changes its skin, as in the male Ephemerus, or the Fly thence produced after changing its coat. Thefe fpermatic veffels are found to be placed on each fide of the ftomach and inteftines, and appear like the fmall guts in Fifh. There are, however, fome bendings and windings in them, like the feminal veficles in the human fpecies and they are found in manner of tubes: therefore, in this refpect, they are alfo analogous to the fpermatic veffels of fome quadrupedes, as Moles, Hedge-hogs, and the like. They are in thefe, Worms of an oblong figure fffff , and are extended all over the belly, as is evident from the annexed figure, wherein I exhibit one of them taken out of the body, and the other fomewhat larger than nature in it. They contain in their cavities a very white humour like millk, which is the fperm. The feminal veffels themfelves are likewife perfectly white, and they are of a thin and membranous texture, and have many air-tubes all over them both within and without.

In the lower rings of the abdomen appear two other little parts $d d$, which likewife in my opinion belong to the fpermatic veffels; for they feem to have a common paffage with them and with the inteftines, Tab. XIV. fig. I. δ; which however I could not at that time fo accurately difcover, being engaged in other. parts of this diffection. And indeed we muft diffect a great number of thefe infects, if we would endeavour to difcover the whole fabrick, fearching in another what we could not examine to our wifhes in the former ; and even with this caution we cannot always execute our defign perfectly.

The ovary is double in the females, Tab. XV. fig. III. and it is placed in the fame manner as the ovary in Fifhes. But if the skin of the abdomen be opened a little way with a fine and fharp-pointed pair of fciffors, that congeries or heap of eggs, fig. i. $l l$, fituated on each fide of the foft part of the belly, comes in fight. Between thefe, in the middle, the ftomach and inteftines $f f$ are fomewhat obfcurely feen through the other parts, and the latter are themfelves ftrongly connected with the membranes $m \mathrm{~m}$ of the ovary. The ftomach and little inteftines appear the more plainly, the more they are filled with mud, which is the food of the Ephemerus ; and for this very reafon the eggs may be feen alfo more beautifully; for their whitenefs, Chewing itfelf brighter on account of the diverfity of colours, makes them the more difcernable.

The double ovary of the Ephemerus has innumerable air-pipes, which are tied to a fmall membrane that furrounds the ovary; and by means of the latter they are conveyed to the little eggs hidden on the infide. But if this membrane be removed with the point of a fine needle, and fome part thereof put together with the eggs into a fpoonful of water, the eggs immediately feparate from each other, and there remains a fine, delicate and tender bundle of minute veffels, fig. vir. g, which I take to be moftly air-pipes, being like fine filaments, and confpicuous by their colour like mother of pearl.

The eggs are likewife fo extremely fmall, fig. II, that they can farce be feen. It is therefore neceffary to view them with a good microfcope, and to put them on black or blue paper, which contributes to their being the better diftinguifhed.

The eggs are of a plain round and oblong figure, and are furrounded with a tolerable firm membrane, which appears cloudy under the microfcope, and they are of a white colour, like the inner skin of an egg-fhell. Since therefore the eggs of the Ephemerus are fo fmall and delicate, the reafon is evident, why the Worms iffuing from them muft be increafing three years before they come to perfection, and are able to commence their change.

C H A P. VII.

The figns by wobich to difcover, whether the Ephemerus is to fly in a foort time ; as alfo what may prevent it, and to what class or order of natural changes it belongs.

THE general preceding figns of the approaching change of the Worms of the Ephemeri into flies, are, in regard to the weather, a warm and dry fpring; a mild winter, without much rain or fnow; and a gently running water. The peculiar figns whereby to know that thefe Worms will change into Flies in a fhort time, confifts in a protuberance of the wings on the back; for about that time the fmooth and deprefled form of the upper part of the body is changed into a more fwollen and rounder fhape; that is, that glutinous fluid which is at other times found in the coats that furround and defend the wings, becomes thicker and more clammy : hence it is, that the wings are at that time in fome degree vifible through their external skin, Tab. XIII. fig. vil. aa.

Thefe figns are more certain when the colour of the wings within is obferved to change from a yellowifh and palifh to a grayifh hue. There is alfo a ftill greater certainty, if, after the external coat of the wings is taken off from the infect's body, the wings can be expanded without hurting them: as appears in Tab. XIV. fig. I. under the letters $s \varepsilon \varepsilon$; where I exhibit the magnified wing, and as it is artfully folded by nature.

Another fign likewife prefents itfelf in the diffection of thefe infects: that is, when we find the genital parts and eggs have acquired their full bignefs, their due hardnefs, and true figure. We may then take the whole creature out of its skin, by art, and by this contrivance change it into the form of a flying Ephemerus ourfelves, not waiting the moment of nature.

All the vifcera of this infect are then cleared from their contents, which were a kind of dirt; nor is there any thing in the fomach and inteflines but tranfparent and depurated humours, which appear the more dusky, foul, and coloured, the further the time of the change is diftant; fo that they are fometimes
yellowifh, and fometimes dusky and red. At other times a little mud is found in the extremity of the thick and ftraight gut and colon ; but, on the contrary, thefe infects are all over clear and tranfparent, when the time of their change is juft at hand.

The following accidents keep back the changes of the Ephemerus, deftroy its life, or prevent its growth; infomuch that fo great numbers of thefe infects are not produced as might be expected; nor do they come to fuch maturity. An inclement, boifterous, tempeftuous, long, rainy and fnowy winter, deftroys numbers. By this the cells inhabited by the Worms are deftroyed, being worn out, or fhut up and covered with fand. Too much drought or dry weather afterwards occafions the fame deftruction ; for they are then compelled to quit their little cells, and make themfelves new ones from the decreafe of the water; and many are loft in this operation. From what has been fiid, we may eafily fee what favours and what injures the Ephemerus; what leffens it troubles and misfortunes, and what increafes and multiplies them.
What I have a little before advanced concerning the maturity of the wings, fhews to which of the orders of the four natural tranfmutations this infect belongs; that is, to the fecond clafs or order. For all the infects of this order are changed in the fame manner as the Ephemerus.
Indeed, Clutius feigns that the Worm of the Ephemerus is changed into a Nymph of the third order, and on this lofes all its motion, like the Nymphs of Silk-worms; he even exhibits a figure of that Nymph, though there is no fuch thing in all nature. Hence it is evident how much they are deceived who neglect the truth of experiments, and give credit to their own reafonings, or to the falle relations of others.

C H A P. VIII.

How and in what a woonderful mammer the Wornn is transformed into an Epbemerus.

WHEN the time of the change of the Worm of the Ephemerus is approaching, and the wings, 'Tab XIII. fig. vir. $a a$, hidden in the cafes or hufles, have acquired
their due ftrength and form, and that it is no longer in the power of the Worm to delay its change; thofe which have their parts thus difpofed and prepared, march out of their habiG g
tations
tations into the water. This ufually happens in the evening between fix of the clock and half an hour after. This Υ obferved on the thirteenth of the month of June, in the year 1671, purfuing the change of the Worms of the Ephemerus.

The other Worms, which are not as yet come to this fate of growth, remain in their cells. Thofe which have crept into the water move forward, and make all the hafte they can from the bottom to the furface; which, when fome more fwiftly and others more flowly are arrived at, each of them, fig. vir. is changed into a winged infect, fig. vi. and vili. But this change or cafting of the fkin is fo fuddenly performed, that even the moft attentive perfon cannot otherwife judge, than that the Worm breaks or burfts its way and fivifly flies out of the middle of the water.
Every infect that I have hitherto obferved has a certain and determined time appointed for it by the omnipotent God, to expand its wings and dry them, that they may become fmooth and polifhed, before they are able to prepare themfelves for fight. But the Ephemerus, on the contrary, is almof at one and the fame point of time a reptile and a flying creature. Wherever one fees at this time a little water bubble up, if we cafts our eyes on the furface, there is immediately a winged infect obferved to iffue out of the middle of the water. Argus would want eyes, if he fhould attempt to trace thefe miracles of the adorable Creator of the univerfe.
If any one goes into a boat and fixes in a fituation directly againft the defcending ftream of a river, then he may very well fee thefe infects emerging or rifing up, and cafting their skin. For, though you hould as foon as pọfible catch the Worm ftill floating on the water, yet you can fcarce look at it before it is winged and flying. This may however be prevented, and the Worm taken out of the river before the change is performed, if it be ftruck a little, or bruifed on the breaft; which is neceflary to be done, if one would view the creature at this period not yet changed, but covered with its skin.
It is difficult to fay what is the reafon that thefe wings are fo fwiftly expanded, and yet have neither mufcles nor joints in them, but only artificially plaited and folded; nay, they muft again change their skin the moment after. This difficulty furely is very worthy to be folved. I indeed thought it neceffary that thefe wings fhould be provided with mufcles and joints in the fubtance of them, as we have obferved in many other infects; for the latter can by the help of fuch joints and muf-
cles very artificially cles very artificially contract their wings into a narrow compafs, and again quickly unfold or difplay them. This holds, amongtt the reft, in Ear-wigs, which hide or put up very long wings in a finall fheath, which folds and covers them fo neatly, that they feem to be quite deftitute of wings. But though the Ear-wigs
can by the power of mufcles and joints, which they have in the middle of their wings, clofely fold thefe wings in the fame manner as in the Ephemerus, which has not yet gone through its change, and again quickly expand them; and though I thought the Ephemerus was in need of the like afliftance, yet the fupreme Architect has not been pleafed to make ufe of the fame fructure; and it appears that even this fructure was not necefiary.
If the trials that I have hitherto made can throw any light on this inftantaneous expanfion of the wings, it muft confift in this; that I think the water, which is warmer on the furface than in the bottom of the river, flowing all over and penetrating into the wings, contributes very much to their expanfion. For by the affiftance of the water, the blood which is then driven out of the heart into the wings, in order to promote this needful expanfion, may be impelled with greater force, in the fame manner as we fee the blood is, by the help of hot water, drawn more plentifully into the feet, and thofe parts are more diftended when any one is blooded in the foot. Thus, becaufe the blood and all the humours in this infect, when it gets into the water fwims about and is employed in changing its skin, are violently moved; hence the furrounding water may be of great fervice to impel the humours contained in the wings, fo that they may be more expanded. Wherefore we likewife obferve that in the wings of infects, if wounded at that time, there follows a mortal hemorrhage, or if the creature furvives, the wings are never afterwards difplayed. To the more ready expanfion of thefe wings, the impelled air likewife probably contributes very much, becaufe it is conveyed thither through the numerous pulmonary tubes, and may ferve for giving ftrength and firmnefs to the pulmonary pipes, and for expelling the humour from thence. If you cut off the wings of the Worm of the Ephemerus when it is very near its change, and throw them into a bafon of water, you will immediately fee them expanding by force of the water flowing round them, and at length extending themfelves into their natural, fmooth, and even furface, fo that they would ferve the creature to fly, if they were dry and ftrong enough. I have often made this experiment on the wings of this infect, and by that means have in fome meafure learned how they are expanded. When I have put them in the water, in the manner beforementioned, I have obferved that their larger folds were firft opened, Tab. XIV. fig. I. $\varepsilon \varepsilon \varepsilon$, and then, by degrees, the wings were ftretched out in length, Tab. XIII. fig. Ix. Afterwards the longitudinal plaits of the wings were expanded, fig. x. until at length the whole wings, fig. xi. were entirely fhewn open. This may be feen in the infect itfelf, fig. viri. which I have delineated from the life; but the figures of the wings beforementioned are drawn with the help of a microfcope. So long as the wings
continue in their plaits and folds, they are of a dark gray colour; but this by degrees becomes more faint when they are expanded.

When the Ephemerus has, fig. vi. and viri. taken its firft flight, it feeks out with all fpeed for fome place where it may quietly reft; and having found fuch a one, it cafts off, fig. xii. and xili. a very thin and tender skin from its whole body, that is, from its head, breaft, belly and wings. But before I treat of this other change of the skin, I mult obferve that it is always made on dry land, whereas the former is conftantly performed in the water. And the firf change is likewife much more admirable and worthy of obfervation than the fecond. When the Ephemerus firft caft its skin or outward coat on the furface of the water, it at that time entirely lofes its former Chape; but this is not the cafe in the fecond change.

Therefore under the firft of thefe changes, in which the skin of the Worm opening on the head and back, fuddenly is feparated from the body, until the Fly fpeedily and quickly makes its way from thence, fome very confiderable parts are loft, that is, fig. Iv. $f f$, all the branchix or gills on each fide, together with the tell rowing fins under them. Nay, when thefe branchix are feparated, they do not leave even their hairs upon the body, but all vanifh away fo entirely, that only fome fmall veftiges or points remain of them, which form a little margin or border on the fides of the belly. The Ephemerus lofes alfo its teeth or forceps c, and the former chape $d d$ of its legs, and the cafes of its wings e, and tails g, and other parts. Hence the Ephemerus having gone through this change of its skin, is become as it were another creature. fig. vi. and viri.

But as it is very difficult, perhaps impoffible to obferve all thefe things in the very fhort fpace of time in which the skin is cafting, any perfon may do this at his leifure, if he gently and dextroufly ftrips the Worm, that is to change immediately, of its skin. For then the parting branchix or gills, which adhere to the exuviz or caft skin of the Worm, are feen very plainly: there likewife appear thofe prominent apiculi or points they leave on the body of the Ephemerus itfelf; nay, you may likewife fee thole little holes which received the apiculi or points juft mentioned. The pulmonary tubes may be likewife feen. Why fhould I fay any thing of the mufcles, tendons, vefiels, and nerves which are feparated from their membranes, like ripe fruit falling from a tree? for neither reafon, obfervation, nor experience can difcover any thing of them, fince they are all directed by the omnipotent wifdom and providence, and conducted in fuch a wonderful manner that they are altogether incomprehenfible.

Again, though many parts of the Worm of the Ephemerus are extended and become longer under the firft change of its skin, yet the horns which project from the fore part of the

Worm's head only caft their skin, and when it is off they become more flender and fhort in the flying Ephemerus than they were in the Worm itfelf. The change that happens about the eyes merits yet greater attention, for their cornea tunica which was of a fmooth and equal furface in the Worm, feems in the Ephemerus, after cafting its skin, to confift of a congeries of many eyes, which form a little net equally divided. The legs likewife, together with two of the tails, become as long again by the change : but the third or middle tail is entirely taken off, having ferved no purpofe but to the Worm.

When I fay the two eyes of this creature are compofed of a congeries of leffer eyes, fix, nay feven thoufand of which I have obferved thus cluftered together in fome infects, whereas in others, as Spiders and Scorpions, they are difperfed all over the body; I would not have any one conclude from thence, that thefe eyes are formed as they are in the human fpecies and other known animals. They are by no means fuch, for they want the humours; but every globular divilion of them emits an hexagonal filament like a needle, which terminates in the net-like tunic or coat of the eyes, and this coat itfelf ends at the nerve and brain: fo that thefe creatures fee in a different manner from us. We fee by the affiftance of rays collected on the infide of our eyes, but thefe perform vifion by a collection of nervous filaments, which, when they fee, are lightly and gently affected and moved in their prominent extremities by vifible objects, and by the rays of light or colours and other appearances, as I have defcribed at large, and expreffed in figures in my treatife on Bees.

As to the fucceeding change of the skin of the Ephemerus, which immediately and without interruption follows the firf, we are to obferve therein, that the Ephemerus having once caft its skin, choofes no particular place to reft or fettle in, in order to undergo the other.

It fixes upon any place it can find in its flight, and it does not regard whether it be wood, ftone, earth, a tree, a boat, a Chip, a beaft, or a man. It feems to be a mof innocent little creature indifferent to every thing, fo that it can reft any where, in order to caft off this fecond skin, which is done in the manner following.

The Fly firmly and ftrongly faftens its lege, which are armed with fharp claws for that purpofe; then it appears as if feized with a fhuddering and trembling motion, and immediately its skin opens on the middle of its back in the fmall fhield that is placed there : this opening becomes by degrees fo large towards the fore parts, that the creature can thyuft its head out of it. After this it draws its legs alfo out of the skin, Tab. XIII. fig. xil, Xili. whilft the claws, adhering to the caft skin, are in the mean time fill firmly fixed in their places; and this indeed contributes much to remove the skin from the reft of the body.

Moreover,

Noreover, it muft be well obferved, that the head and legs are Atript of their skin in the fame manner as we draw our feet out of our thoes, or our head out of a narrow cap. But as to the other parts, namely, the firft and fecond pair of wings, the skin is drawn off from them in fuch a manner, as that the infide is turned out and the outfide in, as we invert a limber pair of gloves, the inward furface or infide of the fingers being pulled out. At the time when half the skin is drawn off the wings, there infects are as helplefs captives, and fixed in that condition, fig. xir. they even lie for fome time without any fenfible or remarkable motion. The reft of the body is likewife by this fecond change extended and becomes much longer, and the tails become a third part longer than they were after the frift change. So that the tail and legs which were made, under the firit change, a third part longer, are now again as much more lengthened; but this holds more perfecily in the tails than the legs. For, as the tail confifts of hollow rings which are capable of being drawn out from each other, hence its extenfion is much more confpicuous than that of the legs, becaufe the latter only lay folded in the skin, but are now extended fully to their length, and nothing more. It is moreover to be obferved in regard to the tail, that its hairs, which were planted very thick in the Worm of the Ephemerus, are placed more remote from one another when it flies, and they alfo become much finer and thiner, fince they likewife caft their skin twice, and appear iffuing out of their hairs as out of little fheaths.
The Ephemerus having thus partly fhaken and partly drawn off its skin, by inverting or turning it infide out, being now perfect, feeks again the water, on the furface of which it flies and beats up and down gently and quickly, and, as it feems, wantonly fports and plays, and then refts again, leaning on its tails, and Atriking its wings againft each other. Whilft the Fly is thus in motion on the furface of the water, and loofely playing with its wings, its tail, which is hollow and full of hairs, very eafily fupports the body; for, as it contains air in it, it is therefore carried lightly upon the furface of the water, and does not fink under it. Something like this is obferved in feveral other infects, which will continue in the fame manner, furfended on the furface of the water by the help of hairs, within and between which the air is detained, as is the cafe in the Worms out of which Gnats and Gad-Flies are produced. The air, however, does not always continue in the tails of the Ephemerus, but fometimes comes out of it, and may at any time be let out if they are pricked with a needle, in order to dry and preferve them; for then they generally become corrugated or wrin-
kled, and fink or fall together. There is alro another reafon why the Ephemerus flies thus lighty on the furface of the water, and that is, becaufe it carries a fmall bladder full of air in its body; unlefs we flould rather incline to think that it is the fomach of the Ephemerus, which is then inflated or blown up with air. But I flall affirm nothing certain concerning this matter, fince it is not fufficiently clear to myfelf.

The male, fig. vi. as appears to me, changes its skin twice, but the female, fig. viri. only once. I do not, however, advance this as undoubted truth, fince I have not yet confirmed it by a fufficient number of experiments. For this reafon, if it be thus, we obferve that the tails of the female are a third part thorter than the tails of the male. Befides, another more remarkable difference is, that the eyes in the male are twice as large as in the female. A third difference is, that the yellow colour of the body in the male approaches more to red than in the female. The male likewife. has, befides his two larger tails, four appendages, like crooked little tongues, which cannot be fo diftinctly feen in the female. Thefe are the great differences of the two fexes.
The Ephemerus does not engender either in the body of the water, or on land, nor in the air, but the female throws out her eggs on the furface of the water, and the male afterwards cafteth his fperm upon them *, and he has probably, for this purpofe larger eyes given him by the all-feeing Creator, that by means of this advantage he may eafily find out the eggs of the female wherever the has dropped them. As therefore a great many fpecies of fifh without coition throw out their eggs into the bottom of the water, to be afterwards impregnated by the male, fo the Ephemerus throws its fperm into the water. There eggs, when caft out, are not collected and concreted together in the form of a perfect ovary, like that which the Ephemerus carries in its body, but are feparated and difperfed from each other as they are in fifh. That the Ephemerus while a Worm does not perform the bufinefs of coition in the water, is manifeft from hence, that it does not come out of its cells only at the time it is to caft its skin. Nay, if it fhould go out of them, as it fometimes does through necefity, or to breathe frefh air, yet it is by no means able to do any act to propagate its fpecies in the water, for it cannot remain fufpended in the water but while fwimming, and it finks immediately to the bottom when it has a mind to reft in it: but at the botom it has no fixed refidence till it has made a new cell or habitation for itfelf. To thefe we may add another, the frongeft argument of all, that is, that no infect ever enter upon the bufinefs of

[^25]generation,
generation, until they have caft their laft skin. At leaft, I have been taught fo by all the experience I have had in their examination.

Neither do the Ephemeri breed or engender in the air; this may be eafily obferved when they fly. Befides, they could not poffibly breed in the air, becaufe the legs of the males are fo vaftly lengthened after the laft change of the skin, that Clutius took them for horns. Thofe who would favour fuch an opinion, muft confider what an apparatus is neceffiary for fuch coition in the air ; as may be feen in thofe Flies which do it, and particularly in the Libellæ, which perform their venereal embraces in a wonderful manner, flying and wandering all the time in the air, vifibly coupled a long while together.

I therefore conclude from all my obferva-
tions, that the Ephemeri never engender together, either in the air or water, but that the female only throws her eggs on the water, and the male afterwards pours its fperm, which it carries about it flying, as the female does its eggs, upon them; fo that this operation is performed without any communication of the two fexes. All thefe things are haftily tranfacted in the fhort period of a moft tranfitory life, fo that a more accurate inquiry into them cannot poffibly be made.
Thefe little creatures do not eat in the whole courfe of their lives, while perfect flying creatures, as is alfo the cafe with many other infects. I have likewife found by experience, that Frogs, Lizards, Serpents and Cameleons, are capable of living without eating many weeks; nay months.

C H A P. IX.

How long the Ephemerus lives, and what bafens its death.

THE Ephemerus thus flying about and wandering over the furface of the water, and moving fometimes up and fometimes down through the air, never lives more than four or at moft five hours, that is from fix of the clock in the evening, or half an hour after, until eleven at night. This I fay from experience, becaufe I have carried fome of them enclofed in a box into my chamber, and there accurately obferved the length of their lives. All die in this very fhort fpace of time, nor do any of them, which is a matter very worthy of obfervation, die a natural death on land. All of them invariably go to the water again, after they have gone through the fecond change of their skin. God therefore, the fupreme artift, has been pleafed to affign this infect a fhort life that furpaffes all adoration.

Who has fo great a genius, or is fo converfant in the art of writing, as to be able to defrribe, with a due fenfe, the trouble, and misfortunes this creature is fubject to, during the fhort continuance of its fying life. For my part, I confefs I am by no means able to execute this task. Nor do I know whether nature ever produced a more innocent and fimple little creature, which is, notwithftanding, deftined to undergo fo many miferies and horrible dangers.

Befides, that the life of the Ephemerus is flort, nay, amazingly and incomprehenfibly fo, an infinite number of them are always deftroyed in the birth, being devoured by fifh. Nor does Clutius acquit any fpecies of fifh of this barbarity except the Perch and Pike. Though the reft of the Ephemeri have efcaped this cruel danger, yet on land, when they are engaged in the great work of changing their skin, they are barbaroufly devoured by Swallows and other birds. Nay, if they efcape this danger, when they afterwards approach again to the furface of the water, and carelefsly fport and play there
with their wings and tails, they a fecond time become a prey to the fifh; which drag them away to the dark botton of the water and devour them. If they fly higher into the air, another kind of torment attends them, for then they are perfecuted with a different barbarity by other kinds of birds, which tear their limbs afunder and devour them. Though thefe infects then are the mof innocent, perhaps, of all others, they are more cruelly treated or ufed than the moft mifchievous of wild beafts.
As the Ephemerus abounds with ufeful leffons and moral precepts, fo it affords fufficient matter for various fpeculations. It is ingendered, grows to its bignefs, and then generates, lays eggs, cafts its fperm, grows old, and dies in the fpace of five hours. This fhort time comprehends the morning, noon and evening of its life.

When the Ephemerus is flying, and particularly a little before the end of that time, the Trout, which eats it as its food, comes to its perfection: its flefh and flavour being finer than at any other time. This I have been affured of by Nicholas Tulpius, formerly conful at Amfterdam, for he fairly made trial of the matter.

One may ask further this queftion, why, exclufive of all thofe dangers and misfortunes, the life of the Ephemerus fhould be fo fhort? In anfwer to this let it be obferved, that the eggs of the Ephemerus, whilft it fill fwirns as a Worm, are arrived to their perfection, fo that as foon as the infect is increafed and perfected by changing and extending its limbs, thofe eggs are intantly fit for production or birth: to which may be added, that the Ephemerus has not the nourifhing of its offspring; wherefore God has made this creature likewife, more than others, void of reafon, as the Offrich among birds, that He , from whom fprings all reafon

Hh
and.
and knowledge, might take upon himfelf the care of nourihing its progeny.

Since therefore this creature affumes its winged form only to propagate its fpecies, it follow's, that when this is done, its death is naturally near at hand, and for this purpofe it feems to
remain three years hidden in the water and mud, and to undergo after that time its change, and get wings in that form living, till this bufinefs of generation is performed, and then it dies.

C H A P. X.

That the Epbemerus kind flies three days and Sonnetimes four: certain otber Species thereof are aljo defcribed.

THAT the Ephemeri are changing and flying during three days continually, is known to all who live near the rivers, famous for this annual miracle; I have obferved them flying the fourth; nay, even the fifth day, but then very few in number. Thefe were a fuoceffion of the infects hatched one after another, and hence I think thefe had been Worms of the fame year, the wings whereof had acquired their maturity fome what flower than fome others; and that thefe latter were fick, or prevented by fome other impediment, which hindered their change in the appointed time. As, on the other hand, it is certain that the transformation of the Worms of this fpecies, which are changed before their time, happens on account of their wings and other parts being perfected earlier than natural. As this may and certainly does happen in all the infect kinds, I fee no reafon why the Ephemerus fhould not fometimes be produced in its winged form, fome days fooner or later than the ftrict time, fince it is certain from experience that the general change of them may happen fourteen days fooner or later, as the feafon of the year favours it more or lefs.
If we attentively confider the things that have been here related of the Ephemerus, it is evident that Mouffet fpeaks truth, when he fays, " The Ephemeron, or Diaria is a wonderful " Fly, whether we confider its make or the "fhortnefs of its life." But fome of the other particulars related of this infect by this author, as well as by Aldrovandus, Johnfon, Clutius, and others, who are cited by all the latter writers, do not much correfpond with the truth. Far be it from me to reprehend or animadvert on others in there matters; fince it is poffible that thefe gentlemen might have defrribed a different Ephemerus from mine, as there are various fpecies. Befides, nature, or her author God, is perfectly inexhauftible in the make, properties and difpofition of thefe creatures. I fhall only recommend it to any who flaall be defirous of knowing the truth, to confult the infects thempelves; for nature far furpaffes all the writings and treaties that can be compiled, and in this and all other cafes will teach more in one inflant of time than any one can learn in a long feries of years out of the bett library.

It aftonifhed me to fee in a book written by Augerius Clutius, that Dortmannus there exhibited a figure of the Ephemerus, devifed upon a weak and erring memory, or feigned from mere imagination. Goedaert having obferved this, and being furnihed with many more obfervations of that kind, undertook to amend it of his own pleafure, but without fuccels; fince he changed nothing but what appeared to his fancy to be improper, and left the whole figure of the infect, which was delineated from memory only, altogether incorrect. As he attempted to correct thefe errors from his own imagination, it fhould feem to follow that he multiplied them, although he rendered them more feemingly like the truth. Indeed Goedaert himfelf owns he never faw this infect.

While I was engaged in inveftigating the nature of this infect, I met with various fpecies of it at different times, but I never had the good fortune to fee the Ephemerus of Hoefnagel, which Clutius delineates; and which is found alfo among the figures of Hoefnagel: But I once found its Nymph troden upon in the road that goes by the lake of Deimermeet. I at that time thought it had its origin from a kind of blackifh and toothed water Worm, which has a clofely corrugated or wrinkled skin; fince the latter having attained its full bignefs, leaves the water, and betaking itfelf to land, is there changed into a Nymph, which in procefs of time, perhaps, acquires the form of the Ephemerus delineated by Hoefnagel. This Ephemerus afterwards throws its eggs into the water, which is the cafe with many other infects, and with feveral other fpecies of the Ephemerus which I can fhew. I faw and took fome of thofe fecies in the river Loire at Saumeur in France. Thefe do not differ in their general form from the Ephemerus of our country, but they are lefs, and of a fomewhat different ftructure. I have feen great fwarms of thefe flying, when I chanced to walk in the evening on the bridge that is over the river at Saumeur. Some of thefe carried about them their fecond skin fill ficking to their tails, as they flew up and down above the bridge. I have nothing farther to fay of this kind, or of all other fpecies which I preferve, only that fome of them are as fhort lived as our Ephemerus, which I have been hitherto defcribing,
defrribing; but I have obferved that others of them live longer than thefe. I therefore apprehend that the various fpecies are diftinguifhable from each other by feveral further peculiarities; and, for this reafon, I do not pronounce thofe authors reproachable, who relate any thing of thefe or of the like infects, becaufe what they fay does not exactly agree with the fpecies of one particular country. Far be it from me to be guilty of fuch termerity; fince God is infinite in all his works, and the fpecies may be numerous.

About the end of June 1670, when I re-fided in the village of Slooten near Amfterdam, I went fometimes in the evenings into the fields, where fo great a number of minute infects which were fomewhat larger than Gnats, at times pitched on my cloaths, that I was all over covered with them. Each of thefe caft a fmall fkin on my cloaths; after which, I obferved that all of them returned to the water, and there, like the larger Ephemerus, fported and beat up and down. Thefe infects are produced nearly in the fame manner as the Ephemerus before dofcribed; for they live in ditches and water-trenches, and when they are to fuffer a change into the Fly ftate, they likewife, at regular times, caft two skins, one in the water and another on the land. The Worms of the fmaller Ephemerus differ from the lar-
ger, in that they do not hide themfulves in mud, or form cells or long holes, but mofty inhabit flony and fandy bottoms: therefore nature has formed them of a rougher and more robutt conftitution than the larger Ephemerus. Their skin alfo is more like the cruftaceous integument of Crabs and Shrimps. They have likewife branchix or gills, and rowing fins on the fides of their bodies. When in the middle of fummer any one takes up ftones from the Rhine or Leck, or other collections of waters in our own country, for carrying to the land, he will moft commonly fee fome Worms of that kind fticking to them; which is likewife the cafe in other countries and other rivers, as I myfelf have learned from experience in the Loire, the Seine, and other rivers of France. Hence it is evident that there are many diftinct fpecies of the Ephemerus, and that the authors who defcribe an Ephemerus, however different from that of our country, do not merit certain cenfure. I can for the moft part exhibit to the naked eye the Worms before mentioned, and every thing that I have hitherto advanced concerning the Ephemerus, according as they are in nature; fince I have preferved them to this day, that they may ferve the better to illuftrate and confirm what is faid in this treatife.

The end of the reonderful bifory of the Ephemerus,
The $\quad \mathrm{T} \quad \mathrm{H} \quad \mathrm{I} \quad \mathrm{R} \quad \mathrm{D} \quad \mathrm{O} \quad \mathrm{R} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{R}$.

Of natural changes, or flow accretions of the parts of infeets.

HAVING explained in the preceding chapters the two firt orders or claffes of natural changes, we now advance to the third ; which, we muft obferve, is always preceded by another change, as we have before defcribed at large.

As this change is more obfcure and intricate than the firft, and more difficult to be underflood than the fecond, in order to give a diftinct and plain defcription thereof, we fhall compare it with the firt and fecond; for by this means it will be eafier to comprehend what they all three have in common, and in what they differ from each other. As the firft order of tranfinutations confift in this, that the creature increafes in its parent from almoft invifible, but really exifting rudiments, and lies enclofed in a membrane until it has acquired fufficient ftrength therein to be able to creep out of it; fo on the other hand, the other order is much more imperfect; for in this the infect increafes likewife as in the firt order, but it comes out of its egg imperfect; and therefore becaufe in fome parts, but chiefly in regard to the wings, it is fill defective; it muft, in order to acquire its due perfection, take in food from abroad; by the help of
which, the reft of its parts, which we from time to time obferve to increafe and expand, like a flower from its cup, are at length perfected.

The order of nature is quite contrary in thofe infects which undergo the change of our third order: for though they increafe in the fame manner as thofe in the firt order, and come forth imperfect, as thofe in the fecond order, nay, much more fo, out of their egg, many of them not having even legs; yet all thefe imperfect parts are increafed and augmented in a very obfcure manner under the skin. Hence, as the creature iffues complete in all its parts out of the egg in the firft order, and in the fecond the accretion or expanding of its feveral parts is performed externally and openly; but in this our third order, on the contrary, this germination or fprouting is all tranfacted within the covering of a skin, and can with very great difficulty be obferved, unlefs by the change of the skin.

As therefore thofe infects which undergo the firft order of tranfmutation, confituted under the form of a Nymph, creep only fimply out of their egg or fkin: and as thofe which belong to the fecond order of changes,
likewife
likewife expand afterwards as it were into a fecond Nymph; though in the mean time they do not ceafe to move and eat, nor do they ever at any period of their lives lofe their motion; fo on the contrary the matter is quite othervife in thofe which are fubject to our third order of tranfmutation; for as foon as thefe which firt iffued imperfect out of their egg or former Nymph, and increafed in their parts as they have grown under the fkin, like a flower in a tender flower cup, and afterwards caft this fkin by the force of the protuberant parts; under this other transformation they entirely lofe all their motion, except that of the tail only; for this is not fwollen with moifture in a great many, and only changes its skin.

The infects which undergo this third order of change, are produced imperfect out of their egg, and want at that time a great many of their parts : but they by degrees acquire them under the cover of their skin, where they are gradually perfected and enlarged. The legs, wing, horns, and the reft of their parts are by this means increared to their due fize with the body : this is performed infenfibly by abfolute growth or addition of parts. Finally when the limbs are come to the full period of their increafe, they raife the skin with a vifible fwelling and render it fomewhat prominent in different parts; and under thefe protuberances of the skin, we can plainly difcern the feveral limbs and other parts which lie difpofed in a wonderful manner under that covering, like a flower growing flowly in its cup; until, after the skin is at length caft, all there parts very clearly and diftinctly prefent themfelves to our view: at that time the veil, if I may be allowed the expreffion, is at length removed, and all the impediments which till then obftructed the fight, and which have produced fo many errors amongft all the naturalifts without exception, is removed, and all is made plain and eafy. Hence it is, that we can very eafily exhibit to the eye all the parts which before lay under the skin; as I have actually done in the prefence of Thevenot and Magallotti, who accompanied me in there experiments, and whofe teftimony is fufficient to put the matter beyond doubt.

We call this change with Ariftotle, Pliny, and others, the Nymph; becaufe we fee iffiuing out of it a perfect infect, fit for propagating its fpecies, and adorned in all the fplendour and beauty of its kind, as a virgin in a very rich nuptial garment : the creature having thus paffed the infantine years of a Worm or Caterpillar, comes forth without delay to meet its fellow of the other fex in the fpacious and beautiful tapeftry of the fields, fpread for its ufe by nature.

On' thefe principles our third order of natural tranfmutations confifts; the Worm, after it has caft off the form of a Nymph, in which it lay without food in its egg, is afterwards increafed by degrees, and acquires more parts
by the help of the food it is fupplied with, until at length it cafts its skin, and attains the form of a fecond Nymph, which clearly and diftinctly exhibits all the limbs perfect in all their parts, and is once again deprived of all motion as it was before in the egg : this motion is again reftored afterwards in a few days by the evaporation of the fuperfluous moifture.

Thefe infects are therefore twice held in the ftate of a Nymph; that is, firf in the egg, which is their firf Nymph; then in the laft change or fecond Nymph. But there is this confiderable difference in the two, that when they are in their firt Nymph or in the egg, their limbs cannot only be lefs diftinctly feen, than in the fecond, the reafon of which we fhall affign hereafter; but alfo that before they are changed into the firf Nymph or egg, they have no remarkable motion preceding, nor are they increafed in their limbs in any manner different from other infects, or from the feeds of plants. On the other hand, before they are changed by accretion into the fecond Nymph, they do not only evidently move themfelves from place to place, but alfo increafe in the fame manner as other infects during their growth, which have the power of moving or going where they pleafe, and take their food in at their mouths. This being well underfood, the difference between the firf change which is called an egg, and the fecond which we call a Nymph, is very evident; though each of them is only an accretion continued in the limbs though in different manners. We beg the reader will attentively regard what has been hitherto faid, becaufe it is of the higheft ufe, and eradicates entirely the falle notion of a metamorphofis or change of one creature into another, that univerfal chimera of erring opinions, and totally deftroys and fubverts the monftrous opinion of a fortuitous generation of creatures.

As the parts of the future infect are feen much more plainly and diftinctly in fome of thefe Nymphs than in others, as Ariftotle, though not perfectly right in this matter, has likewife obferved ; we fhall therefore divide them into two kinds, in order to make the underftanding of them more diftinct: that is, we fhall call one of thefe a Nymph fimply; and the other the Nymph Chryfalis. Nor fhall we regard that the word Nymph Chryfalis does not perfectly or exactly exprefs the thing itfelf; and that all the Nymphs, which we call Chryfallides, are not of that gold colour, whence the name: for we have not judged it proper to depart from the received appellations, or to make profeffed innovations in the terms: fo far are we from this intent, that our great induftry and ftudy are employed to find out truth, and, when found, to explain her fimply and in her natural ornaments. Hence we have refolved to perfuade no body to believe more than what may be fhewn plainly to the eye, and with due attention obferved by every one, as well as by us, in nature herfeif.

AMONG thefe infects which are changed according to the firft method or fpecies of the third order, and, by the power of the increafing and expanding limbs, which breaking open the skin, obtain the form of a Nymph, wherein all the parts appear to be finely and beautifully expreffed, I firft reckon Bees. I preferve in my collection their queen, as the is called ; and alfo feveral of the drones, which are properly males; and alfo the working Bees, which are of neither mafculine nor feminine fex; fince the proper organs neither of male nor female are to be found in them : whereas thofe organs are very diftinctly confpicuous in the queen and in the drones. This queen has been improperly called the king. I difcovered the egg-bag of the female, or king, as it ufed to be called, in the prefence of the incomparable anatomift D. John Van Horne, profeffior of anatomy and furgery; being affifted therein by the fingular favour of Dr. W. V. Hoorn, a phyfician of Slooten, who readily gave us admittance to his bee-hives.

I likewife preferve the Nymph of the drones, of the queen, and of the working Bees. I can likewife exhibit their webs, which are like thofe of Silk-worms, and alfo the honeycombs; between which are the cells or houfes of the drones and queen, and working Bees, befides many other things very worthy of obfervation concerning thefe little cells; for I have prepared them different ways, that the mof artificial order wherewith they are conftructed might be made evident. I likewife keep in my cabinet the fing of that ufually called the king, and its bag of poifon; as alfo the bag and the fing of the working Bees, which I have found to be divided into three parts. In fine, I preferve alfo in this collection the tefticles and penis of the drones.

It is worthy obfervation in Bees, as well as other infects, that the lungs are found moft diftinctly confpicuous in them, confifting of two white bladders. But in infects which have blood, and are by that diftinguifhed from thefe, the lungs, when cleaned from their humours, are only compofed of bladders, as the celebrated Marcellus Malpighius has moft accurately fhewn: nay, I fhall fcarce fcruple to affert the fame thing of the other vifcera; excepting only that the skin and the other membranes are interwoven with fmall and fcarce perceptible clofed arteries, veins, and the like. Thefe veffels I have alfo obferved are fometimes again opened by the inexplicable power of nature.

The elegant and amazing ftructure of the reft of the vifcera in Bees merits the higheft admiration. But as we fhall hereafter defreribe them feverally and at large, we fhall now fay
nothing more on them, for as we here treat only in general of thefe infects: we can only treat of them in general terms before their particular hiftory to be hereafter exhibited.
Confidering however that wonderful republic of Bees, which is founded upon affection only, and excludes all kind of fuperiority, we cannot but exclaim that nature has concealed in the hiftory and manners of thefe creatures, treafures of ineftimable iniracles, which are notwithftanding freely opened to us, provided we diligently inveftigate the difpofition of thofe creatures. An unwearied fcrutiny is the only key to nature; nor is there any other than this, which can open the way into her mytteries.

After the hive Bee, we are to name the Bees that live at large in gardens, fields, and forefts, and hence are called wild Bees. I preferve fix fpecies of thefe, among which there is one with very long horns; another has an extremely rough hairy body ; and a third is extremely like a Wafp: I have exhibited fome of thefe in their natural fize, in fig. iv. v. vi. vir. viif. Tab. XXVI.
I likewife reckon in this third order the wood Bees of Aldrovandus, or that called the folitary Wafp by Mouffet. Their Nymphs, the web of the Worm, and the Bee itfelf are in my cabinet. I cai likewife fhew the little nefts which thefe creatures make of fmall ftones, gaains of fand, and dirt. In thefe nefts we fometimes find a very remarkable Wafp, together with a Beetle, and the Worm out of which the Beetle is produced: nay, that Vermicle or Worm was once in my pofeffion changed in the exact fpace of one year into fuch a Beetle, having had no other food in the mean time but little ftones and dirt. Thefe obfervations create fome doubt which of the three beforementioned infects builds the nefts juft now mentioned ; but to me it appears very certain, that the wood Bee is their architect; for fhe carries the little ftones, and the neft itfelf is found to be appropriated only to her. Such nefts are found in great numbers in the ruins of walls in France.
We might likewvife mention the Apes Manfuetia of Mouffet here, but becaufe they belong to our fourth order, and are not Bees but real Flies, we flall thercfore defribe them hereafter in their proper place.
Next follow the Wafps; of thefe I preferve feven kinds, together with the combs, in which fome of their Nymphs filll lie enclofed and fealed up as it were. I have fhewn the probofcis of the common kind of Wafps, in Tab. XVII. fig. vir. the poifon bladder in Tab. XVIII. fig. iv. and lattly the ovary, in Tab. XIX, fig. iv. In Tab. XXVI. fig. x.

I exhibit one of the largeft kinds of Wafps, and another uncommon kind in fig. II. ibid. to thefe I have finally added, fig. xiv. xv. fome Wafps of the fmalleft kind. I have more than once obferved, that the Wafps carry the matter whereof they make their nefts upon their legs.

In this order I rank alfo the Pfeudopheca, which we ufually fee produced out of a Chryfalis, which is underftood to be corrupted or rotten: I preferve twenty kinds of thefe in my collection. Hoefnagel has given us delineations of twenty-four; Goedaert likewife defcribed a few. We may properly infert this kind of Fly in our fourth order, as will appear when we come to that part.

Among the Pfeudophecr which we keep, is the Mufca Trifeta, or Three-Hair-Tailed-Fly of Mouffet, whereof I preferve four kinds. I have reprefented one of them in Tab. XXVI. fig. xiri. and fome fmaller ones, in Tab. XLIV. and XLV. I preferve alfo, amongft the faid Pfeudophecx, the Mufca Unifeta, or Single-Hair-Fly of Mouffet, indeed two fpecies thereof, together with the Worm and Nymph ; the Chryfalis, which afforded thefe, is likewife in my mufeum, from which, when rotten, this Fly has its origin. I preferve alfo feveral other exotic and more uncommon kinds of Pieudophece, of which I fhall have an opportunity to fpeak in my particular obfervations.

To this third order, we likewife refer the infect, called by Goedaert, Devorator, or the Devourer. This is that fpecies of Pfeudophecæ, which kills Spiders, and may therefore be properly called the Ichneumon Wafp. This Wafp feems to be fomewhat of the like difpofition with the Mufca Lupus, or Wolf-Fly ; for as the former grinds or breaks her food with her teeth, this latter pierces it with her aculeus.

I likewife keep in my mufeum the Flies called Panopes, which are deftructive of grapes, and may properly enough be referred to the genus of Pfeudopliecæ. I have found from obfervation, that thefe Flies are not invariably difpofed to one kind of food, but will, when they cannot meet with grapes, fatiate themfelves with any other food they can find.

Next follow the Hornets: I preferve two fpecies of thefe, together with the web, which their Worms form; I can alfo exhibit their Nymphs, and the cafes wherein they enclofe thofe Nymphs. Thefe creatures are fo voracious, that if they are cut through the middle they will not quit their food, and if that be fluid, I have feen them eat while it ran out of the wound; this I have often experienced with a little honey. We exhibit the largeft fpecies of Hornets in Tab. XXVI. fig. Ix. and one of their cells in Tab. XXIII. fig. xv.

The humble Bee alfo belongs to this order, whereof there are eight fecies, among which I preferve the exotic one with purple wings.

In the figures of Hoefnagel there are likewite found eight fpecies. Goedaert has alfo defribed the Worm of the humble Beekind. I have reprefented the neft of one of them in Tab. XXVI. fig. I. and afterwards one of the Bees of the middle fize in fig. xir.

Further, I afcribe the Gnat to this order; this creature is produced in the water, as will be fhewn in its particular hifory; this it might be proper to fubjoin immediately to the treatife of Bees; but as the Nymph of the Rhinoceros Beetle, on account of its remarkable bignefs and peculiar ftructure, throws great light on the fyftem of this order, we fhall firft give a defcription thereof.

The Mufca Chryfopis, or Golden Eye, I preferve alfo in my collection, and have two diftinct fpecies thereof. Goedaert has likewife defcribed two fpecies of this elegant infect.

I likewife have the Mufca Florilega, or Flower Fly, which is black, and a great enemy to young flowers; whole armies of this kind fometimes inftantaneourly poffers fields and gardens. They are faid to come out of the water, which I fhould the more eafily allow, becaufe I know a great many kinds of infects, which, after having been in the water fometime, fly out of it at once; thus myriads of the Libellæ, or Dragon-Flies, fly together, at one and the fame time, out of the water, as do likewife Gnats, Ephemeri, and many other fpecies. On obferving this, many have erroneoully perfuaded themfelves that thefe infects are produced in the air itfelf. But it is particularly worthy of obfervation, that the Ephemerus always dies a little after its birth; whereas, on the contrary, other infects remain a long time on the earth alive : the reafons of which difference we have affigned in our obfervations on the hiftory of the Ephemerus.

I likewife preferve the Fly that is like the Butterfly kind, and the Scorpion-Fly, male and female ; as alfo the Wolf-Fly, of which I have five fpecies. The carnivorous Fly, called the Cæfar, is alfo to be found in my mufeum. I can likewife exhibit fourteen fpecies of the common Flies, and twenty-four fpecies of the more uncommon kind; fome of thefe have wings adorned as it were with the figures of ferpents, fome diftinguifhed with fafcix or wreaths, fome with fpots, and others with grooves or furrows, fome of them alfo have the belly and breaft varioufly painted with red, green, yellow and gold. We fee delineated in the figures of Hoefnagel, twenty-five fpecies of the common, and thirty fpecies of very rare, Flies; and the induftrious Goedaert has left us the figures of forty-eight fpecies of Flies. Hence, when I confider the great diligence of that naturalift, I cannot fufficiently admire, that he has been always fo much a ftranger to the true knowledge of thefe things; but I muft add that it happened unfortunately, that his thoughts were committed to writing by others; who, mixing their own chimerical
notions with his, involved the true knowledge of thefe matters in greater darknefs.

To this order are likewife to be referred fome very fmall and uncommon Flies of peculiar origin, fome of which are produced from the tubercles or warts of willows, Tab. XLIV. fig. v ; others fpring from the alx or bofoms of the leaves of the willow tree, Tab. XLIV. fig. xv ; others iffue from the rofe willows, Tab. XLIV. fig. xvir; others from downy matter or flocks of the catkins, Tab. XLV. fig. VIII; others from the ftinging nettle, Tab. XLV. fig. V; others from the fpunge of the dog-rofe, eglantine, or fweet brier, Tab. XLV. fig. in; others from the excrefcences of oak, Tab. XLV. fig. xix ; and laftly, others are produced from a kind of Worms that walk with their fheath or cafe, Tab. XLV. fig. xxxif. and xxxiv. I have defcribed all thefe little Flies in the fourth order, becaufe they perform their change in the manner peculiar to that diftinction.

The Ant likewife belongs to this clafs, but as we fhall treat of this infect hereafter in our particular obfervations, it may fuffice to fay here, that I preferve both the winged male Ant, and the female, the body of which is fomewhat thicker; and the labouring Ant, which has no wings, nor does it feem to be either of the male or female fex. It is worthy of obfervation, that this little creature is obliged to carry its young wherever they con have nourifhment at hand; whereas others, in general, carry the food to their young; other infects, in a manner different from either of the two former, expofe their iffue, as if they were orphans, and oblige them at firft to find nourifhment for themfelves. The firt fpecies is indeed very induftrious; the fecond gentle and good-natured; but the third, unmerciful, and refembles a cruel ftepmother. However, the great Creator of them, who does not defpife the cries even of the Raven, Job. xxxix. preferves them all.

I moreover keep, a thing very wonderful, five hundred and forty-five Flies of one and the fame fpecies, which have been likewife produced from four Chryfallides of one fpecies of the diurnal Butterfly; fo that the life and motion of thefe four creatures feems to have tranfmigrated into thofe of the five hundred and forty-five others. I can fhew alfo one hundred and eighty-feven little Flies, which burft out of only one Chryfalis that had been wounded. I have likewife one hundred and forty-five, feventy-feven, thirty-nine, and eighteen little Flies of different fizes, which have been changed into Nymphs, in the bowels of diurnal Butterflies, which belong to fo many different fpecies; but I thall treat of thefe more accurately in the fourth order.

The Tipula Terreftris, or Long-legs of the land, belongs alfo to this order, which Aldrovandus defcribes under the name of the largeft Gnat, but Mouffet calls it Tipula. There are five fpecies of this in my mufeum, but Hoef-
nagel delineates no lefs than fixteen. This infect is produced from a Vermicle or Worn which commonly lies under the grafs, and is called by the fifhermen, in our language, Im or Imme. I preferve two Nymphs thereof, wherein the parts of the infect are reprefented tho' fomewhat obfcurely ; fo that they may be likewife referred to the Chyfallides: the difference is not very confiderable. I likewife have a very obfcure delineation of one of thefe Nymphs by Goedaert.

Next in this order follow the Beetles, whereof I preferve nine of the largeft kinds, twenty-one of the middling, thirty-feven of a fmaller, and one hundred and thirty-fix of the leaft kind. Among thefe there are twentyfive exuticks, brought from the Eaft and Weft Indies, Ægypt, Brafil, France, and other parts. Hoefnagel has likewife delineated thirty-five fpecies of the common Beetles, and feven more rare and uncommon. We find nineteen fpecies of the fmall Beetles defcribed in Goedaert, to which are added five of their Nymphs, indeed very beautifully delineated. I preferve likewife feven Nymphs of Beetles, and among thefe the Scarabæus Naficornis, or Rhinoceros Beetle.

What deferves very particular notice in the Beetle, as Fabricius ab Aquapendento has juftly obferved, is, that the bones, which in larger creatures which have blood are placed in the infide, are fituated on the outfide in the Beetle. And, on the contrary, the flefh, which lies on the outfide in fanguiferous animals, is here hedged on the infide within the bones, or horny fubftance of thefe infects. Another thing which merits the greateft attention is, that in the very mufcles of thefe little creatures is difcovered the fame ftructure, that the great anatomift Nicholas Steno obferved in thofe of the larger animals. This is particularly remarkable in the ftructure of the mufcles of the Locuft's legs, by the help of which that creature can leap up and down fo nimbly, that it raifes itfelf into the air two hundred times the height of its body.

As nature hhews herfelf wonderful in the fimilar ftructure of the mufcles given to thefe two kinds of creatures, fo indeed does that great immenfe difference, which is between the bones of the larger or fanguiferous animals, and the horn-like texture of the little bones in infects. Among thefe infect tribes, nothing is more various, or can be more worthy of notice, than that exceeding great, and at the fame time beautiful diverfity of ftructure, which is to be met with in the horns of the Beetle kind. I really think that according to this diverfity alone the diftinctions of the Beetles into fpecies may be determined.

I preferve feven fpecies of the Scarabæi Naficornes, or nofe horned Beetles, among which there is one; whereof the horn is bent like a bow, or arch-like, towards the back or fhoulders. I can thew the curious this creature, together with the lice wherewith it is infefted. But I
have
have obferved, that it is produced from the largeft fpecies of Coffi or Hexapode Worms *, which are in the exact face of two, and fome of three, years changed into Nymphs. Befides this horn upon the nofe, it has two horns which arife near the eyes, and terminate as it were in knotty extremities. I hall give its whole peculiar hiftory in its proper place. I preferve befides this two other nofe horned Beetles, which are very fmall, and have the horns divided in a manner into two parts. I can likewife fhew another fpecies of the unicorn Beetle, which has the horn likewife bent like a bow or arch towards the breaft, and ferrated on the inner part with four teeth: whilft in the mean time the bony coverings of the fhoulder, loins, and breaft, are ftretched vafly forward, and terminated in this horn, which is planted in the concave part of its arch with briftly hairs, of a gold colour, and foft like velvet. I have likewife two other nofe horned Beetles, which have the horns undivided in their originations, but afterwards terminate in fplit points. In thefe Beetles the breaft bone is ${ }^{3}$ likewife black, horny and divided, and terminates in one of their horns, which is as it were ferrated at one end; but at the other divides itfelf into two obtufe horns. The laft named fpecies of the Beetle is alfo adorned with very fingular and knotty horns placed near the eyes. I exhibit alfo five fpecies of thefe exotic Naficornes, or nofe horned Beetles, of their natural fize, in Tab. XXX. fig. 2, 3, 4, 5, and 6 . The largeft Beetle that I have in my collection, is, together with its horn, fix inches long, and its body half an inch broad: if its wings be expanded, they meafure feven inches.

I preferve with thefe in my cabinet, the Beetle called the flying Stag, or flying Bull; the Lucanus, or Stag-horned Beetle, the male whereof is horned, but the female, as is commonly afferted, has no horns. It is very remarkable in this as well as in the other infects of theis kind, that their wings are hidden and folded as it were within little fheaths, from whence they have obtained the name of vaginipennæ, or fheath-winged. We likewife obferve when there infects fly, that there little fheaths, or cafes, wherewith the wings are at at other times covered, are only elevated, and are not agitated by the motion in flying. There is nothing in this flying Stag more worthy of notice, than the probofcis or trunk wherewith its fwallows its food: this food is a juice like honey, oozing out of the oak. This trunk is delineated among the figures of Hoefnagel, which are indeed the beft and moft accurate of all the figures I have hitherto feen. I can exhibit the method whereby the wings lie folded under the outer pair beforementioned; we are not to fay they are in reality plaited, for they are rather contracted by the affiftance of joints. I have obferved that there joints are placed almoft in the extremities
of the wings, and are moved by the help of peculiar muicles; hence a fluid likewife drops from them when they are wounded, which is not the cafe when wings are merely membranous. When I offered a little honey on the point of a knife to one of thefe Beetles, it followed me like a dog, and fucked the honey very greedily with its trunk.

Befides thefe, I can likewife fhew twentyone fpecies of the Capricorn Beetles. Thefe creatures have all wonderfully long horns. Some of thefe which I preferve are furnifhed with branching and prickly horns with knotty and fhort joints; and the horns of others are divided into very long, equal, and as it were knotlefs joints, fome of them are fomewhat fituated in the middle, and are knotty again where they are joined to each other. The body of the largeft Capricorn Beetle I have is above four inches and an half long, and the horns are as long as the body. I have likewife another above two inches long, which is covered with prominent party-coloured hairs like a Turkifh carpeting, and makes a wonderfully beautiful figure: its fore legs are much longer than the reft. Moreover, I have a fpecies of thefe flying Capricorn Beetles, which has very tender legs and horns; which, however, are confiderably thick about the bending of the joints, and where the mufcles are inferted. I have likewife a Wafp with this kind of knotty joints.
-With thefe I preferve feventeen of the flying Capricorns with much Chorter horns. Among thefe there is a kind of Beetle, that vibrates its wings with fo much velocity, that it is with very great difficulty to be taken, and hence we have called it the flying Beetle. A thing extremely wonderful in this Beetle is, that its teeth are on the infide full of ramifications, by which ftructure it is indeed diftinguifhed from all others. This Beetle flies in the day-time, and is the fame with the fourth and uncommon fpecies of the . Stag Beetle of Mouffet.

I have moreover nine fpecies of the faid flying Capricorns, having ftill fhorter and fmaller horns.

I likewife infert the Cicindula or GlowWorm, which is of the Beetle kind, in this order. It indeed refembles a flying diamond or little ftar ; it glitters with as much light, when it is yet a Worm with fix legs, as when it is changed into a perfect Eeetle: in that ftate it muft firft elevate the fheaths or cafes of its wings, or at leaft ftretch out its tail or the extremity of its abdomen, in order to difclofe its light.

Laftly, among my Beetles are thirty-two fpecies, furnifhed with horns that have knobs at the tops of them. Thefe globules of the horns are indeed conftructed in a moft wonderful manner, for fome of them refemble bunches of grapes, others are like the leaves of an open

[^26]book, and others again are of various different ftructures. One may by the help of thefe horns very eafily diftinguifh the male from the female. This is likewife the cafe in the nocturnal or night Butterflies, for their males may by this fign be very eafily diftinguifhed from their females, while they are ftill in the Nymph fate. Of thefe fpecies of Beetles fome are oblong, others round, others fhort, others indented, ferrated, party coloured, or variegated and fprinkled over as it were with duft or meal, rough with fmall tubercles, fquares or cheques, or confpicuous by their fpots and various other ornaments. Among thefe I can likewife fhew a Beetle found in the nefts of wild Bees, and delineated in Tab. XXVI. fig. iir. Almoft all there Beetles fly at night.

I refer alfo to this order the common dung Beetle, which has its horns terminated by knobs. I have two fpecies of this, which, like the blue black Beetles, emit a bright and glowing light ; one of them is confpicuous by a purplifh glofs, like that of copper, on its breaft and belly: the other glitters like green molten brafs or copper delicately gilt, and indeed makes a very beautiful figure.

I have moreover four fpecies of the Bupreftes, or green, gold, and yellow Beetles, which are of an offenfive fmell; the horns of thefe are formed like thofe of the Capricorn Beetles, and the males are fmaller than the females. I have likewife another fpecies which fmells like a rofe.

I keep alfo four fpecies of the Cantharides, to which I think the former in refpect to their qualities and virtue are nearly related. I have likewife the eggs of the common golden yellow Beetle, which are like mother-of-pearl: Some of thefe infects have knotty horns, and others have them formed like thofe of the Capricorn Beetle. Among thefe I can fhew a very beautiful Beetle, the body of which is adorned with little apertures and impreffed furrows. This was given me by the very celebrated Dr. William Pifo, formerly principal phyfician to his highnefs prince Maurice of Naffau.

I can likewife Thew the Indian Beetle, the theaths or cafes of whofe wings are of a fhining black like ebony, and have many little indentings, wherein are feen little oblong feathers adorned with all kinds of colours, bright as any kind of gems whatfoever.

I likewife reckon the Curculio or Weavil in this order; which, from a Worm deftructive to corn, is. changed into a Beetle, and of which a magnified delineation may be feen in Redi. Aldrovandus defcribes a Weavil which is changed into a Butterfly, and indeed belongs to the fame order, but to the third fpecies of it.

I preferve alfo fix fecies of Beetles with long necks and Hogs nofes, which I therefore call flying Hogs, or Hog Beetles.

Next follows the Profcarabæus, Vermiculus, Majalis, or May-Worm, which, as well as others we likewife think referrable to this order. We have three fpecies thereof, two of which have
horns like thofe of the Capricorn Beetles; but thofe of the third are knotty. Goedaert has likewife defcribed a Vermicle as belonging to the laft, but he has very prepofterounly joined. them together.

To thefe I add the Staphilinus, which, feeming of a middle nature between the Beetle and Scolopendra, can very quickly kill Earthworms with its teeth, and afterwards fuck them. Goedaert has committed three errors concerning this infect, which we fhall hereafter explain and fet right. This infect and the Worm from which it is produced are likewife defcribed by Mouffet. I preferve five fpecies of it, together with the Worm and Nymph, which exhibits the parts of the future infects but fomewhat obfcurely. Thefe infects have horns like thofe of Capricorn Beetles, but their wings are complicated in a very uncommon manner.

I preferve befide thefe four fpecies of Beetles, which, whether they lie on their back or belly, can contract and prefs their head and breaft clofe to the ground, and jump into the air: wherefore we think that the name of Grafshopper or Locuft Beetle is. a proper one for them.

I have likewife the fmall Beetle, which, having firmly and ftrongly fixed its foremoft legs, and bent and put its head through the fpace between them, makes a continual noife in old pieces of wood, walls and cielings, which is fometimes fo loud, that, upon hearing it, people have been perfuaded that nocturnal hobgoblins, ghofts, or fairies wandered about them. I think that this may be properly called Sonicephalus, or the noify-headed Beetle. Other fpecies of Beetles make a Atrange noife by rubbing their head againft their breaft, and others prefs their tail or belly clofe to the fheaths or cafes of their wings, and by that means make alfo an uncommon creaking.

I have alfo four fpecies of the Scarabæi Teftudinati, or Tortoife Beetles, and fome of their Worms and Nymphs. Goedaert has likewife defcribed two fpecies of thefe.

I alfo have the Scarabæus Aculeatus or finging Beetle, with its tail formed like an aculeus or fting, which is not met with in any other of the Beetle kind.

Moreover, I can fhew a very fmall Beetle with its Nymph, which is produced out of a Worm without legs, and is found hid within the outer skin of the leaf of the fallow tree. This Worm has its food there ready and fufficient for it, until it is at length changed into a perfect Nymph in all its parts. I have defcribed the whole change of this Beetle, which is carried on very obfcurely; in the fourth order, and have exhibited its figures in Tab. XLIV. fig. xil. xiII, \&c.

I have moreover a deteftable Beetle, produced from a Worm that eats the roots of ginfeng, and is changed into a Nymph within that precious drug. The fame is likewife found in old logs of wood.

I like-

I likewife keep thofe Beetles, with their Nymphs, which are produced from Worms that gnaw dried flefl. By the affiftance of thefe Worms a fkeleton may be eafily cleared of the ferh that fticks to it.

I am alfo to add that I have a Beetle, the Worms of which eat the bag of the mufk; I have, on account of the obfcure manner of its changing, defcribed it under the fourth order, and given its figure in Tab. XLV. fig. xxxif.
Laftly, I rank in this order the largeft, the middling, and the fmalleft Hydrocanthari, or

Water Beetles, concerning which I have occafionally inferted various obfervations of the greateft importance to the naturalift. I preferve five fpecies of thefe; the fmalleft is called the common water Flea, and water Fæmella. When this dives under the water, it has the art to enclofe a little bubble of air very dexteroufly in its tail. I have reprefented the parts of generation of the Hydrocantharus, in Tab. XXII. fig. v. and the Worm called Vermis Sicarius, out of which it is probably produced, is exhibited in Tab. XXIX. fig. Iv. and v.

The third order or clafs of natural changes, according to the firf Species or method, which we have called fimply the Nymph, exemplified in the Ant.

Tab. XVI.

No. I. $\int_{\text {HE Ant's egg delineated in its natu- }}$ ral fize, or the Worm of the Ant in its firft skin or coat, wherein it is called the egg. The firft of thefe figures exhibits it magnified.
II. Is the skin beforementioned after it is caft. This is a kind of thin membrane, which the Vermicle or Worm of the Ant, quitting the form of an egg, throws off loofely, and rolls up as into an imperceptible point.
III. The Ant's Vermicle or Worm, imperfect in many of its parts, without legs, come out of its egg or skin, and here reprefented in the form wherein it is commonly found in the earth at that period ; that is, having its head bent towards its breaft. Figure 11. exhibits a microfcopic view of it.
IV. The Ant's Vermicle or Worm having attained its full bignefs; that is, when all the limbs and parts proper to the Ant are already increafed under the skin, but ftill lie hidden. Figure inf. gives it as feen under the microfcope.
V. The former Vermicle or Worm, having caft its skin and expofing to view all its parts, which were before hidden; It fhould therefore be now called a real Nymph, whofe limbs are fwollen with a fluid matter, as will be made more evident in the explanation of the fourth, fith, and fixth figures, which exhibit the fame ftate of the creature magnified, together with its feveral parts.
VI. The fame Worm now come into the ftate of the Formica or Ant, as will be more accurately and largely defcribed in the fubfequent explanations of the figures.

Tab. XVI. Fig.i.

The Ant's egg magnified, perfectly fmooth and equal, diftended, glittering, and without any annular divifions. This is naturally fo fmall that when placed on a black ground it is fearce vifible to the naked eye. This muft be well obferved in order to diftinguifl the true or real egg of the Ant.

Fig. II.
The Vermicle or Worm of the Ant delineated larger, and prefenting its head and mouth, together with the twelve annular divifions of its body. The head is bent towards the breaft; and if the Worm be touched or moved in the leaft, it always contracts itfelf in that manner. Though this be a real Vermicle, yet it is commonly called the egg of the Ant. But this appellation proceeds from the grofleft ignorance, fince it palpably is a real creature, having life and motion, though it is yet without legs : it does not bear the leaft refemblance to an egg, nay it is fometimes larger than the Ant itfelf. But fuch is the ignorance of thofe perfons who feek for thefe Vermicles and expofe them to fale in the market: they are bought there in order to be given as food to various kinds of birds, and they are very greedily eaten by them.

Fig. inf.

I here exhibit the method whereby the Vermicle or Worm beforementioned leifurely and quietly undergoes its natural change; the blood and other humours infenfibly fwelling about the breaft and near the head, and by that means the creature itfelf becoming thicker, larger, and more fwollen: by this means at length lofes all its motion, that is when it has caft its skin, and brought to light its limbs, that were before hidden.

Fig. Iv:
The fame Vermicle or Worm, having caft its firft skin, and prefenting to view all its limbs and parts, which were before hidden under the skin; hence it is in this ftate called a $\mathrm{Nymph}_{\text {, }}$ which I reprefent magnified, and reclining on its fide.

Fig. v:
The fame Vermicle, lying on its back, is in this figure expreffed magnified.

5-a

Fig. vi.
The fame Vermicle or Worm is here again exhibited, and all its members are diftinguifhed by letters annexed : hence it is indeed very evident that the Nymph is the real infect, but fill deftitute of motion in its limbs. This it enjoys, when it acquires the perfect form of the infect which it now reprefents.
$a a$, The two eyes in the head.
b, The teeth.
cc, The horns, which are folded near the legs upon the breaft.
$d d$, The firft pair of legs folded under the horns.
$e e$, The fecond pair, confpicuous under the firt.
$f f$, The third pair, which are laid on the belly.

It is likewife feen in what manner, all the ftrong joints of there fix legs are laid on the breaft between the horns.
g, The annuli or rings of the abdomen, together with the margin or border on each fide. But this is more manifeft in the fourth figure, wherein that margin or verge, as well as the little fwellings of the loins, are more diftinctly exlibited, and at the fame time it is feen how the body is all folded up and bent.
The creature in this form is, as I have obferved before, the real Nymph of the third order, according to the firt fpecies or method of transformation, which clearly and diftinctly exhibits all its parts and limbs without exception, fo that all thofe parts may be feen in it, which are afterwards found in the common labouring Ant, whofe Nymph it now properly is. This Nymph is therefore the Ant, and the Ant is a Nymph, but the Ant hitherto lies as it were hid under a peculiar difpofition of its limbs; and this is the principal difference.

When this Vermicle or little creature caft its skin for the lart time, then all its limbs and parts are very white like curdled milk, and are fluid as water ; fo that under this form it ought to be confidered as if it lay yet in "its egg, fince it is there difpofed in the very fame manner, and is as properly a Nymph. The only difference is, that in the egg its limbs, though certainly exiftent, are not vifible; though on the contrary they manifeftly appear, when it is a fecond time reduced to this condition, fo like that of an egg. Hence this little creature is twice, as it were, a fertus, twice in its egg-ftate, and twice hatched or born. But the life it leads is not in all its circumftances the fame; it differs indeed very much, for it appears in the firft flate like a poor and miferable Worm ; but the fecond time, which is in fome meafure its renewal and regeneration, it is formed into a perfect creature. This procefs is formed in fo remarkable a manner in Butterflies, that we fee therein the refurrection painted before our eyes, and exemplified fo as to be examin-
ed by our hands; hence the Italian poet faid mont truly,

Non v'accorgete voi, che noi fiam vermi, Nati a formar l'angelica Farfalla.

That is,

Doft thou not know we Worms are boin, Angelic Butterflies to form?

We muft further obferve, that the writers of natural hiftory ancient and modern, Ariftotle, Mouffet, Harvey and others, who have called this change in the Aurelia an egg, have not wandered entirely out of the path of reafon, provided their words be taken in the fenfe now mentioned. I would however have it obferved, that they muft be faid to have really deviated from the truth, in that they have not annexed the fignification mentioned in this place to their Aurelian egg, but have propofed it as a real and fimple egg, without any refpect to the effential parts. This cannot totally be overlooked by thofe, who labour cautioully to inveftigate the natural changes in the infect tribe.

The head, the breaft, the belly, and the reft of the parts of this infect are invefted with a thin kind of membrane, and are fo very clofely furrounded by it on every fide, that even the extremity of the eyes, horns, teeth, and legs, are enclofed in it, together with the reft. However thefe lie in a loofe manner over each other, nor are they united or connected to one another by an uniform cutaneous cruft, as is the cafe in a particular manner in Butterflies. The membrane, which enclofes the parts of the Nymph of the Ant is not every where of equal thicknefs, indeed leaft of all where the limbs are clofe or applied to the body near the breaft; but where they are not fo clofely laid together, as in the extremities of the legs and horns, there the invefting membrane is equally thick in all its parts. This is very feldom obferved in the Aurelia, nor have I ever feen more than one example thereof in the Chryfalis of the fwift Butterfly, the trunk of which is in part diftant from the body; for there the invefting membrane is obferved to be every where equally thick, as may be feen among the figures of the Rhinoceros Beetles, in Tab. XXIX. But this is uncommon in Chryfallides, though it is conftantly the cafe in Nymphs.

Paffing thefe confiderations over, it is manifefly evident from hence, that between the limbs, which are feen and reprefented in the Ant's Nymph, and thofe which appear in the Ant iffelf, there is no other difference, than that the appearance of the parts is fomewhat more evident and plain in the Ant, but in the Nymph fomewhat obfcure. We muft obferve that the fame thing holds equally in the Ant's Vermicle or Worm, which hides the limbs and parts under the skin that is not yet caft off. For in reality the egg, Worm, Nymph

Nymph, and Ant, are all but one and the fame creature varioully cloathed, and lying under different yet accidental forms. Therefore the Ant, that I may exprefs the bufinefs with fufficient accuracy, is covered or furrounded in the beginning, when it is an egg, with an oval or fpheroidal skin; and afterwards, when it appears under the form of a Vermicle or Worm, is covered with an annular and hairy skin; and thirdly, when it is a Nymph, and is found wrapped up in a divided and articulated veil; until, fourthly, it at length cafts this skin, and afterwards retains this its laft form, wherein it is a perfect infect, fript of all its integuments; is fill the fame Ant, in this variety of appearances: fo that having thus, at certain diftances and ftated times, caft off all thefe coverings, the creature is perfect, and is never changed more. This muft be in the fame manner underftood of all other Vermicles or Worms which have no legs; nay, of thofe alfo which have legs, that is, of fuch as fo long and fo often change their skin, until at length they no longer change their form, but become perfect infects, afterwards procreating their fpecies in the fame order.

When this Nymph cafts its laft skin, many remarkable changes are obferved; the eyes are altered in the head by a flow accretion, and change colour from white to black; the horns, the legs, and the reft of the body; are more and more difcoloured; a fuperfluous moifture is exhaled from all the parts, the limbs, which were till now without ftrength and motion, begin to move, and at laft the invefting skin is difengaged from all thofe parts; and then, and not before, this Nymph is called an Ant.

Fig. vir.

In this figure the Ant is reprefented under that 'form in which it fhews itfelf when it has caft the laft skin. All the obftacles which impeded the fight in examining its parts, are now removed. Hence we may fee the Ant no longer covered or veiled but in its real form ; nor is it after this laft operation, during its whole life, further augmented or changed; as it has attained its full maturity and the greateft ftrength of life. The fame thing likewife is found in the fame manner in all other infects fubject to thefe changes, for none of them are ever increafed or changed, after having caft the laft skin. Hence, doubtlefs, the reafon may be affigned, why we fee there infects never become larger in other countries than in our own, unlefs they are of a different fpecies; or are fuch as eat fomewhat more plentifully, while they are in the form of Worms and Caterpillars; for by this means their bodies may become fomething, though not much, larger than ufual, as we have fhewn elfewheré.
By the power of infenfible perfipiation, the Ant's skin after all thefe changes is grown very hard, and becomes as it were horny, though it swas forme weeks before the laft transformation,
tender and fluid like water, fo that the creature could not flir one of its parts with even the leaft motion. In the more confpicuous, that is, in the larger Nymphs belonging to larger infects, this change is fill more confiderable than in the Ant's Nymph : for their flin which was in the beginning of the change likewife very foft and tender, becomes in a few days horny and as it were bony, as fhall be hereafter explained in its proper place in the Nymph of the nofe-horn Beetle, which likewife belongs to this order.

It will be now proper that we exhibit in figures the limbs and parts of the Ant, in the fame manner in the Ant itfelf, as we have before fhewed them in its Nymph. To this purpofe I have allotted this feventh figure, wherein I reprefent the common labouring Ant, fuch as is ufually found in the gardens and paftures all over Holland and elfewhere. I here delineate the Ant magnified in fuch a manner, as it very cautioufly carries the Worm or Vermicle in its mouth, or between its two teeth, without the leaft danger of hurting it, Tab. XVI.fig.vir.a. Thefe teeth of which the Ant has only two, are more properly jaws, an upper and a lower, which hang crooked or bent on the outfide of the mouth, and have feven ferrated incifions or divifions, ferving as fo many particular teeth. This may be clearly feen in Tab. XVI. fig. xi. at the letter a. Moreover, the divifions of the head, breaft and belly may be diftinguifhed in this ftate much more accurately than in the Nymph. The eyes are very black, Tab. XVI. fig. viI. $b b$, the antennæ or horns under the eyes are of a faint red colour $c c$, and are compofed of twelve horny joints; the firft of which, that immediately under the eyes, is very long: but all thefe joints are covered or furrounded by brifly hairs. It is likewife fhewn very diftinctly here what form and ftructure the head and thorax are of, and that they are invefted with a horny, ftriated or furrowed, crooked, and indented fkin. This fkin refembles the fibrous joints of the wild pines, when they are cleaved or cut, where it is knotty. The conftruction of this furrowed fkin is feen yet plainer in the Ant exhibited in fig. xI. The incifions of the thorax, fig. viI. d, are divided into fix fharp-pointed prominences, which become more confpicuous backwards towards the loins. The loins themfelves confift of three knotty vertebre or joints e, and are every where fet thick with briftly hairs. Underneath at the thorax are feen flrong hairy legs $f f$, each compofed of four joints; the laft of which, or that properly called the foot, is divided again into fmaller joints, and the laft of thefe is armed with two claws.

The abdomen or belly, the colour whereof is fomewhat more red than the reft of the body ; this being of a light red, flines like a looking-glafs, and is furrounded with briftly hairs g. I call this creature I have been defcribing the working Ant; nor do I think it is
provided with either male or female organs, as I fhall demonftrate to be the cafe in the Bees; fince it feems to be defigned by the moft wife Creator for labour only, and to carry, remove, preferve and nourifh the young of the others.

Fig. vili.

To make this hiftory of the Ant as complete as in my power, I have here likewife delineated the male Ant in its natural fize.

Fig. ix.

I delineate the fame magnified in this figure, both becaufe the limbs of this creature may be the more conveniently defcribed, and that the differences as well as agreements between one Ant and another may be the clearer or more evidently explained.

It appears then that the teeth a and antennx or horns $c c$, are in this, in every refpect, like thofe of the working Ant; only that the teeth in the males are fomewhat lefs than in the working kind: and this is likewife obferved in the female Ant. Something like this is alro feen in the teeth of male Bees. The eyes in the male Ant are much larger $b b$, and furpais thofe of the working and female Ant; and this holds likewife in the males of Bees, Ephemeri, and other infects.

Befides thefe, three points or dots like mother of pearl are in this feen in the head; which I have likewife obferved in Bees and Flies. They are indeed remarkable eyes of a diftinct kind from the others, and make a peculiar difference between this male and the working Ant: but there is fill a greater difference in refpect to the brealt, for befides that it is in this difpofed and painted in a quite different manner, there are alfo four wings $d d$ very confpicuous on it, whereof the two firft are nearly twice as large and ftrong as the two hinder ones. The ftructure of the loins e and belly f is likewife very different from that of the working Ants: and the whole body of the male is larger, and of a darker colour; as is likewife the cafe in the males of Bees.

Thefe males of the Ants, which differ in refpect to their Nymphs from the two other kinds, the latter having their wings regularly difpofed and folded, are not to be found at all times of the year among the fwarms: hence it is probable that the working Ants kill them, when the bufinefs of generation is performed. The Bees we know act in this manner by their males, which are called drones. And this is probably the reafon why the males are fo frequently ill treated by the working Ants, as I have often feen.

Thefe males of the Ants regard nothing but generation, and therefore are admitted into that republic only for this fingle purpofe, to propagate their fecies. The fame thing exactly happens among Bees, with whom the Ants
have indeed many things in common; there is no fuperiority or pre-eminence among either Bees or Ants; love and unanimity, more powerful than punihment or death itfelf, prefide there, and all live together in the fame manner as the primitive chriftians anciently did, who were connected by fraternal love, and had all things in common.

Fig. x.

I here exhibit the female Ant in its natural fize.

Fig. xi.

The female Ant is here again reprefented magnified. She is naturally not only longer than the working Ants and males, but alro much more bulky and corpulent : it is eafy to difcover by diffection very fmall, white, oval eggs in her. She has likewife teeth a, eyes $b b$, and horns $c c$ like the former; and in the hinder part of the head towards the neck, fhe is furnifhed alfo with three fmall eyes, like mother of pearl; fo that in this refpect, the female remarkably differs from the working Ant, and is partaker of the privileges and benefis of the male. The female Ant is likewife diftinguifhed from the two former kinds, in refpect to the flructure and form of the thorax d; this part in her being fomewhat browner than that of the working Anf, and fomewhat redder than that of the male. There is fcarce any difference in the legsee, or in the feet f, nor about the belly g, only that this is larger becaufe of the eggs that are to be lodged therein: all this is evident in the figures. Whether all the fpecies of Ants are fo conftituted as to have in each community a great many working ones, fome males and fome females, I cannot of a certainty affirm. I am however pofitive, from my own obfervations, that this is the cafe in the moft common fpecies of Ants, which are found in the fields and vineyards in Holland and about Amfterdam; for I have there frequently taken them out of the ground, and from among the roots of the grafs, and brought them to my chamber and kept them alive by proper food to complete my obfervations.

To do this I ufed the following method: I provided a large deep earthen vefiel, and about fix inches from the brim or verge of it, I put a bank or artificial rim of wax, and then on the outfide of the circumference of this I poured water, in order to prevent the Ants confined in this enclofure from getting out. I afterwards filled the cavity of this difh with earth, and therein placed my little republic of Ants. It happened that in a few days the Ants laid their eggs in this veffel : from which were produced thofe Vermicles or Worms, erroneoufly called by the vulgar, eggs, which I have before defribed. It cannot indeed be exprefied in words, with what induftry and folicitude thefe working

Ants take carc of the young ones, and with what love they feed hem: they carry them with amazing fondnefs between their jaws from place to place, nor do they omit any thing neceflary for their fupport or nourifhment.

When the earth wherein they lived grew dry, I obferved that they carried their young ones to a lower part and deeper under the furface; but when I poured a little water thereon, fo that the mould became moift, it was then wonderful to fee how they all, ftimulated with love, endeavoured as much as they could to take away their young and carry them to a dry place. Nay, I obferved that after I had poured in a greater quantity of water, they with all their might carried them to the higheft part of all. If I only moiftened the dry earth, then they likewife carried their young out of the damp part. Thus I had opportunities to fee very difinctly, that the young ones moved and fucked nourifment out of the fine and imall particles of the earth.
I often endeavoured to nourifh thefe young Worms, without the affiftance of the working Ants, but I never fucceeded. Nay, I could not exclude even the Nymph of thofe Vermicles,
which the Ants likewife carry daily from place to place, without the affiftance of the working Ants. I gave them fugar, raifins, apples, pears, and the fruit of other trees and plants. I never found that they built thofe artificial nefts mentioned by fome authors, and therefore I apprehend that is to be underftood of fome other fpecies. Even in thofe places which they fpontaneoully inhabited, I never difcovered any work of art performed by the Ants of this fpecies; only broad paffages and crooked ways, defigned for carrying their young from one place to another. I have obferved likewife that they follow the fun's motion, and convey their young according to the courfe that luminary purfues: this I have obferved in the fields where they inhabit little hillocks of earth; for they there carried their young conftantly to thofe parts where the ground was warmed with the fun's rays. I never obferved that Ants provide themfelves any food for the winter, although this has been fo ftrongly afferted : and therefore I think they eat nothing whilft the winter is fevere ; as is common with many infects, and in particular with fome fpecies of Bees, which in the midft of winter abftain from all kinds of food *.

Of certain otber kinds of Ants, Jome of which Jpin like the Silk-worms.

BESIDES the fpecies of Ants hitherto defrribed, I have feen five other kinds, fome of which I preferve in my collection. The firft fpecies is very large, and was brought from the Cape of Good Hope. I have delineated it in Tab. XVI. fig. xvi. of its natural fize. Its head, eyes, horns, teeth, breaft, legs and belly are feen there as they naturally are. It is of a bright red colour : but whether this was the working Ant or the female of that fpecies, I could not difcern: as it had no wings I am certain it was not a male. I am likewife ignorant of the difpofition and nature of this fpecies of Ants.

The other fpecies of Ants, which I have feen in Holland, is flefh coloured, and of fuch fize and form as is expreffed in fig. xiv; but I cannot now determine whether this was a working Ant or a female. I met with this fpecies at Honteflard; where I examined in a wooden bole its eggs, Vermicles, Nymphs, working Ants, females and males, in great numbers mixed together in fome mould, where they were fet in order to ferve fome birds for food. The males exceeded fomewhat in bignefs the Ant I expreffed in the figure, and had four membranaceous wings. But what de-
ferved particular notice in this fpecies was, that the Nymphs were all enclofed in a fheath or cafe, which, when the working Ants carefully preferved, carried here and there between their jaws, made a very agreeable figure; for thofe Ants carried on this occafion a bag bigger than themfelves. I experienced then for the firft time that the Vermicles of Ants, as well as the Silk-worms, form a bag or follicle, and that thofe that are enclofed in it are changed into Nymphs. This web was of an oblong oval figure, and wrought with delicate and fine threads about the body, being of a rufty ironcolour, and when I opened it, I found a Nymph in the infide. I likewife carried fome of thefe enclofed Nymphs with me to Amfterdam, which after fome days gnawed their way out of their webs, and produced fome male Ants: this happened on the eighteenth of July. I gave the figure of fuch a fheath or cafe entire, and in its natural fize in figure xir. and a fection thereof in fig. xint.

The third fpecies of Ants that I obferved, was fomewhat lefs than the common Holland Ant: this does not fpin. I have given the hiftory thereof at large. Its body was much blacker and brighter than any of the other

[^27]Species. I found thefe Ants running on fome willow-trees, and they feemed to live only there. But I have not been hitherto able to fee their males.

The fourth fpecies was again lefs, but of a thicker and more reddin body; nor have I ever found its males. The fifth Cpecies was of a more flender, and at the fame time fomewhat longer body than the fourth: I faw the males of this with four wings. The fixth fpecies that I obferved was wonderfully fimall; it. was of a bright red colour, had two eyes, two horns, two jaws, and fix legs ; and it was, like the reft, divided regularly into a head, thorax, and belly. I have not yet feen the males of this fpecies; and therefore I only reprefent the working Ant belonging to it in its natural fize in figure xv. Thefe little Ants are feen only about the middle of the month of July ; but then fome hundreds appeared, and they yearly at fated times infefted the cheefe-loft and pantry, notwithftanding all our endeavours to drive them away. After October not one of them was to be feen until the next year. It feemed to us that they came out of a wine-cellar, and crept through the fmall clefts between the beams and timber planks to the place where they could find food. This, which was firft conjecture, we afterwards found to be true; for when the cellar had been kept full of water for fome months, we never afterwards perceived any Ants.

What merits particular regard in this hiftory is, that thefe Ants remained fo long as to the middle of July in the earth and fand, and then firt came in fight ; but after October all of them betook themfelves again to their little cells. Whether they lived in the mean time without food, or whether, as is common with many infects, the old ones died, and young ones were produced out of the remaining eggs
and Nymphs, I cannot determine : but from the analogy of other infects I can eafily judge that the manner of thefe creatures living was very fingular and uncommon. Befides, it is probable that the males of thefe Ants were deffitute of wings, fince I have for fome years made my obfervations on them, but could never find any whatfoever that had wings. I would not, however, aver this for truth; becaufe nature is wonderfully confiftent with herfelf in all her works. Dr. Padbrugge has informed me that he alfo obferved many fpecies of Ants in the Eaft-Indies ; and particularly that there were white Ants there, lefs than the common Dutch ones; and that they were very deftructive of food and fome kinds of merchandife. I have this year received from the fame gentleman a very beautiful figure of the black fpotted red Ant, which he fent me from the ifland of Ternate: it is fomewhat lefs than the Ant of the fecond fpecies which I have defcribed above. The largeft Ants this gentleman has obferved he affures ine were as long as the firft joint of the thumb ; and their nefts were fix feet long in circumference and were divided into various particular cells: thefe places of reception were fometimes all found under the earth, and fometimes moftly prominent above the furface ; but they were always framed with an amazing art. I cannot determine how this matter is, for Ants make no netts here : it is enough for me to give a faithful relation of what I have been informed, and particularly to recommend the authority of this curious gentleman. He likewife fent me the figure of a Frog with that of the red Ant; its hinder legs are cloven, which is very uncommon, and probable the cafe only in Frogs that live on dry land. This will be rendered more certain by accurate refearches.

The very curious bifory of the Nafcornis, or Rbinoceros, or borned Beetle, illuftrated with accurate figures.

I N T R O D U C T I O N.

" TE admire the fhoulders of Elephants that carry towers; the necks of "Bulls, and the furious toffes from their horns; " the ravages of Tigers, and the manes of " Lions: but we fhould know that nature is " no where more complete and perfect than " in the fmalleft objects." This is a very juft fentence pronounced by Pliny in his far diffant age, though the wonderful works of nature were at that time but obfcurely known. We fhould therefore, furely, endeavour to fearch into nature near at hand, and where fhe is conficicuous in the mof minute things, or her miracles will never be difcovered. Then will it be made clearer than the fun at noon, that as many natural myteries are hidden in the
narrow compars of the moft vile and contemptible of animals, as in the vaft vifcera of the largeft. In order to elucidate the incomprehenfible power of nature, it muft be inveftigated in the fmalleft creatures. Nor let the extreme minutenefs obferved in thefe, deter any from the inquiry; it fhould rather encourage us to be more diligent : for the lefs the work of nature is, the greater and more magnificent it afterwards fhews itfelf in thofe at firt invifible parts, and exhibits to our fight and touch all thofe things which before eluded our fenfes, and our moft acute intellectual faculties. The greatnefs and majefty of God are confpicuous only in the works framed by his infinite power. But as our eyes are not
fufficiently
fufficiently acute to view thefe things perfectly, it is neceffary to invent and find out all kinds of affiftances and artificial contrivances proper for affifting the fight, by the help of which thefe things may be diftinctly feen. By this means, and no other, we can attain to know with what order, meafure, rule and wifdom God's creatures are all formed, and how they depreciate all the work of human art and induftry, the latter not being able to bear too near an infpection. The beft of them only exprefs the external ornaments, wherewith the furface as it were of God's works are covered; and they are therefore deflitute of that true food of the mind, wherewith the works of God abound. The more accurately thefe are examined, and the more perfectly they are explained, the more wonderful, lovely, and adorable they always proclaim their Creator. Though many works of art, which derive their powers from nature and the effects of regular motions, perform wonderful things; yet when they are more intimately examined and inveftigated, they immediately betray the imperfect condition of the artificer. Therefore all the matterly touches of Apelles, compared to the very refined lines of nature, are only rude, unpolifhed and coarie; and all the fplendor of tapeftry finifhed by human art vanifhes, when only one of nature's works contained in a fingle pulmonary tube of an infect is produced: who can delineate even this, the leaft of thefe wonders, with adequate dignity? what genius is able to defcribe, or what induftry can invertigate it? our eyes and fingers, and all the powers of our underftanding are deficient in this refpect, as will be evident from what I fhall prefently fhew
concerning the lungs of the Rhinoceros or nofehorned Beetle; and thus it will be at the fame time moft ftrongly demonftrated, that the works of God are moft wonderful in the fmalleft objects. Thus I conclude this introduction, crying out with the royal prophet: "I praife "thee, becaufe in beholding thy works I am " tranfported with admiration: I celebrate thy " wonderful works when my mind is mott "enlightened."

Though I fhall attempt in the following pages to defcribe to the praife and glory of the fupreme being, the whole change, or, if I may fo call it, the tranferetion of the nofe-horned Beetle, confecrated of old to Mercury, and expofe to public view its origin, life and propagation; yet I would not have any one think, that I intend to give its accurate and perfect hiftory. As I happened to be diffecting one of thefe Beetles in yuly laft year, in the prefence of the very learned and experienced phyfician Dr. Mathew Slade, I difcovered the wonderful conftruction of its general parts. I was thence led to examine into its origin, and made a diffection of the Worm out of which it is produced. This having been the occafion of the hiftory that I fhall here exhibit, it will contain no more than an accurate narrative of thofe things, which I then and afterwards remarked in regard both to the internal and external parts of this infect. But if God gives me health and ieifure, I fhall probably at fome other time profecute this fubject much further, though what I now advance is fufficient to fatisfy the moft curious adorers of divine miracles, being of the greateft importance and moft wonderful dignity.

C H A P. I.

Of the places wherein there Beetles live: of their generation, eggs, Worms and food; bow long they are feeding; woith varous otber uncommon incidents.

AS to the places wherein the Rhinoceros or nofe-horned Beetles commonly live, they are moft ufually our docks and yards, where they lie among the chips and faw-duft, and in the afhes of reeds which are burned in tarring of fhips, and among the rubbifh of kitchen gardens; in the remains of the fumach wherewith leather has been tanned; as alfo about old trees, and in rotten wood.

Thefe Beetles generate in the months of June and July; the male, Tab. XVII. fig. I. alone has that remarkable horn on his nofe, whence the fpecies is named nole-horned; the female is fomewhat larger, fig. In the male gets upon the female, and with the horny or bony part of its penis, as with two crooked claws, fixes himfelf upon the horny or bony part, which conftitutes the vulva of the female; by this means the female cannot efcape, and the male in this manner injects his fperm,
which it has in great quantity, and fo impregnates the female. In the fame manner the male Butterfly of the Silkworms holds its female faft by the affintance of two crooked and horny claws, fixing himfelf on the horny or bony ring, in the hinder part of the female's body, and by this means engenders with her, as not being then able to get away from him. The males are fo very violent on this occafion, that they will fix themfelves to the females after they are dead; and they are hooked fo ftrongly together, that you may tear them to pieces eafier than feparate them.

After coition the female Beetles in this Species penetrate deeper into the wood or other matter ; they inhabit and lay their eggs there, not in heaps but fcatteredly and at diftances. The annexed figure inl. exhibits the magnitude of thefe eggs, though fome of them a are often obferved to be greater than others b, as
one female is larger than another. The egg is of an oblong round figure, and of a white colour, and has a thin, tender, membranaceous, flexible and foft coat or fhell; it contracts very eafily with air, and corrugates or wrinkles up when the moifure evaporates; the fame thing happens in Hens eggs when they have not the hard or outer fhell. It is difficult to fay in what fpace of time there eggs ought to be hatched by the mere force of the fun and heat; but about the end of Auguft we always find the young Worms or Vermicles, fig. Iv. which have come from thefe eggs. If one of thefe little eggs be dexteroully opened with a fmall pair of fciffors, a tenaceous and whitifh moifture flows from it. The firft, and indeed a very rare, change that I obferved in thefe eggs, exhibited two perficuous ruddy points, which were tranfparent through the coat of the egg, and were likewife furrounded on each fide; with fome other fpots of the fame kind. I obferved indeed afterwards, that the two former were the teeth of the Worm yet enclofed in the egg; and that the lateral points were the apertures of the pulmonary pipes. It is extremely worthy of regard how hard the teeth of this Worm are, even in the egg; fo that this infect, whofe teeth attain their perfection before all the other parts, is able as foon as it comes to the light to feed itfelf, and by gnawing and devouring the wood wherein it is placed to nourih itfelf. The manner in which this Worm is difpofed within the fhell of the egg, likewife deferves great confideration; it lies there folded up, fo that its fundament is between its teeth, and the latter reft on the former. The body being thus folded up, the legs are very curioully difpofed on each fide at the verge of the belly, and one may fee that their claws infenfibly acquire a colour, and become fronger through the coat of the egg. The Worm itfelf, in due time, breaks open the Thell of its egg in the fame manner as a chicken, and creeps therefrom to the next piece of wood or other fubftance. The Worm ${ }^{*}$, when thus frefh excluded, fig. Iv. is very white ; it has fix legs, and a corrugated or wrinkled body covered on all parts with hair ; but its head is then bigger than its whole body, which is a very wonderful thing, and indeed holds likewife in other creatures in fome degree, not excepting even the human fpecies. As the head of this Worm is horny or bony and extremely hard, the all wife-Creator therefore forms it firft, left the other fofter and more humid parts, which therefore increafe fafter than the bone, flould precede it in growth; and thus has contrived that all the parts fhould attain their determinate fize and due form at the fame time; and therefore the moft wife providence of God here again becomes obvious to our fenfes. The
colour of the head becomes by degrees yellowifh, and after this fomewhat red, until it is at length changed into a brownifh red. This Vermicle or Worm has two teeth or jaws, the tops of which are likewife cut and divided into fmaller teeth. Thefe teeth deferve particular confideration, becaufe they are fo large and ftrong, that one may certainly very properly call them jaws. They may however be much more diftinctly feen in the Vermicle or Worm, whilft it is ftill white and lies in its egg, than when it has been for fome time out of the fhell and is grown bigger.
If one views there eggs from time to time with great care, whilft the Worm ftill lies in them, the heart beating on the back prefents itfelf to view. If the fame eggs be then opened, they exhibit, befides the outmoft coat or fhell, on the inner part, fome other fibrous and membranaceous little parts, and two very fingular ones on each fide, fituated where the legs are placed, towards which are detached a great many white little fibres. Thefe little parts are like thofe umbilici or marks at which Peafe and Beans are fixed to the pods. But this fimilarity does not hold in refpect to the office of nutrition, fince there is no fuch thing in eggs, for they carry their nourifhment enclofed within them.

Among all the eggs of infects, of which I have various fpecies in my collection, I know none worthy of greater attention than thofe of Earth-Worms, for thefe infects have a red blood in their veffiels, which, whilft the Worm fill lies in its egg, may be obferved to move, and is wonderfully carried about in the heart itfelf. This is the reafon why I take the prefent occafion to mention this fingular phenomenon; though the egg of the Earth-Worm is not larger than that of the Rhinoceros-Beetle, yet the former creeps out of it in form of a Serpent, and is many times as long as it appeared to be in the egg. I faw two fpecies of thefe eggs, of different fizes, and of an oblong roundifh figure, uniting on each fide in a prominent point, and therefore one would be inclined to fay that this microcofm or little world had two poles, and that one may hope to difcover a great many wonders therein. They are of a pale yellow colour, and have a tinge of green. In the fpring there eggs are found difperfed here and there in the earth. In order to hatch them properly, I put them into a difh, and covered them with white paper which I always kept wet. If any perfon does this carefully in his chamber every day, he may very eafily difcover thefe wonders. In the fame manner I have alfo hatched the eggs of Snails. I have likewife two eggs as big as thofe of the nofe-horned Beetle, but covered with a perfectly hard fhell like a Hen's egg, which is indeed very rare.

[^28]Whoever would preferve thefe and fuch kind of eggs muft pierce them with a very fine needle, prefs out the contained humours, and having afterwards blown them up with a fmall glafs tube, he mutt fill them with a little rofin diffolved in oil of fpike. I have now fome eggs taken out of the ovary of the human fpecies and kept in this manner. Thefe I difcovered in the year 1666, and from hence I began to furpect that I fhould have found eggs in all other animals; nor was my reafoning in this point without its foundation.

Let us proceed in the hiftory of this infect. As foon as the Vermicle or Worm of the nofehorned Beetle has crept out of its egg, it immediately finds its food ready prepared for it; that is an old tree growing rotten, or the remains of the fumach, for in thofe the egg is depofited by the mother Beetle. Nor does fhe afterwards take any further care of her egg or of the Vernicle; this creature therefore, though much lefs in bulk, refembles the tall Oftrich, whereof the infpired writer fays, Job xxxix. 14, 15, 16, 17; "Which leaveth her " eggs in the earth, and warmeth them in the "duff, and forgetteth that the foot may crufh "them, or that the wild beafts may break "them. She is hardened againft her young " ones, as though they were not hers, her
" labour is in vain without fear: becaufe
" God hath deprived her of wifdom, neither
" hath he imparted to her underftanding." Many are alfo of this difpofition, though fome of 'them take great pains to depofit their young among proper ncurifhment. However negligent and carelefs this Rhinoceros-Beetle may be in providing for her iffue, yet we obferve in others a much more admirable innate fenfe or inftinct, by which they maintain and bring up their young after they are out of the egg. Do not the laborious Ants and careful Bees teach this leffion? the latter daily nourining their offspring with banquets of the puren honey.
Other infects enclofe their young or eggs in rotten trees, as the celebrated Redi well ob-
ferved. Some again hide their future progeny in the floots of fruits and plants, which for this purpofe they firft pierce with fharp inftruments, given them by God for that purpofe: laftly, others leave or place their iffue in the bodies of living animals, or in other inacceffible places, in.order to find natural nourifhment ready as foon as they are out of the egg, for it is not allowed them by nature to take any further concern about their progeny.

To this place might be likewife properly referred thofe particular obfervations which I have made on the excrefcences of oaks and other trees and plants. But fince we fhall profefiedly treat of the fe hereafter in their proper place, we flall remit the reader thither, and now rather profecute the hiftory of the RhinocerosBeetle.

How long the Vermicle of this Beetle is in nourifhing, until it acquires a ftrength proper for undergoing its change, I cannot eafily determine: for fome years before I knew that this fingular creature was produced from thofe Worms, I kept them above a year in the remains of fumach and earth in a glafs bottle, and during all that time obferved no change in them. I have likewife, not long fince, kept fuch a Worm a whole year in the fame fumach wherein I found it, without wetting it; however much this moifture may be requifite and neceffiary to fuftain the life lof thefe Worms, this I mention only to fhew the flrength of their life *. And hence I alfo conclude, that if this Worm can live for a whole year, after being come to its full growth, furely the younger Vermicles or Worms that are not yet grown to perfection, muft take fome years to their increafe, before they attain this flate: and it is certainly an admirable thing, that even the Worm out of which the Ephemerus before defrribed is produced, fhould require three years before it attains its change, though its appearance under this laft form does not continue above five hours: this may be feen at large in the preceding hiftory of the Ephemerus.

C H A P. II.

The name of the Worm out of which the Rbinoceros-Beetle is produced; alfo its external parts, difpofition and motions. That it loves beat, and that it cafts a fkin; with otber incidents tending to illuftrate this fubject.

THE Worm I have been hitherto Speaking of, is defcribed by Mouffet and other authors, under the name of Coffus, and is, when it is arrived to its full growth, half an inch thick and two inches long, and of a white colour; its body is very deeply wrinkled, Tab. XXVII. fig. $v . a$, and is divided in a beautiful
manner into folds or plaits. The whole body is compofed of annular incifions common to infects, and to which authors give the name of annuli or rings; this denomination, however, does not feem fo proper, when thefe annuli or rings are not compofed of a horny or bony matter, as is the cafe in many befide thefe. On

[^29]each fide of this Worm are feen nine reddifh points or fpots b, not exactly round, but fomewhat compreffed like the feed of the kidneybean. Thefe are the orifices of the pulmonary tubes, and hence I call them puncta refpiratoria, or points of refpiration. The firft annular incifion, which conftitutes the head, has no point or mark of that kind: the fecond exhibits the firft aperture of the pulmonary tubes, over which there is likewife a coloured fpot c in each fide of the body. The third and fourth rings again have no fuch fpots or points, becaufe, as fhall be afterwards explained, the fheaths or cares of the wings, and the wings themfelves, which the Beetle to be produced out of this Worm hides under thefe fheaths, increafe in procefs of time in that part, and cannot be perforated. On account of thofe fheaths thefe infects are called vaginipennia, or fheathwinged. The fifth therefore and fixth incifions, and the reit that follow in order behind thefe, to the number of twelve inclufive, have each their points of refpiration. The head, which is of a bright red colour, and fomewhat rough, hás feveral diftinct parts, eyes, horns d, and teeth ee, but the lip is fplit in two parts, and is vifible among the teeth: above thefe are placed the antennæ or certain prickly and articulated hairs, which lie as it were under the skin ; thefe are very ufeful when the Worm is feeding. In Locufts likewife the fame briftly hairs are obferved, but more confpicuous, and they are of great ufe at the time the Locuft changes its skin, and cafts it off from the claws, teeth and eyes. It is not difficult to keep the Locufts alive, if raifins are given them to eat ; for if thefe are put on a thread one after another, and hung up in a wicker basket, the Locufts will eat them even to the skin. The Coffus has fix finall legs g, three on each fide of its body, of a yellowifh red, furnifhed with claws and hair, divided into five joints, and placed at the fecond, third, and fourth annular incifions of the body, or the neareft to the head. The other or hinder rings of the Worms fhine like a looking-glafs, the skin being there extended and very fmooth. Hence the furface is there of a tranfparent blue, and under it are feen fome of the air-pipes, Tab. XXVII. fig. v. b, of a filver colour, making a wonderfully elegant and beautiful appearance. The reft of the skin terminated at the anus i is covered with fine and tender briftly hairs $k k k$. The motions of this Worm are fluggifh, and all its actions heavy. Its greatef ftrength is in the head, breaft and legs, for by the help of thefe, it immediately forms for itfelf another hole in the earth or other matter, whenever it is taken out of it. And when this happens, it bends its back very much, and gathers its belly as it were into a femicircular cavity, nearly in the fame manner wherein I have delineated it.
It frequently happens, that the fumach or wood wherein thefe Worms live, grows by a natural fermentation warm in the fame manner as moift hay, and at length becomes very
hot. The Coffi do not regard that, for the warmer their habitation is, the better they live in it; they have at thefe times much better health, and are more brisk and lively than ufual, and if they are roughly touched, they are more quick and violent in defending themfelves by biting; though thefe Worms are not otherwife of a mifchievous difpofition, but on the contrary they are very gentle and mild.

Whilft the Coffus becomes infenfibly bigger, it fometimes changes its skin like the Silkworm: but I have not yet learned from obfervation how often that happens. Before the Worm cafts its skin, it firft, like Silk-worms, alfo difcharges itfelf of all its excrements, and then bending its body, it makes a new hole in the earth, that it may be able to caft its skin the more conveniently in a feparate habitation. Nothing in all nature is, in my opinion, a more wonderful fight, than the change of skin in thefe and other the like Worms. This matter therefore deferves the greateft confideration, and is worthy to be called a fpecimen of nature's miracles ; for it is not the external skin only that thefe Worms caft, like Serpents, but the throat and a part of the fomach, and even the inward furface of the great gut, change their skin at the fame time. But this is not the whole of thefe wonders, for at the fame time fome hundreds of pulmonary pipes within the body of the Worm, caft alfo each its dilicate and tender skin. Thefe feveral skins are afterwards collected into eighteen thicker, and as it were compounded ropes, Tab. XXVII. fig. vi. a a a a a a a a a, nine on each fide of the body, which, when the skin is caft, flip gently and by degrees from within the body, through the eighteen apertures or orifices of the pulmonary tubes before defcribed, having their tops or ends directed upwards towards the head. Two other branches alfo of the pulmonary pipes that are fmaller, and have no points of refpiration, caft a skin likewife, $b b$. Moreover, each of the eighteen points or apertures of refpiration are likewife obferved to open and dilate their orifices at the fame time. If any one feparates the caft little ropes or congeries of the pulmonary pipes with a fine needle, he will very diftinctly fee the branches and ramifications ccccof thefe feveral pipes, and alfo their annular compofition. The skull is then likewife divided into three parts $1,2,3$. Its middle part fhews the teeth $d d$, which are renewed and the old ones thruft out: in the middle of thefe is feen a lip e, and on each fide there are prominent horns $f f$: Behind the lip may be feen the skull, terminating like a triangle in an acute point, on each fide of which are feen the two other portions $g g$ of the bone divided into three parts. The fharp-pointed or prickly antennæ are likewife changed, and from the eyes themfelves is taken a tranfparent membrane. This happens likewife in Serpents when they caft their skin. The exuviæ or caft skin exhibits fix apertures, wherein the legs b were fixed.: and the divifions or wrinkles, and little
depreffions
depreffions of the skin are ftill plainly confpicuous. Nay, on the hinder part i, where the skin is twifted and complicated, whoever accurately examines the skin itfelf, may fill obferve the coat that was caft by the inteftinum rectum. It is likewife remarkable, that the skull remains fixed to this caft skin of the Coffus; whereas the contrary happens in Silkworms, whofe skull always feparates from the caft skin, except under the laft change, when the Silk-worm is changed into an Aurelia or Chryfalis. The head and teeth of the Coffus, having lately caft their skin, grow white and become flexible and tender, though they are
otherwife hard as horn, nay, as bone ; infomuch that when the Worm is provoked, it attempts to bite even iron. But what effect this change of the skin in the pulmonary pipes at length has in the Worm, will afterwards appear, when I fhall at the fame time fhew more clearly, that there are more than eighteen principal branches of pulmonary pipes in the Coffus, as is likewife the cafe in Silkworms. This may be likewife exemplified in the Worm of the Hornet, which has twenty points of refpiration. But I fhall now proceed to the anatomy of the Coffus.

C H A P. III.

The anatomy of the Coffus. The manner in which it is to be killed. Its blood, beart, fat, pulmonary tubes, throat, flomach, fpinal marrow, and the nervius recurrens. Whether the Coflus is eatable. How it may be feafoned or preferved, with fome uncommon obfervations.

IHAVE various contrivances to execute the diffection of the Coffus, according to the different ends I propofed to myfelf in each diffeetion; but that which I ufe moft frequently for this purpofe, is to kill the Worm in fpirit of wine, or to fuffocate it in rain water fomewhat more than lukewarm : after fome hours I take it out again, and thus it not only lofes all its motions, but its mufcular fibres are never afterwards contracted, which would otherwife very much incommode the diffection.

When the skin is opened along the back, where the heart is placed, which is extended through the whole back, in form of an oblong canal, and appears about the loweft rings in the manner of lymphatic veffels; immediately after the blood, which is a watry humour or ichor, iffues out at the wound, the moving fibres of the annuli or rings, Tab. XVII. fig. vir. come then in fight. Thefe are indeed very wonderful to obferve, and can farce be well defcribed, for they fhoot over each other, from one ring to another, in a ftraight, tranfverfe, oblique or decuffated direction, and often join one another as by inofculation. Some of them are longer, fome thicker, and fome fmaller than others, as I have endeavoured to reprefent in fome degree in the figure juft now cited. But the mufcles are not fo beautiful in any of the infect kind as in Snails, as may be feen in their biftory, and the figures illuftrating it.

All along the courfe of the heart in the Coffus, fimilar moving fibres are likewife placed, which are inferted into the heart itfelf; and they, like fo many different little ropes, expand and contract it. The external furface of the heart refembles a membranous oblong tube, fig. viri. a, which is very narrow b about the top, and is likewife contracted like a knot about the middle of the body, and widens again c,
and at laft is joined d very clofely in the hinder part under the thirteenth ring. On each fide of the heart are feen fome blackifh uneven points or fpots, which render the heart, though tranfparent enough of itfelf, the more diftinctly confpicuous.

If the incifion be afterwards made fomewhat wider, the fat appears, confifting of innumerable, very fmall, and as it were fandy, fig. ix. globules, which, when viewed with a microfcope, feem to be again compofed of innumerable and yet fmaller particles, all which are fupported by very thin and tranfparent membranes or coats, fig. x. a a , which are varioufly diftributed through the body of the Worm, and with their number and diverfity very much obftruct the fight of the internal parts. If this fat be viewed with a microfcope, the pulmonary pipes $b b$ appear to run up and down through it, and the fat itfelf is exhibited in form of minute, oily, globular particles $c c$, fwimming between white, fpherical, and membranaceous parts. But when the fat of the Coffus is received into a fmall glafs, and placed on a burning coal, ftill covered with its afhes, then in roafting there iffues out of it an oily white fubftance in great abundance, which being put on paper has the fame effect that oil has, and when thrown into the fire it burns very bright; and therefore from all thefe figns, I conclude it is of the true nature of fat. This fat is not of a regular but various figure in its difpofition, like certain pneumatic veficles, which I fhall hereafter delineate in the fheaths or cafes of the wings. This, however, is to be underftood only in refpect to the divifion of thefe tranfparent coats, whereby, as a foundation, the fat is fupported, for the figure of the particles of the fat itfelf is commonly rpherical. In the Silk-worms, whofe fat is yellow, it appears of
a very irregular form. When this fat of the Coflus is further examined, with the help of a powerful microfcope, it appears of an unipotted whitenefs, and is covered or furrounded with tranfparent little bubbles, almoft like bladders: it is contained or enclofed in little membranes, and is a real oil or fluid fat ; and hence therefore if thefe membranes be wounded a little with the point of a very fine needle, it eafily flows out, and a drop of it then falling into water, fwims on the furface like other fat. Whilft this fluid fat, difcharged in this manner, and the white membranous particles are breaking, the object in general is thereby darkened, and the water becomes muddy, as if there was farch, lime, or chalk mixed with it ; becaufe the fat then divides itfelf into many little particles : but it is more beautiful to fee this in the Nymph than in the Worm. The fat of larger animals, viewed with a microfcope, is likewife obferved to confift of very minute particles; which, becaufe they are white, one would fay are like grains of fand; however, they are not fo tranfparent, and all of them feem to be almoft of the fame fize, which is not the cafe with refpect to fand. Therefore the globule compofed of fat ought not to be confidered otherwife than as a mafs of little grains of fand faftened together, though every particle of fat is contained in its diftinct membrane, all which break in pieces and fall to the bottom, when the fat is melted. In the firft rudiments of calves and fheep, in the wombs of their parent, thefe fmall particles of fat appear even to the naked eye, without a microfcope ; for as there are not a great quantity of them there, they may be the more diftinctly obferved.

To proceed: as therefore the fat hinders much the view of the internal parts, this impediment is increafed by the addition of the pulmonary tubes or pipes, for they are diffributed through the Worm, in eighteen principal branches, in fo different and beautiful a manner as cannot be exprefied by words. Thefe branches proceeding from the points of refpiration, are afterwards divided into innumerable little fprouts and fhoots; fo that there, is no part in the Worm, to which fome of thefe air-pipes or their ramifications are not extended. They are conveyed even to the mufcles, to the brain, to the nerves, whofe moft minute divifions are likewife provided with their, air-pipes. Wherefore this Worm, as well as the other fpecies of infects, feem indeed to be fuftained much more by the power of a fubtile air, than the larger animals and thofe which moft abound with blood: unlefs one fhould be inclined to think that the air is mixed with the blood, by means of the circulation, and with this is carried through the arteries to all parts of the body, which opinion is indeed not very improbable. All the pulmonary pipes in the.Worm are ftraight, and have on bladders, for only the perfect Beetle has them.

We flall now leave the confiderations of thefe pipes, and explain more accurately the other parts. The firft of them that offers in
our diffection is the fomach; which is indeed feen moft diftinctly, when the Worm's skin is entirely opened, Tab. XXVII. fig. xI. and XII. a a a a. It then appears that almoft the whole body of the Worm is poifefled by this part. It confifts of feveral coats, and has moving circular fibres, whereby its contents are agitated. It is always, except when it cafts its skin, found diftended and full of chewed wood, or the like fubftances, amongft which the creature lives; and this is the reafon that it appears bluilh, or fometimes reddihh, its contents being eafily feen through its coats. This flomach is very narrow at its origin, at the mouth, whence it forms the gullet b; but it is a little after expanded until it makes its upper orifice called the œfophagus. In that part the fomach c is on the infide in front armed with about feventy little tooth-like parts $d d$, whereof fome are longer than others. Thefe are divided into fix orders, whereof the two upper ones, 1,2 , look forward with their points, but the other four, $3,4,5,6$, which are confpicuous toward the lower parts of the fomach, have their ends directed partly to the fore e and partly to the hinder f parts. All thefe open into theftomach, in the fame manner as the appendages in fifhes open into the inteftine next to the ftomach. But I hall not take upon me to affirm that one of thefe tubes is inferted into another, as is the cafe in the Whiting. I only would fay, that each tube feparately opens in the fame manner as may be feen in the Salmon, in which the pancreas opens into an ecphyfis with above fixty peculiar and diftinct tubes. A little lower the fomach is rendered confpicuous by twentytwo whitifh glandular tubes, Tab. XXVII. fig. xi. xif. g, whofe ends are turned towards the hinder parts. Finally, about the lower part b of the ftomach, a little above the beginning of the pylorus, are likewife obferved thirty fuch tubes $i i$, which are alfo uneven, and fome Ghorter than others; thefe are there fituated obliquely and run inward; thefe alfo open into the fomach there, and their ends point forward. If the middle feries of the tubes before defribed are broken off from, or taken out of, the ftomach, they refemble the crown of a trepan. On the other fide, where the fomach lies in the belly of the Worm, and the tubes are directed towards the hinder parts, a future like the ridge of the peritonæum divides it f : There are infinite pulmonary fibres alfo inferted in the ftomach : on each fide of the ftomach are likewife placed fone fmall veffels $k k k k$, difoofed in a very regular and beautiful manner, which I call the vafcula varicofa \& crocea, the fiwollen and yellow veffels, after the example of the celebrated Malpighius, who in his excellent treatife on the Silkworms, has given that name to the like veffels in that infect. Where the ftomach terminates about the pylorus, is feen a narrow and fhort inteftine l, which is foon dilated m into a large, thick, and very capacious, though fhort, gut, and may be properly called the colon; for it is of the fame fructure with the colon in the human feccies. This inteftine

Nn
is commonly found very full of excrements, which are like the dung of Dormice. It is by reafon of the thicknefs of this inteftine, which is naturally fo vaftly diftended, that the leaft or loweft annuli or rings are fmooth and tranfparent. Another reafon is, that, as the Worm has no fat about thefe parts, the filver-coloured pulmonary pipes, diftributed all over this inteftine, appear very beautifully through the tranfparent skin; and indeed the elegance of this fight is the more remarkable, becaufe the inteftine is of a purplifh or bluifh colour. The pulmonary pipes juft now mentioned reach on each fide $n n$, from the points of refpiration to this inteftine, and are diftributed thereon, as well as on the extremity of the ftomach and ftraight gut. I have omitted reprefenting here the other pulmonary pipes, that I might be able to exhibit the other eight orifices 0000 thereof in their natural fituation, and as they fhew themfelves when the fat and all other impediments are removed. This inteftine bends itfelf by degrees towards the ftomach, and there ends in a narrower canal, which is directly under it p, and which I call the ftraight gut ; becaure it agrees with that inteftine in figure, infertion and ufe.

I at firft fuppofed the final marrow, Tab. XXVIII. fig. 1. to be in this, as it is in other infects. But afterwards, by opening two Worms which I had kept fince the laft year, I obferved that the marrow in this creature differed very much, not only from that of other infects, but alfo from that of the Silkworms, to which in many things elfe the Worm has great refemblance. As the marrow in the Silkworm confifts of many globules, which the celebrated Malpighius has been pleafed to call fo many brains, this, being formed in a quite different manner, fcarce extends to the third or fourth annular divifion of the body; but whatever part of itafterwards reaches to the other rings of the Worms, or whether what we fee there are no more than nerves fhooting from this principal body of the marrow; which, like fun-beams, beautifully and wonderfully diftribute themfelves through the body of the creature, and thus give fenfe and motion to the circumjacent mufcular parts, none yet can fay. Though there is a diftribution like this in the Silkworm, yet the final marrow itfelf in that infect is extended through the whole body. Hence the marrow in the Coflus is very fhort, but the nerves are longer. I have again, fince the firft experiments, examined this marrow in a fmaller Worm, which I had raifed from the egg; but becaufe the body of the Worm is very fhort and compact, the marrow is therefore fituated fomewhat deeper, and thence appears very diftinct and beautiful. The a brain of the Coffus is placed in the head, and confiits of two hemifpheres, which together form one body. In the fore part are feen four little nérves iffuing out of the fubftance of the brain; alfo, out of each fide of the brain there iffue two remarkable
nerves b, which firt leave a large opening between them, and afterwards again meet together a little lower, and there conftitute the body of the marrow c. This marrow, it appears, may be divided into fourteen globules, as it were diftinct, whereof the three laft together form one more globular divifion : moreover, the nerves very elegantly branch as they fpring out of this marrow.

We muft here obferve that the gullet paffes through the opening of the marrow which we have juft named, in its courfe towards the external mouth of the Worm. And indeed there was a neceffity for this ftructure, for as the ftomach and gullet are fituated in the neck and belly, and the brain lies above in the head, the marrow muft neceffarily have been fituated only on one fide, unlefs there had been a hole in it for the gullet to pafs through; hence it is contrived that the marrow poffeffes the middle of the body. The moft wife Architect of the univerfe has taken care, by means of this opening, that the marrow fhould not be forced to twift or turn itfelf round about the gullet, which could fcarce have been any other way avoided. In the fame manner the gullet paffes through an opening of the marrow in Silkworms: this the famous Malpighius has neither defcribed nor delineated. This author has likewife delineated fewer globules of marrow than are really in the Silkworm, and he has entirely omitted the brain. But it is eafy to add to what has been difcovered before. As this marrow is divided only once, and that at the beginning of its courfe in this Worm, it opens many times in the Silkworms, as Malpighius has very juft remarked. It is alfo further remarkable that two confiderable branches of the pulmonarytubes, which are filver coloured, and glitter like mother of pearl, are obferved to pafs over the marrow of the Coffus in many ferpentine windings. Thefe branches with their ramifications accompany the nerves iffuing out of the fpinal marrow, unto their fineft or moft delicate divifions, which is alfo the cafe in Silkworms. However great, therefore, the difference may be between the marrow of the Coffus and Silkworm, the brain and branching nerves meet again in both. The nervus recurrens, Tab. XXVIII. fig. II, deferves moft confideration of any; becaufe, as in larger animals, and in man, this provides nerves for the beginning of the ftomach, and other parts adjacent: it performs the fame office equally in the Coffus and Silkworm. But in order to underftand how this is managed, I muft repeat what I have before obferved, that the gullet paffes from the external mouth of the creature, through the opening of the marrow towards the ftomach, and that therefore the marrow feems to be divided into two parts, purpofely that it might tranfmit the gullet. A further advantage that arifes from this is, that the brain is there lodged gently on the gullet, and is joined to it by
means of the emitted nerves and connecting pulmonary pipes; fo that the brain lies above on the gullet, and again the gullet and fomach are placed upon the final marrow; which part having no bone, is thus defended by them. The brain then being fituated in the manner thus mentioned in the Coffus and in Silkworms, emits underneath from its bafis two tender little nerves, which I reprefent, fig. ir. $a a$, as they appear when cut out of the Coffus. Thefe nerves, called recurrentes, are directly from thence carried $b b$ upwards towards the mouth, and being then very beautifully bent they run back $c c$, and uniting d a little above the brain, form a knot there. Out of this knot there fprings another nerve e, which being conveyed under the brain, and defcending along the gullet by degrees towards the lower parts, reaches to the beginning of the ftomach, and there, before it inferts its branches in the ftomach, making another knot lefs than the former, at laft terminates in numerous very fmall nerves g : but thefe I could not trace further in the prefent experiments; though I am confident I could do a great many more things in thefe matters by the help of fome peculiar methods of diffection, if I had not been then finted in time.

As thefe nervi recurrentes are extremely remarkable and worthy of confideration, I have therefore reprefented them feparately, and fomewhat beyond their natural fize. In the next place I have added a very exact figure, wherein the brain, fig. III. a, the final marrow $b b b, \& c$. the nervus recurrens, and the reft of the branching nerves are fhewn as they appear in Silk-worms. But there are two of thefe nerves very remarkable $p p$, which I would have the reader ferioufly and repeatedly confider: they are perforated $s s$ in a wonderful manner by the vaffa deferentia of the tefticles in the Silk-worm Butterfly rr. But whether this conduces to pleafure in this species of infects, or to any other ufe, I leave others to
determine. I have in the fame manner delineated with the others the genitals of the Silkworm Butterfly, and expreffed them in the fame figure with thefe nerves. A fhort explanation of this, as well as of all the other figures, will be found at the end of this work.

I have found out an excellent and uncommon method of preferving all thefe parts of the brain and marrow, by the help of which I can form them into a body, and keep them in their natural colour and fize ; whereas otherwife they are utterly deftroyed by keeping. I fhall communicate it when I publifh my peculiar anatomical obfervations. I have, as a fpecimen of the ufe of this method, preferved in this manner a great many fuch minute parts, which though they cannot be inveftigated and examined without infinite induftry and tedious labour, in the creatures themfelves, yet when they are thus preferved, prefent themfelves more familiarly to view than in their natural bodies.

I cannot in the courfe of this hiftory avoid relating, how much the Peacocks and Peahens are delighted with eating thefe Worms; and hence I am inclined to believe what Mouffet alledges from Pliny and Hieronymus, that the ancients ufed to eat them as a very delicate kind of food in Pontus and Phrygia. But probably this was the fpecies of Coffi, out of which the larger Beetles are produced. If any perfon would eat the Coffi of our country, they muft be firft kept fafting until all their excrements are confumed. When I have a mind to keep the Worm itfelf for future obfervations, I make a fmall incifion in the hinder part of its body, and having afterwards preffed out the entrails through the wound, I fill the cavity with injected wax. Another method is this: all the fat of the Coffus muft be firft confumed with oil of turpentine, and then it may be preferved according to art. This different and much more uncommon method of preferving, I fhall likewife explain in due time *.

C H A P. IV.

The manner wherein the Worm is changed: bow its inward parts are transformed in their increafe and growth, and the wonderful metamorphofis of the Worn into a Nymph. Aljo the metbod whereby the points of refpiration, or breatbing boles, are tranjpofed: to which are added many uncommon obfervations.

WHEN the time of this Worm's change approaches, which in the year 1673 happened on the fixteenth of Auguft, in thofe I obferved the Coffi penetrate deeper into the ground, or into whatfoever fubftance they in-
habit, and feek for places that are more firm or compact, wherein with the preffure of their hinder part, they form a very artificial oval cavity, Tab. XXVIII. fig. Iv. every where fmooth and polifhed. They lie a little while

[^30]immov-
immoveable in this cavity; and immediately after they become, by degrees, by voiding the excrements and by the evaporation of their humidity, more flender, Ghorter, and uneven in the body, with more furrows or wrinkles than before; thefe, however, are alfo difpofed on the flim in a very beautiful manner : and hence both the diftention and clearnefs of the fkin difappears fo perfectly, that one would think the creatures were ftarved by degrees, and their fubftance confumed with hunger. It is remarkable that at this time the internal parts of thefe Worms do not appear protuberant through the fkin, as is the cafe in Silkworms, and in the Worms of Bees and other infects; though one may fee even thefe already under the skin, and alfo diftinguifh by what degrees they increafe.
Before I profecute this matter further, it is neceffary to know, that if the Coffus be diffected about this time, its divifion into the head, thorax, and belly, may be diftinguifhed very clearly. The gullet, fig. v. a, keeps its original form: but the ftomach $b b$ is changed and greatly contracted: the fame likewife happens about its appendages, ccc, for thefe almoft totally vanifh. The vafa crocea or varicofa $d d$, the yellow or knotted veffels beforementioned become more loofe and free; though in the mean time they do not yet feparate from the ftomach. On, the hinder part of the ftomach, about the pylorus e, is feen the infertion of thefe veflels; for they arife there in four diftinct tubes, fo that properly they ought to be called inteftina caeca, clofe or blind guts. The fame may be likewife feen in diffecting the Bee-worm, in the figures of which I have likewife delineated thefe veffels. The intettine colon f to this time nearly keeps its bignefs, nay, it now prefents g its little cells to view more diftinctly than ever. 'Towards the hinder parts, under this, or towards the inteftinum rectum b, are feen curious veffels twifted in a wonderful and very beautiful manner, on each fide of that inteftine i. We may likewife at this time eafily divide the fubftance of the ftomach into its three coats, and diftinguifh its moving fibres.

It is admirable beyond all comprehenfion, how the Worm of the Hornet that is to put on the form of a Nymph, difcharges at the fame time all its excrements, together with the inward coat of the inteftine, or rather of the ftomach, which embraces or contains them; fo that by this means this entire membrane and all the collected foces are thrown out of the body together. The fame thing happens in this cafe as does with refpect to infants whilfe enclofed in the mother's womb: for they likewife retain together in their inteitines until the time of birth all the excrements which are formed in the fpace of nine months. I have alfo obferved the fame thing exactly in the Calves from the Cow's belly : nay, what is very fingular is, I have found in thefe excrements hairs in every refpect like thofe that
cover the furface of the body, and particularly thofe about their mouth. From this obfervation I really think it is mof clearly proved that animals often lick their body in the uterus with their tongue, and thus fwallow their own hairs with their food; and that thofe hairs are afterwards mixed with excrements as I have found them. Therefore it is moft ftrongly demonAtrated, that the humours wherein the animals fwim in the uterus, and which are likewife found in their ftomachs, ferve them as food. Their excrements are whitifh in the upper part of the inteftines, and yellow a little lower; a little deeper they are of a yellow green and blue; and at length, in the end, they are of a brown and blackifh colour. The excrements that are found in the Worms of Hornets are in all refpects of the fame form, figure, and fubftance: hence it is clearly evident, that all the Worms of Hornets feed upon one kind of food, and this is principally a fmall fpecies of Cantharides. In thefe Flies the little parts over the eyes, the legs, and the cafes which cover the wings, are obferved to glitter like gold, and thefe are found in their freces. The Hornets therefore bring up their young like birds of prey.

After we have obferved the manner wherein the external and internal parts are changed by a flow accretion in the Coffus, it gives us pleafure to obferve that fuch of its parts as are not to be changed at all, and others which have lately increafed by degrees under the skin, are gently diftended by the force of the blood and impelled humours : hence it happens, that the body in general contracting itfelf more and more, and all the blood being propelled towards the fore parts, the skull at length opens very artificially into three parts; which likewife happens, as we have before obferved, in the change of the skin, which the Worm undergoes. The skin then likewife opening in the middle of the back, is,. by means of an undulating motion, which is obferved along the annular incifions of the back and the reft of the body, carried down infenfibly by degrees: and hence the eyes and horns, the lip, and the Charp-pointed antennæ, caft their exuviz or skins at one and the fame time, and are extended, and inflated with blood, humours, and air: they thus acquire by degrees the fituation which they before had in the Coffus. Whilft all thefe things are doing, a watery and thin moifture is diffufed between the new and old feparating skin, which renders the parting of the two the eafier.

The firft part of the Nymph that appears after this change of the skin, is the horn on the nofe, fig. vi. vir. and viif. a, which before lay under the skull in the Colfus fate. Under this are afterwards feen fome very low prominences on the bafis of the horn b. At each fide of it alfo two fpherical tubercles appear $c c$, iffuing from the teeth of the Coffius, which are much fhorter here in the Nymph
ts alfo in the future Beetle, than they were in the Coffus or Worm. Near thefe tubercles on each fide are likewife feen two other pair of fphericle fimilar tubercles $e e$, which frung from the horns $f f$ of the Coffus, and which are to be afterwards changed into the horns of the Beetle. Two fuch little parts alfo, but more oval in their chape, are obferved $\dot{g} g$ to be placed on each of the inward parts of the fides of the former tubercles. Thefe little parts have their origin from the jointed $b b$ briftly hairs of the Coffus; and are likewife, though in another form, found afterwards in the Beetle. Three beautiful fhort tubercles prefent themfelves alfo in the middle i, which upon changing the skin have likewife arifen from thofe particles, which may be feen in the head of the Worm under the letter k. A little under thefe there appears alfo a larger fphericle divifion l, which is horny or bony in the future Beetle, and forms the neck which is befet on each fide with hairs. Above this, near the horn, is feen on each fide the breaft bone m. A little lower on the breaft is feen the firft pair of legs $1, I$, with their joints: and under thefe another pair 2, 2. Then follow the $n n$ fheaths or cafes of the wings on each fide, under which a part of the covered wings 00 is likewife prominent. Thefe wings appear at this time beautifully expanded by the force of the blood and air that are by degrees impelled inwardly, though they were before complicated, and appeared as if grown together under the skin of the Coffus. Below thefe is placed the laft pair of legs 3,3 , which are in fome meafure covered with the wings and their cafes. All thefe legs and their joints are ftretched out ftiff, and diftended with the fluids of the body and air, and thus remain without any motion fixed in the fame pofture, until the Nymph is changed into a Beetle. Finally, under the laft pair of legs may be feen the rings of the abdomen $p p$, divefted of their skin; and the extremity of the fundament q, out of which the inteftinum rectum has caft its exuvia or skin, as the gullet did with the upper parts. Thefe little parts are like two fmall hields. As to the eyes they are very confpicuous in the Nymph, but they cannot be reprefented by the fame figure, becaufe they are fituated a little deeper behind the horns. The whole motion of the external parts of the Worm is now totally loft, in the fane manner as it was before when the Worm was in its egg: hence the creature is twice as it were in a uterus, and twice in the flate of a fortus. Some fmall motion remains in the tail or fundament of the Nymph, becaufe the extremity of the abdomen undergoes the leaft change of all. Thus the Nymph, by moving the hinder rings of its body or tail,
can move itfelf and change its fituation in its little cell: this is likewife performed by the Chryfalis of the Silk-worm when it lies in its web.

In this moft wonderful change of the skin, and tranfpofition of limbs and parts of this infect, nothing demands greater attention, thars what we may obferve about the points of refpiration: for though each of thofe nine points which are fituated on each fide of the body cafts a skin, yet this can be diftinetly affirmed only of the five foremoft ones, for the four loweft or laft points on each fide change their skin as the reft, but they lofe all their priftine form at the fame time; three of them on each fide become fhorter, and the fourth is entirely clofed up. At the very fame time that the Worm, under this prodigious change of its skin, is transformed into a Nymph, a vaft number of diftinet tubules or pipes is likewife thrown out from all thofe refpiratory points, and thefe tubes, being each obliged to pafs through that narrow orifice, appear like fo many fmall and fimple filaments, though, in reality, each of thefe eighteen little fibres, as they feem, is compofed of many pulmonary pipes, that are laid clofe together.
In order to underftand thefe things the better, I fhall add a figure to the defcription of them; and in Tab. XXVIII. fig. ix. a Nymph of the Coffus laid on its belly, and fhall exhibit all the annular divifions and points of refpiration in its back. Thefe points fhall be afterwards feverally reprefented in their fituation, as they appear after the Nymph is changed into a Beetle. The firft thing then feen here is the horn of the nofe 1 , fixed on the head, which conftitutes as it were the firft ring of the creature: then follows the fecond annular incifion 2 , wherein the firft point of refpiration is placed, fo fituated laterally under the firtt pair of legs in the breaft, that it does not appear but when the Nymph is killed. The third and fourth rings, 3,4 , are feen both without points of refpiration, becaufe the wings and cafes thereof are placed there *. Befides thefe, two annular incifions in the Nymph are concreted into one ring, and then form the lower part of the thorax or back. In the mean time, when thefe parts are cafting their 1kin, on each fide between the rings of the thorax, two little ropes as it were of pulmonary tubes are caft out of the body; as has been before reprefented in the figure, where we have defcribed the change of the skin which the Worm itfelf undergoes. But thefe apertures are afterwards clofed up in the Nymph, until having caft its skin, it at length becomes a perfect Beetle, wherein thefe orifices are at length totally abolifhed. The fifth ring 5 , contains the fecond point of refpiration, which

[^31]cannot be feen difinctly, being fituated partly under the wings of the Nymph. But a particular, very worthy of notice here, is, that this other point of refpiration is in the Nymph removed to a greater diftance from the firft, than it had been at firft in the Coffus itfelf, and as I have figured it in that ftate; fo that by this means it is confiderably drawn back towards the hinder parts. The fixth ring 6, next to the former, contains the third point of refpiration, which is very diftinctly feen externally in the Nymph, at the extremity of the abdomen. In like manner the feventh ring 7 , fhews the fourth point of refpiration, and the eighth 8 , fhews the fifth. But the fixth and feventh points of refpiration, confpicuous in the ninth and tenth 9,10 , rings are again clofer. The eleventh, twelfth and thirteenth rings II, I2, I3, conftitute as it were one comnected joint together; and the eighth and ninth points of refpiration, which are fituated at or near thefe rings in the Worm, likewife become not only clofer and more compact, but the laft of them is in this fate almoft invifible. As to the fourteenth ring 14, it is not vifible when the Nymph is in this manner placed on its belly, but on the other fide it is feen beautifully, refembling two oblong oval little fhields. O wonderful changes! whereby the creature comes into the world as it were new formed, and yet is moft certainly the fame that it was in the Worm.

The Worm being in this manner difengaged from its skin, transformed by accretion, and having its limbs and parts changed into the ftate of a Nymph, clofely twifts and compreffes the caft skin by the motion of its fundament, and the fkin is afterwards thrown towards the hinder parts under the belly. The Nymph is at that time very white, only that on the fifth, fixth, eighth, ninth and tenth rings of the back, there appear fome delicate or horny hardifh corpufcles, which approach to a bright red colour; in the little fhields alfo of the laft ring, and here and there in its body and legs the like fubftances are at this time alfo feen. The Worm or rather the Nymph is at this time very delicate, tender and flexible, and as it becomes remarkably fhorter, on the other hand it is expanded confiderably in breadth and thicknefs; for the blood and air have very confpicuoufly inflated the wings and the reft of the parts, in the part towards the head, and diftended them fo that they are become rigid. If we view this Nymph nearer, we obferve that the tranfparent productions of the windpipe appear not only in the legs, but in the wings themfelves, and in their Gheaths and cafes; nay, they are feen alfo in the fubftance of the horny or bony part that ftrengthens the thorax.

About this time the Worm or Nymph refembles a tender young infant very lately brought into the world, and which is rolled up in its firft fwaddling cloaths, and cannot yet bear much handling. We may more properly indeed compare this Nymph to an Embryo, which,
being lately conceived in the uterns, may, by force of the injuries offered it by the mother's imagination, be injured in various manners : for the impreffions which the Nymph receives at this tender age, are not abolifhed even when it is grown up or is become a Beetle. Hence, if the horn, legs, or other parts are bent in the Nymph, or difturbed in any manner, they always afterwards remain thus deformed in the Beetle; and the Beetle carries with it through life the veftiges or remains of all the injuries inflicted on this feeble and tender little creature; this is agreeable to the fentiment of the poet :

Quo femel eft imbuta recens, fervabit odorem tefta diu.
That is,
"A new veffel will long preferve the fcent of the firft liquor poured into it."

This change therefore merits the greateft admiration and the moft attentive regard, by means of which the creature for fome days exhibits the future parts of the Beetle fo finely and beautifully difpofed, and formed in fuch a manner, as that they will one day ferve the crea ture in a more perfect state of life, to walk, fly, and take its nourihment. I therefore really think, that the Coffus of this fpecies comftituted in the form of a Nymph, affords an appearance fo fingular, that among all the ftrange and aftonifhing appearances of infects, it cannot be equalled. I fhould be very glad to fee hereafter the Nymph of the ftag-horned Beetle, for I fhould think it would make a much more fplendid figure when it prepares itfelf like a bride, in all its decorations, for a new and more noble fate of life.

The Chryfalis of the fwift Butterfly defcribed by J. Banhinus in the year 1590, among the Mouches ou Papillons non vulgaires, or the uncommon Flies or Butterflies, is very rare and admirable. Aldrovandus, Lib. II. Cap. de Chryf. Tab. VII. fig. I. exhibits a kind of figure thereof. Mouffet alfo, pag. 105, defcribes the leaft fpecies of the faid Butterfies, and properly calls it the fwifteft of all, for indeed the fwallows do not fly with greater velocity than thefe little creatures.

One thing very fingular in thefe Butterflies is, that they fly and eat at the fame time, though this alfo is the cafe with fwallows, and among infects with the Libella or Dragon-Fly. On the other hand fome Flies, after they have feized on their prey, reft in fome convenient place to devour it, as in particular the WolfFly. But as Swallows eat and fly at the fame time, fo thefe, at other times nimble Butterflies, flutter when they feed in fo flow, regular, and orderly a manner about the flowers where the food proper for them is depofited, that you would imagine they had loft all motion, and hung fufpended in the air ; but they are hard at work all the time, for they then thruft out a very flender probofcis or trunk about two inches long, with two perforations in it, through which
which they fuck the honey of the flower; and this being exhaufted, they fo quickly draw back this furprifing organ, and fo artfully coil it up between the little forked parts which are placed under their eyes, that it entirely difappears, fo that to find it out, one mult be well accultomed to the ftudy of thefe creatures. This infect being fcarce, I have given the figures of it, as it appears in the refpective ftages of its exiftence as Worm, Tab. XXIX. fig. I. Chryfalis, fig. iI. and Butterfly, fig. inI.

As the manner of feeding of this Butterfly is very fingular, I fhall add another obfervation of the fame kind, in regard to the manner of feeding of a certain aquatic infect that always lives under water. This infect is, properly fpeaking, no other than a peculiar kind of water Worm, confifting of thirteen rings, the head and tail included. The head is very large in proportion to the creature's fize. It has fix hairy legs, fig. iv. a a, befides two fpots or fmall parts covered with hair likewife b, which terminate the tail, and are ufed by the creature when it fwims as a rudder to govern its motions. The infect by means of this tail, can alfo at pleafure fufpend itfelf on or near the furface of the water; when it erects its tail above the furface, the water flows from it on every fide, and thus is this fufpenfion formed. This infect has befides in its head two very remarkable teeth, or more properly jaws $c c$, which are large, fharp, crooked, and very ftrong, and it is perhaps able to contain the mufcles fuch tceth or jaws require, that nature has made the head fo large. This Worm has fix eyes $d d$ on each fide of the head. I have here reprefented eight of them. There are befides fix articulated briftles belonging to it, of whichfour ecee lie underneath and between the teeth, and the two others under the head $f f$; but fome may imagine that thefe laft fhould be called horns.

This is a cruftaceous creature like a Shrimp. On each fide of the body are fix holes for refpiration g in the rings of the abdomen, with two more for the fame purpofe under the body near the fore legs. This Worm is reprefented in the moft curious figures of Hoefnagel, that were engraved after his minute and moft accurate defigns, part firft, page I. Mouffet alfo defcribes it in the 37 th chapter of his theatre of infects, and gives in fome fort a drawing of it. This infect lives entirely on other little creatures that inhabit the fame element, in particular on the Scrophula and fmall frefh water fhell fifh. When about to eat, he feizes with the two teeth we have mentioned the little creatures that come in his way, and pierces their body with its harp and crooked points, which being perforated from the point to the root, he in a furprifing manner fucks through them into his mouth the blood of the unfortunate captive. This may be eafily feen, efpecially when the blood of his prey is of a red colour, as the teeth are tranfparent. I threw to this Worm a bit of a Coffus, at the fame time carefully obferving with a microfeope how he devoured
it: together with the blood, there afcended fome air in fmall bubbles through the cavities in his teeth. The fight of this creature in the water is very acute, for which purpofe nature has fupplied it, as I already mentioned, with twelve black eyes, which are placed at fome diftance from one another, but thefe eyes, like the eyes of other infects, have no motion, and therefore are placed in a different manner from thofe of Crabs, Crawfin and Shrimps, which are moveable. When therefore this Worm perceives any thing that it likes, it immediately darts at the object through the water, feizes it, and pierces it with its fharp pointed teeth. In this manner we may procure ourfelves a very entertaining and furprifing fight, by throwing to it a fmall Earthworm; for let this laft move, twine, and otherwife beftir itfelf ever fo much, the other keeps his hold, and very calmly fucks the blood of his prifoner. The inteftines of this Worm differ extremely from thofe of land infects; its windpipe has fewer ramifications, though thefe at the fame are more large and fpacious. They are likewife more membranaceous, of a lefs firm texture, and not of quite fo deep a colour. The heart is fituated near the back, and the final marrow in the lower part of the body. This laft confifts of globules as in the Silkworm, but thefe lie fo clofe to each other that they form a connected body of marrow, more like that of the Coffus than a Silkworm. In the part where the nerves unite with thefe globules, the fpinal marrow itfelf looks like a bracelet compofed of coral beads ftrung upon two threads. The remaining parts are the ftomach and the inteltines, which are partly of a white and partly of a bluifh gray colour, the fame with their contents, from which indeed they receive it. The Vafa Crocea, or yellow veffels, as they are ufually called from their colour, are in this infect purple, or otherwife, they are thick fet with purple fpots, but they look whitifh at bottom, which affords a very agreeable fight.

On examining with a microfcope the teeth of this Worm, they appear very fharp pointed, Tab. XXIX. fig. v. a, and a little bent towards the point. There was likewife a kind of future b in that part where I cut out one of them, formed by a fharp protuberance in the middle of the upper fegment, with a fuitable cavity in the middle of the lower to receive it, the edges about both being fmooth and evenc. The aperture by which this infect fucks the blood of its prey, lies on the furface of the tooth near the point d, and refembles an oblong flit, with black edges covered with very fine hairs. It is extremely probable that fome peculiar fpecies of the Water Beetle proceeds from this Worm, when having remained in the water a fufficient time, it betakes itfelf to the land to undergo its mutation; but this is mere conjecture. The horfe Fly has another method of feeding itfelf, being furnifhed, as I have elfewhere remarked, with a fting as well as a trunk or probofcis. As to
the Gad Fly and its Worm, I hall hereafter treat of it by itfelf, under the fourth order or clafs to which it belongs; but I cannot help remarking in this place, that the Worm from which it comes breathes by itsanus, and carries its legs in its mouth near the jaws; thus ferving to prove that the Almighty can form veffels of
every kind like the potter, fome for more, and others for lefs honourable purpofes, but all to his own glory; fo that there is not a creature, however contemptible in appearance, which does not clearly point out the exiftence, and loudly fing forth and extol the adorable perfections of a fupreme Being.

C H A P. V.

In what namer the Nymph is filled with a fuperfluous moifure, webich afterwaards evaporates. The anatomy of the Nyynph. How, on caffing off its Jim, it becomes a Beetle, ruith fome woonderfful dijcoveries in natural bijfory.

HAVING fhewn in the foregoing chapter what the Nymph is, and by what means the Worm puts on this elegant form, to prepare itfelf as a bride for its enfuing nuptials, and for the act of generation; I fhall now treat of thofe changes, by means of which the Nymph attains this prefent ftate, and at the fame time give a diffection of fome of its internal parts; for thus the reader will more eafily underftand how this Nymph grows at laft to a Beetle, and being arrived, as fuch, to a ftate of maturity and perfection, propagates its fpecies.

The firft thing to be confidered on this occafion, is that peculiar motion of the blood and humours, which expand the parts of the Nymph, and make it weigh at firf, a little after its change, a great deal more than it does even afterwards in the Beetle ftate. This fingularity is likewife remarkable in the Nymphs of Bees and Hornets. The Nymph of the Hornet in particular weighs ten times as much as the Hornet itfelf. This makes me confider the Nymph under thefe circumftances as a dropfical perfon, who, by having his limbs fwelled with fuperabundant humours, lofes the power of thofe mufcles by which they were to be put in motion, and thus remains inactive till the fuperfluous moifture is fome way or another diffipated. Nor is it the limbs alone that are thus fwelled in the Nymph; all the mufcles themfelves partake of the change, and even the very bone into which they are inferted. This, which was before of a horny fubftance, lofes its folidity, and by becoming membranaceous and foft, and in a manner fluid like water, is no longer capable of being acted upon by them, and continues in this condition, till the fuperfluous humours are evaporated in a certain fpace of time, which is abfolutely neceflary for that purpofe. We may perceive by a continued obfervation, that the external skin of the Nymph is at firft extremely delicate, that it hardens, as it dries, by degrees, and that its colour grows more and more yellow, till it changes at length to a deep red, after that to a deep brown, and at laft to a light red. But all thefe appearances are owing to the growth
of the internal parts, in order to form the future Beetles, as they fhew themfelves through a tranfparent skin that covers them.

When this Nymph has paffed fome days in fweating off the fuperfluous moifture, with which it is loaded, a little articulated whitifh line appears like a flender thread through the tranfparent skin, with which the legs are covered, which is no other than the firft rudiment of that horny or bony fubftance, which begins to harden, and is in time to conftitute the legs of the creature. On ftripping off this skin, and attentively examining the folid or horny part it contains, the latter appears to float in a limpid fluid, which furrounds it on every fide, and is at this time fo very tender that it is eafily injured, and will fall off on the nlighteft motion. But what feems chiefly to claim our wonder is, that the Worm which grows from the nofe of the male Beetle of this fpecies, fhould be fo very hard at its perfect growth, as, according to Mouffet, page I53, to bear being tharpened on a grinding-ftone; whereas the fame organ, while the infect is in a Nymph ftate, is altogether foft, and more like a fluid than a folid fubftance.

On diffecting fome of thefe Nymphs after they had been in that fate a little time, I found the horn of the nofe filled with a kind of jelly, and this matter broke out at the wound made to examine it, every time the creature breathed, in the fame manner as the blood of a man's body does when the fide of the thorax is wounded. The eyes were now fomewhat firmer, but neverthelefs they were ftill loaded with fuperfluous humours. I found between the folds of the wings and the cafes that covered them, fome infects of the Loufe kind, which I have likewife often obferved ficking to the body of the Coffus and to the Beetle itfelf; for there is perhaps no fpecies of animals which is not troubled with this kind of vermin, though thofe of one animal differ in thape from thofe of another. Such part of the wings as had no cafe to cover them, had, to make up for that deficiency, a much thicker skin to defend them, than the parts which were thus fheathed. On pulling the legs from
the thorax, the skin came off from thofe of the future Beetle in the form of a ftiff fheath, juft as a boot comes off a man's leg. It is alfo very remarkable, that the extremities of the pulmonary tubes were inferted into this external skin of the infect. But I hall hereafter fpeak of this matter more at large. The inteftines which lay in the abdomen were formed in quite a different manner from thofe of the Worm, of which I have before given a figure, and in particular they had more finus's. The ftomach itfeif ended in a kind of very fmall gut, and indeed all thefe alterations feemed requifite to prepare the parts to the great change in the body itfelf, which was grown at this time confiderably fhorter than before. But as the ftomach was greatly abridged, and therefore its mufcular parts had without doubt fuffered confiderable changes, both that and the inteftines were now foftened into a kind of flimy humour to facilitate fo furprifing a change. The pulmonary veffels retained their former fituation and figure. The whole abdomen was filled with a kind of calcarious fubftance refembling ftarch, and of fo bright a white as to dazzle the eyes of all who faw it. On a nearer examination of this fubftance, I found it to be nothing more than a collection of thofe little bags in which the fat is depofited, and which little by little lofe their form and office, and are at laft fo entirely wafted away, together with their contents, that not the leaft veftige of either is to be found in the fucceeding Beetle. About this time fome fpots are obfervable in this moft extraordinary fubitance, of a brighter white than the reft of it, and many of the pulmonary tubes feem to take their direction towards thefe particular parts. This induces me to think they may be the rudiments of the pneumatic bladders with which the Beetle is furnifhed in a valt abundance, uniefs we are rather to confider fuch pneumatic bladders as confiting of the pulmonary tubes dilated occafionally to anfwer that purpofe. For my own part I cannot take upon me to decide this point. I obferved the fame things in the Nymphs of Bees, after I had finifhed the hiftory of thofe infects: but be this as it will, thefe fpots are fo brittle and tender in the Nymph that they are deftroyed by the flighteft touch: by their dazzling whitenefs alfo they hinder us from diftinguifhing properly the adjacent parts: for this reafon, to proceed well in our examination, we munt be conftantly wafhing with fair water the inteftines of the infect. Were it not for this obftacle, we might doubtlefs here diftinguifh many more things worth of notice. In the thorax, fome parts were a little more folid. The mufcular fibres of the legs and wings were fomewhat more firm or tough than the white of an egg juft beginning to harden. All the other parts were as foft and tender as poffible. On feparating the external skin of the body from the internal, the fpace between them was found to contain a great quantity of moifture, but in many places this feparation was abfolutely impolible.

As the feveral parts in the Nymph grow by degrees ftronger and ftronger, the infect may be feen to make a proportionable ufe of them. We fee the legs move within the skin that covers them, and even the claws that terminate the legs begin to brandifh themfelves up and down. The fame is vifible, and in the fame manner, in the Aureliæ of Silkworms during the laft days before their tranfmutation: if during this period you Atrip the legs of their external skin, you will find very little moifture under it. Even the horny or bony fubftance which conftitutes the joints of the legs appears hard, perfectly formed, and covered with hair.
I cannot fay how long the fcene of this infect's mutation continues, having forgot to take notice of it, though at the fame time I was witnefs to the change of above fifty of there Nymphs into Beetles. Sometimes thefe infects remain in a Nymph fate during the whole winter, efpecially when the Worms throw off their skins towards autumn, and a fudden cold fucceeding checks their further operations. Hence it happens that they remain without food for fome months, nor could they take it to any purpofe, their parts being too foft and tender to allow them to make ufe of it.

When the proper feafon of the Nymph's final change approaches, all its mufcular parts are oblerved to grow ftronger and ftronger, to be the better able to Chake off their laft integuments, and this is performed in the fame manner exactly as in the already defcribed change of the Worm to a Nymph; fo that in this laft fkin, which is very delicate, the traces of the pulmonary tubes that have been pulled off and turned out become again vifible; nor is their number limited to eighteen, there appear abfolutely twenty of them, as has been already fufficiently obferved.

It is now proper to fee how all the parts of the infect, but efpecially the wings and their cafes, are at this time fivelled and extended by a flow of air, blood and humours, driven into them through the arteries and pulmonary tubes. About this time the wings are as foft and flexible as a piece of wet paper, fo that blood iffues from them at the leaft wound. But when they have acquired their due hardnefs, which in the fheath or cafes is very confiderable, the veffels that before yielded blood fo freely, are fo firmly clofed, that neither they nor the wings can by any cutting or tearing be brought to yield the leaft fluid. This induces me to advance as a thing not to be doubted, that whereas there wings and their cafes are fo full of veffels and pulmonary tubes, they ought to be confidered as confifting entirely of fuch veffels and tubes. It is alfo probable, for the fame reafon, that the membranes and skin of the other creatures are no more than a complication of veffels, as nerves, arteries, veins, lymphatic ducts and the like, for folong as the embryo's of the human fpecies and of quadrupedes remain in the womb, their skin appears compofed of nothing elfe. The fame may be faid even of the bones themfelves;

146
 The BOOK of NATUR•E; or,

and this obfervation alone would be fufficient to recommend to our attention the hiftory of the infect now under confideration. It would take too much compafs in this place to defcribe the furprifing alterations which happen in the membranaceous wings of butterflies, and how evidently nature manifefts herfelf, and exhibits her wonderful powers in thefe minute creatures: certainly the great and wife fovereign of the univerfe made every thing for our ufe, and to his own glory. All his creatures, the leaft as well as the greateft, furnifh us with proofs of his gracious intentions, his fupendous majefty, and the immenfity of his power.

We therefore, on obferving the mutations and tranfpofitions of the growing parts of man and other animals, may well cry out with the royal prophet: " My fubftance was not " hid from thee, when I was made in fecret " and curioufly wrought in the loweft parts " of the earth. Thine cyes did fee my fub-
"flance, yet being unperfect; and in thy
" book all my members were written, which
" in continuance were fafhioned, when as yet
" there was none of them. How precious
" alfo are thy thoughts unto me, O God!
" how great is the fum of them !"
Hence we may juftly declare, that infects, even under this miferable fate of mortal life, acquire as it were a heavenly exiftence; for
thofe which in the former part of their life inhabited the earth, lived in mud, and under thorns and briers, and fed on coarfe provifions, in their more perfect ftate, raife themfelves into the purer air, and flying towards the skies, maintain themfelves with honey and oozing liquors of flowers: fome of them can even abiftain from food during many months. Are not all thefe conditions much better than thofe to which they were fubject under the troubles and anxieties of a former more vile earthly life? but I hall illuftrate there fubjects more fully, when I have leifure, in order thence to demonftrate the glorious refurrection of the dead, by the moft evident and palpable proofs drawn from nature; for I can produce fuch manifeft examples and fuch powerful arguments for the purification and fucceeding glorification of bodies, from the hiftory of infects, that I do not doubt but fuch unheard-of miracles will ftrike all mankind with the higheft amazement. Natural truths are perfectly convincing and wholly divine ; fince what is true proceeds from God, who is truth itfelf. And what is more true, than that the books of nature are thofe vifible things, by the affirtance of which, as by facred fteps, we afcend by various advances, to divine and eternal truths? for it is God himfelf who is the author of Nature.

$\begin{array}{lllll}\mathrm{C} & \mathrm{H} & \mathrm{A} & \text { P. } & \text { VI. }\end{array}$

The difference between the male and female Rbinoceros Beetle, after the N ymph cafts its finn, and is changed into eitber of them. Of the points of refpiration, the eyes, the brain, the optic nerves, the pulmonary tubes and pneumatick bladders. Of the heart, and of the genital organs of the male and fernale, weith a moral conchufon.

THE Nymph of this curious Beetle being difengaged from its skin, in the manner explained in the preceeding chapter, affumes a quite different form, in which it is dignified with the name of the Beetle, whofe internal parts, with the difference between the male and female, I am now about to defcribe. Before I begin this explanation, I muft obferve that the Nymphs, which have their horn prominent in the fore part, always become male Beetles in this fpecies; but fuch as have no horn always females: and there are very certain external figns for diftinguilhing the fex of thefe infects. Befides, the males, which have fmaller bodies than the females, lave alfo two larger and more beautiful horns *, whofe tops have knobs thereon made like combs; and,
when the creature is flying, they are expanded in the manner of the leaves of an open book: this is a very wonderful fight in fome of the Beetle kind. But as fome remarkable things occur, which are common to both male and female, I fhall firt defribe them, and afterwards proceed to the peculiar points which mark the difference of fex.

The parts common to both are, firft, the points of refpiration fituated outwardly; fecondly, the eyes and the brain; thirdly, the pulmonary tubes and pneumatic bladders; and laftly, the heart. The things peculiar to each are the horn and genital parts in the male, and the ovary in the female. I fhall proceed to defcribe thefe in order and with brevity: as to the particular defcription of the other

[^32]external and internal parts, the difpolition and manners, the ufe they make of their wings, and their food, and the length and hortnefs of their lives, as alfo how far they are hurtful, and how far innocent, with other like refearches; thefe I fhall at prefent pafs untouched, partly becaufe I have not yet fufficiently fearched into them, and partly that I ain fatigued beyond my ftrength, with inveftigating, delineating, and defcribing thofe amazing things. I muft have a long face of time to perfect all thefe inquiries; nor can any perfon execute fuch things perfectly, but he who can fpend his whole life upon them.

Of thofe things, which are outwardly confpicuous in this Beetle, the points of refpiration deferve our greateft attention; thefe I fhall now defcribe and reprefent by a figure, as they are naturally difpofed on one fide of the perfect infect; for they have the fame fituation and ftructure alfo as the other. They vary confiderably from thofe which are feen in the Worm, for here they are difpofed in a different order near each other, and are placed in a fomewhat oblique and declining fituation; by this means one of them occupies an higher place in the body than another; they are likewife more oval, not round, and are much deeper, or more hollow than before, and appear as it were like little trenches and furrows in the Beetle much more than in the Coffus: the cavities alfo of the canals which they, diftribute internally in the body, are much wider and more open than they are obferved in the Worm ; for as the Worms live in duft and under the earth, and creep up and down there, it was neceffary that their pulmonary tubes fhould have orifices more clofe and even, left the duft fhould flip into them.

The firft of thefe points is placed inwardly, Tab. XXIX. fig. vI. a, in the cavity of the fecond ring of the body, or in the os pectoris, or breaft bone; nor is it vifible there till after that bony fubftance has been feparated from the body. The fecond b is fomewhat further diftant from the firft, and being turned more toward the lower parts, is directed thence obliquely towards the other. This point, which is confpicuous immediately under the wings, is placed on the fide of the fifth ring of the body. The third c again is fituated fomewhat higher, along the courfe of the curvature of the abdomen, and this lying upon the fixth ring of the body, is not far diftant from the fecond. The fourth d again is placed fomewhat lower and nearer the former, and is fituated upon the feventh ring of the body. The fifthe ftands fomewhat lower and is placed on the eighth ring. Thefe, five points of refpiration, whereof the Beetle has as many on the other fide, and which makes ten in all, are indeed the principal places through which it draws its breath; for the other eight, which were vifible in the Coffus, are in this perfect ftate of the creature partly preffed together, and fome totally clofed up; becaufe the body
is become fo much fhorter than it was in the Worm. All thefe five points are covered in each fide of the body with the cafes or fheaths of the wings, except when the creature is flying; for at that time the fheaths of the wings are lifted up, and remain elevated without motion; hence there points are likewife at that time difcovered: and this feems continued that the Beetle might the more freely draw its breath on this occafion, fill its pneumatic bladders with air, and thus make itfelf lighter for flying.

Morcover on the ninth ring of the body there is obferved a fixth point f, on the tenth, a feventh g; and on the eleventh, an eighth b; all which are very confiderably contracted and depreffed, and run along each fide of the body. But as the abdomen terminates by converging into a fort of a point, and the twelfth, thirteenth, and fourteenth rings are wonderfully contracted and diminifhed in their diameter, hence the ninth point i of refpiration is totally obliterated in each fide of the body, as I have before with fufficient clearnefs defcribed and figured in the Nymph. But I now only reprelent the natural fituation of there points.

The eyes are alfo extremely remarkable in the perfect Beetle, and they differ very much from thofe in the Worm, as well in bignefs and number as in figure. Each fide of the head has one, which confifts of a congeries of many fmaller globules or little eyes, forming by their union as it were one common net or reticulated body. This is properly made of the tunica cornea, for the eyes of all the infects that I know, have the exterior tunica or coat conftructed or formed of a horny or bony matter, and divided like a honey comb into hexagonal parts, all which are on the upper. part Spherical or projected like little globes: But thefe globular divifions are not in this Beetle fo remarkably protuberant as in Flies and Bees; they are much fmoother, more depreffed, and fimaller, and they have no hairs. Thefe horny divifions penetrate from the outmoft furface to the inmoft, and feem to be formed within by a kind of net of hexagonal pulmonary tubes running through each other: Within this net the uvea tunica, or a part analagous to it, is feen on the infide under the cornea. This is of a blackihh colour, and is regularly received into the inward cavity or hollows we have named in the cornea, fo that by this means it is to be found only in the uppermoft furface, and not in the bottom of the eye. In the eyes of men and quadrupedes the uvea finks to the bottom, and is alfo perforated in the anterior part; but neither of there is the cafe in the eye of the Beetle, and for this reafon no rays of light can be collected in this cafe inwardly in the eye; but they only pafs through the fpherical divifions of the cornea, and are then immediately ftopped upon the uvea. I would not prefume to affirm that the rays are by any means col-
lected

4.48

The BOOK of
lected, when they pafs through the cornea, though this is not improbable. If one removes the uvea, by means of water and a fine pencil, from out of the inward cavity of the cornea; this latter becomes then ail bright and clearly tranfparent.

After the uvea follows a matter or fubftance like glue; it is fomewhat vifcid, but thin, and divides itfelf into very fine filaments, Tab. XXIX. fig. vir. a : thefe may be taken for inverted pyramidal fibres. When the cornea tunica is removed from thefe filaments, blackifh fots are feen on the eye, which are the remains of the uvea ftill flicking there; for the pyramidal fibres are by means of the uvea connected with or joined to the fpherical apertures of the cornea. All thefe fibres terminate in a thick, fibrous, and inexpreffibly white tunic or coat, Tab. XXIX. fig. vir. b; the fubfarce of this, however, is of a darker colour d, where it is united to the optic nerve which is here feparated c. Many pulmonary tubes likewife run up and down here, which firongly connect that coat with the optic nerve, which it receives: thefe air-pipes pafs alfo through that white fibrous coat we have defcribed, and are conveyed e along the inverted pyramidal fibres, reaching to the cornea itfelf in form of very delicate ramifications; and in my opinion form the hexagonal divifions of the eye. Here at length may be conceived, in what manner the eye, whilft the exuvia or skin is cafting, acquires its extenfion, form, and roundnets by the help of the internally, impelled air and blood. The roots of thefe pulmonary tubes are found to be fituated under the optic nerve, where they firft provide for the coat, wherewith that delicate nerve is invefted; and thus, with a confiderable ramification adhering underneath, is alfo furrounded with or accompanied by fuch airtubes.

But we muft here take particular notice that thefe eyes are, in each fide of the head, divided as it were into two parts, fig. vili. $f f$, as I have reprefented in a particular figure, whercin is likewife exhibited g the horn of the head. This divifion is produced by means of two horny or bony prominences of the skull, which extend themfelves from each fide of the eye unto the outmoft furface thereof; hence it happens that the eye is in the fame manner divided in its internal part, fig. vir. b; fince the inward ftructure is analagous to the outward. The optic nerve has no incifion or divifion, but the pyramidal fibres are wanting where this incifion is, becaufe they evidently could be of no ufe there.

In order to difcover thefe things accurately it is firft neceffary to lay the brain bare; for this purpofe nothing more is requifite than to cut off the horn, if it be a male, with a Tharp knife, and then to raife and feparate the cranium or skull from the brain. After this, the brain i comes in view. This, as I have before obferved, when I treated of the final marrow,

N A TURE; or,

confifts of two globes united, and is by this means divided into a right and left part, as is likewife the cafe in men and in quadrupedes. It is indeed very remarkable that the brain is in this Beetle furnifhed with many pulmonary tubes, Tab. XXIX. fig. vir. k, which make a very beautiful appearance in the living animal. Optic nerves are obferved to iffue out of it on each fide, which are much larger in the Beetle than they were before in the Worm. Moreover, a common kind of membrane is obferved there, which invefts both thefe nerves and the brain itfelf, and is fufficiently thick and ftrong: this may be properly called the dura mater. Numerous air-pipes run through this membrane, and interweave it as it were with one another, fo that you would fay this dura matter, when feparated from the brain, is like an admirably beautiful net. The optic nerves are very flender where they iffue from the brain $l l$; but they are confiderably dilated $m m$ a little after, and then again they grow finall $n n$, until at length they are fwollen again where they approach to the inward compages or reticulations of the eye 0 . In that part thefe nerves are enclofed and furrounded by the interior parts of the eye, and when greatly magnified refemble the head of a Dutch failor covered with a fhaggy cap, fuch as fea-faring perfons ufe to wear: I compare to thefe fhaggy hairs, thofe pyramidal fibres which terminate in the convexity of the white fibrous coat.

It may not be improper to obferve here that this Beetle is very fhort fighted, or poreblind. I therefore would have the reader confider the conftruction and difference of the Bee's eye, which fees more acutely in the day time ; for he will find that the optic nerve in the Bee does not come fo very near to the eye, nor is in itfelf fo remarkable and confpicuous as in this Beetle. Others may reafon from thefe facts as they think beft; it is fufficient for me to have propofed the truth. I have not yet examined the eyes of the water Beetles, which I know can fee both in water and air. I have feen the pyramidal fibres of the eyes in Crabs and Lobfters. All water Snails, as well as the human fpecies, have three humours in their eyes, as I have defrribed before at large. On this occafion it may alfo be obferved that their eyes are fometimes multiplied. I proceed now to the pulmonary tubes, which are fimple in the Worm, but are enlarged by the addition of bladders in the Beetle ftate.

Thefe pulmonary tubes which in the Worm refembled the branches of trees without leaves, reprefent here in the. Beetle a tree expanding its verdant and leafy branches: and here the autumn and winter of the miferable life which this Worm leads, is now in the perfect Beetle fate changed into a pleafant and lovely fpring and fummer; with this only difference, that as the leaves of the trees have a plain and fmooth furface, fo thefe bladder in the Beetle
are hollow, fomewhat fwollen, and expanded to an elliptical figure, and are fomewhat fwelled or blown up, Tab. XXIX. fig. ix. a a, by force of the air impelled into them. There is likewife this confiderable difference, that out of the ends of thefe veficles, where they reft upon their hollow pulmonary tubes, other pipes and ramifications 66 again break out laterally, which, after they have been again dilated into veficles, form air branches, veficles and pipes: fo that this divifion and procefs continues, until at length they terminate in very delicate, and as it were invifible pulmonary paffages, which always remain round with open cavities. Hence the ftructure that occurs here may not be improperly compared to the third fpecies of the Sea Wrack of Dodonæus. Nay, it is likewife obferved that many tubes of this kind fometimes iffue $c c$ out of the fame veficle, which I have reprefented magnified above its natural bignefs. Whenever the air gets out of thefe veficles or bladders, they fall and become flat, and by the mutual contact of their fides, form a plain fubftance like the fmooth leaf of a trec; whilft in the mean time the tubes affixed to threm always remain open. The reafon of this is, becaufe thefe little branches rifing from the principal air veffels confift of contorted and firal parts, which, like the rings, made of filver thread or wire, and twifted round a fmall cylinder, always preferve their roundnefs. In the fame manner this filvery web of pulmonary tubes appear to me to be compounded of a horny or bony pellucid matter, white as mother of pearl, and wound into feirals. Thefe tubes are likewife lined on their infide with very delicate membranes, which keep their fpiral form with all its windings in their fituation. But where they are dilated into pneumatic veffels, they are entirely membranaceous, and befides, when viewed with a powerful microfcope, are obferved to be planted or fet there with fmall studs or boffes like little grains. This is indeed a very agreeable object. Moreover, thefe veficles are of a palifh or white colour, and having no polifh are nearly of the afpect of a Spider-web, or any thing of a like kind, covered with durt. The tubes on the other hand, are bright and fplendid, and of a filver or of a pearly colour. See the explamation of thefe in Tab. XXIX. fig. x.

The reafon of this difference between the pulmonary tubes of this creature, while it is in the Worm, and when it arrives at the Beetle ftate, feems to lie in the repeated change of their skin, whereof I have made mention before. The fame thing is in fome meafure obferved in the pulmonary pipes of the Silkworm Butterfly, for in this the tubes of the lungs, becaufe they many times caft thefe internal skins, are every where very much dilated; though they have no diftinct veficles. However the matter be, fince thefe white little parts, which are feen in the fat of the Nymph, ought to come principally into confideration
here, I think this difficulty may be at length folved, if there were fome more diffections made for that purpofe. But I muft referve the doing of this to another time, and fhall, till then, leave this matter uncertain. One may conveniently inflate or blow up the pulmonary tubes of the Beetle before defcribed with a flexible leaden pipe, or the quill of the wing of fome fmall bird: what in Holland we call the Cheefe-bird has feathers admirably fuited for this purpofe; for the quills of this bird's wingsare very perfectly hollowed throughout, efpecially if they be firft ftrengthened by a fmall glafs tube ; and thefe parts thus diftended afford a very beautiful fight.

Any one may fee the pheumatic veffels, together with their tubes, without any difiection, provided he removes or takes the external wings, called the cafes of the wings, from the body, and views them when turned to the light with a microfcope. They even appear through the abdomen of the Beetle, and they may be likewife feen in the horny or bony and membranous part which covers the lower part of the body: but they are prefented in the moft beautiful manner between the plates of the external wings; for there they form innumerable and moft fingular figures. Three confiderable branches of the wind-pipe commonly appear between thefe cafes, that is, two on each fide, and a third forter in the middle; and out of thefe one may afterwards fee the refpiratory veficles beautifully iffuing and placed between them, in the fame manner as I exhibit them here in a minute portion of that part ; wherein two larger branches of the trachea, Tab. XXX. fig. I. $a a$, are reprefented on each fide, and between them the pulmonary pipes iffuing therefrom, together with their veficles $666 b$, out of which other pulmonary pipes arife, which are again dilated into veficles cccc; and thefe are again attenuated into pulmonary pipes, until at length they end in moft minute and invifible filaments. In the inner part of the outer wings there may be alfo obferved fome other fmall points, projecting beyond the furface of the cafe or Meath, out of the middle of which iffue oblong difperfed hairs. Thefe I am confident are placed here to prevent the fubjacent wing from being too much preffer, and at the fame time to give it the means to fold and hide itfelf the more eafily under the fheath. We have before fhewn the ufe of thefe numerous tubes and pulmonary bladders; which is, that by their help the outer wings or cafes of the wings may be expanded. I would likewife have if obferved; that all there veficles or bladders appear fomewhat fmooth, which may probably be owing to the contraction of the fheath or cafes, which happens when the humours are exhaled, and the blood-veffels are clofed or thut up.

The heart is much fhorter in the Rhinoceros Beetle which I am defcribing, than it was in the Worm or Coffus; it is likewife
more knotty; it is in fome places dilated, fig. vir. $a a$, and elfewhere is again contracted $b b$, as I have fhewn in a fmall part of it: but I have not had opportunity to fearch into it fully. I fhall therefore now pafs to thofe parts peculiar to
the male and thofe to the female ; fuch as the horn, the penis, tefticles, and feminal veffels in the male; and the ovary, uterus, and vulva in the female ; and after thefe are explained I fhall conclude this hifory.

The parts peculiar to the male.

THE horns of the male Rhinoceros Beetle is formed of a tolerably folid horny bone, which makes it fo firm, that one may bore or pierce even hard wood with it. It is crooked and bent backwards towards the bone of the thorax. It is of a black red colour, and fo fmooth and polifhed on the furface that it fhines like a looking-glafs: and fo likewife do the covering of the thorax; and the cafes or fheaths of the wings, called alfo the outer wings: thefe are likewife parti-coloured, but approach more to red. The horn is ornamented with feveral fmall holes impreffed thereon. It is firft membranaceous in the Nymph, and as it were full of a fluid; it afterwards becomes more firm, and at length acquires the full hardnefs we have named. And though this horn is flexible at the time of the creature's cafting its skin, yet in the fpace of two or three days after this change, it becomes fo wonderfully hard, that it is not only as firm as a cartilage, but even approaches to the nature of a bone. It is not, diftinctly fpeaking, fituated on the nofe of the creature, but on the head, and may therefore be moft properly called a production of the cranium or skull only, for it fprings out of the fubftance of the skull where it lies over the brain. The male only has fuch an horn by way of ornament. It is on the infide hollow, as that of an Ox appears when feparated from the head, but its cavity is filled with no other matter than the dilated air-bladders; which, together with a multitude of tubes that adhere to them, are enclofed in it, and infinuate themfelves even into its bony fubftance; hence the horn becomes much lighter, fo that it may be carried the eafier by the Beetle when it walks or fies. This infect is therefore properly an Unicorn, for he has only one horn. It will not be improper to mention here, that if a Stag be gelt while young, his horns will never grow. This I have been informed by a curious and creditable gentleman. Wherefore thefe animals become in this refpect like the female of this our Beetle, when their mafculine vigour is taken away.

With regard to the penis of this Beetle we are firft to obferve the nervous and the horny or bony part, Tab. XXX. fig. vini. and Ix. a; this laft is as it were the prepuce, or rather a kind of fheath for the penis: it is erected principally by its affiftance, and is again drawn back into it when the occafion is over. On the foremoft fide of this cafe are fituated two little horny bones refembling claws or hoofs b, which, forming a chink or crevice in the mid-
die between them, are capable of being feparated from each other by the help of proper mufcles, in order to make a way, or afford a paflage for the penis when it is erected. The mufcles for this fervice are fituated in the bony fubftance of the beforementioned fheath, and are likewife articulated therewith. By the help of thefe two little bony claws the male in the time of coition fixes himfelf in the horny part of the female's vulva. Behind this fheath is placed a nervous, foft, and very thick part of the penis c; wherein is placed fuch a horny little bone as I have obferved alfo in the root of the Bee's penis. Next follows the body or root of the penis d, which is nothing more than a finall tube, but it has a confiderable nerve in the place where the vafa deferentia and feminal veficles meet. I have obferved this nerve alfo in the water Beetle, and very confpicuoufly in Bees. The vafa deferentia $e e$ are next feen on each fide, and they contain a very white fpermatic humour: they are indeed fomewhat flender where they are connected with the root of the penis; but they become again dilated towards the middle, and thence become more flender where the principal tefticular veffel is united with them on each fide. The tefticles which difcharge their fperm through thefe vafa deferentia, are of a very fingular ftructure in this Beetle. They confift on each fide of a fimple vas tefticulare, which is about two feet two inches long. On one fide I exhibit here entirely rolled out and unfolded f, whereby it appears at the fame time, that the end of it is fomewhat thicker, and, like the clofe gut or inteftinum cæcum, has no orifice, Tab. XXX. fig. vini. and ix. g. But on the other fide I exhibit this tefticle b in its natural condition; fo that only the extreme end of this vas tefticulare appears removed from the mafs i. The vafa deferentia and vas tefticulare have in this creature innumerable pipes and pulmonary veficles: and by the affiftance of thefe, the convolutions of the tefticular veffels are firmly kept tied together; fo that they cannot be difengaged from each other, unlefs thefe pulmonary tubes are firf removed, which cannot be done without continued labour and great patience. Between the vafa deferentia are feen the feminal veffels $k k$, which contain a fpermatic matter of a duskier colour than that of the tefticles or dilated vafa deferentia. And this feminal matter is doubtlefs generated and fecreted in the veficles themfelves, as is likewife the care in the human fpecies and quadrupedes; in fome of which the veficles may be found diftended
with feveral ounces of fperm. Each of thefe veficles is terminated by a fmall curled filament $l l$, which is indeed divided on each fide into fix fmall tubes; on the tops of which are depofted fo many very beautiful little glands $m \mathrm{~m}$. Thefe being united to thefe tiwelve tubes, by their means fend the feminal matter at the time of coition through the veficles to the penis. I exhibit fome of there glands alfo as they appear n when they are more fwollen in the middle than in the circumference, and are there filled with a pellucid matter, refembling that fubftance in a Hen's egg, which Harvey calls the colliquaneantum. But the fubftance which furrounds the middle part, is filled with matter like the white of an egg when beginning to concrete. Hence it is eafy to conclude, that the dusky fluid which is found in the veficles is generated therein, unlefs one fhould rather incline to think that it is thus changed in the veficles, which fhould have been firft proved. The middle part of thefe glandules is like a globe cut fomewhat fmooth on the top; but if the glandule be inverted 0 , this part appears entirely globular below, and the little branch of the veffel united to the veficles is there fixed in its center. This I exhibit fomewhat larger than the natural fize p, reprefenting in the fame figure the fubftance q
that furrounds it, which contains a feminal matter much refembling the white of an egg. All romnd thefe glandules and feminal veficles are inferted numerous branches of the afpera arteria: one would almoft think that one faw the ciliary ducts in the human eye. The veficles have no communication with the vafa deferentia, which is likewife the cafe in Bulls and many other animals, and even in other infects, and as particularly in Bees. All thefe genital parts are perfectly white, except the veficles, which appear gray on account of the dusky feminal matter they are fwollen with, which is in fome meafure feen through them. Thefe little parts are fituated in the lower region of the belly, and are there found folded or wrapped one with another, in fuch a manner that at the beginning of the diffection one would think they could not be difengaged by any induftry. But patience overcomes all fuch difficulties. I obferve further, that infects differ very much with refpect to their genital parts, as is plain in the organs of Bees, the water Beetle, and others which I have occafionally delineated. Thefe parts are likewife very beautiful in the Hornet, though I have not yet fufficiently examined into their ftructure. I Thall now pafs to the ovary of the female.

The genital parts of the female Rbinoceros-Beetle.

T- HE female, which is diftinguifhed in this fpecies by having no horn, Tab. XXX. fig. $x . a$, on its head, fhews on diffection, its ovary fituated in the loweft region of the abdomen; but it is found to be fituated higher when it is diftended with eggs. In order to exhibit this the more clearly, I reprefent it, together with the head and gullet, and the fomach b, which is very flender, and the inteftines c, together with the orifice d of the latter, which opens below and near the orifice of the ovary, as they are all naturally fixed among one another. The ovary $c e$ conififts of twelve oviducts, fix whereof are fituated on each fide, but thefe afterwards meet in certain common paffages, which immediately afterwards form one fingle trunk, which may be called the uterus or rather the vagina of the creature. This trunk reaches to the extremity of the abdomen, out of which the female difcharges her eggs through the horny ring, which is formed like a crefcent, and is chaggy f in the lower part. In one of thefe common ducts is here exhibited a perfect egg, and above are feen four other rudiments or imperfect eggs, adhering in three particular oviducts: the other three oviducts of this fide are empty or without eggs. On the other fide may be feen three more perfect eggs in the oviducts, which otherwife appear very clofely contracted in thofe parts, where I have delineated no eggs in them. I diffected this female the 17 th of Augurt, at which time
there Beetles have done laying eggs, and even the young Worms are by that time found. But if the extremity of the vagina which is Chaggy, be examined in the inner part, eight horny and bright red little parts, together with the paffages that then lead both to the vagina and to the inteftinum rectum or ftraight gut, are obvioully feen. Under the vagina, not far from its external aperture, is feen an oblong or pear-fhaped bag, Tab. XXX. fig. x. g, which opens by a fmall tube into the vagina. When this bag is cut, a yellowifh matter is always found therein, which, after it is concreted, runs into fmall crumbles, if touched ever fo lightly: its yellow colour is feen through the bag. What ufe this fubftance is of I am yet ignorant. Above this bag are found two other tubes, which have clofe extremities, and unite in one fhort and narrow tube, which is likewife inferted in the vagina. One of thefe little parts b in the Beetle I diffected was pellucid, like a lymphatic veffel, but the other was very white i, nervous and hard. The ufe of thefe little parts likewife is altogether unknown to me. One may alfo fee here, in what manner all thefe parts are furnifhed with numerous pulmonary tubes, out of which iffue many pneumatic veficles or bladders, which likewife emit other tubes $k k, \mathcal{E} c$. Thefe pipes connect the oviducts, ftomach, inteftines, and all the reft of the parts here delineated firmly together, fo that they cannot be difengaged but by repeated efforts. There is
a kind
a kind of entire trunk l of thefe pulmonary pipes, feen near one fide of the common duct of the ovary; and other fmaller branches m are feen about the ftomach and inteftines. Whilft I was engaged in drawing thefe pulmonary tubes, I purpofely omitted to delineate the knotty veffels or vafa varicofa, which are much narrower and clofer in the Beetle than in the Worm, for I could fcarce have avoided confufion, if I had undertaken to exhibit to the life fo many different minute little parts. It is alfo remarkable both in the male and female, that there little infects are now filled as much with pulmonary tubes as their Worms were before with bladders of fat.
Before I conclude this account, I fhall exhibit, becaufe it is pertinent to the fubject in hand, five different exotic Rhinoceros Beetles, each of a peculiar ftructure. The firft has a breaft-bone, fig. ir. a, which extends into an oblong tube, fomewhat crooked about the anterior part, and at length fplit or divided in the extremity. The horn of its nofe has alfo a tharp rifing from the middle of it. In the fecond, Tab. XXX. fig. nir. a, the breaft is divided into two acate points, in the manner of a fork; and the horn, which like a probofcis, projects from the skull, turns itfelf in a peculiar manner, and is elegantly bent back between the teeth of the fork. This Beetle was brought from Japan. The breaft-bone of the third, fig. Iv. b, terminates in a flort horn fomewhat divided; from each fide of which two other fhorter crooked points project out of, or from the breaft-bone: the horn on the nofe in this is likewife very fhort, and terminates in two arched and fharp-pointed branches. This Beetle was brought from Brafil. I only exhibit the thorax or breaft-bone of the fourth, fig. v. c, becaufe it is in the body like the firft, fecond, and fifth. This bone is pretty large at its origin, but it terminates in two fhort, crooked, obtufe points, and is adorned alfo on the lower part with fome ridges projecting beyond the furface. The horn on the nofe in this fpecies is fplit as in the firft fpecies; The breaft-bone of the fifth, fig. vi. d, is divided in various manners, it firf emits a fomewhat prominent obtufe point, afterwards it grows frmall, and then expands again into an eminence fomewhat divided, and at length it terminates in two acute points or ends near the eye, one of which is confiderably larger than the other. The margins or extremities of this
bone have two ornaments like thofe which I mentioned in the fourth fpecies. The other fide of the brealt-bone is divided and extended in like manner as that which I have here figured. The horn that rifes from the nofe is bent back like a fegment of a circle againft the prominence of the breaft-bone ${ }^{*}$, and is obtufe at its extremity. A more accurate explanation of the parts of thefe feveral fipecies will be given at the end of the work.

Now that I am near concluding this fubject, I thall beg my readers to confider, whether the parts of thefe little creatures changed in fo wonderful a manner, and formed with an art not inferior to the conftruction of the human body itfelf, can be formed by the affiftance of heat and moifture, or be produced by chance from putrefaction? Or whether the infinite wifdom of God, and that moft powerful hand, whofe fingers made the heavens, and framed all nature, muft be confidered as the only inftrument of their exiftence? I fhould indeed believe no one would prefume to deny this. I fhall therefore conclude this hiftory, by obferving that the Beetle is only a Nymph difengaged from itsskin, and changed by accretion; as the the Nymph likewife is only a Worm that has changed its skin, and is altered or transformed in the fame manner : hence thefe feveral fates exhibit only one infect under three different appearances, which, after its miferies and mortifications, is advanced by degrees to a glorious and happy refurrection. The Worm leads a miferable life under the earth. The Nymph, deprived of motion, remains long as it were dead; but the Beetle, living at pleafure above and under ground, as alfo in the air, enjoys a fuperior degree of dignity, which however it has attained by afflictions and death, for without paffing through thefe difficulties, it could never have come to that perfection. Here calm and ferene weather fucceeds a ftorm, and death opens the gates to life. Hence the apoftle fpeaks moft juftly in refpect to us: "I think "t that the fufferings of our temporary fate " are not worthy the future glory which fhall " be revealed in us." We therefore, treading in the foot-fteps of our Lord Jefus Chrift, and having fuffered all the miferies and punifhments of this life, expect the reward. My fpirit, in the mean time, raifing itfelf with fervent zeal to God, cries out: "My foul magnifies the "Lord, becaufe he difclofes great things unto " me: he is powerful, and his name is holy.

The end of the wonderful biftory of the Rhinoceros-Beetle.

[^33]
A particular treatije on the Culex or Gnat, wibich likerwife belongs to the firfor metbod of the third order of natural changes called the Nymph.

AS Ants, Bees, and Beetles are generated from a vifible egg, in fuch a manner that an intermediate Worm firft iffues out of this egg; in the fame manner a Worm or Vermicle, out of which the Gnat has its origin, is produced from the egg of a winged parent. As the feveral parts of the Worms out of which the juft mentioned three infects arife and increafe by degrees under the skin, and the creature having caft it, at length appear to our fight, all there incidents have place in the Worm and Nymph of the Gnat. But there is, notwithftanding, in this infect a confiderable difference, which is, that whilf the Nymph of the Ant, Bee or Beetle, is without motion, and cannot change its place, this Nymph of the Gnat, on the contrary, has the power of loco-motion, and fwims in the water ; for this reafon, it appears at firlt fight to approach in' a great degree to the Nymphs of the fecond order.

On a juft examination of the fubject, this difficulty will be found, however, of fmall moment: for the Nymph of the Gnat, in reality, has no more motion in its legs than the other Nymphs of this third order; for it is never obferved that it moves in the leaft its head, breaft, horns, wings or legs ; the contrary whereof is obferved in Nymphs of the fecond order. For this reafon, though the Nymph of the Gnat has fo ftrong a power of moving from place to place, yet that is no obfacle to prevent our referring it properly and juflly to the third, and not to the fecond order.

The true reafon of the difference confifts in this, the change which the tail of the Nymph of the Gnat undergoes, is not fo remarkable, as that the Nymph fhould thereby lofe the faculty of moving briskly. The tail is the only part, by the help whereof this Nymph changes place. The limbs and other parts in this Nymph, are in [reality as immoveable as they are in the Nymphs of Ants, Bees and Beetles. And even thefe Nymphs are not wholly deprived of the power of moving their tail, as is evident in the Nymph of the RhinocerosBeetle juft defrribed; for this can, by the motion of its tail turn itfelf a little in its terreftrial habitation. But in the Nymphs of Ants and Bees this is not obferved, until they have paffed the greater part of the Nymph fate, and are very near changing their skin. Having therefore removed this difficulty, which might appear more confiderable than it is to thofe lefs acquainted with there changes. I thall proceed to give the particular hiftory of the Gnat and
and its Nymph; from the particulars of which all thofe things which have been faid in the preface will be better explained and eafier underfood:

The Gnat is produced out of a very fmall egg, which is expofed or caft into the water by the parent Gnat, when the is engaged in laying her eggs, and in a few days this produces a very fmall Vermicle or Worm *. I was firft informed that the Gnats fprung out of the water by the curious and learned Mr. Duiffen, a very vigilant proteftant minifter at Saumur in France, who had obferved it in his kitchen garden, where there was a ftone bafon with water in it, out of which he faw plainly that Gnats arofe at a certain feafon.

Afterwards, on my return to Holland, I found the Worm of the Gnat fwimming in water, and immediately took its figure. Hence it happened, that when I faw it in the admirable figures of Dr. Hook's micrography, I immediately knew it, fince that very learned Englifh gentleman has delineated it with the greateft accuracy. But this celebrated writer does not feem to me to have examined the tail of that Worm with fufficient attention. I fhall obferve further, that the Nymph of the Gnat has been fomewhat improperly exhibited by him, unlefs he had fome other fpecies of this infect. This is the more probable to me, as I find there are various Nymphs of Gnats, as well as many kinds of the Flies themfelves.
In Tab. XXXI. fig. Iv. I exhibit in its natural fize the Worm out of which the Gnat is produced. The fame is likewife reprefented in fig. v. magnified by a microfcope, and thus it prefents to the eye very obvioully the confruction of its breaft and body. It may be likewife obferved here, in what manner it raifes itfelf to the furface of the water by the help of its tail, and alro the conftruction whereby it is divided into the head, breaft, body and tail.
In the head, which lies funk under the water, I have fhewn in this figure various particulars particularly the eyes, the horns, and the lower part of the mouth. 'The eyes are black $a a$, and have a frmooth and polifhed furface; nor are they divided like a clufter of grapes, or by an hexagonal network, as in many infects, but are of a figure fomewhat lunated or like a crefcent. The horns are fhaped not unlike the collar-bones, Tab. XXXI. fig. v. $6 b$, in the human fpecies, and are furnifhed with hairs towards their ends. The opening of the mouth

[^34]is likewife fhewn here c, appearing like a blackifh triangular fpot. We may likewife diftinguifh by the microf cope feven other little parts of the mouth, whereof I exhibit three, as well above the mouth as at its fides; but the feventh, which is fomewhat brown, is obferved to have its two bafes placed near the thorax, and reaching to the eyes. This little part is fomewhat whiter in the middle, and grows browner a little lower near the mouth, but in the anterior or fore part, it appears to be formed like the nails of our fingers, or the fcales of finh. Where this little part terminates with its brown curvature or winding, almoft in the middle or lower region of the head, I exhibit the firt of the three pair of little parts already named. This pair is of a triangular figure, on account of the hairs wherewith their inner fide is furrounded. About the end of this follows another pair of the like little parts, the beginning of which are horny or bony, but the extremities are hairy. Byow thefe again are feen a third pair of little jarts which are fomewhat thicker and more flaggy, and extend to the hairs of the horns. Theie three pair of little parts are, properly fieaking, articulated briftly hairs, which the Worm of the Gnat makes ufe of to direct the fcod to its mouth. I have before obferved fomething like this in the hermit Crab, in which I have defribed many little parts of a fomewhat like kind. The mouth of this Worm is in the fore part befet thickly with bairs, which are all of equal length, and are placed equally diftant from one another: this is Thewn at the letter c.
In the thorax are certain regular divifions $d d$, which are produced by the growing and extuberant joints of the legs and wings of the Gnat within. Hence I can fhew even in this Worm all the limbs and parts of the future Nymph, and of the perfect Gnat lying under the skin, as I fhall do on a fucceeding occafion in the Worms of Bees, and fhall thus exhibit an example applicable to all other infects belonging to this firft fpecies, or method of the third order of natural transformations. Afterwards, when I come to the fecond method of the third order, I fhall prefent to the eye a kind of fimilar inftance on the diurnal Butterfly. We may likewile further obferve how the thorax of this Worm is diftinguifhed with furrowed lines, and befet on each fide with briftly hairs, many iffiung together as it were out of one center.
The belly is divided into eight annular fections, Tab. XXXI. fig. v. ee; to which, if you add the fhaggy extremity f of the tail, and that part of it which is likewife ftrengthened g with the brifly hairs, and is extended by the Worm above the furface of the water, ten rings muft be reckoned in the whole. In that part of the tail which is feen b above the furface of the water, there appear certain black fpots, and fome depreffions or holes, as alfo many brifly hairs. But here we muft take particular notice, that whenever the Worm, fivimming in the middle of the water pulls
down the part of the tail juft mentioned under the water, that part never becomes wet. Therefore, when the Worm wants to reft, or ceafe moving, it immediately goes up to the furface, and there, by means of its tail, fufpends itfelf almoft in the fame manner as we fee a little glafs figure of a man hang pendulous in a glafly bubble in water. This is dorie the eafier by this Worm, becaufe its tail always remains dry: hence it is alfo obferved that as foon as this appendage of the tail has again emerged to the furface, the water immediately flows away from it on every fide. And one may diftinctly fee that a kind of bafon or hole is by that means impreffed on the water, when the body of the Worm gravitates downwards; the water not being able to penetrate into the dry tail and its depreffions, is ftopt in its circumference : and therefore the Worm, in regard to the extremity of its tail, very beautifully fwims in the water in the manner of an empty hollow glafs. The like effect may be likewife produced by art, if a needle be drawn through a cork and put into the water; for the cork will then fwim on the water, and in like manner make a confiderable depreffion in the furface.'
Near the extremity of this tail I exhibit fome bubbles in the water i; thefe are frequently feen, and they arife from the air which the Worm can at pleafure emit there out of its body. I have feen that the Worm, in order to draw in the air, has raifed its head out of the water. When it has happened that the tail had loft its drynefs, and the Worm by this means can no longer furpend itfelf on the furface of the water, which is the cafe when it is bruifed or handled too roughly; I have on thefe occafionsobferved, that it put its tail in its mouth, and afterwards drew it back together with its hairs. In this method of proceeding the infect refembles water fowls, which, by drawing their quills through their beak, prepare them in fuch a manner that they can refift the water. They fecrete this fat matter by means of a double gland which they have in their rump, in which this oil, which ftrengthens the wings againft the water, is generated and excreted, and they thence take it into their beaks. I have fometimes covered anatomical inftruments of feel with this matter, in order to keep them from rufting, and have found that the fteel continued perfectly defended from ruft by means of it; and I think it would have greater effect, if one had a great quantity of it boiled and properly managed.
As this whole infect is pellucid, I have here exhibited the two tranfparent pulmonary tubes which appear in the middle of the tail where it floats in the water. Thefe arife from the body near the thorax, and contain, Tab. XXXI. fig. v. $k k$, in them the quantity of air whereby the bubbles are produced. This infect therefore breathes at its tail, in the fame manner as the Worm of the Gad Fly. But this tail is not fo abfolutely neceflary for the Worm of the Gnat, that it cannot live without it. It only
ferves for its conveniency, and by its powers enables the Worm to reft or hold itfelf fufpended on the furface of the water. Hence it is, that the tail is entirely deftroyed and thrown off when the Worm cafts its skin and is changed into a Nymph.

As to the other part of the belly or tail; whofe extremity is likewife fhaggy, with briftly hairs, I exhibit about it fome fmall lumps l of an earthy matter, which fall into the water and there melt away by degrees m. Thefe are the excrements voided from the inteftines. We may likewife obferve here the inteftines themfelves, which contain thefe fœeces, and are feen through the tranfparent belly, fituated between the pulmonary tubes $k k$, and at length terminating in this other extremity of the belly which is the real tail. It is very fingular, that in this Worm, not only the motion of the inteftines, but alfo the propulfion of the excrements in them n may be feen through the integuments of the body. This motion of the intefines, the never-enough celebrated Dr. Hook firft difcovered. I obferve likewife that thefe pellucid inteftines appear fometimes white, fometimes black, and are fometimes divided into little knots. This variety arifes from the contents and excrements being more or lefs changed in them. Laftly, I likewife fhew finall hairs in the eight rings of the abdomen, three in fome, and in others four, and alfo the qquamous or fcaly windings and conftructions thereof.

When this Worm is arrived at its full growth, and its limbs having attained their due perfection, are fwollen or filled with blood and humours, it throws or cafts off its old skin, and expofes to open view all its hitherto hidden limbs and parts; this is when it is changed into a Nymph, which is delineated in its natural fize or bignefs in Tab. XXXI. fig. vi. and in fig. vir. as it appears magnified with a microfcope. In the latter defign, the head, breaft and belly may be more diftinctly feen than in the Worm; nay, and the eyes alfo, and the horns, the trunk, the legs and the wings. All thefe parts are however fluid like water, and mult in due time evaporate this moifture in the water, to fuch a degree as to acquire due firmnefs.

Left the delineation of thefe parts fhould be obfcured by annexing letters to them, I mall fhew them all in a lefs finimed figure, which I have added for that purpofe. Before I begin, it muft be particularly obferved, that the head, which before in the Worm hung downwards towards the bottom of the water, is always raifed upwards in the Nymph, and is likewife, by means of two tubes, fufpended on the furface of the water, in the fame manner as the tail of the Worm was before. Hence, as the Worm then drew the air through the tail, being changed into a Nymph, it now breathes the air with its head through the tubes juft now mentioned. Hence it is alfo obferved, that the tail which in the Worm was protended up-
wards, lies in the Nymph funk under the wa ter ; and this is indeed a remarkable change in the infect with refpect to its manner of living.

One might take thefe tubes in the had for the horns which the Worm had before, and which are now, after cafting the skin, dilated and adapted to another ufe; but thofe horns were fituated nearer to the foremoft parts of the head. The tail is likewife upon the change of its skin confiderably altered; it has acquired in this ftate a beautiful feather, to ferve as a rudder, by the help of which this Nymph moves freely from place to place; and fwims in a quite another manner than it ufed to do when it was in the ftate of a Worm. Dr. Hooke has alfo obferved this cliange of the Nymph, in refpect to the manner of its moving and fwimining, as appears from his Micrography. In many infects, nay, particularly in thefe which belong to the fecond mode of the third oder; it is obferved that when they are changed into the Chryfalis they have a motion in their tail; though all the reft of their body become wholly immoveable, as is alfo the cafe in this Nymph. We have fully treated of this in the beginning of this chapter.

On one fide of the head in this defign is feen an eye, Tab. XXXI. fig. viri. a, covered a little on the upper part with a membrane; which invefts the probofcis or trunk, and this eye, is now divided into hexagonal and globular divifions. Above this appears to be fituated one of the antennæ b, divided into feveral black knots which are fo many joints. The trunk c which is the Gnat's fting, and which partly covers the eye, is placed with its fharp point between the legs and wings. The legs $d d d d$ are in a wonderful manner twifted and bent, but efpecially in the hinder part; and they are hidden between the wings, and appear plainly through the tranfparent fubftance of the latter. This I here exhibit delineated, that both the wing of this fide may be feen, and alfo the membrane that inverts it $e e$, and which is placed above the legs. The body is divided into eight rings, on which fome of the hairs, that have changed their outer covering $f f$, are obferved to reft. Through the middle of the whole length of the body appears a beautiful border or rifing verge $g g$, which I could fcarce difcover in the Worm of the Gnat, nor have I afterwards found it confiderable in the perfect Gnat itfelf. The tail, which hangs down, has, as I obferved, a moving jointed fin B, by thehelp of which the Nymph removes from place to place. In the upper parts of the head are feen the tubulated horns $i i$ before defcribed, by means of which the creature, while in this ftate, hangs and breathes on the furface of the water; but by the help of this conftruction the Nymph is now better prepared to be changed into a Gnat after cafting its fkin. This infect, while in the Nymph fate, has no certain colour; for, upon its change, it grows white, and afterwards becomes fomewhat green, and at laft it approaches to black.

After

After this Nymph has lived fome days, moving itfelf backwards and forwards in the water, and its tender limbs are ftrengthened, it burfs and cafts its ikin in the middle between thofe two horns or tubes, by the help of which it was before furpended on the furface of the water; and after this, on account of the lightnefs of its body only, it remains on the furface, until its wings are expanded and dried with air; then the Nymph having affumed the form of a Gnat flies away, leaving its caft fkin fwimming in the the water, where it infenfibly decays.

The Gnats of this fpecies *, which are beft of all known in Holland on account of their mifchievous trunk or fting, are eafily diftinguifhed into males and females. I exhibit the male in Tab. XXXII. fig. I. and alfo a microfcopic view of it in fig. II. Between this Gnat and its Nymph there is no other difference, except that the limbs are difpofed and placed in a different manner in the Nymph from what they are in the perfect Gnat. Hence, as the head, breaft, belly, \&cc. may be feen and unfolded in the Nymph, we may diftinguifh all thefe things in the Gnat itfelf, but much more accurately, for the external k kin of the Nymph, which prevented the more diftinct view of all thefe parts, has been now, upon the laft change, thrown off.

In the head of the male Gnat, I particularly exhibit, in the enlarged figure, the eyes, horns, and trunk ; as alfo two other parts placed near the trunk or fting, between or under which the latter is properly placed: the eyes a a conftitute the greateft part of the head, as is the cafe in many other fpecies of infects. They are of a greenifh colour, and they form as it were an hexagonal piece of network, the divifions whereof rife in a globular figure. Near the eyes I reprefent the horns $b b$, which arife as it were out of two yellowihh fleh-coloured little globes, and are beautifully divided into twelve black knot-like joints, which are furrounded with hairs like tender flaxen threads. Toward the extremity of each of thefe antenne is feen a circle, confifting of fix hairs placed in a circle ; above which appear the extreme ends of the horns furrounded or covered with yet fmaller hairs. As to the other two long and crooked parts, between which the trunk or aculeus is obferved to be fituated $c c$, I find them divided into three joints, befet with hairs toward their extremities, and moreover covered every where with a kind of brownifh feathers, which refemble, as the feathers of Butterfies do, the little fcales of fifhes.

The trunk is of the fame colour, and is adorned d with the like fcaly little feathers, but it is not divided into joints, being immoveable in the middle; though there are plainly fome divifions toward the end of it; and it is there
likewife near the end regularly furrounded by five hairs on each fide of it. On full confideration of the whole, the part before defribed, and which we ufually call the trunk e, the aculeus or fting of the Gnat, is nothing more than a fheath or cafe of the real fing e, which is reprefented in this figure only projecting, or as if thruft, out of it. This fting is provided with fo fharp a point, that I could never obferve the leaft breadth therein, with the beft microfcopes that I ufed in the year 1688. If you put the edges of the fharpeft razors, or the points of the fineft needles and lancets before the microfcope, you will eafily fee that they have vifible breadth, and appear blunt, ragged, and dull. I do not find this fheath in all Gnats; and this is the cafe in that fpecies defcribed by Goedaert, the fling of which I flould incline to think is very fhort, and lies rather in the mouth than in any fheath or cafe; fo that the fame thing feems to obtain here as in the Loufe kind, the fheath and trunk of which are alfo difcovered with difficulty, though thefe little creatures prick or fling vehemently, and give us great trouble by fucking our blood.

Thus I obferve, with refpect to other infects, that there is great difference as to their flings and trunks; fome of them have their probofcides eight times longer than others, befides that the conftruction differs greatly in both. But I have elfewhere faid enough on this fubject, when I treated of the fwift Butterfly, which is reprefented in the hiftory of the Rhinoceros Beetle, Tab. XXIX. But when I come to the Gad Fly I fhall, from the obfervations I have made on the fting and trunk, offer. fome reafons why many infects that feed on blood, ftill preferve life, through deprived for a long time of the blood wherewith they naturally nourifh themfelves. This queftion may certainly arife with refpect to Bugs, Fleas, and feveral fuch infects, and alfo in regard to the Gnat kind. I now return to the fubject and fhall give a more full explanation of the trunk of the Gnat.

The cafe or fheath of the fing, as I have already obferved, is immoveable in the middle, but where it is united to the head it appears to be jointed. If one diffects it under the microfcope, and very quickly breaks it off at a little diftance from the head, or cuts it, Tab. XXXII. fig. 111. a, in its circumference, but in fuch a manner, as at the fame time to draw this broken cafe of the fling from the fling itfelf, which is placed on the infide; this way at length the aculeus is plainly feen naked and difengaged from all impediments, in which ftate it could not be viewed before. When I firft made this experiment, I thought I had difcovered the whole aculeus in this manner : for I obferved an acute pellucid little part of a bright red colour b, which confifted of a horny

[^35]or bony matter, and was moderately ftrong and yet flexible. But upon examining this litthe part afterwards with a larger magnifying glafs, I obferved that there was a confiderable aperture juft below its fharp point ; and I alfo obferved two little drops of a real liquor, at fome diftance from each other, lying in the middle of this little part, as in a little hollow tube. As I was attempting to exprefs or get out this liquid under the microfcope, it happened, contrary to my expectations, that I broke that little part. This accident had great advantage, for on the infide of this little part I then difcovered five diftinct aculei or ftings, and confequently thus found the whole conftruction of the aculeus.

I obferved that two of thefe aculei which were hidden within the tubulated little canal of the general thing were, much more flender, Tab. XXXII. fig. III. $c c$, than the three others, which appeared thicker and ftronger, $d d d$. I likewife obferved that they were fomewhat broader where they were articulated with the head, but that they afterwards became fmall, and that they were finally confiderably extended, before they terminate in their delicate and fine points. All thefe aculei were of a delicate fmooth furface, but in the middle they were fomewhat thicker and more diftended, fo that in that part they appeared of a browner colour, exhibiting to the eye within a pellucid bright rednefs: but they confilted of a flexible horny or bony matter like that of the little canal which contained them. I could not difcover any cavity in them, though there feemed to be fomething of this kind in the larger; for when thefe were examined with a very acute glafs, they curled and continually moved about: this, I thought, muft be attributed to the evaporation of the humour inclofed or contained within their fubftance. I could by no means, however, obferve any other mark of their being hollow on the infide.

As to the ufe of thefe five aculei, they feem only to ferve as fo many very fharp lances to enter the pores of the skin; and afterwards to retract or draw themfelves back into the inward cafe wherein they are kept: but then I fhould think that the acute and hollow extremity of this cafe is certainly introduced into the wound, and by means thereof the Gnat afterwards fucks the blood, which, running or afcending by fuction between thefe fharp parts, is at length conveyed into the body of the infect. Hence there appears almoft the fame ufe of this fheath as there is of the filver pipes ufed by our furgeons, through which they pafs their lancets when they are about to open ulcers that lie deep between the jaws, and are careful to wound no other parts but thofe they are to cut. The reafon why nature hath made five aculei for this purpofe, is, I confers, beyond my comprehenfion, unlefs one fhould incline to think that by the repeated agitation of fo many things in the womb, the blood is better prepared to
afcend through this long and moft flender tube wherein thofe ftings are hidden.

I am firmly perfuaded that when the Gnat has no opportunity of drawing blood out of animals, it fucks, with the help of its cafe, the juices of flowers, plants or fruits, being content with feeding on the latter when it wants the former: indeed, by what other means could it fupport itfelf, when it lives in the fields and woods? I would not now prefume to affirm for certain, whether, when I firft communicated to the public the figure of the Gnat's trunk, not knowing then that it had five ftings, I faw one or more ftings projecting or hanging out of its cafe; but I am not certain now that thefe five ftings, viewed fideways, do not appear broader in the fore part next under their points than elfewhere.

After I had made the obfervations already mentioned on the fting of the Gnat, I often afterwards obferved in the dead Gnats, that all their ftings were broken off from their cafe, and appeared without the little tube, without my aid. And hence I began to confider, whether thefe integuments of the five ftings refemble or not the fheath or cafe of a Bee's fting, and only or loofely contain the real Ating, as a fcabbard open on one fide might hold a fword. But, notwithftanding the repeated pains I have hitherto taken to difoover the truth in this matter, yet I could never find out any mark of fuch a ftructure. I therefore think I may fafely maintain that both the cafe of the fting and its inward pipe are two diftinct and entire integuments, the exterior of which contains the little tube, and the interior, which is the little tube itfelf, contains the five ftings.

It has fometimes happened, that upon examining thefe things in other fpecies of Gnats, I have obferved that, like the flings of Bees, they were provided with a kind of crooked claws, or were at leaft ferrated on their furface. But this I had not the good fortune to fee when I was engaged in drawing and finithing the figures of thefe parts from the prefent fecies; only I thought I once faw fomething like it through the common microfcopes, and therefore thofe who are fond of microfcopes, mult take care not to confide in one lens or glafs only, and muft not always view the object in the fame manner and fituation, for by this means many errors arife. In the third figure above mentioned is likewife feen the neck, Tab. XXXII. fig. iII. e, of the Gnat, and the head f placed thereon, in which the eyes $g g$ appear, as alfo the antennx cut off $b b$, and the articulated fetae f or briftly hairs i, which are cut off above the fings.

As to the thorax of the Gnat, it carries the legs and wings, and alfo two little parts like hammers, and of an oval figure. The legs are of a brownifh colour, and confift of feven joints, fig. II. $f f f f f$, which are larger in the hinder that in the fore legs: but befides thefe, the extremity of each leg is likewife armed

158

with two claws. Moreover, the legs of this infect are all over covered with fcaly little feathers, between which appear fome blackifh fetaceous hairs.

The ftructure of the wings $\operatorname{ggg} g$ is fo beautiful, that nothing can, in a manner, be invented more ingenious or artificial. They confift partly of pulmonary tubes, and partly of delicate membranes, which are perfectly pellucid. They are of an oblong form, and of a glaffy colour; but they are obfcured or fhaded by a very great number of fcaly rhomboidal figures, which are a vaft ornament to them. All the membranes of the wings are interwoven with pulmonary tubes, which run through them like fo many veins and nerves; and upon thofe pulmonary tubes, which are conveyed out of the body into the wings, are fixed thefe oblong and broad feathers for the fake of ornament. The fame conftruction is feen alfo in the beginning, middle, and circumference of the wings, and is a very agreeable fight. In order to make this ftructure clear or more evident, I here exhibit the wings fomewhat larger, in proportion to the other part of the Gnat, than they were formerly. But if thefe wings were reprefented as large as they can poffibly be magnified by good glaffes, the divine miracles that are prefented to us therein would amaze all mankind.

We fhould then diftinguifh clearly that every feries of the little feathers before defcribed, likewife refts on a ftalk or tube, by means of which, it is united to the pulmonary tubes: and alfo, that fome of the feathers are here and there larger, fhorter, or broader, and placed in a quite different manner from the reft, as far as regularity and beauty would admit. If broken feathers chance to occur any where, their quills will be found there fill fixed in the puimonary tubes. The ftructure of the little feathers would fhew itfelf very admirable in this cafe, for almoft all of them are interwoven with fix regular little ribs like fo many nerves, each of which confifts of a great number of regular globules. This is feen more clearly by the help of a powerful microfcope; all thefe little feathers being likewife tranfparent, though they are not altogether fo clear as the membranes of the wings.

Further we may obferve, in what a wonderful manner the very membrane of the wings is conftructed in this creature, for it appears under the microfcope befet with many prominent papillæ or little rifings. If this part be viewed by help of the moft powerful microfcope, it will be diftinctly feen that all thefe papillæ are fo many crooked, curled, pellucid little tips or points, of mott delicate, long or extended papiliæ. In all this the omnipotence and wifdom of God fhines brighter than the meridian fun. All thefe things cannot be expreffed in the fmall compafs of a fingle figure. I have therefore exhibited upon this membrane of the wings, only a few out of the great num-
ber of thefe inflected and fharp-pointed papillæ in the form of points. Nay, I would venture to affert, that however good the microfcope made ufe of is, yet one cannot fee thefe papilla diftinctly, unlefs we firft tear a part of the membrane of the wings carefully for that purpofe; for the tharp little tops or points which I have here mentioned, are only to be feen when all impediments are moft carefully removed.

The malleoli, Tab. XXXII. fig. ni. $b b$, or little hammers fixed to the breaft, whereof I made mention, are of a fomewhat irregular fhape, and at their extremities are confiderably dilated: they are there fmooth and of a whitifh colour. I have obferved fuch malleoli almoft in all Flies which have only two wings. The furface of the thorax alfo fhines a little, and being covered in a manner with red briftly hairs, inftead of feathers, it is likewife adorned with a red colour.

The belly is divided into eight rings $k k$, in the fame manner as I have exhibited in the Worm and Nymph. All thefe divifions are likewife as vifible in the perfect Gnat, as in thofe ftates lately mentioned. I further, obferve that the belly and tail are every where covered with feathers, which are black in fome places ; and this is the reafon that the belly and tail appear divided as it were by black rings. The other little feathers intermixed with the former are of a white or yellowifh colour, and are wholly tranfparent. Moreover, the whole belly is every where covered with fine hairs, the extremities of which curl, and feem to be in fome meafure entangled in one another, though in reality they are not.

I alfo reprefent the head of the female Gnat, fig. Iv. magnified, which, in refpect to the Atructure of the horns, differs from the male's head a a extremely. Thofe little parts of the head alfo, between and under which the fheath of the fling is extended, are much fmaller in the female, and diftinguifhed with greater difficulty $b b$. The horns in this fex are alfo divided as it were with twelve parts, and they are regularly covered with brownifh hairs and little feathers. The fheath of the fting c, and the other little parts are of the fame ftructure, and have the fame integuments that I have before defcribed in thofe of the male. Laftly, that nothing may be deficient, I likewife exhibit the female herfelf in her natural fize, in fig. v. I have not yet accurately inveftigated the internal parts of the Gnat, and therefore fhall fay nothing of them here.

I have occafionally obferved many diftinet fpecies of Gnats, but their principal difference confifts in this, that fome of them have and others have not a fting or trunk, and therefore feem to be harmlefs. They likewife differ confiderably among themfelves in refpect to their magnitude, colours, and food ; the place wherein they live, and the manner wherein they are produced; and in feveral other particulars
worthy*
worthy attention. At prefent I fhall fay nothing more of thefe infects, being already too much fatigued with oberving and defcribing
thofe particulars, which I have hitherto advanced. I flall therefore conclude this treatife, and proceed to the hiftory of Becs.

A TREATISE on the

HISTORY of BEES;

 Or an accurate defcription of
Their origin, generation, fex, œconomy, labours and ufe.

O come bither, and bebold the works of God: bow wonderful be is in doing towards the children of men.

Pfal. LXVI. 5.

ALTHOUGH the majefty of the immortal God is in its nature inacceffible to mortal eyes, his eternal power and divinity are moft clearly and evidently feen in all created beings: fome creatures, however, prefent the invifible God to our contemplation more plainly than others, as will appear from the fubfequent treatife. Since, therefore, the moft wife and great God has been graciounly pleafed to blefs and crown my indefatigable and affiduous labours with fome degree of fuccefs, I hope that his infinite power and immenfe wifdom, as well as our own weaknefs, will be thereby made clearer than the light at noon; fo that whoever perufes this treatife, may find matter enough of wonder, and be led to proclaim and admire the magnificence and wildom of God, and to blefs his inexhauftible bounty. If there pages, which only exhibit as it were the flaadows of things, and extremely defective defcriptions of the fecrets works of God, that are impenetrable and impoffible to be fully inveftigated, fhould direct the reader to this true ufe of the refearches, I fhall think the pains I have taken, not only recompenfed, but alfo fufficiently profperous and bleffed by the divine grace.
If any one accurately confiders the difpofition and ftructure of the fmalleft and largeft animals, and compares them one with another, he will fee that they agree not only in the above mentioned particulars, but alfo in that they fring from like principles, which are eggs of their parents, as well in the fmalleft as in the largeft animals: and as thefe eggs increafe and are perfected, as it were from very frall and almoft invifible points, they, in the fame manner, come to the full period of their increafe in the fmalleft animals as in the largeft. Nor is there any creature excepted from this univerfal law of its origin. Since man alfo, the moft noble of all creatures, and who is a rational animal, has his origin or beginning
from an egg, and therefore cannot, in refpect to his firt principle, prefer himfelf to the fmalleft infects, or, with regard to his natural difpofition and fructure, affume to himfelf any fuperior dignity, in preference to the moft mean and contemptible creatures the Loufe or Mite. That this is moft certain in regard to the human fpecies, I have learned from experiment, in the year 1667 , as did alfo the celebrated Van Home. This may be feen in my book intitled, the miracles of nature. Further, it deferves notice, that as to the principles or rudiments of fmaller as well as larger animals, the former are more confpicuous, and more clearly difcernible in their firft ftate than the latter. And further, fince God hath prefrribed certain limits of magnitude to the fmaller animals, beyond which they cannot increafe, and which limits are probably fituated in the peculiar ftructure, or from the weaknefs of the heart, by the power of which all the other parts muft be extended againf the gravity of the atmoiphere; the fmall animals, therefore, while in einbryo, may be much more perfect than the larger.
To come nearer to my purpofe; as I propofed in my book of infects publifhed in the year 1669, at fome other time to treat exprefly on the ftructure of infects, and in that work to give the particular hiftory of Bees; faying, by way of anticipation, that the king, as commonly called, was a female, the drone a male, and that the common Bees belonged to neither fex ; I fhall, to keep my promife with the publick, now treat particularly of the fructure, difpofition, and principles or rudiments of thefe three creatures, which are different in themfelves, but of the fame fpecies. I thall alfo occafionally interfperfe fome other obfervations on the parts of fome other infects, the whole conftructions of which I fhall, with the divine favour, at fome other time defcribe more at large.

On

On the twenty-fecond of Auguft 1673, I opened a Bee-hive, after the Bees had fwarmed, I found fome thoufands of common Bees in it, fome hundred drones, and one king. But as, properly fpeaking, neither king nor drones are to be found in the hives, as has been already obferved ; and fince it happened, through a very great and inexcufable error, that thofe wrong names were given to thofe creatures, I would therefore here in the beginning inform the reader, that through this whole treatife I fhall call that pretended king by the name of the female Bee; and to that which is commonly called the drone, I fhall give the title of the male Bee, and the common Bees, I fhall, for diftinction's fake, denominate working Bees: I fhall alfo in the following pages, fhew the very clear and evident reafons which have induced me to make this innovation.
When I had opened and deftroyed a hive at the time above-mentioned, befides the males, females and working Bees, I found therein three different fpecies of cells, or little houfes of the infects, which are called by the general name of honey-combs. In fome hundreds of thefe cells the males were fed and grew, in fome few, females were generated; and in the reft, of which there were fome thoufands, the common Bees were nourifhed, brought up, and finally changed. The cells of the males and fermales were are this time empty, but the cells of the common Bees, though they feemed for the moft part empty, were many of them really full and covered with wax. When I broke thefe cells open with a fmall needle fixed on a skewer, I found fome of the Worms of the Bees placed upright without any motion. In fome other cells that were covered in the fame manner, there were Nymphs or Worms of Bees, which, by due accretion, had already acquired the form of Bees, and were to be let out from thence. In others I found honey. The reft of the cells were open, and not covered or fealed up; and fome of them had eggs, others contained Worms very lately hatched out of their eggs, and provided on every fide of them with food: others again had larger Worms ; and finally, others were arrived at their full bignefs. Thefe are called the offspring or ftock, by the keepers of Bees in our country, and they had yellow excrements under them.

In the middle between thefe eggs and the ftock, were feen fome little cells alfo fealed up, which, when I opened, I found filled with honey; for the Bees never leave any place empty in their hive, but as foon as any Worm is changed into a Bee, they immediately fill its cell with fomething elfe. Therefore, if the combs in the upper part of the hive are firft emptied
of the young Bees, they firft put their honey into them; but if thofe in the combs in the middle of the hive become mature before the others, they firft fill them with honey: and laftly, when the combs of the loweft part of the hive are emptied, they in the fame manner fill them before the others with honey: but they afterwards carry the honey repofited there to the upper part of the hive. This Clutius obferved, but I have not yet feen it. The Bees procced in this manner, when the year is fruitful, in order to Ahorten the time, fo as to enable them to gather the more honey, or when they are more numerous in the hive; for then they immediately lay the honey as foon as there is room, and afterwards, when the time of making honey is paft, they carry it elfewhere.

This hive, therefore, as a common and fraternal habitation, contained the rudiments and fock, the males and females, with their labouring fervants, that is, the common Bees; and laftly, plenty of food. Therefore it was well provided and prepared to bear fecurely, and, in a regular order, the inclemency of the approaching winter. The order under which the Bees that live in the winter months conduct themfelves is this: they firft open the cells and eat the honey depofited in the loweft part of the hive, afcending by degrees up to the upper parts. This they do in order to preferve a mutual warmth between them; and the female depofits her eggs in the little cells as they are emptied. Therefore about the beginning of March I difcovered the ftock and the Nymph. Let no one be furprifed at this, fince towards the beginning of Auguft I have feen fome thoufand eggs enclofed in the ovary in the female's body; fo that it is natural for the Bees at any time of the year to lay their eggs, and increafe their family: Bees are not therefore confined to the time of fwarming in regard to the bufinefs of generation ; indeed, they are always at this work, fince they lofe fome of their fellow-citizens by the injuries of rain and winds, and other inconveniences and diforders; in the place of which they are obliged to fubftitute young ones by a continued generation.

Our keepers of Bees are wont to exprefs by the following proverb, how foon the young Bees are hatched, when they fay, that the firft Swallow and the firft Bee give notice of each other *. There are fome, indeed, who think this fhould be underftood of the flying off of Bees, but this does not feem to be the proper fignification of the proverb.

We muft obferve here, that fome of the cells in the hives are filled with a matter of various colours, which has been gathered and

[^36]laid together as it were into ftrata or beds, like Herrings or other merchandize put with great art into a barrel, which are by degrees and at different times heaped upon one another. This matter I found on examination was granulated, and tafted fomewhat fweet. Some of the cells containing it were fealed up, and others open and only half full: others were fcarce begun filligg, and in others again began to decay. This fubftance is called by the Bee-keepers the bread or food of the Bees, wherewith they are faid to cure themfelves when they have a flux. But as credulity is often the parent of error, doubting about the truth of that received opinion, I have by various methods fearched into and examined this fubftance : for it feemed to be rather the rudiment of wax. I have therefore firt thrown it into water, in which it was quickiy broken and difperfed, but it always remained in grains: this likewife happened when I put it on my tongue. If it be put on a piece of thin glafs, and placed on a red hot coal covered with afhes, I have obferved that by degrees it wafted, grew dry, hardened, and at laft become black. Nor does it ever melt when thus placed on the fire; nay, if it be thrown naked into the fire, or applied to a burning candle, it never burns. From thefe experiments it feemed to me not at all to confift of the matter of fat, for the fake of examining which I had begun them, efpecially fince I obferved, that it was very like that fubfrance which the Bees conftantly carry home, and is fixed on the fifth joint of their hinder legs, and which is taken for wax by all the Bee-keepers. Upon examining this matter which the Bees carry on their legs, I difcovered that it is abfolutely the medicinal bread of the Bees. Hence it came to pafs, that I could fcarce perfuade myfelf that the Bees carry the wax perfect out of the fields without any previous preparation; as I cannot be hitherto brought to believe any thing like it of honey, being rather of opinion that this is transformed into a better united and thicker liquid, by digeftion in the ftomach of the Bees: though it may, however, be poffible that in the fruitful and hotter fummers, the Bees may collect the honey as they find it prepared by nature in flowers into the cavity of their trunk : as the trunk is full of irregular parts, and as it were fet or planted with glandules; hence it follows that the honey may likewife fuffer fome change in it. As to the wax I do not doubt but it is prepared by the Bees. However this matter may be, when I afterwards laid thefe doubts before the moft intelligent Bee-keepers, they were all unanimoully obliged to allow that no difference could be obferved between the bread or food of Bees and the wax,
which the Bees had carried frefl into their hives *.

I therefore mixed this bread, as it is called, with honey, in order to fee whether I could gather any thing from thence, but the event of the experiment taught me that I had laid too great ftrefs on theory. In the beginning, indeed, when it is firf mixed, it becomes a very clammy and glutinous mafs; and it runs more thin than the honey did before, and becomes fill more foft when expofed to the fire : but when it fuftains the force of the fire a little longer, it foon difcovers its former nature. It likewife breaks in water, nor does it much recede from its former nature or difpofition.
From that experiment I am inclined to believe that this is the fubftance from which the Bees prepare their wax. But I think they do this bufinefs by the help of their faliva or of the execrated and digefted honey. And hence though what is commonly faid may probably be true, that Bees ufe this matter as a medicine; yet I do not doubi but they gather it in the time of plenty, that when fcarcity comes, or when wet and cloudy weather approaches, or when they cannot from any other caufe fly out of the hives, they may take their time to perfect it. Any one may know by an ealy experiment whether this matter be fo. The Bees therefore feem to behave with refpect to this, in the fame manner as they ufually do in regard to honey, of which they gather more than they have immediate occafion for, that they may live thereon in the time of neceffity. This abundant quantity amounts to fometimes thirty, forty, fifty, or fixty pounds. Nay, their zeal and earneftnefs to gather honey urges them fo far, that they fometimes throw their flock or young out of the hives and fill the emptied cells with honey: but I fhould think there is fome other reafon for this act, which yet remains to be confidered and difcovered.

I think that the Bees probably gather this matter in order to form and perfect it into wax in the times of fcarcity, to cover up the little cells of the combs therewith, and to faften it on the webs of the finning Worms. This I hall afterwards explain more at large. I am likewife inclined to think that this matter ferves alfo to clofe up the door or opening of the hive when winter approaches, or at leaft to make it narrower by way of defence againft the inclemency of the cold : unlefs one fhould think it more probable that they feparate the matter they ufe for this purpofe from the reft of the wax, or gather this peculiar glue from beech and poplar trees; with which, as the Bee-keepers fay, they afterwards not only make the door or opening narrower, but alfo cover all the lower part of the hive itfelf,

[^37]and plank i t, and make a regular margin or border on the infide *. The bread of the Bees appears therefore, in the opinion of the Bee-keepers, to be fomewhat different from the wax; but in my opinion it is the very matter or fubftance of the wax itfelf, not yet prepared. In order to view and inveftigate the ftructure of the Bee-bread, nothing is more proper than to make ufe of a microfcope in the manner following: the Bee-bread is to be put into a glafs full of clear water, and then fhaken a little, in order to feparate it into a fine duft; and when this does not fucceed quick enough, it may be accelerated by breaking it with a fmall fine pencil. This duft is afterwards to be put upon a very thin piece of glafs, as near as poffible to the flame of a lamp; then the glafs is by a little ftarch to be fattened to a fimall piece of cork, which is afterwards to be fixed on the point of a needle and put under the microfcope. Thus it will be found that the Bee-bread confifts only of fine globules of equal form and magnitude; they have commonly three or four corners, but they are often alfo round: this angulated figure may probably be owing to the folidity and compactnefs of thofe little parts, which the Bees bring them into with their teeth: between there little parts are found fome yet more minute ones. But though the particles of which that bread confifts are very fine and delicate, yet one may, not the lefs manifefly, perceive them upon the tongue ; for when this Bee-bread is tafted or chewed, it feels like a fine fand in the mouth, or as fugar undiffolved, or divided only into little grains or angular little cryftals. Moreover, when that bread breaks to pieces in water, it never diffolves; but the parts confrantly retain their former figures, and are only feparated and parted from each other. But whether thefe globules, when worked into wax, are ground, chewed or broken with the Bee's two teeth, and mixed with the faliva; or whether they are mixed with the fat or poifonous liquor of the Bee's fling, in order for forming the wax, is a matter which frill remains to be inveftigated.

It is wonderful that the fat both of men and beafts alfo confifts of fuch minute grains and particles, which when any perfon has a mind to fee them diftinctly, he muft manage and view it in the manner abovementioned. The fat cannot be feparated by water into fimall parts, and therefore in order to break it fufficiently, it muft be fhaken a little in fpirit of wine : for thus it will very eafily divide into minute globules. If it be afterwards put on the glafs and examined in the manner beforementioned, it makes a very agreeable appearance.

This contrivance, wherewith we unite together fuch fine and fmall things, put on glafs that they may be afterwards, when dry, viewed with a microfcope, I here mention for no other reafon but becaufe it anfwers on many occafions: for a great many things which could not be otherwife examined, are by this means very eafily difcovered, as will be made more evident in the following pages.
To return to the Bee-bread, we muft obferve that many fpecies of Mites feek after it; and thofe infects are alfo fond of unmelted fat. This may probably be owing to the many skins the fat is furrounded with; which are confumed in the melting, and which in the natural fate principally ferve thofe creatures as their food. One may fometimes obferve certain globular particles in that wax, with which the little cells of the Bees are ftopt, and as it were fealed up: and by this new argument the opinion which I have before propofed, that the Bee-bread is really of the fubftance and nature of wax, is confirmed. When wax has been for fome time fleeped in firit of wine, it becomes very brittle, and feparates into little particles, which feem alfo to be fomewhat like the broken or divided bread of Bees; but that experiment ought to have been made with virgin wax, which I could not yet do, having been otherwife engaged.

Notwithftanding all thefe things, we fometimes fee that the Bees carry real and perfect wax into the hives. This is compofed likewife of globules; but they are four times, fix times, nay, often ten times larger than the grains of the Bee-bread: thefe globules are likewife of an irregular figure. The Bees, no doubt, fteal this wax, and bite it with their teeth from the wax made by other Bees; and afterwards fix it on their hinder legs in order to carry it into their hives. Therefore thefe little lumps are agreeable to the meafure and magnitude of their bite, or are proportioned to the quantity which the Bees can take off a cake of wax, when foftened by the fummer heat.

But if we attentively confider the experiments that have been hitherto explained concerning the Bee-bread, and at the fame time attend to its granular compofition, it does not feem very probable that the Bees can live on it as their food in winter"; for the Bees can take into their bodies only a matter that is not thicker than the honey itfelf, fince they have a very narrow and flender trunk. Therefore, the Bee-keepers always reject granulated honey, or that which is cryftalized or concreted into lumps, as unfit for feeding of Bees, nor do they ever give it to them to eat; but in winter time they fill fplit elder fticks with liquid honey, and draw them through from one fide of the hive to the other. If any

[^38]perfon fhould object that the Bees can bruife or grind this bread with their teeth, and afterwards fwallow it; the anfwer is, that the Bees can do the fame with the granulated honey. My difficulty, therefore, ftill remains unfolved, unlefs any one fhould imagine that the Bees grind or bruife the grains of thise bread in their jaws, and then, after mixing them with the faliva, or with frefh honey, by that help, attract and fuck them through their narrow trunk; fince, befides this, they have no other paffage into the body for this purpofe. From thefe reafons I am the more confirmed in this opinion, fince the orifices of the trunk in Bees are fo imperceptible, that they do not feem to me to be larger than the mouth of the meferaic veins, or lacteals, that open into the inteftines, and which will admit only very thin liquids, and fuch as are purified to the higheft degree.

We might further ask how this Bee-bread acquires its roundifh figure? alfo, whether it be dew, or whether the effluvia of flowers and fruits, firft refolved into vapours and afterwards condenfed in this form? or, finally, whether it has its origin from any other concreted fluid, reduced to a globular form by force of the incumbent atmofphere? we have not yet fufficient experiments to determine thefe matters; for, as Bacon jufly obferves, we muft not feign or devife, but find out and difcover what nature produces, and how the operates. Something like this prefents itfelf to our view in nature, as may be obferved particularly in gums; between the petals of the flowers of hops, there are alfo feen a great number of fuch granules which are of a bitter tafte.

My honoured father, the fooner to have ripe grapes, brought fome vine branches into a little fhed, built in his garden for that purpofe, making openings in the windows to let them in. I obferved that about thefe branches there was often an infinite number of white pellucid cryftal-like globules, which were fomewhat moift and clammy; nor could I ever melt thofe particles, or refolve them into vapours, becaufe there always remained fome matter from them, which hardened in drying. This I mention particularly, that I may be able to explain with-greater accuracy the nature of that peculiar mouldinefs to which the Bee-bread is fubject; for though this mouldinefs appears to be compofed of hairy, or fea-ther-like, or downy little parts, or, as the celebrated Dr. Hooke has delineated in his micrography, of a peculiar kind of minute plants, yet it really confifts of an accumulation of globules that are fome bigger than others. This was firft Thown me at Delphos by the induftrious Leuwenhoek, by the help of a microfcope conftructed after the model of that invented by the honourable Mr. Hudde conful at Amfterdam. And therefore as to this matter, I think that bodies when they contract mouldinefs, emit only effluvia
and vapours, which are propelled forward by force of the fermenting and heated matter; and which, being again condenfed by the colder atmofphere, put on a globular figure, becaufe they are on every fide equally furrounded by the incumbent air; and as whilft fome of thefe globules are following others, and continually propel each other higher into, or towards, the air ; hence are produced thofe uneven, hairy, and oblong little parts.

The nature of wax fhould have been more accurately inveftigated, in order to difcover whether any fattiif or inflammable matter be orginally mixed therewith out of the body of the Bee, which may be eafily fhewn from the firucture of the adjacent parts : for the fecretions of the body are very wonderful; here fat, there oil; in one place gall, in another infipid humours; on one fide an aqueous or watry, and on the other, a clammy and glutinous fubftance; in one place volatile falts of an ill tafte, and in another fweet, aromatic, and oily volatile falts. Of this laft fort is civet, wherewith if paper be daubed it bears writing on it; and by this teft we moft certainly difcover whether civet be genuine. But thefe refearches would take up great time and very great labour, for there is not on every occafion a free admittance to all the fecrets of nature; and the incomprehenfible weaknefs of our ftrength is confined in every ftep within its ftated limits and narrow bounds.

I pars now to the comb, or the cells and tubes of the Bees, which they form and conftruct with wax, then fill with honey, and again clofe up with wax ; hence the comb properly fignifies wax formed into cells and filled with honey. I hall firft treat of the cells of the working Bees, then of thofe of the males, and laftly, thofe of the females. All the cells of the working Bees are hexagonal both above and below, but the angles of the upper part are equal among themfelves; that is, they are equally wide, whereas in the lower part the angles are unequal; for three of them, in that part, are funk deeper than than the other three ; the reafon of which is, becaufe every cell, if it be a regular edifice, is built on the foundations of three other cells. Since therefore the foundation of the Bees cells tend obliquely downwards, like a triangle, therefore two angles make only one defcending oblique angle : and confequently the internal bafe of the cells conftantly tends obliquely downwards, and is divided into three diftinct parts, each of which anfwers to the two fides of the hexagonal circumference of the cell. The three angles juft mentioned are commonly right angles; and when they are pierced with a needle, that is, if every angle of the foundation be perforated, fo that each cell is pervious by three apertures or holes, then thofe three apertures penetrate on the other part into three diftinct cells. It appears moft evident from this palpable argument, that a cell
cell is founded always upon three other cells, and therefore has a common divifion with them; for none of the cells is circumfcribed by any limits or partitions peculiar to it alone, fince all things are common between the Bees as between brothers. If the edifice be irregular it fometimes happens that one angle of a cell refts, or is fupported on a fourth cell : this does not happen frequently, though I have lately obferved it in a work that was pretty regularly built.
The foundation of the cells is placed in the middle, and the cells on every fide reft on this foundation, which is commonly like a wall, perpendicularly extended from the upper towards the lower parts; and then on each fide againft this kind of wall are placed cells lying obliquely on their fides. Suppofe fome empty ale or beer glaffes to be piled upon each other againft the fide of a thin wall, and you will in fome meafure underftand the difpofition of thefe little cells: fix, eight, or more fuch walls, furnifhed with cells, are fometimes found in one hive, and they are always placed at fuch a diftance from each other, as to afford the Bees an eafy paffage between them. But, left thefe combs hould fall down when they are full of honey, the Bee-keepers fix little fticks in the hives when they are empty, about which the Bees form their works of wax.

All thefe cells, as well as their foundation, are formed of a continuous, but not contiguous, matter, fo that all things are continued, nor can the cells be feparated from each other by any artifice, but by breaking or cutting them, whatever fome might have erroneounly imagined, thinking that every Bee built its own refpective cell. Of this matter we Chall treat hereafter more at large in its proper place.

If the whole edifice be regular, then five of there little cells make exactly an inch, and fifty-five an Holland foot. Hence a French gentleman obferving this, and imagining that thefe cells were conftantly built after the fame rule, thought he had difcovered an everlafting meafure, which as it could never be deftroyed might be introduced among all nations. This invention would be certainly confirmed, and its importance proved, if thefe little cells were always fo exactly conftructed, and the combs in all nations were conftantly of the fame magnitude ; but with us the combs are not always fo exactly regular as is commonly believed, though if we view the cells only curforily, they do not feem to differ a hairs breadth in meafure from each other. If any one compares them accurately one with another, he will fometimes find them irregular ; efpecially when they are made by the Bees in fuch a manner, as to fit them only for receiving the honey. The three parts of the foundation of the cells that tend obliquely downwards are ufually fquare, but they are fometimes oblong, and fometimes of a rhomboidal figure; nay, I have oblerved that fome
of them were longer or fhorter than others, and were alfo fometimes narrower and fometimes broader. Nor does every little cell reft conftantly on three cells, but fometimes on two and an half, and fometimes on three, and a.part of the fourth. Moreover, thefe entire cells are fometimes twice or thrice as long as ufual, and they are likewife fometimes crooked or finuated, altogether like the cells of Hornets, which are commonly fomewhat crooked, becaufe they are extended little beyond their foundation or center. Bees never build in this manner, unlefs when very great plenty of honey offers to be gathered, for then I have feen cells full of honey, fealed up and fufpended like large lumps of earth in the hive.

In regard to the cells of the female Bees, erroneoufly called the kings, and the parts where they are joined to others, confiderable irregularities frequently occur; though all of them viewed curforily may feem alfo to be very regular.

We mult further obferve, that the Bees never build their cells feparately, that is, fo as to perfect one before they begin another ; they always enter upon building a great number of cells together with their foundation at one and the fame time. In the beginning of the work, they lay that hollow triangular foundation which bends down obliquely, and terminates or gathers itfelf in acutely; then they conftruct the lower and hexagonal or unequal fides: fo that in one and the fame hive, may be feen at the fame time, the beginning of the foundation, and the rudiments of the hexagonal divifions of the cell on one fide, and the fame cell on the other fide, raifed higher on the fame foundation, and other fides again but juft begun and rifing. Moreover, in regard to this building of the cells, a very wonderful and artificial direction or management of the Bees is to be mentioned. This they put in practice when the rifing hexagonal. fides of the cells are very thin and weak; and when they have a mind to leave fuch cells imperfect for fome time, which is the cafe when the female, in order to lay her eggs, goes to another part of the hive; as I fhall explain more at large hereafter. When this happens, the Bees firf fortify all the edges or borders of the hexagonal and imperfect fides, left they fhould be broke or bent in the mean time, which might eafily happen by the frequent running of the Bees over them. They therefore furnifh the fides of the imperfect cells with a margin or border glued thereon in the upper part, and prepared of a thicker and more folid fort of wax, and they put this waxen border on the extreme circumference of the hexagonal fides, fo that, by this means, the hexagonal figure of the cells, which was beginning regularly to fhew itfelf, is again in a manner obfcured. They fometimes alfo border the cells that are finifhed and perfected; from which this further good arifes, that when fuch cell is to be afterwards clofed up, there is no neceffity for fo much time or
wax. The Bees, therefore, ufe the fame precaution in refpect to their imperfect cells, as if any perfon fhould cover the extreme edges or borders of the tender and broken fides of a glafs cup with fealing wax, in order to ftrengthen it and handle it with lefs danger.

The cells of the males are one third lefs than thofe of the common Bees, but they are made in the fame manner; and they are commonly placed in the loweft part of the comb; for they are built after all the other cells are fininhed; fometimes there are three hundred, four hundred, or even more of thefe in one hive, but often fewer. The Bee-keepers attribute the fmaller number of thefe cells to the drynefs of the year, and the greater number to plenty of rain in the air: hence they fay that a great number of males in a hive is a fign of a very wet year. But thefe are mere fancies, arifing from a notion, that the Bees, when the feafons are dry, are intent only on gathering honey ; and, on the contrary, in wet feafons, mind principally generation, but though thofe perfons have kept Bees fifty years, they underftand nothing of the bufinefs of their generation, nor do they know what fort of a creature the breeding Bee is, for they call it the male. I would not have it underftood here, that the number of the cells which I exhibit is abfolute and exact, for I have made the calculation in general from their numbers; nor have I even, very accurately, counted them all.

There are fometimes thirty female cells found in one hive few are perfect, but a great many unfinifhed ; their ftructure is not regular, but they are for the moft part oblong, and roundifh, and fomewhat pear-fhaped: fometimes they are confiderably ftraighter, and havea lefs fwelling than a pear, but others again are fomewhat more globular. Their external furface is unequal, rough, and marked or diftinguifhed by little holes and exuberant prominences, and is conformed only to the figure of the comb. The infide of the cells of the common Bees has a very fmooth and polifhed furface; but thefe differ again from them in that they form a cavity like that of a bottle or a fcooped pear; from this fhape, they are very capacious, and furpafs in bignefs the cells of the common, and thofe of the male Bees. The females therefore have a much larger fpace than the other Bees to turn themfelves more freely in their cells; the reafon of this difference I fhall explain in its proper place. The cells of there females are ufually, nay, almoft always fituated near the borders and prominent extremities and edges of the hive, and are feldom found placed in the center or in the middle between the other cells; all thefe particularities tend to certain ufeful ends, and therefore the laws of making them were not impreffed on thefe little creatures without defign, by the moft wife Creator. I hall now endeavour to illuftrate with figures what I have hitherto related. The firt figure,

Tab. XXIII. exhibits a regular hive of common Bees, as it prefents its hexagonal and regular fections to the eye, when viewed in the upper fide ; nor could it be poffible to delineate there fections, without the affiftance of fome new-invented lines; which being allowed, it is then eafy to defrribe the fections, for which reafon I here delineate fome of thefe lines. The fecond figure under the letter a exhibits three fingle cells of the common Bees, broken from the reft of the comb, with their triangular bafis running down obliquely. The letier b reprefents one cell only, entirely feparated from all the reft; in this, befides the obliquely defcending triangular foundation c, are likewife feen under the letters $d d$ two unequal or uneven parts or productions of the hexagonal fides. Now if you fuppofe this cell b placed on the cells a; it will follow that its three oblique angles agree with the three angles of thefe cells, and are fupported by them. The third figure fhews a little cell cut through the middle, in which may be feen the triangular foundation and the fix fides; one of them is formed out of the oblique angles, as appears at the letters $6 b$. Moreover, fig. Iv. fhews fifteen little cells, cut on each fide, between which a part of the triangular foundation, which runs obliquely, is plainly feen in each cell. It is here alfo evident in what manner thefe cells $a b$ are built upon the fame foundation d whereon the cells of the other fide reft c. Again, the letter d very exactly reprefents the the triangular foundation, which runs in obliquely, as it really is feen in nature. The fame is likewife delineated under the letter g between the cells of each fide, but it is here divided by a fection which paffes through the two angles. The letters $f f f f$ exhibit two long fides of the cells; but the letters eeee the two fhorter fides. For every cell, as I have obferved before, has in its lower part three longer and three fhorter diverging fides, which in the upper part are of an equal length.
The fifth figure which follows next, reprefents fome cells of the males, which are a third part larger than thofe of the common Bees. In order to render this difference the more confpicuous, I have delineated them fomewhat larger than they really are. Between each of thefe cells is feen that triangular obliquely diverging bafis, each of whofe angles agrees with the defcending fides of the cell. But I have not delineated the cells that are builk on one fide of this bafis, becaufe it did not feem neceflary. To the upper part of thefe cells is obferved to adhere a pear-hhaped lodgement of the nature of a cell : this is defigned for the females. It is irregular in the upper part, and is adorned as it were with depreflions or little holes, here and there impreffed on the wax.

If the cells hitherto defcribed have been lately finifhed, and have not yet any honey, or Bee-bread, or eggs, or Worms, or riper iffue in them, in that cafe their fubftance is genuine virgin wax, which has no foulners among it,
and may be all melted. On the contrary, tho wax that is whitened by bleaching, and which is fold in the fhops by the title of virgin wax, has nothing but the name, fince it lofes a great part of its frength by being adulterated with powdered talc, and bleached in the fun.
The honey likewife which is collected pure in thefe virgin cells, and flows again out of them fpontaneoully and wilhout preflure, is pure virgin honey, better and more perfect than any other honey whatfoever.

It is feldom obferved, as the Bee-keepers fay, that the cell of a female is joined to the cells of the males: but experience has taught me the contrary of this, having in my pofferfion at this time a fpecimen, in which the cell of a female is built adjoining to thofe of the males. As many others, fo this error had its origin from that imagined regal dignity, which they have wrongly afcribed to the female; for from this the notion was eftablifhed, that the favour of coming fo near to the king was too great to be granted to the drone. But the accefs of the drone to the queen is fo neceffary, that flie cannot be impregnated unlefs the be firt familiar with, and affifted by the fpermatic virtue of the drone, who is the true and only male.

All the families of the tripple kind of Bees would therefore periih, unlefs there were this intercourfe: fince what is erroneoully called the drone is the real male Bee, and therefore does not claim to himfelf a lower place in the hive than the queen herfelf the female parent. To this may be added, that the drone is more tractable and mild in its conduct and difpofition than the two other kinds of Bees, for it employs. its whole time in the labour of love and procefs of generation; nor is it armed with a fting as the others, nor to be dreaded for its mifchievous qualities.

To conclude, how do the Bees make thefe cells? and by what art do they build them in fo ftupendous a manner, fo regularly, that they cannot be fimply or plainly delineated but with great labour, and by the intervention of fome new fpecies of lines, and not even then without committing great errors? He furely who fees all things, and promotes the generation of the wild herds; He , and IHe only knows this. I fhould think this matter may be probably inveftigated and brought to light, if any one would labour at it with the needful diligence and attention : nay, I am confident, that I myfelf could fucceed in the inquiry, if I had an opportunity of feeding the Bees for fix months, and enjoying the peaceful bleffing of a country life. However this matter may be, I confefs myrelf now as ignorant thereof as all others. However, I firmly believe, that the Bees make ufe chiefly of their teeth for this bufinefs: hence the common Bees which alorie build all the cells of the hive, have much larger teeth than either the females or the males; nay, the males have fill fomaller teeth than the females, and probably the males have them for no other pur-
pores, but to bite open their little cells when they are come to full maturity therein, or to open thofe filled with honey when they want to eat. Wherher the legs of the Bees, between the claws of which a fingular kind of foft matter is produced in knobs, contribute in any meafure to perfect and elaborate the wax, I am likewife hitherto at a lofs to difcover. Yet I fcarce doubt, but that humour which paffes through the fting of the Bees alfo conduces fomewhat to prepare the wax, and fit it for building the cells. It would be worth while to examine all thefe points more accurately. It is very wonderful to fee how inftantaneounly the Bees, when they are offended, emit al! their poifon through their fting. This poifon may be feen at the end of the fing, and is like a little drop of crytal. But if this little drop, while ftill adhering to the extremity of the fing, be fuffered to grow dry, it then remains pellucid and concretes, and is like the boiled cryftaline lens of a fifh's eye; it is therefore very eafily condenfed by the circumambient air.
Since I am treating of the wonderful induftry of this little creature, which, however, is not more remarkable than that which all other infects fhew, according to their refpective difpofitions, I cannot help here mentioning, to the glory of the great Architect and Artif, he wonderful works of a certain infect, the external form of which has been very clearly defcribed by Goedaert in the firft part of his Nat. Metamor. Exper. x. This infect is the nocturnal Butterfly or Moth, which glues its eggs fo ftrongly and firmly in the form of a circle to the branches of trees, that they make an impreffion upon the bark, and often prevent the increafe of the branches. What occurs here very extraordinary is, that the eggs of this infeet are formed in the fame manner as thofe hewn fones, which are adapted to build the arches and roofs of houfes, and have one fide narrow and the other broad, that they may be the more exactly joined together, and conflitute one firm arched form. They may likewife be compared to the lines of a circle drawn from the center to the circumference, which are the nearer to each other the more they approach to the center, and diverge towards the circumference. In this manner has the fupreme Architect, the Almighty, formed thefe eggs, which are artificially and in a fpiral curvature fo ftrongly glued together, and affixed to the tender branches of trees, by this infect, who for that purpofe walks many times about the branches, that they cannot be loofened by rain, or any other liquid that I have yet applied. Out of thefe eggs, which, according to the accuftomed order of nature, by which the egg of the Butterfly is only a Worm inclofed in its fhell or cafe, fhould have produced Worms or Catterpillars, I have feen Flies wonderfully fimall, immediately iffuing in their perfect fate. This obfervation feems to me to be the moft extraordinary of all in this part of natu-
ral hiftory ; and therefore, I hope I haall, with the affiftance of God, at fome time write a particular treatife thereon. I have here given the hiftory of this ring of eggs, becaufe it will be hereafter made ufe of in its proper place, and produced for the fake of illuftration.

I hould never conclude this part of the work, if I attempted to exhibit the defription, induftry and art of thefe creatures, or to give but a rude delineation thereof. I cannot help mentioning here, the fingular skill and addrefs, not indeed of an infect, but of a fanguiferous animal, that is, of a young houfe Dog which I keep. This creature is afflicted with a running ulcer or fiftula, which is fituated fo high at the lower part of the eye, that his tongue cannot reach thither to lick it. Therefore this creature follows a remedy happily invented and difcovered, as it were, by reafon, and applies it to this evil ; it firft wets its foot with its fpittle, and then rubs the moifture with wonderful dexterity over the ulcer, endeavouring to cure it in this manner: nay, when the mouth or orifice of the fifula has at any time clofed, the creature rubs it fo long with its foot, that the furface becomes very red like blood.
To return to the Bees. They are about the beginning of Auguft inflamed with fo much hatred againft the males, that they unmercifully and for no crime kill them : whereas, at the end of May, and fometimes fooner, they build houfes for them, carefully nourifh them, bring them there, and take all poffible care of them. I fhall afterwards endeavour to explain, in its proper place, the reafon of their changing this love into hatred; fince I have refolved to compofe this hiftory to the glory of God alone, without any other view.
Before I proceed further in this refearch, I fhall defribe the male, female, and common Bees together, and compare them one with another as to their external parts, beginning with the common Bees, which are moft eafy and familiar to be known, and which have been at one time or other feen and handled by every perfon. In the common Bees as well as, in all the other kinds, we are principally to obferve the twelve divifions or rings of their body; five of them are placed about the head and thorax, and that flender and delicate part which connects the belly with the thorax, and the other feven in the body.
The head of the common Bee is oblong, fomewhat rounded above and fharp below. The head of the male is throughout of a rounded form, and that of the female Bee is oblong.
The eyes in the head of the common Bees are of an oval or lunated figure. They are of the fame form in the males alfo, but they are two thirds larger than thofe of the common Bees: this deferves to be well regarded. There is fomething like this in the Ephemerus or Day-Fly; the eyes of the female Bees are fomewhat larger alfo than thofe of the common Bees. The eyes of thefe three fpecies of Bees
are covered or furrounded with briitly hairs, and are feparated from each other by in number of the like hairs. Thefe hairs are twice, nay thrice as long as the diameter of the little fpheres into which the eyes are divided. The fame thing is likewife obferved in other infects. In the upper part of the head fomewhat higher thian where the hairs juft now mentioned are fituated, we likewife difcover many fmall fea-ther-like liairs in the common Bees, and nearly in the fame part alfo, three peculiar little eyes. Thefe feather-like hairs are not found in the males, for their eyes are extended fo far in that part that they touch each other. And this is alfo the reafon, that three of their eyes in particular are fituated much lower than they are in the common Bees, and juft above the horns. The female agrees with the common or working Bees in thefe particulars, that her eyes are feparated in the fame manner from each other, and there are three peculiar little eyes likewifé placed in her head in the fame manner.
All Bees have two horns or antennæ. Thofe in the working Bees have only five joints, but thofe of the males have eleven, and thofe of the females the fame number. The firft joint, where the horns rife from the head, is oblong in the common Bees, but in the males it is fome what fhorter, and it is again fomewhat longer in the females. In the common Bees there is a fmall quantity of fhort hair, under the horns, but the hair under the horns of the males is more in quantity, longer and feathery; in the females again it is obferved to be like that of the common Bees.
Above the teeth in the common Bees is feen a remarkable kind of horny or bony lip, which is not fo obvious in the males; but it is found in the females in the fame manner as it is in the working Bees.
The common Bees have two long teeth, the males have very fhort and fmall ones; thofe of the females are fomewhat larger than thofe of the male Bees, fo that they hold as it were the middle place.

The probofcis is very long in the common Bees; in the males it is fhorter by one half. I have hitherto miffed the opportunities of examining it in the females.

The thorax is roundifh in all the kinds of Bees, and in the upper fide of the hinder part it is provided with a fomewhat prominent border or margin. In the common Bees this thorax is covered with thin feather-like hairs: in the males thefe hairs are more clofe fet together, and thicker, but not quite as long; they are alfo of a more gray colour than in the common Bees and females. The females have a lefs number of thefe hairs than either.

All the kinds of Bees have four wings. Thefe are longer and broader in the male than in the common Bees; but in the females, though the wings be longer, and probably longer than even thofe of the common Bees, yet they feem flhorter, becaufe the lower part of the female's body is vaftly larger and longer
than
than either of the others, in order to give room for the eggs.
Each of the three kinds of Bees makes a noife by the motion of its wings, which is increafed by the internal air propelled out of their bodies through the air tubes at the fame time; for fome of thefe pipes open with wide apertures under the wings. Certain cavities alfo, fit for receiving and vibrating the air, and formed under and between the wings, contribute to this. Nor muft the fhoulder-blades be excluded from their fhare in this mufick, they being placed juft above the wings, joined to the thorax, and having under their breadth the gaping orifices of feveral air-pipes. It is thus the motion of the wings, with the affintance of all thefe parts, and by the force of the propelled air, make the humming noife peculiar to that infect.

All Bees are provided with fix legs, each of which confifts of nine joints; the thigh has three of thefe, the leg two, and the feet four. In the common Bees the hinder legs are broader than the fore ones; but this difference is not fo remarkable in the males or females. On the fifth and broadeft joint of the hinder legs, which is the firft joint beyond the thigh, the common Bees on each fide carry wax, or the Bee-bread, collecting it into a heap at the outmoft fide of the leg, for there the leg is not fo hairy as on the inner fide. In that part alfo the lower, and near the next joint of the leg, are placed fome briftly and almoft horny hairs which are neither found in the males, nor are fo diftinctly vifible in the females. The third or laft joint of the leg is longer than the two former, but the two next joints are fmooth and fomewhat broad, and thofe are clofely covered on the infide with fine feather-like hairs. The leaft of the four joints of the legs is alfo fomewhat broader than the three former; and in this part are inferted ftrong mufcles, defigned for moving the claws of the feet.

The feet are armed with two larger and two fomewhat fmaller claws; but the fmaller are as it were jointed or articulated into the larger.

Between the claws of every foot is feen a very foft matter, of a membranous texture, from which, when wounded, there flows a clear liquor. The Bees in walking can at pleafure turn out this tender part of the foot, and therefore I hould think, that having drawn back the claws of their feet, like Cats when they are playing, they are able in this manner to run over their young brood, or over the new formed wax, without doing the leaft hurt to either.

The four hinder legs are placed at the lower and hinder part of the thorax, the two others are fixed to the fore part. And this is the rea-
fon why thefe two fore legs, when you take the head of the Bees from the body, are feparated together with that, and remain with it, being fixed to it as it were by a kind of ligament.

In the common Bees the feven laft rings of the abdomen are of a blackifh brown: in the males they are yellowifh, as they are likewife in the females, but more efpecially about the lower part, for there the rings of the abdomen are almoft all yellow; and this is the reafon the queen Bee is faid to be of a golden colour.
The fting, which in the common Bee is protended ftraight from the body, is wholly wanting in the males, and in the females it is bent *.

The common Bee is little more than of half the bignefs of the male, the female is alfo fmaller than the male or drone, but it has a much flenderer and longer body, in which, as well as in bulk, it confiderably exceeds the common or working Bees.

The colour of the common Bee approaches to an obfcure yellow; the males are fomewhat grayer, and the body of the females is more of a gold colour.

The parts of the Bees hitherto mentioned are almoft all hairy or fhaggy, and when they are viewed with a microfcope, we obferve that thofe hairs are in reality very beautiful feathers, as is fhewn in Tab. XVII. fig. viII. This Thall be explained afterwards more at large.

The common Bees may be confidered as natural eunuchs as it were, belonging to neither fex; though, however, with refpect to their ftructure and difpofition, they approach nearer to the female than to the male fex. The males have very confpicuous and large genital organs. The females have an ovary, and in it an infinite number of eggs, as I fhall defcribe in its place. But the common Bees are not furnifhed with either mafculine or feminine genital parts.

As to the internal parts of the Bees, the three fpecies have fome common to each of them, and others peculiar to each. The internal parts common to all, are in the head, the brain confifting of the cerebrum and cerebellum; the beginning and globular dilations of the fpinal marrow, which thence pervades the whole body from one extreme to the other; and laftly, the nerves iffuing as well out of the fubftance of the marrow, as from its dilated little knots; all which I have defcribed and delineated in the diffection of the male Bee. The internal ftructure of the eye is alfo in general the fame in the three kinds; the tunica uvea, the inverted pear-fhaped fibres; and the cortical fubftance which performs the office of an optic nerve, are very little different in

[^39]either. This I have likewife exhibited in the figures of the male Bee. In refpect to the mulcles and nerves of the probofcis and jaws there is no difference. In the thorax each of the three kinds fhews the mufcles of the wings and legs, as alfo many pulmonary tubes and fome fat; fome of this is likewife found in the head. In the body is feen the continuation of the gullet, which defcends thither from the mouth through the thorax : we may likewife perceive there the ftomach, the fmall and great guts, and fome valves; we diftinguifh alfo fix peculiar glands, placed between the inteftines, as I have defcribed in figures in the common Bee. The lungs are alio very particularly feen in the body, as are alfo their dilated bladders and branching pulmonary tubes; all which I have likewife delineated in the common Bee. The heart, together with its dilations and the pulmonary tubes which run all over its furface, is in great part alfo placed in the abdomen, though it may in part likewife be feen in the breaft and neck, as I have delineated in the female. In fine, a great quantity of fat is alio found there, and we perceive fome membranes and mufcular fibres fituated under the rings of the abdomen, and defigned for moving thofe parts ; as alfo fome fmall pulmonary tubes which pafs through thofe parts. I have reprefented all thefe in the female Bee, and they are common alio to all the three kinds.

The internal parts peculiar to each kind, are, firft, the genital organs of the male ; that is, the internal horny little bone belonging to thofe parts, the penis, the tefticles, the rafa deferentia, and their dilatations, the feminal veficles, a peculiar fmall part that is cut into five divifions a pear-fhaped little part, and two appendages which terminate in a point. In the female are likewife feen the parts that ferve for generation ; the ovary, the oviducts with their divifions, the eggs, the pulmonary tubes appropriated to them, the two trunks of the womb, through which the eggs are conveyed, the neck of the womb, and the bag containing a glutinous matter.

The following parts are peculiar in the common Bee ; the fing and its poifonous bag, with its tubes iffuing as well out of the fore as hinder part thereof; the cafe of the fing, and alfo its fupports, cartilages and mufcles, none of which parts are found in the male.

By this general and particular comparifon of the three kinds of Bees with each other, it is feen that the common working Bees approach nearer to the nature and difpofition of the females than of the males; fince the external and internal parts in general, as will be made plain hereafter, agree in both : excepting only that the common Bees have no ovary, and therefore, like women who have lived virgins till ther are paft child-bearing, ferve only the purpore of labour in the oeconomy of the whole body. Thefe are thus by nature rendered incapable of doing any other bufiners but that of nourining and educating the young
offspring, building the little cells for the Worms of the females progeny, and providing food for themfeives and thefe their brethren, that they may have wherewithal to live in the winter feafon, and at all times in rainy and ftormy weather. The female, on the contrary, and the males do nothing of all this; for the female lives in the hive for no other purpofe, but to depofit, as occafion offers, her eggs in the cells: and is is the bufinefs of the males to impregnate thofe eggs before they are calt out, whilf they fill lie in the ovary of the female : this they do during one whole year, that is in the time between the two fwarms.
For thefe reafons the common labouring Bees maintain the males and females with plenty of honey. But as foon as this feafon of generation is over, and the males having performed their duty, the labouring Bees kill them as being entirely ufelefs and unable to do any more good, though they might have lived longer. I could wifh indeed that I had an opportunity of inveftigating this matter more exactly, and trying whether or not I could keep a whole hive, containing only males and one female for an entire year. This is indeed much to be doubted, for experience fhews that many Bees die fonontanecully, and without any violence, about the time of this univerfal flaughter. Sometimes when the female is unfruitful, or of a bad conftitution, or when there is too fmall a number of Bees, or there are two females in the hive, the Beekeepers fay that the males are fometimes found to live till the winter is far advanced: but they never continue to the beginning of fring; which, whether it is to be attributed to the natural fhortnefs of their life, or whether they are then deftroyed by the other Bees, is not hitherto fufficiently known.

From one female, which is the only one of that fex in the whole hive, are produced all the three kinds of Bees, in nearly the following proportion, ten, twelve or fourteen females, fome thoufands of the labouring Bees, and laftly fome hundred males: more or fewer are occafionally found in the hives of each kind. I have defrribed another fpecies of infects in my general hiftory of the infect tribe: the males of which is winged, but the female has no wings; which is alfo a wonderful kind of wedlock. The omnipotent God has been pleafed to join feveral males to one fermale in this family of the Bees; whereas on the contrary among domeftick fowls, and in many other inftances, one male is fufficient for a great many females. This is likewife the cafe in many of the infect kind ; that is, that one male fhould impregnate many females. This is obferved with refpect to the males of Silkworms. But the female among the Bees is impregnated in a peculiar manner, merely by odoriferous effluvia.
Six days after the time of fiwarming, the young female Bee newly got out of her cell,
depofites
depofites her eggs in the new-built cells of the combs: the labouring Bees which attend the female during the fwarming, begin immediately at the very time when the hive is prefented to them, or as foon as they have chofen a convenient place for themfelves for, they have no guide or director, to make their combs; and the female doing her office as haftily, the frefh combs are in a very fhort time filled with her eggs: the female drops one egg into each cell; and what deferves great attention is, the female is fo expeditious in this work, that fhe does not regard whether the cells be only juft begun or perfected, or whether they have been built fome time. It is enough for her the obliquely deverging triangular foundation be laid ; there the immediately drops in her eggs, and the labouring Bees, which, for this purpofe continually attend the female at that time wherever fhe goes, witerwards further perfect the unfinifhed cells. To execute this work, they are ftimulated with an extraordinary folicitude, love and induftry, imprefled on them by the fupreme Creator towards thofe tender eggs, which are to afford the offspring of the Bees, as towards their natural brethren. We muft particularly obferve, that the earneftnefs wherewith they undertake the care of bringing them up, is not extinguifhed in them; though the female be taken from among them, as I thall explain in another place, where I fhall alfo demonitrate that the whole fociety of Bees regard not any thing elfe but only propagation and rearing of their young; nor is there any other government whatfoever, nor any election, or any politic or œconomical difcipline or order among then. The moft wife, and all and every where adorable God, has implanted fuch ingenuity and wifdom in thefe infects, that they can bring up their iffue and prepare habitations for them, which the fame moft powerful Creator has not been pleafed to give to other creatures; whereof, among the reft, the Silkworms may be an inftance; and it may be evidently proved that the cohabitation of Bees has no other end but to perpetuate their fpecies; and thus, by the help of an exact order of production, to perpetuate their continuance.

From thefe confiderations it therefore follows, that among Bees there is no wifer regulation than among domeftic fowls; for they have their natural defire to fit; they make nefts, and nourifh their young, being compelled thereto by fuch laws as they cannot avoid nor fupprefs by any rational principle; becaufe they are impreffed on them by the eternal law of natures. Thefe little infects are under as great necefity to perform all thefe actions, as the winter is to follow the fummer. The only difference among the feveral kinds is, that fome execute thefe functions in a manner more convenient, more orderly, and more agreeable to reaion than others. This appears chiefly in the Bees, and hence there is no authority for the prevalent and common
opinion that the government of Bees is carried on with the fcepter of prudence and judgment, under law, and with rewards and punifhments : for in truth all that order which we fo much, and not without reafon admire, is impelled by nature, and is only defigned for the propagation of their fpecies. But we murt not for this reafon deny, that the Bees in performing their work, difcover and exert the appeazances of wifdom and the moft prudent counfel; for the facred writings teach us, that God has deprived thofe creatures of reafon, to whom he has not thought proper to commit the care of nouriming their young. This office is not granted to the Bees only, but is given to the Hornets, Wafps, to humble Bees, and to Ants; which, as well as all other infects, would doubtlefs have perifhed as foon as they had laid their eggs, unlefs they had the care of educating their fock committed to them : for which reafon it is neceffary they fhould live fomewhat longer.

Behold! God fhews himfelf fo fupendous in thefe fmall creatures, that I fhould almoft prefume to affirm that the ineffable miracles of God are fealed up as it were in the hiftory of thefe infects. But thefe feals are at length opened, when we diligently perufe and often read over the book of nature, and natural theology, wherein the invifible things of God are explained to the eyes; then treafures of miracles which no tongue can worthily defcribe prefent themfelves, and the unfeen Creator becomes fo manifeft in thefe his fmalleft creatures, that the experiments I have made on them are to me the ftrongeft and moft irrefragable arguments, by which I conftantly maintain his eternal Godhead and providence againft all oppofition. Atheifts allow only a fictitious putrefaction, and a metamorphofis, invefted in their own brain, and the fortuitous conflux of atoms; by the help of which they affert, indeed with very weak and forry arguments, that thefe creatures are produced; whereas, on the contrary, the limbs and parts of thefe minute creatures are conftructed with greater art than thofe of the largeft animals. The Loufe or Mite itfelf proves a deity, and the majefty of God is as fupendous and worthy of admiration in the minutenefs and fmallnefs of that creature, as in the unwieldy ftrong Leviathan : thofe who view him in thefe his works cannot but reverence and adore him. God himfelf fpeaks to man in this glorious manner in the magniticence of his works. And in what other thing can he be known but in his creatures only? Having named the Loufe, I fhall here add that the little part of that creature which is fo ele-gantly moved up and down in the body, is only the ftomach and the inteftines annexed thereto, which produce fuch an effect by the force of their periftaltic motion.

The eggs which are laid by the female Bee in every little cell of the comb, are oblong, fomewhat bent, and thicker on one fide than
than on the other; but they are throughout tranfparent, limpid, and bright, and are full it feems with a watery matter, and faftened by a very frall extremity to the wax. On the other extremity, therefore, the egg ftands upright in its cell, and it touches not the wax except at one end. After what manner there eggs are fo firmly faftened to the wax, I fhall explain in its proper place. We muft only obferve here, that almoit all fpecies of infects, when they are about to bring forth young, affix their eggs by fome means in that firm manner; whereof I can indeed exhibit many very uncommon inftances. Among others, I have eggs of infects difpofed in a ring, which are thus glued round the branches of trees; I have foine other eggs hidden as it were in froth: others again which are covered very thick with hair, and fo on without end. As to thofe eggs that are covered or befet with hairs, we muft obferve that Butterflies, which ftrengthen their eggs with fuch an integument, have thofe hairs originally fituated in the circumference of the hinder part of their body: and therefore when they bring forth or lay an egg, fome of thofe hairs naturally ftick to it, becaufe it is covered over with a vifcous moifture; and thus all the eggs become at length flaggy: the creatures themfelves become bald by this in the part juft mentiond, which is a very remarkable obfervation. Thus we may learn fomething worthy of attention from every part of God's works: for that Almighty power goes through all lands and tracts of the fea as well as the highert heavens.
When the eggs of the Bee have been hatched in the comb, then in the bottom of the waxen cell there is obferved a kind of web of a membranaceous texture, to which the egg afterwards adheres, or is firmly faftened.
But the egg is not always fixed in the fame place, that is, in the bottom of the cell ; fometimes it adheres fomewhat higher and again fomewhat deeper, according as the obliquely diverging cavity of the cell itfelf is varioully conflituted, or according as the hinder part of the female's body, can be moft eafily thruft into this cavity. However, the eggs are conftantly placed on the obliquely deverging foundation of the cell, though they do not always ftand perpendicularly upon it ; but fome more, fome lefs obliquely : for the foundation always defcends perpendiculariy, though the angles are fomewhat inflected.

If the egg of the Bee be viewed with a microfcope, it appears fomewhat wrinkled: but thofe wrinkles are regular, and are laid almoft in the fame order, as in the skin of Fifh after the fcales are off; which, the veftiges of the fcales being fill confpicuous, are yet diftinguifhed in a regular manner. Something like this is alfo obferved in the skin of Birds ftript of their feathers.

I fhould think that the hinder part of the enclofed Worm lies in the thicker extremity
of the egg, and the fore part in the thiner extreme. This Worm in fome days afterwards breaks open the membrane of the egg, and creeps out of it under the form of a crooked Worm, exceffive tender, and without legs. But in this Worm the divifions or annular incifions of the body are immediately confpicuous, nor does it ftand erect as the egg did, but lies on the foundation of the cell: the natural figure of the eggs may be feen in Tab. XXIII. fig. xi. for there fix eggs are delineated in their natural fize: they fland erect and oblong, are very flender, but fomewhat thicker in the upper part; as may be feen under the letter a, fig. xir. Under the letter b a microfcopic view of one of thefe eggs is exhibited, refembling the skin of a Filh new fcaled; in which one may fill fee the joints, feams, or impreffions where the fcales had ftuck. Further, I hew in fig. x. a little part of the comb, furnifhed with nineteen cells, nine of which are confpicuous with their erect eggs; four others contain fome tender new hatched Worms, which have caft their skin a little before; and laftly, the five other cells contain Worms fomewhat larger and more grown. I have cut off thefe little cells at one half of their heighth, that their triangular foundation on which the eggs fland erect, and which fupports the Worms, may be feen more diftinctly.

But I fhall proceed, and taking up again the interrupted difcourfe on the Bee's eggs: obferve, that they are, until the time of their being hatched, when a kind of very fmall Worm creeps out of them, left without the care of other Bees, and without any kind of fitting or incubation; though the contrary opinion has been hitherto eftablifhed, which appears to be likewife in fome degree fupported by experience. I fhould think, at leaft, that the Bees go often to vifit them, that they may know for certain whether or not the Worms are come out of them. But this they can likewife obferve when they follow the female wherever fhe goes. The little cell alfo, in which the egg is repofited, remains often to be finifhed afterwards; fo that in this cafe they may eafily know occafionally whether the Worm has crept out of the egg or not. But as the internal parts of the hive are very dark in refpect to our eyes, and the eggs with difficulty difcovered in the bottom of the cell, I fhould think it follows from thence that the Bees can fee as well in the dark as in the light, which is likewife the cafe with many other infects. The eyes of the Bees indeed feem much better accommodated for this purpore than thofe of any other infects whatfoever; as their ftructure will afterwards demonftrate. For the Bees do not fee by force of collected rays, by which the image of the object is painted inwardly on the eye; as is the cafe to demonftration in an Ox's and Man's seye, when the external coats to the uvea are firtt taken off: but the fimple touching and reflection of
the rays on the external furface of the eye, evidently performs the act of vifion in the Bee.
The incubation of the egg happens only by the heat of the external atmofphere, and by the heat which all the Bees enclofed in the bive, produce by their perpetual motion; for that bufinefs is performed here in no other manner than as it is with refpect to the eggs of Silkworms and other infects, which are hatched by the natural heat of the feafon only: fo that there is no'necefity for any Bees to have the care of this; nor are there any in the hive that have the office of fitting to hatch the eggs. It is therefore an idle imagination, from which the male Bees are called brooders, or hatchers of the eggs, and has been received only, becaule the nature of Bees has been hitherto unknown; nor has it been obferved by thofe who maintain this doctrine, that at every feafon of the year the Bees breed, and young juft hatched are therefore found in the hive before there pretended brooding Bees appear, which do not come forth but on the approach of a fwarm. Thus that error, at this time fo univerfal among us, arofe merely from want of obfervation. The ancients have likewife erred who called thefe Bees drones; and moreover, if we attend to what Goedaert relates of Bees in the fecond part of his Natural Met. Exper. 46, and which the learned Dr. de Mey aifo afterwards affirmed to be true in his annotations: we fhall clearly fee that the former, though he otherwife obferves a tolerable method, is; however, to confufed and void of all order on this occafion, that his narrative cannot be really called a detail of things, but only a difordered heap of words. He there confounds the humble Bees, Hornets and Bees one with another. For my own part, I efteem nothing in the works of Goedaert but the figures; though even thofe, notwithftanding that they have been drawn according to living fpecimens, have in many inftances very confiderable faults. But it is natural to men to commit errors, nor do I think myfelf free from them, and therefore we who follow the fame ftudies are obliged to affift and bring each other into the right way, but at the fame time remembring our own weaknefs, we fhould claim no fuperiority over others. But when a perfon will not fcruple to darken the truth on purpofe, in order to depreciate another, or to favour his particular opinion, he is unpardonable. It were much to be wifhed, that Goedaert had finifhed his own obfervations.

Thofe come nearer the truth, who, knowing more accurately the nature of the male Bees, called them the more noble kind, for they in reality live on the labours of the common Bees, and are at the fame time of a more generous, mild, and tender difpofition; but that the males exclude the reft of the, Bees from the act of incubation is ridiculous. The eggs of Bees evidently ftand erect, and they muft not nor cannot be without hurting them: fo far impofible it is to hatch them by fiting on them. 'To which may be added, that when
the egg is depofited in an imperfect cell, as is often the cafe, there is no place for the male Bee that is fuppofed to fit upon it, to reft its body, unlefs it fhould fop up the way, and be an infurmountable obftacle to the reft of the Bees; when they attempt to perfect that cell. When the egg is at length grown mature by the natural heat of the hive, then there is excluded from it a very tender and fmall Vermicle or Worm which did not want hatching, but needs now continual and perpetual nourifhment: and not only the males, but even the females alfo are incapable of this bufinefs. To this may be added, that when thefe Worms have eaten fufficiently, if they afterwards lie in a warm place, they are fpontaneoully and without the affiftance of any particular heat communicated by the Bees, changed into Nymphs, and then again into Bees. This I myfelf have experienced in my own chamber, with refpect to a great number of fuch Worms, fome few days after the beginning of September, before the nights began to grow cold. Nay, this ex-. periment fucceeded fo far, that in fome cells which I had opened, I already faw the eyes of the Nymph changing, and from a limpid or clear white, becoming of a beautiful but fomewhat pale purple. This is indeed the firft remarkable change the Nymph undergoes. I have likewife obferved the fame thing in the humble Bee defcribed by Goedaert under the name of the Apis.

We fhould particularly obferve here, that there is fuch a wonderful heat in the hives, even in the midft of winter, that the honey does not concrete or lofe its original fluid confiftence, nor is gathered into grains or cryftals, unlefs in hives in which the Bees happen to be fewer than ufual. The Bees, when they are fruitful, nourifh, cherifh, and warm their offfpring in the midft of winter, and preferve a mutual heat amongft each other. But I do not know that this is the cafe in any other infects, for even the Hornets themfelves, as well as Wafps, humble Bees and Flies, are all rigid and motionlefs in the winter ; and in all that feafon neither move nor change place, nor do they take any nourifhment, nor difcharge any fœeces. Something fimilar likewife holds in fome fpecies of the garden and other Snails, which, when they have been about that time cleared from all excrements, by continual abftinence become a cleanly and agreeable food.

The Worm of the Bee, excluded out of its egg in this manner, and ftript of its tender skin, muft be afterwards, as I have obferved, nourifhed and fed. But as it never, like the Worms of other infects which creep about, or are conveyed elfewhere, changes that place wherein it was firft repofited in its cell; hence this Worm wants a nurfe: of this laborious care and attendance the labouring or common Bees take the charge on themfelves, and nourifh, cherifh, and bring up this tender offspring, until, from a minute Worm, like a point, it is at length changed into a Nymph, and finally to a

Bee by accretion, and when arrived to this flate, it is no more increafed in bulk. The Bees indeed daily procure and provide food for there Worms, with as much labour and folicitude as birds do for their young. And it is neceflary that it fhould be fo, fince the Worms of the Bees do not ftir out of their cells till they are nourifhed fo far, that, acquiring the form of a Bee, they increare no more. This is common to all infects, whether they are brought forth finall or larger, they never increafe further when arrived at this flate. Nay, this law is fo univerfally eftablifhed among infects, that after they have acquired their laft or moft perfect form, which they retain for life afterwards, they always remain finaller or larger in their feveral kinds, in proportion as their Worms have by force of nutrition increafed more or lefs while in that fate.

However, it is necefliary to obferve, that it is not honey with which the Worms of the Bees are fed; it is indeed another and peculiar fubftance ; it is of a white colour refembling the white of an egg when it begins to harden, or a white pafte made of flower and water; ;it is fomewhat thicker than honey, and is of fo mild a tafte that it fcarce affects the tongue. From whence the Bees obtain or bring this food, or whether it be honey which is firft changed in their own ftomach or probofcis into this form, and which they afterwards caft out, as is ufual with Pidgeons and other birds, which give a half digefted food to their young at firft, I have not hitherto difcovered. Be this as it may, the Bee-keepers who regard nothing but gain, and have no knowledge in any thing elfe, tell us fome idle fories on this fubject, though they fcarce know any thing elfe of Bees, but how much a year is to be made by keeping them. The moft fenfible of there people call that fubftance falival honey. Nor is it to be doubted but the Bees can, when they pleare, throw up the honey again. Clutius indeed confirms this by a very remarkable example, whereof Voffius makes mention in his treatife on idolatry. If the body of the Bees be gently fqueezed on the under fide, the honey will be preffed out again and make its way up through the trunk. But notwithftanding this, a doubt remains, whether the Bees difcharge that honey out of their ftomach, fince they can hide a great quantity of it in the cavity of the probofcis or trunk: probably the fame thing is the cafe here as in Pidgeons who difcharge a fubfance like chyle out of their craw. But though honey is collected, not made by the Bees, being firt prepared by nature herfelf in the parts of flowers, and is only taken into their bodies by the probofcis; yet I do not doubt but it is changed, digefted, and converted into durable and good food for the young, not only in their body,
but even in the probocis or trunk itfelf. This fubject it would be worth while to examine more furictly: may, what is here advanced is the more probable, becaufe we obferve, that the honey which the Bees gather from flowers is not always of one and the fame confiftence, but is found fometimes thicker, fometimes thiner, fometimes watry, fometimes aromatic in the flower, and therefore it is neceflary that it fhould be afterwards prepared by the Bee to render it all alike .
To return to the falival or difcharged honey. I remember that I have often feen a peculiar fubfance diffilling from willow trees, which I am inclined to think is very like this falival honey, and which Hornets, Wafps, the diurnal Butterflies and Flies all greedily feek after. It is particularly beloved by the Butterflies, which by fhaking their broad wings often drive away the Flies that then fit feeding thereon. It is fingular that I never faw Bees bufy themfelves about this matter, which they might have eafily carried into their hives to feed their young. When I further confider that the Bees in the midft of winter, and when they do not fly out, fill nourih their young, I have no further doubt of this matter, but am convinced that the flock of young Bees are nourihed with honey, thrown out or difcharged in a very fingular manner from the trunks of others, what-. ever the Bee-kepers fay to the contrary.

How long the worm of the Bee feeds, before it is arrived at the perfect condition of a Bee, and has legs, I am not able to determine. But if what the Bee-keepers have affured me, as a certainty, be true, that is, that the young fwarm may poffibly fwarm again in a month or fix weeks, then it would be no difficult matter to compute that time, and I fhould think that according to this calculation it may be completed in about twenty-four days in fummer. Thefe Worms, however, do not increafe in bignefs fo faft as thofe of Flies, for they are excluded out of a very fmall and tender egg, and have at firtt very little motion. We muft likewife confider in this matter the hotter and more favourable conflitution of the atmofphere ; for the temperature of the air only is fufficient to detain a Worm or Caterpillar in the bufinefs of its change, ten days beyond the ufual time. This I have often experienced. This is fo true that the change of a Worm into a winged infect, which in the middle of fummer is performed in the fpace of a month: is fometimes prolonged to eight or nine months; this happens principally when the preceding change happens in the laft part of the autumn; for if in that cale the winter cold comes on immediately after, the creature infantly becomes motionlefs, nor does it recover motion before the next year's hot weather comes, and

[^40]nourihment is ready prepared for it, and for its future offspring. This is alfo the reafon why feveral fpecies of infects do not die fo foon toward the end of the year as in the heat of fummer. Hence alfo, when the Butterflies of Silkworms are changed later in the year, they have fometimes remained alive with me for fix weeks after their laying their eggs, which is certainly a very fingular incident. So great is the effect of heat and cold on thefe little creatures, that the one feems to give them life and the other immediate death, for death is nothing elfe but the ceffation of natural motions. In the examples juft now mentioned, the life of thefe creatures is prolonged by means of cold, fince the ftrength of life, and the fluids on which it depends, are flower diffipated, by reafon of the flower motion. This is a fact that indeed deferves particular attention.

When the Worms of Bees are increafed to fome bignefs, they begin to fill the whole cell in which they were placed, and turn themfelves as it were into a globe, as a Dog does when he lies down to fleep; or, like that fpecies of the Woodloufe which turns itfelf round like the Hedg-hog. Now that I am upon this fubject, I remember a very remarkable ftory. One of our maid fervants had at one time found a great number of Woodlice in the garden, contracted intoround balls in the manner before mentioned, and thinking the had found a kind of coral beads, the began to put them one after another on a thread, but it foon happened that thefe little creatures, which roll themfelves up in fuch a manner only for fear of harm, and appear as if they were dead, being obliged to throw of the mask refumed their motions. On feeing which the maid fervant was fo greatly aftonifhed, that fhe threw away the Woodlice and the thread, and cried out, and run away.

If the Worm of the Bee is taken out of its cell about this time, there is found under it, in the bottom of the cell, a kind of yellowifh matter of a fomewhat thick confiftence. This is the excrement of the Worm.

In the mean time, whilft the Worm is thus increafing in bulk, I do not doubt but it fometimes, like other infects, changes its skin, but how often it does this before it arrives at full bignefs, I cannot determine. I have obferved that when this Worm cafts its skin, and is changed into a Nymph, its pulmonary tubes alfo, fituated in the body, change theirskin and throw out through the orifices in the body a thin pellicle. Indeed, it feems to me very admirable, that this change of skin is fo common to all infects in general, that even Lice themfelves and the minuter Mites undergo it: nay, Spiders and Locufts obey this law fo perfectly that they caft skins from their eyes, their teeth, and the very claws of their feet; even the horns are not excepted, which, though as theyare fmaller than a hair in the Locufts, yet they likewife caft a tender skin. The cruftaceous and teftaceous animals alfo, as the Crabs, Lobfters, and the
like, change their skins. I have likewife obferved, that when Scrpents are cafting their flough, a skin is likewife thrown off from their eyes, and the inner furface of the skin is turned outwards.

At length my curiofity went fo far, that I was not afraid to tafte and bite thefe Worms of Bees, in imitation of thofe, who, from a beaftly and depraved appetite, do not fear eating the Maggots that grow in cheefe, that is, that fpecies of Worms which skip or leap by bending their bodies, and again fwiftly extending them. The Bee-Worms are of a very difagreeable tafte, like that obferved in the pancreatic juice of fifh, and they leave a very offenfive or nauceous rancour like that of rufty bacon in the mouth. Of the fame opinion with me was the very experienced and induftrious Peter Adrianus, who had then come to make me a prefent of fome male Bees, and by his affiftance has alfo greatly advanced this hiftory. When thefe Worms are boiled, they have a fomewhat more agreeable tafte; but if one continues chewing them, the former tafte prevails again.

Before I proceed further, I fhall exhibit the Bee-Worms to the life, according to the various degrees of their bignefs, as they continue growing: the thirteenth figure ferves for this purpofe. The letter a, Tab. XXIII. fig. xiir. reprefents a Worm juft come out of its egg, $b c d e$ are Worms nourifhed longer and grown more mature; f and g exhibit others larger again and longer nourifhed, which are here reprefented in the fame manner as they lie in their cells: i expreffes the Worm on its back, and beginning to draw the hinder part of its body inwards, and to move its head languidly.

In the fame figure under the letter $b I$ have delineated the Worm lying on its belly. In the back of this is feen a furrow of a blackifh or pale blue colour: this line fhews the ftomach, which appears through the skin in that part, which I found to be all ftuffed with a yellow matter. In the fecond figure, under the letter a, Tab. XXV. fig. II. is exhibited a Worm, having attained its full increafe, which ftands up at that time in its cell, and fhuts it up entirely: after this it remains very quiet and without any motion in the cell, and begins to fwell at the $1 \mathrm{ft}, 2 \mathrm{~d}$, and 3 d annular divifions of the body, becaufe its hidden limbs, and other parts, which had increafed in bignefs under the skin, are now infenfibly fwollen with humours, and therefore difpofe the Worm to change its skin. This will be very diftinctly explained below.
If any one afterwards more accurately examines the Worm of the Bee, and views it with a microfcope, he will obferve, as I have fhewn in Tab. XXIII. fig. xiv. that it is compofed of fourteen annular incifions, a a a, including the head. In the head b are to be obferved the eyes $c c$, the lip d, two little partse e, which afterwards become the horns, and two other little parts $f f$, fituated under the former, which feem as if they were articulated and after wards grow into the teeth. Moreover, between thefe
two little parts, and confequently under the lip d, is prefented to view another fmall and fomewhat prominent or extuberant part g, which refembles a tongue or trunk; and this increafing by degrees, at length indeed conftitutes the trunk of the Bee. Moreover, there is fomething that hangs out of this little part above, like a fmall nipple, by which the Worm difcharges its thread to make the web, when it has eaten for a fufficient time and is going to be transformed into a Nymph. In fome other Worms I have feen befides the tongue g, the refemblance of a fmall and tubular probofcis, fituate in the middle between the tongue and the lip d, by the help of which the Worm can probably take in its meat. But I faw this laft mentioned tubular little part in the Worm, when I had firft preffed its body a little, and forced it forward, between my fingers, towards the head. Again, in other fuch Worms, I have obferved a horny or bony little part immediately under the lip. But thofe other little parts behind this did not appear fo diftinctly to me. We muft view thefe parts with a microfcope, and to that purpofe firft feparate and clear them one from another; for their colour, which is of a whitifh yellow, prevents their being accurately viewed together, and in order to fee them well one muft ufe a very powerful microfcope.

The two eyes of the Worm cc are of a tranfparent white, and are limpid, fo that they feem inflated as it were with a lymphatic fluid. In other infects the eyes are ufually brown, blackifh, green, red, blue, or yellowih; and in fome few of a very full or faint purple, that is, according as the tunica uvea in the internal circuit of the eyes is coloured. It is evident from this example that the eyes are not alike in all infects; nay, this diverfity with refpect to the colour of the eye takes place equally in the larger and fanguiferous animals: this I have particularly obferved in Rabbits, in which the whole tunica uvea has been placed at the bottom of the eye, and then feemed to me, for want of blacknefs, unfit in a manner to detain and collect the rays of light for vifion ; blacknefs, and even a deep brown, have this property, that they never reflect the rays of light that fall upon them, and for this reafon alfo black paper takes fire much eafier in the focus of a burning glafs, than that of any other colour, which reflects the rays. But the ways or means of divine providence, which can bring all things to one and the fame end, are innumerable. This I hall diftinctly explain in the following pages with refpect to the fight of Bees; and at the fame time demonfrate therein the omnipotent wifdom of God, from the eyes of there infects.

Between the two eyes, and not far from the lip d, occurs a part of a yellow colour ; nay, the lip itfelf and the tongue g are alfo yellowifh. In the extremities of the fucceeding horns ee there appears alfo a fharp pointed yellow and brownifh little part. But as all thefe minute parts are of a faint colour and are pellucid, they
cannot be diftinguifhed but with great difficulty.

In the other rings of the body, ten points of refpiration are obferved to be diftributed on each fide $b b b$, having no horny or bony parts of any other colour; as is the cafe in the Coffus, in Silk-worms, and in moft other infects. It is therefore very difficult to difcovet thefe points, on account of the whitenefs and general brightnefs of the Worm ; indeed no perfon can accomplifh his defign in this cafe, but by frequent and carefully turning of the microfcope to view the object in different lights. Thefe points appear placed in a kind of long fiffure or flit, and are fomewhat depreffed. The pulmonary tubes or branches of the windpipe, which are internally joined to thefe points, are of a clear or limpid white colour, and glitter like mother of pearl; and in fome worms which are not very fat, and have therefore a very pellucid body, they are feen alfo diftinctly through it; as is alfo, through the tranfparent body of the Worm, the ftomach, which in this Worm is ufually at that time filled with a yellow kind of matter like melted Bees-wax: the heart and fpinal marrow are feen alfo diftinctly through the body of the Worm, the former being placed in the back, the other in the belly.
This Worm has a very flow motion, and whenever it is difturbed, it draws its head and tail, or the pofterior part of the body, a little inward. But if it be dragged out of its waxen cell, and any violence is by that means offered to it ; then it will make other and more remarkable motions; for it fometimes twifts and bends itfelf forward, and fometimes again backward. But if it be not moved or provoked, it lies without any vifible or confpicuous motion ; nor does it ever go out of its cell, until it hath grown into a perfect Bee.
I hall now proceed tothe diffection of thefe Worms. The Worms of Bees, as well as other infects, may be diffected by the help of various contrivances, which I myfelf have often ufed : firt, then, I killed thefe Worms by different methods; I boiled fome of them in fpirit of wine ; others I fteeped in the alkaheft liquor of Glauber, and in divers other coloured liquors: all which I have done, the better to diftinguifh their internal parts, which are all of the fame colour. But thefe did not anfwer with the expected fuccefs, becaufe the Worms abound with fat. If the Worm be caft into firit of wine, all its parts melt as it were and become watery. The parts are too much condenfed by boiling, and in the alkaheft liquor likewife they are in the beginning too ftrongly coagulated, but afterwards they change or turn into an aqueous fat or greafe ; therefore the beft method that I know is, if one only fuffocates thefe Worms in firit of wine, and immediately afterwards prepare for the diffection of them. It is of

[^41]fervice likewife to macerate them in coloured liquors, till they become, as far as they are capable of it, black, red, or yellow; or they may be even leff to themfelves, that they may at length acquire a colour, by a fpontaneous corruption: by this means, when the changes are properly watched, fome of their parts fhoot forth to view, which otherwife efcape the fight, or at leaft cannot be viewed diftinctly enough. It is indeed the nature of this Worm to have its body of a perfect white, and confifting of parts not very eafily to be difcerned; hence arifes the vaft difficulty of anatomizing it, unlefs we ufe the method mentioned above. All thefe things, however, need be of no confequence, if one knew how to diffect thefeWorms when alive, which yet is not eafy to be done, fince its parts contract themfelves at that time moft frongly, and alfo are in their own nature moft extremely tender.

If the Worm be opened along the back, immediately there 'appears trickling out a fort of ichor or watery humour, gufhing from the wounded veffels, and from the heart. This is the real blood of the little Worm: after this are feen the mufcles fituated under the 隹in, which move the annular divifions of the body, and fome of which go into the very heart itfelf. Next is feen the fat, and among this, in the middle of the back, the heart fwelling out fhews itfelf; this is indeed a long pipe, running through the whole back quite into the head, out of which the veffels fprout branching to all the parts. This, however, I never obferved in the Worms I am treating of, but have frequently in Silk-worms. In the anatomy of the female, I Chall mention fome other circumftances about the heart: if we purfue this diffection further, prefently the fomach rifes to view, furnihed with numberlefs pulmonary tubes, which, being made up of fibres eafy enough to be difcerned, if it is cut, recedes very eafily from its internal coat. This to appearance is membranaceous, and is three times thimer than the fomach itfelf; this fame tunica, moreover, like the moft tranfparent kind of glafs, is perfectly clear, as well as moft equally fmooth, which indeed is found in other infects likewife, and more than all the reft in Silk-worms. In the laft Worms I diffected, this coat, or internal part of the fomach, was always fwollen with a fort of matter of a deep yellow colour, a little clammy, which not only filled the whole cavity of the ftomach, but in the back, where the heart is placed, was diftinctly feen through the heart and the body. In the Worms of Hornets, that inner coat of the ftomach fhews to appearance like a piece of net-work, the moft curious that can be feen, and is of a purple colour. In the lower part of the ftomach, where the pylorus lies, are four little veffels, through which there runs a matter of a yellow colour, a little inclined to whitenefs: thefe are firmly knit to the fat and air-pipes, and appear here and there through the fat, and winding about are carried over the body in wreaths; to me, indeed, it feems diffi-
cult to find out what kind of particles there are, for they do not appear to be like the faffron-coloured veffels, which the illuftrious Mapighius has defcribed in Silk-worms, being what I have found hitherto in all infects, though not always tinged with this yellow colour. Whatever be the cafe, after long and unwearied fearch I at laft perceive, that in their extremities, they, as the clofe guts or cæca of hens, are clofed up: to difcover this I ufe the following method, viz. with a fine forceps I take hold of the gut, or of the end of the fomach into which the veffels run, and then flowly and carefully draw them out from the fat and intwined membranes, and pulmonary tubes; fince they could not otherwife be difentangled without the utmoft difficulty. If thefe clofed veffels are macerated for a little time in fpirit of wine, then they appear as if they were covered over with glandules, which kind of glandules may likewife be obferved in other infects. I have called thefe in the Coffus faffron-coloured veffels. In Bees it is extremely hard to bring them into fight.

The fat alfo of this Worm, as in the Coffus, confifts of globules, and thefe very globules in fome meafure refemble the globules of fat in the Coffus; but the fat in this Worm I am treating of is not loft during its growing fate. Wherefore it may ftill be feen, after the creature is changed into a perfect Bee ; if this fat be examined more accurately, befides numberlefs more minute particles, there are likewife to be obferved in it fome little oily lumps, fuch as I have before reprefented in the fat of the Coffus; but the frructure of the fat cannot be more exactly examined, unlefs we view it laid on a very thin plate of fine glafs, a fingle microfcope being paffed between, right againft the fight. In the fat, which is mixed with extremely thin membranes, and with the pulmonary tubes, fome fmall particles are here and there feen, wrinkled and contracted, and fomewhat inclining to a pale purple, and in other parts nearly whitifh. Thefe are the beginnings of the air bladders, which afterwards in Bees are filled with air, and mix themfelves with the pulmonary tubes, to which they have hitherto but a flight cohefion; juft as the lungs in animals, that have not yet ufed refpiration, fo thefe air bladders are contracted in thefe fubjects.

On the oppolite fide, near the head of the Worm, there appear fome other veffels, which curl like the tendrils of a vine, in the fame manner as the clofed veffels juft defcribed; nay, and they are fo fimly braced with membranes, fat, and pulmonary tubes, that I have found it impoffible as yet to feparate them; whence I have alfo been unable fo accurately to difcover their ftructure. Thefe veffels are double, and at laft meet in one little tube, which, after that, fhoot on the outfide under the tongue of the Worm, and there become ftronger and tougher, and then fwell outwards in a kind of foft pimple, pervious by an opening : from this prominence a glutinous humour, the matter of the filaments,
is fent out ; fo that thefe veffels may be confidered as the parts out of which the Worm draws its threads. When the Worm, having taken fufficient nourifhment is foon afterwards to be changed into a Nymph, then by the help of thefe little threads it covers in its little cell, and at the bottom, and on the fides within, covers it over as it were with glue. I have feen in fome Worms likewife, that thefe tubes, not far from the part where they iffue forth under the mouth, have divided themfelves into two branches, which, however, as I have already mentioned, I have not as yet been able to trace further. In the mean time I believe, that they end in the clofed appendages, as is the cafe in filkworms. Whenever thefe tubes are pierced through tne middle, in that part where they meet in one little body, there iffues thence a glutinous matter extremely tough, and capable of being drawn out into long threads. The fame thing is alfo obferved in the glue of Silkworms, not yet drawn out in:o threads, and in other infects, and even in fpiders themfelves. This, however, is to be obferved only in thofe Worms that are near the time of their tranfmutation into Nymphs.

I have not perceived any other parts in the Worm, befides thofe I have already explained, fince the veffels in it, which carry and return the blood, are fo very delicate and tranfparent, that I was not able to difcern them. For the fame reafon I could not defcry thefe very parts even in the Coffus, though there are inventions of art, by the affiftance of which we may come to the knowledge of them. In Silkworms I fucceeded by the following method, which I have reprefented in the fourth figure, viz. I provide myfelf with a little glafs tube, fuch as is here delineated, which I take care to have made like a vial in the middle, Tab. XXIV. fig. IV. a, at one end b to be drawn out to the utmoft fmallnefs, and at the other end c made thicker and broader, in order that the air blowing into it, may be conveniently forced in at this end: this done, I fill the little pipe with fome thin liquor coloured, not however of a very penetrating kind, let in through the thicker end c, and then with the greateft caution perforating the fkin b, I thruft the thinner end into the heart. This may be done eafily enough. By thefe means, and then gently blowing into it, the heart, and many of the veffels thooting out from it, may be filled ; and further, though no other parts are difcovered in thefe Worms, ftill it is of ufe to take notice in them, both of the pulmonary tubes, and the fpinal marrow. As for the marrow, indeed, though by reafon of its exceffive yielding and foftnefs, I could not examine it with any exactnefs in the Worm, yet I had no difficult tafk to difcover it in the male Bee, of which when I come to treat, I thall defcribe it as there delineated.
There are, as I faid, ten points of refpiration on each fide of the body, in all twenty; and there is the fame number in Silk-worms, and
in the Coffus; but there is this remarkable difference, that both in the Coffus, and in Siik-worms, only eighteen of thefe points with reddifh tufts, of a fubftance between horn and bone, fuffer themfelves to be difcerned ; but the tenth pair of them is not feparated fo plainly, which perhaps is the reafon that the incomparable Malpighius does not defcribe twenty, but only eighteen of thefe points in Silk-worms. The twenty pulmonary tubes, which in the Worm of the Bee arife as it were from thefe points, are carricd inwardly into the body, and have all a mutual communication with one another: a kind of little tube runs all along from one point to another, fo that in this manner the anaftomofis or inofculation of thefe veffels is propagated through the whole body. The ftructure of thefe pulmonary tubes is in truth exceeding wonderful, for all of them confift as it were of curled rings, which being twifted together in the clofeft manner imaginable, and intwined with one another by the fineft filaments and mof delicate membranes, make the union fo completely folid, that the air can no where pervade, except through the middle cavity, which is always open. Thefe rings are alfo twifted clofer in fome of the tubes than in others, but indeed the fabric difplays the greateft artifice in thofe places, where thefe pipes divide into branches and hoots, for there the rings are ranged with furprifing fkill one clofe to another, and are joined together by the intervention of the lengthening, abbreviating, and crooked rings. All thefe things may be feen very beautifully, if one puts thefe pipes on a very thin piece of glafs, and afterwards views them againft the light: this is indeed a very ufeful contrivance. They may alfo, in order to diftinguifh them the better, be placed on thin, coloured, black, or green glafs. Thefe pulmonary pipes or tubes are always open, as I have before mentioned, which is likewife the cafe in the human fpecies, and in other animals, but principally in regard to or about the cartilaginous rings placed in the neck, fo that therefore the air in the human body, or any other animal, which hath once breathed or refpired, can never be entirely driven out of the fubftance of the lungs. We muft further obferve, that there pulmonary tubes are in this Worm diftributed in fuch a manner, that the brain, the nerves, and even the eyes are furnifhed with branches of them; this I fhall afterwards fhew in the anatomy of the eye, the itructure of which, too delicate for all defcription, proclaims the infinite wifdom of the fupreme Architect. Next we are to explain the fixth figure in this plate, which exhibits fome of the vifcera of this Worm.

The letters a, Tab. XXIV. fig. vi. denote the ftomach, furnifhed with infinite air-pipes $d d$, which are affixed to it: b is the gullet. c Exhibits fome glandulous little parts, which are feen diftinctly through the tranfparent
ftomach.
ftomach. The fomach alfo has towards its hinder parts fome mufcular circular fibres e, which ferve to move its contents. ggog Are four vefiels, inteftina cæca, or clofed guts. $b b$ Shew the infertion of the clofed guts or caca below the pylorus f. i Exhibits the reft of the inteftines of the Worm, the craffum and rectum, or the thick and ftraight gut, to the extreme end of which a fmall part of the fin is likewife obferved to adhere. l Reprefents the delicate coat of the ftomach, replete with coagulated contents of various kinds, which are defigned by the darker parts in the figare. Fig. v. a, are the pipes appointed for the matter of the web, or the bags wherein the fubftance of the future threads is prepared. 6 Shews the place where thefe points are joined one to another. co Exhibit the divifions of there pipes. $d d d d$ Is the place where thofe pipes that contain the matter of the web are broken off, and beyond which I could not at this time profecute their courfe: what increafed the difficulty was, that other matters, which were likewife to be invertigated, took up all the time I then had. I likewife find the fame difficulty of tracing thefe veffels in the Worms of the Hornets; which however might have been conquered much eafier in the latter; but it is as rare to get fo great a number of Hornets, as a fufficient number of their Worms.

The firft figure reprefents the pulmonary tubes of the Worm, as may be feen on each fide, under Tab. XXIV. fig. I. No. I, 2, 3, \&c. and the letters $a a a$; for twenty fuch tubes are feen in this creature. It likewife appears in this figure, in what manner the pulmonary tubes of the fame fide have a communication with each other $b b$, by means of tubules carried from one orifice to the other; and have the tubes of each fide meeting each other from the oppofite fides of the body, and are alfo united together $c c$. Finally, the branches are feen there, which fpring from the middle trunks of thefe feveral tubes. The Worm is here exhibited and laid entirely open, and without its vifcera, fat, and membranes, all which I carefully wafhed off with a little water, by the help of a fine pencil. Though the orifices $d d$ of the pipes are fituated under the skin, yet I have delineated them, as if they appeared or were prominent out of it ; which particular, though it be contrary to nature, yet I have obferved in this place, that my defcription may be the more eafily underftood. The other two fpiral little parts, fig II. and 111. e, f, exprefs the rings of the pulmonary tubes. One may very diftinetly and beautifully fee thefe, if a bair of a man's head be paffed through a fmall part of a pulmonary tube, and both extremities of the hair be afterwards glued or affixed with wax ; if that part of the tube be then feparated or taken away, with fmall tweezers, or Atretched out by needles, it will be feen diftinctly how thefe
contorted or twifted rings are longer in one part e of the tube than in the other f. Without this contrivance, thefe rings may be eafily difcovered, by the help of a microfcope.

But I fhall proceed further. I muft obferve, that when the working Bees have maintained the Worms here defcribed, until they are arrived to their full bignefs, thefe Worms afterwards abftain from all food; and as they lay before in their little cells, contracted as it were into a globe or ball, fo, on the contrary, they now fand erect, and thus fill the whole cell from top to bottom. Thefe Worms about this time, cover the infide of the cell, from the lower to the upper part, with threads; in which work, however, this difference deferves particular notice, that is, that the web, which lines or furrounds the foundation and fides of the cell, is more membranaceous, but that which is on the extremity more thready. This difference arifes becaufe the Worms do not always fpin complete webs, but fometimes difcharge on the filaments, or thread already fpun, a great quantity of the gluey matter, which fhould have made the threads, and by this means daub or wafh it as with glue. This I have likewife often feen in other infects; nay, I have had the good fortune to obferve it even in the Silkworms, however rare or uncommon it may feem; for whenever any little knots occur in filk thread, thefe are owing to the difcharged matter which has flowed out too plentifully together. Nay, if the imperfect Silk-worm when expanded, be glued to paper, it does not appear thready, but alfo membranaceous; this thread is nothing elfe but a foft extended filk, afterwards hardened by force of the air. It is remarkable in the Silk-worms, that water alone has the power to diffolve their unfpun filky matter ; whereas, on the contrary, fpirit of wine, vinegar, and other fuch liquors will coagulate it immediately. In like manner as the Worms of Bees, and thofe of Hornets perfect their web from fpun threads; it is indeed very beautifully and wonderfully finifhed in the end. It is perfectly white and fine above, but it is all membranous and yellowifh below. In regard to their work, I obferve this further difference, that the Worms of the Hornets do not draw all their webs to the fame height, as the Worms of the Bees do ; and hence it happens that their cells differ very much among themfelves in refpect to height. Their webs alfo confift of ftronger threads, and are of a rounder figure, and ufually drawn bigher than the Beewebs, nor are they fealed up with wax, as is common in Bees. The feventh figure fhews the web, prepared by the Bee-worms; it is formed above into a fpherical figure, and has very confpicuous filaments, Tab. XXIV. fig. viI. c; but on the lower part a it is membranaceous and much thicker ; and at length it becomes triangular, towards the bafis of the cell, and exhibits a tranfparent Nymph 6 on the infide.

After

After the Worms of Bees have brought their webs to this degree of perfection, the working Bees have new bufinefs, for it is then incumbent on them to cover with wax all thefe cafes which are arched as it were over the head of the Worm, and confequently to feal up the Worm itfelf with the greateft circumfpection and exactnefs in its cell. This cafe feems to me to be altogether neceffary, for if the web was not covered and fealed up above with wax, it might poffibly be prefled in by the Bees running up and down thereon, and confequently the fubjacent young and tender members of the Worms which catt their skin a little before might be injured: befides that, the operculum or cover of wax contributes much to preferve the heat, by the afifitance of which, both the evaporation of the fuperfluous moifure, and the fubfequent change of the Nymph into a Bee are promoted. The web we have hitherto been defcribing has alfo this further ufe, that at the time the Bee-Worm changes its skin, and difengaging itfelf from the latter, is tranfformed into a Nymph, it is then prevented from flipping out of its cell, which might very eafily happen if the cells were not covered or thus fhut up, as I myfelf have learned from experiments. I at one time carried fome of thefe Worms about me, which being as it were hatched by this heat alone, came to that perfection, that the Nymphs affumed the form of Bees: I then faw thefe Bees running quickly up and down in my box, fo that I could not really help admiring what had happened : and from this experiment I learned one thing, and that is, that I might thus know for certain how much time was neceffary for the Nymph to grow into a Bee; but I have not as yet been able to inveftigate this matter fully, being then engaged in other neceflary bufinefs. I have hitherto only obferved the changes which happen under the time of growth, and at the fame time I have thus experienced, that heat alone will hatch Bees, and the incubation or fitting of other Bees is not neceflary, as forme authors have feigned. I began the experiments juft now mentioned about the end of September. If the web I have defrribed be cut open in that part where the head of the enclofed Worm is placed, the Worm afterwards will come out of it there, when upon changing its skin it is transformed into a Nymph.

The Worm after it hath covered itfelf with this web remains entirely at reft, and does not move in the leaft ; it keeps the place which it at that time filled, and remains quiet to the end of its transformation. But if the diffection of the Worm be undertaken at that time, befides the cæca or clofed veffels before defcribed, there alfo appear a great number of very flender veffels, which are fituated on the inteftines near the pylorus, where the clofed veffels are inferted, and feem to me to be of the fame nature with thofe veffels which Malpighius calls vafa crocea, the faffron coloured vefiels in the Silk-Worms. At the fame time the caca or clofed veffels
themfelves are feen. Whether thefe very delicate vefiels are in the Worm from the beginning, and afterwards only increafe with its growth, does not yet appear. But if they be, they are much larger in the Bee than they werc in the Worm: I have never found them of a yellow colour in Bees, as I have done in the humble Bees. I have fometimes feen the excrements lie coagulated in thefe veffels in the females, and indeed occafionally in the common Bees. I find great difficulty to difcover the real ufe of thefe clofed veffels, whether they fecrete a particular humour in their cavities, which muft be difcharged out of the body, or fuch a liquid as changes the contents of the other inteftines; or are they analogous to the cxca which are found in other animals, but particularly in Birds and in Rabbits? The ufe of the creca in other animals is not yet fufficiently known, yet it is certain that excrements of the fame with thofe of the great guts. are found in plenty in them. Had not there veffels been fo regularly divided into four, and had they been of fuch a length, and inferted even into the inteftine under the fomach, one would incline to confider whether they did not belong to the bladder of poifon of the fting, which I fhall afterwards defcribe in the common Bee; but this doubt may be eafily folved, if one fhould diffect the Worm of a male Bee. The time for getting thefe Worms is now paft, fince I am now writing this on the firft day of September.

Further, in this flate of the Worm the ftomach is much more contracted than it was before, and appears like a fmall gut: it is of a whitih colour, and its yellow contents now difappear, being totally wafted. We likewife obferve, that when that Worm is but a day, or half a day older, its ftomach becomes fhorter; but the vafa crocea, or yellow vefiels, are much ftronger and more vifible. A little below the place where the vafa crocea are inferted, the great guts may be feen more beautifully than in the Worm that is not yet covered in its cell. Thefe are joined to the ftomach, and now become fomewhat longer, and begin to bend or turn themfelves. Behind thefe are feen one or two parts fo tender that they cannot be accurately examined.

The fat that is found in the Worm when in its web, very eafily feparates from its membranes: hence it happens that the contracted pneumatic veffels become at this time more confpicuous.

The Worm whilft at reft in the manner juft mentioned, fwells confiderably about the breaft, but not fo much about the head; and after this it begins likewife by degrees to grow thicker, and to fwell out about the fecond and third annular incifion : the reafon of this is, becaufe the limbs of it which have increafed inwardly, are infenfibly diftended with fluids. We likewife here fee the legs and wings, afterwards the head, breaft, belly and trunk, and finally, the whole form and fructure of the Bee

Bee that is to be produced from thence, all fhewing itfeif under the skin. But the legs are bent together as if they were folded up, and are weak and very tender: the mufcular fibres likewife are like glue, and they appear fluid like water, on account of their abundant moifture, fo that they can by no means move themfelves: fo great is the extenfion and inflation which they undergo, fo that for this reafon, incomprehenfible clanges muft afterwards happen in them. Nor are thefe following changes peculiar to the mufcular parts alone; they arc obferved alfo in the nerves and in the fpinal marrow, for they are likewife fubject to very vifible cxtenfions, tranfmutations, contractions, and even tranflocations. This is no where more manifeft than in the Perla, or Dragon-Fly, of Mouffet, and in the Ephemerus, when thefe little infects change their forms; for in the Perla the fpinal marrow is extended fo much that it becomes twice as long as it was in the Worm ; and fomething fimilar is likewife obferved in the optic nerves of the Snail.
The legs in particular, and alfo the horns and truik *, are then very confpicuous when the Worm of the Bee is diftended fo much; and by the fame means the whole figure of the included Bec becomes, by degrees, vifible through the skin, and all the divifions of the head, breaft, and belly come in fight. But at length, when the skin opens along the back, and the skull of the Worm feparates in three places, there the Worm affumes the form of a Nymph , that is, it after this change fhews out beautifully, and more perfectly formed, the limbs and parts that were before hidden: hence all the parts may be feen there more clearly and diflinctly than in the Bee itfelf; fince that fea-ther-like down which is feen on Bees, is at this time in the Nymph. The fructure of the trunk is likewife remarkable, and is moft manifert here in all its parts ; and therefore it can, on account of its fituation and immobility, be much more elegantly and clearly diftinguifhed, than when this little infect is become a perfect Bee, or hath been transformed into the flying flate, by a real growth of the parts, not a fictitious metamorphofis, according to the fanciful and vifionary opinions of authors who have written to this time. All the changes of infeets are no more than a flow accretion of the limbs and parts, and therefore are analogous not only to thofe of other animals, but allo to thofe which we obferve in vegetables, as has been before fufficiently explained and demonftrated at large.
The creature is in this ftate of the Nymph exceffively, nay, amazingly tender; for almoft all its limbs are extended and inflated with abundant humidity; the former skin is thrown off, the pulmonary tubes in the body have
changed their integuments, and are again fwollen with new air ; nay, it is wonderful and utterly incomprehenfible, that the pulmonary tubes, whilt they are carting their integuments, do not put off fimple membranes, but as it were entire veffels compofed of annuli or rings; fo. that by this means the internal pulmonary tubes which have feparated from the other, are thrown out of the body at the external orifices or points of refpiration, having the fame form with thofe which remain in the body. In the fame manner likewife the ftomach and gullet, and the inteftines through the whole body change their skin; which, however, is very difficult to obferve, unlefs one fhrill immediately examine the exuvia or skin when it is juft caft off; or better, if we know how to take off the skin from fuch a Worm, at a fit time, by art. The ftomach wonderfully fhews this in the Worms of Hornets, for thefe in like manner difcharge their contents or excrements, and together with them the whole inward coat of their ftomach, which is of a purple colour, fo that the little mafs ejected weighs fometimes more than three grains. From the number of fuch coats as are found compacted in the cells of the Hornets, and laid on one another at the bottom of the cell, it may be very certainly computed, how many times the Hornets have brought up their offfpring from the Worm frate in the fame cell.
In the Worms of the Bee it is particularly remarkable, that when they are changed into Nymphs, all their limbs and other parts, their legs, wings, horns, and probofcis or trunk, and all the reft of the body have pulmonary tubes: thefe tubes are likewife filled with air at the time their limbs and other parts are fwelling, and by force of this air they likewife promote the due expanfion of the feveral parts: this is feen moft eminently, when the Nymph, by changing its laft skin, becomes a perfect Bee.
In the Cameleon, which is the only fanguiferous animal that has lungs, which agree in fome refpect with the lungs of infects, by reafon of their brancling pipes, the propelled air is likewife of the fame ufe in expanding or diftending the parts. But it is only for the purpofe of extending the creature's tongue that this happens in that creature, though there are, befide this mechanifm, fome murcles that likewife contribute to the thrufting out this tongue: it chiefly, however, depends on the air which is forced out of the lungs for that purpofe, into the double cavity of the tongue. I have likewife obferved the organs of hearing, and the fpleen in the Cameleon, however boldly fome very induftrious gentlemen in France, who have publifhed the anatony of the Cameleon, may affert that it wants thefe parts. Thefe authors have likewife committed great errors in regard

[^42]to the cornua or horns of the uterus, fince they have neither accurately delineated nor exactly defcribed them. The pulmonary tubes alfo are not reprefented acute enough by thein. I would not however have any perfon think I fay this from a love of cenfure, fo far from it that my fole view is that the true face and difpolition of nature may be expofed to the eye. I wifh others may pafs the like cenfure where due on my works; nor do I pretend to doubt but I have committed many errors; it is fufficient for me that I can moft freely affert, that I have not wilfully defigned to miflead the reader in this treatife, I likewife think the fame of fome other, but very few authors; for the defire of writing is fo prevalent now-a-days, that men publifh books filled only with the fancies of their brain, and thus mifreprefent God and his works ; heaven forbid that I fhould ever do this, truth and a religious fcrupuloufnefs of mind ought every where to prevail in defcribing natural things, becaufe they are the books of the divine miracles, unlefs he who writes aims to deceive himfelf and others, and fuch a one fhould know that all things are revealed in time.

Let us now return to our fubject. Thefe Worms then weave over or cover the infide of their cells with threads, they alfo difcharge their excrements into thefe cells, and there at the fame time, caft a thin skin and their old pulmonary tubes: hence if all thefe things be done feveral times over, that is, if in the cells of the fame hive, frefh eggs be laid and young Worms be continually hatched in a fucceffion for feveral ycars; the cells muft neceffarily become from time to time lefs and narrower, and the Bees mutt be obliged to leave the old combs, and to build themielves a more convenient edifice: the honey alfo that is lodged in fuch foul and dirty cells, is not to be called virgin honey, nor the wax of the combs virgin wax. Since both of them abound with a great deal of filth, which ought to be feparated before they are fit for ufe. The honey which the common people ufe is very impure, for it is preffed out of wax, after the purer part of the honey has run out, and it is accordingly fold at a low price *.

If any perfon is defirous to examine the web before mentioned, let him fteep only part of it, together with the wax adhering to it, for fome days in rectified fpirit of wine; thus the wax will fall into little lumps, and the web will be manifeft alone: if an entire waxen cell, while it is yet fealed up with its Worm or Nymph in it, be put into rectified fpirit of wine, then all the Nymph's little body, which is enclofed in the web, and cannot be taken out of it, but by cutting the web, pre-
fents itfelf to view. This contrivance whereby we feep and difiolve the wax by fteeping or foaking it in a proper fluid, in order to fee the wed, has this further advantage, that one may by this means know very exactly how many times the Bees have brought up their progeny in the fame cell, for it is certain that as many webs as are found in one cell, fo many eggs have been hatched there. When the wax is thus carefully feparated from the web by fteeping it fo that the delicate texture of it is not injured, the web will then be found to reprefent or exprefs very beautifully the hexagonal figures of the cell, particularly in the lower part, as may be feen in Tab. XXV. fig. iII. under the letter g. 'This web is likewife about the batis and angles of the little cell, always fomewhat thicker and blacker than at the upper part, being there more membranaceous and of a yellower colour: from what caufe this difference proceeds is ftill a fecret to me. If any one defires to difcover very fuddenly the web fo often mentioned, let him make the waxen cell boil for a moment over the fire in fpirit of wine, or in oil of turpentine. If an old cell be cut open with a diffecting knife, we fometimes obferve the foundation of the cell, which is otherwife wonderfully thin and delicate, half as thick as the filver coin called an imperial, on account of the feveral webs, that have from time to time been laid on it. This condition of the web has impofed on fome fo far as to make them believe, that every Bee builds its own refpective cell, for they faw that all of thefe webs were fevered from each other, when the broken wax was feparated from them, as one may eafily try if he fteeps or foaks the little cells for fome days in brandy.

The webs are alfo of this further advantage to the combs, that they make them much firmer and ftronger, and hence one may with lefs danger remove and carry elfewhere the hives in which the Bees have engendered for fome time, than thofe in which the wax is new. Befides that the combs, ftrengthened with the fe webs, do not fo eafily melt in very hot weather, or blend together, when they are turned upfide down. That the filaments or threads of the web may come in fight more diftinctly, there does not require much labour in preparing it, for if one only cuts off the upper part of one of the cells, which is covered with wax, with fmall fciffors or a fine knife, ftrips it of the waxen cover, and then places it under the microfcope, it will appear moft evident, from the difpofition and manner wherein the threads are placed over one another, that the Worm of the Bee does in reality fpin. If an entire cell, fteeped

[^43]or foaked in fpirit of wine, throws off the wax, then both parts of the web, as well that which is difcharged in the form of threads, as that which is like a membrane, being now joined together, nay, the whole figure of the web, which is hexagonal below, and fpherical above, may be feen.

Before I enter upon the defcription of the Nymph more accurately, I thall beg leave to obferve, that the Cochineal infect if fteeped or foaked for fome time in firit of wine, appears almont like our Bee-Worm; its body being divided by many annular ineifions: but there is this difference, that it is fhorter and thicker than the Bee-Worm, and it alfo exhibits fome vefiges of legs. The Cochineal Worm, as I have heard and been affured by fome who fpoke pofitively, is produced out of an erg, which the parent infect lays on the leaves of that very well known American plant ealled Tuna. When thefe Worms are firft conce out of their eggs, they are as fmall as thofe minute Worms whieh are newly produced in eheefe : they are inereafed afterwards fo much by means of the food, which they get from the leaves of this plant, that in a fhort time they cover the whole furface: nay, they multiply to fuch a degree that in the fpace of one year, they will occupy"or poffefs a field that has an hundred fuch plants, and may be collected from thence for exportation four or five times yearly. There muft only be eare taken that the plants be clear of all other infects whatfoever, and that no fowls be admitted into the place; for both will greedily hunt after and feed upon thefe Worms. When the owner is inelined to gather thefe Worms, he firt confiders whether they are arrived at their full fize, and then fome throw afhes on them, and brufh or gather them off the plant, and then dry them in the fhade: if thefe Worms are left longer to themfelves, they then fix themfelves to the leaves when they are about to change into Nymphs by accretion : and the Nymphs, cafting off fome time after a thin skin, are changed into very fimall and almoft orbicular winged Beetles, of a brown black colour, adorned with bright purple fpots, and diftinguifhed into males and females, who foon after coition lay eggs again. Thefe Beetles are not, like the Worms, ufed in dying, though they are fometimes brought to us mixed with Cochineal, as I myfelf have feen, and now have fome that I pieked out of that drug in my cuftody.

In our country alfo on the leaves of the lillies, Worms are often found which are fomewhat thick and of a pale red colour, like Cochineal, but they differ from it in that they are furnifhed with fix remarkable black legs, and have a very confpicuous head. Thefe Worms are transformed in a very fort time into an oblong bright red Bectle with black legs and horns. 'This Worm has one thing peculiar to it, which is that it eovers itfelf with its own excrements againft the fun's heat,
and by that means renders itfelf in a manner invifible; fince it walks over the leaves of lillies eovered with its exerements. I have likewife in my collection of infects fome little creatures not unlike the Coehineal Beetle, only that they are fomewhat lefs and in fome meafure different in regard to their colouring. Hence I am inelined to thin's that the Cochineal may probably be difcovered and fed in our country, thotigh I have never yet found it. This fpecies of Beetles, which have all knobbed horns, are by our country people called Lieven Heers Haantjes, or Onze Vrouwen Haantkens: but I fhall now return to the Bees.

The Nymph of the Bee-Worm contains nothing elfe but an elegant difpofition and well-ordered reprefentation of all the limbs and parts of the future Bee; which, as they have been to this time increafing, at length become externally confpicuous; but they are immoveable until the humours with which they are filled and diftended are exhaled and diffipated: after that the creature ean move them. Hence it is that the Bee while in the Nymph weighs confiderably more, than when it is changed into a perfect Bee. Before I exhibit the parts and limbs of this Nymph, I fhall defcribe its parts while yet in the Worm, with more accuracy and method than has been hitherto done by others. In doing this I hall follow the order according to which the Worm infenfibly and naturally approaches to the change of its skin, or to the difclofure of thefe hidden members: it is as follows. The old skull, which is to be immediately caft off, becomes infenfibly filled with a limpid humour, by force of which it is feparated by degrees towards the foremoft parts from the head ; hence the horns, teeth and trunk, which lie folded and complicated together under the skin, are difpofed in fuch a manner, that they may be extended and inflated by the imbibed humour, all which happens gradually; in the mean time the head, whieh infenfibly and in a manner fearce to be pereeived, recedes or goes baek from the skull, is gently extended and expanded ; this is principally oceafioned by the eyes and their adjacent parts being inflated or diftended with air, blood, and other fluids rufhing in; the thorax likewife now becomes extuberant, by reafon of the air and fluids introduced; as do alfo the legs themfelves in like manner fwelling confiderably both above and under the thorax; they are placed in a very elegant manner under the skin : the firt or foremolt pair of legs adhere underneath near the probofeis, which together with all its parts is ffretched upwards, to the head in fueh a manner, that the extreme ends are in the upper part, and the thighs in the lower place; then follows the fecond pair of legs which are depofited in like manner; near thefe the wings are fituated, whereof the lefs are placed by the fides of the greater and a little under them; then follows the laft pair
of legs, which is depofited in the fame manner as the firf and fecond were under the skin ; all thefe parts, as far as they lie under the skin, are fomewhat wrinkled or folded, and they are by this means above one haif fhorter than afterwards when the creature is changed into a perfect Nymph; for when the Worm cafts it skin, thefe parts are confiderably and wonderfully inflated and extended by force of the air, the fluids, and particularly of the blood: this extenfion of thefe parts is performed at the time when the Worm, by the means of a kind of perifaltic motion, breaks open the skin by rolling it down, and is incredibly promoted by the parting exuvia or caft skin ; for fince ali thefe parts by means of delicate and minute fibres and filaments adhere loofely to the skin; hence the skin carries them with it as a kind of moveable cords, and the parts themfelves being by this means extended, roll in their turns from the skin in the fame manner as a cord runs out of its pully. This is the true reafon why thefe parts are fo regularly digefted and extended in the Nymph, and are difpofed in fo beautiful and firm an order and fo wonderful a fituation as I am now going to defcribe, according to the figures which I have given. I fhall firt then fhew in a fomewhat fmaller figure the difpofition of the parts under the skin, a little removed from their firft fituation. Tab.XXV. fig. Iv. $a a$, are the horns, b the probofcis with its parts, ee denotes the firft pair of legs, under which is feen a fecond $f f$, and then a third $g g ; b h, i i$ are the larger and finaller wings of each fide: k denotes the rings of the abdomen. I flall in the ninth figure reprefent the fituation of thefe parts in the Nymph in a larger fcale.
Fig. ix. a Reprefents the Nymph's head, which being then diftended with humours, and expanded by force of the impelled air, refembles in foftnefs and tendernefs, milk that is juft curdled. In this manner the whole body and all the reft of the parts are circumftanced at this period. All thefe parts are of a milk-white colour, and the whole infect is without any the leart vifible motion; fo that in reality, it refembles a dead carcafe.
$6 b$ Exhibit the cyes of the Worm, which now appears under the form of a Nymph. Its three fmaller difperfed eyes cannot be feen in this view, being placed more backward and higher in the head, in the middle between the larger eyes. The firft change obfervable in this creature, when it becomes ftronger by the evaporation of the moifure is manifefted about thofe fmaller eyes, and about the large ones here figured $b b$. Their change confifts in this, that the eyes, by degrees and as it were, infenfibly affume a faint purplifh colour: at the fame time is alfo dilcovered the femi-lunar figure of thefe large eyes, which one cannot otherwife difcern, on account of the intenfe whitenefs which obtains here, and the brightnefs of the furface.
cc Are the antenne or horns which fpring from the middle of the head, and are bent by force of the skin that is drawn down towards the belly; they are very elegantly placed near the probofcis and its adjacent parts. Under the extreme ends of the horns are difpofed the three firft joints of the firft pair of legs i. In the middle of thefe one may fee numerous pulmonary tubes through the covering.
d Denotes the lip, which is not yet remarkably increafed in its fize, or diflended.
ee Are the teeth or jaws, which are covered in fome meafure by the lip.
ff Shews the firt pair of thofe parts which belong to the trunk or probofcis: they have likewife their' pulmonary tubes, but above them and under the teeth is feen a certain portion of the third or laft pair of thefe little parts belonging to the trunk, which are the florteft and fmalleft of all.
g g Reprefent the articulated pair of little parts that defend the probofcis, which are divided on each fide into three joints.
b Is the probofcis itfelf, very beautifully fituated between and under the faid parts. But we muft obferve, that all thefe little parts are now furnifhed with tranfparent pulmonary tubes. When the little infect is approaching to its laft change, and is in a fhort time after to obtain the form and name of a Bee, then all thefe pulmonary tubes become again for the moft part invifible, And the fame thing obtains about the veffels of the wings: which are then bound or tied up in fuch a manner, that you would conclude them not to be pulmonary tubes but nervous fibres.
ii Exhibits the firft pair of legs in the Bee, while it is ftill called a Nymph. The three extreme joints of thefe legs may be feen under the extremities of the antenna $c c$.
$k k$ Are two very beautiful, fiff, tranflucent little parts, fituated at the loweft joints of the firft pair of legs, and which feem to ferve the Nymph only as an ornament ; for upon cafting the skin, they are thrown off and entirely abolifhed.
Il Another pair of the Nymph's legs, which likewife are full of tranfparent pulmonary tubes. Thefe legs, being, by means of the skin when drawn off, and by the power of the impelled air and forced humour, depreffed and flretched beyond the middle of the body, are there very regularly placed.
$m m$ Are the wings of the Bee, fill conftituted under the form of a Nymph, a part of which only we can hitherto fee. Thefe likewife have many pulmonary tubes, which, when this Nymph is cafting its laft skin, are alfo, together with all thic other parts, once more to throw off their exuvix : after which, when thefe tubes are again diftended by the freflily impelled air, and the preumatic veffits which have been hitherto contracted, are inflated and diftended with the fame air; it follows, that the whole wing afterwards expands itfelf and
becomes

The BOOK of NATURE; or,
becomes thrice, nay, four times larger than it was before. But this expanfion of the wings is not to be attributed folely to the air, but in a confiderable degree alfo to the blood; for at the time when the air is impolled into the wings, and a confiderable quantity of blood is likewife driven into the blood veffels of the wings. This blood in the Bee is a limpid humour or ichor, as may be obferved, if a little part be at this time cut off from the wings; for then this humour flows from it, appearing by reafon of the extreme fmallnefs of the blood veffels, under the form of little pellucid globules, which, infenfibly and by degrees, increafe into confiderable little drops. We muft obferve here, that fome of the Nymphs of Flies, when they are cafting their skin, not only expand their complicated wings, but alfo diffend vafly their whole body: hence it arifes that they appear twice as big as the exurvæ, wherein they were before enclofed. The expartion of the wings in Butterflies is the moft elegant of all the phenomena of this kind that occur in nature; for in thefe creatures, the wing in the fpace of a quarter of an hour, though at firt not bigger than half the nail of one's little finger, becomes as broad as a half crown, and at the fame time all its colours are augmented, extended, and regularly diffufed : and hence indeed, an admirable fight is produced, which would appear the more wonderful if one had but the leaft knowledge of the caufe of it. For we certainly can know nothing of the magnificence of nature's fecrets, unlefs by the help of an infirm and weak reafoning we are able to pafs our judgment on the more evident and palpable effects; but even this is fubject to many errors. When the wings are difplayed in the Butterfly, their air-pipes or pulmonary tubes are foft like warm wax, and the wings hang down that they may the more eafily be diftended with air and humours.

Tab. XXV. fig. ix. $n n$ Are the Ccapulæ or fhoulder blades of the Bees Nymphs, which are fomewhat fharper a little lower. Under thefe are feen a pair of orifices, by which the air-pipes open into the breaft. The air which is expelled through thefe orifices affifts in producing the humming noife which the Bees make with their wings.

00 Exhibits the laft pair of legs, which are likewife furnifhed with tranfparent air-pipes like little veins.
$p p$ Are the rings of the abdomen, in which feven apertures of air-pipes open on each fide. But I have not delineated thefe apertures in the prefent figure; fince I do not yet know their true fituation, for they appear very obfcure, becaufe only one colour is feen here. However, I have obferved in diffecting the Nymph, that the mouths of thefe air-pipes terminate in the rings of the abdomen. I have feen alfo three fuch orifices in the breaft. I hall now mention fome other things in the anatomy of the Nymph, which are pertinent to this matter.
q Exhibits the hinder or pofterior parts of the Nymph. The fting of the future Bec is feen there fomewhat protuberant out of the body, as are alfo thofe two little parts r, which accompany the fting in the common Bee and in the female. And laftly, the arms appear underneath s.

If all thefe parts be afterwards removed out of their places, then the divifions of the head, breaft and abdomen appear very beautifully in the Nymph, but moft particularly thofe of the breaft : and thus we may at the fame time beautifully fee how the legs are jointed with the breaft, which cannot be diftinctly feen in the Bee ftate of this little infect, on account of the great quantity of down rifing there. If the creature be then inverted fo as to lie on its belly, the three great divifions of the body are manifefly feen in it: and in the horny or bony parts of the thorax, which are ftill membranous, and very tender numerous airpipes are likewife obferved.

The firt external change obfervable about the Nymph confifts in this, that its eyes infenfibly become of various hues. Firft of all are diftinguifhed thofe three remarkable feparate eyes, which, when the infect lies on its back, are feen fixed between the femi-lunar curvatures of the larger eyes, as I thall hereafter explain more at large. And at the fame time, the femi-lunar figure of the eyes is confpicuous by their variety of colours. Nor can any other remarkable change be obferved at that time in the Nymph, befides this of colour, which occurs in the three feparate and in the femi-lunar little eyes.

When the eyes by degrees have grown purplifh, then fome fmall changes are likewife feen about the body and legs; that is the horny or bony parts of the fhoulder blades begin to acquire a yellowifh tinge, fomewhat inclining to a brown red: the horny or bony parts of the wings, legs, and the reft, then afford alfo fome fimall figns of their transformation.

Whilf the colour of the limbs and parts is changing in the manner I have mentioned under their accretion, the purple colour of the five eyes become more and more brown, and at the fame time we obferve, that the claws of the feet become alfo horny or bony, and of a brown red : and this change is alfo obferved about the teeth.

In the mean time the eyes become, by little and little, more blackifh, nor is there yet any divifion in the coat that invefts them on the outfide, though one may then eafily fee the divifions which appear through the coat. The horny or bony parts of the trunk now alfo begin to grow black, and the horns, which are fituated under the eyes, and the diftinct eyes above are more plainly feen.

The thorax alfo is about this time from a gray, manifefly changed into a brownith colour: and we alfo fee the whole body under the skin, diftinguifhed by fome
blackifh
fome blackifh points, which are the rudiments of feather-like hairs.
Whilft the whole body is changing in this manner, it is altered or difguifed, and becomes more robuft as it is increafing; fo that cven the claws of the feet now evidently move within the skin wherewith they are furrounded; but the moft remarkable changes are obferved about the fting. For this fling is hitherto an external part, though it may afterwards be, and actually is drawn back into the body: therefore, fince it is confpicuous in the Nymph without any previous diffection, one may eafily obferve its increafe and perfect formation. The better to underftand my obfervations on this part, I think it neceffary to obferve before-hand that the fing, as well as all other parts of the body, changes its skin when the Nymph throws off the laft exuviz: for this reafon, the changes of the fting may be diftinguifhed as clearly as thofe that happen in the claws, legs, and the teeth. The firft change, therefore, which is obferved about the fing, confifts in this, that its crooked little hooks, which neceffarily remain fixed in the wound given by the fing of a Bee, come in fight. For while the two fide-pieces, and the cafe or fheath of the fting are yet membranaceous, or as it were cartilaginous; thefe little hooks are diftinguifhed by their yellowifh red colour ; and this colour is afterwards diffufed by degrees through the whole fting, whilft in the mean time the fharp-pointed ends of the two fide-pieces of the fting, are acquiring a horny or bony fubftance, and more dusky colour. The circuit alfo, or extremity of the cafe or fheath of the fting, in like manner changes its colour, grows hard, and becomes horn-bony. And as the other parts ftill retain their white colour, the faid changes ffrike the eyes the more plainly: for we muft obferve that the fting is, with regard to its colour, more confpicuous in the Nymph, than it is afterwards in the Bee itfelf. Moreover, the two fide-pieces, as well as the fheath of the aculeus, are enclofed in peculiar membranes, which are thrown off in a moft fingular manner: hence one may very diftinctly fee thefe fide-pieces in the Nymph placed near each other, which is by no means the cafe in the Bee; fince thefe parts of the fling in that flate of the infect are hidden in the cafe or theath, as I hall hereafter defrribe at large, and reprefent in figures. About this time, alfo, thefe feveral parts, as well as all others, acquire each their laft perfection; that is, the eyes, teeth, legs, claws, horns and the reft : nay, the thorax itfelf infenfibly becomes during this time more brown, and approaches nearer to a horny nature, and grows very flaggy with ftrong hairs.
The laft change happens in regard to the ftrength and colour of the wings: at the fame alfo the probofcis or trunk in like manner prefents itfelf to view in its ruddy or bright brown colour, and flews the hairs wherewith it is adorned. Thus all the fuperfluous humidity of the Nymph being at length evaporated, it cafts
a skin from all its parts, and afier gnawing a paffige through the web, creeps forth at length from its cell, in which it had hitherto lain, in its perfect form of a Bee. The wings indeed are at that time ufually complicated or folded up, and yet I fometimes have feen them expanded; that is, when it hath been for fome time detained in its waxen habitation, and hath not been able to creep out of it with fufficient fpeed: in that cafe we find that its wings have been firft difplayed within the little cell: all the fpecies of Flies appear in like manner, when frefh from the Nymph, with complicated wings.
When I diffected the Nymph of the common Bee, at the time that its colour juft began to be vifible, upon opening the outer skin, I obferved the fat feparated very eafily from the air-pipes or pulmonary tubes; which was likewife the cafe about the outmon coat of the eyes, which has no divifions. All the contents of the eye alfo were very foft. The inverted pyramidal fibres hereafter to be defcribed, refembled jelly made of veal. The brain was likewife fo foft that being only very lightly touched, it immediately feparated from the beginning of the fpinal marrow. The fpinal marrow itfelf was there as well as in the body very foft and tender. Nay, and the three feparate little eyes, which, as fhall be made more evident hereafter, are placed in a triangular form between the divided eyes, after I had taken off the skin from them, and can be diftinguifhed very clearly. The teeth were as yet membranaceous, nor did they fhew any fign of hardnefs; or of their being of a horny or bony nature; they abounded within with a mucous humour, upon prefing out which they feemed hollow. The jaws in human abortions fix months old, likewife fhew membranaceous teeth, which however in various places are obferved to be growing into bone.

In the thorax all things are at this time amazingly foft and tender. The mufcular fibres may be feen very diftinctly, and in fome meafure as if feparated from each other; but they are ftill fo exceffively delicate, that being but very gently touched, they immediately quit the place where they were fixed: moreover, they are at this time fhorter than in the fame infect when it is changed into a Bee. Indeed, I obferve that all thefe mufcular fibres are at firft contracted in the fame manner by nature, and that in fpite of her, as it were, they are afterwards extended by the blood and humours. This is probably the reafon why thefe fibres endeavour to contract themfelves continually, and that even a long time after the death of the creature. This fhortnefs of the mufcles in creatures not yet brought forth, is occafioned by the invelting membranes binding up their bodies; and hence it happens that the blood and air are prevented from diftending the mufcles fufficiently. We have before mentioned fome fingular and obvious examples of this matter in infects, which are feen as foon as thofe creatures come into the open air. The B b b
fat
fat alfo very eafily in this diffection of the Nymph quitted its connecting membranes and the pulmonary tubes, and, by its friability, prefently hid the other parts from fight, for it divided and diffufed or fpread itfelf into innumerable white parts of different bignefs. Between this fat were likewife feen the pneumatic veffels, not much changed from that appearance which they had before in the Worm, when it was about to caft its skin.

The ftomach in this Nymph appeared ftill fomewhat long, for it had not wholly contracted or drawn up the length which it has in the Worm, into the pyriform figure which it wears in the Bee. All the reft of the vifcera of the body were already formed and confiderably increafed. The intertines were very elegantly confpicuous, and of moderate ftrength, but they were filled with watery contents, nor did they yet contain that green fubfance, which is to be found in the inteftines of the more mature Nymphs, and thereof the green colour is evidently feen through the body and heart in the back. The fame thing obtains in calves whilft ftill in the cow's belly, and the contents of the inteftines in them in like manner change colour. It is alfo very remarkable here, that fuch hairs are found intermixed with thofe excrements, as the mouth and body of the calf is covered with; and this argument moft evidently demonftrates, as I have obferved before, that thefe animals convey the food while in the uterus through the mouth; nay, and take in the hairs which they licked off the furface of their body, together with the fluid of the amnion. The vafa crocea, or yellow veffels alfo may be very eafily diftinguifhed in this Nymph, and feparated eafier from the inteftine, than in the Bee arrived to its full maturity; for, befides the friability of the fat, the membranes are yet very tender, and the pulmonary tubes, to which thefe veffels are connected, are very weak. The internal parts of the fting allo, which are not vifible on the outfide, may be now very plainly diftinguinhed. It was further admirable to fee in this diffection the aculeus or fting, which afterwards becomes fo fharp-pointed, hard and formidable for wounding, is fill very foft and tender, like a thin membrane, and is likewife filled with an aqueous humour, which naturally flows out of it. The poifon bag * of the fting was contracted, and its clofed tubes, by the help of which the poifon is fecreted and conveyed into the bag, may now alfo be difcerned.

But as all the parts hitherto mentioned were extremely foft and yielding at the time of this diffection, fo, on the other hand, the productions of the wind-pipe, or little pulmonary tubes, prefented themfelves more diftinctly to the view. The reafon of this, as I have before obferved, is certainly that the fat and the
membranes which connect it, recede from thefe parts with the utmof eafe: we lay open the Nymph from the bottom quite to the top with a fmall pair of fharp-pointed fciffors, all the fat, the little membranes and the reft of the contents may be without any difficulty, in a bafon filled with water wafhed out fo thoroughly, that the pulmonary tubes alone, though they indeed, with refpect to their larger branches, are not removed from their natural fituation, fhall remain behind in the skin. The fame experiment may alfo be made in another manner, viz. a fine glafs tube may be thrult into the body of the Nymph, and by the help of water injected through it, all the contents, except the tubes that convey the air, may be wafhed out of the body. This may likewife be done alfo in the Worm, when it is on the point of changing its skin, and then being blown up with air it may be dried and preferved. The fame experiment may be made with the utmoft eafe in the melts of oxen; for if you wafh off the outermoft fubftance of the melt through the vein, and then cut away with a fine knife the exterior coats from the melt when dried, you will have a moft curious preparation. At this time we have a moft beautiful view of the pulmonary tubes, and their ramifications in the Nymph of the Bee; fo that they may with very little trouble be counted and diftinguifhed from one another ; feven appearing plainly in the belly, and three in the breaft on each fide. The firft pair of thefe open with fair apertures on the outfide in the breaft near the neck; but before thefe two tubes afcend from thence towards the head, having firft taken a wider circuit, they join together, and then in two very diftinct branches, like the carotid arteries in man, they again afcend towards the head, inferting themfelves in the brain, the eyes, the horns, and the teeth. The next two orifices are opened under the fhoulder-blades, and the laft under the wings. Some branches likewife, and thofe very difcernible, run different ways out of the breaft towards the legs and wings; and thefe at the laft changing of the skin affift greatly in the unfolding of thefe parts, as I have already obferved. In the belly I could not fo accurately diftinguifh the orifices of the pulmonary tubes on the outfide, for there they feem to be inferted obliquely, like the urinary paflages in men and quadrupedes. But however, in the infide of the body their infertions are extremely obvious: this may be feen alfo even on the outfide, if we free the Nymph from its coat or ftrip off its skin with due skill, and then d w the air-pipes out of their orifices. As for the pofition of thefe pipes in the body, I have already fpoken of it elfewhere, and fhall explain it farther in a fucceeding chapter.

[^44]The Nymphs of Bees, after they have continued flut up in their little waxen cells for a fufficient time, and till the entire evaporation of the redundant moifture, fled at length their laft fkin of all, which accordingly is found in the bottom of the cell, together with the former, which they have thrown off during their exitence under the form of a Worm. Having thus caft their coats, they then break their web, by the affiftance of their teeth, and at the fame time forcing their way through the wax that is faftened down above to the web, and burtting it into feveral jagged pieces, they throw it off on all fides; after this other Bees carry thefe broken pieces away, and clear the cells fo thoroughly, as to make them quite fmooth and even. The male, as well as the female Bees, force their way alfo out of their cells, in the fame manner as the common or working kind, and all undergo the fame change. This remarkable difference, however, is to be obferved, that the common Bees, and of the male kind alfo, ufually come forth, as already obferved, with their wings then folded up; fo that after they have burft through their webs, their wings remain yet to be expanded, by the force of air and humours impelled within; for, as has been already obferved elfewhere, thofe large veffels, which are perceived in their wings, after the manner exhibited in Tab. XXV. fig. x. are without doubt the tubes that convey the air. Clofe to them alfo are placed the blood veffels, which bring the nutriment to the wings. This obfervation I have made is highly worthy of notice, fince it moft evidently difplays the wonders of God, in the infect world, and at the fame time utterly overthrows thofe impious notions, that thefe creature are generated from putrefied matter, and by a certain fortuitous concourfe of particles; for if we grant that, the efpoufers of thefe notions take occafion thence moft perverfely to carry on the argument to large animals, and in a moft offenfive and indecent manner leffen and detract from the providence and omnipotence of God, which are univerfally and equally manifefted in every fpecies of animals without exception. In truth, if the moft minute creature is capable of being generated from putrefaction, nothing hinders but that the largeft of all may likewife.

The female Bees do not, as the common Bees and the male, come forth with their wings folded up, but expanded and difplayed: they come out of their cells in a ftate of flying. On this account, the all-wife Author of nature has provided for them a more facious manfion, in which they may expand their wings conveniently and properly, fo that after they have burft from their cells, they may be prepared for fwarming immediately, if there be a neceffity for it, or that the young female may be in a condition to drive out even the mother Bee herfelf, that is the old female, and to take her place, if there be occafion.

I am fully perfuaded that the reft of the Bees know beforehand, by fome fure fign, when
the new female is employedin breaking through her cell; and, accordingly for fome days before they form a new colony or fwarm, we fee a great many Bees hanging about her cell, which are no doubt waiting for the female's iffiuing forth, and when the is jut on the point of coming out, they make a buzzing with their wings, which is the fong of Bees, receive and falute her at a diffance as it were with marks of joy. I make no doubt but that the males are moft concerned in this bufines ; not unlike wanton horfes, who, when they fee the mares, though at a diftance, neigh after them, and inftantly prepare themfelves for leaping. This is the cafe likewife in the males of Silk-worms, which, before they fo much as fee the female, yet immediately, as foon as they get the fcent of her, by the help of their wings fet up an agreeable humming; and fo irritated are they with a burning defire for copulation, that they will frequently copulate with the females even when dead, nor can they without force be torn off. However, I do not believe, that the male Bees actually copulate with the female, though indeed they love to get as clofe to her as they can, becaule thus they feel a titillation arifing from the emiffion of their fperm. For I am firmly perfuaded, that the male Bees eject their fperm in the fame manner as Fifhes, who only fhed it upon the fpawn, nor have any thing further to do with the females. It would be no difficult matter to make certain experiments, in all thefe particulars; as to try forinftance whether the female Bee, enclofed in a little net made of fine thread, or in a fimall glafs veffel covered with a piece of fine linen, or in a box with holes in it, could be impregnated by the bare fcent of the male. But of all thefe things I hall hereafter treat more at large. I think it neceffary, however, to add this fingle obfervation, that the laft humming or noife which is heard in the hive, a little while before the Bees are going out to fwarm, is raifed by the female Bee alone, arifing to be fure from her joy in feeling herfelf then impregnated, and being fenfible that fhe is foon to make an excurfion; fince the found, which is then heard, is owing only to one Bee, and that no other than the new queen.

I once found a female turned quite upfide down in her cell, and yet perfectly formed with her wings already expanded for fight. She had been attempting a paffage on the oppofite fide of her cell, endeavouring to break through the middle wall of the comb itfelf, great part whereof fhe had already eaten through : the feemed as if fhe would be able to get out of the cell in a few days. In thefe difficulties I came to her affiftance, and at the fame time got myfelf a proper fubject for diffection. When the Bees begin to perceive that the female is near coming out of her cell, I make no doubt but there mult arife a very remarkable commotion in the hive, as
well
well amongft the younger as the older Bees; for the young follow the new-born female, and the others remain with the elder; nay, many both old and young hang together idly round the fame female. This divifion into parties is not owing either to choice, or any ruling. power or authority among the Bees, nor is it performed with thofe fancied ceremonies of honour, and a numerous retinue of old and venerable Bees ranged in order, accompanied with the harmonious founds of trumpeters, hautboys, and muficians, or in the tremendous prefence of executioners ftanding around, as authors have feigned, ingenioufly indeed, but derogatory to nature. Nothing like this is the cafe : there is doubtlefs implanted in them a concern for breeding up their young, which inftinct makes the Bees flock in this manner round the female : nor have the tribe of flaves, I mean the working Bees, any other task affigned them, as they are capable of being moved by that incentive only, and direct all their actions to that end, though in truth the labour is very great, which they muft undergo in breeding up the young, and continual ly building the cells deftined for them. However they are amply repaid, fince in their turn, in place of a rich reward, they feed on delicious honey, which they collect with indefatigable diligence; for nature, in this their wretched fate of life, makes every thing to be purchafed with labour. I could wilh therefore that this example had the weight it deferves, in inftructing and teaching us that God might be glorified in all his works.
Were the working Bees furnifhed with the organs of generation, or any thing analogous to them, we might conclude, not without probability, from their actions, that they were actuated with the moft ardent luft to the act of generation, and folely by this incentive animated to perform the feveral tasks affigned them. But fince they are fupplied with none of the parts requifite for that office, they can have nothing elfe in them, but an innate defire for the propagation of their fpecies, which inflames them with fo earneft a concern for breeding up the young, and with fo fingular an affection towards the female, the common parent of all. This will appear evidently, if you take this queen out of the hive, and tie her to the end of a ftick, by a thread run through one of her wings, and then fuffer the fwarm of Bees to fly about her; for they, following the queen clofely, will all of them by degrees fettle on the flick, and by the help of their legs cling to one another moft furprifingly, fo that they refemble, as it were, a complete bunch of grapes. Wher they are piled up together after this manner, they will fuffer themfelves quietly to be carried up and down overa whole garden, nor do the working Bees in the mean while ftir from their queen, as I myfelf found by a careful experiment I made. If at this time any other Bees fly up to this numerous clufter, an obferver
will fee plainly, that they immediately fearch after the queen with fuch anxiety, that even from hence fufficiently appears the prodigious affection they have for her, and for the propagation of their fpecies; for they endeavour to make their way through the middle of the bunch, as it were, that they may reach the female. In a little time afterwards they give over their attempt, and then, without intermiffion, continue flying from and back again to the clufter. From thefe obfervations therefore it is altogether manifert, that the actions of Bees of the three kinds, male, female, and eunuchs, fpring from no other caufe, but from a vehement and ardent concern, by which they are carried to the generation, prefervation, and raifing of the brood, which, as it is alone the principle, fo likewife is it the end of every thing the Bees do. If after this the female be loofed again from the ftick, and immediately put into a drinking glafs, placed on the ground, or on a piece of tile, the reft of the Bees, to a fingle one, will inftantly furround her again, and befet the place where fhe is in fuch throngs, that one cain fee nothing but Bees covering it on every fide. From all this I think it may be inferred, not without an appearance of truth, that the female emits a very ftrong fcent, by which the reft of the Bees are attracted to her. I obferved this moft evidently when I had fhaken the flick, and had laid the female in the manner ahovementioned on a table, in an open arbour, at fome diftance from them. For this reafon I formerly, before I was acquainted with the true flructure of the common Bees, compared them to a parcel of Dogs, which follow the female in her time of luft, excited by the bare fcent ; however, I will not deny, but that there may perhaps be fomething elfe befides the fcent in this affection of the common Bees, by which they are fo greatly affected : they feem to imitate in fome manner creatures that have been gelt, which, though they can do nothing, are notwithftanding inflamed with a prodigious luft for the female.
As therefore it is generation alone by which the Bees are excited to all their actions, fo this great caufe, whenever it happens to be interrupted, is the fole motive from whence all the confufion at times obferved in the hives arifes, If the female Bee be barren, or maimed, crippled, blind, or deprived of its wings, neither honey nor wax will be collected, nor will the eggs be laid in the cells. There is in this cafe no occafion for building cells for rearing up the brood. But if the female be properly perfect, every thing is done in due order, and as the poet fays,
"While the fovereign is fafe, all live in "perfect harmony."

Virg.
A great difturbance is alfo to be obferved, whenever there chance to be two females in one hive, and one after another lays its egg
in the fame cell, for from thence arifes not only a vaft confufion about the article of raifing the young, but a mighty inconvenience likewife about the building of the cells. It fhould be here confidered further, that Bees, for two neceffary reafons, namely, the building of the cells, and the rearing of the Worms in them, attend, and of neceflity mult attend, the female, at all times and every where; for if fhe has by chance depofited her eggs in an imperfect cell, the reft of the Bees are obliged, by virtue of their office as it were implanted by nature, immediately to make it complete, that the worm to be hatched may have room wherein to move itfelf, to eat, to change its skin, and to fpin its thread : whenever therefore, which I would have obferved particularly, the two females, each with her retinue, meet one another, and the Bees are hindered by it in their attendance and work, is it not eafy to be imagined, there mutt arife a prodigious confufion? where is the wonder then that they burn with fury, and, urged by love to their offspring, violently attack one another, determined upon killing and deftroying one or the other female? This is falfely afcribed by authors to the divided government of two fancied kings, as if they could not live together with a joint power; but this is an idle tale : all this fighting is caufed folely by the propagation being hindered : take away this impediment, and the two females will live very amicably together; for as they have not the ufe of reafon, they are unacquainted with Virgils maxim, that a kingdom does not admit of two rulers *;
"For two pretenders oft for empire ftrive."
DRYDEN's Virg.
That this matter may the more eafily be underftood, I hall infert here a rude kind of a fimilitude. 'The republick of the Bees may be compared in fome meafure to a houfe comprifing five thoufand bed chambers, in which there is only one woman, who yearly by the fcent of the fperm in fome hundreds of men born within this houfe, and living in it for the fpace of fome weeks, is impregnated with a triple brood. Suppofe there were befide in the fame houfe fome thoufands of natural eunuchs, or virgins, who, employing themfelves in the finifhing of the chambers, and flaying in the paffages between the faid bed-chambers, conftantly attend that woman, that they may fee in which chamber fhe firft brings forth a girl, a boy, or an eunuch; let thefe maids or eunuchs take care of and nourifh this child that is born, as likewife all the reft of them, which that fingle woman afterwards in order, by going into each of the bed-chambers, is yet to
be delivered of, and let the bed-chambers not be a whit larger than may be able juft to contain the children, till they have arrived at their maturity: Thefe circumfances being rightly underfood, it is eafily to be imagined what a horrid confufion and difcord would arife, were another woman likewife to get into this houfe, and the body of the eunuchs being divided into oppofite parties, to fight againft the former woman and her attendants, refolutely ftriving to lay yet another child in any of thofe fmall bed-chambers. Muft not thus the fettled order of the oeconomy be neceffsrily fubverted? and muft not all the inconveniencies and broils that can be imagined inevitably arife?

Behold! this is the true fate of the Bees government. It may be proper to take notice alfo of this fingle particular, that in this houfe yearly by that one woman alone are brought forth three or four younger females, fome hundreds of males, and fome thoufands of eunuchs; and that then fome thoufands of thefe new-born eunuchs and males together, join themfelves either to the elder female, or to the firft-born of thofe four younger ones, and having left their original houfe, they build a new one folely for their own habitation ; but at laft that thefe eunuchs kill all the males, as foon as the female, who came out with themfelves, is impregnated by the fcent of their fperm, and after that they live with the female alone for the fpace of an entire year. If all thefe things are rightly applied to the republic of the Bees, it will be no longer difficult to affign a reafon for every action of the Bees, whatever it be, fuch as their building, raifing their offspring, collecting of honey, and all the reft.

From what has been here faid, it evidently appears, that one female, and only one, is neceffary to, or can be fuffered to fubfitt in one hive; therefore a hive that has no female in it, if it be provided with a due number of eggs, will continue in a better ftate, than if two or more females dwelt in it ; for in that cafe, one female innocently fubverts and difturbs the whole order, whilft the other with her working Bees is labouring to perform the great bufinefs of producing and rearing the young, and building cells for them. I cannot but praife on this occafion the wifdom and circumfpection implanted in the Bees, that they on this occafion always kill one of the females, but preferve the other in fafety; for without doubt it has appeared beft to all-wife nature, that one female fhould perifh, rather than that both of them, together with the hive, the eggs, the Worms, the Nymphs, and the reft of the Bees, be involved in an univerfal ruin, fince all this muft neceffarily be the confequence of fuch a difturbance.

[^45]But as nature, all-powerful in herfelf, is tied down by no laws, in other nefts of infects, and even in different fpecies of Bees, a different order and other regulations have place. This is manifent in Hornets and Wafps; for thefe infects fuffer many females at once in the neft. It is proper to obferve here this remarkable difference, that each of thefe fermales lay only a few eggs, and that they fly abroad together with the males to catch lefs infects; with which, after the manner of fparrows, they feed their young; for of them only two kinds, namely the male and the female, live in one houfe : whether among thefe infects the male too, on account of getting food for the young, flies abroad, and fo is not, like the males among the Bees, exempted from labour, I have not hitherto obferved; though I make no doubt but that the male likewife contributes its help towards bringing up the young; for though Hornets are much fewer in number than Bees, they have fometimes no lefs than 1500 young to rear at once. In a Wafp's neft, which I keep by me, there are more numerous cells than thefe, and I found an infinite number as it were of young ones, eggs, and Nymphs in it. This male Hornet, like the male Bee, has no fting. From thefe examples it is manifeft, what wonders are difplayed to our eyes in infects, and with what ardency the fearching into them fhould influence us to magnify the glory of God: "For he doeth great things "paft finding out; yea, and wonders without " number." Job. ix.

That the office of rearing up the Worms, or the young brood of the Bees, is really intrufted to the common or working Bees alone, and that all their care, and every thing they do, is directed to that end, this fignal obfervation fhews plainly, which was communicated to me by a certain breeder of Bees yet living, who is thoroughly skilled in the management of them. He told me, that by a certain and infallible method, a prodigious number of females, vulgarly called kings, might be procreated, and that from hence, in the face of one year, three or four times more fwarms might be obtained, than otherwife is ufual in our cold climate. It is done in this manner, viz. in the month of April, when on inverting a hive you fhall find fome eggs or Worms in the peculiar cells deftined for the females, take out the elder female, together with fome few Bees, and put them into another hive apart; thefe will fettle in this new place, build their cells, lay their eggs, and raife up a progeny : thien fometime afterwards look again into the firft hive, and if you find there a female newly come our, fprung from the egg left before in the hive, take this likewife in the manner mentioned above, out from thence, and, in company with fome other Bees, put her into a hive of her own, that the may bring forth there. If in the fame manner you fhall manage afterwards the reft of the females, which fhall be one after another produced
from the eggs depofited in the firft hive, ifi the fpace of one fruitful fummer, from a fingle hive, you will thus be able to get ten, nay, fometimes fourteen females, each together with a ftock of Bees, their fubjects as it were, that is fo many fwarms. It muft be obferved that this can only be done in a fruitful year, for at other times the Bees not only will not multiply faft enough, but they will not be able to provide a quantity of wax and honey to fubfift themfelves during the winter: care muft alfo be taken to prevent that firf hive from fwarming, fince each female, which with its working Bees is taken out from thence in the manner here mentioned, fhould be looked upon as conftituting a feparate fwarm. I fhall finally fubjoin this caution, that almoft all thefe hives will prove barren, unlefs males likewife are admitted into them at the fame time with the females. The breeder of Bees who told me this, did not know how, according to their received opinions of the Bees fitting on their eggs, to folve this difficulty; he allowed only this, that it might eafily happen. that fome of the Bees that are the fitters, for by this names the males are called, might fly over, from the firft, or the other neighbouring hives, to thofe before mentioned; for unleifs the females were impregnated by thefe, no generation, as I myfelf think alfo, could follow.

It appears evidently from this experiment, how induftrious the common working Bees are, and that they continue to perform their office, though the female be taken out of the hive; but if you carry off the brood from the hive immediately, they will give over their labours: fo long as they have the eggs or young ones, you will never fee the leaft appearance of confufion in the hive. Hence I demonftrate clearly what is the office of the working Bees; they, together with the female, have no other office: but to nourifh the young, and build little cells for them; whatever time they can fpare from this work, they employ in collecting honey and Bee-bread. Thefe common Bees are in truth kept in flavery, and appear to have been created by God to labour inceffantly.

In countries that are warmer and more fertile than ours, the Bees fwarm more frequently, without the artifice mentioned before. This is confirmed by the following incident, which a creditable breeder of Bees now living related to me as an abfolute fact, which had happened to himfelf. He told me, that when the count de Manfveldt about fixty years before had over-run the province of Embden, he had left him after that irruption one hive of Bees, from which the following year thirty fwarms iffued forth: that hive proved indeed extraordinary fruitful, after the reft of his hives, as well as thofe of his neighbours, were deftroyed, for on that occafion a vaft multitude of Bees had betaken themfelves to it. The firt fwarm from this hive he faw on Afcenfion day,
and on the fame day, a little while afterwards, another fwarm alfo iffued forth; the firft of thefe two, after a month, fwarmed again twice, and the other fwarm that quitted the hive on the fame day, after fix weeks were paft, fwarmed three times. That fame year there iffued alfo, as well from the firft hive, the parent of all, as it were, and from the other hives he had obtained from it, three and twenty more fwarms, which with the former feven make thirty. It appears manifeftly from hence, that thefe infects are very prone to venery and extremely fruitful.

It is furprifing as well as pleafing to fee in what numbers, and with what affiduity, the Bees befet the mouth of the hive all around and without, when they are going to fwarm: the elder female, who is at this time impregnated for the year by the new-born males, often begins the fwarming. In the fecond fwarm, or when the Bees happen to fwarm for the third time, fometimes you may obferve two or three females at once, each of which we diftribute into peculiar hives, if there be a fufficient number of Bees for them, but we kill fome of them; if thefe are too few, the males for the moft part remain in the old hive, fince thefe, as I am fully perfuaded, have the moft convenient opportunity of impregnating the females. Sometimes, however, you will find males even in the late-formed hive of the new fwarm. This perhaps is the cafe when the female has not yet been impregnated, but that work is ftill to be done.

Bees may be hindered from fwarming, if all the males and females are taken out from the hive, and though there fhould by chance fome young female remain in the upper part of the hive, yet the whole fwarming will be ftopt, for this younger female continues barren. Whoever is defrous to extirpate from the hive in the manner mentioned the Worms and Nymphs of the males, muft go about it fo as by no means to cut away all the combs but thofe only which lie in the upper part, for thus the Nymphs and Worms of the males are lodged, and the Bees will be able then to carry out with activity the dead brood of males, and to cleanfe their combs aqain in a little time. 'Hence, indeed, this advantage arifes to the Bees, that they have nothing to do afterwards but folely to gather honey, becaufe there are already in the hive a fufficient number of cells prepared, which only want cleaning, and require but a little labour to repair them.

The fwarming being finifhed, when the Bees which have flown out have fettled and fixed themfelves upon the bough of a tree or fome fubftance, it is aftonifhing to fee in how fingular a manner, by the help of their legs, they ftick to one another, and form as it were a perfect bunch of grapes, hanging on one another by the affiftance of their claws. At that very time they can fly off from the bunch, and perch on it again; nay, even make their way out from the very middle of the
clufter, and rufh into the open air, though they feem to fick to one another fo extremely, clofe.

Bees that have weathered out the winter, begin in the month of March following to lay their eggs in great abundance; from that time they continue this work inceffantly: firft, the female lays her eggs in the cells of the common Bees; next, in four or five or more particular cells, from whence the young females are to come; and laftly, the depofits the reft in the hotteft part of the fummer, or near the time of fwarming, into the cells of the males. If it Mould happen that there are not in the hive any of thefe cells made for the males, for fometimes they are cut away with the honey at the end of the year, then the common Bees, endued as it were with an unaccountable prefcience, build fome exprefsly for that purpofe; nay, thefe fame Bees nourifh the male brood in thefe cells with a care and affection no lefs than the hatred and fiercenefs with which they kill the faid very males, when, after the fwarming time is over, the female is impregnated by them. Nor, indeed, is it difficult for the Bees to kill there males, for they are not furnifhed with any weapon to defend themfelves, and befides they have watted their ftrength in the act of generation, wherefore it is eafy to overpower them: indeed, they die otherwife naturally, for they are not fit either for collecting wax or honey for rearing up the brood, if they are not deftroyed before that time by the other Bees who have been their nurfes, and atone by a violent death for the pleafures they have enjoyed. Something fimilar to this is perhaps alfo the cafe among the Ants; for the males which are winged are found among the reft only at a certain time of the year.

To return from thy digreffion; it is proper to take notice that the working Bees, when they have firft crept out of, or rather burft from their cells, are of a much paler colour and more inclining to dun than the old ones; thefe being browner and ornamented with a yellownefs not fo deep as gold. Their fting at that time has not come to its full frength: the bag that contains the poifon is as yet empty, from whence, if they are even then handled, they not only do not fing, but do not fo much as attempt it. After a very few days thefe young Bees acquire as ftrong a colour as the elder; nor do they ever, as fome idly fable, learn from the old ones the art of making wax and collecting honey: this is implanted in them by nature, and to perform it rightly they need no more than follow their own inftinet. The reafon why the Bees are paler at firt than afterwards is this, that thofe parts which are of a fubftance between horn and bone, in the head, breaft, and body, being but lately ftript of their skin, have not yet in the new-born fate their full hardnefs: their down is at that time more of a Moufe colour, but afterwards their parts gain both hardnefs and colour, when more of their
fluids
fluids have evaporated thence, and the pores of the parts mentioned are contracted clofer.

Enough has been faid of the outward form, and of the generation, difpofition and actions of the Bces: I proceed next to the internal parts contained in the head, breaft and belly, which I fhall explain in the fame order that I obferved in treating of the Worm and Nymph. Thofe parts that are inclofed in the head and breaft, I fhall exprefsly treat of when I come to defcribe the male Bee. This only need be particularly obferved here, with regard to the head in common Bees, that their teeth or jaws are larger than in the others, and are furnithed with two ftrong mufcles, the one larger, the other fmaller, which are indeed of a very firm conftruction, and take up great part of the fkull, which is of a fubftance between horn and bone. The tendons of thefe mufcles are cartilaginous, approaching to a fubftance between horn and bone, and being enclofed within the flefh, they there adhere on each fide in the manner that we fee the plumage on both flick clofe to the quills in the feathers of Birds; but we may more properly compare this fabrick with thofe mufcles in Crabs and Lobfters, which move their claws; for in thofe the flefh in the fame manner is obferved to be joined with the great hard tendons of thofe mufcles; wherefore thefe fmall mufcles of the Bees agree with the mufcles of other animals in their ftructure, and are exactly fuch as the diftinguifhed Steno has defcribed them.

Since I have mentioned here the mutual fimilitude which there is between the mufcles of Bees and thofe of cruftaceous animals, I would have this further obferved, that, as in thofe animals the bony parts are placed on the outfide of the body and within, fo this obtains alfo after the fame manner in the Bee; and this ftructure is directly contrary to that which we obferve in larger animals and men, whofe flefh is placed outermoft, but the bones within, in the flefh, or between the flefh. However, the ftructure juft mentioned in the Bee, as alfo in Lobfters, does not conftantly obtain throughout, for in thofe places where the hard or horny bone, by which the joints of thefe animals are fupported, is to bend, or where the articulations are placed, thefe tendons, together with a part of the mufcles lie bare ; fince, were it otherwife, there would arife from thence a great obftruction in moving. But again, all powerful nature does not ufe this method in all the articulations, as may be feen about the joinings of the horns; for in thefe, all that is mufcular is enclofed entirely within the cavity of the bony or horny matter ; confequently the motion in thefe parts is obferved a little lefs diftinctly.

There remains another thing to be conf1dered even in the common Bee, I mean the trunk or probofcis, it being, like the teeth, much more remarkable in thefe than in the males. In this probofcis we are to obferve principally feven little parts; one of them, which is placed in the
middle, Tab. XVII. fig. v. i, has no fellow, and is pervious like a hollow tube: this properly conftitutes the tongue or the trunk itfelf: the other fix little parts, difpofed in three pairs, furround the former on each fide, being deftined for affinting the trunk in the act of fuction, that it may be able with fomuch the more eafe to draw out of flowers, and pour in by fuction, the natural honey found in flowers. In the trunk itfelf its divifions are to be confidered, which are extremely elegant and regular, and are befet all around with briftly, and as it were triangular hairs, diftributed in an elegant order. Some of thefe divifions at firft fight I took for articulations; there are above a hundred of them, and fome of them do not go through the whole thicknefs of the trunk. The ftructure of the trunk alfo, together with its mufcles, and the manner in which the fuction is performed, are very worthy to be obferved: but before I proceed to explain thefe, I hall firft defcribe thofe three pair of little parts which are placed above and near the trunk.

The two firit little parts of the probofcis a a are partly of a fubftance between horn and bone, and partly membranaceous: they are fet round with hairs, and are furnifhed with airpipes diftributed through the whole texture of them, though it be of a fubftance between horn and bone. Thefe tubes appear through it $b b$; the tips of them $c c$ are a little bent, but where thefe parts are united with the root of the trunk $d d$, there they have a kind of an appearance of an articulation, by the help of which they may be bent, ; near the trunk and the reit of its parts, quite within, and as it were under the chin of the Bee, if I may fo fpeak, I reprefent them in this draught drawn a little outwards and fideways, but the natural fituation of them is juft as Tab. XXV. fig. Ix. under the letters $f f$ in the Nymph hews. The ufe of thefe feveral parts is to contribute their affiftance towards the moving of the trunk downwards, and underneath againft the head, and a little towards the breaft, as well as to affirt in clofing and confining it, together with the other four, or rather the two pair of little parts ; and alfo towards defending, covering, and guarding it from injuries. I fhould think that they alfo affifted towards fwallowing the native honey, drawn up by fuction when the trunk is filled with it, or thrufting it further inwards towards the ftomach, fince they have power to fqueeze the fnout below and inwards ftrongly enough.

The two other little parts of the trunk, Tab. XVII. fig. v.ee, which figure ix. of Tab. XXV. reprefenting the Nymph, fhews in their natural fituation under the letters $g g$, are placed a little higher than the firft pair, but they are nearly of the fame ftructure. There is, however, this remarkable difference, that each of them has in the upper part, at their ext:emities, three joints, one, Tab. XVII. fig. v. $f f$, lower and longer, and the two others $g g$ higher and fomething fhorter, which are all furrounded
with fine hairs. Thefe little articulated parts do not, like the former, embrace or cover the trunk, but are only placed near it on each fide, and, where they rife up about the root of the trunk, they are alfo articulated. As to the ule of this pair, I am entirely of this opinion, and without any hefitation conclude that they are of very great affiftance to the trunk in the act of fucking; fince they as it were in the manner of two fingers affift the trunk, open the leaves of the flowers, and remove whatever elfe might chance to obfruct it: therefore I compare thefe two little parts to the two fore feet of a Mole, by the help of which it purhes the earth from the fides both ways, that it may be able with its fharp trunk to fearch for its food the more conveniently. The two laft little parts $b b$ are much lefs than the firt and fecond, and are of a texture a little partaking of horn and bone, but rather membranaceous, and they are rough likewife with hairs: thefe, together with the trunk itfelf, are drawn inwards, and, as I myfelf think, the little articulated parts are affifted by them in their operations, fince they remove themfelves a little from the fides of the trunk, and may very happily affift to pufh afide the leaves of the flowers. Even by their motion they feem as if they were contrived to help alfo towards carrying the honey upwards, and preffing it towards the fomach.

The fructure of the trunk i is partly membranaceous, and partiy of a fubftance between horn and bone, or griftly ; but its hairy skin, full of cuts, muft be confidered particularly. Here, before I proceed any further, it is neceffary I hould mention firft, that I hall defcribe and reprefent the trunk here in the under part, as it fhews itfelf in the Bee when laid flat on its back. As to what regards that part of the trunk $k k$ which is of a fubftance between horn and bone, it is formed in fuch a manner, that it can fly off from the reft of the trunk arch-ways, and fpread itfelf in the fhape of a circle, Tab. XVII. fig. vi. b; from whence it is that the membranaceous part $c c c c$, which lie moft beautifully folded up under the grifly part, fig. v. $k k$, and joined with it, may be confiderably expanded on each fide like a fail, in the middle of which a maft is fixed. 'This mechanifm, however, does not fhew itfelf plainly, unlefs we circumfpectly and nicely, with a very fine-pointed needle, raife that horny bone a little up: in that cafe it is at length feen how the membranaceous part of the trunk is folded, and how it expands itfelf; fo that the internal cavity of the trunk i is prodigioully enlarged and widened, infomuch that a very great quantity of native and undigefted honey, in proportion to the fize of the infect, may be received into the trunk. Indeed, nearly the fame courfe of nature is feen here, that we obferve in Monkies, which can hide nuts and what other fruits they have gathered, in two membranous bags, which are placed on each
fide of their jaws: fomething like this obtains alfo in fome kinds of Birds, which i: the membranaceous and expanded part of their bill, where the beginning of the fomach is inferted, preferve a Fifh they have catched. Amongtt other water-fowls this is moft obvioully feen in that fort of Cormorants, which in our way of fpeaking we call Schoffers. Thefe birds once every year frequent the foref of Sevenhufen, not far diflant from Leyden, and are fhook down from the trees in great numbers, and as foon as they fall into the water they are able to fwim immediately, and to dive quickly under water, though they have never before either flown or fwam. In the fame manner Bees alfo have implanted in them the art of making wax, and gathering honey in their probofcis or trunk.

Before I proceed further in the defcription of the trunk, I fhall infert an account of the manner of their catching fifh in fome parts of Europe, by means of the juft mentioned fort of Cormorants : fome few years ago many of thefe birds were carried to England and fold for that purpofe. In the firft place then they make them tame, fo that they may be brought to perch and fay upon the hand of their own accord: when after this they are inclined to go out a firhing with them, they tie to one of their legs a thin but ftrong cord, which they keep rolled up in a ball : afterwards they hold this ball, which is wound round a little fteel pin, by a wooden handle, as our girls do their bobbins, while they roll off of them the threads made on the reel: thefe things being prepared, they put a ring round the Cormorant's neck, and being now come to the fifh-pond, they let the Cormorant fly down into the water; then the cord is rolled off of the ball with a whizzing twirl, and the Cormorant, to the great amazement of the fpectators, quickly feizes fome filhes: thefe, however, are flopt at the ring that has been put about its neck: therefore when the Cormorant is afterwards drawn out by the cord, he may eafily be made to throw out again the fifhes it had taken into the mouth, only by fqueezing its ftomach and throat upwards. A perfon of great credit and ingenuity told me this fory, who has himfelf fometimes feen this manner of fifhing. When I was in company with Mr. John Oort, an old friend of mine at Honflaardik, I obferved with aftonifhment that certain water-fowls there, when any fifhes were given them, would always turn them expeditioufly, fo that they could take them in head foremoft : this was done through great caution in them, that they might not be hurt by the fins of the Fifhes, as they went down their throat. Whatever we could do to make thefe fowls fwallow a finh tail foremoft, they could not be brought to it; for they always ured, by the help of their beaks, dexteroufly to turn the firh over. To return to the trunk of the Bee; it is to
be obferved, that the membranaceous part of the trunk has no hair on it, but in its place is covered all over with little protuberant pimples; thefe are tranfparent, and are placed there in regular order, and at equal diftances from each other, and in fome degree refemble the little rifings obfervable on the skin of birds when their feathers have been plucked off: thefe little parts feem to be in reality glandules, which have perhaps a power confiderably to change the honey that is fwallowed down, and in fome meafure to forward the connection of it. This alfo is to be obferved in regard to the fructure of the griftly parts of the trunk, or that which is of a fubftance between horn and bone, that in the middle it feems to approach nearer to the nature of an horny bone, than it does at the fides, which are of a little deeper or dusky red colour. This part of a fubftance between horn and bone, Tab. XVIl. fig. $\mathbf{v} . k k$, does not every where retire outwards from the trunk; for a little below the orifice or mouth of the trunk, it tends inwards $n n$, and, uniting with the other hairy part of the trunk in a narrower and thinner canal as it were, is then carried altogether inwards and forwards 00 . But in the fame place the whole trunk in its circumference is then crowded with fmall hairs, like little claws a very little bent, which, whether they are open canals, or ferve by way of little claws or hooks, to keep the trunk during the time of fucking in its fituation and place, I will not determine ; for as yet I have not fo clearly difcovered how it is, though I make no doubt but it may be found by time and application. That portion of the trunk which is of a fubftance between horn and bone, at the end of that part where it verges outwards, has a globule or little head, which appears very remarkable; and in the middle of this an opening is feen, which feems to me to penetrate quite into the cavity of the membranaceous portion of the trunk; neverthelefs I now find this opening is not, as I have before faid, fo finall as the apertures of the lacteals, though under a microfcope it may appear fo: indeed the beginning of it in this place, in proportion to the part, is fo minute and narrow, that fcarce any thing certain can be advanced about it to clear up all doubts. In Butterfies I am confident that the trunk opens with many lips, which imbibing the nourifhment, appear at the end of the trunk like fo many little hairs: but in the Bee a different fructure is obferved; that little part or diminutive head of the trunk, Tab. XVII. fig. v. 00 , together with its little membrane, in which the hairs are fixed, is able to contract itfelf into a narrower compafs, and likewife to move itfelf inwards, as is manifent if this part be touched and examined at different times, and erpecially if it be carefully examined in the younger Bees, and then in the more perfect. I have reprefented this in the form wherein I
can fhew it at any time. Further, this portion of a fubitance between horn and bone, at the lower part fpreads into two legs as it were p, which are connected with the other lower portion of the trunk: where this connexion is made, there are difcovered three more little parts of a fubftance between horn and bone $q q q$, perfectly black like pitch, fhining, and joined to one another by feveral articulations. The middlemoft of thefe is the fleath as it were of the trunk, within which it at that time, when it is not employed in fucking, by the help of fome mufcles, is drawn back and concealed; at the fame time alfo the other little parts likewife of the trunk bend themfelves, and retire inwards. In this heath of the trunk thofe mufcles alfo are enclofed, which belong to the two pair of the articulated little parts of the trunk $e e$. The mufcles next of the firft pair of thefe little parts, Tab. XVII. fig. v. $a a$, are placed a little lower, and are implanted with two horny little parts $q q$ towards the outide, of a blackifh colour: but the two little parts themfelves, together with the fheath of the trunk, are joined by four diftinct articulations $r r r r$, to the extremities of the bony or horny parts, which together conflitute the head of the Bee: fo that the whole fheath, the trunk, and its little parts, are, by the help of two ftrong mufcles \iint moved inwards at once; on which occafion the parts juft defcribed bend themfelves backwards and inwards, and at the fame time hide, cover, and fhut in the fheath. Thefe beforementioned mufcles $/ \int$ here appear through a little thin membrane t, and under this the throat $l a l f o$ is feen, which, together with thefe mufcles, and the membrane covering them, is cut through in this figure.

We come now to the act of fuction, which the Bee performs in the following manner; it gradually draws the griftly part of its trunk, or that which is of a fubftance between horn and bone $k k$ from the hairy skin and its divifions, which done, the membranaceous and wrinkled part of the trunk m is ftretched out and made fmooth, but the griftly part is diftended arch-ways: when thisis performed by the help of the mufcles of the trunk, the ambient air is necefflarily forced out of its place, and by the preffion of it the honey is carried inwards, and through the cavity of the trunk.

In Butterflies, on the contrary, this is performed in quite a different manner; for as much as in thefe the trunk is not fingle, as in the Bee, but double; which alfo, after the fuction is ended, is wonderfully curled and rolled up together, by numberlefs moft minute articulations; fo that Butterfies muft execute their fuction in a quite different method, namely, by pinching clofe the points of refpiration, and fwelling out their body, they repel the air, and this being driven out, purhes forward into their trunk the fweet moifture for which they gape in fucking. The doing
this is very eafy to the Butterfly, fo that I fhould think even the Bee too, while it is fucking, does the fame thing, for what hinders, but that this or fomething fimilar may be performed by the Bees, fince their points of refpiration, though membranaceous within, have a horny edge, by the force of which they can open themfelves into an oblong flit, and clofe themfelves again, in like manner as the Frog ftretches out and fhuts again the upper part of its wind-pipe, as the moft renowned Malpighius has obferved with the utmoft exactnefs? I might now defribe all the mufcles of this part, one by one, and reprefent them in figures; but that would involve me in a work requiring both a vaft length of time and endlefs labour : this is the reafon alfo that has hindered me from purfuing many other particulars, which I have here delivered to the utmoft, and with the fricteft accuracy.

Should any one now afk me, whether the Bee can fuck no other way, than by ftretching out or moving arch-ways the little griftly part of its trunk, I anfwer, that it entirely appears to me, that even by barely pinching clofe their points of refpiration, and fwelling out their body, the Bees may be able to perform their fuction; for nothing hinders, but that even by thefe means alone the air that is driven out may purh the honey inwards. We obferve alfo that the Bee, when going to fuck in the air in its little pulmonary tubes, moves the rings of the belly within and without, in the fame manner as we do our breafts in the act of breathing; but becaufe the thorax in Bees is immoveable, therefore their belly performs this office. This little part, which has been now defcribed, is worthy of the highef notice; nor can I here forbear owning, to the glory of the immenfe and incomprehenfible Architect, that I have but very imperfectly and fuperficially attempted to defcribe and reprefent this
little part ; for to reprefent it to the life, in its full perfection, as truly moft perfect it is, far exceeds the utmoft efforts of human knowledge: and in very truth, our intellects and abilities fail us every where, when we venture even no further than to contemplate the divine wifdom in the works of God, which can never be worthily magnified. Think then how much more excellent they mult have been before they became obnoxious to deftruction! in reality, this fingle little part is formed with fuch exquifite fkill, that it may jufly be ranked among the chief inftances of the omnipotence of the Deity. But I would have this underfood according to the narrow limits within which our capacities are confined, for we fee the works of God only as through a glafs darkly, fince our underftanding refembles an ignis fatuus, a Will-with-a-wifp, and is utterly unfit for difcerning thefe things, which fo furpafs all mortal comprehenfion.
In other forts of winged infects approaching to Bees, for example in the Wafp, the trunk is much flenderer, nor is it of fo remarkable a length ; the reafon of which difference feems to me to be this, that in thefe infects, befides the trunk, there is another way ftill by which they can draw in their food, fince they are little creatures of a very rapacious, favage, and greedy nature. This is efpecially manifeft in that larger kind, which we call Hornets, which are rapacious to fuch an amazing degree, that even when cut through the middle of their body, they do not refufe to eat ; and if then you give them honey, or fugar moiftened with water, which is much the moft proper, they fuck it in fo greedily, that you may fee it again running out at the wounded part. I have confidered the trunk in the largeft fort of Wafps, a draught of which, for its great elegance and particularity, I fhall give in this place.

A delineation of the trunk or fnout of the W afp, as feen from underneath.

Tab. XVII. Fig. vir.
a Is a part of the horny fubftance at the bottom of the head; it is fhagged at the fides with yellow hairs, is marked alfo with two yellow fpots, but for the reft it is black, and fhining.
$b b c$ Are three little horny parts, at the root of the trunk; thefe are of a fhining black, and two of them that are at the fide $b b$ contain in them thofe mufcles, which move the articulated brifles $d d$; but the little horny part in the middle c is, as it were, the fheath of the trunk itfelf f, in which, befides the mufcles of that organ, thofe of the other two articulated briftles $d d$ alfo are depofited.
$d d d d$ Are four articulated briftles, that affirt the trunk during its action.
ce Is the place where the teeth have been broken off.
f Marks out the trunk itfelf, in which are feen four delicate white little parts, furnifhed toward their tops with round and yellow globules. All the parts hitherto mentioned are covered over with hairs, which indeed I have not exhibited here with them, left it fhould create confufion. It is to be obferved, alfo, that all thefe parts are reprefented as in the Wafp laid along on its back, from whence it is, that we can fee but half of fome of them.

If a Bee is opened on the back, there firft prefents itfelf a limpid or clear humour iffuing from the veins and the heart, which are wounded; for the heart is placed oblong in the back, as it is in the Coffus, Silk-wornns, and many other infects.

The mufcular fibres alfo are feen, which move the rings or incifions of the body of the Bee, and are the fame both in fituation and
flructure, as I have fhewn them in the Coffus.

The fat alfo appears, confirting of little round parts, which have been fixed to their membrane.

The lungs are more than all other parts remarkable; thefe are two white and tranfparent little veffels, fig. rx. $a a$, confifting of the pulmonary tubes dilated, and running together. Thefe lungs are entirely membranous, and fall together when the air is out of them, which is by no means the cafe with the tubes that proceed from them, inafimuch as they, confifting of rings curled around, remain always open. The lungs, compofed as I have obferved of dilated ramifications of the wind-pipe, terminate again in little tubes, Tab. XVII. fig. Ix. $b b$, which are annular; and thefe, then here and there widening, grow into little bladders $c c$, and thefe alfo contract themfelves again into little tubes $d d$. This alternate mixture of bladders and tubes, however, is not fo frequent in the Bee, as in the Rhinoceros Beetle, whofe lungs confift of numberlefs little bladders, which may in fome meafure be compared to the pods of the plant called Honefty, while yet hanging from their ftalks. In Bees the lungs are principally compofed of two large bladders"; there are likewife befide them fome fmaller, and the remaining part is made up of little tubes, which then, as in the Worm of the Beetle, or as in the Worm of the Bee itfelf, are difperfed over all parts of the body $e c, \& c$. fo that the lungs, by the intervention of the little tubes which they fend out, communicate every where with themfelves by mutual inofculations $f f$.
When a Bee is opened along the belly, immediately the fininal marrow comes in view, and this I am now going to defcribe : nor fhall I here fop to mention either thofe parts which are feen in this view befides, and have been mentioned before, or the extremities of the rings, which are membranaceous and terminated by black edges of a fubftance between horn and bone. The fpinal marrow is the principal part, which now prefents itfelf to be confidered; it confifts, as in the Silk-worm, of nerves and little knots, which owe their rife to two nerves as it were proceeding from the brain, though there feems to me to be befides thefe fome fubftance of a different nature from them in the fame place, which, for the fake of ftrengthening them, binds the little knot and the nerves together : this is feen alfo in Silkworms; nay, and in the human fpecies, thefe nerves, which are fwallowed up as it were in little knots, are feparated from one another here at a more confiderable diftance, and open much wider afunder, than in the marrow of Silkworms; indeed, the marrow in Bees is almoft every where open or fplit into two parts, while in Silk-worms it opens only at diftances. What are diftinctly called the nerves by anatomitts, are thofe fhoots which arife from the fides of thefe little knots. If we trace the courfe of
the marrow near the lower rings of the belly, there the nerves, fpringing from the little knots, are feen, and they difperfe themfelvcs among the mufcles defigned for drawing the fting inwards and thrufting it out. The other vifcera moft confpicuous in this view, are the ftomach, the guts, and fome parts belonging to the fting.

The ftomach, the gullet leading to which is moft exceffively narrow, feems to me membranaceous and thin, though it has fome flefly fibres. It is often filled with honey, which is eafly diftinguifhed by the tafte ; the pylorus follows the ftomach, and after this comes in view another little part, fomewhat more protuberant, and inclining to a colour between yellow and red, which however, when more accurately infpected, proves to be only fomething fhut up within the hollow of the inteftine, and fhining through in that place.

Next follows an inteftine, which in fome meafure refembles the colon in other animals: this gut is much thicker than the fomach itfelf, efpecially when it is full; it has moreover ftrong mufcular fibres, which, when they act, turn it up in many wrinkles and folds; its cavity is commonly full of a whitifh matter, which feems to me to refemble the white of an egg that has been fteeped for fome time in rectified fpirit of wine, and is juft beginning to curdle ; or it is liks ftarch mixt with a fmall quantity of water. If this little gut is pricked with the point of a lancet, the matter juft mentioned flows out.
Further down this gut is confiderably contracted and made fmaller: but there, where this contraction begins, an infinite number of whitifh filaments are feen, like thofe which in the Coffus I have called faffron-coloured veffels. Thefe filaments or minute inteftines are faftened to the gut, in that part where it is contracted, as well as elfewhere. This clofe connexion of them with the gut is extremely ftrong, and is effected by means of the pulmonary tubes, which, as they run through the whole body, fo in this place particularly they are an infuperable obftacle to the difengaging thefe little guts. I believe it would take me up fome months to fearch this matter thoroughly to the bottom, which truly feems to be by no means defpicable, nor unworthy that fo much pains fhould be employed upon it, as I thall hereafter fhew.

The gut, after it has been contracted in the manner already mentioned, dilates again on a fudden, though here it feems to be altogether membranous; but as it is at the fame time tranfparent, fome little, whitifh, and oblong parts are feen on the outfide, as Ghining through it: thefe, when the gut is opened, are found to be fix in number, and are glandular, and they are not every where uniformly whitifh, butare filled with watery and tranfparent qualities. Thefe fix little glandular parts fwell out very confiderably on the inner furface of the gut, within its hollow, and are there very confi-
cuous. I have alfo perceived little parts of the fame kind in the inteftines of Homets. It is obfervable befides, that the extreme part of the inteftine, in which theie fix little parts are found, is fometimes fwelled, almoft beyond what could be believed, with excrements. Thefe are of a pale yellow colour, and are divided into fmall pieces, like bee-bread, though their little lumps are neither round, nor of any other regular figure. One may furcher remark, that the inteftine, in which thefe fix oblong glandular little parts are placed, is fometimes found as fully diftended with an aqueous humour, of a yellowihh colour, as with the yellow and more folid matter beforementioned. But this is only in very young Bees juft produced from the Nymph.

This gut is again contracted where it ends, but from that part it again dilates itfelf, and at length forms the rectum or laft gut. This extreme part of the intefine fometimes wants the laft concraction, and in that cafe appears rather like rumpled linen, or a cotton handkerchief, drawn through one's hand. The inteftine finally terminates under the point of the fting where the excrements are voided, and the rectum arifes from it.

If there guts joined to the ftomach are laid on a thin plate of glafs, and heated by the flame of a lamp till thoroughly dried, then you may fee not only their circular fibres, but even thofe valves which have been called by Kerkring in the inrertines of men, the valvulx conniventes, and which were defribed and in fome manner delineated by Spigelius. Ruyfch firf, in the year 1607 , demonffrated them in an inflated human gut. I have made the fame obfervation alfo in the Bee and Wafp.

Behold! thefe are the entrails of the common or working Bee ; there does not appear among them the fmalleft trace of fpermatic organs or the genital parts, or of any thing which can anfwer the purpofe of, or even be compared to a penis or ovary. Hence I think there Bees may moft juftly and properly be faid to be natural eunuchs, and fuch as can only work and feed, cherifh and rear the progeny of others as their own. On the contrary, as I have beforementioned, the genital organs are very plainly feen in drones, as they are the true males of the Bees : their whole belly is in a manner filled by the tefticles, as I thewed to his ferene highnefs the grand duke of Tufcany, among ocher wonders of nature, in the year 1668, when he gracioufly condefcended to approve of my labours.

I thaill now proceed to the fing, that wonderful work of nature, and eminent example of the wifdom of the great Creator. It is placed in the hinder part of the body, its point lies juft over the end of the rectum or ftraight gut: the fting is therefore placed in the laft rings of the belly, with which it is alfo very remarkably jointed, by means of fome cartilages. But as the fting is worthy of the greateft attention, I fhall defrribe it at large, toge-
ther with all the parts fubiervient to it, having in view only the praife and glory of the molt wife and excellent Creator. In the fting there are difcovered, firft, the channels through which its poifon is conveyed to it: Secondly, its cartilages. Thirdly, its mufcles. Fourthly, its two pieces called legs. And laftly, the fheath within which the legs which properly conflitute the fting are hid.

That the fling has poifon in it, R. Hooke, a writer of great experience and learning, has in fome meafure laboured to demonftrate in his ineftimable micrographia; written in Englifh, thinking that the poifon lay hid in the hollow thicknefs of the fheath of the fting, which however is never the cafe, unleis by mere accident.

Let any one with a forceps or little fteel tweezers take hold of the legs, wings, or which laft will be moft convenient, the breaft of the common Bee, and he will generally fee a fmall clear drop as it were of water hanging on the point of the fing. In this water the poifonous quality of the Honey-Bee is properly contained. This, as foon as it drops into the wound, produces the pain that follows the wound; for the fting itfelf is not in the leaft degree venomous, nor does its puncture hurt more than that of a needle. For experiment's fake I have often wounded myfelf with the fting, and felt no other ill confequence from it than a llight itching in the wounded part; but the fting muft be firft thoroughly cleanfed and well fqueezed and wiped for this trial, for it might otherwife probably happen that the injury would be more confiderable.

To proceed in order, I would have it obferved, that the venomous liquor which only paffes through the fting is originally depofited in the belly of the Bee, and there contained in a little bladder nearly tranfparent. This little bladder is of an oblong figure, and of a very ftrong texture, fo as to bear the force of the fingers preffing it without any damage: may, fo great is its firmnefs, that the belly of the common Bee being opened, let this liitle bladder be taken hold of, and the whole fling and all its parts may be eaflily drawn with it out of the body, without the bladder being broke. I have found this bladder of poifon fo ftrong, even in the fmaller kinds of Wafps, that by preffing it with my fingers as hard as I could, the poifon might be thrown to the diftance of two foot from it through the fting. It is further remarkable, that a very ftrong mufcle twines about this little bladder, and has its tendril in the middle, as it is in the mufcle called the temporal mufcle in the human fpecies. When that mufcle contracts itfelf, the poifon is by its force fqueezed out and thrown into the wound, fo that the Aing may be compared to a fmall fyringe; the little bladder or rather the mufcle of it juft mentioned fetving it in the ftead of an impelling plug. But I have not hitherto diftinctly examined this mufcle in the common Bee: I have feen it in the Wafp,
and moft confpicuoufly in the Hornet, after I had firft kept that infect a whole year in balfam. This method I fome years fince difcovered, and by it the parts may be moft happily and diftinctly viewed. There comes out of this little bladder, in every fpecies of Bees, a fmall thin tube, which is extended as far as the fheath of the fting, and this at length runs between the two open legs of the fing, enters into the fheath, and terminates in the thickeft part of it. It is by this channel that the poifon is conveyed from the little bladder through the fheath into the fting, and paffing from the hollow part of the fheath between and under the legs of the fting, it is darted into the wound when the Bee gives the ftroke.
On one fide of the little poifon-bladder in the Bee, is feen a fmall, oblong, thin, crooked tube. Of this kind I have obferved two in the Hornet, in which creature the poifon-bladder is alfo twice as large as in Bees. I have feen befides other fmall tubes growing laterally out of that I mentioned, but I could not immediately difoover whether they terminated. I afterwards however obferved in Wafps and Hornets, that in the body of thefe animals there are two diftinct little tubes, Tab. XVIII. fig. iv. $c c$, inferted into the hinder part of the poifon-bladder a, through which little pipes the poifon is conveyed into that bladder, and in which the poifon is properly fecreted. Thefe fmall pipes appeared unequal, with little fwellings here and there, as is feen $d d d$, and terminated in clofed endings $e e$, as the blind guts of Hens, which fame thing I have obferved alfo in Bees. Thefe fmall veffels are much wider towards the hinder parts than in the fore parts, and about their extremities where they are clofed, they are very thickly furrounded with fat and pulmonary tubes, for which reafon they cannot be feparated from the other parts without great difficulty. I have alfo remarked, that thefe poifonous veffels in Bees very nearly refemble thofe which are found in Wafps, and are juft fuch as I have in the third figure, Tab. XIX. z, drawn to the life in a female Bee: z denotes the poifon-bladder in the female; γ the fluice of the bladder; o the fmall tube in which the poifon or venom is fecreted, β, β are the clofed ends, the fmall tube in which the poifon is concocted. Thefe appear to confift of a two-fold fubftance ; the one glandulous, of a whitifh colour, and not of a very firm texture; the other is membranaceous, with fomething like a filament quite tranfparent, which fticks within the former fubftance, by which it is fhut in and furrounded, like the fmall tube of the veffel called the vas deferens, which is in itfelf extremely flender, and is alfo compaffed about by a glandulous and nervous fubftance. The former fubftance is very earily reparated in the handling. of it from that within, which is skinny, tranfparent, hollow, and very much like a fine hair. This fimall tube is befides very ftrongly joined to the faffron-coloured veffels by numerous pul-
monary tubes, fo that at firft fight I fhould have thought thefe veffels were productions of the fmall tube; but as they are moft ftrongly fixed to that part where the gut contracts itfelf, and the fubftance they confift of curalled in my balfam ; whereas, on the contrary, the humour contained in the fmall pipe of the poifonbladder remained clear and bright in the fame balfam, I was thoroughly convinced from thence, and from what I have before mentioned, that this fmall tube has no communication with the faffron-coloured veffels.

When the poifon-bladder is put into my balfam, it is fometimes tinged with a purplecolour or rednefs. I likewife have feen it green, in the Hornet. And we muft further obferve, that the poifon-bladder in Bees, as I have often obferved, is not contracted in a globular form, like the urinary bladder in the human feecies: fo far from it, that its fides are like two planes preffed together. This may be feen if you cut off the Bee's wings, and then greatly irritate or provoke the creature; for then it will, in revenge, throw its poifon out of the fing, being every moment eager to ftrike and wound.
Let us proceed. The fting then, as I have fhewn, is fituated under the rings of the pofternal parts of the body, and is there moved in and out by the help of certain mufcles; and as thefe mufcles are affixed to fome horny or bony little parts, I fhall therefore briefly def cribe thefe parts. There are chiefly fix principal little parts, together with two others lefs confpicuous. The legs or Thanks of the fting are articulated with thefe horny or bony little parts, which are likewife joined with each other, fo that by means of this ftructure they may be moved in and out, and up and down, and on either fide. This motion is performed by the force of the mufcular parts, which I: find to be eight in number, four very manifef, but the reft lefs confpicuous. The horny or bony parts, and even the fhanks of the fting; are inferted in all thefe mufcles. Two of the mufcles, which are fomewhat lefs confpicuous, encompafs or furround that fide of the fting which is the thickeft, being connested with the cafe or fheath. There is likewife a fmall horny or bony part there, conftructed or formed in the fame manner as the little bone in Birds; called the perficillum, which is properly produced or originated from the collar-bones concreted together. This little part is particularly articulated, and by the help of its mufcles feems to move the fheath or cafe of the fting regularly outward.
I fhall now defcribe the fhanks of the fting, and fhew that it is not a fimple but compound part; that it confifts of two fhanks, and a fheath wherein the fhanks are kept, like two fwords in one fcabbard. Thefe fhanks of the fting are not conftructed in the manner of the crura of the penis or clitoris, which arife each from a diftinct place, and at length meet and conftitute one body; for the fhanks of the fing continue all the way diftinct from each other,
though
though their points be fo near to each other, that the intermediate fpace can fcarce be obferved, and no body thinks he fees any thing but one point. Each of there Chanks is furrowed on one fide, but on the other it is ftrengthened by certain. hooks: hence, whilft the equal fides and points of both fhanks are joined together, the fting is provided from each fide arıned with hooks. But, in order to underfand this matter juftly, one muft know the ftructure of the fheath of the fting; and therefore I would have it obferved, that this cafe or fheath is not in reality difpofed in fuch a manner as the fcabbard of a fword or knife, or like the cafe of a rocket: by no means, for the fword, knife, or other weapon are on each fide hidden in their fcabbards, and furrounded or covered entirely by them, nor is the cafe of the fting made like the fmall open tube or canula, through which furgeons pafs their inftruments, when they are to cut a particular part in fuch a manner as that the adjacent parts may remain unhurt. The cafe of the aculeus is more like the horn-book made in our country for children, or one of thofe cafes, the verge of which is furrowed and receives a moveable cover. The fheath is formed nearly in this manner: its inner fide each way is prominent, or has a rifing back, or it is fomewhat bent with a double margin; but thefe backs, like bolts, agree with and are joined to the furrows of the fhanks of the fting, and therefore thefe fhanks are very eafily and conveniently moveable up and down, like the operculum or cover in the furrow of the cafes juft named. But the fting itfelf is fituated in fuch a manner in this fheath, that its points lie as it were in the open cavity, but the crooked hooks fhew themfelves out of the fheath's cavity; except when the fting appears beyond the extreme verge of the fheath, and is confequently thruft out: therefore, the lower fide of the fhanks of the aculeus or fting lies always in the cavity of the Theath, and the upper fide is out of it. Thefe fides of the fhanks have crooked hooks, hang out of the cafe, and receiving in their furrows the internal ribs and prominences of the fheath, they are moved eafily along the latter; whilft, in the mean time, their upper fides being fmooth, are applied to each other, and with their united extremities they form the point of the fing.

Further, it is proper to obferve that one of the fides of the cafe or theath is not open through its whole length, nor does it refemble the inftrument before named, equally extended without its valve: it is rather on the hinder part, where it is broadeft, and united together, under which part the fhanks afterwards pafs. This is ve:y particularly and plainly obferved in the fting of the Hornet, in which the theath entirely coalefces in the hinder part where it is thickeft. But in Bees thefe minute and narrow paffages are no where entirely united; therefore the fheath in that place embraces the fhanks of the fting, at leaft in part, by that means preventing thofe fhanks from moving
out of their places, as may be feen, T:b. XVIIf. fig. III. unders the letters $d d$.
Each fhank of the fing has ufually ten crooked hooks near its point, and fome others which are lefs remarkable: but the flieath or cafe has no hook at all; becaufe if it had, the fting itfelf could not move backward and forward in it. Since therefore each Thank has ten hooks, the Ating; when the Bee has given its ftroke, is kept in the wound, being fixed there by twenty bearded hooks; and the more the Bee endeavours to draw the fling out, the deeper its hooks penetrate into the wounded part. But if the fting be taken out of the body of the Bee, together with the intertines and other parts, as I have mentioned, it may notwithftanding then infinuate itfelf more and more deeply into the wound, being in this refpect like the heads of vipers, which will bite after they are cut off. This we are clearly taught by experience, fince we fee that when the fting is drawn out of the body of the Bee, it penetrates ftill deeper into the wound, trembling; and as it were fhaking in all its parts. The reafon of this is evident, for the fting is thrown out together with its fheath, and all the cartilages and mufcles belonging to it, together with the poifon bladder. I have often made the before-mentioned experiment in tan-leather gloves. The Bee muft firft be fuffered to fix its fting in them, and then it muft be taken by the wings and pulled away forcibly, fo that the fling may be drawn out of the body. One may fee that the fting penetrates deeper and deeper into the leather: nor indeed is there any thing to hinder the doing of this, fince the fting confifts of the two thanks before defcribed; which, as their tops or ends are united together, fo both and each of them feparately may be moved: therefore, whille one fhank is fixed in the wound, the other may be thruft further and deeper; and where this latter lies firm by means of its crooked hooks, the former, on the contrary, may be infinuated deeper into the wound, or thruft into it deeper than the former. By this means the fting and its fheath penetrate further into the wound. Therefore it frequently happens, that the fhank of the fing is drawn further back into the cafe, and the other thruft out of it in proportion. Thus when the Bee hath fruck the glove, and the fing is then taken out of it, it is frequently found that one hank appears further ftretched out of the cafe than the other; that is, the two fhanks of the ning have been then unequally fixed, and one is ftruck in more deeply than the other, and fixed there by means of its crooked hooks. When the fting with its appendages has been jurt pulled out of the Bee, if it be lightly put into any callous part of our skin, the fame confequence naturally fhews itfelf: for it is then planly obferved, that the fting penetrates every moment deeper and deeper into the wound; but however it does. no harm, provided the callons part be thick enough to prevent the poifon from reaching or
entering the blood-veffels, for that naturally difcharges its ftrength into the blood.

It is now time to treat more particularly of the beards or crooked hooks of the fting. If you put them under a powerful microfcope, you will fee them almof like Cats claws, that is, they are fomewhat bent inwards, and their extremities are entirely tranfparent, but they are not moveable like the claws of beafts: the fhanks that conftitute the fting and their crooked hooks are all plainly cartilaginous and fufficiently flexible, but they are connected by no articulations.

No joints are obferved either in the fheath or the fing itfelf, though I was once of the contrary opinion. My error arofe from hence, that upon handling it the air run into the cavity of the cafe, and by its clearnefs or brightnefs, and by the bubbles it formed, rendered confpicuous the poifoned liquor, which fill remained in the fheath, fo that it appeared to me as if the cafe itfelf of the fing was articulated or jointed.

If the fting be feen ftretched or protruded out beyond the extremity of the Cheath, and at that time the Bee difcharges its poifon, then this poifonous liquor is not thrown out beyond the cafe, but appears upon it like a little drop. But when the fting is moift or wet, the poifon alfo is further diffufed, as it happens when the Bee gives any perfon a ftroke, and afterwards infinuates its poifon into the wound. Nor can it be otherwife, fince the fing, the hinder part whereof is thicker, ftops or clofes up the wound fo entirely, that the poifon has no entrance or paffage into it, but through the interftice of the fhanks of the fting itfelf.

Therefore the proverb applied to Bees is very true, "There is no honey without fome gall." Though I can find no bile in this infect, yet the poifon thus called gall may be diftinguinhed very clearly in it ; nay, a great quantity thereof may be eafily collected: this I fhall at fome time endeavour to do, when I hall make experiments on this poifon. It would indeed be eafier to obtain it out of the Hornets, Wafps, and Humble-Bees, the poifon-bladder of which is larger ; but one cannot get thefe creatures in fuch numbers as Bees. If any one defires to examine the Bee's poifon-bladder filled with poifon, he muft kill the Bee, which may be done by throwing it into a bottle of fpirit of wine. The Bees may be otherwife killed without handling them, by the fmoak of that kind of fungus called crepitus lupi, or the puff-ball, or with that of linen cloth folded as in making tinder. The latter, in my opinion, is the beft way of killing them : for though you handle Wafps, Humble-Bees and Hornets ever fo little, they immediately difcharge their virus or poifon out of their formidable fling, and then none of it is found in the bladder, which is otherwife full of it. I preferve fome fuch bladders in my collection, as moft extremely meriting the infpection of the curious.

The poifon is collected in the following manner : draw the fting and poifon-bladder together out of the body, and then the bladder, as I reprefent in Tab. XVIII. figure v . being taken with the tip of the fingers, put the point or top of the fting into a thin glafs tube, and then prefs or fqueeze the poifon into the latter through the fting out of the bladder: you may afterwards blow the poifon together into another glafs veffel, and make the experiment thereon; but all this muft be done very fpeedily, fince this poifon is eafily coagulated when out of the body. Another method is to wound the bladder a little, and then to immerge or put into it the top of a thin glafs tube; and thus the humour will defcend fpontaneoufly, or be forced into the tube: but the former method is better than the latter for thofe who are expert in thefe things.

When the poifon is expreffed out of its bladder, it very eafily exhales, by reafon of its fubtile and firituous nature, leaving a confiderable cruft on the glafs, which when fcraped off appears like duft: whether this duft has fill any poifon, is yet unknown to me. The poifon which the Bee difcharges through its fting in the form of a round drop, fometimes concretes about the fing itfelf, preferving the fame round fhape, and thus affords a very agreeable fpectacle, for it refembles a little drop of clear water; hanging as it were out of the fting.

When the Bee hath given a wound, the fting, as I have obferved before, ufually remains in the wound by means of its hooks. But whether the Bee can wound or pierce the skin with its fheath only, and fo not leave its fting in the wound, is ftill unknown to me. The fheath is indeed very fharp. The Bee therefore feems able to wound with this alone, if it draws in the fting at that time; fince we likewife obferve, that this fting is not always equally prominent out of the cafe; it fometimes lies entirely out of the extremity of the fheath, and is fometimes lower and fometimes higher up in this its cafe.

When the fting remains fixed in the wound the Bee mult die; for, befides the fting itfelf, the Bee then lofes its inteftinum rectum, or the Atraight gut, and the parts annexed to it; nay, even the horny parts and their ligaments are broken off from the extreme rings of the body, to which they are united. And we are particularly to obferve here, that the whole poifonbladder, together with the fing, is then drawn out of the Bee's body; and as it remains out of it, it ftill comprefles itfelf by the laft action of its mufcular fibres, and drives its poifon deeper into the wound. For this reafon, if any one be ftung by a Bee, it is by no means proper to take the fting by the hind part in order to extract it or get it out, becaufe, by this means more poifon is always thrown into the wound. It would be better to cut off with a pair of fciffors all the parts of the fing which hang out of the wound, and then to take out
the reft with a fmall needle. I have fometimes feen the flomach itfelf drawn with the fting out of the body of the Bee.

If you would render the poifon of the Bee ineffectual, and the Bee itfelf tame, make it thruft its fting into a piece of leather, and then cut off the top of it; by this means all the poifon flows out of it, and the creature becomes tractable and gentle whillt it lives, nor can it afterwards, though it fhould probably generate poifon anew, do any mifchief.

From what has been here faid, it appears how dangerous it is to irritate Hornets, fince they have very formidable arms, and always carry poifon about them.

In Hornets the poifon-bladder is exceffively firm, and is twice as big as in Bees. The learned Mouffet relates a very remarkable thing of thefe creatures: he fays, the very accurate Penny faw a Hornet kill a Sparrow with a ftroke of its fting. Thefe are his words : "Whilf Penny was at Peterborough in Eng" land, he faw in the ftreet a Hornet in pur" fuit of a Sparrow, which it ftruck at laft " with its fting and immediately killed it, and, " to the great aftonifhment of the fpectators, "fed itfelf with the blood of the dead Spar"row." How terrible thefe creatures are on account of this poifon which they carry about them, is likewife evident from the promife formerly made by God to the Ifraelites in Exod. xxiii. "I will fend, I fay, my terror, like a "Hornet before you, who hall drive out the "Hivite, the Canaanite, and the Hittite from " before thee." But God has no need of thefe hofts to chaftife his people; he can do it even by the fmalleft infects, and convert the duft of the earth into Lice, if the number of other plagues fhould chance to fail: for what is above the power of him who fhews himfelf adorable in all his works?

The queen or female Bee is furnifhed with a fting, as I fhall afterwards defcribe in the diffection of that kind. Among the Hornets the females only have ftings, which are longer, fharper, and ftronger than in the Bee, and armed with feveral frightful hooks. How the males of the Humble Bees and Wafps are circumftanced, in this refpect, I have not been yet able to examine, on account of the variety of bufinefs wherein I am engaged. I would only have it obferved here, that the males of the Hornet have no fting, in like manner as the drone or male is without it among Bees; that the males of thefe two fpecies agree in this refpect, and are very peaceable creatures, free from all mifchief and injurious defigns, and delight in love and generation only. There is the like meeknefs obferved alfo in the males of Ants, and their teeth are therefore much fimaller than thofe of the females: among Ants
alfo there is a third feecies which do not contribute to generation, but 隹ve only to rear up their young.
I have before given my opinion of the principal ufe of this poifon in the Bee, that is, I think it contributes to prepare what is called the Bee-bread into wax : this, however, requires to be yet more accurately inveftigated. The whole fting, neverthelefs, great as it is, feems to be appointed only to do mifchief, and formed by nature folely for that purpofe, that the Bees may, by the help of it, defend their young againft the infults of other creatures, and feed them in fecurity. Since therefore the nourifhing of the fock is committed to the common working Bees, hence it feems probable that they, particularly about the time of fwarming, and a little after, are as furious and as much inclined to fting and do mifchief with their poifon, as they are eager to preferve as well the iflue committed to them, as their own proper food. It would not be improper to conclude from thence, that the fting and the power of doing hurt with it, are given them on that account. The truth of this will be more evident to any one who confiders that the females of the Hornets are likewife provided with fuch weapons, though they never form any wax, but build their habitations principally, as it appears, of the bark of trees faftened together. Hence various colours are obferved in their nefts, according to the variety of the bark of trees which they have ufed in building them. We likewife fee in the time of copulation with what fury the Stag forms and rages if any one comes near him: this Harvey very accurately defcribes from experience. Nay, even the otherwife inoffenfive domeftic fowls will fly in the face of thofe who endeavour to take away their young, and even Bitches and Cats, however mild and gentle they are, yet cannot endure to have their whelps and kittens touched. Thefe are the arguments which nature fupplies for eftablifhing the ufe of the poifon. But that the poifon, in preference to any thing elfe, is given to thefe infects with defign to hurt mankind and all other animals by it, and that their fting alfo, as fome think, is made to torment and harrafs the human fpecies for the hereditary ftain of mortal fin, is moft abfurd, and plainly contrary to the infinite goodnefs of God: he does not vex or torment but kindly chaftifes, unlefs when the number of their fins voluntarily committed are increafed beyond all meafure. I thall here conclude this differtation on the working Bee, fince it is not granted to us to fearch perfectly into the divine works with our limited fhallow underftandings *. I have propofed the matter, and with my own hands defcribed and delineated the fituation, ftructure and ufe of their

[^46]parts ; and therefore thefe various obfervations may be of ufe to us, until it pleafes God to throw more light on our knowledge of the fubject; for in this way we may at length mort eafily know the Architect of nature, from whom we are the further removed, the further we proceed, if we only indulge our own vain reafonings.

The order I have prefcribed to myfelf requires that I fhould now exhibit the anatomy of the female Bee: I fay, the female, which, as it is a diftinct infect found in the hive, fo it is by a common error generally dignified with the glorious title of king, though by fome it is more properly called the Mother-Bee. I fhall endeavour to follow fuch a method in this hiftory, that, as the female has many parts in common with the working Bee, I hall only defribe thofe which that kind has not, together with fome others, which I have obferved more clearly in the female. Among thefe I mention in the firft place, the heart. Tab. XIX. fig. It a a. This is a tube pretty ftrong and fibrous, it is oblong, and here and there dilated, it is extended in length from one end of the body to the other, and then turning about, it paffes through the narrow little part or horny tube, which, like a thin filament connects the breaft with the belly. In order to difcover the heart in the abdomen, as in that part it may be beft feen, it is neceffary to diffect or lay open the horny rings of the body with fciffors or a knife, taking care at the fame time not to hurt any of the parts that are under thefe rings; for the outermoft part of the rings of the body is fo thin and tender, that not only the pulmonary tubes may be feen tranfparent through them, but one may alfo diftinguifh, though obfcurely, the motion of the heart under it. The pulmonary tubes in the female are not fo frequently divided or expanded into bladders as in the working Bees, which difference is fo ordered by nature, that the working Bees may fly the more conveniently and expeditioully; whereas the female is underftood to fly but once a year, that is, when they fwarm. However, I cannot entirely agree with this tradition, but rather think the female goes out of the hive in fair weather, in order to breathe a purer air. It muft be obferved, with refpect to the diffection of the body, that its rings are at their origination of a full redifh brown colour; but of a yellowifh red where they become membranaceous. In the midft of them are feen two or three blackifh lines, and the extremities of the rings grow black again, and are very thin, and provided with a horny verge. This obtains only in the lower parts. If the upper part of the ring of the abdomen be broken and carefully raifed up, as I have before advifed, the heart, Tab. XIX. fig. I. $a a$, immediately comes in fight, and appears to be fituated in the uppermoft region of the abdomen, and is furnifhed with many fmall and delicate air-pipes $66 b$, which iffue from each fide, and are inferted in the fubfance of the
heart. Thefe air-pipes or pulmonary tubes are fupported by fome tender and very delicate membranes $c c c c$, which keep the fat that lines all $d d$ about and underneath them in its place. Through thefe little membranes, and on each fide of them, in fome places, a fubjacent ovary $\dot{e} e e$ is found to flew itfelf. If the diffection be made in the manner I have directed, about the fat of the little membranes that connect the extremities, there will be feen allo fome mufcular fibres, broken off from the rings of the abdomen, which ferve to move the mufcles $f f f f f$. Under the fections alfo, between the fat, fome mufcular fibres prefent themfelves, which feem to contribute very powerfully to dilate and conftringe the heart, and at fome times to pufh the air through the compreffed pulmonary pipes towards the heart. Even the membranous fibre which connects the fat, likewife embraces the whole ovary underneath, which by this means comes in view ; when that membrane is carefully cut, the heart removed, and the great number of pulmonary tubes which are connected with the ovary and heart, and this membrane and the fat are removed. The numbers Tab. XIX. fig. I, $1,2,3,4,5,6$, denote the rings of the abdomen, under which, as in the back, the heart is fituated.

The greateft part of the ovary is lodged in the uppermoft region of the abdomen, and ftands as a partition between that part and the breaft, fo that the other vifcera, that is the ftomach, inteftines, vafa crocea, or yellow veffels, and others, are placed much lower in the body.

The ovary is divided into two parts, fig. III. a c, in the fame manner as it is in the human fpecies, in quadrupeds, fifh, and many other fpecies of infects, and even in frogs. Thefe parts of the ovary are more or lefs feparated from each other in thofe different animals, but here they lie contiguous to one another; one part indeed is placed in the.right, another in the left fide of the abdomen; befides, the ovary here is fo firmly connected by the pulmonary tubes that run through it, that it cannot without difficulty be feparated.

The ovary appears to the eye as a membranaceous little part, fo wonderfully delicate and tender, that the containing membranes are fcarce any hindrance or impediment to the enclofed eggs being diftinctly feen through them.

The ovary, as I have obferved, is divided into two parts, and each of them is again fubdivided into two fingle parts, which, for diftinction's fake, may be called the oviducts, though they in reality conflitute the ovary itfelf, and give to the eggs which lie in their cavities both coats and fubftance, and whatever elfe belongs to their nature. This, however, is otherwife in birds and fome of the quadrupedes. In the larger animals, and in the human fpecies, there is obferved a confiderable difference as to this matter; for the human fpecies, as allo quadrupeds, Cows, Sheep, Dogs, Cats, Rabbits,
and the like, acquires their full perfection in the ovary, and are from thence afterwards conveyed through a paffage made for that purpofe only, the fallopian tube, at once into the uterus, nor do they fuffer any change in all this journey. In Birds, on the contrary, the egg is but half perfected in the ovary, the yolk only being formed there ; but the white and fhell is afterwards added to this in the oviduct called their uterus. In fome quadrupedes, as Frogs, the whole animal, which appears at firtt in the form of a round egg, acquires its full perfection in the ovary, but it is afterwards covered over in the oviduct or tube, with a vifcous matter, with which it defcends into a kind of hollow enclofed membrane, which is their uterus: this vifcous matter is the firt food the animal fwallows. In Bees the egg obtains its beginning and perfection in the ovary, which performs the office of an oviduct, tube, and uterus or womb, all in one. This ovary appears to the obferver at firft like a fmall and fimply membranaceous tube; but in reality there is a neceffity for much more apparatus. But our imperfect refearches can go no further than our eye-fight reaches.

Behold, then, after what manner the omnipotent Architect hath retrenched, as it were, feveral parts here from the ufual oeconomy of nature, and contracted them into one!

In the Silk-worm's Butterfly, the ovary is in this manner alfo divided into two parts, and each of them again divided into four others, which I call oviducts, whofe ends or extremities are of a fimilar ftructure with thofe of Bees. In the Rhinoceros Beetle alfo the ovary is in the fame manner divided into two parts, each of which is again divided into fix oviducts. In the Humble Bee I found each fide of the ovary feparated into four parts. In the Wafp, which lays more eggs than the Humble Bee, I faw the ovary, Tab. XIX. fig. iv. $a a$, divided on each fide into feven oviducts. But here in the female Bee fo many oviducts occurred, that I was not able to reckon them; for not only the great number of the divifions prevent the counting them, but alfo the extreme tendernefs of the texture ; whereby they are very eafily deftroyed under our hands: to this may be added the very ftrong knots, by which the pulmonary tubes bind thefe oviducts to them. Nor could I any more reckon how many eggs there were in each of there oviducts; but this is very eafily done in the Humble Bee, in whofe oviduct I computed ten larger, and fome frmaller eggs. In the Silk-worm Butterfly I have fometimes counted fixty or feventy eggs in cach oviduct ; but in the Bee I could by no means determine the number of the eggs : in another ovary I counted fixteen or feventeen large and fimall eggs in one duct; fo that the Bee has a fmaller number of eggs in each oviduct, than the Silk-worm Butterfly. I afterwards attempted to count the oviducts in another female; but here again I had as little fuccefs, both on account of the ftrong
connexions of the parts one with another, as becaure I could not fpare the neceffary time. Upon comparing the numerous oviducts, which I had found with the greateft labour, with thofe in the other part of the ovary, which I had not computed, I think I may venture to affirm that there were more than three hundred oviducts in the ovary of the Bee. And hence, if this number of 300 oviducts be multiplied by the number 17 , (for there were fo many diftinctly vifible eggs in one oviduct, when the female was entirely perfect,) it will refult from the whole, that there are five thoufand and one hundred vifible eggs in one female Bee, and yet thefe fo different from each other in fize, that one would be furprifed; for thofe that are to be laid laft, are no more than rudiments fo fmall as to effape not only the eyes, but even my beft microfcope, and are to be numbered by Him alone who formed them. The extreme points or ends of the ovary, which contain thefe minute eggs, are placed in the uppermoft and higheft region of the belly, and are there as it were folded and turned back. The fame thing is feen in the Humble Bee, and Wafp, and alfo in the Silkworm Butterfly; but in the Wafp the ovary terminates in wonderfully long productions, Tab. XIX. fig. iv. 666 , which are fo interwoven with the pulmonary tubes, that one would think them a little net compofed only of thofe tubes. It is to be obferved that I here reprefent a double ovary, and that one of its fides, fig. III. a, is taken out of a fully pregnant female; the other out of one c not fo far gone: and hence a great difference arifes in the form of the ovary. The eggs, $f f, i i j$, which are reprefented in the extremity of the Bee's oviduct, that was not fo far gone in her pregnancy, are by far more numerous, fmaller, paler, fhorter, and more oval, as alfo more pellucid and tender than thofe which are fituated in the lower part of the oviduct; out of which the eggs finally iffue and are produced. This is conducted in the fame manner by nature in other infects, I have obferved it in the ovary of the Loufe, but in the ovary of the Frog all the eggs are of the fame fize : in the human fpecies, in quadrupedes, and birds, they always differ in magnitude. And it muft be here obferved, that in the ovary of the lefs forward female, fome eggs appear larger than others, fig. III. IIIl; though they be already come down to the lower parts of the ovary. But this, as I have obferved, I never faw except in females, which did not increafe their colony as they fhould have done, and when there was fome confufion in the hive: therefore I really think that the female's ovary has then fome fpecies of a diforder. And hence I have, in order to prevent the neceffity of two figures, on one fide a delineated part of the ovary of the real pregnant female Bee; for thofe are now called queens or females by our Bee-keepers, which enrich the
hive with a numerous off-ppring, and plenty of wax and honey ; and it is there obferved that the eggs $g g, b h$, are almoof all of a fize, and by degrees decreafe the higher they are fituated. The extreme ends of the oviduts refemble in the real prolific Bee $f f$, delicate, fine and fcarce vifible filaments, which are likewife crooked at their extremities, and are furnifhed with rudiments of oblong and almoft equal eggs, which at laft become fcarcely vifible.
Where the ovary is more protended or Atretched downwards in the lower region of the abdomen, it there terminates in two very confiderable ducts $b b, n n$, which refemble the two cornua or horns of the uterus in quadrupedes. All the other oviducts open into them, and bring their eggs thither, which is the cafe not only in the true female prolific Bee, but alfo in the others, though in a lefs regular manner. Thefe two ducts are dilated by degrees, and become fo confiderabiy larger; that they appear at length like a globular mafs $\hat{p} p$; but when I opened them there, in the real prolific female, I found in each fide niine or ten eggs $q q q q q$, which had defcended fo far, and are there probably covered with a ftronger coat or tunic, or are changed and prepared in fome other manner, fo that they may be afterwards emitted with fafety out of body; for the Bees do not lay their eggs as they naturally fall, like hens, but fet them upright. Thefe eggs, Tab. XIX. fig. ini. $q q q q q$, here likewife appear though faintly through thefe horns of the womb if it be proper to give them that name. For the uterus or ovary is in that part fibrous or mufcular, and therefore is of a proper texture to puin the eggs forward, and expel them out of the body; nor do I doubt but the oviducts have alfo fome inufular fibres. A little lower, near the extremity of the body, thefe two horns of the uterus become narrower again, and at length they unite in one canal, which is likewife fibrous, and las a kind of periftaltic motion f. The fpinal marrow paffes through the extremity of this aperture, which is left between thefe two ducts inear where they are to unite o, indeed juif above the place where this union happens; and there give fome nerves to the ducts, by the help of which they acquire a power of moving, and the infect is enabled to difcharge its eggs at its pleafure. This is the method wherein the fipinal marrow paffes through the ducts of the ovary in Humble Bees, and the fame is feen in Wafps. Many pulmonary tubes are aifo fixed into thofe two horns of the uterus rerra, and the whole ovary is in like manner furnifhed with many fuch pipes: it receives them on each fide from the dilated pulmonary tubes, which are the pneumatic bladders or lungs of the Bee. I exhibit fuch an oblong bladder d in one fide, where the ovary of the not fully perfected Bce is exhibited, that it may be feen by what means that bladder tranfmits its ramifications
into the part of the ovary fituated on that fide. Thefe pulmonary tubes are diftributed through the whole furface of the ovary, but they are feen chiefly about the eggs themfelves: this I have reprefented in a very fmall egg, as may be feen under the letter b, in fig. v. The egg is there delineated magnified together with all its pulmonary tubes. In the extremity of the body is afterwards feen a fmall part exactly globular or fpherical, fig. III. t, containing a flimy matter in it, by means of which the ends of the eggs are faftened in their waxen cells. About this globe part two other exuberant parts are to be obferved, like crooked horns $u u$ terminating in one foot-ftalk or tube. Thefe are afterwards inferted in the uterus. This tube draws the matter contained in the fpherical particle out of it, Tab. XIX. fig. III. $t t$, and with this matter afterwards moiftens the eggs that pafs through in order to be laid. Thofe two veffels u u have their extremities clofed up, and feem to me to fecrete the glutinous matter found in the fpheric bag, and to depofit it into the latter; unlefs the glue be rather fecreted in the bag itfelf, which I rather believe. Thefe clofed veffels are likewife very remarkable in Humble Bees; but the bag has a different figure in that infect. In the Hornet the bag is likewife fpherical, as it is here in the Bee. In Wafps it is of a pear-fhaped figure, fig. iv. c; but the clofed vefiels, or thofe which fecrete the flime, if it be fo, are not fo large, or remarkable there as in the Humble Bees or Bees. In the Silk-worm Butterfly thefe vefiels are very confpicuous, but there is no fuch bag of flimy matter there. The fipheric particle or the bag of flimy matter in the Bee, has two coats, the outermoft whereof is whitifh, mufcular, and in a wonderful and very beautiful manner interwoven with an infinite number of pulmonary tubes, fo that one would fay it was wrought with a needle. The outward coat may be eaffly taken off from the under one; and when this is done, that little part appears more exactly globular, and becomes of a faint purplifh colour, variegated with white fpots. If the inward coat, which is thicker and more glandulous than the former, be opened with a fmall pair of fciffors, a turbid or thick moifture flows out of it, which is like glue; it fticks to the fingers, and may like filk be very eafily fpun out into threads, which immediately grow dry in the circumambient atmofphere. By the help of this flimy matter the female Bee fixes its eggs in the cells: the Hornets and Wafps alfo gluc their eggs fo firmly in their places, that they cannot be afterwards removed without injuring them ; but the eggs of the Humble Bees are not fo firmly fixed. I have obferved fomething fingular in thefe, and therefore I fhall delineate the method whereby this fixing of them happens, after I have finifihed the hittory of the female parts. The Silk-worm Butterfies likewife have their peculiar clofed vefiels, which contain the flime that ferves to fix their
eggs. I have likewife obferved the fame thing in lice of the human head, which differ from thofe of other animals greatly. Thefe have a confiderable ovary, likewife divided into two parts, each of which is again divided into fix oviducts containing a great number of eggs or nits. Thefe eggs likewife differ from each other in bignefs, and when they approach to being laid, thofe that are firft laid and faftened down are much larger than the latter ones: this is likewife the cafe in Warps, whofe eggs are fmall and oval, Tab. XIX. fig. iv. $d d$. The bag of flime has, as I have obferved, on the lower part or otherwife on its fide, an oblong duct, by the help of which it is connected with the excretory paffage of the eggs, fig. 1iI. x, and therefore when the eggs pafs through their excretory paffage in that part under the tube of the bag of flime, they are covered over with its flime, which makes one end of them afterwards, when they are difcharged, adhere to the wax; but how or where the orifice of this excretory paffage is χ, and what parts are to be feen there, I have not yet obferved, fince very few females are to be found in thefe unhappy times, whofe wars and flaughters have deftroyed even the Bees in our country : to this may be added, that what has been laid down cannot be feen fo exactly, unlefs the hinder parts of the body of the Bee are taken out, which I would not attempt, becaufe the reft of the parts were in this experiment to be preferved ; therefore I have nothing more to fay on this fubject. I fhall only obferve that the letters y y indicate the external mufcular parts of the fling, as naturally bent δ, when broke off. z Exhibits the poifon bladder with its tube α, and clofed appendages $\beta \beta$, and its tube γ, protended or ftretched towards the fheath of the fling. ζ Reprefents the laft gut called the rectum; all the parts before recited are here expreffed in their natural form, but greatly magnified. There are likewife feen two little parts ε e, wherewith the fling is furnifhed on each fide; thefe we have feen defcribed in the hiftory of the common working Bee, which has them in common with the female.
As to the ftomach, inteftines, vafa crocea, or yellow veffels, and other parts, all thefe are conftructed in the fame manner in the female, as I have before defcribed them in the working Bee. I thought I obferved fome fmall difference in refpect to the colour, as well as ftructure and fituation, in thefe little oblong parts, which I examined in the cavity of the working Bee's intefline, where this is at length dilated.

The poifon-bladder is likewife very remarkable in the female Bee, being throughout pellucid, clear, and perfpicuous like a diamond; it is as large again as in the working Bee. The tube, being confpicuous in the hinder part of this bladder, may be more eafily difcovered here than in the working Bee : and the other
tube which is extended from this bladder towards the cafe of the fting, is alfo ftronger and fomewhat longer in this than in the working Bee, but as the humour contained in this bag appears to be fo perfpichous and agreeable to the fight, I have endeavoured to tafte it, taking care at the fame time that I fhould not tafte fo much of it as that it could do me harm. This liquor firt affected the tongue with a bitterifh tafte, which afterwards became more acrid and pungent, diffufing itfelf through the whole cavity of the mouth unto the jaws, and forcing the faliva out of its ducts, and indeed the tongue was affected in the fame manner, but lefs violently, as with the root of pellitory of Spain. There was likewife a great motion made by it in all parts of my mouth, as if I had tafted ten or twelve drops of the moft highly rectified fpirit of wine ; after this, beconiing more bold, I tafted the poifon of other Bees, and of Wafps: all were alike, only that I difcovered that the poifon in the working Bee was not fo vehement as in the female; and again, that what is in the female is more mild or gentle than the poifon of the Wafp. What wonder is it tliat a very fmall drop of this poifon being violently driven between the skin and flefh; and immediately mixed with the mafs of blood, fhould produce fo much pain, pulfation of the arteries, fwelling and inflammation to that degree, that not only a fever, but death alfo would enfue thereon, if many ftings were inflicted at once. If. a fmall piece of glafs, or a little wooden fplinter, be ftruck or fixed in the finger, it caufes the moft violent pain, what muft be expected therefore from this fharp and mort penetrating liquor, which corrodes at the fame time, fixes iffelf violently in the parts, diffolves their continuity, and at length creeping into the blood-veffels, diffufes itfelf, and circulates with the mafs of blood through the whole body? it is a common obfervation among the vulgar that fix Hornets are fufficient to kill a horfe.

The fang, together with all its parts, is conftructed in the female almoft in the fame manner as I have before defcribed it in the working Bee ; the only difference I obferved was that it is more remarkably bent in the female, though at the fame time it is very fharp; this is probably the reafon, that the female does not naturally wound with its fting, nor can it do it eafily: from this was afterwards framed the fable that the king, for fo they called the female, has no fling, and is of a mild difpofition. The female certainly threatens a flroke, at leaft, when the is provoked, as I have learned from experience. But what the real ufe of this poifon is, if we are certain that it is given to Bees for fome other purpofe befides that of defending their offspring, in doing which they lofe their lives, I farce fee how it is poffible to difcover. I formerly thought it might poffibly ferve to
make
make the wax ; but the Wafps and Hornets deftroy this opinion, which are furnifhed with a fling and poifon, though they make no wax. Nor does the female Bee prepare any wax, nor even defend its young; fo that this ure
alfo may be queftioned or difputed. Behold then, reader, how difficult it is to invertigate nature in her works, and learn with me, to clofe your lips, and candidly confefs our general ignorance and weaknefs.

The firlt obfervation on the female Bee.

THE better to illuftrate what has been here advanced of the fting and its poifon, as alfo of the ovary, I fhall add fome particular obfervations, which I have fince the writing the former account made on the female Bee. On the 16th of June I opened a hive, and I found in it feveral fovereigns or females, which were foon after to fwarm, yet lying covered in their waxen cells. Of this I was very certain, becaufe I found them with their skins caft, and with expanded wings, nay they were ready to arife out of their cells. In the firft of thefe which I diffected, an ovary occurred, but was not very diftinctly confpicuous. I was obliged to make ufe of a powerful microfcope to examine it, but then I faw that there were numerous oviducts in it, and the eggs themfelves
as it were innumerable on account of their fmallnefs: I really think there were ten or twelve thoufand of them. I could diftinctly have counted them, if I had had a mind to have undertaken the laborious office of feparating them from each other: the eggs themfelves, compared with thofe which I had before obferved in the female Bee, at the time fhe is engaged in laying eggs were ftill very fmall, nay, thofe which were in the extreme ends of the oviducts were fo wonderfully minute, and fo thick placed together, that I could not diftinguifh them, but by the help of my moft powerful microfcope. I have likewife obferved the ovary invefted here as with a common membrane, which I confefs I never before faw fo diftinctly.

The fecond obfervation on the female Bee.

IN a fimilar female Bee, produced at the fame time, but more mature, which, with fome thoufand of other Bees had fwarmed out of its native hive, and was received into another, I faw that the ovary was likewife yet confiderably fmall, nor did even the eggs appear much larger, than if they were yet in their rudiments; and hence I concluded, that this female was but juft excluded from her cell, when fhe flew away in this fwarm out of her native hive. I could not in that fubject obferve many remarkable things further, nor in others, though I had many females ready, for all of them died in the fpace of one or two days. But though I threw them into fpirit of wine to keep them from drying, yet many of
the vifcera were, to my great concern, fpoiled : the reafon of which was probably becaufe I did not make ufe of a fpirit fufficiently rectified. I obferved that the poifon in fome of them was converted to a white matter, nearly without tafte or flrength, which when expofed to the air dried up and evaporated. In another I faw the poifon feparated and condenfed into irregular white grains, and I could very diftinctly fee in that Bee the whole poifon duct, which is connected with the hinder part of the poifon-biadder, and which perhaps fecretes the poifon, covered over with coagulated particles of fat, which could not be eafily wiped off.

The -third obfervation on the female Bee.

IOBSERVED in another female, which I diffected about the fame time, that one of the extremities of the poifon duct was fubdivided into two other clofed but fhort appendages. When I meafured the poifon duct, from the bag to its firt divifion, I found it to be a quarter of an Holland inch long, and that one of the branches of this divided duct
was almoft half an inch long; and the other almoft two inches. However, thefe things cannot be obferved, unlefs one has firft very cautioufly feparated all the curvature and ferpentine windings of thefe ducts from the reft of the vifcera. Though this Bee had likewife lain in fpirit of wine, yet all thefe parts were very diftinctly confpicuous and ftrong in it.

The fourth obfervation on a prolific fernale Bee.

IN a truly prolific female Bee which had fwarmed on the 24th of July, and had laid many eggs, I obferved ten or eleven days after that I diffected it, that the beginning of the ovary was furnifhed with a great number of perfect eggs; but the eggs that fill lay in the appendages of the oviducts, were not of that fize or perfection which they are obferved to have in the oviducts of the prolific Bees diffected in the month of May, at which time they are moftly employed in laying their eggs; nor were they fo perfect as the eggs of the females examined in the months of autumn, as will be made evident in the fifth obfervation. From all this I difcovered, that the female which had fwarmed was young, and newly produced from her cell. But whether all thofe that fwarm are young, I cannot yet prefume to affirm for certain. Not only thofe eggs which were in the lower part of the beginning of the oviducts, but thofe which were fituated higher had arrived to their perfect fize. This ovary likewife had in it an infinite number of eggs, fo that in only fourteen little parts which were broken off from the appendages of the oviducts, I reckoned one hundred and feventy four eggs. Hence it is not difficult to judge what a ftupendous number of eggs one female contains. But there was a neceffity for fuch a formation and conftruction, fince a whole hoft of Bees of all the three kinds were to proceed from one female, as is actually the cafe. This numerous family not only contains three, four, or five thoufand Bees, but fometimes nineteen thoufand, as hath been obferved elfewhere. I likewife in this fubject diftinctly faw all the oviducts on each fide of the ovary unite in five principal branches, with which the reft of the oviducts were connected, and through which each conveyed its eggs into the common ducts.
Notwithftanding all the pains I took, I could not difcover the orifice of the ovary or vulva in this Bee, becaufe I was in the country and had not all my inftruments at hand, and becaure I did not take the vulva out of the hinder parts of the body, fearing left I fhould hurt any of the parts which I thought neceffary to examine. However, I faw very ditinctly that the excretory duct of the eggs, Tab. XIX. fig. III. \int, where it approaches to the laft ring of the body, dilates itfelf into a mulcular globule, and then growing narrower, at length becomes again wider and more membranous; but I could not profecute this inquiry any further, becaufe I defigned to keep unhurt the poifon bag, which is fituated in that part, together with fome particular mufcles that belong to the feveral parts of the fting. In another female I thought I obferved that the orifice of the vulva, when the Bee lay on its belly, opened under the fing in the laft ring of the abdomen, and that it is very difficult to
penetrate into this orifice, unlefs the parts be expanded and raifed at the time the Bee is laying eggs. I likewife faw the fundament very plainly, and its orifice opening above the two appendages of the fling: it was placed in reality juft over the fling and the two little parts juft now mentioned. I further difcovered that the rectum or ftraight gut had a kind of cavity there, which was full of red and yellow excrements, but that the inteftine itfelf was formed in the manner exhibited in Tab. XVIII. fig. I. letter l.
I have moreover obferved that thefe two obtufe appendages, which the aculeus has as it were for ornament 00 , are in reality the productions of thofe cartilages, which I have figured in Tab. XVIII. fig. II. $l l$ and m m. But the true ufe of thefe appendages feemed to me to confift in this, to try beforehand whether objects be foft or penetrable to the fling, that the Bee may not in vain dart its fling againft harder bodies, and fpoil it to no purpofe. I obferved alfo, that one fide of there little parts was covered with a cartilaginous integument, and fet round with fine hairs.
Since the fing with all its parts was here in the female confiderably larger than in the working Bee, I could therefore difcover fome fingular things about it which I had never obferved before. I firft obferved, that the fheath itfelf of the fting had two fhanks, to which the fhanks of the fling itfeif were clofely applied, fo that the latter may by the help of the former, be more regularly moved. Thefe fhanks of the fheath were in this Bee alfo very beautifully bent like the fhanks of the fing. It is farce credible how beautiful the ffructure of thefe is near the fheath; for there I obferved likewife two fmall parts, which being at their origin bent into an oval form, had a verge or border of a brown full red colour; but afterwards acquiring by degrees a paler tinge, and uniting in a point, they were on one fide articulated with the cartilages before exhibited, Tab. XVIII. fig. I. $n n$, with which the extremities of the joints of the flianks of the fting were likewife connected in the upper part. The little bone alfo, which I have before defcribed to be like that in Birds, called fpecillum, was obferved to be articulated in the hinder part with the cafe or fheath itfelf; but the poifon duct paffied there only higher up, and immediately terminated after it had advanced a little way in the fheath. Whether all thefe feveral particulars be circumftanced in the like manner in the working Bee, I have not yet examined.
I further learned from this diffection, that the two little parts fig. III. $r r$, which I have before exhibited in the common Bee, as fituated on the outide of the fhanks of the fting, were here in reality placed on the infide of them. I likewife faw very diffinctly, that the mufcles
moving thefe fhanks upwards out of the fheath, and again drawing them downwards into it, lie in reality in the female between the margins of the fheath in the hinder cavity of it, and are there inferted in the two parts juft now mentioned. Thus I at length found that thefe two little parts principally and chiefly contribute to keep the fhanks of the fting; whereof they contribute a part, in their places and prevent their llipping out of the fheath; and this they can do more eafily, as they themfelves are contained in the cavity of the cafe, out of
which I have, with the affiftance of a microfcope extracted them, and afterwards put them into it again without the leaft lhurt to any part.

I have likewife at length difcovered the truc reafon why I had not before difcovered in the working Bee what I have juft now faid: and it was this, that the fhanks of the fling when drawn out of the fheath, inftantly bend themfelves, and hence it then happens that thefe two little parts always appear on the oppofite fide.

The fifth observation on a real prolific Bee.

1N a female Bee brought to me in autumn, at the time when the honey is taken from the hives and the wax alfo, and for which reafon two hives are fometimes then formed into one, I difcovered the whole ovary to be ftill full of innumerable eggs ; fo that I have from hence learned that the Bees never lay all their eggs together, as is the cafe with Hens, which commonly clear their ovary entirely, leaving only fome fmall rudiments behind. I therefore think, fince the eggs in the ends of the oviducts of the Bee are innumerable, and lie difpofed in an delicate order, that they are continually difcharged out of i it, and fucceed in the place of thofe eggs which were before laid. In this female, which I preferved for the fpace of a whole year in fpirit of wine; the poifon was likewife coagulated and ftuck in its bag like an oval particle of wax, but fo as that the inward furface of the bag was feparated all round from the furface of the contained poifon.

As I bad many Bees at the time when thefe females were brought to me, I had an inclination to try what would be the confequence if the poifon was mixed with the Bee-bread. The following was the event of the experiment. The friable and otherwife very eafily feparable Bee-bread, which is not naturally fit for working or kneading, nor is at all glutinous, was, by the admixture of the poifon, infenfibly rendered tenacious and clammy, and having loft all its friability, began to melt in fome degree at the fire, but it grew black after fome time, exhibiting its former appearance of bread, which never catches the flame, but only grows black in the fire. The fame mafs thrown into water was not diffolved, but being fomewhat agitated in the water, returned to its former difpofition, and at length began to melt. Some particles of Bee-bread kneaded or wrought with the poifon, and kept fourteen days, retained their acquired tenacity, nor did they again become friable; but whether any thing can be inferred from this experiment I
would not yet prefume to determine *. It feems at leaft in fome meafure to follow from thence, that there is no reafon to deny the Bee-bread, or that matter which the Bees carry fixed in their legs, and which is of a fimilar nature with the Bee-bread, may be made into wax. But when I began this experiment, I had not the matter now mentioned at hand; nor could I get it, as the hives were carried at that time into fome fields of buckwheat which was then in flames.
I have frequently offered the Bee-keepers a confiderable prefent, if they would thew me real wax adhering to the legs of Bees: but though they readily undertook this, they never could perform it. Therefore the method whereby wax is made, muft it feems yet be referred to or reckoned, amongft thofe things which we are hitherto ignorant of, and which ought to be inveftigated. The fame doubts may be raifed concerning the making of honey, though this difficulty may be more eafily removed. I have not hitherto been able to make all the experiments concerning this matter which I had defigned. I hall therefore conclude there obfervations on the female, after I have firft exhibited the manner of feeing diftinctly how the Bees make the wax. For this. purpofe I ordered a wooden ftool with three or four feet to be fitted into a flraw hive, in fuch a manner that the hive might be conveniently taken off and again laid on it. I cover.ed the edges of this ftool with paper, and then in fwarming time I put a new fwarm into the hive. When I afterwards faw, that the Bees in the infide had made wax and propagated young ones, which happen in ten or twelve days. I immediately removed the hive from that ftool, and alfo took away the paper, and thus I could very diftinctly fee the Bees working in the fun-Rhine. But though I have never gone through with this experiment, yet I know the effect of it, for I have often feen that the habitation of the Bees which had made

[^47]their nefts in the holes of old walls and ruins of houfes, was a full fquare foot wide at the mouth, through which their making of wax, and other operations might be feen conveniently. We fhould not therefore fear that the Bees when expofed thus openly wiil defert the hive, which is the only objection that one can make againft the propofed experiment. The fear of their flying away will be the lefs, as they will have placed their offspring there before the operation, which they never afterwards relinquifh. If any one fhould fear left the Bees fhould be injured by the nocturnal cold, he might cover them at night with a larger hive or any other larger cover. And in the day time they might be put in fuch a place that they flould not be expofed to the injuries of the heat or rain.
I fhall now proceed to the hiftory of the male Bee; and here fhall firft briefly relate fome things of Humble Bees and their eggs. The Humble Bees, as far as I have obferved, do not build nefts or live together, but in the winter; like moft other infects they abftain from food and motion, and therefore they are properly folitary Bees. I have feen, however, that about the end of May, or fooner, fome few male Humble Bees, and one female which is of a larger fize, gather together in the paftures and corn-fields about Amfterdam. The place they choofe to build in is between the falks of corn or grafs, and is not deep under the furface, but only a little hole burrowed under the grafs, in which hole there is found either naturally or heaped together by them, a tender foft fort of down or mofs, on a fmall part of which, formed in a kind of bed, with brown wax or a flexible matter like it, the female lays her eggs. With this matter allo the eggs themfelves are all fealed up underneath and on the fides. But in what manner thefe eggs are depofited there, and how the young and tender Worms creep out of them, and whether they eat this fubftance, I have not yet learned from experiments. I have lately however, namely, on the 22 d of June this year found a perfect neft, in one fide, Tab. XXVI. fig. I. a, of which there were eighteen cells, but in the other b only eight. Between thefe was feen one cell entirely empty c; and there occured in feveral places here and there d of fome particles of the fame kind of waxy matter: in this the eggs were all clofed up. I fhall now diftinctly defrribe what I could obferve upon this occafion. I found one female and feveral males in this neft, all which fhewed by their humming and their running anxioully up and down, that my curiofity was by no means pleafing to them. When I afterwards carefully viewed eighteen cells, and opened them by cutting off the piece g, I found them all full of little Worms, which were to be transformed into Nymphs b. Upon obferving the frructure and fubtance of there cells, I found that they were all compofed of threads or filaments, and were of an oval figure, and of a colour fome-
what approaching to yellow. This I looked upon as a frong argument that thefe little cells were not made by the Humble Bees, but by the Worms themfelves: nay, a certain, though not very exact order, was obferved in their compofition, fince one cell was placed in the middle and furrounded by five others. They were all fattened together in the fame manner in which the Silk-Worm is accuftomed to affix itfelf to paper or wax, by the help of her threads. And one of them was more elevated, another more depreffed; on the lower part where they refted on the down or mofs, they had contracted fome dirt or mouldinefs, by reafon of the dampnefs of the foil. I drew fome of the Worms that lay on the infide out of them and left others. And I found that thofe which I had left in their cells, were in fome days changed into Nymphs, and there afterwards in two or three weeks into HumbleBees: thefe however did not creep out of their webs, but died in them, together with the Worms that I had drawn from thence. The eight cells of the other fide did not appear to be made of this waxy matter: their figure was likewife lefs regular and orderly, and I therefore imagine they were made by the Humble Bees themfelves; but as I thought that honey or Bee-bread might be found in them, I indeed greatly admired, when I found only Worms of various fize, and all clofed up. In each of two of thefe cells I found two large Worms i, and in another only one k, but this was much larger. Thefe Worms taken from thence and put into a cornet of paper, covered themfelves with a web of an oval figure, and in the mean time difcharged a large quantity of brown regular excrements, divided into equal parts, and very like the matter wherein they were depofited. In another cell I found a waxen partition l, and in one of the apartments thus feparated were two fmall Worms, and in the other two that were fomewhat larger. I likewife afterwards found in another cell three Worms m, and in another four n. From what has been here faid, it is fufficiently evident how greatly this cohabitation of the Humble Bees is different not only from that of the common Bees, but alfo from the nefts of the Hornets and Wafps, which are made by thefe infects themfelves, and are admirably conftructed. But what feems to me moft wonderful of all is, that thefe Worms of the Humble-Bees which fhould fill be in a ftate of nourifhing, are really fealed up and covered with the waxy fubfance. Perhaps it may not be improper to conclude from hence, that thefe Worms ufe that matter wherein I found them covered, in the place of other food, and that the parent Humble Bees when the firft quantity is confumed, again lay another new parcel over them. This is in fome ineafure the cafe in fome Worms, which being depofited in cheefe, flefh, fruit and plants, lie as it were covered up in their food or nourifhment; for thofe protuberances and knots, wherewith the whole infect is covered, rife

Hhh
in
in exerefcences, in plants and fruits, in the fame manner as the Worms in cheefe and flefh, at length intircly enclofe themfelves in thofe aliments. And hence it is very probable, that thefe Humble Bee Worms likewife feed on the wax wherewith they are covered and furroundcd , nearly in the fame manner as the WolfCaterpillar ufes the wax for food, and fupports life : this I thall hereafter defcribe in its place. Othervife it would be neceffiry that the HumWe Bees fhould, in order to nourifh thair Worms, continually open and again clofe up thefe cells, which would be a work of tedions and needlefs labour, fuch as cannot be any where found in the works of nature, which are every where perfectly fimple. The method of nourifhment I have fuppofed becomes more probable, if we confider the order in which the Humble Bees enclofe their eggs in this matter; for I do not think it poffible that the Humble Bees can fo exactly know the time when the Worns are to be excluded from the eggs, and when thefe cells fhould be opened, becaufe they may be in want of food. To this may be added, that the matter wherewith the eggs are covered, can fcarce be torn open any way without hurting them: but I fhall leave this matter in uncertainty, until repeated and more fuccefful examinations determine it. That I may proceed in my intended ed method, I fhall obferve here, that I likewife faw an empty cell in this nef. This was likewife made of filaments or threads, and it feems to me probable that a young Humble Bee had crept out of it. At length I alfo broke thofe irregular particles of wax, which were in divers places found affixed to the woven cells of the Humble Bees: in one of thefe I found fix eggs, Tab. XXVI. fig. I. d, in a fecond feventeen e, and in the laft twenty-three f. Thefe eggs were pretty large, fomewhat crooked, and were faftened to the pointed extremity of the fubflance on which they were placed. When they were viewed with a microfcope, they appeared like that kind of rough skin which we call fhagreen. They were of a milk white colour, and foll of moifure, and they all ftood erect and fo near each other, that they were almoft contiguous; this made a very beautiful appearance. I a long time preferved them as well within as out of the matter wherein they were cnclofed, but they grew dry in the mean time, nor were any Worms hatched from them. Many Lice of unequal fize, and which arc very tenacious of life, crawl upon the Humble Bees themfelves. I obferve alfo, that the Ants, and almont all other infecis, are tormented with their refpective Lice. Goedaert calls there Lice the Humble Bees excitatores or provokers, and has invented feveral amuling foies concerning them, but he relates a fable rather than a true hiftory.

It is time we now defrribe the parts of the male Bee. I fhall here follow the fame methind 1 obierved in the hiftory of the female, and flall defrribe only thofe parts of the head,
breaft and body, which either are not in the working Bee, or are feen plainer and more perfect in the male.

About the head are principally to be confidered the eyes, horns, teeth, and the featheriike hairs, wherewith the head is every where covered. I have already elfewhere treated of fome of thefe parts; therefore I fhall now defrribe the eyes, in which the following particulars are to be obferved on the in and outfide : the number of the eyes; the external figure ; the hairs fixed on their upper part ; the tunica cornea, and the uvea; the internal pyramidal and inverted fibres; the pulmonary tubes which run between thefe firf and fecond membrancs, wherein the pyramidal fibres terminate ; the tranfiverfe cortical fibres, confpicuous under thefe membranes; the cortical fubftance of the brain, fituated under thofe fibres; the brain itfelf with the three fingular eyes over it ; the origination of the fpinal marrow juft under it ; the origins of the pulmonary tubes; and laftly, the internal furface of the eye.

As to the number of eyes, there are here two principal or large ones, one in each fide of the head; and befide thefe three fingular fmall eyes which are here in the male, Tab. XX. fig. I. a, in a triangular form between and below the larger eyes, in that part where thefe larger eyes are contiguous to, and again diverge from each other in form of the letter Y. In the females and working Bees, as bas been obferved before, thefe three eyes are fituated higher up in the head, and lie pretty exactly between two larger eyes. But I fhall fay fomething more of this matter hereafter.

The two larger eyes refemble as it were a crefcent, with this difference, that in the upper on the head they are fharp-pointed, but fomewhat rounded $b b$; towards the lower parts c near the teeth, they again meet in a point. They are in form like a fegment cut from a flattifh rounded mafs, one fide whereof is fomewhat acute, and hollowed or bent inwards, and the other converges in a crooked form. In the upper part of the head toward the neck and back, thefe eyes are contiguous in their convex extuberant part, which is not the cafe in the two other kinds of Bees: but they again, on the lower part toward the teeth, where they become fill more acute c, confiderably diverge from each other on each fide; the fmaller eyes, the horns, which are here fevered $f f$; the teeth as they are called, and fome feather-like hairs d being fituated in the intermediate fpace.

Both the eyes are alfo very thick covered with hair ece, which, in order to avoid confufion, I here reprefent only on one fide. Thefe hairs ferve the eyes inftead of eye-brows or eye-lafhes; but becaufe their fituation cannot be exactly underftood, until after that coat of the eye which fupports them is defcribed, I fhall therefore now firft treat of that coat, the cornea, in which thefe hairs take root.

The

The outin:of coat of the Bee's cyes, is the cornea; by which name authors have likewife called this fame tunic or coat of the cye in man, and in quadrupedes, birds, fifhes, and ferpents. This appellation is more particularly appropriated to this tunic, fince by its fliffieis, hardnefs, flexibility, and clearnefs, it approaches to the nature of horn. The cye of the Bee differs, however, from that of men and other animals, in that as the cornea appears in thefe fmooth and equally polifhed, it is in Bees and in all other infeets that 1 have examined, divided by various and manifold divifions: and as thefe divifions refemble globules or little fpheres, hence it is that fome fubtile and fagacious geniufes, among whom may be reckoned the iiluftrious Dr. Hooke, believed that the infect's eye was only a congeries of innumerable little eyes, each of which, in refpect to its fructure, agreed with our cyes and thofe of other animals: this ftructure of the eye, however, I have not hitherto feen in any infect but in the Snail, which on one fide exhibits two diftinct eyes, furnifhed each with its three proper humours. In order to explain the divifions of the cornea in Bees a little more accurately, I would have it obferved that they are by no means fpherical, but rather hexagonal, Tab. XX. fig. 11. kk ; but notwithfanding this the mafies themfelves are on the upper furface perfectly rounded, and confequently exactly like the fealed cells of the Bee; which being likewife circumfcribed by fix fides, yet rife convex, and fwell up in a globular furface, or are as it were arched. The woven cells of Hornets much more accurately exprefs this conftruction of the cornca in the cye: for thefe have alfo fix fides, and are very beautifully enclofed in an arched or fpheric web. The cye of the Bee, and moft other perfect infects, confidered in this light, is really like a little net; which appears moit perfectly when examined in the light by a microfcope: for then the moft obfcure or opaque hexagonal interfections appear in the form of a net to any perfon who looks through the fpherical tops of the divifions. We mult further obferve here that thefe hexangular divifions $k k$ of the cornea, upon a more exact comparifon, do not perfectly kecp the refemblance of one of the clofed up cells in the comb; for the lines which diftinguinh the cells of the comb from each other, are upright or ftraight, whereas the hexagonal divifions, on the contrary, which occur here in the Bee's eye, are intercepted by crooked and finuated lines. To obtain this form for them, the all-wife Author of nature makes ufe of the following means ; that is, he gave the corneal a fpherical convexity, by means of which fome of the lines, together with their divifions, are here and there broke off; and at the fame time Ife alfo placed $k k$ an hexagonal divifion between fix other divifions of this kind : heace it is, that thefe hexangular divifions appear as it were owal or arched, as I
have in fome fort delineated between the annexed letters, Tab. XX. fig. i. c,ece, 66 . And in what manner every hexagonal divifion is furrounded with fix others, may be feen magnified under the letters $k k$, fig. ir. Some curious perfons, to whom I flewed thefe, were of opinion, that in the fructure of the eyes reafons might be found why the Bees make their cells hexagonal ; that is, becaufe they exercife the fenfe of vifion by hexagonal cyes. Behold, how far we are led away by fictions, when, being ignorant of the foundations of things, we follow our vain fancy as a guide! It would be as matural to fay we fhould build only round houles, becaufe the pupil of our eyes is of that figure. I have not yet counted how many divifions there are in the Bee's cornea, nor do I know any method of doing it, unlefs one could cut the cornea into fmall pieces, and afterwards count the divifions in them fingly by the help of a microfcope ; obferving at the fame time that cvery two of thefe cut divifions are to be reputed only one. However this matter be, the accurate Dr. Hooke hath computed in the eye of the Perla of Mouffet, which he calls in his own language Dragon-Flies, but in the Dutch language Romboud, Puyftebyter, Naeyer, and Glafefchryver, fourteen thoufand fuch interfections; this is indeed a great number. To this we may add, that thefe divifions are fo beautiful, fo regular, and formed with fo much art, that it by many degrees furpafies the moft exquifite human workmanfhip. Indeed, could any one think this could be done by human powers? fince we cannot feparate or divide thofe things which nature formed only as it were in fport. This is the external form of the more than flupendous cornea of the Bee's eye.

As to the internal ftructure of the cornea; it is divided within juft into fo many hexagonal little holes, or as it were round fipoons, as on the outfide it is geometrically diftinguifhed into hexagonal fpheres. But if this cornea, turned to the light, be viewed with a good microfcope in the manner before defcribed, then at length its true and delicate hexagonal reticulation may be finely obferved: for as the cornea is very pellucid and thin where it is hollowed or excavated into thefe little fpheres, but confiderably thicker where it is interfected; hence it happens, that the interfections only feem to fhew themfelves to a perfon who looks through them: and this is the true reafon why the cornea then exhibits itfelf like a net pierced by fmall hexagonal apertures. Bui its furface is not always the fame; fometimes it appears divided into triangular, and fometimes into quadrangular figures: this diverfity muft be attributed to the variety of reflexions which the rays of light occafionally produce in their paflage. This obtains principally when the angles of the divifions of the cornea are no: all direet:y under the micro-
fcope,
fcope, for then only one part of the convexities can be feen, and the other not at all; and thus falfe angles are exhibited. Almoft all concave bodies, if viewed in the light, appear to our fight fometimes globular, and fometimes roundifh and convex : this is illuftrated very particularly by the engraved agats. For this reafon the greateft circumfpection muft be always ufed in viewing objects by microfcopes, left we fhould deceive ourfelves, which has commonly happened on thefe occafions. I finall hereafter explain what produces thefe hexangular divifions in this net of the eye. The thicknefs of the cornea in the Bee is pretty confiderable, and indeed more fo, confidering its fize, than in many other infects which are equally fmall: this may in fome meafure be comprehended from a fmall piece of it delineated as it appears under the microfcope at the letters $l l l$, Tab. XX. fig. III. Between the divifions we have been hitherto defcribing, are placed thofe hairs which I have before faid are planted all over the eye. They are very firmly fixed to the cornea, for they pierce it all through in the fame manner as our hair does skin: but they rife fharp-pointed, and are thrce or four times longer than the diameter of any one hexagonal divifion: in ftructure they refemble briftles, and are of a round figure, thick below and fharp above. Their number is likewife very confiderable, though lefs than the number of the divifions; they are, however, fo thick and fo clofe fet together, that they feem to conftitute a very clofe foreft of briftles, like fo many fir-trees planted upon the eye: this may be feen in fome meafure under the letters eee, fig. I. where I have reprefented them only in the circumference of the divifions of the eye : of the other divifions that are exlibited in the fame figure, I have delineated a lefs and determinate number, they being very numerous, and hitherto beyond any account I have taken. Finally, I fhould think thefe hairs are principally fixed here to guard the eye againft any thing falling on, or ftriking againft it ; to keep off the duft, and, in cafe any of thefe annoyances fhould flip in, to affift the Bees to throw, or brufh it out the more eafily, by a friction, which the Bees perform with their feathered legs: Flies alfo ufe the fame method to wipe themfelves. Thefe hairs feem alfo to ferve the Bees inftead of eye-brows or eye-lafhes. I had firf thought that only the long-lived fpecies of infects, fuch as Bees, had thefe hairs: but I afterwards obferved that they are not fo peculiar to the Bees, as not to be found in many other feecies of infects. I have found them among others in the coloured diurnal Butterfly: I have likewife found them on the eye of Goedaert his Bee. This eye, however, is not covered all round with there hairs, but only fhews the oval orbit planted with them. Goedaert defcribes the Bee I have juft mentioned, in the fecond experiment in his firft part; but
if any one examines this more accurately, he will find it is only a dunghill Fly, with no more than two wings, and comfantly produced or generated annually in the fame manner. It is produced from a Worm with a long tail and very fhort legs, found in dunghills and common-fhores, and belongs to the fourth order of our natural tranfmutations. The Bee, on the contrary, is to be ranked in the third order, as I have already fufficiently proved. I fhall proceed to defrribe the uvea, which is the other coat of the Bee's eye. Of the other three remarkable little eyes I fhall treat at large hereafter.

When the cornea is removed from the internal parts of the eye, the tunica or coat, underftood to be the uvea, comes in view. This, therefore, is not placed in infects at the bottom of the eye, but next to the furface; nor does it any where appear perforated as in large animals. This confequently prevents the rays of light penetrating further into the eye than through the cornea only. When the cornea is taken from the eye, we ufually fee that a more opaque matter, which entirely takes away the perfpicuity or clearnefs of the cornea, is carried off with it. This matter is of different colours in different animals; in Bees it is of a deep purple, in other infects it is green, in fome blue, in others black, and in others again it has a very beautiful mixture of various colours, which are elegantly and agreeably feen through the cornea. But this is to be found only in the inner furface of the cornea, where the uvea adheres next that coat, without any thing between. The two parts of this matter which conflitutes the uvea, both that which is applied to the inner cavity of the cornea, and that alfo which is obferved to adhere to the internal parts of the eye, are commonly of a blackih colour, and the laft likewife ftains the fingers when touched, and is a kind of black paint, as our uvea and that of other animals is: and hence it arifes, as I have before obferved, that the perfpicuity of the cornea is darkened or obfcured by this matter. Therefore, in order to Thew the cornea pellucid, this matter muft be firft wiped off with the help of a pencil or a fmall piece of paper folded up. If you prefs the head of the Fly between two folds of paper, the paper acquires a purple colour from it, which is owing to the more diffufed colour of the uvea. But perhaps fome one will ask, if the matter hitherto defcribed feems only to be the uvea, but is not fo in reality, what is it? To this I anfiver, that this matter is nothing but the tops of fome broken fibres, which are placed clofe under the cornea, Tab. XX. fig. I. $g g$: for no humours, properly fo called, are found in any part of the Bee's eye, which is a thing well worth obferving: though the celebrated Dr. Hooke, for want of a fufficient number of experiments, hath been led to imagine there were fuch in the eye of the Libella; becaufe no other method occurred
to him, by which the fight of infects could be explained. However this matter be, the coloured part of the Bee's eye, though it be not an uvea, ferves the ufe of that coat in the eyes of larger animals.

Immediately theri under this uvea, as it has been called, are feen fo many fibres, as there are divifions above in the cornea. Thefe fibres very exactly agree with the cavities of the fpherical divifions of the cornea: and they are likewife hexagonal and broad, but thiner in the middle and fharp-pointed underneath where they terminate. They are all nearly of equal length, thicknefs, and breadth. But above the margins and extreme finews of the eye, thefe fibres are fomewhat bent and feem florter: they are above, where they are joined to the divifions of the cornea, much thicker $b b$ than below i, where they are only united together by their ends : and hence they almoft refemble fo many inverted fexangular pyramids, thick and broad above, and thin and acute below. In order to confitute the convexity or arch of the eye, they are placed together in the manner of thofe eggs of infects which are circularly glued round the branches of trees. Thefe fibres ftand erect on the bottom of the eye, in the fame manner as the hairy filaments lie under the leaves of an artichoke on its disk or receptacle. I have above defrribed the colour of thefe fibres; I fhall only obferve further, that this paint, with which their larger extremities are tinged, is likewife diffufed deeper downward: and the other parts of thefe inward fibres are, as I have faid before, tinged with a red or purplifh colour. Thofe fibres which fand in the middle of the eye are ftraight $b b$; but thofe that are on the fides appear fomewhat oblique, and the reft run a little crooked alfo ; but all terminate in a fubjacent membrane, with which they are naturally united, but from which they are eafily broken off when handled. This membrane, therefore, very finely exhibits almoft the fame divifions in dotted figures, which the omnipotent Creator hath been plafed to make on the cornea $c b b$, with fuch ftupendous and inimitable art. Concerning thefe fibres we are further to obferve, that if the cornea be feparated from, without hurting or breaking them, they very beautifully reprefent the hexangular divifions of the combs : but when the cornea is pulled off in fuch a manner as that fome particles of thefe fibres adhere to it, then their figure is not fo diftinguifhable. Thefe fibres are very eafily broken, when the cornea is feparating from them ; for they are connected with the cornea, and are received into its cavities: but this union is rendered ftronger by means of innumerable pulmonary tubes, which afcend near thofe fibres towards the cornea, and, as I think, conflitute its hexagonal divifions: nay, they likewife probably contribute to expand the eyes at the time when they are cafting their skin, and are very foft and tender,
by force of the air impelled within. Hence near the divifions of the cyes, the pulmonary tubes will have the fame ufe and fituation as I have before attributed to the fame tubes, in regard to the wings of Bees. I would not, however, have my opinion in this cale confidered farther than as a probable conjecture. One of thefe fibres is likewife united with another immediately under the cornen; and a little lower fome clunterings and knots are obferved among thefe fibres. But where thefe fibres are broken off, when the cornea is not regularly taken from them, their full purple colour, as hath been faid above, is found not to terminate there, but defcends deeper. It is indeed very wonderful, in what manner and in what numbers there pulnonary tubes afcend near thefe fibres, and are united together. I muft own that I fhould be very glad to examine, of what nature thefe fibres are, whether mufcular or nervous; as alfo whether or not they have any motion, and of what kind of particles they are compofed : but it has been abfolutely impofiible for me to cx amine all thefe things, for both my fight and inftruments failed me. However, I have again feen the Creator confpicuous with human eyes in this ftupendous conftitution of the moft admirable and unfearchable little parts, which exhibit, as it were engraved thercon, the real image of his inexhauftible power and wifdom.

That I may proceed in the order wherein I began, I fhall now defcribe that part, Tab. XX. fig. v. x, towards which all the fibres hitherto mentioned converge, as towards a common center, and to which they are united, as the threads of velvet with their web; this part is white and fibrous, and is fituated within the eye : but the pulmonary tubes before defcribed afcend through and on each fide of it towards the fibres. The figure of this membrane is exactly like the external figure of the eye, one fide of it being lunar or like a crefcent, and the other femicircular. It is white in the middle, but in the border it partakes fomewhat of the colour of the fuperior or upper part of the fibres, the imprefions of which are feen thereon.

This membrane, being removed from its pace by the help of a fine inftrument, there appears clofe under it another membrane, much more delicate and tender, as alfo clearer: and this, by means of pulmonary tubes, is connected, though not very fltongly, with the former.

There is placed under or behind this membrane, but a little lower or deeper in the cye, another or fecond fpecies of fibres, fig. Iv. $n n n$, and fig. $\mathrm{v} . q q$, which being tranfverfely applied to the lower furface of the membranes, are like fo many beams or tranfoms, which fupport the pyramidal fibres laid over them. There alfo differ from the former pyramidal fibres, both becaufe they are fewer in number, and by far lefs delicate ; though notwithftand-
ing their thicknefs I could not eafily divide them. Some of thefe fibres are laid over others, Tab. XX. fig. Iv.o, in the fame manner as they are wont here atAmfterdam to pack beams or pieces of timber on board of thips to be exported ; that is, they were here and and there feparated from each other, and fpaces were left between them; and by this means was exhibited an object, like the courfe of the mufcular fibres in the papilla of the kidneys. There things appear more beautifully when the diffection of the eye is begun in the lower part, as may be feen fig. v. under the letters $q q$, which reprefent the fame fibres. Of what nature thefe fibres are, and whether they communicate with the brain $s s$, I have very anxioufly invertigated, and, if I am not miftaken, I have found that they are joined to the brain, nay, they are of the fame colour with the brain, that is, fomewhat grayifh in part, and elfewhere frefh coloured : hence I call them the cortical fibres, becaufe they are like the cortical fubftance of the brain. In the Wray-fifh, there is feen a very remarkable nerve, iffuing out of the brain, and terminating in a large inflated extremity. This is conveyed towards the bone of the head, and is there admirably divided on each fide into many filaments, to which thofe fibres in the Bee's head likewife anfwer, and it may in fome meafure be likened; though thefe nerves in the Wray-fifh do not all feem to contribute to the fenfe of feeing, but rather to that of hearing or fmelling: this matter therefore ftill remains to be inquired into.
Between thefe fibres is feen the cortical fubftance of the brain, the nature of which thefe fibres do not feem to be unlike. It is manifeft that this fubftance $s s$, as well as the matter of the fibres $q q$, remarkably communicate with the brain, indeed that they both rife out of it.
The brain of Bees confifts of four pair of diftinctly confpicuous parts, to which, as a fifth may be added, namely, the fpinal marrow within the skull, or the principle or origin of thefe little parts r; nor can I befides thefe find any others in this infect, not even the fo famous pineal gland *. The two foremoft of thefe fittle parts, fig. vi. c, are fomewhat globular or pyriform, and emit two nerves on each fide, which are divided again into two parts $d d$, but their courfe, or the way they are fent off, is fill a fecret to me. The other three pair of little parts I have not yet fo plainly difcovered, as the firft here defribed, becaufe they communicate and are connected with the three particular little eyes before mentioned, which are placed in a triangular form, fig. I. between the larger eyes here explained, and divided in the manner juft laid down, though I could not
fo diftinctly as I could have wifhed explain the method whereby this connexion and communication are performed. The firft thing that I have obferved diftinctly with regard to thefe little eyes, is that they alfo have pellucid cornea; and fecondly, that in their cavity there likewife appears a coloured little part, which may be called the uvea. But of what nature this fubftance, which is under the uvea, is, and whether it likewife confifts of numerous fibres, or is itfelf a fingle fibre, I cannot determine, though it feems to me to be a continued fubftance. Thirdly, below this we fee thofe three pair of little parts, which are as it were enclofed within it : thefe are the reafons why I call thefe parts eyes. To which may be added, that the eyes of Spiders and Scorpions are externally formed exactly in the fame manner, and are fmooth, glittering, and without divifions, and they are difperfed as thofe that are difpofed at random over the body. The Wolf Spider, which catches its prey by leaping on it, and not by means of webs, has its eyes placed in the fame manner. But this fpecies has a very exquifite and incredible fharp fight, compared with other Spiders, which feem almoft blind and, as it were, deftitute of motion, that they may catch their prey, if any falls into their fnare, with greater certainty. I have not yet difcovered the internal ftructure of thefe three eyes of the Bee. The letter b, fig. vi. likewife fhews the brain, or rather one pair of thofe parts of the brain. We have before defcribed and explained by what means the cortical fubftance of the brain, is thewn when the fibres are taken from it. The letters ee feverally fhew the third and fourth pair of little parts, or the cerebellum, and alfo the manner wherein thefe parts communicate with each other. The cortical fibres, fig. Iv. $n n$ that iffue from thefe, are reprefented in their fituation in the fourth figure. In order to obferve the principle or beginning of the fpinal marrow, fig. v. r, it is neceflary to begin the diffection of the eye at the loweft part, or where the head is joined to the thorax. But then if you only remove the horny head, you will immediately fee the fat, and the originations of the pulmonary tubes, which are here very numerous, and the larger branches of which are diftributed towards the upper parts; but the fmaller are connected with the fat, in the fame manner as the fcapus or ftalk of a bunch of grapes is with its berries, and hence is produced a moft agreeable fight : one or two membranes alfo muft be there feparated from the brain, before the marrow comes in fight. But then one may fee there very beautifully that other fpecies of the fibres of the eye, Tab. XX. fig. v. $q q$, which I have called the cortical fibres, and reprefented under the letters fig. Iv. $n n n$, in

[^48]the preceding figure of the eye, the diffection of which was begun at the upper part: then, at the fame time, may be very beautifully feen alfo the inferior or internal furface of the cortical fubftance of the brain, fig. v. \iint, which partly covers thefe cortical fibres. This cortical -fubftance likewife feems to be here divided in the middle, which divifion is covered with a kind of thin membrane. This little part and its divifions I have marked with the letters $a a$ in the fixth figure, which exhibits the fection in the upper part. The marrow, fig. v. r, as hath been obferved, appears then very beautifully placed between the cortical fubftance of the brain; and at the fame time it may be feen how it partly communicates and is connected with that cortical fubftance. But I fhall afterwards particularly delineate, to the glory of the great Creator, and defcribe the whole marrow with all its nerves. I fhall only obferve here, that the letter y, fig. I. and v. exhibits the firt knot which the marrow forms out of the brain; but fo, that in one figure it is placed above, in the other below. Fig. v. $z z$, are the pyramidal fibres of the eye, deprived only of their cornea on each fide. $u u$ Exprefs the thickeft part of the fibres, and the place where they are moft coloured. x Shews the internal coat of the eyes, before demonftrated under the letter i fig. I. in which the pyramidal figures terminate.

Here alfo about the lower verge of the head fome parts of the mouth are feen, together with the two horny prominentlittle parts, wherein the mufcles of the teeth or jaws are in part fixed, and alfo the mufcles belonging to the beginning of the cefophagus. But I pars by all thefe things at prefent, nor fhall I attempt to defrribe the organs of hearing, or thofe of fmelling, as I have not been hitherto able to obferve any veftiges of fuch; though I fhould fcarce believe, that the all-powerful Creator, who hath given to the Bees the organs of fight fo wonderfully formed, fhould deny them organs for the other fenfes. But fo great is our weaknefs, that we are not able to comprehend and underftand natural things.
It is likewife very difficult and hard to find the organs now mentioned in fifhes and many other animals, becaufe they have no external paffage or opening. Thus I have obferved in the Chameleon, that the aperture of the organ of hearing opens into the mouth; which is likewife the cafe in the Frog. And hence it neceffarily follows that the knowledge of the fructure of one animal throws a light on, and fhews us the way to that of another. Indeed, comparative anatomy is a moft faithful and liberal miftrefs, fince the parts that are obfcure and hard to be feen in one animal, may be fometimes very diftinctly traced in another. Before I difmifs the eyes, I fhall firft briefly fubjoin here what I have feen and obferved about thofe of fome other infects.
The eyes we have been hitherto defrribing are formed in like manner in the working

Bee : there is however this difference that in the latter they are vafly fmaller, and therefore have the fewer number of inward fibres. But to proceed in order, I fhall here obferve, that if the skull, together with the cornea of thefe three little eyes, be taken off the head at the fame time, then immediately betweeni thefe eyes, and under the antenne or ho:ns, are obferved two oblong pulmonary bladders, which I have not feen in the head of the male, and which probably make the working: Bee light, and give it a greater agility. There is a larger quantity of fat in the head of the working Bee than in that of the male. This fat being placed on a piece of very thin glafs, and left fo until it is dried, becomes entirely pellucid, becaufe its tender connecting white membranes grow dry by this means, and hence alfo the pulmonary tubes diftributed through this fat now become confpicuous. This fat adheres in a wonderful manner, linked as it were, and twifted under the skull ; the mufcular fibres of the jaws are alfo here more numerous than in the head of the male. But the brain, the tranfverfe cortical or gray fibres, and the cortical fubftance of the brain itfelf, are here conftituted in like manner as in the head of the male Bee, but they are clearer and more eafily examined; for the inverted pyramidal fibres fituated above are fewer in the working Bee, and do not all prevent the fubjacent parts being feen.

The eyes of the Wafp are conftructed nearly in the fame manner, and in their external and internal form refemble the Turkin kidney-beans, being bent fomewhat inwardly towards the fides of the horns or antennæ, as if there was fome part cut off there. The internal fibres anfwer to the external divifions, as before obferved; for as the pyramidal fibre is extended by every divifion, it neceffarily follows, that the internal figure of the eye is entirely like the external.

In many fpecies of infects there is a confiderable and wonderful difference in refpect to the external figure of the eye. How the eye of the Rhinoceros Beetle is difpofed and fafhioned, is fhown by its figure.
In the Bee of Goedaert, which is really a dunghill Fly, the eye is framed nearly in the fame manner as in the working Bee ; for under the divifions of its cornea, there are likewife placed a great number of pyramidal inverted fibres, which being broken off with the cornea, a very beautiful red or fomewhat purplifh matter prefents itfelf; but when the cornea is removed from the pyramidal fibres without hurting them, they appear yellowifh. There are likewife innumerable pulmonary tubes in this eye, and a great quantity of fat.
In the Libella, or Fly of Dr. Hooke, called by the Englifh the Dragon-Fly, and in Dutch Puyflebyter and Rombout, the eye, in refpect to its external divifions and internal pyramidal fibres, differs confiderably from the eye of the Bee; for the upper divifions are much larger
in it, than the lower, and the internal pyramidal inverted fibres, which anfwer to the upper divifions, are in the fame manner much larger than thofe which are connected with the lower. The colour of the larger pyramidal fibres is purplifh, but the fmaller are dufky or blackifh. It would indeed be worth while to fpend fome time in the examination of this eye, becaufe a very large affortment of thefe fibres is diftinctly vifible in it, and may be conveniently enough managed ; befides that in the hexangular diviflons of thefe fibres, which are received into the cavities of the cornea; fome myfteries feem to be ftill hidden. I hope I thall be able to inveftigate them at fome other time, when I fhall enter into a more exact examination of the many obfervations that I have hitherto propofed; for the attentive fpirit that is neceflary in fuch a number of things as are treated of therein, muft at times relax and grow languid; and therefore I fhall not deny but that I may probably be in fome things deceived.

Some one may here object that the parts hitherto defrribed are not eyes, but furely nothing is more plain and evident. The jufly celebrated Hooke made feveral experiments to prove this : among others he wounded there eyes and cut off a part of them, by which means the creatures loft their fight entirely. This experiment may be made with little trouble ; and whereas the wound and pain occafion fome change about the fight, nothing more is neceffary but to cover thefe eyes with a little black paint mixed with oil, with a pencil, by this means thefe infects become blind, and by all their actions immediately fhew a perfect defect of fight. This experiment may be beft made on thofe Flies, the eyes whereof have no hairs, and therefore may be eafily coloured. It is wonderful to fee how tame and gentle the Fly becomes when its eyes are thus covered with paint; it fuffers itfelf to be caught every moment, and when it runs or flies, you will fee it flumbling everywhere, and when this happens it is driven back, like a ball, by whatever oppofes it; unlefs it fhould perhaps fix itfelf quick enough by the help of its claws, and thus avoid falling, as I have fometimes obferved.

This is the ftructure of the Bee's eye, and of the eye of other infects in general. The famous Dr. Hooke hath endeavoured to exhibit a magnified figure of fuch an eye, defigned from the Libella in the twenty-third and twenty-fourth plates of his juftly celebrated micrography. It will be now asked by what means is the fenfe of vifion performed in Bees and other infects? I anfwer, that the conftruction of the eye flews clearer than the light at noon, that vifion is not performed in it, as it is in us, and many other animals, by collecting the rays of light, which paffing through the pupil fall upon the retina; but merely by the contact of thefe inverted pyramidal fibres, formed by the light propelled through the cornea. Thefe eyes are fo difpofed as to receive the appearances of things by the fimple appulfe of the reflected light: and this
method of fenfation cannot but be very lively. But as the pupil is never in thefe creatures contracted as it is in us, nor hath any foramen or aperture, hence it follows that the fenfe of feeing muft be very perfect in infects, on account of the great number of rays which conftantly fall on their eyes. And hence it likewife is, that many infects fee in the night: the Dragon-Fly, therefore, from the fame caule, very quickly catches its prey flying. The organs of fight, which infects poffefs, can by no means be compared with our eyes, or with the camera oblcura, formed upon their principle, in which the appearances of things are by the help. of reflexion painted on a paper or white cloth. On this occafion I cannot but infert an incident, which the illuftrious and incomparable Boyle, in his treatife of colours, relates of a blind perfon, who, by diftinguining the roughnefs of coloured fubftances, could accurately diftinguifh their feveral colours by his fingers. This method of feeing, if it may be fo called, being performed by touching, is in fome meafure like that which obtains in the eyes of infeets. But how this vifion is really performed in infects, and by what means that great number of pyramidal fibres are excited by the light falling on them, as alfo how this motion is communicated to the fubjacent reticulated membranes, and from them afterwards is conveyed to the tranfverfe fibres underneath; and from thefe again to the cortical fubftance of the brain; from the latter to the nerves and at length to the origination of the marrow or brain, no perfon can explain : this can be known only to the all-feeing Creator of the univerfe. He alone can tellwhether vifible appearances or objects in infects are flopt on the uvea or not. It is enough for me to confefs my own weaknefs, and, after explaining the conftruction of this eye, to proclaim aloud the praifes of the fupreme Architect, I muft likewife acknowledge that I began the fe obfervations with the greateft pleafure at the end of September in this year 1673 , and that they gave me more delight than if I had feveral hundreds years added to my life. • I hope that this matter will thew the omnipotence and unlimited power of God, and inflame with the moft ardent love towards their Creator, thofe frozen fouls, which ftill deny the divine providence in refpect to thefe little creatures. Indeed if we could accomplifh this with our labours, it ought to give us the greatef joy, for it is for this purpofe only and not to trifle away. time, or acquire immortal fame or glory, that we ought diligently to inveftigate the works of God.

I likewife faw at the fame time, that each of the antennæ or horns, where they are articulated with the head, have three or four diftinct mufcles, by the help of which they can be moved various ways, and may therefore both affift the fight and defend the eyes from injury and any thing friking againft them. I have not attempted to difcover the mufcles of the other joints, whereof the antennæ or horns confift;
for they are fo minute that neither the eyes, the hands, nor the underftanding of man, nor our inftruments we ufe can examine them juftly. The fame muft be acknowledged of the murcular fibres of the jaws or teeth, fince we are incapable of difcovering their excellent conftruction and beauty, or of jufly defcribing or delineating them. I fhall, however, fay fomething of the feather-like hairs of the head of the Bee, when I treat of thofe of the thorax; which I fhall now proceed to defcribe.

The external figure of the thorax is in the upper part convex, but towards the hinder parts it is finuated, and is adorned with a fomewhat prominent margin about its extremity. On each fide of the anterior part there appear the fcapulæ or fhoulder-blades, by which the wings are joined: a little lower on each fide under the wings and fcapulx are feen the points of refpiration; whereof the orifices are oval, and furrounded with a horny margin. The under face of the breaft is divided into two parts, which are flretched fomewhat obliquely and bent downwards, and give infertion to the laft pair of legs joined to the lower edge, as the firtt pair of legs are articulated with the fore parts of the breart: thefe, when the head is drawn from the trunk of the body, adhere to the head, and are pulled off with it. The breaft is of a horny or bony fubftance, and is thick fet above, below, and on the fides with feather-like hairs, which are of equal fize and length in the upper region of the breaft. Thefe hairs, which are diftributed over the whole furface of the body, and are found even in the head of the common or working Bee, as alfo between and under the horns of the males, are all of them, as hath been faid before, perfectly like downy feathers, and particularly like the down of Swans, or thofe remarkable hairy feathers confíicuous in the tails of Peacocks; the middle ftalk of which feathers is furrounded with many fcattered lateral hairs.

Before I proceed to the diffection of the internal parts, I muft repeat again that Bees produce their humming noife with their wings only: fince the frall, membranous, moveable wings at the fhoulders, may eafily produce fuch a noife, by means of the air propelled from the fubjacent pulmonary tubes: for no points of refpiration open into the mouth, which is to be well obferved : to this may be added, that the narrownefs of the trunk is not adapted for modulating the air ; if any of the latter fhould be impelled thither out of the flomach, in which indeed I have found air. The wings of Flies are wonderfully formed in that part where they make this noife; though this ftructure is very different in the various kinds, Some Locufts indeed make a noife by the rufhing together of the wings; and for this purpofe nature has given them near the hinder part of the wing towards the breaft a fuggular fmall part, which,
when moved, forms a diftinct found like a thin plate of metal. Other fpecies of Locufts make a noife by rubbing their wings againft their legs. Crickets and Mole-Crickets modulate the air in fuch a manner by the help of their wings, that the chirping noife they make is produced from thence. The Grasshopper has two peculiar fmall drums, like the drum of our ear, which, being ftruck by the help of two lunated cartilages, vibrate the air in fuch a manner as to produce that found. Beetles make a noife by rubbing the horny parts of their head againft the articulations of the breaft, and the parts about the tail with the cafes of their wings. All the infects to which nature gave fingular organs for making a noife are of the male fex : this may be feen diftinctly in the Locurts, Grafshoppers, and others, the females of which make no noife. In regard to the wings of Bees, we may obferve they are here and there brifly, and that the veins and nerves confpicuous in them, are only fcattered pulmonary tubes, by the help of which, as we have before expreffed in words and figures, the wings are for the moft part difpanded.
The contents of the thorax are various: they are the moving fibres of the legs and wings, and alfo fome which are defigned for moving the abdomen, and others for moving the neck. Thefe mulcular fibres fill almoft the whole thorax. The other parts to be found there are the pulmonary tubes, fome fat, the gullet, and the final marrow : all thefe I fhall now pafs by, and only fay fomething of the mufcular fibres, and fhall then proceed to the contents of the belly. On this occafion I fhall give a defrription of the fpinal marrow. The mufcular fibres of the breaft, as we have already related, fill its whole cavity, and may be divided eafily into thofe which move the fore, middle, and the hinder legs, and into thofe which ferve to move the wings: for where thefe parts are fituated, there are feen the tendons of thofe fibres, which are afterwards expanded and flefhy in the thorax, and afterwards becoming tendinous, above in the upper region of the breaft, are there fixed as it were into an horny little part. The fibres which are implanted in the middle of the thorax ftand almoft perpendicular, but thofe which are inferted fomewhat lower towards the fides, are more oblique; and thofe that are in the anterior part united to the legs, run entirely oblique and are almof flat. Where the mufcles are fixed to the wings, there is a kind of diftinct articulation, befides that by the help of which the greateft motion of the wings is performed. If the fibres of the thorax are feparated from each other, they divide into oblong hairs, as it were, which are connected with delicate, white, nervous, and tranfverfe fibrillo, and are at length here divided fo minutely, that I muft defift from further fearch ; being filled, as before, with admiration of the divine Architect, who here

Kkk
in a fmall fibre manifefts to me his omnipotence and my weaknefs. For to this purpore only, and that we may terminate our greateft defires and frength in him and in his pleafure, all his works are offered to our contemplation. When I opened the margin or verge beforementioned, and which is vifible in the hinder extremity of the thorax, it appears full only of pulmonary tubes and fat.

The parts contained in the abdomen of the male are indeed as admirable as thofe which I have before explained as fituated in that part of the working Bee and of the female. But as no difference occurs here in regard to the ftomach, inteftines, and other parts, I fhall defcribe only the organs of generation in the male: for thus the difference between this male and the female, which has an ovary, and alfo between that and the working Bee, which is not furnifhed with either male or female organs, will be more evident. After this a flort defcription of the fpinal marrow fhall conclude the whole of this diffection. Though this fpinal marrow be formed alike in each of the three kinds of Bees, yet I chufe rather to defcribe it particularly in the male than in the working Bee, becaufe the male has a larger body.

The genital organs of the male are extremely large and very eafily vifible; for they poffefs the whole abdomen, nay, the abdomen of the males feem to be larger than that of other Bees, that it may be capable of containing them. This will be teftified by the mof ferene duke of Tufcany, Cofmus III. who in the year 5668 , in company with the illuftrious Mr. Thevenot, vonchifafed to view at my houfe, with great admiration at the fupreme Creator, theie parts in the Bee, and gracioufly to honour my labours by this unmerited vifit. The genitals of the male Bee, if we confider the fmallnefs of the whole infect, by far furpafs, with refpect to the quantity of fperm, thofe of all other animals whatfoever. That feed is contained chiefly in the feminal veficles or bladders, as is the cafe in other infects, and in larger animals, as Moles, Hedge-hogs, and Rats, which, as they are fwelled with abundance of fperm, have greater plenty of it collected in thefe bladders than in their tefticles. I could almont fay that it is fo in man likewife; for when I compare the narrownefs of the filament or vefiel of the tefticle with the capacity of the feminal bladders, and at the fame time confider the quantity of the feminal matter, generated in the veficles themfelves, that it is not transferred thither, according to the common opinion, out of the tefticles. But to proceed; we muft accurately obferve, that the parts which contribute to generation, and alfo to exclude or expel the fperm are the following: two tefticles, Tab. XXI. fig. I. a a; two vafa deferentia $b b$; thefe are diftended $c c$ on each fide to a larger and more remarkable fize than the teflicles themfelves: the two feminal blad-
ders or veficles $d d$, of a fupendous bulk; the root of the penis $c e$; a very confiderable horny little part which is placed f fomewhat towards the anterior end in the thickeft part of the root of the penis ; the penis itfelf, or the part analogous to it or like it g; another little part of a bright red colour diftinguifhed b by five divifions; and under it, on the other fide, another but larger pyramidal little part i : laftly, there are the two pointed $k k$ yellow appendages of the pudendum, with red ends, and invefted with a very thin skin, which contain this ruddy colour, and when wounded readily difcharges it. The little figure marked fig. II. o reprefents all the parts hitherto recited in their natural fize. The tefticles, fig. I. $a a$ are placed in the upper region of the abdomen, and fituated as it were at the back or loins; as is the cafe in Birds, Frogs, and other animals. They feem to me to confint of tubes, as in the water Beetle, the genitals of which I fhall hereafter delineate. Innumerable pulmonary tubes are likewife inferted into the teflicles, which greatly prevent the fructure of the latter from being inveftigated according to one's wifhes. There are of a pale citron colour with a tinge of purple, which is likewife the cafe in Silk worms. The vafa deferentia $b 6$ are very fmall, flender, and delicate in their ftructure, and appear whitifh on account of the fperm which fhews itfelf through them : they are twifted like the tendrils of a vine; nor do they appear to the obferver until after the pulmonary tubes, which join together their knots and convolutions, are gently and by degrees cut off with great care and very tedious labour. Thefe pipes are fo ftrongly connected with the winding of the vafa deferentia, and with that part of them which becomes broader, and alfo with the tefticles themfelves, that they feem to conflitute as it were one body with all thefe parts. The vafa deferentia are here, as they are in man and brute animals, joined by one extremity to the tefticles: a little further examination fhews very plain, how thefe vafa deferentia are dilated, and refemble as well in refpeet to their colour as the inferted pulmonary tubes, fecondary, or other tefticles. But being more accurately examined, they difcover within a confiderable cavity, which the tefticles have not. They are likewife of a glandular ftructure, and are diftended with a feminal matter, which immediately flows out of them when wounded. Before thefe veffels are connected with the root of the penis and open into its cavity, they are a fecond time contracted in a remarkable manner, and appear only fimple tubes, or fmall feminal veffels : they are at length inferted by their other extreme into the lower part of the fpermatic bladders. I think that in this dilatation $c c$ of thefe vefiels, a feminal matter is certainly fecreted; and in like manner I do not doubt but the fame happens in man, where the vara defcientia are dilated into the form of bladders.

Next the vafa deferentia are placed the feminal veficles $d d$; thefe are wonderfully large, and are full of feminal matter; they are whiter than fnow, and are of a very fine texture. They feem, indeed, to be of a glandular conftruction, only that the mufcular fibres alfo, by the help of which they are contracted to caft out the fperm, run through them; fuch a contraction is common to all the other mufcular fibres, after they are drawn out of the body: I have feen even thefe veficles, after being taken out of the body of the Bee, contract and wrinkle themfelves up by degrees. Here we fhould well obferve, that near the beginning of the root of the penis two remarkable nerves $n n$ are inferted in the fpermatic veffels, and which give many branches both to thefe veffels and to the root of the penis, contributing to the motion and titillation of thefe parts. That part of the final marrow m, from which thefe nerves arife, is here delineated fomewhat laterally. Near thefe nerves likewife, there appear two other little parts or ligaments 11 , by the intervention of which the genital parts are tied or faftened in their places in the abdomen, fo that they cannot go out of their proper fituation without force: this, however, I would not have underftood of the root of the penis, and fome other parts which are moveable, as fhall be fhewn hereafter.

Near the orifices of the feminal bladders and vafa deferentia, when the latter are more contracted, the root of the penis flows itfelf, Tab. XXI. fig. I. e e ; it is a confiderable long and crooked tube; it becomes the more dilated and diftended, the more it advances toward the outfide, until at lenoth it expands itfelf into a globe of confiderable thicknefs, and being then fomewhat contracted again, it forms at laft a more confiderable oval tubercle or fwelling. On the infide in this dilatation of the root of the penis, there adheres a pelucid horny part, of a deep brown, but fomewhat ruddy colour, and fet with fmall cavities f. This part appears to be divided in the middle, and in that place is feen the limpid and clear colour of the penis. In the anterior or fore fide, but a little on one fide of the part juft now mentioned, may be obferved two other horny, fhorter, and fmaller parts, which feemed to be joined together. The fructure of the root of the penis is nervous or cartilaginous, not yet hardened. Where this root is diftended with fperm, it is much whiter than where its fubflance is more plainly feen, being in fuch parts limpid, and not fo white, but rather refembling glats. This is the cafe likewife in the feminal bladders; where thefe, not yet fwollen with the feminal matter, prefent their proper fubfance to view.

Under the little part juft now defcribed, and fomewhat on one fide of it, appears the penis g, or the part that feems mort analogous to a penis; of this I fhall fpeak more largely hereafter. On the other fide is feen b that the genital veffels, which appear to be diitinguifhed into five
divifions, and a little lower, and as it were on the other fide, there is feen another fimilar but undivided little part i, which when diffected is found to be fhaggy, unequal; and as it were briftly. The former little part which is divided by five rings, appears alfo to be of the fame fructure. Thefe three hinder little parts, as well as the fubjacent and hollow appendages kk , appear wrinkled and contracted, like compreffed, tender, and delicate membranes; the reafon of which will be foon thewn. The feminal veficles therefore, as has been obferved, and the vafa deferentia, as well in their beginning near the tefticles, as where they terminate after they have grown narrower, as alfo the root of the penis, every part of thefe is pellucid: wherefore, whenever they are difcharged of feed, they appear like white glafs, or like veal, or any other jelly: but when the fperm is feparated in the veficles or root of the penis; there is then a very fine appearance, as of glafly marble or agat, difinguifhed or variegated with white fpots. This is a fhort defcription of what belongs to the ftructure of thefe parts: many things more may be obferved, which I fhall defer to another opportunity. If we confider the ufe of thefe parts in coition, and the manner the fperm is fecreted, thefe are indeed fo admirable that they almof furpafs all that has been hitherto faid. For the little part which we have called the penis g, as alfo the other part with its five rings b, and the clofed and pointed appendages $k k$, are all of them erected, and in the erection turn and invert themfelves in fuch a manner, that their internal furface is turned perfectly out: this is done in the fame manner as we take off our glove, or pull the skin off a Hare or other fuch animal, by turning the infide out. Hence I am in doubt whether this fhould be called an erection, rather than an inverfion, produced by the heat of the parts; all thefe parts are at the fame time alfo diftended with air. Indeed I do not remember to have hitherto feen any thing in nature wherewith I can compare this action. I am fenfible that Snails turn out their horns, and take them in nearly in the fame manner; but the air contributes nothing to this, the whole action is evidently performed by the help of confpicuous and elegantly conftructed mufcles; but this does not happen in regard to the erection in the Bee. If many Bees are kept together in a box, it frequently happens that thefe parts are obferved to turn themfelves out of their body in the manner juft mentioned: and on this occafion I have alfo found that the fame thing may be effected by art ; that is, by taking the body between the fingers, and then exprefing or fqueezing thefe parts out at the hinder part.

When the male is about to difcharge the fperm, or to erect or rather cvolve the penis, then, that I may now fpeak in general of the extuberance of the genitals, the clofed and pointed appendages are turned out. This is performed in thefe as well as the reft of the
parts, by the air which is impelled inwards, for at that time they are all inflated with wind. The inverfion of thefe parts is performed in this manner ; the extreme and hairy part, Tab. XXI. fig. III. r. of the pudendum is firt forced out by the Bee, and then the horny $q q$ extremity of the fame pudendum is likewife advanced out from the laft rings of the body, and at the fame time the root of the penis e, , together with the faid horny part f contained in it, ftarts or is thrown forward, and the vafa deferentia $c c$, and feminal veficles $d d$, are likewife drawn fomewhat towards the fore parts. Afterwards the four diftinct little parts begin to fwell and throw themfelves out of the body; that is, the two pointed appendages $k k$, the pyramidal particles i, and the fine ringed little part b. Before thefe four parts are erected and thruft forth, one may fee in what manner they fwell forwards through four diftinct little cavities, fuch as are feen in the fingers of a glove, when you have juft begun to invert them. And further, one of the clofed appendages, as alfo, the little part with its fine rings are feen through the skin.

The appendages, as I have already obferved, are firt inverted, and their bafis is then turned out, Tab. XXI. fig. Iv. $l l$, when we fee their clofed extremities fill lying between them and not yet inverted. But the pyramidal little part alfo i is then unfolded more and more upwards, as well as the fine ringed little organ b; the horny part alfo fituated at the root of the penis f is then propelled or pufhed further forwards, and is fixed higher in the horny little part of the pudendum $q q$; but the hairy part of this is no way changed in its fituation.

Then the appendages being by degrees entirely inverted, appear diftended and fwollen, Tab. XXII. fig. I. $k k$, at which time the root of the penis e, together with its interior little horny part f, are moved yet farther outwards, and this begins to penetrate fomewhat deeper into the cavity $g g$ of the horny or bony part of the pudendum: the pyramidal little part i alfo is now turned further out, and the little part with fine rings b, which is then partly inverted now appears to the eye : however, the fhaggy part r of the pudendum as yet fuffers no change.

But at this very time the pyramidal little part fig. II. i is at. length all turned out and expanded, and the other little part likewife fhews itfelf: it has five divifions, and fhort brifly hairs; and it now appears very elegantiy and beautifully bent $k b$. This makes the more agreeable fight, as thefe five divifions are of a bright red colour, but the reft of this little part is membranaceous and whitih. The clofed appendages $k k$ retain their figure, and only the horny little part fituated in the root of the penis, is by degrees more and more thruft out, and is further introduced into the horny part of the genitals. Hence it happens that the root of the penis e becomes ftraighter, whilf the
fhaggy part r of the pudendum fill remains as it was.
If one continues to prefs out thefe parts further, the skin being the pyramidal little part, and that which has five divifions, is by degrees widened and diftended; and hence it afterwards happens, that what is called the penis, fig. III. g, appears there in this manner ; it turns iffelf entirely out, exhibiting a membranaceous frructure, and beautiful corrugations in the head t. Then the pyramidal particle i likewife becomes entirely unfolded and expanded; and the horny little part f enclofed in the root of the penis, is entirely, with a great part of the root itfelf, preffed out of the body. This is forced through the middle of the horny, Tab. XXII. fig. III. $q q$, and hairy $r r$ part of the genitals: hence the little part with fine rings is then likewife dilated and extended fo far, that on each fide it appears wholly reclined towards the hairy part $r r$ of the pudendum. As thefe parts are pellucid, the horny little part f is feen through the skin of the penis, whilft in the mean time the little part with fine rings being plainly drawn down under it, refembles as it were an expanded membrane, and appears marked with fome lines or bright red grooves or furrows, between which are feen its five divifions. I do not think it neceffary to delineate all and each of thefe : but the clofed appendages $k k$ are then, without any regard to thefe feveral changes, obferved to remain in their former figure and fituation.

Whiift thefe parts are in this fate below the penis as it is called g, is feen a confiderable aperture u, which appears underneath and between the divifions of the horny little part fituated inwardly at the root of the penis; through this aperture, not only the faid little organ but a great part of the root of the penis may be forced, and thus will caufe the fperm to flow plentifully from thence. The before defcribed cavity of the genitals feems from hence, therefore, to be the true paffage u of the fperm, though for fome time I have attributed that office to what is called the penis $g t$; but I obferve that this as well as the other parts is clofed and has no orifice. Wherefore I cannot imagine what ufe this little part is of; as I do not yet conceive the purpofe of that other little part, which one may take for a penis. On the contrary, I think I very clearly fee that the internal horny particle f is made in order to dilate the root of the penis with its ftiffnefs, and to preferve it when opened, by which an eafy paffage is given to the femen through the latter. Indeed, in my opinion there was a neceffity for fuch a caution, on account of the great impetus wherewith thefe parts are forced out; for if that little part were not hard as horn, the faid paffage would be eafily fqueezed together, and confequently the ejection of the feed hindered. But whether thefe particles which are inflated with air, contribute to propel the reft of the parts out of the body, and
whether
whether the cavity through which I fuppofe the fperm paffes, are natural or produced by the force wherewith I preffed thefe parts out of the body, muft be ftill more accurately inveftigated, for thefe are not fufficiently clear to me.
It is now time to defcribe the peculiar inverfion of thefe parts. The clofed and pointed appendages, Tab. XXI. fig. ı. $k k$, then begin firft to emerge and to be inverted by degrees, fig. III. and Iv. $k k$, until at length they are all entirely thrown out, Tab. XXII. fig. i. $k k$. At the fame time the pyramidal particle prepares to iffue, Tab. XXI. fig. ini. and Iv. i, and turning itfelf more and more about it; Tab. XXII. fig. I. becomes extuberant, until finally it is entirely extended, fig. II. i. Then the five ringed litile part, Tab. XXI. fig. i. h, is obferved, fig. 111. and Iv. b, to appear by little and little, and to invert itfelf, Tab. XXII. fig. I. b, until it is difplayed a little more, and then it is entirely inverted, exhibiting to the eye a very beautiful fight, fig. II. $/ \mathrm{b}$. In the laft place, Tab. XXI. fig. 1. g, the penis, as it is called, is by degrees propelled between the pyramidal part and that which has five divifions, and is inflated with air, Tab. XXII. fig. 111. g, t, and at the fame time the quinquepartite little part is entirely dilated, and under what is called the penis, entirely towards the hairy part of the genitals $r r$. In the mean time whilft thefe things are doing, the root of the penis e and its inward horny particle f, is by degrees moved forward and thruft out of the body, fo that the orifice out of which the ferm is difcharged u may be very diftinctly feen.

As almoft all thefe parts are thruft out by force of the air, the reafon is obvious why fome of them, when not difiended with air, appear wrinkled and contracted in the body, Tab. XXI. fig. I. gbikk. It appears alfo for what reafon I call this little part g the penis, and that is, becaufe it bears fome refemblance to a penis, Tab. XXII. fig. III. $g t$. Indeed, if it be perforated and erected by force of blood and fperm, one may more properly take it for a penis than the fine ringed little part, which is likewife impervious. The pofterior part of this penis next to the body u is very beautiful, refembling in brightnefs the foot of a cryftal drinking glafs with fmall ribs, only that a little whitenefs intermixed obfcures in fome meafure the brightnefs.

From the defcription and figures of the genital organs thus exhibited, it is fufficiently evident, that it is fcarce poffible that all, and indeed, hardly credible that any of thefe parts fhould be admitted into the body of the female: wherefore, Ifirmly believe that the female Bee is impregnated only by the ftrong effluvia of the male fperm, after the Bee has difcharged it: nor would I have this doctrine rejected by any perfon as abfurd though feemingly ftrange. For firft, though a penis or little part like it feems to be given to the male Bee, yet this is by no
means fufficient for impregnation ; becaufe it is not only impervious, but by reafon of its fituation and figure, it cannot, I think, be admitted into the female's body. Nay, though the penis fhould be admitted thither, yet it could not convey the fperm into the uterus, the latter being difcharged through a quite different paffage. In Hornets there is a wonderful and diftinctly vifible penis; on each fide of it are feen two horny hooks like claws, by the help of which the male Hornet fixes himfelf to the extreme ring where the female's vulva is, and then advances its penis further into the uterus, In the Silkworms and in the horned Beetles the fame may be feen fill plainer. I have found from experience that the male fperm of Bees exhales a rank and ftrong odour; fo that if there be feven or eight males together enclofed in the little box, this is more ftrongly infected with the effluvia of fperm than any one could believe, who hath never fmelled thefe feminal vapours. And though the parts alfo containing this fperm have no aperture in the male, and the faid orifice was perhaps produced by me only, by the violent fqueezing of the pofterior part of the body, yet it does not therefore feem lefs probable that the fubtile particles of the fperm may eafily penetrate through the tender and inflated membranes of the genital organs, and by their effluvia only impregnate the female. Does not experience teach, that even the white as well as the yoke infenfibly infpire through the membranes and hard fhell of the egg? Secondly, though the males were provided with a penis fit for real coition, yet they never have an opportunity of copulating with the female, fince fhe is always furrounded with great numbers of the working Bees, nor is fhe ever any where left alone by them; fo that one cannot by any means imagine that the working Bees grant the female a place and accefs to exercife venery. But if any one objects, that the males probably engender with the female when they adhere about the cell, out of which the female iffues; this cannot be allowed, fince their genital organs are not obferved to be conftituted in fuch a manner as to be accommodated to or for this bufinefs. However, if the aperture beforementioned, through which the fperm flows, be naturally in the genital parts, I readily accede to the opinion of one of my friends, who thinks that the males when they penetrate through the noify fwarm of the other Bees, rub a little of the fperm upon the female's body, and thus impregnate her: but this opinion is deftroyed if that orifice whence the femen iffued is not natural. Upon the whole, it feems to me more probable, that the female is impregnated only by the frong and very fubtile eflluvia of the male feed. For if only eight male Bees are able to emit a very ftrong odour, what will four hundred of them together do in a hive? It is probable there is in general a greater number than this of males in one hive, which would not indeed be difficult to know, if one would count either the
males themfelves, or the cells whence they are excluded. To which may be added, that other creatures impregnate their females only by contact, or by afperfion or fprinkling, as is plainly the cafe in Fifh. In the finh kind we fee plainly, that the eggs or fpawn caft by the female into the water, are only fprinkled or dafhed with the melt or fperm of the male, and are by this means fecundated. The fame thing holds with refpect to the Ephemerus, whofe female flying in the air drops her eggs into the water, and the male then feeks after them, and fprinkles and fertilizes them with his fperm. As therefore the water ferves Fifhes as a medium, through which the impregnating virtue of the fperm is communicated to the eggs, thill it be thought improbable, that the air is a medium of the fame kind to the Bees, by means of which the fubtile particles of the feed difperfed through the hive, are transferred to impregnate the ovary of the female? Indeed the whole contlitution of the genital organs of the male confirms this opinion. The fame is likewife intimated by thofe very frong feminal vapours, which are perceived by the nofe, when even but a few males, at the time of fwarming, lie enclofed for fome hours in a box. To the reafons hitherto advanced may be added, the golden or incomparable obfervations of Harvey, by which is is indeed evidently demonftrated, that even in man and in brutes the foerm never comes to the uterus, but that the more fubtile and farce perceptible particles of it change the whole body at the time of coition, and according to what I obferved in the human fpecies, impart or give a more perfect animation and motion to the eggs, while they are fill in the ovary. That the femen never comes into the uterus, appears moft certain from the following experiment: let the penis of a Dog in the act of coition, be tied behind the knot which it then forms, and immediately cut off, and let the female be inftantly opened, all the fperm will be found flicking in the vagina. In domeftick fowls the Cock only emits his fperm through two fmall apertures, and rubs it to the vulva of the Hen; for he has no penis nor any remarkable production of the vafa deferentia: in other inftances thefe unite in one common channel, or, as in us, are produced out of the body by the help of the urethra: but in the mean time the fubtile particles of this gallinaceous fperm thus rubbed on the body penetrate through the membranes, nerves, veffels, nay, through the whole body of the Hen, though they be intended to affect and impregnate only her ovary. In the fame manner nearly the feeds committed to the earth, or being only on its furface, we fee are affected by the earth's moifture; fo likewife a little barm, or yeaft, ferments, moves and prepares the whole mars. The little part which appears like a penis in the Bee, is wonderfully fmall and delicate, and of a very beautiful ftructure; and hence I preferve it in my collection as a thing very worthy of contemplation. One doubt
may be fill objected to the hypothefis that I have advanced concerning the odiferous impregnation of the female Bee, and that is, that the female at the time of coition may thruft the extremity of the vulva into the body of the male, as is evidently the cafe with fome fpecies of Flies. But I anfwer to this, that the extremity of the uterus in this female is not made in the fame manner as it is in thofe Flies: befides that thefe arguments, by which I have before alledged that the male cannot eafily approach the female, and that no coition can be performed amongtt the whole fwarm of the bufy and noify Bees, ftill remain unfolved. To which add, that it muft be firft very evidently proved, that the aperture obferved by me about the horny little bone in the root of the penis, out of which I expreffed the feed, is natural, and in its natural fate is emitted fo far out of the body. Nay, and if all thefe fuppofitions were taken for granted, yet it would be hard to demonftrate that this coition of the Bees is like that which obtains among thofe Flies. The coition indeed of the Hornets, which is nearly related to the Bee kind, feems likewife to contradict this opinion. But, perhaps, fome will rather maintain, that as foon as the female hath broken its cell, the male immediately creeps into it, and begins to copulate with her while yet in the cell. And among many other reafons this may be alledged as one, why the cells of the females are much larger than thofe of the other Bees. But all thefe matters are merely conjectural, and they are not only contrary to the ftructure of the genital organs, but they ought not, nor can ever be admitted as certain, only fo far as they are eftablifhed by trial; nor can I think it is impoffible to know by experiments how this female is impregnated. However, my opinion is, that this impregnation happens by means of the effluvia only; it remaining thus far fufficiently ratified and confirmed. The female, therefore, at the time of fwarming, becomes fecundated by only the feminal effluvia of the males, which diffures itfelf in the hive ; and hence the tripple feed in the ovary of the female acquires its fertility; that is, fome thoufands of the egg's, out of which the working Bees are produced, then fome few eggs out of which the females are excluded, and fome hundreds which produce males. But the two latter fpecies of Bees are not generated in the hive until the year following, unleis when the hive is to fwarm again the fame year ; for then the males iffuing from thence perform that bufinefs again for the fubfequent year.

If the reader views the admirable ftructure of there genital organs, and the exquifite art confpicuous therein, according to their worth and dignity, he will indeed fee that God, even in thofe minute infects, and their parts, has concealed from the incurious eye, ftupendous miracles; nor is it difficult to difcover and illuftrate thefethings, provided one feduloully applies to their inveftigation. Confider, therefore, what a progrefs acute and fagacious geniufes may
make in there inquiries, if they will induftrioufly fearch into them. What I have hitherto defcribed and exhibited, are indeed but light fhadows of the things themfelves: it would be eafy for ingenious perfons to difcover and lay open all thefe things thoroughly and more perfectly, to the glory of the great God *. As to myfelf, I do moft willingly confers that my capacity is fo flender, that I am able to behold the works of God only at a diftance. Nay, the more frequently I view them, the more I am convinced of my ignorance, and I know my own weaknefs and mifery.

To make what has been hitherto defrribed the more intelligible, I hall add the figure of the genital parts of the great water Beetle, in which the tefticles are very remarkable for their fructure.

Tab. XXII. fig. v: a, the penis itfelf, which is fituated in the midft between the prominences of the horny part, and is inflated and erected in coition by the help of the blood.

66 , The horny part of the penis, in the middle of which it is placed, and is ftrengthened thereby.
$c c$, The root of the penis formed in the fame manner as in the Bee.
d, The tefticle of one fide, as it appears at firft fight, when difengaged from its pulmonary tubes.
ce, The tefticle freed of its pulmonary tubes, fo that its internal ftructure, which is tubular, or confifts of fmall and round filaments, may be feen.
$f f$, The vara deferentia, whereof one extremity, as in man and brutes, iffues out of the tefticles, or rather is joined to the tubulated filaments thereof.
$g_{S} g$, The vafa deferentia dilated, or that part of them where they fecrete a certain feminal matter, as well in man as in the Bee.
blobbhbs, The feminal veficles with their curled extremities: thefe appear in that part not unlike the feminal veficles in man.
i, Veffels clofed at their ends, which open about the root of the penis, and probably perform the office of proftrata in man.
Finally, to conclude this hiftory of the anatomy of Bees, I Thall fubjoin a defrription of the fpinal marrow, and fhall delineate it, and explain the figures. All other things which may be further faid of thefe infects, fuch as the defrription of the bony or horny parts of the Bees, I thall pals over at prefent in filence; for as the Bees have now employed me continually for fome months, diffecting in the day time, and writing at night, I am the more inclined to put an end to the prefent treatife, though I clearly fee that fome parts of this infect may be ftill much more accurately inveftigated. However, I fhould fcarce believe that I have committed any confiderable errors; therefore I confidently fubmit to the cenfure of thofe who have can-
dour, and fhall never refufe to learn better things.

The fpinal marrow of the male Bee, Tab. XXII. fig. vI. a, knotted in its beginning, or that part of the brain which in the defreiption of the eye diffected before, I have faid was joined to or continuous with the brain, the cortical fubftance and tranfverfe fibres. This part, which gives origin to the nerves of the eye, is very eafily feparated from the parts juft now recited, if it be in the leaft handled. I have not yet examined how the eyes are conflituted in other infects, and in the Silkworm, with refpect to the brain or fpinal marrow; I have delineated only their nerves as they appear in the Worm or Caterpillar, as may be feen in the figure which I have before inferted in the hiftory of the Rhinoceros Beetle ; where is likewife feen very diftinctly, the nervus recurrens, or recurrent nerve, which I have here afterwards obferved in the Bee.
$b b, 1,2,3, \& c$. Shew the feven fubfequent little knots of the fpinal marrow, into which the marrow, when it paffes through the breaft and abdomen, is dilated. There fame letters likewife fhew the origination of the nerves from thofe parts.
$c c c c$, Are fome nerves which do not arife from the marrow where it is dilated, but from the divifion of the two larger nerves which conflitute the marrow.
$d d d, \& c c$. Are thofe places where the marrow is divided or opens. This is never feen in man, nor in larger animals.
e, The part of the marrow fituated in the head, and that in the neck. The part in the neck lies enclofed in a fmall horny part.
f, The part of the marrow which is placed in the thorax, and there principally provides for the mufcular fibres that move the legs, wings, \&c.
g, The part of the marrow enclofed in that narrow horny little part, by which the body is joined to the breaft.
b, The part of the marrow fituated in the abdomen, which gives nerves not only to the vifcera, but to the mufcles of the rings, and to the fting.
$i i$, Two remarkable nerves diftributed over the jaws, and other parts. They are the fame that I have before exhibited in the figure of the eye.
$k k$, Two nerves reaching to the probofcis or trunk, ferving probably for the tafte.
$l l$, Two other nerves which are conveyed into the mufcles of the trunk. I could not yet inveftigate the olfactory and auditory nerves in this creature.
$m m$, Two nerves tranfmitted out of the beginning of the marrow towards the eyes, as I think. This, however, I cannot affert for certain, as I do not love to deceive either myfelf or others, for it is a difficult thing to fee this

[^49]matter diftinetly, becaufe the upper parts of the brain are here united to the marrow.
$n n$, Two nerves fent off from the thorax to the upper mufcles of the body, and together with the marrow enclofed in that narrow filament which connects the thorax with the body.

00 , Two ftrong nerves, which are for the moft part inferted in the root of the penis, and other organs of generation, as has been fhewn in the figure of thofe parts.
Fig. vir. pp, \&c. Part of the marrow reprefented fomewhat magnified.
$q q, \& x c$. The external medullary fubftance, refembling a divided nerve.
r, Another portion of marrow, put between its proper medullary fubftance; by the acceffion or addition of which the marrow is dilated into a little knot. This is by no means fo white as the medullary fubfance itfelf, but fomewhat gray, and approaching to flefh colour; therefore perhaps the marrow is by the intervention of fuch a different fubfance dilated and made more firm, in order to frengthen it for omitting its nerves. This may be likewife feen fig. vi. under the letters $c c$, where even the medullary fubftance itfelf becomes thicker : probably this dilatation ferves alfo for another purpofe; for that dilating matter feems to me to be of the fame nature with the fubftance of the brain in this infect, and agrees with the cortical fubftance, and the tranfverfe fibres. I fhould in this place add a delineation of the pulmonary tubes, whereof thefe nerves have a confiderable number, but that I am certain as adequate an idea may be had by the defcription of them. That fubfance which is lodged between the medullary matter, hath been before me fhewn by the juftly celebrated Malpighius, in his excellent treatife on the Silkworm, and he has alfo delineated the pulmonary tubes there. I had refolved to ftop in this place, but upon reconfidering my obfervations, I found fomething in them belonging to the hiftory of the Bees, which I hall firft explain. I fhall in the firlt place give a brief hiftory of the infect called the Bee-hive Wolf, or Lupus Alvearius: this is an infect, which, when it comes into the hives of Bees, ought to be confidered as their deftructive plague, becaufe it confumes and eats all their wax. This creature, properly enough called Lupus or Wolf by the Bee-keepers, is a Vermicle like, as to form, to a fmall Caterpillar. Tab. XXVI. fig. II. a, the body, computing, the laft annular incifion of the tail, is divided into fourteen rings ; on each fide of the body are nine points of refpiration ; the firft and laft of thefe, which indeed I think are peculiar to the infect, are as large again as thofe that are placed between them. The pulmonary tubes are white, and appear diftinctly through the body. The body itfelf is nearly fmooth, being fet only with a few fattered, thin, and oblong hairs. When this creature contracts itfelf, feveral regular whitifh folds or wrinkles are produced in its skin. In the head are to be
obferved, the eyes, the teeth, one lip, fome articulated briftly hairs, and a papilla or nipple that ferves for fpinning. The whole Worm is flefh coloured, except when the colour is fomewhat changed by the contents of the inteftines feen through the skin. It moves itfelf in the fame manner as the reft of the Caterpillar kind, and runs backwards and forwards with equal celerity: for this ufe it has fixteen feet, that is, fix fore feet, eight middle, and two hind feet. The fore feet are furnifhed with fharp claws, and the middle and hinder feet thew a confiderable number of fmaller nails in the extreme circumference of their foles. This Caterpillar is produced from a fmall kind of an oblong egg, which is laid in the combs by a grayifh Butterfly b of the Moth kind. It is a very deftructive Caterpillar that proceeds from this $\operatorname{egg} a$, for it not only corrodes or gnaws the combs, becaufe it feeds on wax, which I think it has in common with the Worms of the Humble Bee; but wherever it paffes, it likewife gnaws round holes through thefe waxen cells: by this means one Worm fometimes breaks open and deftroys fifty or fixty fuch cells. We muft particularly obferve, that this Worm, wherever it penetrates, always fabricates or forms an hollow and tubulated web $c c$, in which, as in a rabbit burrow, it can very fwiftly pafs from one part to another, and very fpeedily run back again. If you attempt to catch this Worm at that time, you will fee it by the help of the claws, wherewith its hinder feet are armed, very firmly fix itfelf. Unlefs this creature be foon expelled, or be killed in the beginning by the Bees themfelves, and carried out of the hive, it fills the whole comb with fuch webs, and turns itfelf in them every way into various bendings and windings: fo that the Bees are not only perplexed and difturbed in their work, for they frequently intangle themfelves by the claws and hairs of their legs in thofe webs, and the whole hive is deftroyed. That I might be able to inveftigate more accurately the true nature of thefe little creatures, I have fometimes given them food for a time. When I have for that purpofe expofed a comb of wax in a drawer of my cabinet to the open air in my chamber, the whole comb has been in a very fhort time eaten up by numbers of fuch Worms. But I always firft obferved many of their Butterflies fluttering about my chamber. Nay, I faw fome of thefe Worms fo famifhed, that they devoured the foft part of the bodies of fome dead Bees, which had ftill fuck in the comb; nay, did not leave even their wings. They made very wonderful burrows, Tab. XXVI. fig. II. $c c$, through the comb. Befides this particular Caterpillar, there is another fmaller, that likewife iffues d from a little fpecies of Butterflies, and does great mifchief to the combs corroding and eating away the wax. This Caterpillar is not only deftructive to the wax, but to the Bees themfelves, for it buries and kills many of them'; but this happens only by chance. I faw one of there little

Worms,

Worms, whilf it was fmall and was breaking the cells, in which the Nymphs of the Bees lie, and eating the wax there, cover the Nymphs alfo with its excrements, infomuch that they could be fcarce known. To this may be added, that the Worm itfelf, when, in order to get food, it creeps every where round about the Nymphs, compreffes and deftroys them : this mifchief is occafioned chiefly by one that is more grown, the body of which demands fomewhat more fpace. I have learned thefe matters much againft my inclination, and have been full of indignation againft the Worm, when with its excrement it defiled and killed fome Nymphs, which I had defigned to obferve in their changes.
As this Worm ufes wax for its food, its excrements are nearly of the fame nature; if they be received upon a thin plate of glafs, and put over a burning coal, they melt at firf like wax, but aferwards they harden, and like the burnt Bee-bread, become friable between the fingers. Thefe excrements are of a black colour, and of an hexagonal figure, and when chewed they exhibit a fweetnefs and tenacity like wax: a tincture may be extracted from them by fpirit of wine, fuch as hath heen ufed to be prepared out of the excrements of fome other animals, and then applied to medicinal ufes. Nor would it indeed be difficult to gather together a great quantity of thefe excrements; provided their ufe was known. After this Worm hath eaten fufficiently it forms, Tab. XXVI. fig. 1I. e, to itfelf a new oval white web, and enclofes itfelf therein, fometimes covering the circumference with its excrements. Sometimes each of thefe Worms weaves fingly, and fometimes forty or fifty of them perform this work together : in fome time afterwards they are changed into Chryfallides or Aurelix f; fo that we fee they belong to the fecond method of the third order of natural transformations or accretions in the parts. Finally, thefe Worms having acquired the figure of Chryiallides, caft their laft skin in their webs, and at length creeping out of them appear winged animals $d b$, and affume the perfect form of their parent Butterfies. Thefe frequently pitch about the doors or other openings of hives, and as it were follicit admiffion, but they are very afliduoufly kept out by the Bees: they are indeed formidable enemies to the Bee, though thefe-and all other fpecies of Moths, are very weak creatures, which may with the fingers be eafily reduced to duft. The Bees, however, do thefe Butterflies no mifchief, unlefs when they by their irregular flying, which is common to almoft all Butterflies, frike the Bees with their wings, or when they too obftinately attempt to creep into the hive. The fmaller fpecies of thefe

Moths is of a grayifh colour, and has four fomewhat glittering wings, fix legs, and two long and fharp-pointed antennæ or horns placed juft over the eyes. The other fpecies which is larger is of a more dusky colour, and has wings fomewhat fpotted, in the middle of which, or in that part where they reft upon the body, are feen on each fide three fmall eminences, compofed of feathered little fcales, formed in the fame manner with all the reft of the Butterfly fcales; for they are not real feathers which produce thefe wonderful and very beautiful colours of the wings of thofe creatures, but rather fcaly little parts fupported by little ftalks: Aldrovandus hath delineated this fpecies of Butterflies, and he gives it the name of the hive Moth.

One may ask naturally why the Bees fuffer thefe Worms, which deftroy and confume their workmanfhip fo terribly, to live in their hives ? and this feems the more frange, becaufe the Bees kill their own males about the end of auguf, break their wings with their teeth, and carry them out of the hive, nor do they leave them, till they are perfectly dead. Nay, they do not admit other Bees, nor fuffer Hornets to enter their hives. The folution of this queftion is eafy and obvious, for the principal reafon confiffs in this, that the female is then either barren, or does not lay eggs enough, and confequently does not multiply the number of the Bees as fhe ought to do, or is perhaps mutilated, maimed, without wings, or weakened by fome other means. When thefe things happen, as the working Bees have no Worms to feed, or whofe cells they fhould build, or even when the hive is too large, on account of the fmaller number of the Bees that inhabit it, than is requifite to contain them and their iffue; on any of thefe accounts the progeny of the Bees occupies the upper part of the hive, and the working Bees, throwing off all care of preferving their cleanlinefs and neatnefs, lead a carelefs, idle, and irregular life, and gather but little honey; nay, if the males be in the hive, when in this condition, they by no means kill then, for they have nothing to mind or take care of but feeding themfelves, and they throw off all affection for the prefervation of their progeny, and have too much time to fly about and provide for themfelves ; therefore, having no occupation, they live very diforderly, and will leave their males alive till the winter is far advanced *. In this cafe they let the moths enter unoppofed ; they will likewife fometimes creep underneath into the hive, that they may lay their eggs in the wax. This happens chiefly when the Bee keepers neglect to flop up on every fide the lower verge of the hive, though the Bees themfelves fometimes take care of this

[^50]matter. When therefore the Bee-keepers fee a hive fallen into this misfortune, which they may eafily perceive, or indeed prevent, provided they now and then turn up and thoroughly examine the hive, it is their bufinels inftantly to cure it. The Wolf Caterpillar is to be expelled from the hive, by cutting and breaking open the unfinifhed wax; and if the female be fick the muft be killed and the Bees put into another hive. If in this other hive there be too fmall a number of Bees, two or three hives mutt be put together, the Bees affociated, and to avoid new confufion one of the females mult be likewife killed: the working Bees mult be compelled by fome of thefe means to mind their duty; and this may be very eafily done, fince they follow nature as their guide, and need no other mafter. Befides this Caterpillar produced from the Moth kinds, there are other creatures that are enemies to the Bees, whereof Virgil in Georg. IV. fays,

For lurking Lizards often lodge, by ftealth, Within the fuburbs, and purloin their wealth, And Lizards fhunning light, a dark retreat, Have found in combs, and undermin'd the feat :
Or lazy Drones, without their Thare of pain, In winter quarters free, devour the grain;
Or Wafps infeft the camp with loud alarms,
And mix in battle with unequal arms:
Or fecret Moths'are there in filence fed,
Or Spiders in the vaults their fnary webs have fpread.

Dryden's Virgil.
It is a common opinion that the Bees in rough and boifterous weather, and particularly in a violent ftorm, carry a ftone in their legs, in order to preferve themfelves by its weight againt the power of the wind. Hence Virgil in Georg. IV.

Nor dare they ftay,

When rain is promifed, or a ftormy day: But near the city walls their watering take, Nor forage far, but fhort excurfons make. And as when empty barks on billows float, With fandy ballaft failors trim the boat ; So Bees bear gravel ftones, whofe poifing weight
Steers through the whifting winds their fteady flight.

Dryden's Virgil.

But this, as Clutius juftly obferves, has not been hitherto remarked by any Bee-keeper, nor indeed have I myfelf ever feen it. Yet I fhould think that there may be fome truth in this matter, and probably a certain obfervation, which I fhall prefently mention, has given rife
to the ftory. There is a fpecies of wild Bees not unlike the fmalleft kind of the Humble Bee, which, as they are accuftomed to build their nefts near ftone walls, and conftruct their habitations of pieces of ftone and clay, fometimes carry fuch large ftones, that it is fcarce credible by what means fo tender infects can fuftain fo great a load, and that even flying, whilft they are obliged to fupport alfo their own body. Their neft by this means is often fo heavy as to weigh one or two pounds; though only ten or twelve young Bees are brought up in it. This I have obferved in the year 1666, at the country houfe of Mr . Thevenot, fituated in the village of Ifly, not far from Paris, near the bottoms of fome windows, in the prefence of Dr. Steno. In this neft I at that time found a red Worm, with fix legs, Tab. XXVI. fig. ıir. a, which was changed into a Nymph b. But this Nymph after in the fpace of a whole year did not change into a Bee, but into a very beautiful Beetle c; nor could I in the mean time obferve that this Worm, in all this time, took any confiderable food, unlefs perhaps the ftony and clayey particle of this neft ferved it for food. See further the explanation of the figure. Befides, I likewife found there a fingular kind of Wafp, and in fome oblong hollowed tubes, I alfo found the membranous webs of Bees already broke open and deferted. From all thefe appearances it is therefore evident that 'tis poffible Bees may be fometimes feen to carry little ftones, but thefe were not common Bees, nor have I hitherto found that any perfon has obferved this practice in them. The nefts juft mentioned were likewife known to the learned Aldrovandus, but thofe he faw were made as it were of clay only, as may be feen in his remains or chronicles, where he rudely delineates the Worm of the little Bee, together with the neft, and relates that Ariftotle alfo, in Hift. Anim. Cap. 24. makes mention of this fpecies of Bees; but as Ariftotle in writing his hiftory did not apply himfelf to anatomy, he could therefore fcarce advance any thing certain; and hence it has arifen that his account is very confufed, for he undoubtedly compiled it from the relations of others, and this often leads into the greateft errors. Indeed, nobody can accurately underftand thefe my obfervations, unlefs he hath borrowed light from the experiments themfelves *.

As Bees frequent only herbs, plants, trees, and flowers, carefully avoiding fuch things as are ever fo little ftinking or foul, and therefore are never feen to light, much lefs make any ftay upon the dead carcaffes of animals; the account given of Sampfon in the book of Judges chap. xiv. is a paradox with fome, whilft others look upon it as altogether incredible. Sampfon, according to that hiftory, having killed a young Lion, found in fome days after a fwarm of

[^51]Bees, and a quantity of honey in the Lion's carcafs *. However ftrange this event may appear, even to the ingenious and fagacious obferver of Bees, I can difcover nothing like a paradox in the relation. The context clearly proves that the thing happened in the midft of fummer, at which feafon the carcafs of any animal that had perifhed by a violent or natural death, would in a fhort fpace of time be fo entirely cleared of its flefh, as to form no more than a skeleton. In this the Bees might find a commodious habitation. Is it not a common thing to meet on the roads with the ribs and other bones of dead animals, fo thoroughly fripped of the flefl, and at the fame time covered with part of the skin fo dried, and in a manner tanned, by the weather, that infects may find under it fufficient fhelter and convenient lodging ? No doubt: the text runs as follows: After forne days Sampfon found a fwarm of Bees in the Lion's carcafs. We muft; indeed, underftand by thefe words, that the interval between his killing the Lion and finding, the honey in its carcale was not very long; nor is there any occafion for underfanding them otherwife, fince at the time that Bees fwarm, there are many infects, efpecially the Worms from which the common Flies Ipring, which, from their ravenoufnefs and great numbers, may devour, in a few hours as I may fay, the carcaffes of dead animals to the very bones. There are many. fpecies of Flies that will fmell a carcals at a great diftance, and immediately depofit their eggs on it, as a proper place for their little Worms when hatched, as they very foon are, to find a food fuited to their nature. It is almoft incredible how faft thefe Worms will grow, and how fuddenly they will eat up all the flefh of a carcafs. I have experienced this by hanging a dead Duck to the branch of an apple-tree, at the feafon when Bees fwarm: in three days after the Worms have fuddenly broke from their eggs, the Duck's flefh and entrails have been entirely confumed, nothing remaining but the bones and a few tendons, fo that with very little pains it might have been formed into a perfect fkeleton. We fee in this inftance how greedily thefe Worms devour, and how faft they grow, immediately upon leaving their eggs. The fame obfervation alfo has been before made by that curious naturalift, the illuftrious Redi, in his experiments concerning the generation of infects. His words are there: "What was moft "furprifing, the Worms were fo much grown " by the next day, that they each weighed " about feven grains; whereas before twenty " or thirty of them did not exceed one grain. "The other Worms that ftill continued to "come from the eggs began, as I may fay, in " the twinkling of an eye, to devour what
"fleh remained on the Fifhes, foon leaving is the bones quite bare like fo many fkeletons, " that would not have flamed the hands of the" beft anatomift in Europe." I remember that as I was once travelling on a very hot fummer's day through the province of Utrecht, in my way to Culemburgh; in order to make fome obfervations on the Ephemerus, I took notice of a dead Horfe that lay by the fide of the road, and was fo full of Worms, that no part of its flefh could be any longer diftinguifhed; nor was the number of thefe infects more furprifing, than the waving motion they produced in the remains of the flefh; bowels, and other parts of the carcals, which by that means appeared in a manner ftill poffeffed of life and motion. A great number of the Worms, unable to find room and nourifhment in it, were then crawling on the road; where the heat and duft foon ftifled them. Another time I had an opportunity of obferving to what a degree of perfection thefe are poffeffed of the fenfe of fmelling; for having put fome little Worms hatched from the eggs of Bees into a box, in order to trace and examine, if poffible, their change into Bees, a few of them died; they were no fooner dead, than, the box not being well hhut, fome little Flies took notice of their carcaffes as a proper nidi for food and Thelter to receive their eggs. Accordingly I had Worms produced in them in a very fhort time, which at length changed to that fpecies, which I call the fourth order of natural mutations, and in a few days after perfectly refembled in fize, ftructure, and form, the Flies from whofe eggs they were originally produced. Things of this kind occur moft frequently in very hot fuminers; for then both the Flies and their Worms are multiplied in a furprifing manner. When the bones of animals have been once cleared from their flefh in the manner already mentioned, it is no difficult matter to conceive how they may in a little time be fo wafhed by rain, as fcarce to be diftinguifhable from the pureft ivory.

As then it plainly appears by the hiftory of Sampron, that his adventure of the Lion happened about the time when Bees fwarm, make their combs, and fill them with honey, we muft of courfe fuppofe it was during the great heats of fummer, when Flies lay their eggs; fo that the offspring of thefe eggs might, in all probability, have devoured the flefh and entrails of the Lion, within the time requifite to folve all the difficulty that can be flarted upon this occafion ; befides, alternate rains, funfhine, and dew, may be eafily fuppofed capable not-only of bleaching, as already faid, but of purifying alfo, and freeing from all manner of ftench, or difagreeable fmell, the bones that remained, fo as upon the whole to make the carcafs, or rather

[^52]the skeleton of the dead Lion, a proper place of reception for thofe little cleanly animals. We are not to imagine with the generality of mankind, that Bees at the time of their fwarming fend out before them as it were fome of their nobles or courtires, to prepare lodgings fort he reft of the company; by no means: the whole clufter feizes the firft opportunity of fixing themfelves, be it houfe or tree, or the corner of a wall, no matter whether high or low ; and if they do not find their fituation agreeable, or if no body comes with a hive to receive them, they foon fly off again, and fo ramble about from place to place, till they find of themfelves, or till fome one offers them, a convenient habitation. And thus it is probable that Sampfon's Bees had acted, till they at laft fettled in the Lion's carcafe, where they built their combs and depofited their honey: God himfelf, who governs all things, and from whom this work, or, as the holy writings exprefs it, Sampfon's conduct proceeded, directing the motions of thefe little infects, fo as to afford a fubject for a riddle, and confequently a juft excufe for delivering his people. I had once an opportunity of obferving how irregular Bees will fwarm, in a houfe belonging to Mr. John Oort, now magiffrate at Nieuwenrode, that had greatly fuffered by fire. I found the fwarm in one of the remaining walls, where they had made both wax and honey; but their choice of this place was highly imprudent, for the hole by which they were to go in and out of their habitation was fo large, that they could not by any means keep off the winter's cold, and their number alfo fo fmall, that they had not provided food enough to fubfirt them at home on the fevere days when they could not go abroad. Sometimes I have feen fwarms of Bees hanging to the topmoft branches of the loftieft trees, and at other times, content with fo humble a fituation, that the clufter their fwarm formed in a manner touched the earth.
It is probable that the not rightly underftanding Sampfon's adventure of the Lion, gave rife to the popular opinion of Bees fpringing from dead Lions, Oxen and Horfes; and this opinion may have been confiderably ftrengthened, and indeed in a manner confirmed, by the great number of Worms that are often found during the fummer months in the carcaffes of fuch animals, efpecially as thefe Worms fomewhat refemble thofe produced from the eggs of Bees. However ridiculous this opinion muft appear, many great men have not been afhamed to adopt and defend it. The induftrious Goedaert has ventured to arcribe the origin of Bees to certain dunghill Worms, and the learned de Mei joins
with him in this opinion ; though neither of them had any obfervation to ground their belief upon, but that of the external refemblance between the Bee and a certain kind of Fly produced from thofe Worms. The miftake of fuch authors fhould teach us to ufe great caution in our determinations concerning things which we have not thoroughly exanincd, or at leaft to defcribe them with all the circumftances obfervable in them. Therefore, although this opinion of Bees iffuing from the carcaffes of fome other animals by the power of putrefaction, or by a tranfpofition of parts, be altogether abfurd, it has had notwithftanding many followers, who muft have in a manner fhut their eyes in order to embrace it. But whoever will attentively confider how many requifites there are for the due hatching of the Bee's egg, and for that infert's fubfiftance in the Worm flate, as has been particularly explained in the preceding pages ; whoever, I fay, confiders all this with the attention it deferves, cannot be at a lofs for a clue to deliver himfelf out of that labyrinth of idle fancies, and unfupported fables, which, entangled with one another like a gordian knot, have even to this day obfcured the beautiful fimplicity of this part of natural hifory. Nor need we complain that by overturning this fyftem, we lofe examples by which many moral precepts may be enforced; there will remain a fufficient number of folid obfervations to anfwer the fame purpofe. Thus mutual love, friendly cohabitation, and uninterrupted courfe of good offices, obfervable amongft Bees, who behave in all this as if they were actuated by chriftian principles, and lived in a real communication of all good things, with their induftry, by which their happinefs is conftantly encreafed, are powerful motives to engage us in the fame practices. It is this love, this communion and diligence, that governs, fupports, gives motion and life to their little republicks; and if we contemplate the inftitutions of the primitive chriftians, we flall find they lived in the fame manner.
It is a difficult matter to determine any thing in regard to the period of life which nature has alotted thefe infects *; at leaft I muft own that I have not as yet been happy enough to hit upon any fatisfactory experiments on this head. Some perfons who have made Bees their ftudy, affirm as a certainty that working Bees live but one year, and I am not averfe to their opinion, though I do not think they have as yet any fure obfervations to ground it upon. On collecting ail the Bees that die in a hive in one year, we find their number equal to that of the furviving. In autumn and winter, when the Bees neither fly abroad, nor carry their dead out of the

[^53]hive,
hive, an idea may beft be formed of the degree of mortality that prevails amongft them : at thofe times their dead carcaffes are found at the bottom of the hive by handfuls together. Now, if by adding to thofe that die in this manner, all fuch as tly off and never return, or that perifh in the fields in cold and rainy weather, or are devoured by Swallows and Dragon-Flies, dafhed by the wind againft the leaves and branches of trees, or entangled in the webs of Spiders, we may eafily guefs that a far greater number of them perifh within the year, than thofe which are to be found alive in the hive. We likewife obferve in the autumnal feafon, that the wings of Bees are often mangled, broken and wounded, and they appear fo alfo in the beginning of the fpring; whereas at the time when they fwarm, their wings are found, entire, and in good order : all this makes it more probable, that Bees live but one winter, or from one feafon of fwarming to another. They may fometimes, however, be obferved to continue in the fame hive for years together, provided part of the wax is now and then taken away; but this happens in the fame manner that in great and populous towns the number of inhabitants is kept up by thofe who come by degrees into the world, and infenfibly fucceed fuch as ficknefs, accidents, or old age, carry off. Befides, the working Bees which have outlived the fwarming feafon and the winter, have performed the task affigned them by nature, namely, that of keeping each other warm in the cold weather, and nurfing the rifing generation: which neceffary tasks being done, it it found that all other infects hitherto obferved, and fome a little fooner, and others a little later, perifh. Thofe for example which immediately fled all their fperm, difappear before the reft; as is plain in the Ephemerus, whofe eggs are arrived at their full perfection from the very birth of the parent, and fo provided for by nature, as to render the parent's care of them altogether needlefs, whereas other infects muft live longer, either becaufe the maturation of their eggs requires fome time, or becaufe their eggs require a llow hatching. This is the cafe with the female of the Bees, and fome other infects; hence we may very probably conclude, that the female of the Bees lives longer than the working kinds, as it is impoffible that the fhould lay all her eggs at one time. However, it is not yet fo certain as we might wifh how long fhe lives. I believe it might be eafily known by following the advice of Clutius, and contriving to make her fo that the could be readily difinguifhed; and the beft way to do this, would be, I imagine, to make a very little puncture in her wings, or elfe to cut off fome inconfiderable portion of them with a pair of fciffors, or otherwife to ftain the edges of them with fome oil colour. Thus we might foon learn in a certain manner, what fpace of life nature has affigned to this little creature. I am of opi-
nion that fle either dies, or grows barren at the age of two years. But it is by no means fo eafy to try this or any other experiment I can think of, upon other Bees, on account of their numbers, and our not knowing the exact time of their birth. The working Bees come into the world at almoft every featon of the year ; and although the young Bees appear in greater numbers at the fwarming feafon than at any other, yet they are hatched fome earlier than others by one, two, three or four months; for fome of them do not creep out of their eggs, till a long time after the fwarming time ; and this I have likewife found to be the cafe with the males. Add to this, that the female is very affiduoufly employed in laying her eggs fo early as the month of March, which makes it necefiary that fome of them fhould be hatched fooner than others; and confequently this renders any judgment we fhould form of the length of their lives altogether uncertain; for how is it poffible, where there are fuch numbers, to diftinguifh between the old and the young? Certainly no one can do this: nor is there any poffibility of alledging any thing certain concerning the natural extent of life allowed the male Bees, though I believe it fcarce exceeds fix or eight weeks: but I cannot affirm that I am fupported in this opinion by any fufficient experiments; and I fancy that if any can be made to afcertain it, they will coft a great deal of time and trouble. Some perfons have affured me that they have feen male Bees alive in winter, when the female Bee had not been fo fruitful as the generally is. Be this as it will, I can only fay, that all theefe things deferve to be more attentively examined; for as the male Bees every feafon fuffer a violent death, nothing as yet can be determined concerning the natural extent of their lives. In the mean time, as I have, faid I am not againft the opinion of thofe who fuppofe it but fix or eight weeks. There are fome obfervations which induce me to think it is thus, befides thofe general laws of nature, by which thefe little animals are doomed to die, as foon as they have executed the commiffion given them by her of propagating their fpecies; for this bufinefs being over, the male Bees become altogether ufelefs. This is plain in the Ephemerus, and likewife in the Silkworm Butterfly, which generally dies the third day after laying its eggs, unlefs the feafon happens to be cool, for then thefe infects will live longer. I believe this is owing to a plain caufe, that the vital juices of thofe little animals who eat nothing during their appearance in this form, do not exhale fo readily in cool as in hot weather, and confequently the means of life longer remain.
I have made a collection of about three thoufand infects, fuch as Butterflies, common Flies, Beetles, Locufts, Caterpillars, Worms, Chryfallides, water infects, and others ; amongt which I muft not forget to mention, fix kiads

Nnn
of wild Bees *: the firf of them is that which builds its neft with fimall ftones, grains of fand, and clay ; and in this refpect fo much refembles the Humble Bees, that we may indeed reckon it of their number. There is another fpecies, Tab. XXVI. fig. iv. of a fingular ftructure: its head and thorax differ fcarce at all from thofe of working Bees; but its belly is altogether different, for this part is thick fet with hairs of a yellowifh red, fo as to look as if it was fprinkled with fome liquor of that colour; its laft ring is armed with three fharp prickles, and there are two more points of the fame kind on the fecond of the rings forming the belly. Its legs are covered with yellowifh hairs, but that which grows under the horns, on the fore part of the head, and between the divifions of the breaft and belly, is almoft white; as to the length and bulk of the body, it nearly agrees with the female of the working Eees, except that it is fomewhat florter. The third fpecies, fig. v. is of a thicker and more compact body, and in fize and flature nearly refembles the male of the working Bees, but it has floorter wings; its head and eyes are formed in the fame manner with thofe of the working Bee; but under each antenna there is a yeliow fpot, which may ferve as a mark to diftinguinh this fpecies; befides, the upper part of its trunk is coloured. The breaft and head are covered with gray hairs, and the extreme joints with pretty long hairs of the fame hue, but fomewhat darker. The fourth fpecies, fig. vi. is remarkable chiefly becaufe its antennæ or horns are three times thicker and four times longer than thofe of the working Bees. Its trunk alfo exceeds that of the working Bee in length and thicknefs. Moreover, all its back, or the upper part of the thorax, and fome parts of the belly, are adorned with bright red hairs inclining to yellow. This circumftance, with the extraordinary fize of the horns, is the beft diftinguifhing mark of this fpecies. It is alro one third larger than the working Bee. The fifth fpecies, fig. vir. is on the other hand fomewhat lefs, and differs in its colour, and the hairs growing on its limbs, from all other Bees. The hairs of its breaft and legs are of a deep gold colour, and the two upper joints of its hinder legs, which are likewife the largeft, ate quite covered with hairs of the fame kind and colour, but much longer; whereas there is no hairs at all on the lower joints. The extreme borders of the rings that conflitute the belly are alfo adorned with the fame kind of hairs, only that they are of a flefh colour, and much fhorter. The fixth fpecies, 'Tab. XXV. fig. x. is fomewhat lefs than the working Bee; the hairs of its head and breaft are of a more
dusky colour than thofe of the Bees before defreribed. On the other hand, its belly confifts of blackinh rings of a fubftance between bone and horn, and freaked on cach fide with little lines at fome diftance from each other. The coverings of the legs, which are of the fame fubtance with the rings of the belly, are yellow, and the legs themfelves are thicker than thofe of working Bees or Wafps, which makes me imagine that this little creature is provided by nature with no fimall degree of ftrength. All thefe fix fpecies of infects agree with the three other kinds mentioned bcfore, in this, that they have all fix legs, four wings, and two antenne or horns, and are divided into the head, thorax, and body. There appear alfo in fome of the fpecies three fmall and feparate eyes, befides the two great ones. The fix laft fpecies are very feldom found in fwarmstogether; they generally ramble alone and by themfelves, which makes it probable that they do not dwell together like working Bees. They are feldom found in the fields, but often in flower gardens, where the flowers fupply them with honey. As to their gathering of wax, fome appear quite unfit for that task, on account of the great quantity of hairs that grow on their legs.
I preferve alfo two kinds of Hornets, of different fizes, which I therefore diffinguifh by the names of the greater and leffer Hornet. They are cight times as large as the working Bee, and refemble it much lefs than they do the Wafp. They have four wings, fig. Ix: $a a$; the outer pair are fixed to the fhoul-der-blades, of three times a greater extent than the inncr ones. They have alfo fix legs joined to the fore part of the breaft, and the extreme joints are armed with two fharp claws $b b$. The head c is fomewhat oblong, efpecially when the teeth or jaws lie clofe together. The eyes are formcd like a crefcent, and above in the interval between them there are three feparate fimall eyes, under which there are two horns. The Horncts have likewife two very ftrong teeth or jaws, divided into a great many very fimall ones, and between the two principal teeth they carry a very fhort trunk. The body is joined to the breaft, which is pretty broad, by means of a very flender thread as it were, and confifts of fix pretty ftout rings of a fubfance between bone and horn. Thefe are yellow at the edges, but red on the upper part, and equally marked with dark brown furrows, from which on each fide run eight fpots formed as it were by the ferinkling of a brown liquid, but on the fecond and third ring, reckoning from the head, there appears a ninth fpot, fo as to form fomething like a

[^54]triangle. The head, breaft, and legs, are almont of the farme colour, and they are covered with very delicate hairs. The Ating is produced from the opening of the lower ring, Tab. XXVI. fig. ix. d.

Of the Walp kind 1 preferve nine different kinds, amongft them is that which I found in the neft I have already mentioned, as made by the Becs that ufe little ftones for that purpofe. The greateft differcuce that occurs between the various kinds of Wafps, confifts chicfly in fize and colour, though in one or two kinds there is befides a great difagrecment in their flructure. But I fhall not dwell long upon thefe particulars. The larger kind of Waff is above three times as big as the working Bee, and has like them and Hornets, fix legs, a probofcis, two cyes, two horns, and four wings. The body of Warps, as well as Hornets, converges to a point, and is flaped in the fame manner with that of the particular Bee which vulgarly groes by the name of the king Bee. The rings of the body are variegated with blackifh fpots, and circular furrows upon a yellow ground. 'This general defrciption will, I hope, be fufficient to thew what kind of an infect the Wafp, is. That reprefented in fig. vill, is fomewhat lefs than the largelf fiecics of all. Uuder it is to be feen another of a very fingular ftructure, tig. xı. *

1 have befides thefe cight kinds of Fumble Bees or Bombylii, which differ from cach other in fize and colour. One kind has its body exceeding black, and is furnifhed with moft beautiful wings of a colour between azure and purple. The largef kind is feven times as big as the largeft working Bee ; and this has a pretty long trunk. Its legs notwithflanding are finall in proportion to its fize. The head is fomewhat oblong: the eyes are formed like a crefient, and the horns lie directly between them. The breaft is very broad, and it is covered thick with rough hairs; from the bottom of it fpring fix hairy legs, which if compared with the body, are very fhort, and from the upper part of it rife four wings ; the inner pair very finall. The belly is very broad and hairy, and fomewhat pointed on the lower part. The hairs that grow thus on the belly, are placed principally near the rings of it, and they are of a great varicty of colours, as white, yellow, red, black, and others in fome kinds; whereas in other ipecies they are only of two. The Humble Bee, or liombylius, of which 1 here give a drawing, Tab. XXVI. fig. x_{11}. is of a middic lize.

Of the Pecudofphecar felmeumon, or baftard Wapps, I have by me twenty-five kinds.

Thefe differ from each other in fize, colour, and ftructure. I refur them to the Warps merely on account of the external refemblance which fome of them have to real Wafps, from which, however, in generation and difpofition they widely differ: moft of thefe procecd from a Chryfalis, after having lived forine time in the form of a Worm. Thefe alterations are performed in a very furpuifing manner; and as that from a Nymph to a Wafp takes up threc or four wecks, the feveral gradations of it in point of colour, growth, and expanfion of members may be very accurately traced. Some of thefe baftard Wafps which I preferve in my collection, prey upon Flies; others upon Spiders, whofe legs they break to pieces and then devour them. There is likewife amongt them the Fly called Unifata, or one brifted, having one hair at its tail, and that which is diftinguifhed by the name of Tripilis or three-haired, fig. xinf. for thefe Flies are all baflard Wafps: I cannot now treat particularly of them, as it would require a large volume. For the fame reafon 1 omit fpeaking in this place of the difpofition, nature, method of propagation, and ftructure of Horncts, Humble Bces, or Bombylii, and of the true Wafps; nor do I choofe to fay any thing of the infects called Vefpate or fhort Watips, their building, houfes, and other remarkable particulars, of which I have fome fpecimens. I am poffeffed of a moft curious Hornct's neft, fig. xiv. and xv. as likewife of the male and femalc Hornet, the Worm from which they originally proceed, the wob in which this Worm is enclofed, the exuvix it cafts off on becoming a Nymph, and all the excrements it voids, together with the internal coat of the flomach and inteftines. I can likewife fhew the Nymphs of Hornets at various periods of their changes, and the rudiments of thofe new colours which they by flow degrees attain. As to the internal parts of Hornets, I have the membranaceous net-work of a ftomach of one, fome pulmonary tubes, onc of the filk or fpinning bags, and a fininal marrow.
In my collection alfo are various kinds of Flics fo like Bees, that fome authors have called them by that name. Such is Goedaert and J. de May's Bee, which has only two wings. This is a fufficient mark to diftinguifh thefe infects from cach other, though there are fome Flies that have tivo pair of wings. Such is one in my mutcum, which is very be:autiful, furnirhed with tufted intenne, and in other refpects like a Bee, only that it is a great deal larger. What is moft fingular in this Fly, is its proceeding originally from a water infect. But as I have already faid an

* Some of the liecs brects with us in the free air, not in a hive or comb. The young are bred up in che eafes of the libac or other leaves : and chere is fomething rery extraordinary in the manner of their hatching. The cells feem to clofe up the gatber of one anolher, and it would be thought the young creature in the hindermoft muft eat all the reft to pieces to get ont. for they are buite in fuccollion after is: but though the whole cafe of cells be the wonk of many days, the young all hateh cogether: the eggs had hatethaving obtained: forwarinef's in the boty of the fimate, which make them difelufe thest young an foon :s the firti.
entire volume would be requifite to defcribe all thefe particulars ; for which reafon I fhall here make an end of this treatife upon Bees. Certainly the nature, difpofition, and ftructure of thefe infects are fo furprifing, that they without ceafing loudly proclaim God's goodnefs, wifdom, power, and majefty; and indeed all other animals, according to their feveral ranks, do him honour in the fame manner, and conflitute in the air, the water, and upon the earth, fo many inftruments and voices to
publinh his praifes. I will join the univerfal choir, and fay with the four and twenty elders in the Apocalypfe, " Thou art worthy, O " Lord, to receive glory, and honour, and " power ; for thou haft created all things, and " for thy pleafure they are and were created." I thall conclude this long effay upon Bees with the words of the royal Pfalmift.
"Praife him all ye angels of his; praife " him all his hoft.". Pfal. cxlviii.

Some peculiar obfervations relating to the hiftory of Bees.

> A defcription of a bive opened the tenth of March, with an account of the number of cells it contained.

ON the tenth of March laft I opened a hive , in which a young fwarm of Bees had been fettled during the month of June, the preceding year, but they all died in the intervening February for want of honey. I examined the cells built from the month of June till the winter feafon, that is in the fpace of about four months, and counting them one by one, I found them to amount to 22,574 ; and the whole of this prodigious number was only of that kind of cells, in which the working Bees are hatched and nurfed, or the honey and Bee-bread is ftored up. Thofe in which Bees had been already hatched, amounted to 7814 ; for it was very eafy to diftinguifh them certainly from the others, by means of the skins and webs found in them, fuch things being always left behind by Bees that have been hatched. All the other cells were formed for keeping honey, and the other cells are made to anfwer the fame purpofe, as foon as the young Bees contained in them have acquired wings to fly abroad.
It appeared likewife that all thefe cells were contained in nine combs, as they are generally termed, or nine portions of the whole wooden ftructure, and thefe portions were large, oblong; of different forms, fome diverging equally, others running out into two, three, or four angles. This variety in the figures of the combs is owing to fome of them being built alone by themfelves, and others clofe to each other ; or to the neceffity the Bees were under of keeping clear of the fticks placed acrofs the hive to fupport the wax, for this occafions them to make their combs fometimes of a triangular, and fometimes of other forms. Nor can we perceive, that in this bufinefs the Bees obferve any certain rule or order, fince the figure of the cells themfelves does not fuffer by this liberty they give themfelves.

Many of the little cells in which the honey was fored up, were twice as long as thofe intended for nefts and nurferies, and were alfo irregularly built, crooked, and full of angles. Even the fides of the hexagonal cells did not every where exactly correfpond with one another, but here and there might be feen a gap large enough to contain a pin's head, a thing never to be met with in a truly regular comb.

All the half combs of cells on one fide of the perpendicular foundation, which runs through the middle of them, and againft which the cells are horizontally placed, were built full one half as long again as thofe on the other fide. There appeared here alfo many other irregularities, not to be feen in the cells that had ferved the purpofe of hatching , fuch of them at leaft as had been quite finifhed.

From this prodigious number of cells, built between June and September, or October, we may entertain fome idea of the great number of thofe that the Bees conftruct from the month of March to the June or July of the following year. I believe they may amount to 50,000 , as this is the time for fupplying with cells the male, female, and working Bees: but as yet I have not counted them.

A perfon fond of Bees, and whofe account I could credit, once told me that he had a hive placed upon the bare ground, and exceedingly well foocked with Bees, infomuch that to make room for their combs, they had hollowed out the earth under their hive, extended their conftructions very deep into this hollow, and thereby encreafed their numbers to a prodigious degree. But this is oftener practifed by Wafps and Hornets, as thefe infects naturally make their nefts under ground.

[^55]A bive opened the $14^{\text {ith }}$ of Yune, the number of Bees and Nyimptss found in it, with a particular defcription of many other fingularities not as yet known.

I^{N}N the beginning of June I bought a hive of Bees, it produced a fwarm the I4th of the fame month. I received the young Bees in another hive, and put this hive in water the day following, with all its new inhabitants. By this means I found the fwarm confifted of one female, four males, and $24: 33$ working Bees, who had not made any wax fince they fwarmed.
The 16th of the fanie month, I likewife drowned in the faine manner the Bees that remained in the original hive, from which otherwife a fecond, and even a third, fwarm might have been expected. In this hive I found one female, 693 males, and 8494 working Bees. While I was employed in counting them, I let the water run off from the hive, that I might afterwards fatisfy my curiofity in afcertaining the number of their cells, but I found the amount fo great, efpecially that of the cells belonging to the working Bees, that I thought proper to defift, for fear of lofing the opportunity of making forne other obfervations, that I imagined better deferved my attention.

I therefore reckoned with great care and exactuefs the liftle dwellings of the female Bees, and found nineteen of them as yet building, but fome a little more forward than others. There were befides fifteen more, in fhape refembling a pear, and quite finifhed, which were all clofed up with wax, and curioufly difpofed on the edges of the combs. Some of them food by themfelves, others lay clofe to each other, three, four, or five together. Others again were built quite clofe to the cells of the male Bees; fome were fituated obliquely; others horizontally, fo as to refemble a beer glafs lying on its fide; and, in the fame manner, all the cells of both males and working Bees. Some on the other hand were built in an inverfe pofition, with their openings looking downwards, as the cells of Horncts are generally found. Finally, I difcovered the cell of a female eat through on the fore part, being that out of which the young queen Bee had efcaped that led the fwarm of the 14 th of June.

In nine of the cells belonging to the females, which I found clofed up as juft now mentioned, there were as many female Bees arrived at their full fize, and furnifhed with wings ready expanded; and fome of them were ftill alive. Some of thefe females were quite gray, and others of a fomewhat darker colour, according to the time that had elapfed fince they had changed their fkins, and that which they were ftill to continue within the cell. Not one of them had as yet attempted to open itfelf a paffiage to fly abroud.

In the other five of the covered and clofed up cells belonging to the females, I found as many Nymphs of females. One of thefe five cells contained a Nymph, which already begun
to grow gray on the back, and was upon the point of throwing off its old skin ; but in the other four Nymphs there was no appearance of this colour, they being as it were ftill in their infancy, and for the moft part refembling in whitenefs the curds of mill. The eyes alone had by degrees acquired a watry purplifh colour, and the fame might be obferved of the three diftinct fmaller eyes, which are more confpicuoufly perceivable in the infect, while it remains in this ftate, than afterwards when grown to its full perfection.
Under the belly and tail of thefe Nymphs, I found the exuvix and air tubes that had dropped from them, on their exchanging the form of Worms for that of Nymphs. I could alfo perceive the remains of their food, which on pouring water upon it looked like foft ftarch, or gum tragacanth, beginning to fwell ; it was of the colour of pure amber, and of a fomewhat fubacid flavour.

In the upper part, under the wax with which thefe fourteen cells were clofed up; I could difern the web which the Nymphs fpread in that part, while they continue in the form of Worms. The upper web was very ftrong, and made of diftinct threads, but in the lower part of the cell it looked like a membrane ; for at the time thefe Worms labour to thut up their cells with fuch webs, they are obliged to move their bodies in every direction, and thereby rub their food, and perhaps too their excrements alfo againft their work, fo as to fill the intervals between the threads that compofe it with a kind of glue, and thereby reduce its furface to an evennefs like that of a natural membrane.
I opened befides all the clofed up and covered cells of the males; many of thefe cells were fituated near thofe belonging to the working Bees, and contained in a fingle comb, hanging at the bottom of the hive. The reft of the male's cells were built in the midft of thofe of the working Bees, with common party walls or partitions. Of thefe clofed up cells belonging to the males, I reckoned in all 858 . In 234 of them I found as many Worms, which had not as yet changed to Nymphs, but fome of them were nearer that period than others. In 146 cells there was the fame number of milk-white Nymphs, which had but juft thrown off their fkins. In 44 more cells the eyes of the Nymphs were juft beginning to acquire a watery and light purplifh colour. In 414 other cells I found as many Nymphs, whofe eyes were of a deep purple. And laftly, in the 20 remaining cells there were Nymphs juft upon the point of fhedding their skins, and appearing in the form of male Bees: the gray and hairy members of the young males appeared plainly in thefe, through the tranfparent membrane which fill enclofed them.

After this I reckoned all the other male cells, and found them to amount to 1508 , of which 720 were entirely empty, the male Bees fometime before hatched and bred up in thefe, having taken their flight; 268 more were not as yet perfected, nor had been ufed for hatching; 5^{20} of the fame cells, in which alfo no Worms had been yet hatched, were full of the pureft virgin honey. I counted befides all thefe 170 I empty oblong cells, which, though confiderably bigger than the male cells, were not unlike them : neither had any hatching been performed in thefe, their form not being regular enough for that operation ; therefore they could only ferve to lay up honey. This circumftance likewife makes me imagine that thefe oblong cells are not to be looked upon as male cells, but to be reckoned amongft the fore houfes which the Bees build for their winter provifions; for we find they make cells of the fame oblong form, but like the cells of the working Bees, to anfwer that purpofe.
The number of clofed up cells belonging to the working Bees amounted to 6468 , and in all of thefe I found Nymphs under the fame variety of circumftances with thofe which I had found in the male cells. It is therefore needlefs to wafte words in explaining their different appearances, nor had I leifure to count the numbers at every period of growth and ftep towards their perfection : befides fome of there Nymphs began to have a very difagreeable fmell.

I reckoned alfo 2 Io cells full of Bees-bread, which was alfo heaped up here and there in the combs of the working Bees, in particular cells difpofed between thofe which had Nymphs in them, or which were full of honey, but none of thefe bread-cells were clofed up.

As to the remaining cells, thofe newly built, as well as the empty ones, in which Bees had been hatched, and thofe conftructed the year before as ftore-houfes for honey, or nurferies, I had not time to count their prodigious numbers. Neither did I count the clofed cells, which were difpofed in the upper part of the hive, and were now ready to burft with honey. But my curiofity led me to weigh the honey itfelf, and I found it amounted to feven pounds.

In all this hive I did not meet with a fingle egg, nor with any Worms, but fuch as were full grown; fo that by this time the working Bees muft have got over the heavieft part of their yearly labour, for there was no longer any neceffity for building cells, or nurfing of young Bees, nothing more remained but the agreeable task of gathering honey for the fupport of themfelves, and of the males and females, and making preparation for the fecond, third, and fourth fwarm, which I could eafily fee were to be produced from the different ftages in which the Nymphs of the the future queens appeared, and from the different periods at which it was of confequence neceffary thefe fhould make their appearance abroad. This induces me to believe,
that the old females continue, even during the intervals of fwarming, their labours for the propagation of the fecies, as I have already obferved in defcribing the hive opened on the 22d of Auguf.

Many of the working Bees belonging to this original hive were fill of a grayifh colour, which is a certain proof that they have not been long out of their cells. Nor did I obferve one amongft them that had loft its wings; whereas fuch crippled Bees are frequently feen in fpring or autumn. This circumftance makes it probable, that moft of the laft year's male Bees had been taken off by a violent or natural death, and fucceeded by a new generation. Nor need this opinion appear improbable to any, for if on the 14 th of June I could count 6468 Nymphs in one hive, and 2433 Bees in one fwarm, we may eafily guefs what a prodigious number of Bees muft be produced in the interval of time between March and June; and that between June and September; no doubt a multitude fufficient to fupply a hive with a number of new inhabitants, three times greater than that of thofe which had pofieffed it the preceding year, or fummer months, fuppofing them all to have unfortunately perifhed: the queen alone furvives a longer time, though I can fcarce believe her life is of above two or three years.

As by what I have here obferved, it plainly appears, that fifteen young female Bees had been produced in one hive, and in the face of time required for one fwarming; and as experience informs us that Bees feldom fwarm in this country above three or four times, and that after the laft fwarm they kill their queens, which are then no longer of any ufe, we may conclude that at this time the old and impotent queen undergoes this fate, and is fucceeded by a young one, better able to propagate the fpecies. This opinion indeed ftands in need of more experiments to confirm it, and fuch experiments may be eafily made by any one who is willing to facrifice a few hives to his curiofity.

It is furprifing how tenacious of life Bees are ; after the hive and all its inhabitants had, in confequence of my orders, been kept under water for a confiderable time, and I had begun to count them, as if they were pefectly fuffocated, they began by degrees to recover life, as it were, and fly about the hive, fo that I found myfelf under the neceffity of caufing them to be again put under water, and though I had reafon to think none of them could outlive this fecond fubmerfion, yet there appeared many after it with figns of life, and fome of them recovered themfelves fo well as to live after this three days and two nights without eating.

That I may now exhibit at one view every thing, that I obferved in the original hive, and in the fwarm produced by it, and that the fum of both Bees and Nymphs added together may be more diftinctly known, I fhall fubjoin the following account :

One full grown queen in the fwarm, One full grown queen in the original hive,
Full grown queens in the clofed up cells, Full grown working Bees in the fwarm;
Full grown working Bees in the original hive,
Full grown males in the fwarm,
Full grown males in the original hive, Nymphs of queens,
Nymphs and Wormis of working Bees, Nymphs and Worms of males, Thefe numbers added together make $\overline{18966}$ for the total number of all thefe little animals contained in a fingle hive before it fwarmed;

I at which time 2438 of them iffued forth in fearch of a new habitation.

The number of cells, the old and new
9 built ones, thofe which were fhut up and contained Nymphs ; the empty cells, and thofe of working Bees full of honey *, or Bee's bread, all excepted, was as follows: 8494 Cells of queens begun or finifhed 34
Cells of males fhut up, empty, and
thofe which, after the Bees had
left them, were filled with honey, 2366
In all
2400
Do not all thefe particulars difplay in a furprifing manner the inftinct, diligence, and dexterity, which it has pleared the all-powerful Creator to beftow on thefe little infects ?

An account of feveral wonderful particularities difcovered on opening a bive, that bad a few days before received a young fwarm.

HAPPENING to be in the country on the 25 th of July, I obferved a great fwarm of Bees, which, on its hanging to an Elm, I ordered to be received into a hive; but in a little time they all left this new habitation, and fled back to the elm, where they hung entangled by each others legs. The female Bee had not dropt into the hive with the others: I was therefore obliged to have recourfe to another fhaking; when having brought the female into the hive, all the reft foon followed.

On the 26th of July the weather was tolerably good, with a bright funfhine; the 27 th cloudy; the 28th and 2gth rainy: on the 30th on examining the hive, I found at the bottom of it upon the ground where it ftood, a piece of a honey-comb, which had fallen thither, either becaufe it had not been ftrongly enough faftened to the top of the hive, or becaufe too many Bees had lighted upon it at one time. This piece of a comb contained 418 cells of for the working Bees, fome were building, and others were finifhed, and there were alfo ten eggs flicking to the wax by one of their ends. All the forenoon of the 3 ift it was rainy and about midday very cloudy and windy, with fome rain. In the evening I ordered the hive to be taken into my chamber, in order to examine what the Bees had done in the fpace of thefe fix days.

But as I was afraid of being ftung in this enterprize, I refolved to have all the Bees killed before I went to handle or infpect them, for this reafon I fumigated them with a bundle of lighted matches rolled up in linen rags, to fuch a thicknefs, that it would juft fit in the upper opening of the hive. All my endeavours to kill thefe Bees this way were however to no purpofe ; for after plying them with this fume, from eight o' clock to eleven, lighting the matches from time to time, as they went
out, the Bees continued alive; but they feemed grievoully complaining of, and refenting the injury offered them, with the moft horrid noife and loudeft buzzings.
The next morning all was quiet again, fo I removed the hive, at the bottom of which I found fome hundreds of Bees lying dead upon the ground; but the greateft part of them were ftill alive, and fome of them were beginning to fly away. I therefore refolved to fumigate the hive a fecond time, and I gave its inhabitants liberty to efcape while it was doing. For fear of being flung on this occafion, I took a half pint bottle, and having rolled fome foft paper about the neck of it, thruft it into the opening of the hive, taking care afterwards to ftop all gaps between the door or opening of the hive, and the neck of the bottle with more paper of the fame kind. As foon as the fulphurecus vapour began to fill the hive, the Bees in the greateft hurry and confufion and with the moft dreadful buzzing, rufhed to the number of 1898 in a manner all at once into the bottle, which I then removed to fubftitute another in its place ; and by repeating the operation in this manner, I at laft fo thoroughly accomplifhed my purpofe, that not the leaft noife could be heard in the hive.

Having then turned the hive upfide down, I found the queen lying dead, in appearance, upon the ground, and fome of the others which had fallen upon the ground, killed downright and wet all over ; whilft fome other Bees that had remained in the upper part of the hive, were quite dry, and when put into the bottles flew about as briskly as if they had not received the leaft harm.
I next poured fome water upon the prifoners I had in the bottle; by this means they were all drowned in a very fhort time. I then made my examination, and found the fwarm con-

* Maroldi, by the moft careful examination, and on the refult of the ftri\&teft calculation, has proved that the pyramidal figure of the bottom of the cell in a honey-comb is determinately and exactly that, in which the fubftance of the cell takes up the lealt room, and the face contains the greateft vifible quantity of honey.

236

The B OOK of NATURE, \& \& C.
fifted of 566 g Bees, and was therefore a very good one, according to the judgment I had formed of it on its firf appearance. Neverthelefs, as the feafon was very far advanced, and the fpot the Bees lighted upon very ill furnifhed with materials for making honey, I thought it worth while to facrifice them to the curiofity I had of knowing what work fuch a number could perform in fo fhort a time, and withal in fo unfavourable weather.

Among this great multitude, there was but one female Bee. The greateft number of them were working Bees, which are neither males nor females; and there were befides thefe and the female Bee already mentioned, only 33 male Bees, prepofteroufly called by the vulgar hatching Bees; for the young Bees are hatched by the mere heat of the fummer, and that which is caufed by the perpetual hurry and motion of the old Bees flying about, or working in the hive. It is very femarkable that the bottle into which the firft 1898 Bees driven out of the hive had been received, was thoroughly heated by the perpetual motion of thefe imprifoned creatures, and the warm vapours which exhaled from their bodies.
The number of waxen cells begun and finifhed, including thofe of the comb I had found on the ground on my firt examining the hive, amounted to 3392 : they were all of the fame fize and form, and were intended only for nefts to hatch the working Bees. In 236 of the cells fome honey had been fored up, but it had been afterwards made ufe of, as very little could be then gathered abroad. It was no difficult matter to diftinguin the cells thus made ufe of from the others, for they had received a yellow tincture from the honey depofited in them; whereas thofe which had not as yet been employed this way were of a hhining white.

There were alfo 62 of thefe cells, in which the Bees had already begun to lay up their ordinary food or bread called erithace. This fubftance was of a changeable colour, between a yellow and a purplifh red; but perhaps this tinge might be owing to the fumigation: the whitenefs of the unemployed wax was in fome parts alfo impaired by the fame means; coloured and covered befides with black fpots.

In 35 cells I found as many eggs fixed in them at one end, fo that including the eggs found in the comb, which had fallen to the ground as already mentioned, there were 45 eggs in all. There were befides in 150 of the cells fo many new hatched Worms, but thefe lay almoft infenfible and motionlefs. They were of different fizes, the largeft of them being very like that reprefented under the letter c, fig. xiiI. Tab. XXIII. All thefe Worms were furrounded with that kind of food, which the mott expert obfervers of Bees think is honey thrown up by the old ones, out of their ftomachs. This kind of honey is white, like a folution of gum traga-
canth, or farch diffolved in water, and is alf moft infipid : it fhews nothing remarkable ori being viewed with the microfcope. In the Worms themfelves I could perceive pulmonary tubes of a filver whitenefs rumning moft beautifully on each fide through their little tranfparent bodies.

I examined attentively the wax cemented by way of foundation to the top of the hive, but I could find no difference between that and the other wax of which the cells confift. They appear both to have the fame nature and properties. I could not, however, but admire this ftrong union or faftening; this fubftance being juft fpread upon the hive like a cruft, and confequently faftened to it by a very fmall portion of its furface; whereas the reft of the wax hung perpendicularly from this foundation, without any lateral or other: fupport whatfoever, as if a wooden bowl were fixed to a plain ceiling by a fmall part of its circumference.

This hive contained the rudiments of a great many more fuch combs of wax, of an oval form, and full of cells on each fide: the empty fpaces left between the combs, for the Bees to pafs and repafs, did not exceed half an inch in breadth, fo that it is plain the comb I found open upon the ground, and in which I reckoned 418 cells, had been torn from its foundation by its own weight, and that of the Bees walking upon it. Hence it appears, with what good reafon thofe who keep Bees, place flicks crofsways in their hives, that the combs may have the more fupport ; and accordingly we obferve that in thefe hives, the Bees themfelves on each fide fufpend their combs to thefe ficks.

Confidering the great multitude of Bees employed in building the waxen cells, which I have been juft examining, there is no great reafon to be furprifed at their having done fo much work that way, though the time they had to do it in was fo fhort; and the weather fo unfavourable. But it is really aftonifhing to think how a fingle female could lay fo many eggs in the fame fmall interval, and withal depofit every egg in a feparate cell, and there firmly faften it. We muft alfo allow fome time for laying the perpendicular foundations. It is, moreover, very furprifing how there eggs fhould fo fpeedily turn to Worms, and how thofe Worms fhould grow fo very fuddenly to their ftate of change. But I mult now conclude, and I hail do it with the following account of what the hive I have been defcribing contained.

33 males.

1 female.

5635 working Bees.
3392 wax celis, for the ufe of the working Bees.
45 eggs.
150 Worms.
62 cells containing Bees bread.
236 cells in which honey had been laid up.

B OOK of NATURE;

O R, THE

HISTORY of INSECTS.

P A R T II.

A catalogue of the infects, wwhich are referred to the fecond method of the third order or clafs of natural changes, called the Cbryfalis.

INow proceed to defcribe thofe infects which belong to the third order, as the preceding; but which prefent their feveral parts lefs confpicuoully. For this reafon, I judged that the prefent order of tranfmutations might be properly divided into two kinds or modes; though the one of them differ from the other only, as the fchoolmen fay, by accident.
Among thofe infects, which pafs through the fecond method of the third order or clafs of transformations, and by force of the increafing and fwelling limbs, and other parts, by which the fkin is at length torn or burft open, affume the form of a Chryfalis, which exhibits to view all its parts, though more obfcurely than they are feen in the Nymph; I reckon, in the firft place, the diurnal or day Butterflies *, which are called Ulinders and Pennevogels by the Hollanders; and are dittinguifhed alfo by two or three peculiar names of Albuli (Witkens), Papiliones Butyracei (Botercapellen), and Cerdonus (Schoenlappers).

Of thefe diurnal or day Flies, fome are heavy and flow, others lively and fwift ; fo that they cut the air, and move various ways. I preferve in my collection eighty-five fpecies of thofe; among which, there are thirty-four foreign ones from Africa, America, Brafil, Spain, France, and elfewhere.

Among the day Butterflies beforementioned, there are twenty-two very large ones, thirtythree middle-fized ones, and thirty very fmall.
I preferve alfo fome of their Worms or Caterpillars, feveral of their Chryfallides, and fome
of their Worms, which are partly Caterpillars, and partly Chryfallides. I can demonftrate, in the ftate of nature, in what manner the Butterflies are placed within their laft fkin; in which, when enclofed, we call them Chryfallides; and their parts, though fill very minute, may be yet diftinguifhed by their refpective colours. I can fhew how their wings begin to grow protuberant, after cafting this fkin. I likewife preferve feparate the claws, inteftines, ftomach, and trunk of the Butterflies. I can likewife exhibit to the eye after what manner all the colours of the future Butterfly are feen through this fkin, when the Buiterfly is about to caft it, this being its laft Ikin. I can alfo demonftrate all the parts of the Butterfly already in the Caterpillar. I pafs over the mention of a grcat many other things worth obferving, which I preferve, on this fubject, there being now no time to enumerate them at large.
On a proper occafion, I fhall explain the method by which Butterflies, with their wings at large, may be expreffed and formed, in all their beauty, in plaifter of Paris,' without any colours. This I think an important piece of art, and it has not yet been defcribed by any one that I know. I fhall at the fame time fhew how Caterpillars may be filled with fuet, with plaifter of Paris, with air, and the like, and by this means be preferved. This is effected in none more conveniently than in the rough and hairy Caterpillars, the colours of which are permanent, as I can exhibit to the eye by feveral fecimens.

[^56]I fhall likewife give the feveral methods whereby the wings of infects may be varioully expanded and difplayed, in a form perfectly agreeable to that they have in naturc. Upon this occafion, I thall alfo teach by what means the wings of infects, which are as yet hidden in their original folds, may be produced to light; and, when expanded, may be dried and preferved at pleafurc.
If I further have leifure and opportunity, I propofe to defcribe an art or management, to fhew in what manner monftrous and deformed wings are made to grow; and fhall propofe, with thefe things, various operations, relating not only to the accretion of thefe wings, but to the motion of the humours; which are conveyed through their veffels. Finally, I fhall alfo thew in what manner puftules, tubercles, pimples, and the like irregularities, may be raifed in thefe kinds of wings. I thall likewife fubjoin many other, hitherto unheard of, curious experiments, which I hope will be ufeful to natural philofophy, and to medicine. All thefe I am now obliged to pafs over witl this flight mention, fince they cannot here be treated of at large.
Whether or not the accurate Fabius Columna found out, with certainty, from the examination of the aliments, on which the Caterpillars, that are to be changed into Butterflies, five. What plants are like each other, in refpect to their virtues? Is a queftion worthy the inquiry. He tells us, that whatever different plants the fame Caterpillar eats, are of the fame nature and virtue. Other naturalifts alfo affirm, that each fpecies of Caterpillars has only one kind of nourifhment fuited to it ; fo that hence its own peculiar Caterpillar feems to be affigned to every plant on which we fee them feed. From this, if it be fo, it neceffarily follows, that the different plants, which one and the fame Caterpillar eats, muft certainly agree in regard to their virtues; and many fecies of plants may by this means be confidered, fo far as medicine is concerned, as one. Others, on the contrary, deny the fact: nay, and experience itfelf teaches, as Mouffet very well obferves, "That there are " a fort of ftrolling Caterpillars, which do not " fuffer themfelves to be tied down to any " particular leaves or flowers; but boldly run " over and tante all plants or trees, and feed "thereon at pleafure." I have myfelf feen a Caterpillar, which eat the Braffica, or Cabbage: likewife feed upon the leaves of a Mul-berry-tree. I found it feeding on both, of its own accord. I ftill preferve alfo the egg of the Butterfly, into which this Caterpillar was changed. It is grooved or channelled, like an elegant piece of workmanhip, and furrounded with a purple circle.

We fee Aldrovandus has defribed one huniired and eighteen fipecies of Butterfies, of the nocturnal and diurnal kind. Mouffet exhibits eighty-fix. In the figures of Hoefnagel are found fifty. And the ingenious Goednert, has given us defigns of feventy-feven nocturnal, and
eight diurnal butterfies. However, there is nothing to be found relating to there infects in thofe authors, befide the fimple metamorphofis. Nay, Hoefnagel has given us only the figures. Goedaert has indeed defrribed the Fly, hatcherd from the maggot found in cheefe ; but he explains it no further, than by a figure of theW orm, Nymph, and Fly ; and he has given an inaccurate figure of the Worm.
But, what illuftrious, what prodigious, what ineffable miracles of nature, prefent themfelves to the careful obferver in the changes of thefe feveral infects! It, would have been much more ufeful, to have exactly, and according to nature, defrribed only one transformation of any Nymph, for an example to be applied to all the reft, than to have delineated the changes of all thefe Caterpillars, with their various colours, and their Nymphs: for, according to the other practice, the things which were moin ufeful and neceffary, remain untouched and neglected. I have, however, fome reafon to know, from my own peculiar obfervations before related, what may be done in this fludy; in thefe I have laid open, in fome degree, the myfteries of nature, and clearly exhibited to view the adorable wifdom obfervable in them. Indeed, if we ferioufly confider what admirable phenomena remain to be further inveftigated, and obferved; and with what Iplendor, clearnefs, and beauty, nature exhibits herfelf in thefe infects; and how fwiftly, yet how regularly fhe performs there great operations, we muft own, certainly, that fhe appears, as it were, to have expended the utmoft ftrength of her wifdom on them, and to have no where fo liberally, and clearly prefented her impenetrable and inexplicable miracles, to be viewed by thofe who worthily ftudy her works.

Whilf the preceding fheets were at the prefs, the incomparable anatomical obfervations of Dr. Marcellus Malpighius, profeffor of phyfic and philofophy, in Bologne, on the Silk-Worm, and its Butterfly, which the Royal Society of London, inftituted to promote natural knowledge, caufed to be publifhed this year, 1669 , were kindly fent to me by the noble Thevenot, whofe merit and zeal to promote natural knowledge, are fufficiently known to all who happened to be at Paris, and prefent at the weekly difputations inftituted by him. And as the celebrated phyfician, juit mentioned, feems to have attained, by his extraordinary accuracy, the end he propofed to himfelf in there celebrated obfervations; we may particularly remark, that after that exact obferver, Andrew Libavius, he is the only perfon who excludes the fancied metamorphofis from the natural courfe of the changes, which the SilkWorms undergo; and has publifhed feveral things agreeable to truth : thefe, he confeffes, became known to him by chance. I fhall infert his words, as being moft true, and worthy of perufal. "And at length, within four " days," fays he, " in which time the heart of "the Silk-Worm continues moving flowly, " and the body is growing bigger, having thrown
" thrown off the outward fkin like a flough, " the Aurelia appears as a new creature. The " throwing off the old, and affuming this new
" form, is completed in the fpace of one mi" nute and ten feconds; and it is thus done, " as I happened to fee it. The motion of the " heart is very quick at firft, and the whole " frame of the body appears convulfed; fo " that the feveral circular folds of the feg" ments emerge, and by the tranfverfe con" ftruction of the fides, the external fkin is " feparated from the inner; hence, upon " making an effort, and thrufting the body, " which now appears particularly thick to" wards the head, the fkin is driven back-
" ward, and downward ; and the portions of
" the trachea, being feparated from their ex-
' ternal proper orifices, are thrown away with " the fkin, which is then caft off. By this " motion, a cleft or opening is made in the " back near the head, and through the aper" ture, the reft of the body makes its way " out; the fkin being, by degrees, drawn
" back towards the fundament: This procefs
" is affifted greatly by a yellow kind of ichor,
" or fluid, which breaks forth from the cavi-
" ties of the fkull; and the Aurelia, or Nymph,
" appears then free and difengaged.
"Whilft the infect is making its paffage
"out, the horns, or antennæ, which are
" thicker and more flimy than the reft, are
" feparated from the Aurelia's body, and are
" torn, as it were, out of two cavities of the
" fkull, beyond the place where they are in-
"ferted; and their length, as they become
" unfolded, occupies the fame place, which
" the two mufcles of the jaws formerly had.
"The wings alfo, and the legs appear to be
" circumfcribed in their limits; the wings are
" drawn from their fituation near the fore-legs
" in the Silk-Worm; and the legs, from the
" lateral parts of the back, which were before " of a purple colour. But as thefe unfolded " parts are yet mucous, they eafily ftick to " each other, and, infenfibly growing dry, "they become fo clofely united, that the Au" relia appears like one entire garment. Now, " as thefe parts are peculiar to the Butterflies, " and are deftined for their ufe, the nature of "t the Butterflies feems to be, to emerge fooner " from the ftate of the Worm, than is com" monly believed, and to be earlier implanted
" in it; for evidently in the Silk-Worm, the
" beginnings of the wings, may be feen under
" the fecond and third ring of the body, before
" the texture of the web. The antemne, or
" horns, are likewife delineated on the fkull;
" and the web being finifhed, they have their
" own termination; nor will it be improper to
" doubt, that the new kind of life in the Au" relia, is only a makk or veil of the Butterfly,
"which is already perfect within; intended
" that it fhould not be ftruck or deftroyed by
" external injuries, but might grow ftrong, "s and ripen, as a foutus in the womb." Thus far Malpighius, whofe laft-recited words anfwer to thofe moft evident experiments, which

I have formerly exhibited to the noble Laurence Magallotti, when he was travelling through our part of the Netherlands, with his moft ferene highnefs the Grand Duke of Tuf: cany, as I have before related. In this treatife I advance nothing particular concerning the Silk-Worm, except the figures of the brain, fpinal marrow, and male organs of generation, which may be feen in Tab. XXVIII. fig. III.

Among the Butterflies which I have caught in the woods and fields, or on trees, flowers, and plants, and which I keep in my cabinet; there are feveral, which have been already defcribed by Aldrovandus, Mouffet, Goedaert, and others: I fhall therefore pafs thefe over, without enumerating their Caterpillars in this place. Among Caterpillars, fome are hairy, others naked; fome have tails; others have antennæ, or horns, fpines, wreaths, fpots, grooves, tubercles, tufts of hair', and, as it were, brufhes; fome are diftinguihhed by many, others with fewer colours; and a like difference is found in their feet. Some have heads like hogs, cats, and mice; others carry on them marks, as it were, of diftinction; and fome again are formed in different manners, and exhibit incomprehenfible reprefentations; fo that they cannot be defcribed by any detail of words ; for which reafon, Goedaert publifhed them in their native colours.

In the mean time, whilft we are confidering the glittering beauty of the Butterflies, we cannot but declare, that the confpicuous and beautiful tails of peacocks, and the fhowy feathers of the Oftrich, cannot be compared with the ornaments of thefe little creatures. Are not the wings of Butterflies moft beautifully fet, as it were, with pearls and diamonds, and with the turquoife, fapphires, and rubies, which increafe their fplendor to fuch a degree, that their bafe being made, as it were, of the fubitance of mother-of-pearl, and covered with plates of gold, filver, copper, or molten brafs, furpafs the colours of the rainbow, by the bright reflexions of the rays? That thefe little creatures might be exalted to the utmof height of beauty, nature has favoured them with four wings, one of which beautifully reprefents the other, as it were, in a mirror or looking-glafs; whereas they might have flown with only two, and that moft fwiftly, and have cut the air in infinite meanders, furpaffing all imagination; as any one may fee on opening the under pair of wings. Some of the Butterflies, which I preferve in my cabinet, have oval, others round wings; fome oblong, and fome ferrated; but, which is a very rare thing, one of them has wings on one fide membranous, and on the other, only covered with the feathery or fcaly duft; fo that they confint partly of a bare membrane, and partly of one fet with thefe feathers. 1 have likewife fome, the lower wings of which terminate, as it were, in an acute tail ; and in others they terminate in balls, or as if they had knobs on their tops: all thefe are diurnal. I proceed now to the nocturnal Butte:flies.

In the next place then, we likewife refer to this order called the Aurelia, the nocturnal Butterflies, Phalænæ, or Moths. I preferve, and can fhew the curious, one hundred and ninety-three fpecies of thefe creatures; of thefe, thirteen are very large ; twenty-eight of a middle fize ; eighty-fix fmaller; and fixtyfix very minute. In this number there are thirty-five nocturnal, or night Butterflies; which, together with their refpective Caterpillars, and their changes, have been defcribed by Goedaert, and painted in their natural colours. I have likewife fifteen or fixteen fpecies of the Chryfallides; fome of which are naked or fmooth; others rough, having caft the hairs of their outward fkin ; others are diftinguifhed with wreaths and various colours; others are colourlefs and naked; and others are, as it were, interwoven, and exhibiting a reprefentation through this web. I can likewife thew many of the eggs of thefe Butterflies; fome of thefe are covered with hair; others furrounded with a kind of froth, and others again are hidden in other manners. I likewife preferve fome fingular and very beautiful webs, nets and membranes, wherein they enclofe themfelves, with the greateft circumfecction, and in a moft wonderful manner, when they are about to change: it is, indeed, hard to comprehend, how thefe little creatures can confine themfelves in Yuch clofe and narrow prifons; and can, though completed or folded up in thefe, perfect their webs *.

The induftrious Goedaert has delineated fifty-feven fpecies of Chryfallides; but I am forry to fay, that among them all there is fcarce one accurately reprefented, as I fhall hereafter fhew beyond a doubt. Indeed, a great many things occur, occafionally, in the figures of Goedaert, which fhould be corrected.

It is certainly worth obfervation, that, as well by the night as in the day, we obferve innumerable living little creatures fluctuating in the air. This is not peculiar to the nocturnal Butterflies; for immenfe fwarms of Beetles, and very many fpecies of water infects, betake themfelves to the air after fun-fet. 'Tis for this reafon we obferve flowers, trees, fields, and gardens frequented, night and day, by innumerable infects, which feek for food upon them; that is, the great and fupreme Creator, whofe providential eye is always open on all created beings, appoints thefe creatures night for their day, and day for their time of reft, fince all things are at his pleafure, and in his power. If at night you carry before you a lighted torch, you will entice towards you many fpecies of fuch infects; and, when allured and deceived by the light, you may eafily catch them.

Among the nocturnal Butterflies, which I preferve, there is one, a Moth, the largeft that
has been taken in Holland. It is produced from a very deftructive Caterpillar, with thin hair, which eats the bark, and even wood, of the Willow. This Caterpillar is called Spondyla rubra by Mouffet. I have fometimes fed it for a whole year on white bread only. Mouffet relates, that the largeft Moths kill with their wings, and afterwards devour, the fmaller kinds: but this, I have found, is contradicted by experience; for the Moths are provided only with a hollow trunk for their mouth. To which may be added, that many of thefe infects, as foon as they become fit for generation, entirely quit their former mifchievous difpofition, and, taking no food afterwards, apply themfelves only to propagating their fpecies. Indeed, fome do it more late, others earlier; according as their eggs become more or lefs mature, whillt they lie in the habit of a Nymph, nay, and in the Caterpillarform. Thofe kinds muft be excepted, which have the care of feeding their young; for it is abfolutely neceffary, that fuch fhould be longer preferved alive alfo by nature, for the fake of their young. Thofe which are not obiiged to rear their young, as the Eutterfly kind in general, we obferve, die very foon after they are produced in their winged ftate. So that hence we fee, the whole change of thefe creatures is begun and finifhed by nature, with regard to their generation only; as is more evident from thofe fingular obfervations I have made on Bees.

In the Ephemeri, nature has ordered the bufinefs of generation in a different manner; for, as the has denied coition to thefe infects, the females are obliged to caft their feed into the water, in the fame manner as finh caft their fpawn: this they do in the time when they beat and fly up and down on the furface of the water. On the other hand, the male Bees have air, inftead of water, into which they difcharge their fperm.

I preferve alfo that fpecies of Butterfies, which the celebrated John Bauhinus has defcribed in his treatife of hurtful winged animals, publifhed in French in the year 1093. I have réprefented the Caterpillar of this fpecies, the Chryfalis, and the Butterfly itfelf, in Tab. XXIX. Fig. I. II. and III. and have given it the name of Pernix.

I preferve likewife various fpecies of thofe nocturnal Butterflies, known particularly by the name of Moths, becaufe they are produced from worms of the fame name, that eat cloaths; and others that feed on paper, books, and duft, as well as the leaves of trees. Among thefe worms there are fome which, like Tortoifes, carry their houfes about them: this will appear in our fucceeding particular obfervations. Between thefe Moths and the other nocturnal Butterflies, which are called alfo by the fame general name, there is this difference, that the

[^57]former rife immediately, and fuddenly fly into the air; but the others, before they can fly away, make a noify and tremulous motion with their wings. This we obferve alfo in other creatures, which, after they have refted fome time, are obliged thus to prepare themfelves for flight. I have given the true figure of the Tinea or Moth of cloaths, in Tab. XLV. fig. xxxi. to which is fubjoined in fig. xxxiv. of the fame Table, another kind of Moth, generated from a Worm that goes in its theca or cafe. And in Tab. XLiV. fig. xx. I have delineated a third Moth, produced from the leaf of an alder-tree. Finally, I have delineated the honey-comb Moth in Tab. XXVI. fig. 11 .

I can likewife fhew in my collection that fpecies of Butterfly, the male whereof is winged, but the female without wings : this privilege of the male is very fingular and remarkable in this fpecies. I have likewife obferved, that the males of the Ants live free from labour, and have alfo four wings. Among the Bees the male has likewife this prerogative ; it is difcharged from all care of nourifhing the young, and feems to be appointed by inature for generation only, not for nurfing: it is for this reafon probably that this creature's life is fo fhort ; and for the fame caufe we obferve, that when the time of generation is over, thefe males are murdered by the working Bees. I preferve two kinds of males and females of the Butterfies, juft now mentioned;
the former of which have larger eyes than the latter: this we likewife obferve in Bees, Ants; the Ephemeri, and other infects. The female of the Brafil Caterpillar that eats wood, is likewife without wings; this appears to me plainly, from its Chryfalis which I preferve in my collection. I have likewife a fecond fpecies of Butterflies, whereof the male only is winged : It was taken in France; and I have reprefented it in Tab. XXXIII. fig. viII.
I can in the next place fhew fome Butterflies; the wings of which are formed like feathers. Indeed we are to obferve, that all the colours and different reprefentations, which conflitute the fplendid pride of the Butterfly's wings, confirt only of little feathers, differing among themfelves with inexpreffible variety of conftruction: this will be made manifeft, when we flall treat of the manner, whereby thofe wonderful protuberances of the wings are formed in the Butterflies, and, with many other curious incidents, fhall explain that moft delicate increafe of the wings. Finally, I can likewife fhew the fmall Butterfly, which always flies in a ftraight line, having an oblong tail for that purpofe; and therefore it does not, like other kinds of Butterffies, defcribe by its motion an oblique and unequal courfe in the air. Of this opinion is alfo the very learned Arnoldus Senguerdius, who, in his phyfical exercifes, affirms, that the tail may have power to give an even, or uneven motion to thofe creatures. We add here,

An example of the fecond Species or method of the third order of natural chinger, which I call the Nymph-Chryfalis, or Aurelia, exhibited in that Jpecies of the nocturnal Buiterfy, or Moth, webereof the male is winged.

Tав. XXXIII. Nó. I.

THE Caterpillar of this nocturnal Butterfly, or Moth, lying in its firft coat or fkin, which is called the egg-ftate, and is reprefented to the life. The firt figure exhibits the egg magnified.
No. II. The fame egg, or rather the hard or indurated fhell of that egg divided into two parts. A microfcopic delineation of this is again exhibited in the fecond figure.
No. III. The Caterpillar of this Butterfly having attained its full fize, it is very worthy of regard, on account of its wonderful form. Behind its head are feen, Tab. XXXIII. No. III. a. four bundles of hairs, like fo many cloaths-brufhes; clipped even at the tops: thefe are of a white colour inclining to yellow. In the fore part, near the head, are alfo two prominent bundles of hairs, which refemble horns. Thefe are hairs, $b b$. of a black colour, and confift of long, ragged, and uneven hairs; the tops whereof are adorned with a kind of branching feathers. On the two fides of the breaft are feen, cc. two other feather-like bundles of hairs, placed very beautifully like oars. Juft before thefe are placed, $d d$. two fuch other hairy oars ; which, however, are much infe-
rior in the beauty of their ftructure, to the fecond pair juft now defcribed, and are of a yellowifh white, being almoft of the fame colour with the four former even-clipped brufhes of the back. The whole fkin of this Caterpillar is here and there beautifully variegated with fine colours, which are conftituted, ce, by certain fcaly and fhort-haired little feathers, among which, the longer and loofe hairs are every where interfperfed; whilft, in the mean time, the fkin itfelf is obferved to be of a bright red colour. At the hinder part of the body, this Caterpillar has a fuperb feather-like tail, which refembles the antennæ or horns of infects, in form and colour. This creature has fixteen feet; the fix fore ones are placed near the head under the thorax; eight are placed under the middle of the bidy, and the other two at the end, juft above the tail. Thefe Caterpillars arefound plentifully in the gardens of Holland, living among the leaves of plum and cherry-trees, and in feveral other places.

No. IV. This figure exhibits the manner, wherein this Caterpillar has wound itfeif up, $a a a$. and fettled itfielf quietly in its web. It begins in that to be fomewhat immoveable about the thorax ; and it is to be obferved, that
it there becomes alfo thick, and more extuberant; for the limbs, which have increafed there under the common fkin, fwell by degrees. This is particularly manifef, b. about the third and fourth annular incifion in the fore part near the head. Before this Caterpillar cafts its fkin, it becomes wholly deprived of motion; and in the place juft mentioned is ftill more confiderably diftended; and the body becomes fhorter, becaufe the blood and juices are conveyed toward the breaft from the hinder parts. I here likewife fhew the manner wherein this little creature, whilft it twifed itfelf continually up and down in perfecting its web, has by that continual agitation worn off the greateft part of its hairy feathers; and as they lave fallen into the cavity of the web, hence is produced a little feather-bed, as it were, in which the Caterpillar lies the fofter. To this may be added, that thefe hairs, lying loofely and fcattered in the web, render the change of the flin much eafier, and they are afterwards moved backwards with the flkins from the fore parts.

No. V. I exhibit in this figure the fame Caterpillar, when upon cafting its fkin, it has affumed the form of a male Chryfalis, and fhews all the limbs of the nocturnal Butterfy, that is to burff from thence.

This reprefentation is more obfcure in the Chryfalis than in the Nymph; for the latter, as has been before fhewn at large, in its proper place, very clearly difplays to the eye the limbs of the little infeet to be produced from it , on cafting its fkin. However, as the Chryfalis does really alfo exhibit to view all the limbs and parts of the future creature, and is, in reality, that very creature which it reprefents, I fhall likewife exhibit thefe parts in this Chryfalis. The fourth and fifth figure anfwer this purpofe.

No. VI. In this figure I reprefent the fame Caterpillar, as it appears when firt changed into a Chryfalis, and afterwards, after cafting its laft fkin, becomes a male nocturnal Butterfly or Moth. When thefe infects have obtained this laft form, they afterwards neither grow nor are at all changed, but are intent upon generation only; as I fhall more clearly fhew in the explanation of the following figures. In the mean time I fhew the elegant antennæ, $a a$. which this male has, its fimall body, b. and its four wings, $c c$. which the female has not. Tab. XXXIII. Fig. i.
The egg of the nocturnal Butterfly, whereof we are feaking, is the principal figure reprefented magnified: Its purple ring, and fome little depreffions and inequalities, whereby it is remarkably diftinguifhed from all other eggs, are fhewn in this figure. This egg is alfo fomewhat depreffed in the middle, which makes it appear as if perforated and open in that part, when viewed without a microfcope.

Fig. ir.

This exhibits the fame egg broken into two parts, and forfaken by its inhabitant : for as it is covered with a hard fkin, or fhell, like a
hen's egg; hence it is not rolled up, or drawn afunder like a membranaceous integument, as is commonly the cafe in the eggs of Ants and Bees: it is on the contrary torn from the Ca terpillar, which it before invefted, in form of a jagged fhell. This manner of feparation is not univerfal among all thefe eggs; for, according as the fkin or fhell is more or lefs hard, and the oppofition great or fmall; the dcferted thells are found to vary more or lefs from the form we have defcribed. One may from thence fee, after what various ways the infects put off their firft coats and fkins, which may be eafily illuftrated by other examples.

Fig. iif.
In the third figure I fhew the method wherein thefe eggs are glued to the web. I fhail prefently treat of this particular more at large. It is in this deferted web feen alfo, what an hole the noctunal Butterfly made, when about to creep out of the web.

> Fig. iv.

In the fourth figure are reprefented all the parts of the male Butterfly in the Chryfalis itfelf; namely,
a. The two eyes in the head, under which, in the thorax, next between the upper legs, the trunk is fituated.
66. The antennæ or horns, with their integuments, removed from their natural fituation, which is clofe to the body.
cc. Six legs likewife removed from their places.
$d d$. The upper and under wings in their natural fituation.
e. The rings of the body, in which are reprefented fome hairs deprived of their fkin: This is likewile the cafe, with refpect to thofe hairs which are feen on the head.

Fig. v.
All the before-mentioned parts are in this. figure exhibited in the Chryfalis of the female Butterfly of this fpecies; but thefe are not removed out of their natural frtuation. It is evident, by this figure, that the female Chryfalis differs in three refpects from the male Chryfalis: firft, as to the horns or antennæ ; then in refpect to the wings ; thirdly, in regard to the fize and thicknefs of the body ; but thefe things will be made more evident, in the explanation of the fixth figure. I muft alfo call to mind here, that this compofition or texture of the limbs, though various in the fexes, yet never makes what is called, an effential difference between the Chryfallides of the varions infects, but only an accidental one, confinting in the fhortnefs or length, or bignefs and fmallisefs of the parts. We muft further obferve, that this Chryfalis, and the infect, which, upon changing its fkin, is to arife out of it, do not in the leaft differ from each other, except only in the order and difpofition of the parts, which are arranged in the Chryfalis, fomewhat otherwife than they are in the perfect infect, or the Chryfalis, after cafting its fkin: This fhould indeed be obferved moft carefully.

The

H I S T OR Y

Fig. vi.

After delineating, under No. VI. the male Butterfly, together with its moft elegant horns, its fine and flender body, and four expanded wings; I exhibit under the fame No. VI. all thefe parts, but much more imperfect; viz.
aa. Two uncouth horns or antenne.
b. A thick and diftended body.
cc. Four fhort wings, or rather only rude portraitures of wings.

Hence it is evident, that it may be truly faid that this female has no wings. We may, for this reafon, fee all its fix legs without any impediment; though in the male they lic fo far under the wings, that only the two fore ones are occafionally feen between the horns and fuperior wings; as is manifeft under N^{e}. VI.

In refpect therefore to this fpecies of infects, it deferves notice in what a wonderful manner the adorable Creator has eftablifhed diftinctions between the males and fermales; and what noble prerogatives he has given to one, and denied to the other, of them. Whilf beautiful antennæ, an agile and light body, and very fwift flying wings, raife the male to the thrones and fceptres, as it were, of kings; the female, being deprived of all thofe remarkable privileges, and fcarce able to bear the load of a fwollen, tumid, and thick body, feems to be condemned by the moft wife Nature, who has given fovereignty and dignity to the male only, to keep her neft perpetually, and take carc of domeftic affairs. Hence it likewife is, that this female, like a moft prudent houfewife, never goes out of her habitation; but is always fixing the fruits of her matrimony, that is, her eggs, to the furface of the web out of which fhe herfelf crept; as may be feen in Fig. III. Indeed, this cuftom of faftening the eggs to the web in a conftant method, and, by the immutable law of nature, is fo peculiar to this fpecies of infects, that I have never hitherto obferved it in any other kind whatfoever. This female, therefore, affords a beautiful inflance of induftrious houfewifery; and, therefore, the deferves to be dignified with that name. The male, in due time, revifiting his female, and paying her the proper tribute of benevolence, fhews, in his fpecies, that he never deviates from the character of a chafte and honeft husband ; fince he gives the affirtance of his excellence and dignity to the fenale, and fupports her weaknefs *.

Fig. vil.
The female is here reprefented, according to nature, fo full of eggs, that her whole belly is diftended with them; and as the integuments of this part is very thin, the eggs are diftinctly vifible through it. Nay, it is likewife feen how the fkin turns and infinuates itfelf round the convex windings of the eggs, and runs into the little fpaces between them;
fo that it is like a clufter of grapes. In order to produce there eggs very clearly to viev, the fkin needs only (Tab. XXXII. Fig. vir, a.) be diffected in the belly and back, and raifed from the body towards the hinder parts; for then one may difinctly fee after what manner they are placed within. Thele eggs are found to be of a round figure, when taken out of the body; and have on the upper part, as I have already obferved, a purple ring: but, on the lower part, they are of a white glittering hue, like pearls. Their fhell or fkin is fo hard, that when they are dried in the air, they are not liable to break; and, therefore, the matural preferved fpecimens of them will be always agreeable to the perfon who fees them.

It is very remarkable in this creature, that, when it is yet in the condition of a Caterpillar, one may, even then, manifefly fee in it the rudiments of eggs. Thefe, when the Caterpillar is clanged into a Chryfalis, fhew themfelves much more diftinctly, and, having acquired their utmoft perfection, are at length feen thus elcgantly in the Butterfly itfelf; that is, they feem watery in the Caterpillar: they appear in the Chryfalis, as it were, membranaceous and flexible; but in the infect iffelf they are hard, and refemble a real fhell, very little different from that of hen's eggs; and, for this reafon alfo, they will crack and break like an earthen veffel. From hence appears the reafon, why thefe eggs retain their figure, when dried; for this is the cafe, with relpect to all eggs that have a hard fhell : whereas the contrary obtains, in all thofe that have a thin and tender fkin; as may be feen in the eggs of Bees, and many other infects, which are almort entirely deffroyed by drying them.

Before I conclude this hiftory, it may be neceffiry to add fomething more concerning the parts of the Aurelia, that thefe may be the more appolitely compared with the parts of the Nymphs, and the difference between them underfiood. When thefe and other Caterpillars are cafting their fkin, and prefenting their before hidden parts to outward view, in the beginning of this change we obferve them foft, tender, and fomewhat moift ; and this is the cafe likewife about the parts of the Nymphs themfelves. But, a little after thefe feveral parts in the Chryfallides approach toward each other, they are then joined together; and indeed fo clofely, evenly, and equally united, that they reprefent, as it were, a continuous, fmooth, undivided, and varnifhed fkin. This is by, no means the cafe in the parts of Nymphs: for they are not at all joined; but are only difpofed near each other in fuch a manner, that one may diftinctly fee each of them. This is the true difference between the parts of the Nymph and thofe of the Chryfalis.

[^58]The reafon why the limbs in the Chryfalis unite, and are, as it were, glued and faftened together, is, becaufe the fkin, invefting the Chryfalis in that part where the union or junction is made, is confiderably thinner than where it is expofed to the air. And therefore, on account of this inequality of the fkin, it was abfolutely neceffary to preferve all the members from the drying air, and to defend them from injuries by their mutual compactnefs.

Thefe things are circumftanced in the parts of the Nymphs in a contrary manner; for their fkin is found to be equally thick in all the parts, fo that it would be fuperfluous to unite them together. But, even in Nymphs, fome parts fometimes occur, which are covered with an equal fkin. This holds chiefly when fome parts reft upon or are fupported by others; and it is obferved principally about the cafes of the wings, which have a much thinner flkin, where they receive the wings, than where they are turned to the air: therefore, in this refpect, they entirely agree with the Chryfallides.
It certainly deferves great notice, how delicate and thin the integuments of thofe parts are, where they are found to lie on each other: and hence even the continued 1 kin , which covers or inclofes thefe parts, has its external part thick, and is ftrong and hard; but in the internal part it is thin, tender, foft, and formed like a fpider's web. This fkin fometimes alfo is fo fine, that the rays of the fun exhibit therein various colours to the eye, efpecially where it is in any degree folded: as is obferved in very thin and fine blown glafs, and in the flender filaments of a fpider's web.

This being well confidered, it is eafy to underftand why many Butterflies are produced deformed; that is, when their limbs, under the period of the transformation, are not well united together, as frequently happens. Indeed I have, more than once, feen that they have dried and perifhed, by reafon of this defect of a proper union. The fame effect may be performed by art, and a certain operation : I mean, we may thus produce Butterflies that are deformed. I can alfo very eafily difunite all the limbs of the Chryfallides; for, naturally, thefe parts in the Chryyallides will then never feparate themfelves further, not even at the time they are fripped of their fkin : for the fkins to be cut off from thence, have only three or four cracks or openings, fince the thinner fides of thefé invefting parts are then very eafily broken further, with the leaft motion ; fo that there will be no need to move the refpective limbs out of their places.
As thofe who fearch into the fecrets of nature have not obferved this, I am therefore inclined to think they have imagined, in confequence of this overfight, that the continued fkin of the Aurelia confifted of a texture of the parts united one with another. They have therefore fancied, that the infect lies in that uniform and undivided fkin, in the fame manner as the chicken lies in its undivided fhell.

But this is contrary to all truth; for every part of the Chryfalis, as well as the limbs of the Nympl, is invefted with its refpective integument. And this is the more incontefably certain, becaufe thefe limbs, together with the fkin wherewith they are furrounded, are found entirely perfect in the Worms and Caterpillars, and may be even there feparated or difengaged; fo that one of thefe infects is, in reality, always in another: as I flall hereafter delicribe, and abfolutely prove.

Another remarkable thing in thefe Aurelix, whereof we are fpeaking, is, that even the hairs of the Caterpillir caft a fkin, and are afterwards feen in the Chryfalis. And hence arifes another invincible argument, moft clearly demonftrating, that the Aurelia is not a creature newly transformed, but is really the former creature, which has caft its fkin. The whole change, or rather accretion of the parts and limbs, confilts indeed only in this, that the invefting membranes or fins, which are fo many veils that obftruct the fight, are removed by degrees, and thrown off; fo that the limbs, which, from the firtt, lay hidden in the infide, are, in the end, feen on the outfide. In all thefe changes, nothing is more wonderful than the motion by which alone they are feverally produced, and perfected by means too difficult to be inveftigated. The deeper we here look into nature, the more we are obliged to confefs our blindnefs, and our ignorance. Indeeff, there is nothing more true, than that all thefé things, which I advance and publifh, are no more than the naked fhadows of the inexplicable myfteries of the Great Creator : the internal nature, and true difpofition, of thefe meanders are above the reach of our limited underftandings.
I thould never conclude, if I attempted to profecute minutely ail the wonderful things that occur in thefe Chryfallides: and, indeed, I hould weary out the reader's patience by a prolix recital of them ; fince he muft firft have fome knowledge of the hiftory of thefe infects, who would properly underfand what is delivered. I fhall add but one thing more concerning the eggs of there infects: this is, that as the rudiments of thefe egos may be perfectly feen in the Caterpillar, there arifes from tience a ftill more powerful argument to prove, that there is no real metamorphofis or change, or real transformation of parts in the creature; but only a fimple growth, or accretion, as in all other animals; only, that it is more confiderable, and more admirable, than in the other creatures. I fhall alfo add, that the egg itfelf is, in reality, no other than a little infect, the ftrength of which, by degrees, increafes in its fkin or coat; until it has at laft acquired fufficient ftrength to break through this fkin or fhell, and caft off its firft integument. It is therefore, from what has been faid, clearer than the meridian fun, of what infinite ufe fuch experiments are to us; as thofe I have propofed, by way of fpecimen, at the end of the third chapter.

In the webs, which Caterpillars form, there is obferved a wonderful variety; for as they ferve them in the place of nefts, every Caterpillar, according to its peculiar nature and difpofition, forms and perfects its web its own way. Though thefe webs are conftructed with wonderful art, yet thofe Caterpillars, which are enclofed in no web, excel all others in art and invention. Some of thefe, which bury themfelves under the earth, are inftructed to make caverns or holes in it fo artfully, that they feem to have a more fecure habitation there, than others in their walls. Some others, that remain above the earth, have the art to fix their webs with fuch flupendous dexterity to plants, trees, walls, and in hedges, that they fafely hang with it, though expofed every way to the furrounding air; and are at length changed, after cafting their 1 kin, into very beautiful Butterflies. It is moft wonderful, that thefe little creatures, at the time of their change, know how to difengage their claws from the web, and to change the fkin of thefe their fmalleft parts, together with the feparating exuvix; whilft, at the fame time, they remain fixed by thofe claws in the web. Indeed, in this art, the Caterpillars by far excel the moft active of the human fpecies in their gefticulations. I have likewife feen fome Caterpillars, which knew how to bite off a certain part of the leaves of trees; and, as in a fafe habitation, afterwards have enclofed themfelves therein, by the help of the threads they have fpun. Others weave oval nefts; others exactly round ones; others oblong ones; others make them channelled; others fuch as are like a delicate network; others angulated; fome weave into their work wood, fand, fhells, fones, and other matters: others fimply, tho' very ártfully, roll themfelves up in the leaves of plants and trees. In a word, the wonderful ingenuity of Caterpillars is manifefted in a thoufand inventions; and in all of them the hand of the Great Creator is moft clearly feen, who has infufed fo much prudence, as it were, and wifdom into thofe creatures, exhibited in order, weight, and meafure.

I have particularly treated of the Butterflies hitherto defcribed in the third chapter of this work; and I have fhewn there, that the induftrious Goedaert, in Part I. Obf. 59, and Part II. Obf. 30, has given a Mort defrription of them, and exhibited their figures; though he did not perfectly know thefe creatures, nor could diftinguifh the male from the female.

I have found thefe creatures, here treated of, not only in our part of the Netherlands, but alfo in France; but they were of a different fpecies. This will appear by the eighth figure, wherein I reprefent there infeets in the act of coition. The female of this fpecies is abfolutely without wings, (Tab. XXXIII. Fig. vili. a.) and has two fhort horns, fix legs, and a body divided into feveral rings. The male, on the contrary, is exhibited with two beautiful horns and four wings, b. and with a body fome what larger than that of the Holland Butterfly, delineated under N^{0}. VI. Thefe were alfo nocturnal Butterflies; but their bodies were more fwollen than thofe of Holland ; the male whereof is diftinguifhed for its fmaller body and fmonther wings. Thefe French Butterflies are variegated with a gray and blackifh colour, mixed with white. This mixture renders them very beautiful. The divifions of the back are tinged with a browner black; and there are, moreover, obferved fome yellowifh rings in that part,' confifting of hairs. From what Caterpillars thefe Butterfies are produced, I do not know. I found them in a field in the act of coition; fo that, from thence, I could affirm for certain, that the male and female are the two fexes of the fame fpecies.

The remarkable neft, which I have delineated in the hiftory of the Ephemerus; firft publihhed feparately, and which I proved at the fame time to be conftructed of fmall bitten pieces of wood, laid together, and joined like the beams of houfes in Ruffia ; this neft, I fay, is built by the wood-eating Caterpillar, which inhabits it, and carries it about on its back in form of a pyramid. Thefe Caterpillars are likewife changed into a winged male, and a female without wings. This appeared very evidently to me, when, upon opening the neft, I found the Chryfalis of the female and the Exuvix of the Caterpillar in it. Therefore, feveral pairs of little creatures feem to exift in nature ; the males of which have this peculiar privilege above the females. It likewife appears from thence, how much the infects of one and the fame fpecies may differ from each other. Perhaps the fame thing likewife holds in fome quadrupedes, birds, or fifhes; particularly in thofe fpecies, the males or females whereof we have not yet been able to diftinguifh. Some fay, the Snake has no difference of fex, which others again deny. I cannot prefume to decide this controverfy, as I never took any particular pains about that fubject.

The anatomy of the comnnon diurnal and variegated Butterfly.

THE I NTRODUCTION.

THE hiftory I am about to give, under the fecond mode of the third clafs or order of natural changes, is fo amazing in all its circumftances, that it might very well pafs for a romance, were it not built upon the moft firm foundations of truth. Facts alone fupport it ; fo that, how much foever our comprehenfion may fall hort of the things to be related, we muft affent to them notwithftanding; and we fhould ftudy them alfo, as fome of the moft thining miracles of God's power and goodnefs.

In this hiftory we fhall fee moft furprifing changes in the limbs of thefe infects, growing under one another, that anatomy has ever difcovered; fuch changes, indeed, as no human wit could contrive, or could even think of, had not God, the great Author of thefe wonders, been gracioully pleafed to rewand our induftry with the difclofure of them. In this hiftory we thall behold a poor and wretched infect lofe by degrees all motion, and, in appearance, ftand configned to death and the grave; in which feemingly hopelefs condition, however, all its former limbs acquire an extraordinary degree of perfection, till, at laft, rifing from the fepulchre in all the gaiety and magnificence of the richert ornaments, and moft refplendent colours, it no longer continues a reptile, creeping upon the earth ; but, foaring into the air, changes its flow and heavy pace into the moft nimble and unreftrained flights.

This creature, in its painful and humble ftate of life, fupports itfelf with crude and undigefted food; and, ordinary as this refrefhment is, the infect is obliged to earn it with much labour and danger : but when freed from the jaws of death, and after paffing through a fecond infancy, the pureft nectar becomes its portion, and the air its element. It raifes itfelf boldly toward the flkies, and roves at pleafure from meadow to meadow, and enjoys, without care or concern, the exquifite juices which bounteous nature has prepared for its ufe, and prefents it from the unful-
lied cups of the mort fragrant and beautiful flowers.

- It has now put off its old body; and the entrails, which were before fupplied with coarfe food by the painful operation of the teeth, and which digefted this food by a violent trituration of the ftomach, are become more tender, delicate, and fine, fo as only to fuit a more pure and elegant aliment: and often the happy creature is enabled to live feveral months fucceffively, without the leaft want of nourihment.

To fum up all thefe wonders in a few words, the creature, that heretofore crept upon the earth, now flies freely through the air; fips its food, inftead of chewing it; and, far from creating our averfion by its frightful prickles, and foul appearance, it attracts our admiration by the moft elegant Chape and cloathing; and from being fcarce able to move upon the humbleft fhrubs, acquires ftrength and agility to tour in its lofty progreffes, far above the talleft inhabitants of the foreft.

All thefe furprifing, and indeed almoft incomprehenfible changes, from indigence to affluence, from contempt to glory, from labour to eafe, will be amply defcribed in the following hiftory, and every one may eafily underftand how they can happen, and are actually effected.

By comparing thefe frange viciffitudes with the wretchednefs of our own prefent life, our death, and refurrection; and examining likewife the caufes of our mifery, and the beft methods of fubduing, and even eradicating in ourfelves, the latent feeds of decay and deftruction, in order to prepare our fouls and bodies for a glorious refurrection; we fhall, befides the moft innocent and becoming pleafure, reap very confiderable and lafting advantages, by being powerfully excited to praife God, without intermiffion, as he deferves, from thefe furprifing effects of his wifdom and power, now clearly laid open to our infpection.

C H A P. I.

A defcription of the external parts of the Caterpillar, and a diffection of the internal, So as to give a Satisfactory account of the blood, mulcles, kidney-/baped parts, flomach, gullet, intefina ceeca, or clofed guts, filk-bags, fat, pullsvonary tubes, beart, brain, and nerves.

THERE are a great number of Caterpillars that become, after their change, diurnal or day Butterffies, that are found feeding on nettles, with which they fupport themfelves; fometimes devouring that plant to fuch a degree, as to leave nothing but the falk remaining. It is of there I intend to fpeak in this place. They are very common in Holland, during the fummer months. The fkin of this infect appears thick fet with very fharp prickles, Tab. XXXIV. Fig. 1. a. At its full growth, it is almoft an inch and a half long. It is of a deep brown colour, except on its fides, which are of a yellowifh green, fomething inclining to white. Thefe Caterpillars differ fo much from each other in this refpect, that, in point of colour, it is impoffible to defcribe them diftinctly. This little infect has fix legs on that part of the body which is next its head: of there legs, I have here delineated only the three that belong to one fide, b. The middle part of the body is furnifhed with eight legs more, four on each fide, c; befides which there are two others that fpring from the divifion forming the tail, d. That the conftruction of this Caterpillar may be the more perfectly undertood, I hall reprefent it as it appears, fomewhat magnified by a microfcope. Thus we fhall fee, that, counting the head a tail, it is compofed of thirteen annular divifions, Fig. II. 1, 2, 3, 4, \&c. The head is of a horny fubftance, or like bone, and of a fhining black colour; and, here and there, it is covered with a kind of hair like briftes. On each fide of the head are fix black eyes, $a a$, and under the eyes the antennæ, $b b$. There is a lip on the lower part of the divifion which conftitutes the head, and under and near the lip are placed the teeth, cc. Near the teeth are three little protuberant fpots, the middlemof of which is a nipple, or papilla, d, from which the Caterpillar emits a kind of thread; which will be hereafter confidered.

There are fome brifly hairs on the fecond ring, and under thefe hairs is a black fpot, above the firft pair of legs. This is the firft of the puncta refpiratoria, or points of refpiration, by which the infect breathes. The legs, e. confift of various joints, compofed of a bony or horny fubflance; and each is terminated by a claw of the fame fubftance, and of a deep red colour. There are no openings for refpiration on the third and fourth rings, as well
becaure the wings of the future Butterfly lie againft thofe rings under the Caterpillar's fkin, as becaufe fuch breathing-holes would greatly obftruct the motion of the limbs. The third ring has on each fide two fharp and briftiy hairs, which, at fome diftance from their roots, produce many others. The two lower of the original hairs, which are likewife the leaft, are of a white, and the two upper ones of a black, colour.

The fourth ring is of the fame form with the third; but as I have reprefented it a little fideways, there appears on it only one pair of briftles. The legs, Tab. XXXIV. Fig. II. $f g$, placed on both thefe rings, refemble exactly thofe of the fecond ring. Between the hairs already mentioned, there are others, which I have been obliged to omit in the figure I have given, for fear of rendering it confured. Thefe laft hairs are white, and they fpring from whitifh fpots in the center of a black ground.

On each fide of the fifth ring there are three briftly hairs, with one exactly on the middle of the infect's back, b. The firft and largeft pair of thefe hairs, i, lies a little flanting, on account of the fingle hair on the middle of the back. The fecond pair, or that next to the firft, rifes over the points of refpiration; and the third pair, k, under thofe points, on the declivity of the belly. I have, to avoid confufion, omitted the lateral prickles; but have reprefented the others juft as they appear, covering almoof every ring of the body. The rings that follow, all to the thirteenth, are exactly of the fame form, with breathing-holes in every one of them; fo that the infect has no lefs than eighteen of there openings difpofed along its fides, with a blackinh edge or border to every hole.

The fifth and fixth rings have no legs annexed to them ; but the feventh, eighth, ninth, and tenth have each a pair, fpringing from the lower part or belly of the infect. Thefe legs are covered with a fine membrane, confifting of many joints, and are armed with little red claws, $l i l l$, fet round the extremities of their legs.
The eleventh and twelfth rings are likewife without legs. The only pair, in this part of the infect, fprings from under the tanl, $m m$. The ring, conftituting this part, has but one pair of Mharp hairs.

The anatomy of the Cater pillar.

HAVING thus fuccinclly defcribed the external conftruction of this Caterpillar, 1 am now to exhibit and denionftrate its internal parts. The firft thing that prefents itfelf, on opening the back of this infect, is the blood, which flows freely from it. This is of a tranfparent green, and may be made ufe of as a paint for that purpofe; though, as it dries by being expofed to the air, it lofes much of its original luftre, and by degrees turns yellowifh. There next appear, immediately under the fkin, the mufcular fibres, which ferve to move the rings of the body. On raifing of thefe fibres, the fat appears, as likewife the heart, known by its panting motion: this I fhall prefently defcribe. On the hinder part, upon the back, and between the laft rings of the body, there are two fpots or particles, with fome divifions in them, Tab. XXXIV. Fig. iII. not unlike the kidneys of men or quadrupedes. On opening thefe fpots, they are found to contain fome veffels, and to have a connexion with the lower rings, by means of fome flender filaments, and certain pulmonary tubes. In my opinion, thefe particles do not attain their full growth and perfection, till the infect becomes a Butterfly. This appears plainly enough in Silkworms, whofe tefticles fpring from this part. I fhall therefore referve what more I have to fay, on this fubject, for my defcription of the Butterfly, as they appear only in an embryo-ftate in the Caterpillar.

Removing the parts already mentioned, we come at the ftomach. This almoft entirely fills the Caterpillar's body; and, though it be fo very capacious, is always as full as it can hold, the infect being extremely voracious, fo that it hardly ever defifts from eating a fingle moment. During this part of its life, it feems entirely confined to the two operations of taking in its food, and difcharging its excrements; by which means it acquires its proper fize in a few days. The gullet, Fig. iv. a, is a fmall and fleader tube, which running from the forepart of the fomach to the mouth, through a flit in the fipinal marrow, juft under the brain, and growing larger and larger in its progrefs, it forms a communication, for the infect's food, between the mouth and flomach. I have reprefented only a few of the pulmonary tubes, 6666 , in the forepart of the fomach, where they appear like fo many veffels, elegantly difperfed over its furface, and fupply it with the vital air from every fide. Amongft thefe tubes is to be feen a tendinous ligament, $c c$, which runs, both above and below, from one end of the fomach to the other. It arifes from the tendons of the mufcular fibres belonging to this part. Thefe mufcular fibres are feen diftinctly through, and I have reprefented them on each fide of the flomach, $d d d$; but, to avoid confufion, I have been obliged to leave out the pulmonary tubes, that are to be
feen in the infect in the fame place. The fomach confifts of three coats. The outward coat, upon which the pulmonary tubes are diftributed, is very thin: the next is thicker, and muifular; the third, which immediately contains the fubfance that is to be digefted, is very delicate like the firf.

On the upper and lower parts of the fomach are placed fix clofed guts, which, defeending towards the thick gut, there terminates in little tubes, that have nc paffage. Thefe fix little guts, which are here reprefented out of their natural fituation, by returning upon themfelves, and running back towards their origin, form, as it were, twelve inteftines; fo that, on parting them from the flomach, and difpofing them orderly along its fides, there appear fix on each part. Thefe little guts arife on each fide, from a trunk, in form of a knot, Tab. XXXIV. Fig. Iv. $f f$, which fiprings from the inteftine that immediately fucceeds the ftomach; and then again, being divided into fix tubules, thefe run back towards the thick inteftines, $g g$, againft which they are folded and curled in a moft furprifing manner, $b b$. One of the thick inteftines, i, in which the excrements are reduced to form, is here reprefented alfo; and this thick inteftine ends in the rectum, or ftraight gut, k :

On removing the ftomach, there appear very plainly two little canals, Fig. v. $a a$, which before had feveral windings, and lay againft the fides of the ftomach. Thefe canals afcend to the forepart of the head, where I traced them very high, as far as the brain; but could follow them no further, fo that I cannot affign their abfolute origin. On the forepart they are very fine and flender, b; but afterwards dilate greatly, c, till at laft they terminate in two fharp filaments, d, which have their infertion near the creca, or clofed inteftines.

It is no eafy thing to determine the ufe of there little parts from the diffection of the Caterpillar: to pretend to guefs at it, would be folly. Our bufinefs is to find out the intentions and operations of nature, not to contrive them. At firft, I took thefe for the filk-bags of the Caterpillar, on account of their great refemblance to thofe of the Silkworm. But I was afterwards convinced of my miftake, by finding them unaltered in a Caterpillar, that had made its web. This circumftance may ferve to convince us, that they muft be of fome ufe to the future Butterfly.

The real filk-bags of the Caterpillar are not more than one fourth part fo large as the veffels, which at firt pafied upon me for fuch; for the Caterpillar finins but very little; and I have therefore omitted, as not much worth notice, the repofitories of the matter with which nature has fupplied her for that purpofe.

After the foregoing parts have been examined, the fat becomes confpicuous. This
fubfance,
fubftance, in a manner, takes up all the infide of the Caterpillar, not filled by the ftomach, the head and tail not excepted. It is of a yellowifh colour; but here and there inclines to white. As to its form, it looks like a congeries of little membranes, folded one over the other ; but differing greatly in conftruction and texture. The fat ferves to this amonglt other purpofes, that it binds and fupports the pulmonary tubes, which are diffributed through it in great numbers.

The pulmonary tubes arife from three remarkable pairs of branches, which are feen on each fide in the breaft, belly, and tail of the Caterpillar; and the pulmonary tubes, propagated from every part of thefe branches, communicate with each other at every one of the points of refpiration. In thefe parts alfo are to be feen a great many ramifications of pulmonary tubes, which fpread themfelves all over the body, fo that no part of it can be affigned, not even any of its horny fubftance, that is not furnifhed with its pulmonary tubes.

The ben way to fee the heart, Tab.XXXIV. Fig. vi. $a a$, of the Caterpillar, is by laying it on its back, and then opening the belly. It is then found, that this organ extends from one end of the body to the other. It pervades the tail, belly, and breaft; and thence ftretches very high up to the brain itfelf. This heart is an oblong, delicate, and flender little tube, which widens in fome places, and again grows narrower in others. It is furnifhed with fome pulmonary tubes, and with fome mufcular and fibrous hairs, which run part lengthways, and part crofiways, and require a great deal of art and induftry to difcover them. This tube contracts itfelf by the help of its own fibres, and is dilated again by the joint efforts of a prodigious number of mufcles, 666666 , of a fingular form, which grow on its outfide; and, though eafily feparated and diftinguihed from one another, they look, at firft fight, as if they were but one continued muicle. The defign I have given, to illuftrate the de-
fcription of this organ, reprefents only a part of it.
It is no eafy talk to get a fight of the brain and fipinal marrow in healthy Caterpillars, on account of the great quantity of fat that invoives thefe parts; fo that fickly infects, of thofe which have been otherwife wafting for fome days, with conftant labour, are the fitteft for this purpofe. The incifion muft be made in the back, as the brain and fpinal marrow lie in the abdomen. The brain is compofed of two hemifpherical lobes, Fig. vir. a, placed juft over the infertion of the gullet into the mouth; and under thefe lobes are to be feen the heads of the fpinal marrow, compofed of two nerves, $6 b$, which unite at fome diffance, and form the firft knot or joint, c, from whence nerves are diftributed to the mufcular parts of the head. The marrow then parts again iuto two branches; and the nerves, $d d$, fipringing from thofe branches, are diftributed amongft the mufcles of the neck. Another conjunction of the main nerves forms the fecond little knot or joint, e, which is fomewhat lefs than the firit. From this fecond knot or joint iffue two branehes, as from the firft; and thefe branches unite again, to form the third joint or knot, whofe ramifications are difperfed among? the mufcles of the thorax. Here the marrow divides itfelf again for the third time, and runs in this divided form a confiderable length, f, before it coalefces into the fourth knot or joint, g ; to which fucceeds, after a fhorter feparation, the fifth, b. Thefe laf joints or knots fupply with nerves the mufcular parts of the embryo legs and wings of the future Butterfy. After this, the marrow parts no more; but it has however fix more joints or knots, befides thofe already taken notice of, making eleven in all; of which the fixth i, the feventh $k_{\text {, }}$ the eighth l, the ninth m, and the tenth n, emit each four nerves, all difoerfed among the vifcera and the mufcular parts of the abdomen. Finally, the laft knot, 0 , beftows all its nerves upon the tail.

C H A P. II.

The manner in which the Caterpillar is changed into a Cbryfalis or Aurelia, with the true explanation of what the Cbryfalis is. This chapter contains alfo fome anatomical obfervations, and fone otber curious remarks concerning the Cbry. falis and Butterfly.

WHEN the Caterpillar has fed fufficiently, it refts for fome time. In this period, all the food it has taken is thoroughly digefted. It then forms a pretty ftrong web upon the falks or leaves of the plant whereon it fed: but this web, on account of its great delicacy, is not eafily feen; unlefs the infect be put into a little box, with a piece of black paper for it to work on. Then its web, however flight and tender it may fometimes be, fhews itfelf very plainly. This web being
finifhed, Tab. XXXV. Fig. Iv. a, the Caterpillar frikes into it the claws of the two legs under the tail, and afterwards forces in the tail ittelf, by contracting thofe claws, and violently friking thofe legs againft one another: and, as foon as the tail is thus well fecured, it lets itfelf hang in the air, with its head downwards, by loofening the hold it hitherto kept of the plant with its other legs.
But I think it proper to defcribe the limbs of the Caterpillar, that grow under its fkin, before

I proceed any further in fhewing how it throws this flin off; for it is neceliary to know thefe particulars, in order to acquire a true and juit idea of the nature of the Aurelia. This, indeed, is no more than a beautiful and orderly external reprefentation of fuch limbs of the Caterpillar as have grown under its fkin: for though the limbs, now mentioned, naay be feen under the infect's finin, at the time it crawls and eats in the form of a Caterpillar, neverthelefs it is, in this fate, on account of their extreme tendernefs and delicacy, a very difficult matter to have a fatisfactory view of them. They are, in a manner, as fluid as water; and they lie folded up in many very tender membranes, interwoven with pulmonary tubes. The beft time to obtain an elegant view of them, is when the Caterpillar is juft about throwing off its fkin, and exhibiting to open view the miraculous operations of nature, which it hitherto concealed.

By ftripping the Caterpillar of its fkin at this period, we may perfectly gratify our curiofity in this refpect: we may then plainly perceive, that it has two antenne or horns, Tab. XXXV. Fig. 11. $a a$, and the two fhanks of a trunk, $b 6$. There are alfo vifible two flarp protuberances, cc, which may be very well called the forks, or furcille of the future infect, on account of their great refemblance to thofe parts. The eyes, $d d$, thew themfelves alfo, under thefe protuberances; and a little backwards, in the thorax, are four wings, ee. Thefe lie in folds under the fkin, like all the other parts, fo that they may be confiderably extended. Near thefe wings there appear fix legs, fpringing from the thorax: thefe have changed their fk ins. All the other ten legs, with their integuments, have now been thrown off, with the common fkin; of which, as already obferved, it is neceffary, upon this occafion, to ftrip the infect. The fame happens to the flarp-pointed hairs that grow on the Caterpillar's back; but thefe lant leave very confiderable marks behind them. Laftly, the other rings of the body, $f f$, and the tail, g, fhew themfelves in their proper places.

Haviug duly attended to the foregoing particulars, and fixed them deeply in our memory, as the foundation on which it is intended we Thould build all our future inquiries; the next bufinefs is to obferve, how wonderfully all thefe parts are placed and diffributed under the fkin. But here 1 muft obferve, that they do not naturally lie in the fame order and manner in which, for the fake of perfpicuity, I have reprefented them ; fo far from it, that the extremities of the four wings are enclofed in the fame fkin with the four hinder legs of the firft feries; and the horns, trunk, and furcillx, are folded and laid up within the fkull in a moft furprifing manner.

Thefe little horns, or antenne, are fixed by an articulation, Fig. III. $a a$, to the forepart, at the bafe of the head, where they form fome windings and turnings under the fkull near the eyes, and againft the bafe of the trunk; to all
which parts they are faftened, by means of a great many membranes full of ligaments. This is their natural fituation; from which I have been obliged to deviate in my delineations, the better to exhibit the other parts which they cover, and likewife becaufe I cannot now fare the time requifite to make two drawings, which it would be otherwife neceffary to give. The probofcis, or trunk, Tab.XXXV. Fig. 11 . $b b$, is folded up alfo in a furprifing manner, and placed in the forepart of the 1kull; but here I reprefent it as drawn out a little. The forks, or furciliz, likewife, $c c$, are plaited and folded up. Under thefe forks lie the eyes, $d d$. We may perceive, in the middle of the head, that portion of the fkin which lies under the middle of the fkull, e, and there joins the root of the trunk or probofcis, $f f$. Between the foldings of the probofcis appear two fmall parts, lying againft each other, g. Thefe are called furcillæ in the Butterfly, becaufe the trunk, when curled, hides itfelf between them, as between the two tines of a fork. All thefe things are fo wonderful, that I have thought it beft to reprefent them larger than the life.
The particulars here named, being rightly underftood, the change, or, to expretis myfelf more properly, the growth of the creature from the Caterpillar-ftate into an Aurelia, cai.not but appear plain and intelligible; for the whole operation confifts in this, that the Caterpillar cafts its flin, and fhews the parts which hitherto lay concealed; unfolds its limbs, and arranges each in its right place with great regularity and order. This is the whole operation, to which fo many authors have fubftituted a monftrous metamorphofis, or abfolute change of one creature into another, not to be found any where but in their own mifguided imaginations. What wonder then, if, in their vain and idle attempts for fome hundred years paft to explain this metamorphofis, they fhould have met with no fuccefs? Thus it is, that we are apt to err, when, depending too much on our own reafon and imaginations, we fit down contentedly in our fludies, and feed ourfelves with our own wealk fancies, inftead of looking for truth into the magnificent works of the Creator, though fuch infpection alone can give us juft notions of what we defire to know.

There is no difference between the Chryfalis and the Caterpillar, but that the former lets us fee more plainly the limbs and parts of the future Butterfly, notwithftanding the 1kin, which yet enclofes them. For as foon as the Caterpillar has fininhed its web, Tab. XXXV. Fig. I. a, and has fixed in it, by means of its crooked claws, the hinder part of its body, it lets itfelf loofe, and hangs head downwards, as already mentioned, contracting itfelf almoft into a femi-circular form. In this condition the creature grows fhorter, and fmaller, by degrees; and this indeed fo fenfibly, that the eye may eafily trace its progrefs: for the third and fourth annular divifions of the body, b, are fo remarkably fwelled and expanded at this time, by the blood and air that dilute the en-
clofed wings and legs, that the reft of the body, drained of its juices, muft of courfe become proportionably fhorter. The fame alterations take place in the trunk, the forks, the eyes, and horns; all which equally fwell and expand themfelves, and endeavour to make way for their laft increafe.

By the time the Caterpillar has hung in this manner fifteen or eighteen hours, it fo entirely lofes the power oi all its fixteen legs, as not to be able to make the leaft ufe of them to crawl, or ftand. The rings of its body then begin to move up and down, in a very fenfible and furprifing manner. Then the eight legs, c, in the middle of the body, grow lefs and lefs by degrees, caft their fkins, and are turned towards the tail, Fig. Iv. a. The fix fore legs, Fig. I. d, move upwards in like manner, and feparate themfelves from each other, Fig. Iv. b. Soon after the black horny bone of the fkull becomes fplit into three diftinct parts, by the fwelling of the trunk, horns, and the other parts lodged there, that lie under it. Of thefe three parts of the fkull, one is in the middle, c, and the other two, $d e$, are on the right and the left. This being accomplifhed, the firt obfervable change is the breaking out of the forks, or furcilla, from under the fkin that covered them, $f f$.

As the Caterpillar fill continues to move its body, the four pair of legs in the middle of it, Fig. v. a, a, are by degrees thruft quite up to the tail, with the reft of the fkin; and the fame thing happens to the two pair of the fix legs of the firft feries, b. By this means the forks, c, become ftill more vifible, and the trunk, horns, and wings, begin to fhew their form. Lafly, the three pieces of the fkull, d, into which it burf, are found to be drawn up higher over the body.

The fkins being at length entirely depofited, all the parts, now mentioned, appear very plainly expanded over the body, Fig. vi. a, which, by this means, acquires a form altogether different from that which it before had. The wings, horns, trunk, and forks, which before were folded up and hid under the fkull, and the horny fubftance of the legs, are now difplayed; and the rings of the abdomen are alfo gathered up clofer to one another. The Caterpillar is now dignified with the name Aurelia, remaining all this time fixed to the web, b, by its claws. But as this cannot be fo well made to appear by a figure no bigger than the infect itfelf, I fhall give a drawing of thefe parts as magnified by the microfcope.

In the firft place appear the furcille, or forks, Tab. XXXV. Fig. viI. $a \mathfrak{a}$; then the middle part of the head, placed under the fkull, b : the root of the trunk, $c c$. The probofcis, or trunk itfelf, divided into two filaments, $d d$, and ftretched lengthways upon the body, e. Under the trunk lie the firft pair of legs, $f f$, whofe articulations are placed a little lower. Next to thefe are placed the fecond pair of legs, $g g$, which are ftretched out to a greater length, and there fhew their articula-
tions at the extremities. Near thefe are placed the little horns, $b b$, whofe articulations alfo are very confpicuous. It appears that they are very thick near their points, $i i$, and on the forepart they bend themfelves back under the eyes, $k k$; but this circumftance appears better in the third figure, under the letters $a \mathfrak{a}$. The wings are ftretched along the fides, in the fame manner with the parts already mentioned, illl, and fhew very plainly the little ribs or nerves that go to form them, $m m$. The rings of the abdomen appear drawn toward one another, $n n$, with fome little prickles fripped off their fkin, which look like fo many little prominent nipples, or papillx. This beft appears by infpecting the left fide of the figure, where fome of thefe prickles are reprefented growing upon the infect's back, oo. Above thefe prickles there appear four breathing-holes, or puncta refpiratoria. Laftly, the tail, p, is very confpicuous, as well as the claws, q, that grow to it; and by means of thefe the Chryfalis hangs to its web. The hind legs are not to be found in this figure, becaufe they lie hid under the other parts which it was drawn to exhibit. The fame muft be undertood of the under pair of wings.
On turning the infect, thus changed and Atripped of its fkin, Fig. vilit. a, on its belly, it appears of a very extraordinary figure, the furface of it looking exaclly as if covered with prickles and nipples; which is owing to this, that the fharp-pointed hairs of the Caterpillar have caft a fkin, as well as the other parts. A perfon, unacquainted with this branch of natural hiftory, might, by giving in this place a littie loofe to his imagination, reprefent to himfelf the nofe, eyes, and other parts of the human face, as fome authors have already very ignorantly done; nay, they have given drawings of their idle conceits.
Ignorance is fruitful in falfe opinions, and is ufually accompanied with fo much felf-fufficiency, as makes it in a manner impoffible to overcome its prejudices; whereas thofe who have a tolerable fhare of knowledge, are in the readieft way to difcover their miftakes.

The Caterpillar, ftripped of its fkin, in the manner now related, is of a green colour, efpecially in thofe parts which are diftended by an extraordinary afflux of the blood. But after ten or twelve hours paffed without its 1 k in, it turns to the moft refplendent and beautiful gold colour. This is the reafon of its being called, in this condition, an Aurelia or Chryfalis. And as it is found fo common by every pathway, fticking to nettles, and fhining like polifhed gold, faftened to the leaves of the Pervinca, or periwinkle-plant, authors have, from this circumftance, taken occafion to give the name of Aurelia to all Caterpillars, changed after the fame manner in point of Chape, tho' the greateft part of them do not in the leaft partake of this rich colour, and the reft have nothing of it more than a few fpots.

It now remains that I hould fhew, in a few words, in what manner all the laft enumerated
parts are exiended, and difpofed over the infect's body, in the orderly manner in which I have exhibited then. Sll this will become very intelligible to thofe, who will call to mind what 1 already faid, viz. that the extremities of the four wings, with the two hinder pairs of legs of the firft ferics, are enclofed in one and the fame fkin; that the horns are folded up in membranes full of ligaments; and that the trunk is in the fame manner firmly faftened on the forepart of the 1kull. This being the cale, it is impofible but that, on the pieces of the broken fkull, the withered legs, and the other fkins, rolling up towards the tail, all the new limbs, here mentioned, muft dilplay and arrange themfelves in the moft beautiful manner, and by the jufteft and moft orderly evolutions; for the membranes I have named, that are fo full of ligaments, act the part of fo many ropes and pullies to extend thefe new parts, in proportion as the old are thruft over them. Now, if this change was to happen in fome creature of a larger fize, one, for example, equal to a Sheep or a Calf, is there any one fo infenfible, as that he would not be fruck with the deepeft aftonifhment at the

NATURE; or,

fight and contcmplation of fuch wonders of the Divine Power? Certainly, God reveals himfelf as much and more in thofe mytterious and delicate operations, which the microfcope alone can difcover. Thus then, we at length fee evidently in what the change of the Caterpillar into a Cliryfalis confifts, and what that Chryfalis or Aurelia, or the Caterpillar which has caft its fkin, really is; though the great Harvey mont prepofteroufly confidered it as an egg, and, enthralled by vulgar prejudices, ferioutly affirmed the fucceeding Butterfly to be generated by a metamorphofis, which; after all, he could neither explain or comprehend.

When the little creature has hung in the open air for fome hours, its external skin hardens by the power of that element; at the fame time that the enclofed limbs are, in a manner, fluid like water, on account of their great delicacy and tendernefs; fo that it has no power to move its wings or legs, till the fuperfluous humidity, that clogs them, is evaporated: then burfting its prifon, it appears in the flape of a Buttertly; as thall be prefently explained *.

The anatomy of the Cbryyalis, two days after it has caft its Jitin.

TIIE cyes were yet fo tender and delicate, that they diffolved with handling. The forks likewife were very moift; but, notwithftanding this, the articulations were very conipicuous; though, for the greatef part, they appeared like membranes, juft beginning to harden. The legs were in the fame condition with the forks; but, on account of the pulmonary tubes which appeared through their furface, they looked fomewhat more firm. The fame thing may be faid alfo of the horns. The wings within were quite colourlefs, and like a jolly; thewing, through their tranfparent fubftance, pulmonary tubes, compofed, as it were, of mother of pearl.

As to the internal parts, the change in them is much more fenfible. The ftomach is confiderably fhortened, whilft the gullet is grown twice as long as it was in the Caterpillar, and runs in the form of a flender tube through the thorax into the abdomen. In the hinder part, the ftomach is reduced to a flender gut, and becomes fo very tender, that it breaks with the leaft touch: within this is found a fluid matter, of a deep red colour, inclining to purple, but not very thin. Under this there appears a kind of chalky fediment, of a fomewhat paler
colour. The fix cœeca, or clofed guts, that before joined the ftomach, are now wafted away, and no longer to be feen.

The heart and the final marrow are become much fhorter ; and this is all the confiderable alteration that appears in thefe parts. The particles, which I once miftook for the Caterpillar's filk-bags, are now become more flender, but more compact. The mufcles of the thorax, and thofe which are to move the legs and wings, have not the leaft ftrength or firmnefs, fo that on difturbing them, they immediately fell to pieces. The fat is grown yellower, thicker, and more friable, fo as to crumble with the lighteft touch. The pulmonary tubes are become fmaller, and they are carried in the moft elegant manner through the legs, wings, and other parts. There is a purple nodule, or knot, in fhape nearly round, fticking to the lower rings of the body. I could not now difcover the kidney-like particles, though I fearched for them carefully in three diftinct Aurelix: but I have obferved in Caterpillars of another kind, that thefe particles at length unfold themfelves, and then feem to form fome other parts, which adminifter to the fpermatick organs.

[^59]The anatomy of a Cbryfalis, fix or eight days after it bas caft its אinu.

THE external limbs, and other parts, as the trunk, horns, legs, and wings, are by this time grown fomewhat more dry and firm, though ftill they are of a white colour, which is changing by degrees to gray. The alteration in the internal parts is now much more confiderable. The flomach, which before might be confidered as forming feveral diftinct parts, is now fo wrinkled up as to be all of a piece, except that here and there appear fome globular fwellings above the furface. Thefe prominences are very obfervable on the forepart ; but not fo diftinctly to be feen, by a
great deal, where the clofed inteftines took their rife in the Caterpillar, about the hinder region of the ftomach. The moifture contained in this part is changed to a decper purple. The mufcles of the thorax are beconse more confpicuous, diftinct, firm and folid; and the fat is fill more and more contracted into a fimple mafs. I could now plainly perceive, that the purple nodule, or knot, was nothing more than a dilatation of the rectum, or fraight gut, changed to this form. The rudiments of the genitals are by this time very vifible, and have begun to acquire firmnefs and ftrength.

The anatomy of a Cbryfalis of twelve or thirteen days.

THE trunk, at this time, has acquired a confiderable folidity. The horns fhew their little fally feathers; and the legs, in like manner, very plainly exhibit their ftiff hairs, refembling briftles: but the fcaly little feathers are far from being fo confpicuous. The legs are alfo now of an obfcure gray colour, efpecially about the joints neareft the thorax. The hairs and little feathers of the wings are likewife very difcernible; but, as yet, they are very moift, and are laid fo clofe one upon the other, that it requires fome induftry to get a fight of them. They refemble, in fome meafure, the hairs of a Cat; in which, after the fkin has lain in the water for fome days, they are faftened together by the moifture they imbibe. The wings now will admit of being extended, and fhew, if they be torn, their pulmonary tubes, and other veffels. Their colour is an
afhy gray, but obfcured by a dusky tinge. All the parts I have mentioned are quite complete, and perfect, in a Chryfalis of fixteen or feventeen days old. By repeating this diffection every day, we may, no doubt, obferve the moft extraordinary tranfitions, that can be imagined, from one colour to another; for, from a pale and whitifh or faint gray, thefe parts change to a dark colour, a deep brown, an elegant red, a yellow, a sky-blue, a bright white, and many other tincts; and this in fo furprifing a manner, that it is almoft impofible to defribe it: God, the author of all miracles, producing there alterations, in the nature of things, by rules which, at the fame time that they are moft firmly eftablihed, infinitely furpafs the ftrongeft efforts our imagination can make to comprehend them.

The anatomy of a Cbryfalis, of this Species, of fixteen or feventeen days old; at which time it is very near undergoing its laft cbange, in order to become a perfect Butterfly.

0N examining the Chryfalis at this period, we find, that its gold colour is become much paler; and it is fo tranfparent withal, as to let us perceive diftinctly through it all the colours of the upper pair of the future Butterfly's wings. If we frrip off the skin, and other thin membranes that fheath the wings, thefe laft fometimes appear perfectly dry. But this principally happens in autumu, when there Chryfallides are generally fuffocated within their skins; the folar heat, at this feafon, being too weak to ftrengthen them fufficiently for the fruggles which the burfting of their prifon requires, otherwife the wings always retain fome moifture. The forky particles, which I have before defcribed in the Chryfalis, now fhew themfelves hollow; and the eyes, which, like thofe of Bees, are furrounded with hair, appear under them very plainly. The trunk hats acquired its due ftrength, firmnefs, and
form, fo that it prefently curls and coils itfelf up, on taking off the cafe that covers it. Under the trunk are to be feen the true forks, between which the Butterfly hides that curious organ, as will appear in the defign I hall give of that infect. The horns alfo are now perfect, and are covered with their little elegant fcales, which refemble feathers. The legs, with their little feathers, joints, and claws, are in the fame fate of perfection; fo that, on ftripping off the coats and membranes in which they are bound up, they will begin to play, and move themfelves very fenfibly. Thofe legs, which, in the Chryfalis, lie moot expofed to the air, and which I have already reprefented in one of thefe defigns, as they appear upon the infect at that period, have in proportion a ftronger skin to defend them. The fame wife difpofition is alfo remarkable in the skin that defends the upper and lower pair of
wings. When we examine the internal parts, it appears that the eyes are perfectly formed, being, replete with thin pyramidal filaments, in the fame manner as thofe of the common Bee, as already mentioned. There are in the trunk two channels, which, uniting, form only one in the thorax, and conftitute the gullet, which ends at the ftomach. The mufcles of the thorax have acquired their due firmnefs, and confift of three kinds of fibres; fome running lengthways, others tranfverfely, and the third kind obliquely. Near the gullet appear the three little particles, which I took for the Caterpillat's filk-bags. They are at this time curled into one, and are inferted near the end of the gullet, to which they are united on each fide. A bladder full of wrinkles, and endued with a perifaltick motion, is now feen on the upper part of the ftomach; and it communicates with the gullet, by means of a flender tube. This bladder, the ftomach, and fome part of the gullet, are full of a deep purple moift fubfance; but the upper part of the gullet has nothing befide air in it. The ftomach, being gathered up into one mafs, in a furprifing manner, looks as if quite covered with tubercles. The back-part of it, like a little gut, is now become much more flender and fhorter, and is wrinkled withal, fo as to deferve the name only of an inteftine. The vafcula cceca, varicofa, or crocea, which were dropped from the ftomach, appear now in the fame place. Next were to be feen the inteftina craffa, or large guts, which, from being very fhort in the Caterpillar, are now become very long and flender, and appear as if they had been ftretched out to give them fuch an extraordinary length. They then dilate into a nodule, or knot, full of the purple matter already mentioned; and that dilatation is followed by another, greater than the firt; but its contents are the fame. The Chryfalis, on cafting its
skin, difcharges this liquid from the anus; by which means the nodule, or knot, next to it comes to be fmaller than the other. This excrementitious fubftance, laid upon paper, looks like real blood. The ftomach, of the Aurelia I am defcribing, is much more firm, and of a much better confiftency, than that of the Aurelia of two days already fpoken of; infomuch that it may be now handled with the forceps, and diawn out of the body with the inteftines that are joined to it, without any damage or danger.

The heart and fpinal marrow are now quite contracted, and confiderably diminifhed. The fat is furprifingly wafted away, and wrinkled up by evaporation, fo as to refemble a bunch of yellow oblong grapes, which are fo firmly faftened to the pulmonary tubes, that the greateft care and patience is requifite to part them. There appeared no other alteration in the pulmonary tubes but this, that they were grown more membranaceous, and fhew more diftinctly their mufcles, and other parts, which had now acquired their proper degree of perfection. The kidney-like particles are now no longer to be feen: perhaps they have been expanded by a flow growth into the organs of generation, which now thew themfelves very diftinctly ; but are fo intimately united with the fat and pulmonary tubes, that it is almoft impoflible to feparate them, unbroken and entire. This makes it neceffary to attempt the diffection of the genital parts in the Butterfly itfelf: I therefore hope, that, when I fhall have proceeded fo far, I fhall be able to give a fatiffactory defcription of thefe parts, with figures to illuftrate the accounts; provided my health does not fail me, and I do not want proper fubjects to work upon. I Mall likewife defcribe at the fame time, and in the fame manner, the gullet, flomach, and inteftines, with figures of them.

In wobat manner the Aurelia affimes the form of a Butterfly.

WHEN this, as I may juftly fay, furprifing alteration of the infect, by the growth, and removal of the limbs, and other parts, happens in the month of June or July ; it requires only about eighteeñ days to perfect it in this fpecies: whereas late in autum, it requires ten days more ; fometimes indeed a great number of Ca terpillars, by not beginning to change till the feafon is thus far advanced, perifh for want of ftrength to caft their fkins; fo that, on this occafin, thefe little creatures are liable to the common calamities of nature, and very often come to an untimely end.

Nothing is more remarkable about the time when the Aurelia begins to caft its fkin, than the perfection to which the wings, which have grown under it, are arrived. The colours that adorn them are chiefly black, red, and a fkyblue; and thefe, as well as the trunk, legs, and
horns, may be very eafily difcerned through the fkin that covers them, even without the help of a microfcope, Tab. XXXV. Fig. 1 .

On examining, with a microfcope, the Chryfalis at this period, the extremities of its legs are obferved to move very diftinctly: a circumftance which I have often remarked in the Aurelia of Silk-worms, with the greateft aftonifhment.

The colours of the under pair of wings cannot be feen, becaufe they are altogether covered by the upper pair; nor are the colours of the other parts, juft now mentioned, very difcernible, becaufe there is not fo great a variety of tincts in thofe parts. For though the colour of all Chryfallides appear through their Ikins, at the time they are going to caft them off; neverthelefs, it is impoffible to tell exactly what thofe colours are, where there does not happen a confiderable diftinction between them and the ftain itfelf.

While the little creature remains in this condition, there is a violent agitation in its blood, and a motion in all its internal pats. The blood, in a hafty fermentation, is driven through the veffels from the heart into the wings, which are likewife fupplied with air from the lungs. The infect, befides, labours violently with its legs: and all thefe motions concurring with the growth of the wings, it is impollible the tender fkin that covers it, hould not at length give way; and this it accordingly does, by burfting into four diftinct and regular pieces.

Fiff, That part of the fkin which covers the trunk, the two fore pair of wings, the horns, and the furcillæ or forks *, falis off from thofe parts; but the feveral portions of it, in which they were feparately wrapped up, remain firmly united together, Fig. x. a. This is the firf time the legs appear without any covering, and they then help greatly to Sree the body, and the other parts that remain yet bound up. At the fame time, the fkin on the back flies open, and dividing ilfelf into two regular portions, $b b$, difengages the back and the wings. Then there likewife happens another rupture in that portion of the fkin, which covered the rings of the back of the Aurelia, c. After this the Butterfly remains very quiet for fome time, with its wings pointed downwards, and its legs fixed in the fkin which it has juft caft off.

But it muft be obferved, that the wings, legs, horns, trunk, and other external parts of the Butterfly, do by no means rife from the body in the manner exhibited in the II Figure of the Table XXXV. where I have laid down all thofe parts, as they appear very diftinct and conficuous in the Caterpillar itfelf. Many of thefe parts remain as has been already faid, firmly united to each other, the reafon of which is, that they are all moift and wet in the Caterpillar, at the time when it is about throwing off its ikin, and becoming a Chryfalis; and this moifture being of a clammy or glutinous nature, ferves, on its being dried by the air and heat of the weather, as a real glue, to unite the parts it lies between fo firmly together, that they never reparate for the future. Now, as the fkin, which lines all thefe parts, or covers them on the infide, is extremely delicate and tender, which it well may be, as it is not expofed to the air, it all breaks and flies off without any certain order; nor is any order necefliry upon the occafion. Hence it arifes, that fo many broken and ragged little membranes, almoft as thin as a cobweb, appear on the inner furface of the fkin that has been thrown off. One of thefe little films is to be feen between the conglutinated coats or flkins of the trunk, horns, and other parts, Tab. XXXV. Fig. x. d.

There likewife appear within the fkin certain white filaments, ee. Thefe are the caft coats of
the pulmonary tubes; for now thefe tubes catit their skins for the laft time. The greatent part of the eighteen pulmonary tubes, of which I have reprefented nine on one of the fides of the Caterpillar, in the fecond figure of the XXXIV. Table, remain in the Aurelia, which breathes by them, until by cafting this skin it becomes a perfect Butterfly ; and this is the reafon, why the pulmonary tubes are much more nender in the Butterfly, than they were either in the Caterpillar, or the Chryfalis: this circumftance alfo affords the Butterfly the means of taking more air into its body, and thereby renders it the better able to fly, to give a due motion to the contents of its inteftines, to fuck in the juices on which it lives, to void its excrements, and to perform many other operations neceffary in the animal oeconomy.

At the time when this change of skin happens, the wings expand fo rapidly, that the naked eye cannot trace their uifolding, from reaching fcarce half the length of the body; Tab. XXXV. Fig. xi. a, they acquire, O miracle of miracles, in the fhort fpace of about half a quarter of an hour, their full extent and bignefs; fo as to be each of them five times larger than they were before. Nor is it the wings alone that are thus increafed: all their fpots and colours heretofore fo minute, as to be fcarce difcernible, $b b$, are proportionably extended; fo that what but a few minutes ago, appeared but as a number of unmeaning confufed points, are now become diftinct and moft beautiful ornaments. All this may be beft conceived, by confulting the xui Figure, which reprefents the wings bigger than the body, and with all their colours, which are chiefly red and black. About the edges; however, here and there fome yellow, sky-blue; and white fpots, are feen moft elegantly combined, which exhibit to us, though faintly, and as it were by fhadows, the inexhauftible treafure of the Great Creator's treafures, his Atupenduous majefty, and his other incomprehenfible perfections; for though no adequate reprefentation can be given of the Supreme Being, he has thuns been pleafed to thew himfelf to us, difinctly and confpicuounly enough to engage our love, our adoration, and our gratitude.
This little creature is found alfo to have four legs, Fig. xi. cccc, each armed with claws, and adorned with hairs, and a variety of colours. The two horns $d d$, lie juft above the eyes: near the fpace between the eyes, are to be feen the forks or furcæ; from between which the infect dartse out a double trunk, the ufe of which is to pump out the fweet juices from flowers into its body, fo that this organ may be confidered as its tongue. When this curious part is not at work, it lies fo clofely curled and coiled up between the forks, that it cannot be feen. This beautiful contrivance is reprefented in the xirth

[^60]Figure,

Figure, in which we likewife fee, that the Butterfly's wings entirely cover its legs. The firf pair of legs lie nearly under the thorax; but they are now io altered, as not to deferve that name; for the Butterfly makes no ufe of them as legs, nor have they claws like the others: nature, indeed, feems to have intended them for fome other purpofe.
As the wings extend themfelves fo fuddenly, they accordingly appear at firf like pieces of wet paper, foft, and full of wrinkles, cavities, and fivellings, as I have reprefented them in Tab. XIII. Fig. ix. x. xi. But they are quite dry in half an hour, by which means all the inequalities in them entirely difappear, fo as to leave them perfectly fit for the creature's fervice. The Butterfly's tranfmutation being thus perfectly finifhed, it difcharges three or four pretty large drops of a bloody liquid, which are the laft remains of the fuperfluous moifture, the reft of which has been evaporated by the Aurelia during the heat of fummer, in the fpace of about ten days; for as the parts, which this moifure was intended to expind, no longer need any increafe, what remains of it is no other than an ufelefs encumbrance, and accordingly it is expelled from the body as an excrement.

Thus the Butterfly, in a little more than a quarter of an hour, acquires its full perfection. During the Caterpillar-ftate, it may be confidered as a newly conceived embryo. In that of an Aureli,, it reprefents a child as yet fhut up in the womb, but about to break the membranes in which it is bound up, in order to make its efcape. Lally, the infect, when employed in extricating iffelf from its integuments, refembles the infant juft coming into the world. However, there is this confiderable difference between them, which well deferves attention. The Butterfly does not produce itfelf like our wretched offfpring, weak, tender, and in a manner but half perfected; but, almoft from its firf moment of appearance in this ftate, it is a complete creature of manly age, if I may be allowed the expreffion. and qualified in every refpect to avoid fuch things as are hurful, and look out for thofe that tend to fecure its exiftence, for the fpace allotted by nature, and make ir agreeable.

Whoever confiders thefe particulars attentively, muft obferve, in this poor infect, a great and indeed immenfe degree of perfection, which man, the greateft work of the creation, entirely wants. And this profpect fhould fill us, miferable mortals, with fentiments of the moft profound humility. We fee a little infignificant inlect, diftinguifhed from its laft birth, with qualifications, ornaments, and perfections, which, during our ftay upon earth, however long it may be, we can never flutter ourfelves with the hopes of enioying.

This creature, to fupport life, needs no other food but the dews of heaven, and thofe limpid diftilled juices, which it finds ready prepared for its ufe by the beneficent fun, and plentifully fored up in every flower. No theatrical frene can be imagined equal to the ornaments with which it is cloathed; and that its wings, and the rich com
lours that embellifh them, were beftowed upon it merely for the fake of ornament, appears from its being able to fly with but two, as well as with four wings. The skies are the Butterfly's proper habitation, and the air its element; whilft man, miferable in every refpect, is obliged to earn his bread with labour and cares: he comes into the world naked, and deftitute of all external ornaments, to demand attention; and, born in this wretched condition, he roves about without habitation or fhelter, expofed on the one hand to the heat of the fun, on the other, to the damps and exhalations of the earth, both enemies alike to his happinefs and cxiftence.

Indeed, upon mature thought, we have no caure to be furprifed at this difference. We are at prefent exiles from heaven, our proper home; ftripped of that beautiful cloathing which our firft parents pofferfied. But this is not the only creature, from whence we may draw ufeful inftructions. All other kinds of infects are generated in the fame manner. Not one of them grows the value of a fingle line, afier the half hour that immediately fucceeds their extricating themfelves from their skins for the laft time. We admire with the greateft aftonifhment, how the bodies of the flying infects could be contained in the little skins and membranes, out of which they came to appear in this ftate; whereas the wonder confifts entirely in their expanding fo much, and acquiring fuch perfections in the firft few minutes that fucceed their enlargement.

How then can we avoid crying out, O God of miracles! how wonderfui are all thy works ! how beautiful are the ornaments! how well adapted the powers which thou haft fo profurely beftowed upon thy creatures! They are all, notwithfanding, fubject to decay and deftruction ; and, with all their perfections, fcarce deferve to be confidered as fhadows of the Divine Nature. It is therefore, with the higheft reafon, that a certain writer has faid, That all nature is over-run, and covered with a kind of leprofy. This is her old garment, which the is one day to throw off, and its heavinefs alone is fufficient to weigh down our fenfes, and difturb our reafon, in fpite of all its efforts.
Goedaert defcribes the Caterpillar I have here been figuring, and the Butterfly arifing from it, in the xxi. experiment of the firft part of his natural metamorphofes; but he forgot in his figure the Caterpillar's prickles, inftead of which, he gives it nothing but fimple hairs. He has, befides, been guilty of another miftake, in beftowing breathing-holes on every one of the Caterpillar's rings. Mouffet alfo has favoured us with figures of the Caterpillar, and the Butterfy, and has defribed the Butterfly according to its colours. But Goedaert's drawing of it, deferves the preference by many degrees.
The beauties of the Butterfly now before us, Tab. XXXV. Fig. xiI. is but of a middle rank, if compared with that of many others. Its head is covered with little black hairy and fcaly feathers; the eyes, which take up the greateft part of the head, are thickly guarded alfo with hairs refembling briftes; and they confift of a fub-
ftance
fance which looks like go!d, on account of the brightnefs of the uvea, which is feen through. The thorax and abdomen, are black; but they are covered with hairs of a golden yellow. The legs and horns confift of a black, bony, or horny fubftance, and are adorned alfo with fcales and hairs of a gold colour. The wings look as if they had been flightly wafhed over with a deep red blood-coloured paint; and they have, befides, four great and four fmall fpots of different forms. Near the thorax, the upper wings appear moft elegantly fprinkled and waved with glittering gold; and the lower wings near the belly, are covered with hair of a gold colour. The fpaces
between the fpots of the upper winess inclines to yellow; but near the third pair of tione fpots which lie towards the edges, are two other marks of a fnowy white. The borders of the wings are elegantly indented, and let off with four principal colours, a black, a sky-blue, a peach-blofiom colour, and a yellowith red. The sky-blue, by bending its courfe upon the black, which ferves as a ground to the other colours, forms a beautiful crefcent; whilt the other colours, making fo many circles, feparated by the black ground, heighten the elegance of the difpoftion in a very delicate manner:

C H A P. II.

Containing defcription of the internal paris of the made and fencale Butterfly, defcribed in the preceding chapters.

HAVING defcribed the external and internal parts of the Caterpillar, and of the Chryfalis, and alfo fome of the Butterfly's external ornaments; my next task is to defcribe its internal ftructure; though I cannot fay I have fucceeded perfealy to my wifhes, in examining and invertigating them one by one, as I propofed to myfelf. For, as I did not begin to diffect the infect in this fate, till towards the end of Autumn, and had fuch only to diffect as had been changed to Butterflies within doors, and under my infpection, and had not acquired their full perfection; for this kind of Butterfly outlives the year in which it makes its firft appearance I could not therefore obferve all its parts fo accurately as I wifhed: befides, there was no bright weather during the time my examination lafted; but the air was continually darkened with rain and clouds. However, fome things in my obfervations appeared worthy of notice, which I hall now briefly relate.

On opening the Butterfly's back, there immediately appear in the thorax, fome little wrinkled vefiels, Tab. XXXVI. Fig. I. $a a$, which lie near the gullet, and have their infertions in the forepart of the body. I take thefe little veffels to be the fame with thofe already reprefented in the vth Figure of Table XXXIV. Their beginning is a flender little channel, b, which divides into two fine tubes; and thele tubes again dilating themfelves, c, terminate at laft about the beginning of the fomach, d; and they are fo firmly united and faftened to it, by means of the fat and mufcles, that I have not yet by any means been able to loofen them from that part, or to trace them higher. What greatly increafes the difficulty is, that the beginning of the ftomach itfelf, is here very ftrongly connected. What the office of thore veffels is, and whether they may not be the falival ducts, I cannot take upon me to determine; for I know not how they terminate in front, or whether or no they have a communication with the trunk, e e.

Amongt the curled veffels I have been treating of, appears the gullet, f, which dividing in
the upper part, near the root of the trunk, into two little tubes, conveys to the fomach the juices fucked in by that organ. From the lower part of the gullet near the ftomach, there iffucs a thort and fmall channel, g, which ends in a little flender bag, b. This bag is no other than an air-bladder, into which the air rufhes, whillt the infects food is making its way to the fomach. This bladder is endued with a very confiderable periftaltick motion: it is almoft always found in the Butterfly's back, placed over the ftomach. In the Chryfalis, I found it full of a decp red liquid, as has been already obferved.
The fomach itfelf, $i i$, is ftrangely, altered in regard to Chape, from what it was in the Caterpillar, as before reprefented in the ivth Figure of Tab. XXXVI. It is now entirely fwoln and tuberous, and it refembles an inflated large gut; fo that, on account of its many folds, hollows, and wrinkles, it exhibits a very pleafing fight in the hinder part. It fo much refembles one of the fmaller inteftines, k, full of moft delicate folds, that I cannot take upon me to deternine whether or not it ought to be confidered as fuch, rather than as a portion of the fomach. Under the pyiorus, appear fix inteflina ceeca, or vafa varicona, llill, which are much more filender in this flate, than they were in the Caterpillar, and of a perfecly different form. They are likewife feparated here from the flomach, to which, in the Caterpillar, they always clofely adhered by means of the pulmonary tubes. I have noi as yet been able to find out where and how they terminate in the Butterfly, fo that I fhall only reprefent them here as they appeared to me on this diffection. Under thefe lie the fraller intefines, $m m$, which are tranfparent end full of a globular fubftance. A little lower the gut widens confiderabiy, fo as to form the cloaca, n; then it contracts again, to dilate a fecond time into a lefier finus, 0 , in which it terminates. Next follows the firaight gut, p, terminating in a ring, of a fubfance between bone and horn,' which forms the anus, q, is covered with hair, and drawn up within the abdomen. At the fides of the anus appear. its
proper mafcles, $r r$: their iendons are black and of a fubnance like that of the annus itfelr. The two dilatations of the in eftines, which i have juft now taken notice of, fupply the place of a colon, which appears only in the Caterpillar; for in the Euterfly it is fo transformed, as defervedly to be confidered as a different part. Certainly the furprifing and incomprehenfible changes of parts which we here obferve, fhould engage our utmof attention, though for many reations, yet for none fo much as for this, that they moft evidently demonftrate to the whole univerfe, the excellency of the Great Creator. The conternplation of thefe wonders has of ten led me to confider, whether the entrails of Nebuchadnezzar, when deprived of his reafon, and armed with talons, like a bird of prey, covered wihh hair, fech as is found upon beafts, and condemned to eat graf, in common with the cattle of the field, did not fuffer a change in his internal parts, correfpondent to that which appeared in his external form ; and fuch a change as might fuit them to digeft the food, with which his life was to be fupported, in the courfe of this his moft examplary penance. At leaft there appears an occafional alteration of this kind in the entrails of thefe infects; for, as long as they continue under the form of Caterpillars, and live upon a grofs and earthy food, their entrails are alfo grofs and carthy; whereas thefe creatures, affuming a more delicate form, and beginning to fubfift on a more pure fubfiance, the organs by which fuch fubftance is to be taken in, digefted, and diftributed to the feveral parts of the body, become likewife more delicate, and that indeed to fuch a degree, that the alteration would never be credited, if the eye did not trace its gradations from one day to another.
There is no part of the Butterfly that deferves our admiration more than the trunk *. I have but rudely delineated this organ, becaufe I propofed making many other figures of it, confiderably bigger than the life, which, after all my pains, I have not been able yet to perform, on account of the badnefs of the weather, and the feafon's being now fo confiderably advanced. That extremity of it, with which the Butterfly fucks in its
food, is particularly curions in its conffuction: it confifis of a double tube, divideri, as it appears, into many articulations. This confruction fuits it to a great variety of motions, and in particular, makes it eafy to fretch out, and curl up again. It appears, that when the Butterfly fips up the hemey or liquid fugar upon which it lives, a portion of air mixes will and accompanies this through the trunk to the fiomach. This may be feen by fafening the Butterfly by its wings, with a very fine pair of iron pincers, and uncurling the trunk with a very fine needle, fo as to bring the tip of it to bear upon a blade of grafs dipped in fugar water; for the Buiteifly immediately fucks the nourifhment that is thus offered; and, with the affiftance of a microicope, both that and the air that goes along with it may be traced in their courfe into the body: and this is a very entertaining fight. Indced Dutte:fies may be kept alive in this manner many days together: they will take fo well to this way of feeding, that at latt they will dart out of themflues, without any compulfion, their trunk into the moifened fugar, or honey water, thus offered them. Hence we may guefs how fine and delicatc the mufcles, veins, arteries, and nerves muft be, by which this little organ is fupported and governed. The very extremity of it is of a moftamazing fructure. As for my part, I muft ingenuoufly own, that neither my eyes, my hands, or my head, are equal to the task of infpecting, handling, or perfectly defcribing it : but even this weaknefs is an ufeful leffon, fince I learn by it, that all our boafted knowledge and perfection in this life, is in the main but ignorance and mifery. Let it therefore fuffice, that the things we fee, are capable of conducting us, as it were, by the hand, to the knowledge of a much fublimer being; and let this confideration engage us, to adore the Divine Majefty, according to the perfect rules he himfelf has been gracioully pleafed to prefcribe to us, and to perform, with due reverence, the penance enjoined us for tranfgreffing his commands. This is the one thing neceffary; all elfe is vanity of vanities, and altogether unworthy of our attention.

The genital organs of the male Butterfly.

0N diffecting a male Butterfly of this fpecies, four days after its laft change, the genitals appear perfect in every refpect. The penis, Tab. XXXVI. Fig. II. a, placed near the extreme rings of the body, has on each fide two horny little bones, $b b$, of a pale brown colour, which cover it behind and in the middle. Thefe little particles have an articulation, with a bor-
der, c, of the fame fubfance, which furrounds the penis like a belt There is near the two little horny parts, already taken notice of, another that is hooked, $d d$, and behind, is divided in two; by the parts of the penis, e. On raifing the two firft little horny bones, there appear two crooked little claws, whofe bufinefs it is to grapple, and firmly hold, during the act of co.

[^61]pulation,
pulation, the loweft abdominal rings of the female Butterfly. This action is particularly obfervable in the common white Butterflies; for the female of this fpecies very often flies about with the male faftened to her, his claws or hooks in this part grafping her genital parts clofe to him, his head hanging down, and his wings quite motionlers. The mufcles of thefe parts of the penis appear between, and have their infertions in, the little horny parts already taken notice of. On the infide, near the two little grappling claws, there appear fome other parts belonging to the penis; but I could not examine them with the due exactnefs. The penis confifts partly of a bony and partly of a nervous fubftance. The former refembles, in figure, the little bone we find in the penis of Dogs; and has at its extremity an opening, thro' which the foft and nervous portion of the peris is erected at the time of copulation. The root of the penis is likewife of a nervous fubftance, f, but more compact than that portion with which the erection is performed. Next we obferve the bafe of the penis, $g g$, containing in one part a white fperm, and in another part a thick fluid, divided into very minute granules ; which, on letting it out by wounding the penis, flines like a white or filver fand, i. I leave to others to inquire what this laft fubftance may be. The penis appears, in this part, very elegantly folded and curled up intotwo branches, k, which afterwards form four others, whofe origins are all very firm and ftrong. I am not difpofed to affirm any thing as a certainty, concerning the nature of the efe laft portions. The two flendereft branches, which appear moft clofely twifted one with another $l l$, look like feminal veficles; for they contain a white fpermatick liquid, confifting of very minute grains, connected together by a membrane. The two other branches may
pafs for the vafa deferentia of the infea, $m m$; and the nodule, or knot, n, in which thofe branches terminate, for the teflicle; fo as to make it probable, that the Butterfly has only one tefticle. But thefe are only conjectures on a fubject, concerning which 1 dare not advance any thing as a certainty.
This globulat portion, which I call the infeet's tefticle, is of a pale gray, with a tinge of a purplifh colour, and it is furrounded by two coats. The outer coat is very fine, and is united with a great many pulmonary tubes. The inner coat is much thicker, and yields, on diffection, a foft, claminy, and glutinous fubfance, no way fluid. Through this there run a great number of pulmonary tubes, of a bright filvery whitenefs, variegated with fome purple freaks. Perhaps repeated diffections may crable us to determine, whether or not this portion is to be really confidered as the Butterify's tefticle. Thefe parts are fo firmly connected on every fide, by means of the fat, and of the nemerous pulmonary tubes, as to make it a very difficult talk to difplay them. The rectuan, of itraight gut, opens under thofe particles belonging to the penis, which confirt of a fubflance bet ween bone and horn, already taken notice of. The pulmonary veficle, that is fituated forsvard's near the ftomach, appeared to me full of air. The ftomach itfelf looks like a bunch of grapes; and clofe to it lie the ceeca, or clofed guts. The finall gut is conifiderably longer than the ftomach; and ends in fome dilated parts.

The preceding obfervations I made the fixth of September on a Butterfly; which appeared, for the firf time, as fuch that very day,! and had been changed from a Caterpillar into ant Aurelia the 17th of the preceding. Auguft; fo that its change, from a Caterpillar to a Butterfly, took up nineteen days.

The anatomy of the ovary of this Species.

AFew days after, I opened a female Butterfly, refembling fo exactly, in its internal appearance, the male before diffected, that at firtt I imagined I had again got a male under my hands, till the thicknefs of the body indicated the contrary ; and foon after the difcovery of the oviducts confirmed me in my laft opinion of the infect's fex. There were, as yet, no eggs in thefe ducts, fo that they appeared very like the genitals of the male ; and, indeed, it was fome time before I could be fure that they belonged to a female. Many of the infects, whofe date of life is of fome length, have no eggs in the beginning, or very imperfect ones. I have indeed obferved, that almoft all infects die very foon after they have prepared their fperm; unlefs when their fperm, though vifibly formed, has not acquired its full growth; or when the infects are to furvive the winter, in order to lay their eggs the enfuing fpring; as is the cafe of the Butterflies which I ami now defribing. Nor does it appear pro-
bable to me, that cither the eggs of infects, or the infects themfelves, in the Caterpillar or Aurelia-ftate, can endure that rigorous feafon; for which reafon the little creature, now perfect in the Butterfly-form, is doomed to the hardfhips of this fevere trial. Hence it is, that at the approach of winter they take refuge in the hollows of trees, in flore-houfes, and fummerhoufes in gardens, where their blood is condenfed by the fucceeding colds, like olive-oil at the fame feafon, and becomes, in a manner, quite caked; fo that they neither move nor eat till the returning warmth enlivens them. This I have often obferved. They even difclarge: no excrements all the time. I have made many carious experiments upon Butterfies in this condition; but it would take up too much room to give an account of them in this place.

There are fix oviducts, Tab. XXXVI. Fig. iiI. a a a a a, in the female Butterlly now under our infpection, and thefe all terminate in one common paffage, $b b$; fo that, in this part,
the oviducts refembles a fingle trunk, which is a hollow channel, ordained to receive the eggs in their defcent from the others. On each fide of the channel are five little tubes, $c c c c c^{\circ} c$, with their extremities clofed, Thefe open into the paffage, and difcharge upon the eggs, in their courfe, a glutinous matter, which makes them ftick to the nettles upon which they are dropped. The conftuction of thele little receptacles of the vifcous matter is extremely elegant: they confift of various dilated tubercles, with lateral ramifications, which are likewife dilated again, and ferve, in my opinion, to fecrete and elaborate the glutinous fubftance here fpoken of. On the other fide of thefe ducts there arifes, from the ovary, a much more flender tube, d, terminating in an oblong bag, e. This contains, as it were, two different fubftances. The contents of the upper part, f, is yellowifh; and, on endeavouring to extract it, the membrane, conftituting the bag, fhews itfelf to have fome ftrength. As for the yellowifh fubftance, fticking to the infide, it looks very like the fat of the Butterfly. The fubftance, enclofed in the lower portion of this bag, refembles a limpid humour, and appears as fuch through the tranfparent g membrane that forms the bag. The other end of the little tube, juft taken notice of, opens at its extremity into the external parts of the ovary, or the vagina, h, which has a little elegant horny bone, of a bright red colour, that extends from the womb to a confiderable height within the vagina, and has an opening, which I have marked with the letter i.

All thefe parts of the ovary adhere fo firmly together, by means of the pulmonary tubes, Fig. Iv. $a a$, and fat, $b b b$, that I have often loft my defire of endeavouring to difplay them,
together with the hopes of being able to effect it: but patience, in the end, gut the better of thofe obftacles.

Thefe little creatures are very readily killed, by dipping them into firit of wine. They likewile die in a very fhort time, on putting them into a box containing Brazil-fnuff. I have obferved alfo, that other infects are fubject to the fame fate; though, at firft, it was by meer chance that 1 difcovered it.

I have thus briefly recounted what I have been able to difcover, concerning this little creature, in the fpace of a few weeks. But if I had been mafter of more leifure, and the autumn had not come upon me fo foon in the operations, I fhould be difpoled to mention, more at large, many other things worthy of admiration, which fell in my way; though I have not yet examined them with the accuracy they merit. Such, for example, as the true manner of the Butterfly's wings accuiring their fize with fuch an amazing celerity; as well as the art by which the tubercles, bladders, and puftules may be imprinted on the wings; how the Caterpililar may be delayed and haftened in the courfe of its change; by what means all the colours, which appear through the fkin of the Aurelia, may, in that fhort time of their appearance, be fo firmly fixed as never afterwards to grow and fpread. I had befides propofed reprefenting, a great deal larger than life, all the fpots, lines, and colours of this little creature; as likewife its hairs, feathers or fcales, and pulmonary tubes, the articulations of its legs, and many other myfterious works: of nature obfervable in it ; all which I have elfewhere promifed that I would fome time or another defcribe.

The End of the wonderful Hifory of the Diurnal or Day Butterfly.

An Animal in an Animal; or the Butterfly bidden in the Caterpillar ; wbich is a third particular example, ferving as an additional illufiration to the fecond method of the third order or clafs of natural tranfmutations.

ТАв. XXXVII.

THOUGH, by the particular experiments before advanced, it has been juftly fhewn what changes of the third order are peculiar to the firft and fecond fpecies or method of transformation; I fhall here, by way of further proof defcribe and figure the manner in which I can find a Butterfly enclofed and hidden in a Caterpillar, and perfectly contained within its fkin. This I demonftrated, in 1688, to thofe eminent perfons Magalloti and Thevenot.

But before I procced to this, it is neceffary to obferve, that the Caterpillar, Chryfalis, and diurnal Butterfly, which I exhibit in thefe figures, are the fame fpecies with thofe which the diligent Goedaert has figured Tab. XI. Part 1. And the often celebrated and learned Mr. Ray, in his treatife on the plants owi ng about Cambridge, Page I 34, has
particularly defcribed a Caterpillar of this kind.

Tab. XXXVII. Ne. I. I exhibit the egg of the faid;Butterfly in its natural fize. This egg, as I have defcribed in general before, is really the Caterpillar itfelf, enclofed in this condition, and invefted with a membranaceous cover, or integument. Indeed, this Caterpillar lies hid in its membrane, in the very fame manner as the Nymph or Chryfalis does in its integuments. I have before treated this matter at large; and the whole will be again more accurately debated under the account of the fourth order: therefore] thall not here exhibit a more ample explanation thereof. I am now only to demonftrate clearly, that the Caterpillar is the Butterfly itfelf, and that this Butterfly lies enclofed in the Rkin of that Caterpillar, in the fame manner as the Caterpillar does in the cover or

Tkin of its egg. And all thefe things will appear plainly from what thall be faid immed diately.

Fig. i.
The egg of that Butterly, which is reprefented in N^{0}. VI. is exprefied in this firft enlarged figure; in the exact manner wherein it appeared under the microfocope. It is obferved hence to be, as it were, confructed of fifteen fmall ribs; each of which manifently throws a flade on the adjoining membrane; fituated between thofe ribs: and hence it is, that, to a perfon looking at the egg, it appears, about the fhady parts, to be divided by as many other fimalier ribs. Thefe ribs, and the membrane of the egg between them, are alfo divided croflivife by regular grooves or channels. It may be alio feen how all thefe ribs concur, as it were, in a center toward the fmaller cxtremity of the erg, and extend themfelves beyond its furface. This egg, when arrived at its full increase, is of a yellowifh colour; but it is white, when it is frefh in the oviduct. That is, I obferve that thofe eggs in the oviduct, which are firlt to iffue forth, are perfect; but thofe that pofiefs an higher place are fimaller, though they are of the fame figure with the former. Thofe that are fituated higheft in the oviducts, appear fquare; and fuch as lie yet in the extremities of the oviducts are fo wonderfully fimall, that at length they become entirely invifible. The fame is likewife obferved in the eggs of another Butterfly of this kind, but fmaller in the body and wings. I faw thofe laying their eggs in the month of May, and fattening them to cabbage-leaves, in fuch a fituation as I have herein delineated the egg of this larger Butterfly ; that is, fo that the ribs run upwards, but the globular bafis poffeffes the lower parts: the fame thing holds with refpect to thefe eggs. As the Butterfies, iffuing from there, are found all the ycar, it is probable they lay their eggs at various times. This, however, feems to be done chiefly in Autumn, when we obferve their Caterpillars in much greater numbers than at any other feafon.
N^{c}. II. I exhibit the caft and forfaken coat of what is called the egg, which a little before, I have obferved, was the real Infect or Caterpillar of the Butterfly; fince this Caterpillar, like the Chryfalis, is found enclofed in its 隹in, even within the egg.
No. III. The Caterpillar of the Butterfly, or the Butterfly lying concealed in the form of a Caterpillar, is here reprefented as it appears at the full term of its growth. In order to demonftrate clearly and diftinctly, that thisCaterpillar is the real Butterfly, and the latter again is the Caterpillar itfelf; I fhall firft defrribe the external figure of that Caterpillar, which conceals the Butterfly within its fkin. As the celebrated and learned Mr. Ray has, before me, very clearly and perfpicuoully performed this tafk, I thall therefore make ufe of his words, defcribing the Caterpillar in this manner. "If we confider the bignefs of the Ca-
" terpiliat that feeds on cabbage, it is of à " middle fize, between the largeft and frmalleft " kinds; and is covered with whitifh, thin,
" fhort hairs, no where cluftered together or " entangled. The colour of the body is va" riegated, and compofed of black, yellow, " and blue; whereof the yellow defrribes " three lines as long as the body, that is, one " in the middle of the back, and the two "others on the fides oppofite to each other.
" Between thefe lie the black and blue: the " former painted in fpots, the latter more " diffufed. Thefe black fpots alfo are protu" berant above the reft of the body; and out " of each of their centers, where they appear " blacker than elfewhere, they emit the hairs " before mentioned. The head likewife has "t the three aforefaid colours mixed together, " and it is covered with the like hairs. The
" legs, being fixteen in number, are orderly " difpofed into three claffes: the firft of which "clafs is compofed of fix, annexed to the " head, near the breaft : the fecond confirts of " eight, on the belly; and the third of only "two, joined to the extremity of the body: "The firtt fix legs have each a claw ; the "other ten have each many crooked ones." This is enough, as to the outward form.
In order to difcover plainly that a Butterfly is enclofed and hidden in the flkin of this Caterpillar, the following operation muft be ufed; One muft choofe a full-grown Caterpillar : tie to its body a finall thread, and then put it into boiling water, and take it out foon after: Thus its external fkin will feparate; becaufe the fluids, between the two fkins, are by this means rarefied and dilated, and therefore they break and feparate both the veffels and the fibres, wherewith they were united together. By this means the external fkin of the Caterpillar, being fpontaneoully feparated, may be eafily drawn off from the Butterfly, which is contained and folded up in it. This done, it is clearly and diftinctly feen, that, within this fkin of the Caterpillar, a perfect and real Butterfly was hidden. Therefore the fkin of the Caterpillar munt be confidered only as an outer garment, containing in it parts belonging to the nature of a Butterfly, which have grown under its defence by flow degrees, in like manner as in all other fenfitive bodies that increafe by accretion.

But as thefe limbs of the Buterfly, which lie under the fkin of the Caterpillar, cannot, without very great difficulty, be difcovered in the full-grown Caterpillar, unlefs by a perfon accuftomed to fuch experiments, becaufe they are very foft, tender, and fmall, and are moreover complicated or folded together, and enclofed in fome membranaceous integuments; it is therefore neceffary to defer the execution of the operation, juft now propofed, until the feveral parts of the Butterfly become fomewhat more confpicuous than at firft, and are more increafed and fwelled under the fkin, by force of the intruded blood and aqueous humour. This is known to be the cafe, when
the Caterpillar ceafes to eat, and its fkin on each fide of the thorax, near under the head, is then obferved to be more and more elevated by the increafing and fwelling limbs, and hlews the appearance of two pair of prominent tubercles.

That it may be known at what time the changes in the Caterpillar comes on, exactly and regularly, I fhall proceed to explain the fourth figure, N^{e}.IV. This defign exhibits the Caterpillar fivoln, $a b$, all about the fecond and third rings of the body; whilft, in the mean time, the reft, that is, the lower part of the body and the tail, are confiderably diminifhed and contracted, c. This is the beft fate in which to fkin the Caterpillar, which I would have well obferved; for it is for this reafon only I have faid before, that, in order to make the intended experiments, one muft chufe a Caterpillar when near the time of changing its fkin : fuch is that which I delineate in this figure.
To explain in a clearer method this fundamental propofition, that the Butterfly is contained in the Caterpillar; or, otherwife, that the Caterpiliar is the Butterfly itfelf; we muft carefully obferve, that after all the limbs of the Butterfly are fufficiently increafed within the external fkin of the Caterpillar, wherewith they are yet kept invefted, the Caterpillar at length, when about to undergo its change, betakes itfelf to fome retired place, in which it may fecurely caft off its outward fkin. With this defign the Caterpillar firft fixes itfelf, by only a thin and flight web, to a board, tree, plant, wall, beam, N^{N}. IV. $d d$, or any other folid fubftance; and after this, fixing the claws of its two hinder legs in this web, e, it immediately fins very carefully a ftrong double thread, or ligament, which it draws acrofs its back, and faftens it with the former fuperficial web againft the beam or wall in two diftinct places, $f f$: fo that the fore-part of the Caterpillar's body hangs in this ligament as in a wreath; whilft, in the mean time, the hinder part lies fixed in the fuperficial web, faftened to the beam.

In confidering this Caterpillar, it muft be carefully obferved, that it lays the faid wreath fomewhat obliquely, and about the fore-part of its body. And hence it happens, that when the fkin of this Caterpillar, lying under this wreath, is turned back and caft off, the wreath itfelf is not thrufted more towards the hinder parts than to the middle of the body; it being there faftened a little to the foft fkin, and dried. Hence this remarkable advantage arifes to the Caterpillar, when ftript of its fkin, that it hangs, as it were, in equilibrio. The Caterpillar, having thus difpofed all thefe matters with this appearance of judgment and difcretion, is obferved to ceafe all action and motion of its limbs, and to compofe itfelf in the moft profound rett.

Immediately afterwards, or within the fpace of twenty-four hours, about the fore-part of the head, it may be obferved, that its limbs, being now fully onlarged under the fkin, begin,
by the very fow and gentle tranfportation and appulfe of the blood and humours, to be diftended, extended, and inflated in fuch a manner, as to fwell even beyond the level of the fkin, and, by thus raifing the fkin, it ftretches. it, and makes it thine. On the other hand, it is obferved, that, at the fame time, the hinder parts of the Caterpillar's body decreafe in fize in their turn, in the fame meature, and exactly in equal proportion, and become regularly fo much fmaller. Hence all power of motion is immediately taken away from the fixteen legs of the Caterpillar, fo that it can afterwards neither creep nor ftand.

At length this inflation or fwelling of the limbs, and other parts, which are at this time forming themfelves, and, as it were, budding out into a Chryfalis, proceeds fo foit, that the external skin openis on the back, and afterwards in three diftinct places in the head, and begins to be drawn off, and rolled away from the fore towards the hinder end of the body: and, by this means, all the limns enclofed within prefent themfelves to view. Thefe limbs and parts, being then difpofed, according to a certain neceffiry order, and unchangeable rale of nature, the creature affumes the form of a Chryfalis, reprefented under No. V. This Chryfalis is an infect without motion; and indeed it cannot be otherwife, for its limbs are all incapable of motion: this is neceffarily occafioned by the impelled blood, and other humours, diftending them: add to this, that the limbs are dravn downwards by the feparating skin, and a great part of them likewife are extended. Nor indeed is this skin drawn off eafily; nay, not without great labour and difficulty: for all the complications of fibres, by which the upper is joined to the under skin, are then broken. For this reafon alfo, the Caterpillar draws itfelf at that time one way and another, with an undulatory motion, and by the tremulous palpitation of the rings of its body. By this violence, at length, a limpid kind of ichor or humour is diffufed between thefe two skins, and the Caterpillar then, at length, cafts off the the old one. This procefs is perfected very expeditioufly, after the opening is made in the fkull. Thus I have briefly, but exactly, defcribed how this Caterpillar affumes the form of a Chryfalis; the feveral parts of which are however feen with greater difficulty, than thofe of the Nymph.

On the other hand, when this Chryfalis, or rather, to fpeak properly, the involved Butterfly, is drawn out of its flin, by means of hot water, it has a quite different form, as may be feen in Figure 11. where it is reprefented laid on its belly : and this is yet more perfectly illuftrated in Fig. III. which prefents it lying on its back, thewing thus all its limbs. But becaufe thefe delicate parts cannot be fo well diffinguifhed by thofe whoare unaccuftomed to fuch referarches, in order to reprefent them the more plainly, I have delineated them, and marked them with diftnet letters in Fig. Iv. It may eafily be obferved there, how that Butterfly, which 1 have drawn out from the fkin of the Caterpillar, is pruvided with all thoie members,

The HISTORY of INSECTS.

members; which are feen in the Butterfly, delineated in No. VI. As the two horns on the head, $a a$; the double curled proborcis or trunk, placed in the lower part of the head, between the horns, b; and four wings fituated on the two fides of the thorax, $c c$; between which are likewife feen fix legs; and laftly, the abdomen divided by its annular fections, $d d$. All thefe things appear fo clearly and diftinctly to the eye, in a natural example, that there is not the leaft room to doubt the truth of the fact. This is the very creature intimated in No. V. and called in that ftate an Aurelia, or a Chryfalis; tho' it fcarce expofes to our view any parts, which agree with the creature of the fourth Figure: yet it has no other than the fame limbs and parts, only they are difpofed in a different manner, as I fhall explain hereafter. It will then likewife appear that thofe, which I reprefent feverally in this Tab. XXXVII. are all but one and the fame creature, only hidden, as it were, under different forms; and this is likewife the cafe in man, if we confider the original egg, with its coverings, the navel ffring, and -its feveral changes; as I fhall explain at large hereafter.

To fhew moft diftinctly the difference between the Butterly drawn out of the fk in of the Caterpillar, and reprefented in Fig. Hir. and the fame Butterfly, when called a Chryflis, or Aurelia, as delineated in No. V. It muft be obferved, that the real difference confifts only in this, that the limbs, that is the legs, wings, \&c. are ranged and difpofed in the Chryfalis, according to a certain order and neceffary rule; and, on the other hand, that thefe parts are by art rudely unfolded, and turned out in the Butterfly, drawn from the fkin of the Caterpillar, and removed from their natural fituation, which they obtain firf under the fkin of the Caterpillar, and afterwards in the Chryfalis.

Hence the Chryfalis, No. V. is nothing elfe but the Butterfly expreffed in Fig. 111. the expanded parts of which are folded, and difpofed among one another in a different form and order.

It munt be at the fane time carefully obferved, that thefe limbs, and other parts, are found to be of three diftinct magnitudes: for, in the Caterpillar, No. IV. the limbs are ftill fmall, and concealed entirely under the fkin; and then in the Caterpillar, or Buterfly, ftripped of its outer 1kin, Fig. 1II. they are extended much larger ; and lafty, in the Butterfly, under No. VI. they are larger. Yei this obfervation muft be particularly attended to, becaufe the three creatures, juft now mentioned, are one and the fame, and their limbs and parts alfo are the fame. But as to the larger or fmaller fize of them, that depends only on the blood and humours, which being moved in the limbs, has at length extended them as much as poffible. In the creeping Caterpillar, it was not poffible for thefe members to increafe much : and in the full-grown Caterpillar, they could not be produced further than the fkin was capable of being diftended: but under the form of a Chryfalis, there has been a confiderably greater extenfion ; fince the external flin is
there caft off, and thefe parts have acquired another form. However, they are not yet arrived to their full fize; fince the laft fkin, which the Chryfalis mult throw off, could not be extended further than the folds and wrinkles, into which it was contracted, could give way by unfolding or difplaying themfelves. It happens in this flate, that the creature neceffarily wants all that motion, which it had before under the form of a Caterpillar, and muft reft for fome days, until the blood and humours, with which its limbs were filled and diftended, are diffipated fufficiently by means of an infenfible evaporation, and then the faculty of moving is reftored to it.

Hence, therefore, it is certainly and clearly evident, that one animal is here, as it were, hidden or enclofed in another: may, that the Caterpillar and Chryfalis are the Butterfly itfelf, but enclofed or covered by an hairy and cutaneous coat ; and fo altered by the different difpofition of the parts, that it camnot yet be known. This is the fact which I propofed to demonftrate. And nothing further now remains, but to defrribe the difpofition of the limbs under the fkin of the Caterpillar, No. IV. for which purpofe, I muft compare thofe parts one with another, as they are conflituted in the Chryfalis, under No. V. for thus it will be evident, how the members of the Butterfly, drawnout of its fkin, are difpofed as well in the Caterpillar, as in its Chryális.

As therefore the difpofition and arrangement of the parts in the Butterfly-Chryfalis, is found, in No. V. to be worthy of the greateft admiration, I fhall obferve, that thefe fame parts are not lefs admirably difpofed in the Butterfly, when drawn out of its fkin, Fig. 1v. this perfect animal being at all times hidden and enclofed in the Caterpillar, No. IV. The legs, which in the Butterfly, at the time it lies in the Chryfalis-ftate, are ffretched between the horns, and placed on either fide in the breaft near the trunk, are in the Caterpillar fomewhat curled and complicated under the fkin of the fix fore-feet of that crea. ture: for, as the impelled blood could not equally extend them in that part; they the:efure appear there fomewhat wrinkled and inflected: that continues until the fkins are at lengh caft off, and they are again cxtended as much as poffible, in the Butterfly-Chryfalis; and whilft the fkin is outwardly drying, they are joined one wich another.

The wings, which in the Chryfalis-Butterfy, are evidently extended in each fide of the b eaft near the horns, are placed under the fkin of the Caterpillar, near the under legs of the firf class; nay, their ends are enclofed in the f kin of the fame legs. This ought to be carefully obferved; fince this is the only reafon why, when the Caterpillar is changed into a Chryfalis, the limbs are neceffarily thus, and not otherwife, difpofed: for thefe legs and wings are, at the time the old fkin is cafting off, drawn downwards, together with the fkin in which they lie, and are then regularly difpofed on the breaft, near to and between each other: and this is performed with fuch great art, and in a mamner to fingular, thit
this fubject coly, might fupply matter for a whole treatife.

The homs, which in the fripped Butterfly, that is already changed inte a Chryfalis, are extended and fituated between the legs and wings on each fide on the breaft, fo as to touch at the fame time the trunk with their extremities, are, in the Caterpillar, hidden under that part of the head which conftitates the $1 k$ all ; and there thenting themfelves up out of the head, are very clofoly folded tocether, and, by a particular convolution aftervards, reprefent a ferpentine winding. Their extremities are likewife clofely twifted into one. Hence the horns in the Chryfalis could be extended above the breaft, on the catting of the fkin. This I have already, with refpect to the Chryfalis of the coloured Butterfly, more accurately demonflated, magnified in the explanation of Tab. XXXV. It will be proper to compare this hiftory with that, and to read thein together, becaufe the one throws great light upon the other.

The trunk, which, in the Butterfly Atripped of its 1kin, and changed to a Chryfalis, is fretched along, and fituated on the middle of the breaft between the legs, horns, and wings, is found to lie wonderfully complicated, under the Ikin of the creeping Caterpillar, between fome briftly and articulated hairs, fittated near the lower part of the mouth. Thefe very briftly hairs, and the trunk, are alfo found regularly difpofed in their refpective places in the Aurelia, after changing the fkin.

Laitly, the belly and tail, which in the Butterfly, when it reprefents, Tab. XXXVII. No.V. a Chryfalis, are found hortly contracted and drawn together, are in the Caterpillar, No. IV. extended through the greateft part of the fkin of the body. In the hidden Butterfly, or creeping Caterpillar, No. III. all that part of the body chiefly, which is extended from the fore-legs to the hinder extremity, muft be accounted the belly and tail; and at the time this creature is changed into a Chryfalis, it lofes all its ten hinder legs, without exception.

But, as it is not enough for me to have exhibited and deferibed the moft profound myfteries of nature, as I have done hitherto; fo, at the fame time, I think myfelf obliged to communicate to the reader, the management by which I was enabled to find out in the hidden Butterfly, the difpofition of its limbs under the flin of the Caterpillar: funce thefe limbs are there foft, tender, and almoft fluid like water ; and therefore; when any one draws off the fkin from them, they are moft eafily removed from their natural fituation.

In order therefore to provide againft this, and that the parts of the Butterfly, Fig. IV. hitherto defcribed, which lies under the skin of the $\mathrm{Ca}-$ ferpillar, No. IV. may be viewed to fatisfaction, and feen as they are naturally difpofed, we nuof take care, that thefe parts be firft hardened under the skin, to fuch a degree, as that they will not lofe their natural fituation afterwards, when the skin is taken therefrom. This is done very conveniently, if a Caterpillar, which is going
immediately to caft its skin, be put into a bottle full of a liquor compofed of equal quantities of fpirit of wine and vinegar; for, as the Caterpillar is very eafily killed by this liquor, its limbs alfo will harden therewith, in the fpace of fifteen or fixteen hours. Therefore, if the Caterpillar be afterwards carefully skined, the difpofition, and feveral foldings of the limbs of the enclofed Butterfly, may be very beautifully feen, as they lie under the skin of the Caterpillar.

I fhall now proceed; and, in order to fet this matter in the cleareft light, I fhall exhibit alfo, by diftinct letters in Fig. v. all thofe limbs and parts of the Butterfly which I have demonftrated in Fig. Iv. or thofe that are already defcribed in the Chryfalis under $\mathrm{N}^{\circ} . V$. That is, I flatl now likewife fhew, in the Chryfalis or Butterfly, which hath fpontaneoufly changed its fkin, all the parts which I have before fhewn in the Butterfly, drawn out of the Akin of the Caterpillar by art: for the creature, which I reprefent in Tab. XXXVII. Fig. v. is the fame which I have already delineated under N°. III. In this are firt feen the horns, Fig. v. a a a a diftorted from their natural fituation: then are obferved the two parts of the trunk, which, arifing below out of the head, and running over the breaft, are terminated, b, on the lower part of the body; where they are likewife, but not much, deflected or bent out of their natural fituation. Next are difcovered, on each fide, two legs, which, being removed out of their natural fituation, I have placed on each fide of the upper wings, $c c$. The other two legs are not here reprefented, fince they may be plainly and more eafily exhibited lying under the trunk and wings in the infect itfelf, than they can in this figure. Under thefe two pair of legs the upper and lower pair of wings come likewife in fight, though only a part of the lower appears to the eye, $d d$, becaufe they are covered in great part by the upper pair. All thefe four wings are likewife drawn out of their fituation. The head and eyes, e, are feen above, and the tail and the annular divifions of the belly below, f. However, one can fee all thefe things but obfcurely, for two reafons: firt, becaure thefe limbs, being placed in this manner in the Chryfalis, are difpofed in a peculiar order; and becaufe they are, in that ftate alfo, grown fliff and hard, by the power: of the air. But it is eafy to difoover the fame limbs of the Butterfly in all the Aureliæ, and to feparate them from each other; provided one has firft fteeped thein for a little time in hot water.

I hall now likewife exhibit, in Fig. vi. all the limbs and parts hitherto enumerated, as well of this as of the creatures reprefented above, fince they are all but one and the fame creature. There is this difference fhewn in the prefent figure, that I have ftript the limbs, which I now prefent to view, of their laft $\mathrm{Akin}_{\mathrm{i}}$, wherein they were kept fill rolled up: fo that we here now view this infect clad, as it were, in its perfect outfide, which is never caft off, and is abolifhed only by death. But as in caft-
ing the laft fkin, there is as much art obferved as in the drawing off of the external skin of the Ca terpillar; I fhall here briefly explain the whole order of this laft change, or the fudden fivelling out of the limbs.

In the v_{1} Figure I exhibit the Butterfly, the limbs of wihich were before reprefented in the iv Figure, and as having put on the form of a Chryfalis, ceilineated under No. V. And this Chryfalis being very near i:s metamorphofis, is in that ftate every moment ready to caft its laft skin. If any one defires to know, by what means it can be known, that this change is very near; let him obferve, that this may be certainly known beforehand by thofe black fpots, which are obferved to appear through the skin of the Chryfalis, at the ends of the two upper wings; and therefore I delineate onie of thofe pellucid fpots in the left wing of this Buterfly-Chryfalis.

In order to underftand the method, whereby this laft change of the skin is performed, it is neceflary to know, that after the enclofed limbs of the Butterfly, have by degrees acquired their full ftrength, by the help of an infenfible perfipiration, it at length, by agitating and moving itfelf, and by drawing its breath with greater force, breaks open the external skin with which it is furrounded, in three or four different places, and difplays loofe and free its hitherto united parts.

When the invefting skin juft begins to open, it is obferved, that the ftrength of the enclofed Butterfly is likewife increafed. And hence it then immediately thrufts its horny trunk and legs out the skin, and fixing the claws of its feet to the adjacent objects, or to its own caft skin, it thus, as it were, by force, difengages itfelf from this laft covering. Thus at length it creeps out of its skin, formed in the manner exhibited in the ninth Figure. Nor does its appearance then differ much from that which it had, when drawn out of the skin of the Caterpillar by art, as may be feen by the Figure.

I defire leave to obferve here, that the creature farce retains this form a moment; for as foon as the skin is regularly broke open, and the Butterfly juft begins to creep out of it, immediately its wings begin to increafe, and they grow wonderfully faft. Before I treat this matter more fully, I muft obferve what I have hinted at in the preceding fheets; that is, that the limbs, and efpecially the wings of the Butterfly, are of three diftinct fizes: they are fmalleft when they lie in the Caterpillar, delineated under No. III. and then in the Butterfly, drawn out of the skin of the Caterpillar, as in Fig. IV. they were obferved fomewhat larger; and laftly, they have acquired their third and full magnitude, when, by the impelled blood and humours, they have been orderly fituated in the Chryfalis, delineated

No. V. But even then, they could not exiend themfelves further; becaufe the laft skin that remained to be caft off, did not permit it.
Theiefore, whea thefe lan skins are caft off, it is at length feen, how there wings increafe, fwell, and arc expanded in a moft wonderful manner, by the force of the blood, humours, and impelled air: this is exhibited in the $\mathrm{x} \mathrm{Fi}_{-}$ gure. When any one has for fome time confidered this mater in the Butteffy itfelf, he will fay that it is like a drop of water; which, when it falls on dry paper, dilates the paper, and makes it unequal, thick, and full of holes. In the furne manner, indeed, thefe wings, which are in the beginning rough and full of wrinkles, and unequal; fold and expand themelves, until at length they become finooth, and they are then twelve time times as large as they were in the beginning. This may be feen in No. VI. where I reperefent the wings fully and perfectiy expanded, and in their natural fize.
What deferves moft admiration is, that all this accretion of the wings, great as it is, does not take up the fpace of a quarter of an hour. And befides, what is very confiderable is, that if at this time a part of the growing wings be cut off with fciffors, they manifently difcharge blood more or lefs copious, according as the wing is wounded at a lefs or greater diftance from the body. This blood, which is yellowifh, diftils in frall globules out of the wounded veffels, and the wing never afterwards expands itfelf properly. But thefe wings, being once wholly extended and dried, will never afterwards difcharge any blood, though they be wounded ever fo offen. Hence it is evident, that this creature, in the fpace of a quarter of an hour, is fent forth from the Chryfalis in every refpect perfect *, fo that it never afterwards wants a further accretion, nor is fubject to the mifchances of infancy.
In what manner thefe wings are in reality expanded, and how their black fpots are diffufed from fmall into large ones, and how all the colours of thefe wings are increafed, and are all together equally changed by the fame motion; thefe, with other innumerable curious and wonderful myfteries of nature, I fhall, if it pleafe God, explain hereafter in a treatife exprefly on that fubject: and I fhall then fhew how one may view, as clear as the light at noon, the refurrection of the dead, and the happy flate of thofe that are brought to life again, in this little infect.
I fhall finally in this place briefly lay before the eye, the limbs of the Butterfly, and the increafing wings in a rough draught, and afterwards conclude this hiftory. Firft, in the head are feen two reticulated eyes. Over thefe are obferved two horns, Fig. xI. a a, divided into their joints, and adorned with white, yellow and

[^62]blackinh faly feathers. Between thefe, one may perceive how the Butterfly rolls its trunk, b, which it fome time afterwards hides between the forks. In the thorax, the two upper wings $c c$ prefent themfelves, which are almoft every where covered with white little feathers, and in feveral places are variegated with thinner, feather-like yellow fcales: even the black fpots, which adorn theirextremities, are compofed of fimilar fmall feathers. The fame likewife is the condition of the two under wings, $d d$. Six legs likewife appear, eece, which are increafed to a much greater length than they had either in the Caterpillar, or in the Butterfly, drawn out of that skin: but in this laft change of the skin, the legs are increafed no more ; fince they have already acquired their full bignefs in the Chryfalis. Laftly, the tail and abdomen are feen covered with their rings, haiss and feathers, f. It is likewife obfervable,
that all there colours may be wiped off the wings in fuch a manner, that only a thin, delicate, and tranfparent membrane remains. And now, can any perfon, who rightly confiders thefe divine miracles, help admiring them, and agreeing, that they are moft truly fuch? Indeed this remarkable hiftory very frongly evinces, that the moft wife and merciful God, is manifeftly known from his vifible works: fince thofe inftances of this power which are remote from our fight, become evident from thofe we fee; that the eternal nature of God is therein difplayed clearer than the meridian fun. Their offence therefore is inexcufable, who have either lived inftructed by the law of nature only, or have known the law of Mofes, and the gorpel of Chrift ; for, according to thefe, all men fhall be judged, and fhall be either abfolved or condemned.

The F OURTH ORDER.

> Of natural changes, or flow accretions of the limbs.

HA VING now explained the more fimple and intelligible modes or methods of thefe changes, I thall proceed to the compound, and more obfcure, which feem indeed wholly incomprehenfible; but in reality, all the infects of this fourth order, of which I am now to treat, the changes of which I have hitherio obferved, are changed into real Nymphs, entirely like thofe of the firit fpecies or method of the third order. Therefore we may refer all the Nymphs belonging to this fourth order, to the Nymphs of the firft mode of the third order: for though the Nymph of the fourth order, does not fo clearly exhibit its limbs to view, as that of the firft and fecond order; yet they are more difinctly vifible, than in the Chryfalis belonging to the latter mode of the third order. Hence this Nymph mult be rightly and properiy reckoned among thofe, which I have delineated and defrribed under the firft method of the third order ; fince the former exhibits its limbs as clearly as the latter.

To thofe who examine this Nymph more accurately, there likewife occurs a confiderable and important difference, which confifts in this, that this creature does not caft its skin, but is changed within it, and without parting with it, into a Nymph. Hence it is, that on account of this difficulty of diftinguifhing the parts of this Nymph, I am obliged to add a fourth order, to comprehend this peculiar kind; though in reality the intrinfic Nymph of this fourth order, is exactly like the external Nymph of the third order, and is of the fame nature and difpofition with the latter, without any difference.

In order to place this matter in as a clear a light as poffible, it is neceffary to obferve carefully, that even in the worms, which undergo the changes of this fourth order, the limbs increafe flowly under the skin, in the fame manner as in the already mentioned. Nymphs of the
third order; and are there difpofed in like maniner and order under the skin, as they are found arranged under it, in the Vermicles or Worms of the third order; but there is, however, a confiderable difference, by which, as by a criterion, or certain fign, one may diftinguifh thefe two Nymphs of the different orders from each other. It confifts in this, that the Nymphs of the fourth order do not at all exhibit to view their limbs, nor make them vifible at any time : for, as the Vermicles, or Worms, which are changed into Nymphs of the third order, caft their skins, and afterwards prefent to outward view all their limbs and parts, which had been before hidden under them; on the other hand, the Vermicles or Worms belonging to this fourth order, do not caft, but retain the faid skin. And hence, as the Nymphs of the third order, when they are afterwards about to put on the form of real Nymphs, caft only one skin; thefe interior Nymphs of our prefent fourth order, at the fame time caft off two skins or membranes, whereof the outer is much thicker than the inner. This is what conftitutes the effential difference I have named, between the Nymphs of the third and thofe of the fourth order, which are perfectly alike in all other refpects.

It is very wonderful here, that fome of the Vermicles, or Worms, which are referred to our fourth order of changes, preferve their original and external form entirely unaltered; whilft, on the other hand, others in great part lofe it. But thefe, though they do thus far deviate from them, yet they never entirely lofe all the marks of the former Vermicles, or Worms; for they retain, as it were, the figure of Vermicles, or Worms: and in this very figure, or, to fpeak more forcibly, in their proper fkin, which they do not caft off, they become immoveable ; and there fhooting out new limbs, they at length put on the form of real

Nymphs.

Nymphs, within their uncaft fkin: And this change is, therefore, almoft like that undergone by the Vermicle, or Caterpillar, which is changed hidden within its web, and out of fight, as is properly and truly alledged by Mr. Ray. Vid. Catalog. Plant. circa Cantabr, nafcent, P. 137.

Since, therefore, the Worm either retains its own proper figure entirely, or deviates a little from it; but which ever of the two forms it puts on, yet always increafes into a Nymph within its uncaft flkin. Hence it is, that I think it very reafonable to denominate this change by the appofite appellation of a NymphVermicle; for the Worm, having ftill retained its outer form, acquires the true nature of a Nymph in its uncaft fkin. Before I further explain in what manner thefe worms; which either retain their form or partly lofe it, are conftructed internally, I thall offer fome general obfervations on the eggs, finall animals, Worms, and Nymphs in each of the four orders, and compare all thofe proceedings of nature together. This, indeed, will contribute greatly to the underftanding of this our fourth order.

With refpect to the eggs of the Infects in the firft order, it muft be obferved, that the fmall animals enclofed in them are like the Nymphs of the fourth order; and are furrounded or covered with their regular invefting fkin, in the fame manner as the Nymphs of that order are involved in the fkin of their Worms: fo that, by reafon of this integument, one can by no means diftinguifh the feveral parts. But the Infects of the firft order, without any intermediate clange, directly iffue perfect out of the fhells of their eggs; nor are they cloathed like Worms firft, nor do they attain the full term of their increafe before they are hatched. And hence it is, that they are not afterwards changed into immoveable INymphs, but only caft their laft fkin: and it is therefore for this reafon I call this change, at that time, a Nymph-Animal.

Moreover, in regard to the eggs of the fecond order, it muft be obferved, that the Worms contained in them are likewife invefted with fuch a fkin as thofe of the firft order, and that there are likewife properly Nymphs in it; but they iffue from thence imperfect, in refpect to all their limbs and parts, which afterwards infenfibly increafe externally in their body: and, for this reafon, the Worm precedes that change of them, which I call the Nymph-Animal. And hence this fecond order confiderably differs from the firft, in which the animal iffues perfect out of its egg. But thefe two orders agree alfo in this, that, in both of them, the animal increafes into a Nymph, whilft it is moving and walking about ; and this Nymph alfo is, without lofing its motion, at laft changed, and it cafts a fkin.

The eggs of Infects of the third order are likewife invifible Nymphs, which are placed there without food.: fo that, in this refpech, all thefe three fpecies of eggs agree. But the Worms, which, in this third order, creep out
of the eggi, differ ftill more, in regard to the perfection of their parts, from the Worms of the fecond, than thofe of the fecond order do from the frnall Animals of the firft. For all the limbs of the fmall Animals of the third order do not grow out of the fkin, but, in a concealed manner, under the fkin; for which reafon they are removed from our fight, until at length the creatures, having caft their fkin, and changed their original form, prefent all thefe things to view externally. Befides, about this time, thefe Infects entirely lofe all motion; and then put on a-new the fame habit which they had before in the egg. This change I call the Nymph and Chryfalis, as being a third fpecies, different from the firft and fecond order. However, all thefe three orders refemble each other in this, that the eggs of each are Nymphs at firf: and.the fecond order yet fpecifically anfwers to the third in this, that, in each of them, the change into a Nymph is preceded by a Worm or Caterpillar.

Lafly, the Worms of the fourth order are, in their eggs, likewife plainly Nymphs, whofe limbs and other parts are fo involved in the fhells of the egg, that they can by no means be diftinguifhed: wherefore thofe Worms thus far agree with the eggs of the firft, fecond, and third order. But thefe differ from the little creatures which iffue from the eggs of the firt order, in that they break, as imperfect Vermicles or Worms, out of their eggs. They likewife deviate from the Worms of the fecond order, in that their limbs do not grow externally, but within their fkin: and, in this refpect, they again exactly anfwer to the Wormis and Caterpillars of the third order. However, they differ alfo from thofe of the third order, in that they never prefent their limbs, in this flate, to outward view; but are changed into Nymphs within their fkin, which they never caft off, but become immoveable therein. By this means they, in reality, affume a fecond time that form which they before had in their eggs; and therefore I call this change the Nymph-Vermiform, as being entirely different from that of the walking Nymphs in the firft and fecond order: though, with refpeet to all the parts, it anfwers to the Nymph of the third order, only that it is invifible. It agrees likewife with the fecond and third order, in that the Worm precedes the final change: whereas, on the contrary, there iffue out of the eggs of the firft order of Infects creatures like their parents, nor does the Worm-ftate precede their Nymphs.

This matter being underfood, it is clearer than the light at noon, how far thofe eggs, fmall Animals, Worms, and Nymphs of the firft, fecond, third, and fourth orders agree, and in what they difagree one from another; and alfo what is accidental, as it is called, in each, and what is effiential to their feveral natures. Indeed, when thefe things are rightly obferved, there is nothing in our fourth order of tranfmutations which may not be clearly and eafily undertood; fince the whole confifts
in this, that the Nymph remains hidden under its flin, which it never cafts; nor does it even, at any time, prefent itfelf externally to view: that is, this Nymph lies hid in its Nymph, in the fame manner as the little creature of the firt order does in its egg, in which it is likewife an invifible Nymph; or as the Worms of the fecond and third order, which are likewife invifible Nymphs in their eggs; or, laftly, as the Worm of this fourth order, which is likewife an invifible Nymph, while in its egg. The eggs of all the four orders entirely agree, in general and in particular, with the change of the Worm of our fourth order into a Vermiform Nymph.
Having confidered fufficiently what has been faid, I fhall proceed to explain how it happens that the Worms, belonging to this fourth order of changes, do more or lefs deviate from the original form of the Worms, though they do not by any means caft their fkin. In order to explain this clearly and diftincly, I muft firft obferve, that fome of the Worms which belong to the fourth order of changes, are provided with hard, tenacious, and flrong fkins; and others, on the contrary, have thin, foft, and flexible fkins. This diverfity of fkin not only makes the tranfmutation of form more or lefs remarkable, but renders it fo obfcured in the Worms invefted with a foft fkin, that it becomes entirely incomprehenfible and inextricable. On the other hand, when the Worms are covered with a hard fkin, we fee nothing of this kind happens; for as their external tenacious ikin cannot form and accommodate itfelf to the internal change, which the body of the enciofed Nymph undergoes, that 1kin neceffarily retains the figure of a Worm, and refembles it as exactly as if it were fill alive.

When the Worms, which I have referred to the firft fpecies or method of the fourth order of changes, have caten fufficiently, and their limbs are increafed to the proper degree under the fkin, they feek a proper place for themfelves, wherein they may fafely and quietly iffue into a Nymph. After this they reft for fome time, until they infenfibly lofe all their former motion. But they are not even then confiderably contracted, nor do they become fmaller, or are they changed in form ; though, in the mean time, they put on the form of a real Nymph within their uncaft fkin.

Hence, therefore, we draw this important conclufion, that the infenfible perfpiration, which I have afferted to obtain univerfally in the Nymph, may, in this example, be feen, as it were, with our cyes: for, in the Worms of this firft fpecies, it is obferved, that the Nymph fills the whole fkin of the Worm. But this Nymph afterwards, changing colour in a manner not perceivable by the fenfes, and contracting itfelf by degrees, inwardly recedes on each fide from the extreme ends of the f kin, and confequently then fills only a part of it. And this procefs continues, until the Nymph, being more and more contracted, by reafon of the evaporation of the fuperfluous
humours, manifenly forms in the uncaft fkin of the Worm two very confpicuous cavities, one towards the head, and the other towards the tail and belly of the faid Nymph; and thefe cavities become afterwards larger and larger, until the creature has acquired its perfect frength. The very experienced Dr. Harvey. has obferved fomething like this, concerning the little cavity in hens new-laid eggs; for this alfo is infenfibly inlarged afterwards, by the evaporation of the fluids.

Wherefore, when the skin is hard and tough in thefe Worms, or when it grows fomewhat hard at the time the Worm is inwardly obtaining the form of a Nymph, the former figure of the Worm muft neceffarily remain entire: whilft, in the mean time, the little creature puts on the form of the Nymph within the hardened skin, from which it is more and more infenfibly feparating; as I fhall afterwards very clearly demonftrate, in the figures of my fourth order. The feveral obfervations which I fhall fubjoin to thefe, will indeed render this matter yet more clear and intelligible; for I prefume boldly to appeal to thofe obfervations particularly, fince I have employed thereon all the induftry I was capable of.
As to the fecond method of the changes in this fourth order, it comprehends thofe Worms which are covered with a foft skin ; and it offers one thing to be confidered particularly, which is, that the external skin accommodates itfelf to the body of the Nymph which is inwardly changed. But becaufe this internal tranfmutation of the little Body or Nymph becomes of the fhape of an egg, in many fpecies of thefe Vermiform-Nymphs, therefore the external skin alfo, which is not caft off, then neceffiarily acquires an egg-like figure. By this means thefe Worms alfo are changed into fuch Nymphs as do not caft their skin. The Nymphs, which are fubject to this method, are very complicated and difficult to be known, beyond all the reft of the fourth order, as their Worms have a very delicate and tender fkin. Thefe Nymphs, for that reafon, recede lefs from the form of their Worms than thofe in which their fkin is fomewhat thicker; fo that the hardnefs or thicknefs of the fkin makes the change plainer, or more obfcure to us.

However widely thefe Nymphs differ from the prior form of their Worms, they all preferve various traces of that form. In the firft place, they retain the fkin uncaft; and the annular incifions, the head, tail, and the reft, are preferved or altered, according as they more or lefs deviate from the form of Worms. Some alfo have appearances like legs, horns, and other marks. For thefe important reafons, I give them all promifcuoufly the name of Ver-miform-Nymphs; though I very well know that they have been called eggs by fome induftrious fearchers into nature, as Mouffet, Gocdaert, the illuftrious Mr. Ray, and lately by the very learned Francis Redi, as if no diftinct limbs could be obferved in them. But are not thefe the very Worms themfelves, which have
within
within that skin fprung up, or budded into Nymphs, by means of the accretion of the Himbs? For what reafon then, or with what right, can we call them eggs? But, befides all this, the gentlemen now mentioned do not confider thefe egess as real animals, but only as fhells filled with a liquid, out of which the animals are at length to be generated by a ftrange and miraculcus transformation. Hence we alfo obferve, that Mr. Ray alfo, in his catalogue of the Cambridge plants, with great reafon doubts, whether the Chryfalis be hidden in the egg which they fpeak of; at the fame time confeffing, that they want a proper word to exprefs this transformation. As this author afferts a little before, that thefe eggs have the fame relation to the Flies as the Aurelia have to Butterflies, he certainly commits a great error: for the Aurelia is the infect itfelf; but thefe eggs, as they are called, are only the Worm's skins unfeparated, in which is contained not a Chryfalis, but a real Nymph; which clearly and diffinctly reprefents to the life all its limbs, as may at any time be demonftrated by us. To this we are to add, that there is no total tranformation in this egg, as they imagine to be the cafe in the Chryfallides. However, it is fufficient for me to have fet forth the matter as it is : for I would by no means enter into difputes about words, but would give each its natural fignification, provided the eggs, as they are called, be referred to the fourth order of difagreeing tranfmutations, which is the moft worthy of notice in all nature; for in this proper diftribution of things confifts the great utility of the prefent work.

In proceeding to elucidate this obfcure order of changes fomewhat more, I muft repeat, that thefe Worms, which undergo this particular change, do not put off, but abfolutely retain, their skin, under which their limbs are infenfibly increafed and brought to perfection; and therefore, if that skin be tender, it accommodates and contracts itfelf to the figure of the enclofed Nymph. For the fame reafon aifo, as the old skin is preferved, the original rings, which, like fo many fmall joints, divide the - body of the Worm, may be then ftill feen therein; though, in the mean time, thefe incifions or rings, in fome cafes, appear to be obliterated, or nearly fo, in the skin, This holds chiefly, when the incifions eitluer have not been 'very diftinct in the Worm itfelf, or when a very thin skin, every where entirely obedient to the inwaidly hidden Nymph, is fo extended there'with, that the incifions or inflexions of the body cannot be any longer known. This I have exemplified in Tab. XLV. Fig. xxvir. and xxviit.

I have obferved alfo, that the skin, which -is not caft off, in fome of there eggs, as they are called, has been fo accurately fitted and accommodated, all about the body of the Nymphs contained within, that it diftinetly and externally reprefented the three principal
divifions of the body; that is, the head, thorax, and belly. And hence it is, that fome of thete Nymphs are obferved to be, as it were, annulated; and others are without rings. This has likewife been partly obferved by the before celebrated fagacious gentleman. Thus I have briefly explained all thofe things which I thought neceffary to be taken notice of, before I undertook to define this fourth order.

I now therefore proceed, and fhall direct all my labour to make manifeft, as clearly as I can, the fupendous works of the moft adored and all-wife Creator, which have been hitherto, to our fhame, but little known; that we may therefore love God, our Creator, with the greater and more ardent zeal, and behold him with higher veneration. We can neither jufly love or reverence God, fo long as we are darkened with our ignorance. Let us, therefore, give praife and thanks to the Supreme Architect for his unmerited favour, fince he alone has lighted, and laid before us, the cleareft fire in all nature: a light, which has not only eafily difcovered his moft wife providence and infinite power, in thofe wonderful means which he makes ufe of to defend and preferve thofe things which he created; but has alfo produced thofe things fo openly to the view of all men, that its fplendour cannot be obfcured by any laboured arguments of human origin. We thus fee, indeed, no more than the furface, or, as it were, the fhadow of the wonderful works of God delineated here, or by any other. And this ought, indeed, to be the greatef encouragement to us, that we may indefatigably exert ourfelves in thefe refearches, and rather feek for the caufes and effects of things in nature herfelf than in our ftudies. Indeed, moft people are at this time fo blind, that they imagine no truth arifes from any other fource than out of their reafonings; to which they contend, place fhould be given as to matters which furpafs even nature. Indeed, we cannot know natural things but by their effects, being incapable of comprehending their caufes.

Let us return now to what we propofed; and let it be obferved, that our fourth order of changes confifts only in this, that the Worm, having quitted its firf form, which it had in its egg, wherein it lay, like a Nymph, without food, infenfibly acquires, by force of the aliment it is afterwards fupplied with, other limbs and parts, arifing by accretion under its skin ; and afterwards, at length, in this its skin, which is never caft off by it, as it is by other creatures that are changed into Nymphs, it affumes the form of a fecond Nymph, and for the firft time lofes, as it were, all its motion. This, however, is in a few days reflored to it, by the evaporation of the fuperfluous humours: fo that the Worm, then laftly difengaging itfelf from thefe skins, caft two skins together; and now difplaying itfelf with pride, in a more elegant garb, and become mature, as it were, for propagation, it immediately fhews itfelf ready to perform this, the great bufinefs of its life.

A catalogue of the infects referred to the fourth order or clafs of natural changes, which we call the Vermiform Nymph.

AFTER having fet forth, with all the perfipicuity and diftinction I have been able, the four orders of changes which I have eftablifhed, and before enumerated the infects of the fecond and third order, I now proceed to recount thofe creatures which I obferve to belong to the fourth. A great number of thefe IThave preferved in my Mufeum.
Firft, I refer to this fourth order the eggs of infects in general: not only thofe, which produce a perfect creature according to the firft order, and thofe which, in the fecond order, contain a Worm ; but alfo thofe which, in the third and fourth orders, produce a Worm or Caterpillar. For I obferve, that all thefe creatures and the Worms are difpofed in their eggs and skins, nearly in the fame manner as I have faid the Nymph of the fourth order, a little before defcribed, is in its uncaft skin. Even thofe little creatures, which iffue perfect or imperfect out of their eggs or Chells, caft two skins at the fame time : and this has appeared to me very evidently in fome; nay, I can feparate even the external from the internal in fome of them, as I hall fhew hereafter in my figures. From this the reafon is evident, why 1 fay that thefe infects lie in their eggs like Nymphs, and are as much removed from our view as the Nymphs of our fourth order, juft now defribed; that is, as I have already obferved, the external skin, in each cafe, prevents the Nymph from being feen and known.
Of thofe eggs, which, in my firt order or clafs of changes, I called Oviform-NymphAnimals, and, in the fecond, third, and fourth orders, Oviform-Nymph Vermicles; I preferve a great many fpecies, vaftly different from each other, not only in fhape, fize, and colour, but in their origin likewife, being, as I have already obferved, the produce of different infects. Particularly, there are in my collection fome very minute Flies, inmediately fprung from the eggs, which the Moths faften with a kind of glue round the branches of trees, in form of a ring. Hence it plainly appears, that the eggs of fuch infects belong to the firft mode or method of the fourth order.

Having faid thus much of eggs in general, I now, in the fecond place, and in a more particular manner, refer the Worms found in our privies, or neceffary-houfes, to the fame order, and the fame mode of change, as, on their alteration to Vermiform-Nymphs, they lofe nothing of their original fhape; but are only covered with a hard and fubborn skin. I can produce that fpecies of thofe Worms, and of their Vermiform-Nymphs, from which the common Flies of necefiary-houfes proceed;
and have therefore given, in the XXXVIIIth Table, drawings of this infect in the Worm, Nymph, and Fly-ftate, befides one of its eggs, which are very remarkable, drawn from a fpecimen I keep amongft my other curiofities of this kind.

Thirdly, I place in this order the VermiformNymph of the Gadfly, as it perfectly retains the form it wore in the Worm-ftate. The XXXIXth, XLth, XLIft, and XLIId Tables, with their explanations, give a fatisfactory account of every thing for which this infect is particularly remarkable, in difpofition, fhape, and changes from a Worm to a Fly; including the figures of the apparent Nymph, and that of the real Nymph, which the apparent Nymph includes. This Fly, as Ariftotle rightly obferves, proceeds from a kind of broad and flat water Worm; the fame with thofe infects which Aldrovandus, without knowing that they produced the Gadfly, has defcribed by the name of Water-worms, or Inteftines. I preferve four fpecies of this Worm, with the Flies to which they change; as likewife an apparent Vermiform, or worm-like Nymph, of a very fingular fhape, and the real Nymph, extracted by diffection from the infect in that motionlefs condition. I have frequently met with this kind of Fly, about the end of fummer, in the flowers of the garden-parfnep ; though, at the time when I formerly made my felect obfervations, I could not difcover what their food was.

I likewife reckon of this order the Vermiform, or worm-like Nymph of the Tabanus, or Breezefly; though I am, as yet, at a lofs for its* origin : but I have great reafon to believe, that the manner of its becoming a Fly is the fame with that of the Afilus, or Gadfly. It is very remarkable, that nature has given thefe infects an aculeus, or fting, as well as a trunk; fo that they may either make ufe of the trunk to procure the honey, dew, and other juices which fpontaneoufly offer themfelves upon plants and flowers; or of the aculeus, or fting, to fuck blood of fuch creatures as they are obliged to kill or wound to feed upon. How admirable the mercy of their Gieat Parent, in having fupplied them with this double refource in their neceffities! Gnats feem to partake alfo of this advantage; but as to other infects, which feed upon blood, fuch as Bugs and Fleas, I muft refer, for the fhifts they can make, to future experiments. Another thing remarkable in there infects is, that the honey-juices they fuck up with the probofcis, or trunk, are always accompanied by a quantity of air, which may be very eafily feen, efpecially in the trunk of the Butterfly.

[^63]In this order alfo I rank the Horfe fly, particularly fo called, of which I have, as I think, feveral different fpecies. I cannot indeed poffitively affirm, thas they all properly belong to it ; for to do that, I hould have many more obfervations, which I. muft leave to be made by others that can take due pains, and have more liefure.

Fourthly, I place in this order the Vermiform Nymph of the ftinglefs Bee, or Mufcaftercorariae, or Dung fly, of Goedaert ; tho' it agrees with the laft mode or method of this order ; for its Worm has a much more delicate skin, than the Worms hitherto taken notice of as belonging to the former mode; fo that its Vermi-form, or Worm-like Nymph, differs greatly in fome parts from the form of the Worm in which it before appeared. This Worm is beft diftinguifhed by the extraordinary length of its tail. It is produced from eggs which the Fly, to which it turns, depofites alfo in neceffary houfes. Amongft the Flies to be feen in fuch places, fecimens of which I preferve in my Mufeum, there is one of which 1 have now been fpeaking, with feet, horns, and tail, and likewife its Vermi-form Nymph with the fame parts. All thefe little creatures are feparately exhibited in Tab. xxXVIII.

Fifthly, I refer to this order the Vermi-form nymph of the Acarus, which exhibits, though fomewhat obfcurely, the fhape of its Worm; for as its skin is very tender, it contracts itfelf fo as to appear externally of an oblong round figure like an egg. I can oblige the curious with a view of this Worm's Nymph, the skin it cafts, and the Fly it produces; and for the prefent, they may amufe themfelves with Tab. XLIII. where thefe curiofities are all reprefented as big as, and alfo bigger than the life, and with the feparate defcriptions that I have given of them. One thing very remarkable in there Flies is, that in its act of copulation, the penis of the male receives into its cavity the vulva of the female.
Sixthly, I count of this order the Vermi-form Nymph, of a certain greenif Worm without legs, that lives upon the leaves of cabbage, and of which I intend to give a hiftory in its proper place. In the mean time, I prefent the readers with figures of the Worm itfelf, its true Nymph, and the Fly iffuing from it, in Tab. XLV. Fig. xxvi. and following figures. This Worm in the Nymph-ftate lofes more of its form than the Acarus, as it has a more delicate fkin; but this particular will hereafter be taken notice of in the hiftory of the infect.

Seventhly, I give in this order, which I have eftablifhed, all thofe Vermi-form Nymphs, or, as fome call them, eggs of Worms, which are nothing but the Worms themfelves contracted into the form of an egg, and are very prepofteroully thought to proceed from putrified animal fubftances. Such Worms, after lofing all motion, change to true Nymphs within their external skin; and fo refemble Vermiform Nymphs; from which in a few days, there proceed a great number of different kinds of flies. Nor do thefe flies differ only from each other, but likewife the Worms,
from which they originally, and the Vermi-form Nymphs from which they immediately proceed, have the fame variations; for fome of there Nymphs are in appearance more like eggs than others, in proportion to the delicacy of the Worm's fkin which produces them, or to the refemblance which the Worm itfelf has to an egg.
All thofe Worms void their excrements on the flefh upon whicli they feed, which not only makes fuch fleh putrify, and flink the fooner, but increafes its natural fench and putrifaction. Redi has defcribed many fpecies of thofe Vermiform Nymphs; but he calls them all eggs, without making the leaft mention of their being the real Nymphs of Worms, changed to that flate, without cafting their external fkin. However, we muft allow him the honour of having proved, by the mof folid arguments, that thefe Nymphs, or egos, as he calls them, are not generated of putrifaction.

Eighthly, I innclude, in this foutth order, all thefe Worm-like, or, as they are called egg-like Nymphs, produced from contracted Worms, which we know, by obfervation, conceal themfelves in the bodies of living Caterpillars, out of which they again eat their way. Thefe Worms then lofe all motion without cafting their external fkins, fo as to affume the appearance of Vermiform or Worm-like Nymphs; and, in a few days more, they turn to many very different fpecies of Flies. I muft own it an error, to give the epithet of Oviform or egg-fhaped to every kind of Nymph produced in this way; for, there is, on the contrary, fo great a variety in their forms, that it would be the bafinefs of an entire treatife, to give feparate defrriptions and figures of them all.

I do not find that thefe Worms void any excrements, after quitting the bodies of the Caterpiliars upon which they feed; they immediately contract themfelves, and become motionlefs within their external fkin, till at laft they are thus under its coverture changed into true Nymphs, in every refpect like thofe already defcribed, as belonging to the firft fpecies or method of the third order. This kind of mutation in infects, performed by their contracting themfelves into the Nymphform, after gnawing a paffage out of the bodies of Caterpillars, into which they had infinuated themfelves, has not as yet, as I know of, been obferved by any writer.

I have allo remarked, that there Worms have fometimes remained in the hollow of the Caterpillar's body, after they had entirely devoured its flefh, and thus turned to Flies, afier paffing thro' the Nymph-ffate; fo that, in order to appear, they muft have forced a paffage through three different fkins, namely the membranaceous ikin immediately covering the Nymph, the external fkin of the Worm from which they originally proceeded; and lafly, the fkin of the Caterpillar, whofe carcafs they had preyed upon.

For want of fufficient experiments in an affair that would require a great many, I cannot as yet take upon me to determine, how the Worms, of which I have been fpeaking, come to be found in the bodies of Caterpillars; whether it be that they are introduced into them in
the form of eggs, or whether they proceed from them as from an internal principle? A great deal may be faid in favour of either fyftem; it is therefore neceffary, that I fhould defer, for fome time, the difcuffion of this important queftion, as I cannot yet produce any ocular demonftration to fupport either opinions. Neverthelefs, I muft obferve to fuch as are fond of natural hiftory, that it is impoffible for them to gain a competent knowledge of the difpofitions and changes of Caterpillars, without feeding on purpofe a great number of thofe infects of the fame fpecies, in order to have an opportunity of tracing them through all their changes: nor will this care alone be fufficient, for nothing but repeated diffections can give any fatisfactory idea of their internal parts. The naturalift, who fhould think of fucceeding in any other manner, would lofe his pains, and remain in perpetual ignorance.

Ninthly, I reckon, among the creatures of my fourth order, thofe Vermi-form Nymphs, or, as they are otherwife called Eggs of Worms, which are produced by thofe contracted Worms, which, it is pretended, iffue from the putrified bodies of Aureliæ. We fee great numbers of different kinds of Flies, iffuing from fuch Worms, in a few days after they become motionlefs, within their fkins, and thereby affume the appearance of thefe Vermi-form nymphs we have been diffecting. Mouffet was the firt who took notice of there kinds of mutation. After him Goadaert treated of them; and fince him Redi, and many other authors. I have given by itfelf, Tab. XXXVIII. Fig. x, a drawing of one of thefe Worms, and likewife of one of the Vermi-form Nymphs, whofe refemblance to an egg is merely fuperficial.

I place alfo in this my fourth order, the Vermiform Nymphs proceeding from Worms, which, contracting themfelves within the bodies of Aurelix, without cafting their external fkin, thus acquire the fhape of an egg; this is a thing which I very feldom have had an opportunity of feeing; for thefe Worms generally open themfelves a paffage out of the Aurelia, as foon as they have acquired their full growth, as I have thewn already. There is fufficient reafon why they fhould do this. The Chryfallides are generally fomewhat moift, which makes it neceffary for the Worms contained in them, to leave their bodies, and find out a more convenient fituation for their external fkin to harden, in order to their becoming Nymphs. But whenever it happens, that when all the moifture of the Chryfalis is exhaufted by thefe Worms as their food, fo as to permit the fkin of the Chryfalis itfelf to harden and grow dry, then the enclofed Worms remain within it till they kecome Nymphs, and from Nymphs, Flies, to appear abroad; in which form they muft alfo make their way through three different fkins , as well as the Flies generated in the bodies of Caterpillars, whofe labours on the like occafion, have already been taken notice of.

All thofe Nymiphs of our fourth order, hitherto taken notice of, change in the end to different kinds of Flies, as has been already obferved, and I preferve a great variety of the Flies pro-
duced from them, among my other natural curiofities.

Having thus enumerated the infects that properly belong to my fourth order, I fhall finally add to it all the Nymphs of thofe Worms of the firft, fecond, third, and fourth orders, which are changed into the faid form of Nymphs, within the bodies or fkins of other Worms, of Caterpillars, Nymphs, or Chryfallides, as likewife thofe changed within the feveral excrefcences of trees and their leaves, in form of warts, galls, and the like. However, I muft obferve, that I do not rank fuch Nymphs in the fourth order, as having any further right to it, than that of becoming Nymphs, like the Worms which really belong to it, in an obfcure, hidden, and myfterious manner. A perfon muft have great experience in there little creatures, to be able to fpeak of them with certainty in their whole hiftory.

In the eleventh place, I likewife reckon of this order, all thofe genuine Nymphs which are to be found within the body or fkin of any Worm or Caterpillar, and are the offspring of Worms, which have preyed upon the flefh of that Worm or Caterpillar in which they are found. Thus it now and then happens, that a Worm or Caterpillar, not having ftrength enough to caft its fkin, becomes hard and firm, without lofing any thing of its external form ; in which cafe, the worms that have hid themfeives in it, devour all its flefh, and being freed in this manner from any neceffity of altering their fituation, they change there to genuine Nymphs, and afterwards to Flies. Sometimes a fingle Worm of an extraordinary fize poffeffes himfelf in this manner, of the whole body of another larger Worm, and without ever leaving it, becomes therein a Nymph, and afterwards a Fly. But if the Caterpillar fhould retain vigour enough, notwithftanding fuch cruel treatment, to throw off its external fkin, and reach the fate of a Chryfalis, then the body of fuch Chryfalis becomes the fcene of all the foregoing mutations.

What ought to be confidered as a greater paradox than all, is, that thefe Worms fometimes defert the body or fkin of the Caterpillar, upon which they had hitherto preyed, and upon deferting it, enclofe themfelves in an oviform web, within which, they at length change to real Nymphs, and afterwards into Flies. I hall have an opportunity of treating this fubject more at large, when, if it pleafe God, I come to publifh my felect obfervations; fo that at prefent, I do not pretend to treat of this change in a particular manner.
Twelfthly, I refer to this fourth order thofe genuine Nymphs, which become fuch from Worms, within the fkins or bodies of Chryfallides, in the fame manner with the Worms of our third order, and firft method; but I mean only fuch Nymphs as are found fingle in the Chryfallides corroded by them.

I have obferved, that thofe Nymphs are of many and various kinds, and indeed fo different one from another, that it would be a difficult task to defcribe them fo as to be diftinguifhed
each from the reff, without the help of particular figures. There is one thing remarkable in fuch Nymphs, which is, that we may eafily obtain a full and fatisfactory view of their change from the Worm to this fate, and of the admirable order obferved by nature, in affecting this tranfmutation, fo as to trace with our eyes the mutation hitherto confidered as a metamorphofis of the creature, from a Worm to a flying Infect.
I cannot therefore fufficiently wonder, that none of the authors, whofe works I have read, have taken any notice of the Worms now under our confideration, or given us any drawings of the Nymphs of fuch Worms. Goedaert, it is true, was acquainted with the Flies, to which they at laft change, and has given us pretty good figures of them. To defcribe thefe Flies in a few words, I need only remark, that I have already taken fufficient notice of them under the name of the Pfeudo-fphecx in the detail of my third order, to which they properly belong: in that place too, I obferved, that Goedaert's devourer or deftroyer of Spiders, fhould be looked upon as a Fly of the fame tribe.

I fhall now deliver the method of viewing thefe moft fingular and interefting changes. Care muft be taken to obferve when the Chryfallides harden, and change colour; juft at that time they are to be broke open, and the enclofed Worm taken out, and put into a little box, where you may very diftinctly and confpicuoully behold its gradual change to a Nymph, and from a Nymph to a Fly. 1 hhall, at another time, with God's permifion, and with a view of promoting the glory of the wife and powerful Creator, endeavour to fet in the cleareft light, among my felect obfervations, the manner of fuch mutation; and likewife to fhew what a great quantity of excrements this Worm voids in the mean while; and how it fometimes is obliged to fpin a web, with many other particulars very well worth the attention of the curious. At prefent, I have not oppportunity to dwell any longer upon this fubject.

In the thirteenth place, -1 count of this order thofe Nymphs which become fuch, and afterwards Flies, from fifty to two hundred together, in the fame manner with the Nymphs laft mentioned, within the body, or skin of a fingle Chryfalis, and proceed originally from a great number of little Worms that have preyed upon this Chryfalis. Thefe Flies alfo were known to Goedaert, though he was altogether ignorant of the true manner of their generation, or the real nature of the Nymph, by which alone thefe hitherto fo perplexing appearances can be folved. Nor fhould I have fucceeded any better than thofe who have gone before me in this province of Natural Hiftory, had I not, purfuant to the advice of the immortal Harvey, called anatomy to my affiftance, upon every occafion, and laboured with infuperable patience to difcover, and diftinctly comprehend, the true principles of thofe
furprifing changes, as often as there was a poffibility of difcovering and comprehending them. Without experiments, we cannot expect any clear and certain knowledge in matters of this kind, whether our conclufions are drawn immediately from our own reafonings concerning the things before us, or from inductions built upon their refemblance to others, we are equally liable to go aftray, and miftake the productions of our own imagination for the reprefentations of nature, as fubfequent experiments generally prove. Defcartes therefore had great reafon to fay, that he fet more value upon the folid experiments of mechanicks, than the batren and fine-fpun contemplations of philofophers. The creatures juft taken notice of, as appearing in great numbers within the fkin or body of a fingle Chryfalis, may be traced through all their mutations, in the fame manner with thofe that require each of them an intire Chryfalis for this purpofe; and certainly a favourable opportunity of viewing, though but once, fo great a miracle in the works of nature, muft afford the higheft pleafure to thofe who are defirous of being acquainted with fuch wonders: but now they may eafily procure themfelves this fatisfaction, as I have, I flatter myfelf, removed, though not without great pains, the many obftacles which hitherto oppofed their defires.

I place alfo in the fourth order, thofe genuine Nymphs, which become fuch from Worms of a particular kind, found within the bodies of larger Vermiform Nymphs, in the fame manner with the Worms of the firft mode of the third order. This I had an opportunity of obferving in the Vermiform Nymph of the common Fly of our neceffary-houfes; and the fame is to be obferved alfo in the infects of the firt order.

In the fourteenth place, I muft add alfo to this order, all thofe genuine Nymphs which we find in the middle of fruit, in the warts of fhrubs *, and the leaves of plants, in rotten parts of wood, and in other obfcure and fecret places. I have collected fome of there Nymphs, and the Flies into which they change; as alio the feveral fubftances in which the worms are found; all which the curious are welcome to examine, that the adorable Author of fuch wonders may receive an additional tribute of praife and glory. I preferve likewife fome of thofe Flies which proceed from the little Worm, that Redi found within the excrefcencies of willows, without being ever able to difcover their changes. On opening the bodies of thefe Flies, we meet with eggs, which perfectly refemble thofe found in the fame excrefcences; from whence, as weil as from many other obfervations, we may fairly conclude, that all the Worms found in vegetable fubftances, are originally depofited there by the parent infects in the form of eggs. For a particular illuftration of thefe things, I muft refer to the explanations of the XLIV. and XLV. Tables.

[^64]In the fifieenth place, I muft infert in this order, all thofe infects that change, as it were, into a kind of web. To this clafs or order, more particularly belong thofe little Worms, whofe web is fo fine, tender, and delicate, that a perfon muft have great practice in things of this kind, to open it without breaking. Within this web, the Worms change to very fmall Nymphs. I therefore refer to this order Goedaert's Flies, produced from the genuine Nymphs of Worms, which the faid author tells us in his xyth Experiment, Part I. crept out of the body of a Caterpillar that fed upon cabbages, and then made themfelves each a neft of a yellow filk, in which they afterwards fhut themfelves up. But Goedaert knew nothing of the Nymphs of thofe Worms, as appears by all that he fays in the place already cited. Nor was accurate Mr. Ray, Catalog. Plant. page 137, already mentioned, happier upon this occafion than Goedaert, whofe obfervations he was acquainted with. This gentleman imagined, that the Worms here fpoken of, lay hid within their webs in the form of Worms: he even went further, and committed another miftake, in thinking that the eggs of thefe infects, diftinguifhed by annular incifions, were real Nymphs, and not their oblong tranfparent eggs: for thofe alone are Ver-miform-Nymphs, though both in reality certain genuine Nymphs not as yet vifible. I have fometimes alfo obferved Worms, which form for themfelves under ground an oviform cafe or hheath, which a perfon, not acquainted with things of this nature, might eafily mitake for a Vermiform-Nymph.

Moreover, I give a place in this order to fuch Nymphs of Worms or Caterpillars, as are found upon the leaves of willows, enclofed in a very fine and delicate covering, or web of the fame kind. Thefe Nymphs are changed in time to a very delicate Fly, which the curious may fee together, with its web or covering, among my other curiofities.
Lafty, I refer to this order the genuine Nymphs of a kind of Worms, which having made their way through the Caterpillar's fkin,
upon the flefh of which they had fed, not only fpin themfelves a covering of white filk, but fortify it with a kind of cottony fubftance, which the parent Caterpillar had formed for its own ufe; and in a few days after this operation, force a paffage through both thefe enclofures in the form of Flies. I preferve in my collection almof all the different kinds of Flies hitherto mentioned, with their coverings or webs, fo that I can give, in a manner, an occular demonftration to thofe who defire it, of every thing that I have advanced concerning them. I have, befides thefe, many other kinds of webs, which my defire of making a fpeedy end of this fubject, hinders me from enumerating at prefent.

I may include, in this order, in the fixteenth place, all the genuine Nymphs whicli have arifen from Worms, which undergo their changes within very flender and delicate habitations of their own forming, and which they conftantly carry about them, as fnails do their fhells, till at laft they change to Flies, and again betake themfelves to the open air. I preferve, in my Mufeum, a great variety of fuch Flies, and their Nymphs and Worms, together with the furprifing cafes of the latter, in which they lie hid, and wherein they walk about with, fome in the earth, and fome in the water. Some of thefe Worms are mentioned by Aldrovandus, who defcribes them by the name of Xylophthori, or Worms that deftroy timber. I have likewife fome Flies which are produced from thefe Worms, a few of which have been already defcribed under the name of Ephemeri. Laftly, it muft be remarked here, that all the Nymphs of the fourth order, may truly be reckoned of the third, if we confider them in themfelves alone, and without paying regard to their Ikins, which they do not caft, or the webs and hidden cafes, in which they conceal themfelves.
Thus I hall finifh this enumeration, and general defcription of the infects of the fourth order, which I thall hereafier more particularly treat of, and illuftrate by juft and careful hiftories, and convincing examples.

A fingular example of the fourth order of mutations, exbibited in a Fly; whbose metamor phofis, or natural accretion into the firft form of its limbs, and other parts, I call a Verniform-Nymph.

Tав. XXXVIII.

N^{0}.I. $T \mathrm{HE}$ Worm of the common Fly of our privies or boghoufes, reprefented of its natural fize, and as it appears under its firft coat or fkin, in which form it is called an egg. This firf figure exhibits the egg, as viewed with the affiftance of the microfcope.
N°. II. The double coat or fkin of the egg, which 'fkin or coat the Worm leaves behind it, when it is hatched; or, in other words, creeps out of it. This coat is reprefented as magnified by the microfcope, to twice its natural fize.
N^{0}. III. The Worm itfelf, fomewhat bigger than it really is, when it has juft crawled out of the membrane, in which it was concealed under the form and name of an egg.
N^{Q}. IV. The fame Worm, arrived at its full growth, and crawling about. As the feet of this Worm are very hort, and narrow withal, it always moves, and, as it were, draws itfelf forward by the help of its head or beak: therefore, if you put it on a fmooth piece of glafs, it walks with great difficulty; whereas, upon a coarfe cloth, it will advance pretty brifkly; for it thrufts its head into the little hollows and cavities of the cloth, and very nimbly draws
up to the head, where thus anchored as it were, the reft of its body; which has only very fhort feet about the hinder part of the belly. In this refpect, therefore, the Worm; of which I am fpeakking, agrees very remarkably with the water Worm, from which the Afilus or Gadfly proceeds: The Worm of that Fly carries its feet, as it were, in its mouth; but I cannot pretend to fay the fame thing of the boghoufe Worm, as I have not as yet examined it fufficiently ; though I think it very probable, that its principal feet are fituated in that part. The third figure exhibits this Worm increafed by the microfcope, to a confiderable magnitude.
N^{e}. V. I exhibit in this place the Worm already reprefented under the form it has, after lofing all motion, without cafting its fan ; within which, notwithftanding, it becomes a genuine Nymph: and its becoming a Nymph, in this manner, muft, I think, be looked upon as a fufficient reafon for my giving it this new name of the Vermiform-Nymph, fince, at the fame time that it retains the appearance of a Worm, it really changes, under fuch appearance, to a genuine Nymph. This fpecies of Nymph, with the Worm's fkin upon it, in the fourth figure, as it appears when magnified by a microfcope, and the Nymph itfelf ftripped of its fkin, is exhibited in the fifth figure, fomewhat larger alfo than nature: but the fixth and feventh figures, next following, reprefent it magnified to much larger dimenfions:
N^{0}. VI. Exhibits the boghoufe Fly in its perfect ftate, as it appears when it has caft its two fkins together ; namely, the external hard fkin, in which it had the fhape of a Worm, and under which it continued when changed to a Nymph ; and the internal and more delicate skin, proper to it as a Nymph; for this infect throws off both thefe skins at the fame time. We may obferve here, with what extraordinary elegance it is cloathed, when the time is come for it to appear abroad, and attend to the great work of propagating its fpecies! The eighth figure exhibits the Fly, as it appears when greatly magnified by the microfcope. I fhall hereafter explain this figure at large, when I come to defrribe the infect's external ornaments. There is, it appears, a remarkable difference between this order of changes and the firft as, in the firft, the creature iffues perfect from its egg, without paffing through any intermediate flate. This order differs alfo from the fecond, as the infects of that order acquire certain membranaceous cafes or coverings of the parts within, which rife above the reft of the furface of their bodies. And, finally, it differs from the third order, in which the creatures caft, at different times, the skins wherein they appear as Caterpillars, and the covering they afterwards wear in the form of Nymphs; for, in the fourth order, both thefe coats come off together. On the other hand, the infects of all thefe orders have thus much in common: they are Nymphs un-
der all thefe flates, and in every order; and they fo long and fo often change their skins, till they are become perfect and ready for the work of generation. The Nymph, therefore, having its place in all the four orders, is the true, the only, and immutable foundation; upon which the changes of all thefe infects depend, as I have attentively and at large demonftrated in the beginning of this work. I make only a curfory mention of it in this place, the better to fix fo important a truth in the memory of my readers.

Tab. XXXVIII. Fig. I.
By this figure, which reprefents the boghoufe Fly's egg bigger than nature, we obferve that it is of an oblong and angular conftruction, fo as to form, in a manner, an elegant, chequered, and reticulated reprefentation of that kind of cake known in Holland by the name of Woffel. Thefe eggs are of a delicate whitenefs, and they have two integuments, which are eafily diftinguifhed one from the other. The outer integument is the real fhell; and this is, in every refpect, like the fhell of a hen's egg, as appears by its breaking to fmall pieces in the fingers. By this means it is an eafy matter to feparate this outer cruft from the internal covering, which properly contains the embryo of the boghoufe Worm. As thefe eggs are moift when juft laid, and are depofited by the parent Fly upon the walls of boghoufes, and fometimes even in the skins fhed by former Nymphs, they ftick together, when the air has dried the intervening humidity; fo that, on endeavouring afterwards to feparate them, part of the external hell of one egg comes off, with the inner fubfance fticking to it. By this means the angular form of the latter acquires a kind of projecting border. This was the cafe with the egg here reprefented, which I thought proper to exhibit in that form, in which alone I could procure it fingle, on account of its firm cohefion with the adjacent eggs.

Fig. it.
I here reprefent the delicate internal membrane which covers the egg, as it appears about the fore-end of it. This membrane has been broken by the boghoufe Worm, when it crept out of the egg; fo that we may fee in what manner the external cruft or thell has been cracked upon this occafion, and how it has crumbled off from the internal membranes. It is very furprifing how thefe eggs are covered with fo hard a fubftance, refembling plaifter of Paris; though it feems probable that Nature ordained it fo, the better to fhelter the enclofed embryo Worm from the putrid and fharp effluvia arifing from boghoufes, in which places it is often depofited. This led me to an experiment, by which I have found, that the faline acrimony of urine makes no impreffion upon there eggs. But it is not in boghoures alone thefe eggs are to be found: we meet with them in feveral other places, particularly where fruits, herbs, and other fucculent vegetables, lie and rot. But they appear no where fo beautifully;
or to fuch advantage, as in the Oviducts of the female Fly, opened for this purpofe; and, no doubt, the moft certain method of inveftigating the eggs of infects, fo as to obtain fome certain knowledge concerning them, is that by diffection of the infects; but then the opening of thefe fmall animals at the exact time, when their eggs are perfect in the Ovary, and ready for laying, depends entirely upon chance.
I have a fimall box full of infect's eggs in my collection, fo very curious, that I hhould not think a particular treatife ill beftowed upon them; for they all greatly differ from one another in thape and colour. Some are oblong, others oval; fome again perfectly round, others angular ; fome pear-haped, fome like the feed of the carduus benedictus, and others of other forms. There is alfo the greateft variety of colours amongft them; white, yellow, red, flky-coloured, green; and in fome is to be feen a beautiful mixture of feveral colours, fo as to make it almoft impoffible to give a particular account of them. Some alfo are foft, others hard; fome are only covered with a flight membrane, whilf others have a fhell, or firm cruft, like parchment. Again, fome are fheltered by a froth that furrounds them, others are covered with hair: fome are found faftened by a vifcous matter to the branches of trees, fo as to form a ring about them; others lie fingly, and at random. Some fland clofe to each other upon their ends; others lie parallel to the horizon; and fome are found buried in animal and vegetable fubftances, whilft others are only laid in a loofe manner upon the furfaces of fuch things.

> Fig. ili.

I here lay before the reader a figure of a Worm, which changes to the boghoufe Fly, as it appears when magnified by the microfoope. We may clearly difcern in it thofe annular divifions, of which fome conflitute its head, the next to them the thorax, and the hindmoft the creature's abdomen and tail. The circumference of every part of the body appears adorned with feveral, as it were, prominent feathered bandages. But the infect lofes the advautages of thefe as ornaments, becaufe it cannot but foul them, by crawling through the offenfive matter upon which it feeds. For this reafon it ought to be well wafhed, in order to become fit for a microfcopical obfervation: nor need we fear to do it any injury, by treating it in this manner ; for it has a ftrong conftitution. Befides, this Worm is one of the fpecies of infects which have a hard fkin, the better to refift the acrimony of the putrefcent juices, amongft which it lives. This hardnefs of the boghoufe Worm's fkin, is the caufe of its not lofing its external form, when it changes to a Nymph.

Fig.iv.

It muft be here very thoroughly confidered, that thefe Worms, on their affiuming the fhape of Vermiform-Nymphs, become motionlefs, and foon after draw up their frout within the head; by which, and by a contraction of all.
the rings of their body towards each other ${ }_{5}$ they become thorter, in fo confiderable a degree, as may be feen in the fourth figure now before us: which likewife fhews, that there is but little difference between the Worm reprefented in the third figure, and the VermiformNymph exhibited in this place. The only difference is this, that the Nymph is without any motion, whereas the Worm moves itfelf very brifkly. The drawing in of the frout in the Nymph, fcarce makes any difference; for the Worm itfelf is very often obferved to do the fame thing. But we muft here take fpecial notice, that all the Worms of this fourth order are not all changed to Nymphs, in the fame manner with the fpecimen of that order, which I here explain: neither do all the Nymphs equally exhibit the former limbs of their refpective Worms; the only reafon of which diverfity I take to be this, that fome of thefe Worms have a more delicate fkin than others, and confequently it is better adapted to conform itfelf to the fhape of the latent Nymph, when the infects change into that condition. This I fhall demonftrate in the ninth and tenth figures, by two particular and very evident examples, which will fupply us with a rule to judge by, in every cafe of the like nature.

There is one circumftance more worth our notice in the Nymph, whofe figure we are now confidering: this is, that I have reprefented its fore-parts, about the head, fomewhat whiter and brighter than the reft of the body; becaufe the hidden Nymph, by the infenfible evaporation of its moifture, gradually contracts itfelf more in this part than elfewhere, fo as to leave a vacant fpace, which, by affording a free paffage to the rays of light, thereby, in reality, acquires an extraordinary degree of brightnefs. This particular I took notice of in a Nymph, like this I am now defcribing, of the Mufca Aflus, or Gadfly, whofe hiftory follows this. It is likewife plain, that the empty part of the fkin, in the foregoing Nymph, may be dexteroufly cut off with fciffors, without wounding the enclofed infect; and, upon doing fo, we may fee that theNymph's head lies in the foreregion of the Worm's fkin ; and that its eyes, which, in the beginning of the change, were of a milky white, are at this time turned to a purplifh red. However, this experiment ought. only to be tried upon Nymphs which are feveral days old; for we fhould certainly injure thofe that were younger, in the operation. It happens in this Worm, as it does in all others of the fourth order, that the thorax conftantly continues the fame in the Nymph-ftate, without any vifible alteration : in the fame manner, as, in Worms and Caterpillars of all the other orders, the legs, fpringing from the thorax, never change their fituation. But this laft circumftance chiefly obtains in the fecond order, of which there are a great number of infects, whofe thorax, and efpecially the legs belonging to this part, do not fuffer the leaft alteration; that is, they neither grow longer or fhorter at the periods of the infects cafting their fkins.

The HISTORY of INSECTS.

Fig. v.

I here give a figure of the enclofed hidden Nymph, as it appeared fomewhat magnified, when cut out of the external skin, or that of the former Worm, which before covered it.

Fig. vi. and vir.

Thefe two figures reprefent the fame Nymph magnified by the microfcope to a proper degree. We may fee in thefe in what manner it is divided into a head, thorax, and belly, which I fhall more particularly explain in the next figure, which likewife exhibits the fame Nymph.
Fig. vir. $a a$. Are the infect's eyes feated in its head, and formed like a net ; between thefe, but lower near the thorax, appears its probofcis, or trunk.
b. Are two little horns or antennæ, which arife from the upper part of the head.
cc. The folded legs rifing from the thorax, three on each fide.
$d d$. The folded wings, between which the extremities of the legs are clofely arrayed.
c. The annular divifions of the abdomen, and certain prominent tubercles upon the edge of it, being what remains after the infect cafts the skins of the feathered protuberancies of the Worm and Nymph, which I have abovementioned. Thefe tubercles difappear when the creature affumes the form of a Fly. They are either entirely deftroyed by the evaporation of the humours, or thrown off by the hairs that grow in this part. It is a very tedious and difficult task to diffect the real Nymph of the tender membranaceous skin, which immediately covers it under the outer integument, without either hurting or difplacing its limbs.

Fig. viri.

This figure exhibits, larger than life, the Nymph free from its two coverings, and clanged to a Fly; but it mult be obferved, that it does not, on parting with its fkin, fold or curl them up, as Hornets and Bees do ; this creature only breaks them near the place where its head lies, and leaves the cafe unimpaired in every other refpect: fo that on feeing one of thefe deferted coverings, one would be apt, at firft fight, to take it for an entire Nymph. This Fly, which from the form and condition of a contemptible and filthy bog-houfe Worm, is changed to an inhabitant of the air, thus making mifery its way to happinefs, is divided in a very diftinct manner into the head, the thorax, and the abdomen.

Fig. viri. a a. In the head are two eyes formed like an elegant piece of net-work, and of a purplifh colour. Thefe eyes are feparated by two very elegant zones of a filvery whitenefs, in the part where they come neareft to one another.
b Between thefe filvery zones, on the forepart of the head near the eyes, are the infect's two horns, or antenne.
cc It has likewife two membranaceous wings fixed to the fhoulder-blades of the thorax.
$d d d d$ Are fix legs covered with fiff hairs;
thefe are articulated with the lower part of the thorax, and they confift each of four joints: that which forms the foot, properly fo called, is again divided into feveral leffer joints. We may, befides, fee very diftinctly, that every leg has diffinctly two claws at its extremity, and that thefe claws are parted by fome hairs that grow between them.
e Here we may fee the rings and variegations by which the abdomen is divided. They are covered with hair refembling briftles. Indeed, the whole body is thick fet with this kind of hair, and it is of a blackifh gray, without any other particular ornaments of colour, tho' in many other Flies we perceive a moft delicate mixture and combination of colours; fo that the Fly now under confideration, deferves only to be ranked amongft the moft ordinary fort.

Fig. ix.

Finally, to give a perfect idea of this fourth order of mutations, I fhall add a fuccinct account of two particular Nymphs, which belong to it $\mathrm{it}_{\text {s }}$ tho under the fecond mode; for thefe Nymphs differ greatly from thofe of the fame order already defcribed : they are altered in a great meafure from the fhape they had in the Worm ftate, tho' one of them much more than the other; the reafon of which variation I fhall likewife endeavour to point out.

Tab. XXXVIII. Fig.ix. A.
The Worm here reprefented, is the fame with that of whicl Goedaert has given us a defcription, and a figure in the firft part of his work, obfervation II, but without taking any notice of its feet or horns, both which he overlooked. I cannot fay, that I have myfelf counted thefe feet in a living Worm; but on examining a preferved one, and its Nymph, there appear feven on each fide, and thofe are all armed with fome little claws. Thefe feet are very fhort, and fcarce vifible, except when the infect extends and thrufts them out. Goedaert does not deny the exiftence of thefe feet, in his Dutch work, publifhed under his own infpection, but his Latin tranflators do it for him : from whence it plainly appears, that thofe gentlemen, who have likewife added their own obfervations to Goedaert's work, have difgraced his performance by a great many errors and miftakes. We have reafon alfo to lament, that this induftrious naturalift employed others to write, even in Dutch, the obfervations which he had made in this province of natural hiftory. We muft expect- to find their particular opinions frequently intermixed with thofe of the illuftrious original writer. But be that as it will, one thing is certain, that the original Dutch is preferable in correctnefs, and other refpects, to the Latin tranlation.

The two antennx, or horns of this Worm, which it carries on the forepart of its head, and its long tail, which it fometimes twifts, and turns about in a very furprifing manner, contribute greatly to give it a fingular and pretty

The B O O K of

appearance.* Its body is divided into feveral ringe, which fometimes appear much rounder than at uthers. The colour is of a sky gray, approaching a little to brown. It is a mittake to think, this Worm proceeds from putrefaction, as Goedaert, or rather his commentators have advanced. It is produced from an egg depofited in bog-houfes by a Fly like that, to which it is itfelf one day to be changed. I have fometimes alfo found thefe Worms crawling in vaft numbers, and in a flrange manner amongit one another, in meadows, in barns, and among very moif cow-dung. Thefe infects are of a very flow growth; fo that they do not change till the month of Auguft. I have hitherto taken but a very curfory furvey of their internal parts; their pulmonary veffels appeared to me to be thofe that beft deferved further obfervation.

B.

When thefe Worms are about to affume the appearance of Vermiform Nymphs, as is reprefented in the ninth figure, under the letter B, they remove themfelves out of the excrements wherein they have hitherto lived, to fome dry place, where they draw all their parts together. I have even fometimes obferved thefe Worms fixed to the walls of country cottages, where they had climbed up to twice a man's height, in order quietly to go through their mutations. This important bufinefs is executed in the following manner. Firft, the Worm's tail is wrinkled up, and contracted by drying, and fometimes it curls itfelf up, fometimes not; fometimes even it grows quite flat b_{y} drying, as it hardens to a greater or lefs degree, or as it has taken up more or lefs time in hardening; then the reft of the body becomes wrinkled up, and fo contracted, that its rings are in a manner forced together into one. But as the skin of this Worm is fomewhat foft, it conforms to all the flapes that the hidden Nymph affumes in its progrefs towards the Fly-fate ; and this is the true reafon why thisVer-miform-nymph deviates a little from the appearance of the former Worm. I fay a little, becaufe we may fill perceive in it, the skin of the Worm, its tail and legs: but above all, the antenna, or horns differ; which in this Vermi-form-nymph project more from the head, than they did in the Worm itfelf; befides this, from being foft and pliable, they become hard and fifif at this time. By dexteroufly opening t'ee external Rkin at this period, we may obt in the true Nymph it conceals in fuch great forwardnefs towards the Fly-ftate, that it exhibits diftinctly the parts peculiar to that creature, the horns or antennæ efpecially, which are difpofed, as in a cafe, within thofe of the former Worm.

C.

When the Nymph we are treating of, has thus lain hid for about fixteen or feventeen days

NATURE; or,

in the unaltered fkin of its Worm ; it is fufficiently grown and changed to appear abroad, and fo at once forces its way in the form of a perfect and very handfome Fly thro' the faid fkin, and the internal membrane immediately invefting it; as is common to the infects of this fourth order. This Fly is beautifully divided into the head, thorax, and abdomen; it has two eyes, two little antennæ or horns, fix legs, a pair of wings, and its body is covered with hair. Its back and tail are yellow and red, delicately interfperfed with black fots: it is reprefented in the ninth figure, under the letter C.

Some authors have fancied, that this infect ought to be ranked amongft Bees, as appears in Clutius's treatife on Bees, where he cautions the unexperienced againft fo grofs a miftake. However, Dr. J. de Mey, regardlefs of fuch notice, falls into this error in his notes upon Goedaert, where he prodigioufly magnifies the hiftory of this infect as a real Bee. In this he gives evident proof of his little acquaintance with either the Bee or the Fly-kind. Thus the vain temerity of our corrupt nature makes us attempt to pafs our judgment upon things of which we know nothing ; with a view of paffing for perfons of knowledge and wifdom upon others as ignorant.

$$
\text { Fig. } x \text {. }
$$

I here reprefent a Worm, that has pierced the fkin of a Chryfalis, like that exhibited in Tab. XXXVII. N^{D}. V. and has deferted it afterwards in fearch of a more proper place in which to perform its changes.

D.

This Worm is divided by a great many annular fections. Its colour is white ; its skin is foft and tender. It moves itfelf by the annular contraction and extenfion of its rings, and it continues this motion in its prefent flate, till being quite fpent, it quietly lies down to give way to the fecret operations of nature, in the change of its condition.

E.

While this is preparing, we may obferve, that the head and tail of the Worm are drawn up, as it were, into its body, though as yet no change happens in the old flin, except its affuming the fhape of an egg, in which, foon afier, there appears a variety of colours; firft, the body then fhrivelled up grows white, then yellow, next red, after this of a purple colour, which then acquires a fiery brightnefs, like that, as it were, of a fparkling red, hining like amber; and, laftly, it turns to a deep brown, which it retains for fome days without any further alteration.

On laying open and removing the flkin of the Wormat this period, we find in it a true perfect Nymph, which exhibits moft diftinctly all the limbs of the future Fly: fo that this is a real Ver-mi-form Nymph, only that it yet reprefents the parts of the former Worm, though in a fome-

[^65]what obfcure and confufed manner : this is owing entirely to the foftnefs and delicacy of its fkin, which flicks clofe to the furface, and accommodates itfelf to the fhape and figure of the enclofed Nymph.
By duly attending to the preceding obfervations, we may for the future eafily underftand, for what reafon fome of thefe Nymphs retain the figure of their former Worms more than others; for, it will plainly appear, that this difference arifes folely from the fkins of the former Worms, being more or lefs hard or pliable. For thofe Worms, that have a very dry and hard fk 的, as the Worms of the common bog-houfe Fly, and the Mufca Afilus, or Gad-fly, cannot but retain their former appearance; whilt other Worms of a foft and delicate skin, cannot but lofe a great deal of it ; all which is made evident, by a remarkable example in the tenth figure, under the letter E .

Such being the nature of thefe things, we may plainly perceive how much thofe naturalifts were miftaken, who called the foregoing condition of the limbs, and other parts, a true egg, as may be feen in Mouffet, and Goedaert, in the commentators of this laft, and many other authors. But let no one imagine, that I mention this miftake, in order either to expofe the writers, who have committed it, or to deferve glory from their ignorance : my fole intention is to publifh truth, and excite thofe who love it, to fearch after it in the works of nature themfelves; for they are capable of teaching us more in a fingle moment, than all the written accounts of them could do in a thoufand years: but then we fhould prepare ourfelves for fuch an inquiry, particularly by lay-
ing afide all manner of prejudice, as it plainly appears, that obfervations attempted upon a wrong foundation, have only ferved to produce a great number of pernicious errors.

F.

To conclude, I prefent the reader, under the letter F . of the fame figure x . a reprefentation of the Fly produced from the Nymph I have been laft defribing. It is like the common Fly, divided into the head, the thorax, and the belly. Between the eyes, which are feated in the head, and are of a deep purple colour, are two filver borders or zones; and between thefe borders are placed a pair of antennæ, or horns. From the fhoulder-blades arife two grayifh membranaceous wings, and from the fore-part of the thorax, fix hairy legs. The abdomen is covered with hair, like briftes, and is divided by feveral rings, parted from each other by black rolls or bandages. This Fly, like the preceding, on its quitting the Nympl-ftate, leaves two skins behind it.
As to the manner in which this fpecies depofits the eggs within the Carerpillar, reprefented in No. III. of the xxxvith Table, and the courle in which the Worms arifing from thofe eggs, are changed into Chryfallides with the Caterpillar, upon which they feed; or, to fpeak more properly the manner in which thefe fmaller Worms come to be enclofed in the Caterpillars Chryfalis, and their management in forcing their way thro ${ }^{\circ}$ this Chryfalis, I thall give a general account of in the progrefs of my furvey of this fourth order, and hope I may fome time, or another, have an opportunity of handling this fubject more particularly, and folving the gordian knot which it contains.

The furprifing biflory of the infect called the Mufca Tabanus, or, more properly, the Aflus or Gad-fly*.

THEINTRODUCTION.

THE Infect, whofe hiftory I am about to give under the name of the Gad-fly, is fo wonderful in all its parts, that it may be well ranked amongt the moft mafterly works of nature ; for, the particulars which induftrious obfervers have difcovered in it, are moft fingular, and unheard-of in other kinds. The learned Mouffet inveighs feverely againft thofe authors, who confound this Fly with the Tabanus or Breeze-fly, as he affirms there is an effential difference between them, which I have myfelf alfo found to be very true; for, as the faid Mouffet very pertinently alledges after Ariftotle, the Afilus or Gad-fly, procceds from a certain little, broad and water infect. This author remarks alfo, with equal propriety, that the Afili or Gad-flies are much more farce than the Tabani or Breezefies, and they are not to be found except in the neighbourhooud of rivers, and they have a much larger probofcis or trunk than the Tabani or

Breezes. This being fettled, the Fly that I am here now about to defrribe, is a true Afilus or Gadfly, and ought, by no means, to be calleda Tabanus, or Breeze-fly ; for, agreeable to the defrription given of the Afilus, or Gad-fly, it proceeds from a little flat water Worm; it flies about fields near waters; and, in fine, it has a larger trunk than the Tabanus or Breeze-fly. Mouffet has given us a true figure of the Tabanus or Breeze; and at the fame time, has affigned the real difference between that and the common Horfe-fly ; for there are many fpecies of Horfe-flies, and the Tabanus or Breeze ought to be accounted one of them. But Mouffet is greatly miftaken in giving the Afilus a hard fnout, with a flrong fing or aculeus fixed to the fore-part of it, thefe particulars being obfervable in the Tabanus or Breeze-fly only. He errs as much in faying, that the Tabanus grows at the end of honey-combs. But it was impoffible, that this author fhould not

[^66]commit miftakes; for, as he had no experience of his own to go by, he was obliged to take things upon truft from other writers, and confequently was liable to adopt their errors.

I muit, on this occafion, defire my readers to take notice, that in my general hiftory of infects, I forgot myfelf fo far as to defcribe the Afilus, under the name of Tabanus; nor can I account for this overfight, as I then made ufe of the words of Arifotle juft now cited. After this preface and remark, I thall briefly defcribe the little creature, from which our Afilus or Gadfly proceeds. It is reprefented in Figure I. of Tab. XXXIX. its Nymph in the II and in Figure of Tab. XLI. and laftly, the Aflus Fly itfelf, in the in Figure, Tab. XLII.

There are feveral very uncommon particulars in thefe fates of the fame infects in the Worm condition; it lives in the water, breathes by its tail, and carries its legs within a little fnout near its mouth. When it becomes a Nymph, it performs the change without cafting its 1 kin ; and when it becomes a Fly, it can no longer live in the water; fo that the element, which hitherto fupplied it with life and motion, would now be its immediate deftruction.

Thefe are all no more than the external wonders; and they appear infignificant, when compared with the hidden changes and tranfpofitions of parts, 'performed within the skin, fto-
mach and inteftines, but above all, in the fpinal marrow, which it is impolfible to fee, without being loft in aftonifhment.

There occur befides in this treble, though at the fame time fingle, little creature, other particulars, furpafing, in a manner, all human imagination ; fuch as its moft uncommon alterations of colour, indurations of parts, loffes of limbs, and acquifitions of internal organs.

Thus I fhall clofe this fhort introduction, but I cannot too often remind my readers, that they will here meet with a collection of wonders, any fingle one of which, is worth their moft perfect attention. Nor are they the lines only of an Apelles, that I defcribe in this place, but inimitable pictures, and the very han-dy-work of the great Creator, God himfelf, to whom we are indebted alfo for all that we have, or are, and whom we ought to acknowledge in the humbleft manner, as our Creator, Preferver, and conftant Benefactor. Hence, judge, O man, how incomparable muft be the elegance of thofe miracles of his, which thall never perifh, when fo much art and contrivance is to be feen, even in the corrupt nature of creatures, that are buried, as it were, under darknefs, by his great ordinations. Therefore to this all-good, all-wife, and all-powerful Being, and to him only, be all the honour and glory of the prefent difcovery.

C H A P. I.

The external figure of the Worm, from wbich the Mufca Afius, or Gadfy, is produced, reprefented in its natural bignefs; and alfo as it appears wben magnifed by the microfoope; with the mameer of its carrying its legs, by a mof woonderful contrivance, in its mouth; and of its breatbing by the tail.

Tab. XXXIX. Fig. i. a.

THIS Worm, viewed with the naked eye, appears to confift of twelve annular divifions, a, by which it is feparated into a head, thorax, and belly; but as the ftomach and inteftines lie equally in the two, the thorax and belly, their bounds are fcarce perceivable, until the infect, fill cloathed in the Worm's fkin, approaches the Nymph-ftate.

The parts moft worthy of notice, that the naked eye can difcern in this Worm, are its tail and its fnout. The tail is furnifhed with an clegant crown b or circle of hair, difpofed quite round it in an almoft annular form; by means of which, while the Worm moves itfelf in the water, this tail can fupport itfelf on the furface, the body all the time hanging down towards the bottom ; and fometimes it remains thus a long while, without the leaft fenfible motion. The fnout is divided, as it were, into the three parts, c, of which that in the middle is altogether immoveable; whereas the two others, which grow at the fides of the former, vibrate in a very fingular manner, and, in appearance, are very like the tongues of Lizards and Serpents. The greateft Atrength of the

Worm is likewife feated in thefe lateral parts of its fnout: it is by means of thefe it crawls, when out of the water, fo that one would imagine it, walked with its mouth. Parrots, whofe upper and under jaws are both moveable, enjoy, in the fame manner, the privilege of ufing their beaks with fuch force, in climbing, that they have the greateft advantage from it. In the fame manner this Worm, as often as it can lay hold of any thing with thofe parts that I have been fpeaking of, appears to move, as it were, enturely by the help of its fnout. Thefe parts, however, do not conftitute its mouth, as I fhall prefently fhew.

When the Worm, being thus fupported on the furface of the Water by means of its tail, has a mind to fink to the bottom, it generally bends the hairs of that part a little towards each other in the middle, and much more forcibly at the extremities, without difturbing them in the leaft about the roots. By this means a hollow is formed; and the air, pent up in it, looks like a pearl, Tab. XXXIX. Fig. II. a. It is by the help of this bubble that the infect can again gently raife itfelf to the furface of the water, and there remain fuf-
pended.
pended. The fame thing has been obferved in thofe Worms that produce Gnats. If at any time the air thould happen to efcape from between the hairs forming this bubble, the infect has the power of immediately replacing it, by a new fupply from its pulmonary tubes; and fometimes even large quantities of air are feen to arife in bubbles from the tail of this Worm, b, to the furface of the water, and mix with the incumbent atmofphere. This is owing to the water's being fo much heavier than air; it being natural for things, though heavy in themfelves, to afcend, in order to make way for thofe that are more fo.

This extraordinary operation may be eafily feen at any time, by putting the Worm into a glafs full of water, and it affords a very entertaining fpectacle; for the air-bubble, enclofed in the tail, looks like a little tranfparent filver bladder: I have four fpecies of this Worm, and of the Fly that is produced from it, all differing in fize and colour; but without any other confiderable diftinction.

As all I have as yet faid concerning this Worm, which produces the Afilus-fly, can give but an imperfect idea of it, I thall exhibit it alfo as it appears through the microfcope; and, at the fame time, defcribe its external and internal parts. Thus the reader will be enabled clearly to comprehend the defign and ufe of thofe little parts, which are fituated near the tail and the mouth; as alfo, after what manner its lungs receive the air, which is both admitted and difcharged by the tail. Finally, I fhall make it evident, that thofe are really the infect's legs which are feen moving near its mouth, like the tongues of Serpents.

> Fig. iII.

On examining the external figure of this Worm with a microfcope, it appears to be a little pointed forwards about the head; and its thorax, or that part of it which we may confider as fuch, is fomewhat broader. The body again grows fmaller, and converges at the abdomen; till at laft it ends in a charp tail, elegantly furrounded with hairs, in the form of the rays of a ftar.

This Worm, the head and tail included, has twelve annular divifions, $1,2,3,4,5,6,7$, $8,9,10,11,12$. Its fkin refembles the covering of thofe animals which Nature has provided with a cruftaceous habit, much more than it does that of Worms, or of the naked Caterpillars. It is moderately hard, and, like that rough fkin called chagreen, it is thick fet with an infinite number of fmall grains, pretty evenly diftributed. Thefe grains lie fo clofe together, that there is not to be found the leaft vacant face between them; and they are fimaller in thofe parts, where the rings of the abdomen are pointed to each other, than upon the middle of the rings. This difpofition renders the flkin more flexible, and confequently facilitates the turnings, and other motions, of the Worm's body. The true conftruction of thefe grains is feen, on viewing them with the greateft magnifier, Fig. iv. and I give a fepa-
rate drawing of them upon a fnall portion of the fkin. This figure alfo fhews us how the fkin, a, looks in the interftices of thofe grains. Thofe grains are very thick, and convex in the middle, b : near their edges they appear as confifting of many rings, b, which join each other ; and form a great many irregular points, d, fo as to add great ftrength and firmiefs to the grains themfelves. The fubftance of thofe grains is a very firm horny bone; and I make no doubt but the fkin of this Worm might be made ufe of, in turning, to polifh the harder woods, as cbony arid box, in the fame manner that the flkin called chagreen, juft now taken notice of, is fucceesfully applied to the fame purpofe.

There are alfo nine puncta refpiratoria, breathing-holes, or points of refpiration, on each fide of this Worm's body; but I here reprefent only twelve of them, nine at one fide, and three at the other. There are no fuch holes vifible on the outide of the tail, Fig.III. a; nor in the third ring, counting from the head: for the tail has, at its extremity, openings for the admiffion and expulfion of air, as already taken notice; and in the third ring the breathing-holes only appear under the Jkin, and are very fmall, as it is hereabouts the embryo wings of the future Fly lie concealed. It is very remarkable, that this Worm fhould have but one ring without thofe breathing-holes; whereas Caterpillars always have two without them. The reafon of this difference feems to be, that moft Caterpillars change to Flies with two pairs of wings; whereas the Worm, under our confideration, changes to a Fly that has but a fingle pair.

Above thefe pulmonary openings, there befides appear a great many black fpots; but they are much fmaller than thofe formed by the breathing-holes. Thefe leffer fpots feem intended merely for ornament. They fhed a fkin, fo that they are ftill feen in the infect, when arrived at the Nymph-ftate.

The fkin has only three colours: it is adorned with oblong black furrows, fpots of a little lighter colour, and orbicular rings; from the middle of which there generally fprings a hair. In the figure before us, only the hairs that grow on the infect's fides are reprefented, Tab. XXXIX. Fig. ini. $6 b$; for to exhibit them all, would require too large a drawing. Befides the hairs already mentioned, there are here and there fome other larger hairs, $c c$. All the variety of colours perceivable in this infect, proceeds from this; that the colour of the grains is fomewhat deeper or paler in fome places than in others; for there is no material difference between them, in point of fize. According, therefore, as the number of grains is greater or lefs, or the colour of them is darker or lighter, the furrows and rings are of a deeper or paler colour.

The head of this Worm, d, is, as it were, divided into three parts, and covered with a fkin, the grains on which are hardly difcernible. The eyes, $e e$, lie forwards near the
fnout
frout, and are fomewhat protuberant. It has likewife two little horns, $i i$, on the fore-part of its head. The frout itfelf is fomewhat crooked, and ends in a very fharp point, f; but what is altogether fingular and furprifing, and no doubt, if I may fay fo, is moft wifely contrived by the Great and Almighty Architect, is, that this infect's legs are placed near the fnout, between the finufes in which the eyes $g g$ are fixed: fo that, at firf fight, I imagined this Worm made ufe of its fnout, as Parrots do of of their bill, to faften upon whatever it pleafed, and move itfelf from one place to another; but I have fince learned by experience, that thofe parts are real legs, which is altogether as furprifing as if a fmall pair of hands, one on each fide, fhould be feen growing in a man from the infide of his jaw-bones *.

Each of thofe legs confifts of three joints; the outermoft of which is covered with hard and ftiff hairs, like briftes. From the next joint there fprings a little horny bone, $b b$, which ferves the infect for a kind of thumb: the joint itfelf is likewife of a black fubftance, between bone and horn in hardnefs; and to is the third joint. But thefe particulars cannot be fo well diftinguifhed on the outfide; for which reafon the parts that form the upper fides of the mouth, and the eyes, muft firft be difplaced with a very fine fmall knife. This done, we may plainly perceive, by the help of a microfcope, that the leg is articulated by means of fome fingular ligaments, with that portion of the infect's mouth, which anfwers to the lower jaw in the human ftructure. We may alfo, by this method, difcover the mufcies which ferve to move the legs, and draw them quite up into the cavity that lies between the fnout and thofe parts of the mouth, near which the horns, i, are fituated.

I have taken the pains to draw five of thore mufcles adminiftering to the infect's leg, which are very diftinct. Three of them, Fig. v. a, are continued by their tendons, in form of a black fubftance between bone and horn; and after this, growing fofter, are inferted b into the infide of the greateft joint of the leg, which is of the fame kind of fubftance with the tendon. The other two mufcles, c, had their infertions on the oppofite fide of the fame joint. The murcles which move the other joint, d, are inferted into that large horny joint already mentioned; and in this joint alfo are to be feen the latent mufcles, which move the extreme joint of the leg, e, with its briftes, and its thumb, which I here likewife reprefent, f. This figure fhews, at the fame time, in what manner the foot is furrounded with hair. This infect not only walks with the legs I have been defrribing, at the bottom of the water, but even moves itfelf on land by means of them. It likewife makes ufe of them to fwim with, while it keeps its tail on the furface contiguous to the
air, and hangs downwards, with the reft of its body in the water. In this fituation, no motion can be perceived in it, but what arifes from its legs. At this time alfo it plies them fo elegantly, that, to the naked eye, they appear like the vibrating tongues of Serpents. Hence we may conclude, that the greatef ftrength of this Worm lies in there parts; and we may be likewife convinced, that it exhibits in a fingular manner, and more fully than many other animals, the wonderful contrivance and exceution of the Divine Power and Wifdom.

The fnout itfelf, Tab. XXXIX. Fig. vi. a, is very black, and of a fubfrance between bone and horn. This may beft be feen by turning the infect on its back: in this fituation alfo we can difcover the crooked point of the frout, b, near which the jaws open themfelves, c, and offer to our fight the gullet or throat, and all the other parts of the mouth. Here likewife we may obferve three membranaceous divifions in the fnout, two of them running tranfverfely, one at each fide, $d d$; and the third ftretched lengthwife between both : by means of thefe divifions, affited by the mufcles contained in the frout, the Worm can at pleafure expand or contract that part. But the backpart of the fnout, e, is quite folid, and made up of a black fubftance between bone and horn, and of a rounded and fomewhat globular form; whereas the fharp part that lies forward, which I have before reprefented on the forepart of the head, Fig. III. f, is hollow.

The tail is moft artfully imagined and confructed. Its extreme verge, or border, is furrounded by thirty hairs, and the fides of them are adorned with others that are fmaller. Here and there alfo, fome of the bigger hairs branch out into others, each of which I reckon as a fingle hair. Thefe hairs are all rooted in the extreme fkin of the tail, which, in this place, is alfo covered with rough grains; as may be feen by cutting it off, and holding it up, when dry, againft the light, upon a thin plate of glafs. It appears likewife, by the fame means, that the hairs of this part have, at their very extremities, grains alfo, like thofe upon the fkin ; though I could never yet get a diftinct fight of them through the beft microicopes. In the middle of the tail is a little opening, within which there are two fmall holes; by which the infect takes in and lets out the air it breathes. It feldom happens, that the hairs of the tail are fo regularly difpofed on the furface of the water, as I have here reprefented them, unlefs when the Worm but juff floats with its body in the water, and the tail with the hairs belonging to it are a little lower than the furface; for then thefe hairs diiplay their extremities, in the diftinct manner that I have here reprefented them: and the leaft motion downwards of the tail, at this time, occafions

[^67]a confiderable pit or hollow in the water; whilft the tail itfelf affumes the figure of a glafs, wide at top, and ending at the bottom in a point. Hence it is manifeft, that this tail ferves the Worm for both the purpofes of fwimming and breathing. Thus then, O wonder of wonders! this creature receives by its tail the univerfal principle of life and motion in animals. And the better to anfwer fuch an
important ufe, thofe hairs are fo myfferioufly conftructed, that, let them lie under water ever fo long, they never contract any moifture, the water running off of them the very moment they reach the furface. Another advantage the Worm has in thefe hairs, is, that, when fwimming, it can by means of them immediately ftop itfelf, and fo remain quietly fufpended in the water as long as it pleafes.

C H A P. II.

Of the actions or motions of this Worm; the places whbere it is found, its food, and the manner of killing it for difection.

THE motions which this Worm makes in fiwimming are extremely beautiful, efpecially when it advances with its whole body floating on the furface of the water, after filling itfelf with air by the tail. To fet out in this pofture, it firft bends its body to the right or left ; then contracts it in form of the letter (S) ; and laftly, or lying flat upon its belly, it ftretches out the body again to a ftraight line. By thefe alternate bendings, contractions, and extenfions, it moves along upon the furface of the water; and as its motions are very flow, it will hold out for a long time in this manner.
Thefe Worms are no way difturbed on being handled in the water; though they cannot fuffer the touch of other Worms, even thofe of their own fpecies, without agitation, when fwimming amongft each other. From this circumftance we may conjecture, that they are provided with a ready inftinct to difcover whether what comes in their way is likely to do them any harm. Be that as it will, I drew great advantages from this quiet difpofition of the inlect, as it afforded me the better opportunities of examining it by the microfcope, and making a fatisfactory figure of it.

At the time when thefe Worms float on the furface of the water, it is impoffible to drive them under it, fo as to make them continue there, on account of the great quantity of air with which they are then fwelled. But on expelling this air by the tail, they of themfelves immediately fink to the bottom; nor can they again make themfelves float on the furface of the water, till, having rifen to it, they expand the hairs of their tail, and take in another draught of air.

On taking thefe Worms out of the water, all their motion feems confined to the head, becaufe it is only by the help of their legs, which are fituated there, that they can ftir in this fituation. But as it is neceffiary, for that purpofe, that the head flould bend at the fame time, one would, at firt, imagine they make we of their mouth to walk with; whereas, in reality, their progrefs is entirely effected by the feet only.

Thele Worms are to be found about the beginning of June, fooner or later, according
as the fummer is more or lefs warm, both in falt and frefh waters. Sometimes great numbers of them offer themfelves, as it were, of their own accord to our inquiry; whilft in other years, it is no eafy matter to meet with them. They are common enough in the ditches of grazing grounds, efpecially in fuch parts of thofe ditches as here and there contain little patches, or iflands, covered with grafs and other plants, through which, and upon it, thefe Worms love to crawl. They are often too, to be feen in the cracks of our ditch-banks, where they float upon the furface of the water, by means of their tail, with head and thorax hanging down: and in this fituation they will turn over the clay and dirt with their feet and their fnouts, as thofe parts are fo near each other, in fearch of food.

It is thus thefe Worms look out for their nourihment, which is principally a kind of vifcous matter, to be met with in little pools, and about the fides of ditches; for thefe infects are never feen in large and deep waters, fo that, whenever it happens that the ditches are quite full, the Worms, to come at their food, either betake themfelves to the bottom, or venture on fhore, in queft of fomething to live upon. It is very remarkable in thefe infects, that, when they lie under water, they very often drive air into the cavity formed by the hairs of their tail ; which cavity, on being thus blown up, looks like a tranfparent pearl moving in the waters; at the fame time that, by becoming the lighteft part of the infect, it keeps uppermoft, and thereby affords the feet and the fnout a better opportunity of providing for the infect's fupport.

This little infect is exceeding harmlefs; it neither bites or wounds, or otherwife does any mifchief; contrary to the opinion, one might at firt fight be apt to form of it, on account of the furprifing vibrations of the legs, placed in its head, which fo much refemble the brandifhings of an envenomed tongue or fting: but fuch notions appear altogether wrong on further examination; for the opening of the infect's mouth, at which it fucks in its food, is feated within the bending of its fharp pointed and crooked fnout.

I find that clay and foft earth are the food of this infect; though I have likewife fometimes
found in it, on diffection, little red ftones, and final! grains of fand intermixed: I am not able to explain, on account of the narrownefs of this infect's mouth, how it could poffibly take in fuch large and hard fubitances. This induces me to think, that it only fucks in the fubtile vifcous particles of earth, mud, and clay, which afterwards undergo various mutations in the ftomach, as I fiall bereafter endeavour to thew, in the anatomy of this Worm, and the Nymph produced by it, where I flall alfo relate the manner how the very inteftines of this infect caft their fkins.

I have tried many methods of killing thefe Worms, in order to examine them anatomically. Spilit of wine does not fo well anfwer this purpofe; for they live in it a day and night, or perhaps longer ; but I cannot affirm any thing pofisively on this head, as I grew tired of wafting my time, that I could otherwife fo well employ, in watching them. Some of them that I threw into rain water, after taking them out of the fpirit of wine, together with others, continued alive feveral days, till I had opened them all, while living, in order to view their parts, and found my felf under a neceffity of looking out for a frefh fupply. In vinegar alfo thefe infects held out a long time, and they moved more brifkly in it, than in water; they would fometimes alfo crawl
out of it. Some of them endured this trial for two days and a night, and fome a longer time, whilft others expired fooner. But hardy as their conftitution may be, they die in fpirit of turpentine in lefs than a quarter of an hour. It is very curious to obferve, at this time, how the air contained in them remains, in appearance, fixed between their hairs, and the divitions of their body, fo as perfectly to imitate the appearance, as it were, of tranfparent filver.

The induftrious Goedaert, as far as I can guefs by his drawings, give us one of this Worm; as alfo a defcription of it in the firft part, and feventieth experiment of his natural metamorphofis; but he forgets to tell us whether it belongs to land or water: nor is there among all his obfervations concerning it, any thing remarkable, except its being able to live for nine months without food. On this account he calls it the Chameleon, impofed upon by the vulgar opinions of the land-animal of that name, living entirely upon air.

We have likewife, in the learned Aldrovan. dus, a figure and a defcription of this Worm, under the name of the Water Inteftine. But this author knew nothing of its changing to a Fly, or of the other furprifing particularities, which I have obferved in it.

C H A P. III.

The anatomy of this Worm, giving an account of its teeth, Somach, intefines, $\int a-$ lival veffels, pulmonary tubes, fat, beart, brain and mufcles.

THE internal parts of the Worm, which produces the Afilus or Gad-fly, are the teeth, gullet, fomach, thick and flender inteftines, falival veffels, pulmonary tubes, fat, heart, brain, final marrow, nerves and mufcles; each of which I hall now feparately defcribe. The teeth are feated in the back part of the mouth, as in many filhes, fo as to enable the infect, after it has taken in any food, to grind it properly before it gets down into the ftomach. I have by me fpecimens of Hermit-fifh, and large Crabs, which have teeth in the very cavity of the flomach. The teeth of the infect now under confiderafion, are of a fubftance between bone and horn, and their furface is in many places rough and unequal ; but thefe afperites are not confiderable enough to be taken notice of in the figure. The gullet is a very flender channel, running from the jaws and mouth to the fomach, through a fiffure or opening in the final marrow, contrived on purpofe to give it free paffage: this is likewife the cafe in many other infects. For this reafon, the brain of this Worm lies, as it were, upon the fore-region of the fomach. The ftomach itfelf appears as a fimall membranaceous particle, and is found full of the half-digetted food, on killing the Worm, in fpirit of turpentine, as fonn as it is caught, and then diffecting it. The flender inteftines alfo appear, on this occafion, filled with the fame fubftance. In this fecies of Worms, the ftomach and flender in-
teftines are about five Dutch inches in length ; or to ufe Mr. Thevenot's method, they are equal to five rows of regular cells of Bees, built one againft another, five in a row. Mr. Thevenot imagined, that by means of fuch cells, an univerfal meafure for all nations might be difcovered, fuppofing fuch cells were every where equally regular, and of an equal bignefs. I muft here obferve, that there is very - little difference between the ftomach and inteftines of this infect.

Towards the extremity of the flender inteftines are four vafcula varicofa, or cæca, or little guts or appendages clofed at the end: thefe are fituated equally in the abdomen and thorax, which fometimes contain an aqueous fluid, and fometimes a bright white fubftance, like coagulated milk or new cheefe, when beginning to crumble to peices. Thefe four little inteftines are full twice as long as the real guts of the creature, and they form a great many uncommon turnings and windings in the thorax and abdomen, fo that it requires no fmall pains and attention to difcover and feparate them. In the next place are the large inteftines, which here and there fwell out into nodules, as it were, and are filled with clay, red particles of fone, grains of fand of different fizes, and other fimilar fubftances. All thefe particulars will appear to greater advantage in the figure which I propofe to give of the Nymph's inteftines, accompanied
with a defcription of the nature of the fand or gravel which are found in thofe parts.

The fallival veffels, Tab. XXXIX. Fig. vir. a. are two channels, clofed at their ends. They are of a membranaceous tranfparent fubflance, and are feated in the thorax, where they make a great many windings and turnings. In colour they refemble freh curds, on account of their contents which appear through them; and accordingly, on their being cut, nothing freely flows from them, the matter they contain being quite coagulated. The falival veffels unite at laft, fo as to form only one, b, which terminates at the mouth, to which it is inferted upon in the back part of it. Near this infertion appear two fmall particles, $c c$, which very much refemble litle mufcles. As I never met with any fluid matter in the veffels I have been laft defribing, I cannot take upon me to fay aly thing pofitively, concerning the ufe which the Worm may make of them, though I called them falival veffelves, becaufe fuch channels are very remarkable in other Worms, and alfo in fnails. They appear even in the Nymph of the Worm now before us, and afterwards in the Fly, in which they are ftretched ont to their full length, and after pervading the thorax, they terminate in the abdomen, being remarkably broad at their extremities, if compared with their condition, as they were in the original Worms; this makes me believe, that thele vefiels do really, at laft, perform in the Fly, the office of falival ducts. The mouth, Fig. vir. d, at the botom of which thofe ralival ducts terminate, is here reprefented without the eyes, becaufe, in diffecting this Worm, both the eyes, and thofe parts which conflitute the fides of the head, very eafily feparate from the mouth.

There is no part of this Worm wihhout its pulmonary tubes *. They confift of two very confpicuous and confiderable tubes, Tab. XL. Fig. I. $a a$, which are compofed, as it were, of flattifh rings, and are much wider in the middle than at the back or fore extremity, which runs towards the tail. Thefe tubes are feated on the fides of the infect's body, where they unite with the puncta refpiratoria, or breathing holes. It is probable, however, that the infect does not make ufe of them for breathing, till it is arrived at the Fly-ftate, when it lives in the air; fo that thefe channels remain clofed, till the infect comes to live in another manner, juft as the afpera arteria of a feeius continues clofed, as long as it lies in the amnion, and furrounding waters. The pulmonary tubes are diftributed all over the body; they even penetrate the bowels, brains and nerves, in order to fupply every part with this vivifying fluid. Great multitudes of them are to be feen in the fame place with the optic reerves, and the increafins membranes of the eyes, b, and they gradually enlarge, in order to contribute to the formation of eyes in the Nymph, and afterwards anfiver all the purpofes of fuch parts in the Fly.

Here and theie thefe tubes meet, and unite tosether from the parts, $c c$, efpecially about the fides of the body, $d d d d d d$, where one may perceive a general anafomofis of them one with another, by means of their common intermediate branches, ftrecching from one breathing hole to another; from hence fpring an infinite number of ramifications, adminiiftering to the membranes and mufcles of the fkin, which I here mark with points, ecee, and likewife to the internal parts. At laft, the principal channels end at the feet, f, by two diffinct tubes opening into one paffage, where they ferve to take in air for the creature's ufe, and alternately expel it, as has been already thewn in the external furvey of that part, as the faid tubes appear very plainly through the tranfparent fkin of the infect.

The largeft of thefe pulmonary tubes are fufficiently confpicuous; and they are compofed of crooked rings, and are alfo fomewhat flat, as I already mentioned, Tab. XL. Fig. if. a a. On ftretching a piece of thefe tubes, thofe rings which compofe thein, feparate very readily, fo as to roll out to the length of two or three fans, and then they look very pretty, being like an extended ferew, or an untwifted fpiral, or a filver wire that had been wound up upon a needle, b. This filver-like thread, of which the rings are formed, is almoft as firug as the thread fpun by the Silkworm, on braking, it naps with a crack that is very perceprible.

The fat, Fig. 111. a, is diftributed all over the Worm's body, fo as to be met with in the head, as well as in the abdomen and thorax. It is as white as the pureft fnow, except at the tail, where it generally inclines to be a little green. As to its textute, I don't well know how to defribe it, on account of the ftrange variety, in point of configuration of the particles that compofe it; for they are round, b, oblong, c, broad, d, angular, e, pyriform, or in the fhape of a pear, f, and of almof every other imaginable fhape. This fat is moft firmly united with the pulmonary tubes that run through it, g; fo that I believe it ferves, in the fame manner with the Omentum or Cawl in man, to bind together the blood-veffels, and convey them in fafety to their feveral deftinations. This fat, if laid on a piece of glafs, and held to a candle, melts like oil, and immediately flames; this proves, that it is rea!ly what I have called it. Thefe particles, in regard to the veffels contained in them, might be called vafa adipofa, or fat veffels; but fuch a name would be improper for them. This fat in the Nymph and Fly, retains nothing of its original form, as may be feen by examining it in the Worm where it exhibits fo entertaining a fight, that it is impoffible for words to give a juft idea of it. Not only the form of the heart, Fig. iv. a. in this Worm, but its pulfations alfo may be feen through the fkin, under the third ring, counting from the head; but this is a great deal more perceptible in the Nymph, when

[^68]ftripped of its outer covering ; for at that time the motion of the heart appeared to me fo plain, and was withal fo confiderable, that I faw it difplace a particle of fat in one of its vibrations. The end of this powerful organ, when it is fartened to the tail, is a little fharp and narrow, but here and there it dilates itfelf, Tab. XL. Fig. 1v. aa. Towards the head it gradually widens $b 6$, and then clofes again into a narrow channel c, in which form, after paffing through the abdomen and thorax, it purfucs its courfe towards the head, where it is intimately united with the membranes of the brain. Thus, in regard of figure, the heart of tiins Worm nearly reprefents the Worm itfelf, except the part next the head, being a great deal narrower, and that next the tail, dilating itielf here and there, as in Silkworms.
On opening either the Worm or Nymph, the motion of the heart prefently ceafes; and if it did not, the particles of fat with which it is furrounded, would hinder us from feeing it. For this reafon, the beft time for examining the heart of this infect, is when it has attained the Fly-fate : or if we choofe to do it in the Worm, we ought firft to leave it for fome time in fpirit of wine, that the fat may gradually diffolve and walte away ; but at this time, the heart is fo delicate as not to fuffer any air to get into it. In the beginning, I really thought I fhould never be able to difcover or difclofe this part; and I muft own, that human ignorance and weaknefs never appeared fo evident to me, as during my furvey of this little infect ; for with all my attention and diligence, I found it impoffible to examine it as minutely as I propofed, tho' I fpared no time to get the better of all the difficulties that oppofed my inquiry ; the wonders I difcovered in it, being but a fmall part of thofe accumulated miracles I have here related. This my infufficiency has made me very often, in the courfe of my inquiries, break out within myfelf into the following words:--O God, thy works infinitely furpais the reach of our feeble underftandings; all that we actually know of them, or ever can know, is but a faint and lifelefs fhadow of thy adorable perfections. The brighteft underftandings fail in the contemplation of them, and are obliged to confefs, that all this boafted penetration is but fhort-fightednefs, when employed in fathoming the depths of that power, goodnefs, and wifdom it has pleafed thee to exert in the loweft parts of thy creation!

The truth of thefe words evidently appears by the conftruction of the brain, fpinal marrow, and nerves of the Worm here under confideration, which I am now going to defcribe; for this comftruction is fo wonderful, that I doubt very much, whether any thing equal to it was ever before obferved in any animal. The brain confifts of two globular lobes, Tab. XL. Fig. v. a a. Thefe lie upon the gullet;
and for this purpofe nature has contrived a flit b in the fpinal marrow for the guillet to pafs through. On the forepart of the head appear the membranaceous parts of the eyes $c c$, which gradually expand themfelves along with the optic nerves that are to ferve the fucceeding Fly, and grow till they are arrived at their juit period of increafe. In the mean time, thefe membranaceous rudiments of the Fly's eyes are curled and folded up, and cannot be feen but very imperfectly, becaufe the infect has not as yet attained its Nymph-ftate, in which at laft all thefe parts unfold themfelves, and become very difcernibie.

The fpinal marrow confifts of eleven nodules $d d$, which form the moft elegant fpectacle that nature ever exhibited; for it is bent fo as to refemble a fwine's tail, and runs as it were in curls from one cad to another. This curling may be fill confiderably increafed by cutting the ncrves. The figure I give of this part does not exprefs all the windings of the original, the better to exhibit the eleven nodules, from whence all the other nerves take their rife ; for all the nerves of the infect arife from the brain, the fpinal marrow, and thefe nodules. In the firft place we are to name thofe nerves which tend to the forepart of the head; and running under the membranaceous rudiments of the future eyes $e e$, are diftributed to the gullet, the jaws, the mouth, and palate, to the Worm's eyes, the mufcles of the legs, and parts thereabouts. Next are the nerves f which extend to the fides of the infect's body. Lafly, there appears a confiderable number of them $g g$, that fpring on each fide from the eleven nodules of the fpinal marrow. To avoid confufion, I have omitted fome of them in the figure ; the laft mentioned ramificatiens go to the ftomach, inteftines, mufcles of the fkin, and all the other internal parts, which they fupply with motion, fenfe, and life. But how is it poffible to defrribe the fpirits contained in thofe nerves, and the manner in which the fecretion of fuch fpirits is performed ? For my part, I freely acknowledge, that as yet I have not been able to difcover for what purpofe the medulla fpinalis is curled up in this infect, while a Worm, in fo ftrange, but elegant a manner ; * whereas in the Nymph, and afterwards in the Fly, though neither of them are fo long as the original Worm, it appears ftretched out to its full length. It is in the eleven nodules that the alteration is moft confiderable, for thefe in the Nymph and Fly (O incomprehenfible wonder!) are found at a greater diftance from each other, than they were in the Worm. The nerves, on the contrary, from lying at full length in the Worm, are curled up and folded in the Nymph and Fly, and are otherwife altered in a moft furprifing manner, as I thall hereafter explain by a figure of the Fly's fpinal marrow. The tranfmutation, there-

[^69]fore, from a Worm to a Fly, obfervable in this infect, prefents us with a real imiracle, and may juftly be confidered as a laying down of old worn-out parts, and an acquilition of new perfect ones inftead of them : in fine, as a total change of an old to a new, and of an imperfect to a perfect body, infinitely furpaffing the utmoft fretch of human underftanding, as on reading and attentively confidering the hiftory now before us plainly appears. As for my part, I dare boldly affirm, that the incomprehenfible greatnefs of the Deity manifefts itfelf in thefe myfterious operations in a particular manner, and affords us an opportunity of examining, as it were, with our fenfes, the Divine nature.

If thofe authors, who invented a metamorphofis, in order to folve the difficulties that occur in the hiftory of infects, had feen the wonders I have been juft relating, it is probable, that they would have made arguments of them to fupport their erroneous opinions; tho' the infect itfelf, notwithftanding all its changes, conftantly continues one and the fame, and like a chicken, attains to a greater perfection, by a mere gradual increafe of its parts, and no otherwife ; for even the parts themfelves always remain the fame, whatever alterations we may obferve in their figure. What I here affirm of the parts, holds true even at the time when they fall off or difappear, in order to make room for others which fprout out to fupply their places.

Job, in like manner, fpeaking of the refurrection of his body, fays, " with thefe eyes I " Thall fee God."

Neverthelefs, I fhould be forry, that any one were weak enough to imagine, that thefe our mortal eyes, which are but duft and afhes, and as fuch are condemned to putrefaction and decay, are ever to appear in the fight of God. By no means ; the body we now carry, is but the feed or egg, as it were, in which another
more noble body lies concealed; and of this myftery the Worm we are treating of affords a moft fatisfactory example ; as it might very juftly fpeak of its eyes, as it were, in the following manner: Witi thefe, my eyes, I fhall raife myfelf on high, foar up to the 隹ies, look down upon the ficlds, and dart with rapidity through the air, in praife of my maker. Thus, I fay, this Worm might boaft of its eyes in words, which however are far from being true, except in refpect of that perfection which the eyes are afterwards to attain; on the infect's changing to a Fly; for then they are to be increafed in number, otherwife ennobled, and thall enjoy a fight more perfect than the former, as I have already fufficiently demonftrated in the eyes of bees.

The moft confiderable mufcles of the Worm here treated of, are in general placed in the head : of them I have defcribed and delineated only thofe which ferve to move the feet. Moreover, in the thorax alfo, the belly and tail, are feen a great number of mufcles, which being extended from one of the annular incifions to another, move the body various ways, by means of fibres formed and difpofed in a variety of manners. But as thefe mufcles do not remarkably differ from thofe which I have defcribed in other infects, and which have been reprefented in the preceding figures, I need fay nothing of them farther, until I come to the Fly itfelf. I thall therefore clofe here the prefent chapter ; adding only, that the limbs are fometimes diftorted in this Worm; fo that its body is found really crooked and bent: and hence we are taught, that thefe infects are liable to the fame calamities that other animals are fubject to by the law of nature. It is, however, worthy of notice, that when 1 viewed a diftorted or deformed Worm, of this fpecies, when changed into a Fly, it was no way deformed; its body being then perfect after its clange, or rather its refurrection.

C H A P. IV.

The wonderful manner whercin this Worm paffes into a $N_{y m p h}$; and of the parts that are feen in the Worm, when it is fript of its Jin; and the fane parts afterwards clearly fhewn in the Nymph.

THE Worms here defribed, are at length changed into Nymphs of the fourth order, when their limbs and other parts are fufficiently grown under the fkin. When they are about to change, they betake themfelves to the herbs that float on the furface of the water, and creep gently thereon; until at length they lie at reft, partly on the dry furface, and partly on the water: if they are about that time driven off into the water by force of the wind, or if they be kept in a little veffel filled with water only, yet their change is not on that account impeded. But when they afterwards, under the form of a Fly, iffue out of the habit
of a Nymph, then indeed they are very eafily fuffocated in the water; as long as thefe little infects are Worms, they can conveniently live in water, but by no means when they are changed into Flies. Indeed, man alfo, whilfe in the uterus, lives in the water of the amnion; but he can by no means do this afterwards, when, by breaking open the membranes, he is brought into the world. Therefore thefe Worms, lying in their natural fituation, always feek after the foating herbs, wherein at length they lie at reft; and then they, by degrees, contract themfelves, and in a manner fcarce perceivable, lofe all power of moving.

Then

Then the inward parts of the Worm's tail infenfibly feparate from the outmoft fkin, and become greatly contracted: and this perhaps does not happen without pain to the creature : for this external fkin is then commonly gathered into three, and fometimes into four windings, Tab. XLI. Fig. 1. a a a, and its extremity is left like an empty foace, into which the air penetrates, and foon fills the place which the body had before occupied, but has now left vacant by contracting itfelf. If this void face be not filled up by the fucceeding air, the fkin of the tail becomes curled into itfelf: but this I obferved only once.

Thus this infect is by degrees changed within its own fkin, nor does it before this time caft it, or is it outwardly altered into a confpicuous Nvmph; fo that this order of tranfmutations is entirey different from that obferved in filk Worms, and other innumerable fpecies of inseds.

I have often feen this Worm, in the face of twelve hours, that is from fix in the evening to feven in the morning changed, into a Nymph. And all thefe things are performed in a hidden, cbfare, and unknown manner, in wardly within the fkin, which lock them up, as it were, from our view. For this reafon, this species of metamorphofis has been tortured, as a thing fo monftrous and incompreHenfible by thofe, who, like the dog in Egypt, look only in a light aud curfory manner into nature *.

When the Worm, which is thus to be changed, has a foft fkin; that fkin neceffarily accommodates itfelf to the changes and contractions of the internal and invifible body of the Nymph. And hence it happened, that even the moft learned, who have wrote on this fubject, have not fcrupled to give thefe infects the name of eggs: in which indeed they have committed a very great error, and corrupted the natural miracles and truths of God. Thus they think and infert, that one infect is changed in this inftance into another; nay, that it again becomes an egg ; and that the egg is afterwards changed into a Fly, by a ramly imagined ablolute metamorphofis: others add, that all thefe things are produced by chance, and from purtefaction: and this indeed is the fhort path to atheifm. For, if the generations of things be fo fubject to chance, what prevents man from being thus as eafily produced in the fame manner? This alfo fome have not fcrupled to declare in their writings. God is certainly as admirable in the fructure of infects, as in that of man. The body of a beaft deferves as great admiration as the human body, if we confider both in their kind and nature. Both far furpafs the fphere of our inquiry: both are incomprehenfible and impenetrable; fince innumerable divine miracles are contained therein.

Whilt this Worm therefore is changing within its fkin, the body, head and tail infenfibly fe-
parate from the outmof invefting flain. The legs alfo about that time, and their cartilaginous bones, are, by reafon of the joints, drawn back from them, left intirely empty within; and hence they are drawn backward or inward to the orifice of the mouth, and there they lie unmoved. The Worm at that time alfo lofes all its fkull, and the beak, together with the horny bones belonging thereto; for all thefe remain fixed in the flkin of the head. From thence it afterwards draws its horns, its trunk, and other parts, which are there inwardly increafed, and are afterwards to be feen in the Nymph.

A matter worthy of great notice here, is this : the optic nerves feparate alfo from the eyes, and no more perform their former office. The mufcles of the rings alfo in like manner, and a great part of the pulmonary points of refpiration are feparated from the external skin. Thus the whole body contracts itfelf by degrees, into a fmall compact mafs.

But the greateft change is obferved in the hinder part about the tail: for there the body, having quitted, Tab. XLI. Fig. b, c, d, its three extreme rings together, rifes up into the fourth, e, and fometimes even to the fifth ring. Therefore, if you view, in the light, the Worm, which hath been for fome time changed; you will very diftinctly, and without the aid of diffection perceive, that its hindmoft rings are empty, or are only filled with air: this is likewife, though more obfcurely, obferved between the head, and the fecond ring f. But the place which the Nymph, enclofed within poffeffes, then appears black, g; becaufe it does not tranfmit a fufficient quantity of the rays of light.

At this time the gullet too, the inteftines, and the pulmonary tubes in a manner caft a coat within the fkin : this indeed is alfo very fingular, and amazingly thews the miracles of God; teaching at the fame time, how the former body is entirely caft off and renewed. In order to make this evident, it is necefliary to open the fkin of the abdomen : after this the Nymph, Fig. ir. a, and its parts, together with the caft, pulmonary pipes, $b b$, will manifeftly prefent themfelves to view: nay, it will likewife be feen, how the Worm hath caft off, c, all the parts of its head and beak, and is became entirely immoveable, except in the tail; by means of which it ftrongly moves, agitates, and draws itfelf back even to the fifth ring of the body.

The whole Afpera arteria about that time cafts its fkin on each fide. For, as this confifts of two remarkable tubes; therefore they are firf turned out of the body, whilft the Worm is contracting its tail, and are left fticking in the empty fkin, as I hall more clearly defcribe, when I come to explain the method whereby the Worm, when changed into a Fly, breaks forth out of its fkin; for it then draws the exuvix from the other pulmonary pipes.

- The hardnefs of the exterior fkin, in this and many of the other Worms which change into Nymphs, under a covering of their own outer fkin, which forms a kind of fhell, makes it appear ftrange, that fo feeble a creature as the young Fly can get out. But nature has provided for this. There is always a weak part of this hell, where the head of the Fly lies: there are certain futures, at which it may eafily be burft open: and the means ordained for thefe, are the fivelling and fubfiding of the creature's head. This beomes inflated like a blown bladder, and then frinks down again at repeated intervals; and thefe motions burf the fhell.

In order to place thefe truths the more evidently before our eyes, we muft very cautioully draw the Worm out of its fkin, at the time when it begins to harden or grow fliff; for, fince this Worm is not yet in reality become a Nymph, but has all its parts difpofed in a different manner than in the Nymph; we may fee each of them in its place, and where they are refpectively fituated in this ftate in the head and tail. Thus I exhibit, Tab. XLI. Fig. 111. $a a$, the antenne, or horns, the head, b, which I have delineated fomewhat too large; under the latter is feen the probofcis or trunis, and on each fide the firft pair of legs, $c c$; beneath there appear the wings, $d d$, and then the fecond, $e e$, and third pair $f f$ of legs. Then follows the abdomen, g, with its rings, and then the tail, b. In the abdomen are very diftinctly feen tranfparent particles of fat; and in the tail, the pulmonary tubes come in view, difplaying, or rolling out themfelves, i i. It further appears how even the inteftines, k, caft a 1 kin; for they remain fixed to the orifice of the fundament, which opens in the utmont part, and is here cut off from the feparated fkin, l; for the Worm does not difcharge its excrements through the extremity of the tail, but fomewhat higher, where we may likewife fee the fundament.

What I have hitherto advanced, may be feen more evidently in the Nymph; in which thefe parts are difpofed in their natural order, and ranged beautifully and artificially among themfelves. Here then occur the antennæ, Fig. iv. $a a$, with their joints: the eyes, $b b$, which are now arrived at their full fize: the probofcis, c, and its appendages, fituated under the eyes on the breaft : the firft pair of legs beautifully folded, $d d$; behind thefe are likewife feen another pair, ee: under the latter, again appear the wings, and their artificial convolutions and beautiful foidings, $f f$. The body likewife exhibits its annular divifions to view, g. Under the fecond pair of legs, the third pair likewife exhibits itfelf, b. Thofe black fpots alfo that are feen on the body, and which we fhew to be fituated in
the Worm, above or over the points; the pulmonary pipes, are here likewie sery diftinct it. But near them are alfo prefented to our view four apertures of the pulnionary tubes, $k k k k$, and alfo the annular inflexions of the body, with fome fmall prominences, there ftanding above the furface of the body, which have alfo caft their f kin. The claws are tranfparent in the extremities of the feet; and make a beautiful figure, when the Nymph, being fome days old, has loft the greateft part of the fuperfluous humours by evaporation, and in the integuments or covers of the membrane, wherein it is invefted, and in its outmof fkin in which it is involved, like a tender birth newly brought to light, becomes by degrees ftronger and more firm; fo that at lengith it is able to creep abroad, and break open and caft off both its coats at the fame time: that is, this Nymph is covered wish two integuments; whereof the interior is a thin membrane, which very clofely invent the Nymph: the other, or exterior, is conflituted by the outmoft hard fkin, within which the little infect has performed its change in an invifible manner. This is the $\mathbb{I k i n}$ which makes this infect look like a Worm at this time; and it is this fame fkin which made me give this order of changes, the name of a Vermiform-Nymph.

Whoever therefore defires to have a thorough knowledge of thefe creatures, muft treat them in all thefe ways. I have obferved, that in thofe Worms, which I had newly drawn out of the fkin, one might diftinguin plainly the mouth and the points of refpiration ; even more clearly than in the Worm that is ftill, creeping, fwimming, and is no way changed. Indeed, had I not refolved to be fuccinct in this place, I fhould defcribe what has been hitherto faid much more at large, and ihould have delincated all the parts, and at the fame fhewn their fituation in the Worm; as alfo what pellucid little parts are obfervable therein, what their fructure is, their motion, how the pulmonary tubes are inferted, and much more; but I am obliged to be fparing of my leifure hours.

C H A P. V:

The anatomy of the Nymph, the fat, the pulmonary tubes, the fomach and intefines: the wonderful changes obfervable in the ovary, mufcles, fpinal marrow, and other internal parts which infenfibly come in fight.

THE Nymph I examined being frefh fript of its integuments, was of a bright green colour, with white tranfparent, and fome greenifh particles of fat: and indeed it made a beautiful appearance; efpecially as the pulmonary tubes were at the fame time obferved to glitter like pearls. The head, the legs and wings were foft and fluid like water, and when but very lightly touched, they immediately difcharged an aqueous humour. The pulmonary tubes had become confiderably fimaller, narrower and more contracted. From the tail unto the place, next below the wings, I counted feven apertures of the
lungs; all which, as well as the rings of the body being clofely gathered up above eaeh other, differed very much from the points of refpiration in the Worm ; fo that therefore the Nymph was now only one third as big as the Worm had appeared to be before.

If this Nymph be laid on its belly, the heart is immediately feen beating in its back, without any previous diffection: this indeed appears very rarely fo after the incifion of the skin; becaufe the heart then, by reafon of the gurhing out of the blood, which is aqueous, and like an ichor, prefently ceafes its palpitation. Immedi-
ately under the fkin are feen alfo the mufcles appointed for moving the rings of the abdomen. The next thing that comes in fight is the fat: this was not much changed here; but, upon viewing it in a more adult Nymph , I found it fo wonderfully altered, diminifhed, and extenuated, that I thought I faw not fat, but a parcel of eggs: that is, its former oblong, angulated, broad particles, were now become almoft round and globular, Tab. XLI. Fig.v. a. Befides, alfo, it loft fo much by the evaporation, and contracted itfelf in fuch a manner, that its diminution indeed was very confiderable. Hence it muft necefiarily follow, that the body, on account of the great plenty of the wafted fat, muft become more contracted, and poffefs a fmaller fpace than before. The colour of this fat inclined to purple; but in the hinder part of the belly it was entirely green. Thofe particles of fat adhered to each other, and alfo to the pulmonary pipes, $b b$; fo that, when I touched them with a fine fharppointed knife, made like a lancet, they parted from each other with the leaft motion. In the Nymph that was very newly changed, the fat became more green.

In the flomach and intertines alfo is obferved a very great and wonderful change. This, however, is more or lefs obfervable, in proportion to the quantity of the Nymph's fuperfluous fluids which have exhaled, and as the internal humours have been more or lefs diffipated. Hence it cannot, indeed, be defcribed how much the inteftines are, by reafon of their habit and figure, altered, dilated, or contracted; that is, according as the fuperfluous moifture is more or lefs expelled by perfpiration. Among all the remarkable changes which I have obferved in there parts, I hall exhibit that which, in my opinion, is the moft beautiful, and fhall begin a defcription of it from the gullet, Tab. XLI. Fig. vi. a. The gullet is here obferved to be placed out of the horny parts of the head, b, back, and contracted legs. It appears alfo how this gullet paffes c through the aperture of the fininal marrow, under the brain, and extends itfelf a unto the ftomach. The fuperior or upper part of the fomach is alfo found to be contracted, as it were, into five annular fmall ruga, or folds, through which the pulmonary tubes run very beautifully: and hence, on account of that contraction, it cannot be there feen how the ftomach is circumftanced on the infide. A little lower, it exhibits quite another face; for it is divided by oblong grooves or furrows, which, in the figure, I I have marked e with points. But as the ftomach is there likewife inflated, and filled with a limpid humour, it is therefore obferved f to be like an open tranfparent tube in this part; and it is the more confpicuous, as it is in colour fomewhat red. But it is neceffary to obferve, that the part of the ftomach, juft now defrribed, eafily feparates from the next inteftine. The beginning of this fmall inteftine is very beautifully finuated, or bent, in like manner as the fuperior or upper
part of the fomach, with fix foldings, or, as it were, corrugated convolutions, g. Afterwards, within this inteftine, is difcovered another fmaller inteftine, b, which, being contained in its cavity, and curled with many windings, wonderfully twifted, defcends, $i i$, and again terminates underneath, in an open extremity.

This little inteftine is of a bright yellow colour, and appears very plainly through the larger inteftine; becaufe the fluid, which is in that part of this inteftine that comprehends it, is limpid and perfpicuous. If that fimall inteftine be wounded, the little inteftine, contained in it, may be drawn out almoft twice as large as it appeared in the cavity of the larger. Then it is manifeet, that the yellow colour, wherewith its furface is diftinguifhed, proceeds from the yellow fluid contained in it. What the ufe of this little inteftine is, is impofible for me to explain : in this refpect, the works of God are impenetrable. Nor fhall I, indeed, fruple to affert here, that not even one truth, in refpect to the actions of the parts of animals, or even of the human body, is hitherto fully and clearly known to us. Indeed, thofe who think the contrary, acquiefce in imaginations, taking them for facts. From my own obfervations I fhall here add one thing, that is, that I have found this little inteftine in the gut of the Worm now preparing to undergo a change: and this is the reafon which induced me to attempt delineating the head of the Worm to the gullet, though I there reprefent the parts of the Nymph. I once found that inward littie inteftine in an old Nymph: it was there very brittle, and at the fame time fomewhat more red, and in a condition as if it began to wafte away. And hence it likewife feems evident, why I have not afterwards found it in the Fly. Indeed, in thofe Flies, which are very juft excluded, I have feen that this little inteftine has been abfolutely confumed. Wherefore one may probably conceive, that this little inteftine is the inward coat of the fimall inteftine in the Worm; and that this coat, not being caft out whole and entire, is by degrees confumed in the body. But thefe are only my own conjectures. I remember I have feen fuch little parts in Spiders toc. I likewife find, that Thomas Willis, that celebrated member of the Britinh Society, obferved one inteftine in another in the Earth-Worms. And fince I here treat of the inteftines, I cannot help taking this opportunity of complaining of the ingratitude of Cafparus Bartholinus, junior, towards me : for he, though I had, out of good-nature, fhewn him all the more uncommon preparations and fpecimens, which I had procured by the help of different anatomical contrivances; yet, in revenge that he did not fo far fucceed as to make me communicate the feveral methods to him, and being full of indignation, he has not frupled to object to my propofition, whereby I affirmed that I would fometime reftore the certainty of the office of fanguification to the liver. With what eyes has this lyncæan author, who, in the front of his book, affumes the
bombaft title, Aut Cafar, aut nibil, i. e. a man, or a moufe, difcovered my thoughts fo far as to know, that I had only one experiment for this purpofe? Indeed, my anatomical preparations, which he fo much admired, could and ought fufficiently to have taught him, that I have not advanced that thefis rafhly, or without important experiments. I would therefore advife him to contain himfelf yet, and temper his gall with water, until I have leifure, and a more convenient opportunity, to treat this fubject, and folve the feveral doubts which I have faid hitherto occurred to me. I hall then thew the experiments, and affign the reafons, which confirm me in this opinion. And thefe are the very words, wherein I propofed to the public the faid thefis, in my notes on the Prodromus of the famous Hornius. But he that is bent on revenge, has in view only the monftrous images of his own thoughts. In the mean time, however, as I have there mentioned experiments and reafons, this rafh young man might have concluded from thence, that I was provided with more experiments, to demonftrate this thefis, than that trifling one, which I really do not acknowledge to be mine, in the place above cited. Nay, I join with this goodnatured Bartholinus, who, like a Butterly, has yet farce crept out of his Chryfalis, that the experiment, confidered by itfelf, contributes nothing to ftrengthen my thefis: fo that it therefore appears, that he would refute what he himfelf does not underftand, and perhaps is not capable of underftanding. But I return to my hiftory, which I hope will be more ufeful than a controverfy of this nature. In treating this fubject hereafter, I fhall only explain what is pertinent to the matter itfelf, leaving altercations to thofe who love them.

Below the place where the little inteftine, before defcribed, is feen within the inteftine of the Worm, the finall gut is again diftended, equal, fmooth, and moderately large; but then a kind of fimall tube, Tab. XLI. Fig. vi. k, is inferted therein, which is divided into veffels, either vafa varicofa, or rather the cæca, or clofed guts. Thefe veffels, like fo many fimall inteftines, difcharge themfelves into the beginning of the great guts, where the latter are united with this dilatation of the fmall. Thefe blind or clofed guts are of a wonderfully elegant conftruction, and two of them are found commonly filled with a whitifh humour; which in the more adult Nymph , I obferve, is by degrees fent alfo to the great guts.

This fubftance is fometimes beautifully divided, as it were, into knots; and is likewile inwardly feparated, mm , by a more limpid fubftance, which feems mixed among it, like whey; that nothing can farce be exhibited to the eye more artificially and beautifully difpofed, or more confpicuous. The figure, I have given, exhibits only a fmall part of this clegance, and that is but rudely drawn or delineated ; becaufe, to exprefs it accurately, there would be need of a much larger figure. Thefe clofed veffels cannot, but with very great diffi-
culty, be feparated from the fat that is annexd to them; and this difficulty is the greater, becaufe that white fubftance is not found in every part of them. Hence it is, that they are very eafily broken. But this happens fill eafier in the Worm, becaufe the blind veffels are more ftrongly connected in it ; fo that it requires more labour to difcover them there. They difperfe themfelves, $n n$, with various and vonderful windings and convolutions, through the whole belly; for they are feen no more in the thorax of the Nymph, which is all filled up there with the mufcles of the legs, and other parts. We at length obferve, that the two fuperior or uppermoft of thefe inteftines unite, 0 ; and one of them is likewife divided twice on the infide, and twifted into admirable windings, $p p:$ this goes towards the great gut, into which it difcharges its contents. The other lower pair, wherein the above mentioned divifion of the white fubitance is expreffed, $m \mathrm{~m}$, are likewife twifted into various windings, $q q$, and at length terminate r in the clofed tube. The fourth of thefe inteftines is circumftanced in the fame manner, ss; for after various convolutions, it terminates at laft alfo in the blind annular duct, t.

The colon is alfo every where uneven, with many knotty dilatations, u. Thefe are produced by the white fubftance found in its cavity, whilft the little inteftine hath been contracting itfelf in thofe parts, where it contains a lefs quantity of that fubftance. A little lower is feen a larger knot x in this inteftine, filled with a black fubftance. And at length two more dilatations occur $y y$ in it, which poffers thofe places of the inteftine, which, by the help of the humours that flow into them, fwell into very large bags. But as the little infect, after putting on the form of a Fly, fecretes and difcharges that colluvies of humours; hence thefe windings may be properly called the cloaca, or fewer. Laitly, one may fee the rectum, or ftraight gut; and underneath, in the tail, the podex, or orifice through which the inteftines difcharge themfelves, \approx, in the laft ring of the abdomen. I have alfo judged it proper to delineate this ring, as it coheres with the anus, in order to reprefent more clearly all the things which I have mentioned.

When the Nymph is older, I have fometimes found its ftomach filled with a green fluid: but when it approaches to the change of its 1 kin , in order to acquire in a fhort time the form of a Fly, its fomach and inteftines are found fo confiderably contracted, and by degrees become fo much fhorter, that one would affirm one had diffected another animal, unlefs one had obferved all thefe changes, according as they gently fucceed each other from the beginning.

In the lower region of the belly the cxcum and rectum, or blind and ftraight guts, are expanded at that time very wide; and are found to be fwollen, glittering, and fmooth, on account of the white moiftures or humours which are mixed with a chalky matter. Thefe hu-
mours,
mours, flowing out of the wounded cloaca, or liver, render every thing muddy; and, when thrown into the water, they likewife foul and deftroy its clearnefs.

The double ovary ${ }^{*}$, which appears of a whitifl aqueous colour in the young Nymph , is, in the more advanced fate, of a pale yellow colour. But if the Nymph is to change its fkin immediately, it appears to be a beautiful green. In the region of the abdomen, where the ovary extends itfelf to the thorax, are feen two empty curled bags. They are the two pneumatic veficles, as I fhall fhew more at large in the hiftory of the parts of the perfect Fly. In the extremity of the body, between the laft rings, appear three very beautiful tranfparent knots; each of which, being fupported by its own footfalk, cafts a fkin, and difclofes itfelf, when wounded. What thefe little parts are, I cannot determine: I have difcovered only, that they belong to the genital organs of the female; for I never faw them in the males, and therefore I thail delineate them in the figure of the latter.

The male part, at the fame period of maturity, became by degrees confpicuous; and, from a thin aqueous humour, having acquired fufficient firmnefs, they had obtained a limpid and pellucid whitenefs. The mufcles in the breaft are at this time much more compact, and, from a pale white, become of a purplifh colour. In the young Nymph they were foft, mucous, and like veal-jelly, and had no firmnefs.
But much more remarkable than thefe are thofe changes, which, by a flow accretion of parts, are feen in the head, eyes, pulmonary tubes, and fat, which may be feen there in a very abundant quantity; and alfo in the horny little bones, which firft confifted only of humours, as it were, and membranes. But I now pafs thefe things by, without further notice, becaufe I fhall hereafter make mention of fome of them in the Fly itfelf. Above the brain are fituated two white, foft, little parts, fomewhat like knots, which rife like two horns: they are annexed to the fides of the thorax, and reft on the ftomach, as on a bafis or foundation. But what thefe little parts are, as alfo their ufe, I am likewife hitherto ignorant.
I afterwards likewife obferved in a Nymph, which I found dead in its fkin, that the purple fat was there variegated with white fpots. The little inteftine, which I before defcribed to be contained within one of the inteftines, lay loofe therein, without adhering any where, and was curled; but that part of the inteftine, which enclofed it, feemed to be very confiderably dilated. The uvea of the eyes was of a very beautiful bright purple. Here and there, in the abdomen, were feveral fmall Worms; fome of which were already changed into Nymphs, and appeared to me as if they were to
be transformed into Flies very foon. It woula require a large treatife to defcribe how fuch things are produced in the bodies of other infects, and what ftrange and unheard-of things may be here further obferved. So admirably does God thew himfelf before our eyes! and probably the relation would not be believed, if I defribed and delineated that a Nymph iffues out of one fpecies of Caterpillars, which belongs to the fecond mode of the third order ; and that out of this Nymph the Butterfly is afterwards produced; and that out of the fame fpecies comes a Worm alfo, which is again changed into a Nymph, according to the firft mode of the third order, and at laft affumes the form of a Fly. And further, that out of the fame fpecies of Caterpillars, arife two or three Worms, which are again changed into Nymphs of the fourth order, and thefe afterwards into fo many Flies. Lafly, that thirty, eighty, nay one hundred Worms have iffued thereout, which have been likewife firtt changed into Nymphs, and afterwards into Flies. I have feen thefe twelve changes, which are very worthy of notice, diftinctly in only one fpecies of Caterpillars. And now, at length, I have learned that all thefe wonderful effects of Na ture obtain likewife in water-infects; but this I have not yet fufficiently traced.

Though the changes of the inteftines, a lit-the-before enumerated, are very fingular in the Worm and Nymph of which I treat, thofe which the fininal marrow undergoes deferves yet the greateft notice, and that preferably to the reft. For as this marrow in the Worm was twifted, as it were, into a curled lock; fo, on the other hand, we find it extended very ftraight in the Nymph, and almoft all its eleven knots, Tab. XLI. Fig. viI. 1, 2, 3 , \&c. dragged or feparated from each other. This is chiefly feen about the laft knots; but not about the foremoft knots, or thofe next to the brain, a; near or on the upper part of which I have delineated the cornea of the eyes. The firft knot, b, preferved its former fituation; but the four fubfequent knots, c, having fuffered a quite different change, were prefied clofer to each other than before, and expanded to a confiderable bump or fwelling; and therefore the nerves, fpringing from thence, were now conveyed in a very different manner. Nay, further, the origination of the fpinal marrow is alfo feen, ftretched and extended between the firft and fecond knot: and this, indeed, may be perceived ftill more plainly about the fixth, feventh, and eighth knot; and therefore only the three loweft knots, d, remain in their former fituation; though the laft of them is likewife more confpicuous than the two next above. If we would here follow Reafon as our guide, fhe would certainly have rather dictated, that the convolution of the marrow in the Nymph is extended in the

[^70]Worm, fince the Worm is, two thirds longer than the Nymph: and hence it fhould feem neceffiary, that the marrow in the Nymph muft be thus twifted, by reafon of the contraction of the body, which, as it were, accommodates itfelf thereto foontancoufly. But experience teaches, that all our reafonings here are of no confequence.

Wherefore, if any one well confiders thefe changes and extenfions of the nerves, and the knots of the fininal marrow, he will clearly fee, that the change of the Worm into a Nymph, and of the Nymph into a Fly, the infect, in the mean time, being one and the fame, is, in reality, very miraculous, and may be called, as it were, a new creation, or rather generation; the true caufes of which we are at as great a lofs to inveftigate, as the nature of God, who is the author of this work. This fhould certainly excite us to acknowledge the offenfive cloud of our own blind ignorance in every thing, and afterwards to ceafe from pride and arrogance. It teaches us alfo, how largely the miracles of God are expreffed in thefe fmall creatures: they are, as it were, fpontaneoully
evident to any one, with the leaft pains, in the inveftigation. However, one may obferve, that fuch changes are likewife obferved in the larger animals; for the fpinal marrow of the embryo, which, in the beginning, is hardly larger than a pea, is alfo infenfibly expanded as it grows larger: yet one cannot, on the other hand, deny that this is only. a fimple augmentation of the parts, which produces fuch changes in the larger animals. But in the infects there is obferved a remarkable tranfpofition of the parts, and an admirable accretion of the vifcera; which, as it is performed in a fmall fpace of time, deferves to be called miraculous, nor can it by any means be diftinctly explained: for our eyes never difcover, nor can they ever difcover, how thefe things are really executed. Add to this, that the adult animal here grows young as it were again, and muft receive other additions, until it is at length cloathed in a more noble body : all which tend to the honour and glory of God, the Supreme Deity, the Author of all thefe miracles.

C H A P. VI.

Of the true mamner in which the Nympb breaks out of its outer and inner coats; So that, by a kind of vifble refurrection, the creature afterwards aflumes the form of a Fly. Allo of the pulmonary tubes and inteftines, the coats of which are drawn off, and left in the exuria.

WHEN the time approaches, in which the hidden infect, now changed into 2 Nymph, in its outmoft uncaft coat, is to attain the form of a Fly, which change it performs in the fpace of eleven days, the fuperfluous humours, wherewith its members are fwollen, are firft infenfibly expelled by perfpiration. The little body of the Nymph allio, as hath been obferved before, is contracted unto the fifth ring of the fkin: and hence the four laft rings of the abdomen and tail become empty and hollow, or are all filled with air, through the aperture of the refpiratory orifice in the tail. The Nymph likewife yet draws its breath through the fame aperture.

If you defire to fee this, expofe the Nymph a little to the rays of the fun, and afterwards put its tail into water. Thus you will find, that it will breathe ftronger than it did before, and, by exprefling an air-bubble out of its body, and again fucking it in, will manifeftly perform the action of infpiration and exfpiration.

The anterior part of the Nymph's body likewife draws back from the fkin, and having partly deferted the beak, head, and firft ring of the breaft, the little infect afterwards lies at reft within its fkin; until its exhaling nembers have acquired due ftrength and firmnefs to break open thofe two membranes, wherewith it is now furrounded, and hindered from
coming into light. All thefe things muft be here remembered, that what I hall fay hereafter may be properly underftood.

If, however, the outer fkin be opened about this time, very wonderful varieties of colours, fuch as one can fcarce imagine, prefent themfelves through the inner fkin, with which the Nymph is covered. Some of the parts are changed from white into black; others are of a yellow, purple, brown, or very black colour, like pitch; others, from aqueous, have become membraneous; and, from this latter ftate, again become hard: fome become flefhy; others again acquire an horny or bony hardnefs, fo that, when preffed, they crack and break afunder.

It is likewife obferved at this time, that the whole body becomes infenfibly flaggy, and the feet and claws begin to move. All thefe things may be diftinctly feen, provided onc opens one of thofe Nymphs conttantly every day, until the time of change. But, for this purpofe, it is neceffary to lay them on white paper in an earthen difh, or glafs faucer, and then to make them fome what moift with water, and keep them under a glafs. In this cafe, the paper ferves the Nymphs to fix their claws in, when they come forth under the form of a Fly; and I pour in a little water, to preferve them from drying and fuffocation.

When the creature is at length to come in
fight,
fight, the outmof fkin of the Worm begins to move about the third and fourth anterior ring, Tab. XLII. Fig. I. a. This motion arifes from hence, that the infect, now hidden within the fkin, ufes all its efforts to promote its exclufion, and to quit its inmoft coat as well as its exterior fkin together, at one and the fame time. This is conflantly the courfe of mature, in our fourth order of changes. It is obferved, on this occafion, that the fkin is divided into four parts: hence it happens, that the third b of the foremoft rings, and alfo the fifth, c, are partly feparated; and even thefe, as well as the fourth above, open very regularly and orderly in the breaft. After this, the infect i nmediately breaks open its inner coat, with which it is immediately invefted, and cafts it off, together with the fkin, breaking forth from thence under the beautiful form of a Fly, Fig. if. a.
But I would have it here obferved, that the breaking open of the outmoft fkin, as now explained, is not at all cafual or accidental; but is perfectly ordained by a conftant order, fince it always proceeds in the fame manner in all thefe changes. The fkin alfo is in thofe places, where it is broke open, fo circumftanced by the all-wife Author of Nature, that it eafily opens, as if joined together by futures.
When the Fly is thus produced, its wings are not immediately obvious, or diftinctly vifible; but are curled up, and wrinkled into folds, in the fame manner as I have exhibited in the Nymph. However, in the face of a quarter of an hour, which is well worth obferving, we fee that they are difplayed and extended, and become fmooth. The caufes of this fudden effect are the blood and air, which are then impelled forcibly into the veffels of the wings and pulmonary tubes: therefore, if the wings about this time be wounded, they fhed fome fimall drops of the creature's blood, like clear flowing water ; and this never happens afterwards, when the wings are once expanded and dried, though you wound them never fo often.

When the wings are expanded, the little infect difcharges three or four fmall drops of muddy water, and immediately enters into another ftate of life: for the creature, that lived before in water and mud, now wanders thro' the air, carried by very fwift wings, and vifiting the graffy fields and meadows, enjoys a more noble and happy kind of life.
In the fame quarter of an hour, wherein this creature is produced, it hath alfo acquired the knowledge of every thing neceffary to do what it ought, and to avoid what may prejudice it ; wherefore it never afterwards has occafion of a tutor, or director for any thing. Hence the birth of this infect by far excels the unfortunate condition of man, after he is born. He for fome years increafes or grows up, as it were, in difagreeable circumftances, before he has reafon, or a knowledge of thofe things which he ought to do, or avoid: but, on the contrary, this infect is of full maturity when
born; nor does it increafe any more after the quarter of an hour, in which its birth is compleated; but it feeds itfelf with a moft diffinguifhed kind of pleafure, and lives on dew and fugared liquors, which it finds in the meadows and flowers: indeed, it fometimes nourihes itfelf with blood, to the juft punifhment of the fins of Man, who is more miferable than the Worm fixed to the earth, and thrown into this world as into exile. This Fly naturally tor-ments cows and cattle, that ferve for the ufe of man, in fuch a manner, that they run through the fields mad, as it were, with pain.
Relying with juft reafon on thefe things, I can at length affirm, that the aforefaid metamorphofis of the Worm into a Nymph, under which change the Nymph is for fome time, as it were, dead, and deffitute of motion, and, after the fhort fpace of eleven days, increafes into a Fly, by the wonderful alterations of the internal parts; may be juftly compared to the true refurrection from the dead, or, as it were, to a new generation. The human underfanding is, indeed, amazed at this; but at the fame time we are taught thereby, as with a vifible example, how near our refurrection and reformation is, when we love God above all things, and our neighbour as ourfelves; in which confifts, indeed, the real metamorphofis of the human mind. This, having then caft off the ancient dirt of avarice, pride, and envy, and changing thofe vile paffions for the moft fweet and gentle love of Chrift, lives afterwards eternally in a more perfect body.

The Fly, thus produced from the Nymph, exhibits two antenne, or horns, Tab. XLII. Fig. ir. a, on the head. The four anterior legs are jointed to the lower part of the thorax. The two laft are feen $b 666$ under the pofterior part of the body, and thew very diftinctly their joints, and the two claws, with which their extremities are fortified. Two little apapertures are feen in the upper part of the thorax; but its pofterior region is girded round with a beautiful margin, near which, on each fide, are feen two little parts, with globular extremities, defigned for making a noife or found. The two wings are affixed $c c$ to the fhoulderblades. The body, d, is divided by fome yellow fpots, with black horny or bony rings, which are beautifully adorned above and about the fides with fine hairs. I had once intended to delineate thefe things magnified; but I am now fo ftinted in time, that I cannot execute this defign.
The other miracles of God, Ghewn in this infect, muft be now exlibited to view; I mean, thofe which occur in the flkin, and in the inner integuments, which have been forfaken by this Fly. I fhall now fhew thefe exuvie, or caft parts, diffected and magnified by a microfcope. In the hinder part of the outer fkin, the caft off pulmonary tubes, $a a$, which, upon the Worm's being changed into a Nymph, and contracting its body into the fourth annular incifion, had feparated from its interior parts, ftill adhere to the fecond, third, and fourth
rings: and as the body was wrinkled at that time, it happened that thefe pulmonary tubes were turned out of it, through the pofterior apertures of the tail, and remained fixed to the refpiratory points or breathing-holes of the outer fkin. From confidering therefore this pofition of the exuvix, it is eafy to underftand how the infect has at that time, befides other changes, fuffered fo great a contraction of its body. The extended extremities, or ends of thefe pulmonary pipes, being protended forwards, are curled and twifted, $6 b$; which proceeds from hence, that when the Worm contracts its body upwards, from the tail to the thorax, thefe pulmonary tubes are, by their own infertions, and this force, thrown out of the body: and hence it happens, that there being afterwards left to themfelves, they fly back, as it were, and from ftraight run into curled ftrings or cords. This I once plainly faw, when I opened the fkin about that time.

The like operation has place alfo, with refpect to the inner c coat of the inteftines; which then likewife feparates from the body, and remains fixed to the fkin, very beautifully reprefenting the complicated web of a Spider. Within, in this little inteftine, which is of a beautiful white colour, are found fome par, ticles, like grains of fand, clear as alum, and confifting of many points and divifions. I firt thought thefe were fand; but I afterwards faw that when they were mixed with firit of vitriol, they fermented very ftrongly, which is not a property of fand. And, therefore, as I am unable to explain the nature of many other parts, fo I do not know what this fubftance is; whether it be of any ufe in the body, or whether it probably contains the calcarious, chalky, and alcaline particles of excrements? I therefore, here again, candidly confefs my own great ignorance. If we invert this part of the inteftines, and the tail, we may likewife fee how the feparating inteftine, Tab. XLII. Fig. Iv. a, inwardly detaches itfelf from the inner cavity of the ftraight gut or rectum, b; and, when feparated, remains fixed to the external orifice of the fundament, which opens c within the outer fkin. This I have roughly delineated, the better to explain it.

In the anterior or fore-part of the Worm's exuvix, are feen the legs, beak, eyes, Fig: in. d, and fkull, e, left and caft off together *. There is likewife feen the coat, which parted f from the internal furface of the gullet and flomach. But it is neceffary to take notice here, that every thing, hitherto mentioned, happens when the creature firft affumes the form of a Nymph.

When it afterwards, upon breaking forth under the form of a Fly, quits this outmoft fkin and the inward pellicle together, there are again other remarkable things obferved, which I Thall now defcribe. In the firft place, I exhibit, as now caft off, $g g$, the hitherto hidden inward coat, which had invefted all the Nymph's limbs and parts, and which is now irregularly broke open in the fore-part, together with its outmoft fkin. This may, indeed, be eafily done, on account of its thinnefs. In its hinder part, one may fee where the tail, b, or the extremity of the Fly's body, was before fituated within it. In each fide of this fkin are feen the pulmonary tubes, rolled out, and all terminating $i i$ in a pointed extremity, like fo many fmall tops or points of needles, tho each of them may be very eafily feparated into many branches.
But it muft be here again obferved, that thefe pulmonary tubes do not feparate or go off, when the Worm is changed into a Nymph: for, otherwife, the Worm muft have crept out of its external fkin; as, indeed, is always the cafe in fome other orders of tranfmutations. But fince that does not hold here, therefore the moft wife Creator has ordained that thefe changes fhall happen, when the Worm, on forfaking both its fkins together at the fame time, and being cloathed in more noble ornaments, and under this form afterwards dignified with the name of a Fly, is to come to light. Thefe things, indeed, afford us matter very worthy of confideration. We are excited to induftry not only by the fmall Ant, but may draw knowledge and learning from the contemptible Fly. And thus all things tend, at length, to the honour and love of the Supreme Architect, whofe works are evidently the open books of Nature.

[^71]
C H A P. VII.

Treating very particularly of the Afilus, or Gadfly, and its external and internal parts, as well male as female.

NOW that we have feen the order in which the Worm grows or increafes into a Nymph, and how this latter is at length changed into a Fly, and confequently appears under three different forms, though it always remains one and the fame infect; it is neceffary, for my purpofe, to exhibit particularly the parts of the Fly. This.I fhall now attempt to do, and I thall begin with the male; and afterwards defcribe thofe parts in the female, which cannot be feen in that fex.

The male Gadfly, confidered externally, fhews itfelf divided into the head, the thorax or breaft, and the abdomen or body. Thefe three parts are joined together, as it were, by a fmall filament ; and this makes a moft beautiful figure in Warps. This is the reafon why thefe creatures are called infects.

In the head the eyes, horns, and probofcis or trunk, are very confpicuous. The eyes are finooth, of a dark brownifh-green colour; and they feem fpotted, upon a tranfparent goldcoloured ground. Their ftructure is like that of the Bee's eyes; for each confifts of a collection of many leffer eyes, between the hexagonal divifions of which fome hairs are fcattered up and down. A fmall, black, horny margin divides thefe eyes one from the other. The hinder part of this margin, which lies upwards towards the thorax, is likewife adorned with three larger eyes; the two hindmoft of which are fomewhat fmaller, and the two fore ones as large again. In the neck, or where the beginning of the medullary fubftance is joined to the cerebellum in us, there are obferved two yellow fpots.
In the foremof region of the head, where the margin juft mentioned reaches towards the mouth, two very beautiful horns, of an obfcure blackifh colour, are placed in the middle. Thefe are divided each into eight joints, whereof the lower are longeft, and are fet with fine hairs. About the mouth are likewife feen a confiderable number of hairs; of a glittering deep gold colour. The mouth has no opening, as in other infects; for the probofcis or trunk, like an hollow little tongue, is here placed in the mouth; and through it, as through an hollow tube, the Fly, when eating, conveys its food into the fomach.
By preffing the thorax with the fingers, this probofcis will come in fight out of the mouth: in its fore part appear two oval bubbles, Tab. XLII. Fig. v. a; the middle parts of which are applied to each other lengthwife, and between thefe the food paffes to the fomach. Their upper part is beautifully divided with various pulmonary tubes, which, like fo many femi-circles, run from one fide to the other. The probofcis alfo has briftly hairs 66 on each
fide of it, which, arifing out of the outer Akin of the mouth or lips, hide the trunk itfelf, when drawn back by the Fly. The inferior or lower part of the probofcis has two finall cc appendages; out of the ends of which, confifting of a black horny bone, likewife arife fome hairs. They are jointed into a fingular kind of black d horny triangular bone, which gives confiderable ftrength to the membranous parts of the tube, which fupports the probofcis. Beneath this is afterwards feen another horny bone, which is of a different figure, e. I have not yet been able to difcover the aculeus or fting in this Fly, though it chews itfelf very vifibly in the Horfefly, which carries it enclofed in a fmall fheath. Whether the great tendernefs and finenefs of the fting prevented my finding it, or whether I miffed difcovering it, I cannot fay. Neither can I explain in what manner this little infect fucks the blood, fince I have never learned this from obfervation. I have faid, indeed, in my general hiftory of infects, that thefe little creatures had a fting or point in their mouth; which, I believe, to this time is the general conftruction, tho' I cannot at prefent demonftrate it.
The fhape of the thorax on the upper fide, or in the back, is oblong, and it is moderately hard like a horny bone. It is in fome of thefe Flies, covered very thick with fine hairs. Its upper part is bent a little inwardly at each fide: and hence it happens, that two holes, as it were, are there formed; befides, each fide of it is fet with thin hairs. In the loweft region of the thorax are feen fix legs; they are articulated to the thorax. Each of thefe legs confifts of five joints; the laft of which is again fubdivided into five fingle joints, and is armed with two redifh claws, having their extremities as black as pitch. All thefe joints have alfo briftly hairs, and are conftructed or formed of a horny or bony matter, fomewhat hard like lobtter-fhells : within this the mufcles, veffels and nerves are placed. On the upper and hinder part of the thorax are two wings, of an even and generally fmooth furface; though they have fome few hairs difperfed over them. A confiderable number of pulmonary pipes is alfo diftributed through thefe wings, and thefe divide them as fo many fimall nerves. The membranous parts of the wings are fomewhat wrinkled, or plaited with fmall folds, and they are of a colour approaching to a pale red. The wings are, by the help of their joints, connected with the back; where the mufcles, which move them, are inferted therein. Four finall folds of the wings are likewife feen there; whereof the lower are beautifully furrounded with hairs; and where the contracted wing refts, they are received by a kind of hole or pit, confpicuous in each fide of the thorax;
and this likewife has fome fetaceous hairs, but not placed fo regularly. Near thefe appear two globules, each of which is fupported by a bent or crooked fmall foot or peduncle, and thefe refemble the iron head of a hammer. All the little parts, juft now enumerated, ferve for modulating the air; for, as this is driven out of the thorax into thefe cavities, hence is produced that crafhing noife in the fides of the body, made by the Fly when it difplays its wings in flying. The malleoli. or little hammers, in particular, are very beautiful, and fuch are found almoft in all Fies: but I never faw them in any fpecies of Bees; that is, the Bees have four wings: and therefore they produce their found or noife in a quite different manner. The fame may bealfo obferved in Locuffs and Grafhoppers. Indeed every kind of infect has particular inffruments to vibrate and modulate the air. The part of the back oppofite to the abdomen, is adorned with a yellow margin ; out of which arife two fharppointed little parts, like fharp needles, terminated by black points. However, you may more eafily difcover thefe litte parts by the touch than by the fight, becaure they are furrounded with a great number of hairs.

The abdomen, in like manner, confifts of a horny or bony fubfance, and being fet all round with hairs, has five yellow fpots on each fide, which lare here and there as if folded up, and laid fmooth, and without hairs. It is moreover divided into feveral rings, which are difpored in the fame manner in the male as in the female : though, in refpect to the particular ftructure, there is fome difference between them, as far as they conflitute the Fly's tail ; but this difference cannot be feen, unlefs when thefe parts are preffed backwards.
As to the external parts, there is no difference between the male and female, except with regard to the bignefs of the body: the male is a full third part lefs thian the female, which is likewife the cafe in the Worm alfo, and the Nymph; for thofe which are to produce males, are lefs than thofe which are to yield females. The female muft carry in it an ovary, which, as it contains fo great a number of egge, that it cannot be comprehended in a narrower compafs, it is therefore neceflary that fhe fhould have a larger body. To make this the more evident, I fhall now defcribe the inward parts of the Fly, and their difference in the male and female. Let it be here obferved, that it is a female I have delineated here, and defribed in general.
Before I proceed to the internal parts, I murt obferve, that all the Flies which belong to this fpecies, do not exactly agree with one another, in regard to their fpots, colours and hairs, which is alfo the cafe in their Worms ; between which there is great difference in regard to their paler or fuller colour.
Now, if, in order to fettle the diffection of thefe Flies, you defire to kill them in fuch a manner as not to hurt any of the parts, there is nothing fo proper for this purpofe as fpirit of wine, in which they die immediately: however, I could not entirely kill the Worm in this liquor.

I have killed a young Fly in the fpace of thres hours, by the fmell of Brafil tobacco, put near it in a flask: and this indeed I have often done fince.
In the head of a male Fly of this fpecies, two days old, I obferved that little particles of fat became confiderably fmaller than I before defrribed them in the Nymph. When I had afterwards removed the cornea from the eyes, the colour of the uvea, which fill lay within that, appeared of a bright red. I obferve alfo, that the colour of the uvea is very different in proportion to the age of the Flies: for thofe that have very recently caft their skin, fometimes fhew the uvea of a very beautiful and full orange colour.
All the mufiles of the legs and winge, which are inferted in the horny or bony invefling coats of thefe parts, were in this Fly entirely perfect. 1 found little fat here. But the belly, when opened, appeared to be very full of it. This fat was of a purple colour, and its particles globular; fo that at firft fight I took them for eggs. Thefe fat particles very eafily feparate at this ime from the pulmonary pipes. Thefe tubes were become much lefs, and more contracted, on account of the great lofs of the confiderable coats which they had caft off; but I could not find any tube among them dilated into veficles, as is the care in many other infects. I further oblerved alfo, that the largeft branches of the pulmonary tubes, which I have before defcribed in the Worm, were here in the Fly compreffed, and infenfibly worn away, as it were, or abolifhed: and the fame thing is true with refpect to the bags, out of which the Silkworms fpun their filken threads.
I obferved alfo two confiderable pnenmatic bladders of a pear-like fhape; one of which I here delineate, Tab. XLVII. Fig. vi. a. They were large, and very much dilated, and were fomewhat curled in the curvature of their tops, in the manner of thofe little purfes, in which the earth Spiders carry their eggs about them : this happens probably, becaufe thefe bladders have not been extended as much as they might. Each of thefe was terminated by a clofer tube, b, compofed of orbicular rings; out of the fides of this other fmall branches, $c c$, iffued here and there ; two of which I here exhibit magnified. Thefe pulmonary tubes are principally conveyed towards the fides of the body, under the wings, and there forming fmall orifices, they afford the ai: by which the Fly makes or produces its noife.

The ftomach and inteftines were in this Fly very much contracted. I found a little air in the ftomach, and in its hinder part near the pylorus, a brownifh yellow fluid. The litile inteftine found in the other inteftine, was wanting in this fubject, having been wafted away. The four convolutions of the four clofed or blind intef. tines, were here found forced out of the breaft into the belly. The recium fhewed itfelf dilated to a confiderable width, and filled with a white moift fubtance like chalk.

Below, in the abdomen, were feen the genital parts; the penis, the tefficles, and the feminal bladders. The penis is fituated underneath, within the laft ring of the abdomen, thro' which
it erects and ftretches itfelf. Its forepart is divided into three horny or bony points, Tab. XLVII. Fig. vir. a, variegated with a palifh yellow colour, fomewhat approaching to red: the middle one of thefe is properly the penis, which can erect itfelf internally, and punh through the horny little bone, wherewith its hinder parts are invefted. It is connected as by two joints, $b b$, with black horny little bones, twitted into ferpentine windings, which I here reprelent, joined to the hinder part of its horny theath. Moreover, this can bend itfelf in fome degree about the middle, c; its cafe, or fheath, being there a little more membrancus: hence the penis feems to exhibit a joint in that part. The laft or extreme ring of the belly, wherewith the penis is articulated, is likewife adorned with two margins or verges, which are fmall, horny, or bony, black, and confiderably ftrong, $d d$; and in the forepart, are, as it were, jointed with the horny little bones, which are bent in a ferpentine manner $e e$. I have here delineated that ring open: for all thefe horny little bones are clofely joined together, and cover, as it were, the penis.
The foft and nervous part of the penis, twifted in a ferpentine f manner, runs inwardly into the cavity of the abdomen, and is there at length dilated into a confiderable knot, g; into which the tefticles, $b b$, and feminal veficles, $i i$, difcharge their fperm through four orifices, and thus convey it to the penis. Thetefticles, when diffected, fhew themfelves to be compored of very numerous, fmall, very fhort and tender $k k$ tubes, with their ends clofed; all which threw their fperm into the vas diferens, l, by which it is conveyed on further. The feminal veficles are not fo confiderable; but they deferve notice, on account of fome bendings and curlings, mm ; they terminate in delated extremities. Their fperm, as well as that of the tefticles, is white; though the tefticles are not fo white as the feminal veficles.

The fpinal marrow is here difpofed in the fame manner as it is in the Nymph.

I find the fame parts in the female as in the male ; only that an ovary is found in that fex, inftead of the male genital organs. This ovary is divided into two parts, Tab. XLII. Fig. viif. $a a$, and being b faftened to the laft rings of the abdomen, it opens there by a large orifice, and difcharges its eggs; thefe the Fly always drops into the water: this is likewife the practice of the Perla or Dragon-fly. Thefe hinder rings of the body, are here and there very beautifully variegated with black, horny, or bony fpots of different figures, $c c c$, and are likewife beautifully adorned all round with hairs d.

The eggs in the ovary feem to be exactly fpherical, and to exhibit each an opening in the middle of it, eee : but this is only a falfe appearance, produced from their too obfcure colour. In reality the ee eggs, are oblong; and they become the longer and more acute, f, as alfo larger and more confpicuous, the longer time has paffed fince the Fly's change; fo that they infenfibly
fill the body more and more. But if thefe eggs be laid before a microfcope, that magnifics in a great degree; then their real figure is difcovered, together with the pulmonary tubes, g, which connect them every where, and which furnifhing many fhoots, h, diffufe $i i$ themfelves through the whole ovary in feveral beautiful branches. No veins or arteries are feen here; becaufe thefe little creatures have white blood, as alfo on account of their great fmallnefs.

In the young Fly thefe eggs are very tender, and of a beautiful colour; which becomes the ftronger or fuller, in proportion to its age. In one ovary of this kind, I have diftinctly counted about four hundred and forty eggs: hence it is evident, what a great number of Worms one Fly may produce.
I have placed water, fweetened with fugar, before fome of thefe Worms; but they did not touch it, and died the fourth day. Others lived much longer, and the more fo, the more they were expofed to the cold and rain; for then almont all infects abftain from eating. I have neglected to offer them blood.
In one of thefe Flies, which I opened alive, all the fat was confumed, fo that no part of it remained, but thofe purple little membranes, with which I had obferved it before furrounded.

Laftly, near the orifice of the ovary, which difcharges, Tab. XLII. Fig. viif. k, itfelf, thro' two ducts, I have difcovered thofe three very beautiful little knots, whereof I have before made mention in the Nymph. The extremities of thofe Nymphs are twifted, l, or turned like a fnail-fhell : and they are then inflected or bent, m, in a fingular manner, then curled, n, and run towards the laft ring of the belly, and are placed o near the ovary. Where thefe knots form m their bending, fomething like a common membrane joins them together. But if they be diffected, there are as many pulmonary tubes feen enclofed therein, as they are in number. The coat or membrane, which invefts thefe pulmonary tubes, entirely dries away and perimes, if thefe are put on a glafs, and leaves the tubes bare with open cavities. By opening the faid knots alfo, one may turn the air-tubes out of them unhurt.

The ufe of thefe little parts is utterly unknown to me; I cannot even conjecture for what purpofe they are formed. There are alfo many other parts of this infect, concerning which I am as much at a lofs. Wherefore, all who read thefe matters, as well as myfelf, being convinced of our ignorance therein, are obliged fubmit to before God; who hath newn himfelf fo incomprehenfible and adorable in this infect. We are obliged to extol him with praifes, for that he hath been gracioufly pleafed to difcover to us fo many, and fuch great things in this creature. If we cultivate and exercife together thefe two duties under fuch refearches, the vifible things will ferve to excite and encourage us to know and fee God, from thofe objects which he created, and to love him cordially, and like children, as the fupreme venerable Deity.

A Letter written by the autbor to Mr. Thevenot, on the nature and anatomy of the Worm bred in rotten cheefe, or the Acarus, and called by us the Mite, and of the Fly produced from it.*

SIR,

IDoubt not, but at the time when you held weekly conferences at your houfe in Paris, and thereby made it a general place of meeting for the learned, fome of your inquiries turned on the nature of Mites, their fingular difpofition, and furprifing manner of their fpringing up into the air. I therefore take the liberty of fubmitting this little treatife to your judgment, which I refpect and value infinitely more, than the opinions of many of the profeffed litterati of the prefent age, whofe inquiries into natural things, feldom go deeper than the furface.

I am not ignorant, that the illuftrious Redi has wrote with great knowledge and accuracy concerning Worms, which are bred in cheefe; but I know alfo, that he could not poffibly be thoroughly acquainted with all the circumftances remarkable in thofe infects; and that the great number of uncommon experiments
which he propofes, could not but hinder him from applying himfelf thoroughly to all parts of the fubject, efpecially as he, at the fame time, paid his attendance at the court of the great duke of Tufcany.

I have therefore taken upon me to lay before you, moft illuftrious philofopher, a full account of this little Worm, and its Fly, their external appearance, their difpofitions, and their internal ftructure; for I can take upon me to affirm, that the limbs, and other parts of this Worm are fo uncommon and elegant, and contrived with fo much art and defign, that it is impoffible not to acknowledge them the work of infinite power and wifdom, to which nothing is hid, nothing impoffible. You will fee thefe minute creatures have, as well as the greateft, a brain, nerves, mufcles, lungs, falival ducts, a ftomach, fmall and large inteftines, cæca, or blind guts, pinguiferous or fat membranes, and the feveral other vifcera.

The external parts of the Mite.

ALthough this Worm is very common, I have thought it not amifs to give a figure of it at its fuil growth, and of its natural fize, Tab. XLIII. Fig. I. as names are equivocal, and there are many who know but little of it. Thefe fmall creatures being generally held in deteftation, though fome eat them voluptuoufly with the reft of the cheefe, from a vulgar notion, that they are formed out of the beft parts of it ; whereas in reality, they proceed folely from the eggs of a common Fly, as I fhall prefently demonftrate. But before I undertake to explain the difpofition of this Worm, and give fome account of its internal parts, as they appear on diffection; I fhall defcribe its external parts, as well as fuch internal ones, as the tranfparency of the outer ones affords us an opportunity of examining, without being obliged to diffect, it.

The Mite, when viewed with the microfcope, appears divided into twelve fections or rings, Fig. II. $1,2,3,4,5,6,7,8,9,10,11$, I2. The firft of thefe rings, properly fpeaking, forms the head a, the fkin of which, as likewife that of every other part, is tough and firm like a piece of parchment ; fo that it is no eafy matter to break or wound it, though the Worm leaps with a furprifing violence, on being ever fo gently touched. The forepart of the head is, in a manner, divided or feparated into two tubercules, from which arife two very fhort
antennæ, or horns. Between thefe two divis fions of the head, there conftantly appears, through the tranfparent fkin that covers it, a fmall particle, which, like the head, confifts alfo of two divifions. This little particle really contains the organs conflituting the mouth, which are of a fubftance between bone and horn, and produce on their forepart two little black claws, which ferve the Worm not only as fuch, but likewife for feet, and in the place of teeth. We may alfo clearly perceive thro' the infect's tranfparent skin, that it can move thefe claws in and out, together with the al-ready-mentioned parts of the mouth, in the fame manner as the Snail thrufts out, or draws in, its head and horns.

The next ring is very remarkable on this account, that the pulmonary tubes of the infect fcarcely open any where elfe, except in the hindermoft ring of the body, where there are two more : I could never difoover any other breathing-holes, or apertures, in this infect. Thofe in the front ring next to the head, are very large. Thefe extremities, or rather the beginnings of the lungs, Tab. XLIII. Fig. II. b. are curioufly contrived, and elegantly conftructed. On the forepart, where they are thruft out beyond the skin, they are of a membranaceous fubftance, fomewhat white, and very delicate; a little lower they fwell, as it were, into a fmall belly, and grow yellowifh, and in fome mea-

[^72]fure to appear of a golden brightnefs. After this, they grov narrower towards the third ring, where we may plainly perceive, through the infect's clear skin, that after acquiring ? filver whitenefs, like mother of pearl, they unite with the branches of the trachea, ferving as larynxes. One great advantage the infect draws from thefe openings, being placed forewards, near the beginning of the third ring, is, that when it draws in its head and legs, as it burrows in the moin cheefe, thefe larynxes are covered by the folding of the skin. A contrivance worthy of its great Author, the fole fountain of every thing good and wonderful. Within the third ring there plainly appears, through the tranfparent skin, the two great branches of the wind-pipe, which communicate about the beginning of the fourth ring, by a very conficicuous anaftomofis or inofculation. There are alfo many other fmaller branches of the trachea iffuing from the two great branches, which are placed within the third ring; and the.e finall branches afcend towards the fecond ring, and toward the head. I have omitted thefe ramifications in the drawing, for fear of rendering it confufed. There appear befides, tho' fomewhat obfcurely, fome other internal paits, through thefe rings. In the fourth ring there are feen two more branches of the trachea, iffuing on each fide of the breaft from the two main trunks $c c$. Of the two fmall branches laft mentioned, one goes to the fourth, and the other to the fifth ring, where they join the branches fpringing from the trachea in this place by a double inofculation, or anaftomofis, that is eafily difcernible.

I do not find, that the greater branches of the wind-pipe form a mutual inofculation, or anaftomofis with each other, any where, except about the beginning of the fourth ring; but the fmaller branches arifing from the fides of the greater, and which appear very diftinctly on each fide of the body extended all over the annular divifions, communicate with each other in a very obvious and confpicuous manner. This may be beft feen on the declivity of the breaft and belly, above the borders vifible in thofe places, as alfo in the rings of the left fide, marked in the figure with the numbers

NATURE; or,
$5,6,7,8,9,10,11,12$, and the letters, Tab. XLIII. Fig. II. $d d d$, \&xc. There appear, befides many other, fmaller branches in the fame places, which fpring from the greater, and extend to the vifcera within.

All the other rings, from the fiff to the eleventh, are conftructed alike; and the ramifications of the pulmonary tubes, which fhew themfelves thro there rings, are nearly of the fame form : the principal difference, and that too is only accidental, as it is called, is, that the other internal parts of the Worm fhew themfelves a great deal more plainly thro' fome of the rings, than they do thro' others. In the fifth ring fome particles of fat may be difcerned thro' the skin e, and fome more, tho' very faintly, in the fixth. In the feventh and eighth, I could perceive fome of the cæca, or blind guts, or clofed inteftines $f f$. Thefe, on account of their contents, appear of a very pale colour, in fome degree approaching to green; the fame alfo I could fometimes perceive, pretty diftinclly, thro the ninth ring, tho' at other times very little or not at all. In the tenth ring, and between the principal trunks or branches of the wind-pipe, which extend themfelves along the back of the Worm from one end of its body to another, there generally appears a confiderable branch of the trachea g, running to the internal parts. In the eleventh ring, there is feen a very remarkable particle of fat h, refting upon two branches of the wind-pipe ; but it has been only in fome Worms that I could perceive this: it is not univerfal.

The twelfth ring differs in conftruction from all the others; for the two greater branches of the trachea terminate there, projecting at their extremities in the fame manner as the leffer branches of the trachea do beyond the furface of the body. The projecting parts are, like the other breathing holes near the head: they are of a pale colour, but formed in a different manner, as may be feen by looking over the figure.

To conclude : the furface of this twelfth ring, is covered with a variety of prominent tubercles, and little cavities like wrinkles; the ufe of which I fhall hereafter defcribe.

Of the dijpofition of the Mite.

THUS, Sir, I have defrribed, in a few words, the external parts of this Worm, and fuch of the internal ones as appear thro' its tranfparent skin. But all thefe particulars will appear of little confequence, when compared with the wonderful contrivance that is feen in every part; when more minutely examined: fuch a contrivance, as the great Architect of nature alone can thoroughly underftand, or could form; the moft ingenious inventions of man being, in comparifon with it, lame and defective.

The figure I here give of this Worm, which is furprifingly ftrong, and has a moft vigorous
conflitution, reprefents it lying on its back, and feizing its tail with its teeth or claws; but this pofture is not, as you may guefs, the natural condition of this Worm, nor is it ever found lying on its back, when alive ; fo that my only defign in giving it thus, is to be better able to explain the manner of its leaping, in the moft fatisfactory terms. By turning the figure, you will have a moft exact and matural reprefentation of the little infect, preparing to make a fpring.
When this creature intends to take a leap, it firft erects itfelf upon its anus; in doing which, it is greatly affifted by the prominent tubercles
tubercles of the twelfin ring, which enable it to maintain an equilibrium, by projecting more or lefs at its pleafure, from the body. Immediately after this, the creature bends iifelf into a circle, and having brought its head, Tab. XLIII. Fig. III. towards its tail, it prefently ftretches out its two black crooked ciaws, and directs them to the cavities formed between the two laft or hindmoft tubercles of the body, where it fixes them in the flkin; as the fecond figure, done from nature by the help of a microfcope, accurately reprefents.
The Mite having thus made itfelf ready, concontracts its body with fuch force, that from a circular, it becomes of an oblong form, Fig. iv. the contraction exiending in a manner to every part of the body. This done, it again reduces itfelf with fo prodigious a force to a ftraight line, that its claws, which are feated in the mouth, make a very perceiveable noife on parting from the fkin of the laft ring of the body: and thus the Mite, by firfo violently bending, and afterwards ftretching out its body, leaps to a moft extraordinary height, if compared with the fmallnefs of the creature, in confequence of the ftroke the body gives in recovering its place on the cheefe, or wood, or any other fubftance upon which it was before lodged.
I have indeed feen a Mite, whofe length did not exceed the fourth part of an inch, leap out of a box fix inches deep, that is, to a height twenty-four times greater than the length of its own body ; others leap a great deal higher. But this Worm does not always erect itfelf per-
pendicularly to take a leap; it very often preparcs for this when lying on its fide, though the firt is the commonelt method; but whether it erects itfelf, or lies on its fide when about to leap, it never fails to bend its body into a circle, and afterwards to reduce it to a fraight line.

If, Sir, you fhould be defirous of examining with your own eyes, thefe furprifing miracles of God's power and wifdom in this abject creature, you need only place the Mite in a drop of water, upon any white furface; and adapt it to the microfoope in this fituation; for, though it cannot leap in the water, you may diftincly perceive it endeavouring to do fo, by feizing i.s anus with its claws, and making every othcr pofture, exhibited in the fecond, third, and fourth figures.

This may alfo be feen in another manner, by faftening the Mite with a little pafte, made of fliff farch, on the point of a very fmall needle made for the microfoope, as it cannot loofen itfelf, fo as to perform its leap in this fituation. Another method is, to roll the Mite about a little upon a table, and handle it till it has loft a great deal of its ftrength; for, in this condition, it takes hold of its anus very irregularly, and fometimes fixes its feet into the pulmonary tubes placed about that part; you may then very conveniently fee in what manner it extends its claws upon this occafion. Our common friend, Dr. Matthew Slade, will confirm all thefe pariculars, he having had the pleafure of admiring, together with me, all thefe prodigies of nature.

An anatomical defoription of the internal parts.

TO kill fome of thefe Worms for diffection, I threw them into rain water, where they died, but not till after fix or feven days: they are fittef, however, for anatomical diffections, at the end of two or three days, lying in water; for though fill alive, they are benumbed. On being taken out of the water, at the end even of five days, they will crawl, however, and fometimes leap about as brifkly, in a manner, as ever, and fometimes live after this to become Nymphs, and afterwards Flies.

I could difcover no eyes in the Mite's head; but the firft things that prefented themelvesin that part, on diffection, were the claws, which I before mentioned by the names of teeth and legs, as indeed 1 have found by experiment, that they will anfwer the feveral purpofes of all thofe parts. The infect makes ufe of them as teeth, in fraping off the cheefe, and afterwards fwallowing it, fo that it is but reafonable to call them by that name: next the Mite employs them to walk with, fo that one would imagine it walked upon its nofe. This may be feen, by placing it upon a piece of fine linen, or paper; for it fixes thefe two parts into the pores of the linen, or paper,
and then draws after them the reft of its body. Thus they deferve the name of feet: but this is not the only manner in which this creature crawls; it can likewife move itfelf by an undulation, or waving motion, of its body. Finally, thefe parts, may be jufly confidered as claws, not only upon accounit of their refemblance to thofe paris in other atimals, but alfo, becaufe it is with them that the Worm takes hold of the laft ring of its body, fo as to bring its mouth and anus to meet together.
There teeth or claws are very flarp on their fre part, and they are moderately crooked, almof like thofe of hawks and eagles, Tab. XLIII. Fig. v. $a a$. Nearer the root they grow broader, and they have two apophyfes or fwellings, wherein the mufcles, that ferve to move them, are inferted. Thefe teeth are articulated with the mouth and palate, which are two little black, oblong, hollow, horny bones, with which the pharynx is alfo connected. Thefe little bones, from a flender beginning, 66 , afterwards become broad, and at laft terminate in four appendages, $c c$, which are in a manner of a membranaceous fubftance: but in the fore

[^73]part, they are conneted in the middle, with two other horny, and very fingular bones, d, which ferve to keep them in their places, and at a proper diftance from each other.

The gullet, which lies between thefe appendages of thofe little bones I have been defcribing, and in their hollow part, becomes confiderably wider in the Worm's thorax, e, where it, in a manner, forms an ingluvies or large hollow.

Under this are feen four appendages, clofed at their ends, $f f$, which are, as it were, cluftered about and furrounded by little globular particles of a fatty matter, but of a peculiar nature. They are indeed properly made up of thefe. As yet I cannot determine what thefe particles thould be called, or the ufe of them may be, unlefs, perhaps, they may ferve to moifien the food of the Worm, in its paffage through the eefophagus or guller, and thereby render it of eafy digeftion.

The fromach, $g g g$, offers itfelf next to our confideration. It is very long, as is the cafe in all other infects, while they continue in the Worm or Caterpillar fate. It is fupplied with a great number of ranifications from the windpipe ; bat I have omitted them all in the figure, except two principal, and fome other fmaller, ramifications diftributed over the furface, $b b b$. The length of this fomach is fo very confiderable, that one might eafily miftake it for a gut, and defrribe it as fuch; and no doubt, I thould have been myfelf of that opinion, had I not had an opportunity of comparing together the conftruction of this, and of the ftomachs of other infects. This fromach is of a membranaceous fubetance, in which there appear fome mulcular fibres through its tran(parent coats. All the contents of the flomach were white: I have endeavoured to reprefent them in the figure by fome dots, as feen through the coats of the ftomach, i. The ftomach appeared alfo invefted with numerous particles of fat ; but I did not difcover this laft circumfance in the fiomach, till after I had dried it on a thin piece of glafs.
Lower down, towards the end of this channel, there rife from it two little flender intefines, $k k$, like thofe found in all other Worms or Caterpillars, that I have yet diffected, and even in the Loure. I call thefe cxca, or blind inteftines. In the Mite, thefe two intertines divided, each into two others; two of thefe contained a greenifh yellow fubtance, $l l$; and the two others, a matter that was partly green, and partly white, and looked as if it was coagulated, $m m$; but what was very furprifing, the motion of this fubftance through the inteftines was fo quick, that my eyes could not keep up with it ; and, on my cutting one of the intertines in two, it flowed from it with great rapidity. This I obferved in a live Worm, that I diffected ; but in another, which began to putrify, I found the coat of this inteftine diffolved into an infinite number of little fatty lumps. In both, there inteftines were of a prodigious fmallneff; but from the motions of the matter contained in them, we may reafonably conclude they are furnifhed with mufcular fibres, though I could by no means obtain a fight of them, as they evade by their extreme
delicacy, the fharpnefs of both our eyes and infruments, which are at beft oniy fir to examine vifible and fenfible objects, and even theie very imperfectly. How mach therefore are we bound to humiliate our hearts, when, on account of our great weaknefs, we cannot thoroughly fearch into any one of God's creatures! Thefe inteftines had alfo their pulmonary tubes, n. And who can tell how many more wonders may yet remain hid in them!

The pylorus, o, or opening of the fomach, appears below the infertion of the four inteftines I have been juft defribing, and near to this is the gut colon, $p p$, which is followed by the rectum, q. I could difcern the very extremity of the rectum, r : it was of a fomewhat different form from that which 1 bave given it in the figure ; for I there reprefented it as.it appeared on my fqueezing it at the fundament out of the Mitc's body.
It is extremely remarkable alfo, that two of the caca or blind guts, were fo united with particles of fat, $s s$, that their clofed extremities appeared firmly fixed in them, and connected with them by means of a great number of pulmonary tubes. In the figure I have only reprefented this circumftance in one of the inteftines. There are in this creature a great number of thefe particles of fat. They are of an oblong oval form, fometimes double, and fometimes hung about with appendages, round, hollowifh, and flat, as may be feen in the two little portions of this fat, which I have here reprefented, ss.
On examining this fat with a powerful magnifier, every divifion or lobe of it appears wrapped up in its own particular membrane. We may, even by this means perceive, that every fingle particle of this kind, contains an infinite number of globules of fat, Fig. vi. a a a, which flow out of the lobe as foon as it is opened, and mix confufedly together; fo that, a variety of branches, compofing, as it were, a little tree, are formed by the combinations of the concurrent lobes. The particles of this fat are of a dulky white, and, by this means, they exhibit in the Worm a fpectacle, whofe beauty no words can properly defcribe; but we need not think this extraordinary, as it is effected by the Omnipotent Being, who, with a word, produced all things.

It is very entertaining alfo, to confider in what manner the pulmonary tubes, which are of a bright filver whitenefs, Fig. vi. b, run every where, and in every poffible direction, through there pinguiferous or fat veffels, fo as to diftribute themfelves principaliy over the particles of the fat, where this fubitance is laid up in little round lumps; at the fame time, that in the interfices of thefe lumps, they run into one another without any apparent order.
O_{n} one fide of the gullet, there lay a very delicate and fmall tube, ftretching to the jaws, and the horay bones confituting the palate and mouth; but I have not as yet been able to trace this tube perfectly to its origin. I found that is divided itfelf, in the breaft, into two fmall channels, each of which widened again into an ob. long globular bladder, Fig. v. t, and then be-
came again contracted into a narrow tube, which reaflumed once again the form of a bladder, beautifully adorned with a great number of pulmonary tubes rumning over the whole furface, $u u$. Some particies of fat very regularly placed, and moft curioully contrived, furrounded one fide of thefe glandular vefiels, $x x$, and underneath, extended into a kind of blind or clofed appendages, $y y$, fuch as I had never obferved before in the fat of any creature.

Nor can I tell the ufe of the particles latt defcribed, though I have reafon to think they perform the office of falival glands and ducts. For, as the Mite fpins no web, and thefe baggs are clofed behind, I do not think any other fervice can be fo properly attributed to them.

The pulmonary tubes, which are diftributed through all the parts we have been furveying, are conftructed in the Mite after the fame manner as they are in other infects. That great anatomift Malpighi, has given an inftance of this in his account of Silkworms; and I have, myfelf, frequently done the like in this work. But the rings compoling thefe tubes, are not fo very numerous; for which reafon, they are of a more inembranaceous and flexible ftructure.

The motion of thefe pulmonary tubes is feen very evidently through the fkin, on examining with a microfcope the Mite, held on the point of a pin run through its head; for, as the infect in this condition turns and twifts itfelf a great many ways, the pulmonary tubes affume, in confequence of its motions, a variety of appearances. Sometimes they are flretched out to their length, at other times they are bent in a ferpentine manner, or coiled up in form of a circle ; but notwithftanding fo many diftortions, the rings compofing them always retain their form, and never collapfe. Thus has the Omnipotent Architect given us the fpecimen of a tube, fo perfectly flexible, that the moft violent contortions cannot do it the leaft injury.

The brain is fituated in the neck, near the horny bones, that form the mouth and palate of the infect. This fituation of the brain makes it fall lower in the neck, on the Worm's pulling its feet into its mouth; and, on the contrary, it is drawn forward, as often as that creature thrufts out its fnout: this is very much the cafe alfo in Snails. What atheift is there, who would not be confounded and fruck dumb, on examining attentively the wonderful contrivance in the vifcera of animals? For my part, I dare challenge mankind to defcribe properly the fmalleft portion of the neaneft creature that crawls upon the earth. Whoever fhould undertake fo bold a tafk, would lofe his eyes in the attempt. For, there is no doubt but any one, who, in this vale of tears and ignorance, mould fully and immediately behold the divine fun of thefe truths, which God has treafured up in his creatures, would forfeit fight for his prefumption. Such has been the unhappy, though deferved fate of all thofe, who have attempted to difprove and overturn by human reafonings, and fenfible experiments, the divinity of the Creator, fo clearly fhining forth in the whole nature of things.

Whatever is a fenfible object, munt lie within the fphere of the renfes; but our fenfes are coarfe, and cannot of themfelves teach us any truth, unlefs prior ideas of it have been impteffed upon us by him, from whom we derive our exiftence. This, father Malabranche has moft inconteftably proyed in his inquiry after truth.

The brain in the Mite confifts of two globular parts, which in a manner conftitutes its right and left portions, Tab. XLIII. Fig. vir. a a. Near the brain is fituated the beginning of the fpinal marrow, which in this place is always opened, fo as to give a paffige to the gullet. From the fore region of the brain there iflue fome confiderable nerves, which dilate a little, at the diftance of haif their length from their origin, 66 . But this particular is not obfervable in every Mite. Thefe nerves at length fwell into two diftinct and very confpicuous nodules, c, from which arife two fmaller and very delicate nerves, $d d . I$ could not trace thefe far enough to know what parts they run to: I believe it is to the mufcular parts of the mouth, palate, and feet. Next under the brain, and from the beginning of the final marrow, there arife two pair of very flender nerves, ee, which adminifter to the vifcera in the abdomen, and to the mufcles moving the rings of the body. Under thefe appear two confiderable nerves, which, after dilating into two oblong globes, $f f$, clofe again, and then form two other globes, fmaller than the former; from which there arife again two nerves: but what thefe nerves are, or what purpofes they ferve in this infect, I cannot tell. I believe, indeed, they exift ufelefly in the Worm, and are to work the mufles of the wings, when it becomes a Fly. From each fide of the fpinal marrow there iffue a great many other delicate and fmail nerves, $g g$, which are all diftributed to the inner parts of the creature, and to the mufcles of its body; and many of thefe nerves fubdivide into various ramifications, $b b b$.

The fpinal marrow will appear very fhort, if we compare its length with that of the entire infect; and the fame may be faid of the body of the Fly into which the Mite turns. It is therefore neceffary, that the nerves, which are extended to fo great a length, fhould contract themfelves, and become fhorter, at the time that the Worm begins to change to a Nymph. In animals, whofe blood is of a red colour, fuch as Dogs and Calves, I have often obferved, that the nerves fhrink up, as Serpents do, into rings, or like a firal, as often as the part to which they are fixed undergoes any contraction: and this is chiefly obfervable in the nerves of the mefentery; whereas in the Worm now before us, the nerves are in every part equally contracted. This likewife happens in the Coffus, or Worm of the Beetle, where this contraction affords a very uncommon and very entertaining fight.

The final marrow of the Mite confifts of twelve divifions, or, as it were, nodular fections. Thefe, however, are fcarce difcernible,
on account of their fmailnees, being no larger than grains of fand. This part is invefted with a moit delicate coat, through which are fpread a great many pulmonary tubes: it is befides covered with particles of fat, which I have endeavoured to reprefent by dots on the figure of the marrow. All the nerves iffuing from the fpinal marrow are covered with a continuation of the fame coat, which invefts the marrow itfelf; and they are likewife furnifhed with pulmonary tubes, which accompany them in their mont delicate ramifications.

The fininal marrow, viewed fideways, has quite a different appearance from that which the figure here given of it reprefents; for, on looking at it in this manner, it appears fituated lower than the brain, Tab. XLIII. Fig. viII. a, and looks fomewhat crooked, b. This form, I am inclined to think, was purpofely contrived to allow a freer paffage to the gullet, where it runs down, like an intentine, from the jaws to the ingluvies, or fwallow. This is the reafon why the brain is placed above the gullet, and the gullet, together with the fomach, refts upon the final marrow, and its nervous ramifications: fo that, properly fpeaking, the fpinal marrow refts upon the mufcles of the rings of the body in the under part, and is cufhioned u_{p} with particles of fat on every fide.

The confruction of the mufcles, which in this infect move the rings of the body, is very fingular and furprifing. I difcovered three different kinds of them, without examining farther than the foremoft part of the thorax ; fome defcending obliquely with two bellies, Tab. XLIII. Fig. Ix. a a a; fome broad ones run
croffways, $6 b$; and others again afcend obliquely, $c c$. All thefe mufcles are fo elegantly fituated, that the greateft adepts in defigning and painting, I am certain, muft confefs their inability, were they to go about reprefenting them as they deferve to be figured. To exhibit exactly every thing worthy of notice contained in there parts, we fnould be obliged to make ufe of figures twenty times larger than thefe now before us. And, after all, the mufcles which I have called the obliquely defcending, and which have two bellies, do not, properly fpeaking, deferve that name; for they appear to have five tendons, of which one is inferted into the mufcle that lies next to it, and the other four into the tough rings of the body, which they ferve to move, as I have endeavoured to reprefent, if the unfpeakable magnificence of God's works can at all be reprefented by human art. An infinite number of pulmonary tubes are diftributed all over thefe mufcles; but, as yet, I have not been able to difcover in them any infertions of the nerves: fo that I muft, in this point, own myfelf as much at a lofs, as I have upon many other occafions.

As to the heart, which fends the white or aqueous blood of this little creature, in a due circulation, through the body, I could by no means difcover it; and this I attribute to its fmallnefs, and to its being of a thin and delicate flructure. But I am perfuaded, that it lies in the upper part of the back, like that of Silkworms; for I could plainly difcern puliations in that part.

An account of the manner in wbich Mites get into cheefe, and caufe it to rot, infead of being caufed by or formed themfelves out of rottennefs; with many other. uncommon obfervations.

THE parts I have hitherto mentioned and defribed, are all I have been as yet able to difcover in this minute infect. And now let the fharpeft geniufes, and men of greateft penetration and learning, judge if a creature, in the fabrick of which there plainly appears fo much att, order, contrivance, and wifdom; nay, in which is feen the hand itfelf of the Omnipotent God; could poffibly be the production of chance or rottennefs! Is not the light of human underftanding alone, unaffifted by divine revelation, fufficient to convince us, that it cannot be fo? Certainly it is fufficient. The illuftrious Redi as evidently proves, that this fyftem of the production of animals from putrefaction, affifted, as they would have it, by heat and moifture, is a mere idle imagination, founded on the erroneous maxims of heathen philofophers, unacquainted with any fuperior origin of exitence.

That ingenious naturalift mof accurately explains in what manner Mites proceed from Flies, which have depofited their eggs in the cracks and holes of cheefes *: and I can add to his account, that the body of thefe Flies terminates in fo fine a point, that they are able to thruft it into, and penetrate very deep in, the fmalleft openings. I cannot but alfo take notice, that the rottennefs of cheefe is really occafioned by thefe Worms; for they crumble the fubftance of it into fmall particles, and void their excrements in it, and foul it with their faliva, or the moifture of their mouths ; fo that the fmalleft fpot of rottennefs, produced by thefe infects, cannot but immediately fpread itfelf. I once obferved a cheefe, which 1 had purpofely expofed to this kind of Flies, in order that they fhould lay their eggs in it, grow moift in a fhort time, in thofe parts of it where thefe eggs had been depofited, and had afterwards

[^74]been hatched into Worms, though before the cheefe was perfectly found and entire. I have likewife obferved, that this putrefaction in cheefe is confiderably augmented by the carcafes of the Worms that happen to die in it ; for there always die fome of them: and it is impoffible there fhould not, as it is a certain death to them not to be able to harden into Nymphs, and all of them cannot efcape out of the moift part of cheefe to a drier fituation, which is neceffary to fuch a change. Further, I have obferved, that fome of thefe Worms contained other Worms within their bodies, but fo minute as to be fcarce difcernible. But, on extracting thefe fmaller Worms from their places, I found they were almoft of the fame form with the larger Worms, though they move themfelves from place to place in quite a different manner. I could even difcover, in the tranfparent bodies of thefe fmaller Worms, that, by examining with the microicope, notwithftanding their almoft incredible miuteners, they were furnifhed with pulmonary tubes, and other parts in common with the greater.
It is certainly very difficult to explain in what manner Worms are bred in living animals; as, for inftance, in the livers of Oxen, in the kidneys of Dogs, and even in the bloodvefiels, as is obferved by that celebrated anatomift and profefior of furgery at Amfterdam, Ruyich. For my part, I freely own, that I want fufficient experiments to form any folution of this furprifing phenomenon; though I have met with great numbers of different kinds of Worms, in the living and healthy bodies both of land and water animals, and even of fowls and flying infects. However, on this occafion, I cannot as yet advance any thing certain, or fatisfactory.

I muft not omit a circumftance which I heard from Otto Marfilius, the late famous painter of flowers and infects. It was this, that he had feen, at the time when Caterpillars were bufy in divefting themfelves of their fkins, or when they had juft performed the operation, and were grown faint and weak with the fatigue of it, a great many Flies, fome bigger and others lefs, piercing the bodies of fuch Caterpillars, and depofiting in the wounds, fo made, quantities of little eggs; from which proceeded the Worms, that are every year fo commonly found in Caterpillars. As yet, I muft own, I never faw myfelf this ftrange operation: but allowing it to be fact, it would perhaps greatly help us in explaining the generation of Worms found in the vifcera, or bowels, of larger animals; provided efpecially fuch Worms were found afterwards to turn to Flies, or other winged infects, which as yet I have not been able to determine experimentally, notwithftanding the pains and attention I
have beftowed on the obfervations of changes in this kind. Admitting Marfilius's account to be true, and that fome of the perforations he obferved were made into veins and arteries, and eggs were depofited in fuch perforations, there can be no difficulty in conceiving how the circulating blood might have difperfed thefe feeds of animals all over the body. It muft however be owned, after all, that there things are as yet buried in a cloud of darknefs, which obfcurity, nothing but the brightef light of experiments can ever difpel. In the mean time, we may fee, by the manner in which we are affected by the ftinging of a Bee, how an animal, without getting into our bodies, may convey a matter into it, capable of producing great alterations; for the Bee, at the fame time that it gives the wound, infinuates by it into the body a drop of poifon. This is not a place for explaining how eggs come to be found in the fubftance of plants; befides, that I have already fufficiently treated of that fubject.

As to the opinion of fome people, that the Worms found in our inteftines proceed from the eggs of animals which we have fwallowed, it only deferves contempt, being altogether contrary to found reafon; unlefs the favourers of that fytem would at the fame time allow, that the eggs fo fwallowed are thofe of Worms bred in the inteftines of other animals. This opinion cannot by any other means be admitted, as it is quite inconfiftent with the nature of things, that an animal fhould live for any time in a fituation fo different from that in which it naturally fhould live, and on fo different a food. Befides, for this to be true, it is requifite that fuch Worms, intended for living in other places, fhould alfo be able to endure the heat of the inteftines, and of the fluids paffing thro' them. A thing which no man in his fenfes can admit.

The generation of animals, or the laying and hatching of their eggs, is by no means a thing which requires little care or attention. Every creature has its own feafon, its own haunts and element, its own manner of living, and its own food. Every year we obferve the fame renewals of the feveral fpecies, performed in a manner linited by a conftant and inviolable law and order of Nature; as the illuftrious Redi, before mentioned, has, on another occafion, likewife obferved. For this reafon we always fee, that Worms of the fame kind, found in the inteftines of animals, have conftantly their blood of the fame colour, be it red, yellow, green, or white.

In regard to Caterpillars, indeed, I have obferved four different ways in which Worms lie hid within their bodies, and afterwards creep out of them *. The firft is, when one or more Worms make their way into the Cater-

[^75]pillar, kill it by their corroding, and afterwards make their way out again through, the 1kin. The fecond way is, when two or three Worms lay hold of a Chryfalis, and, after killing the enclofed animal, efcape in the fame manner. In the third way, the Worms, after depriving the Caterpillar of life and motion, eat up all its infide; and, this done, they bore or gnaw themfelves holes to creep out at in its hardened fkin. Fourthly, when one or many Worms treat a Chryfalis in the fame manner exactly, in which the Caterpillar is treated in the third way.

There are feveral other things to be confidered in this place. Firft, when the Caterpillar happens to be killed by a fingle Worm, which afterwards fixes its refidence between that creature's body and its web, then the Worm fpins itfelf another white oval web, in which it changes to a Nymph, and afterwards to a Fly. But if the Caterpillar is deftroyed, and perforated by a number of Worms, then thefe Worms fettie themfelves under the belly of the dead Caterpillar; where each of them makes itfelf a gold-coloured web, in which
 and at laft affume the form of Flies.

Secondly, when two or three Worms eat into a Chryfalis, and afterwards creep out of it, they do not, immediately after fo doing, caft their Ikins, but only contract their bodies: and while they are in this ftate, they affume, in an orderly manner, and with a conftant regular fucceffion, thirteen different colours; the laft of which, alone, they finally retain. At laft, they turn to Nymphs within their old fkins, and then to two or three common Flies.

Thirdly, the Worm which fingly takes poffeffion of a Caterpillar, and, after having eat up all its infide, remains within the fkin; fometines makes itfelf a web within this fkin, and then becomes a Nymph, and at laft changes to a Fly like the baftard Wafp, Pfeudo-fpheca, or Ichneumon-fly. In this cafe, we always find fome excrements within the Caterpillar's f fin; as likewife the two fkins which the enclofed Worm has feverally thrown off, on turning to a Nymph, and then to a Fly. But the minute Worms, which remain in the Caterpillar they have deftroyed, make no web in it; though they grow to Flies, in the fame manner with the Worms producing that kind of baftard Waip juft fooke of, and then gnaw themfelves holes to make their efcape.

In the fourth place, the Worm, which remains fingly in a Chryfalis, makes alfo a web within it, voids its excrements there, and then changes to a kind of baftard Wafp, in the fame manner with the Worm juft now mentioned, as living fingly within a Caterpillar. If you open the fide of this emptied Chryfalis, before the enclofed Worm changes to a Nymph , it :mmediately fins a patch againft the broken part: But when many Worms are placed together in a Chryfalis, they neither make themfelves webs, nor do they even contract themfelves, but only change to a great number of

N A T URE; or,
fimall Nymphs, which afterwards turn to as many Flies. Thefe Flies, which are of a moft elegant ffructure, fometimes gnaw themfelves one, and fometimes more holes, for their efcape, in the dried fkin of the Chryfalis.

All thefe things proceed every year in fo conflant, certain, and regular a manner, that no accident whatfoever can alter the courfe of the operation. One very fingular inftance of this unchangeable order in nature, is, that even the Caterpillars and Chryfallides, which are to become the fcenes of the laft mentioned changes, may be eafily diftinguifhed from the other infects of the fame kind. In the firft mode of thefe mutations, when the Worms, which have lodged, many together, in a Caterpillar, place themfelves under its belly, the Caterpillar raifes that part, to make way for them; and though, by this time, it has received its death's wound from thofe cruel invaders, it notwithfanding, with the greatef care and attention, enclofes and connects all their particular webs, within one of its own fpinning, for fear they fhould be fcattered abroad and loft, and after this expires.
From hence we may reafonably conclude, that if the Worms had thus lodged in the Caterpillar, and killed it, merely by accident, inftead of doing both, in confequence of an immutable decree of the All-governing Power, the Caterpillar, when it found itfelf fo roughly treated by them, would by no means take this regular care to fecure them from rain and winds, and thereby infure the renewal of that particular fpecies of infects; for they generally turn to Flies the year following.

The fame order is obfervable in all the other perforations, deftructions, and excavations of Caterpillars and Chryfallides, which I have already taken notice of, fo that we can only afcribe to our own rafhnefs and ignorance that erroneous notion, of putrefaction being able to perform wonders worthy of the Deity, and to which the power of the Deity alone can be rationally deemed equal. It is therefore in the highelt degree furprifing, that all mankind, the learned as well as the ignorant, fhould have fo readily adopted, and fo long entertained, fo grofs an error; efpecially as the leaft degree of reflexion muft have convinced them, it arofe from prejudice; at the fame time that the fimaileft diligence, in examining the works of Nature in themfelves, would have put them in the way of obtaining more juft ideas on this fubject.

Let us then be wifer than thofe who have gone before us, and accurately furvey and examine the fenfible wonders of the Deity, with all their conditions and circumftances, if we intend to obtain a true and folid knowledge of them. Let us not fervilely fubmit our judgments to the doctrine of Ariftotle, and the reft of the heathen philofophers, who afcribe to putrefaction, works that contain vifible marks of an all-perfect Contriver and Maker; tho' at the fame time we are, as men, convinced by daily experience, and, as chriftians, are
taught to believe, that all the things we fee are liable to decay and deftruction. God's power and wifdom is not to be feparated from his juftice, fince, according to the unerring tefcimony of his holy firit, he has entered into a covenant with his creatures; and thefe, under their corruption, groan and figh after liberty.

That vulgar opinion, more worthy of brutes than of rational beings, which afcribes the birth and growth of animals to putrefaction and chance, is diametrically oppofite to found reafon, and favours rankly of atheifm. It has not even the leaft hadow of experiment or obfervation to fupport its truth; but is founded altogether upon floth, prejudice, ftupidity, and error; all which is the more obvious, as in the fmalleft animals we conftantly every where find as much order, contrivance, beauty, wifdom, and omnipotence in the Great Architect, as are fhewn in the vifcera or bowels of the largeft animals. For to thefe greater animals all others, however contemptibly minute, if their minutenefs can make them contemptible, are fimilar in the great refpects of brain, nerves, mufcles, heart, ftomach, inteftines, and parts fubfervient to generation, and to every other ufeful purpofe; fo that one might in a manner affirm, that God has created but one animal, though divided into an infinite number of kinds or fpecies, differing from each other in the figures and inflexions, and extenfions of their limbs; as likewife in their difpofitions, food, and manner of living.

As Caterpillars, which turn to Butterflies, often contain in them Worms which change
to common Flies; fo the Worms, which change to Beetles, very often contain in their vifcera alfo certain Worms, that turn to Beetles of a fmaller kind: and, in thefe changes, Nature obferves the fame conftant order and method, as in the firft. From hence I again conclude, that nothing is produced by putrefaction; but that the bufinefs of generation unalterably proceeds in a certain and regular manner. And certainly, if our little philofophers would attentively examine what is the nature of putrefaction, when it breaks out in an animal, or in any part of one, which thereby rots, and is refolved into its conftituent principles; and would withal confider that fpecies of putrefaction which Worms occafion, and which they cannot but occafion, in other bodies, or in fome parts of their own; they would foon free themfelves from the yoke of to abfurd and flavilh an opinion.

As yet, I cannot by any obfervation determine, whether the Mites, which are found to contain other Worms, are perforated by them, while they remain in the cheefe, or after they forfake it, and turn to Nymphs. It is only within thefe fix or feven weeks, that I have made the experiments concerning thefe infects, which I have juft now related,' having never exprefly examined them before that time. However, in this time I could difcover in the cheefe a great number of dead and roteen Worms, of a red, purple, and livid colour, whofe carcafes not a little contributed to increafe the ftench and putrefaction of the cheefe in which they lay, and likewife the acrid and peculiar tafte found in fuch parts.

The mamer in wbich Mites are changed into Nymphbs *.

THESE Mites, when they are about to become Nymphs, generally defert the cheefe in which they had hitherto lived, by leaping up and down, till they find, if poffible, a more favourable fituation. In three or four days after this they loofe all motion, grow ftiff, and harden. I have remarked alfo, that the change of thefe Worms may be forwarded by enclofing them, when well grown, in a dry box, without any thing to feed upon. In trying this experiment I have obferved, that fome fmaller Mites remained alive in this confinement, without any food, for two or three weeks together; when they at length died, without turning to Nymphs; the embryo member hid under their fkin not having attained the growth and firmnefs requifite for that fate, which is obtained by the reft in the following manner.

Firft, the Mite draws up together the rings of its body, fo as to make the interftices appear full of wrinkles; and this contraction is fo great, that the Worm becomes twice as fhort
as it was before, Tab. XLIII. Fig. x. This alfo renders the rings lefs difcernible: however, the fore part of the head, Fig. xi. a, may be ftill diftinctly perceived, as well as the tubercules, b, at the other extremity of the body. As to the form of the little animal at this period, it fcarce affords any thing worth particular mention; for the fkin lofes its tranfparency. In this frate the Worm gradually changes its colour, till from white it becomes red, and in the end refembles pure red lead.
The moft experienced naturalift fignior Redi, who has favoured the world with a fhort hiftory of the Mite, tells us, that its mutation agrees in nothing with that of Chryfallides, and other Nymphs, but he does not acquaint us wherein they really differ. Other authors confider Mites at this period as eggs, though they have no other reafon for thinking fo, than a bare fuppofed refemblance. This indeed, is fo far from being even a fupeficial one, in proper terms, that it can only be found in their own extravagant imaginations.

[^76]They pretend to fee things, which never exifted, and they well deferve to be compared to thofe perfons, who, fometimes, with equal truth, think they difcover armies in the clouds, which were never formed but in their own difturbed imaginations.

For iny part, I call this change, by the name of the Vermiform-Nymph; becaufe, in this ftate, the creature externally refembles a Worm, and is at the fame time really a true Nymph, and not a Chryfalis, under the former Worm's fkin, which it fill retains together with the internal figure of a Worm. And accordingly, the limbs of a latent Nymph, appear, in fome meafure through, to a careful examiner, this fkin. But I have already fufficiently explained this fourth order of mutations in its proper place.
The Nymph, thus concealed under the fkin of the Mite, is of a moft elegant form. But to have a diftinct view of it, 'tis neceffary to break this fkin, and then frip it off from the Nymph. This muft be done with great dexterity and circumfpection. By this means, we at laft obtain a fight, and a beautiful one it is, of the head, thorax, and abdomen of the future Fly, as 1 have reprefented them of their natural fize, Tab. XLIII. Fig. xII. But to perceive them difinctly, we muft ufe a microfcope; with the affiftance of that ufefnl inftrument, we difcern its two little horns, Fig. xiri. a, growing out of the forepart of its head, and under them its two eyes,
$6 b$, which take up the greateft part of the head. Under the eyes lies the proboficis or trunk, c, with all its parts. Near the probofcis appear the firt pair of legs, $d d$, and under the firft pair the fecond, ee, difpofed in a very beautiful order. The rings neatly folded up, $f f$, prefent themfelves next, and under them, we may fee in what manner the hinder pair of legs, $8 g$, lie ftretched againft the abdominal rings of the body, b : thefe, with the extremity of the anus, are very diftinctly to be feen. In fine, all thefe parts are arranged together, with fo much art and beauty, that it is impoffible to give a juft defcription of them. They will be feen yet a great deal more diftinctly, by divefting the Nymph of the fkin that immediately enclofes it.
At firft all thefe parts are of the colour of coagulated milk, but as fluid as water, which makes it very difficult to feparate them; nor can they, after all, be accurately diftinguifhed one from another, becaufe they are at this period, all of the fame colour. In ten or twelve days, they acquire fo much confiftency, and fo much of their peculiar colouring, as to aflume the form of a complete Fly, on throwing off the internal membranes that cover them, within the former Worm's fkin, which they fill retain for twelve days longer; when the new infect, having acquired fufficient flrength to appear abroad, breaks this external enclofure likewife, and launches into the air, in the following manner.

The manner in which the Nymph of the Mite breaks from its membranes, and of fumes the form of a Fly.

THE firt thing obfervable in this change is, that the Vermiform-Nymph lofes its deep red colour, and grows much darker; then the Nymph itfelf breaks thai part of the fkin, which covers its head into two parts, Tab. XLIII. Fig. xvi. a, b, and at the fame time throws off from every part of its body a very flight membrane, which it leaves within the old fkin. When this is done, there breaks out from under this fkin, a little infect like a gray Fly, without wings, but fo nimble, that it runs immediately about as if it were feveral weeks old.
Sometimes after this, the new born Fly rubs with its forefeet, that part of its head which lies immediately over its horns; for, on this fpot, there arifes a confiderable fwelling, with a violent pulfation in it. The Fly never gives over rubbing, till it has difperfed the fwelling, and made it entirely difappear. 'Tis probable, that it was in this part, the fore-legs lay while the infect remained in the Nymph-ftate. The next thing the Fly does, is to rub very gently with its hinder-legs, the furface of its two fhort little wings, which are as yet folded up, till it thoroughly expands, and difplays them. This operation may be very diftinctly feen, and I have reprefented the great folds, Tab. XLIII. Fig. xiri, $f f$, which the infect thus expands. The Fly, after this labour, takes a little reft, remaining quiet until the wings fully difplay themfelves,
which is performed very fuddenly, for their ve: ficles are no other than ramifications of the windpipe, which run up and down through them; fo that we may eafily conceive how they may be fo fuddenly expanded by an injection of blood and air from the main trunk. The infect, however, cannot as yet fly; its wings yield fome blood if they be wounded at this time; whereas, when they are once perfectly dried, which is done in a quarter of an hour, it is impoffible to obtain the leaft drop of blood from them, even by cutting them off, the veffels being in that time perfectly dried up and clofed; for my part, I firmly believe that all the membranes of animal bodies are no other than a kind of webs, confifting of vefiels confolidated in this manner, as may be feen in the blood-veffels of the epidermis, which diy up as foon as the fortus comes from the womb, and ceafes to draw nourifhment from that part of its covering.
The Fly produced from the Mite is one of the common kind; and it affords very few things worth our notice: this may be feen by the two figures, in which I have reprefented it of its natural fize, Fig. xiv. The wings, when they lie on the body, extend beyond the extremity of it. I give alfo a figure of the male, after a drawing taken with the microfcope, in which the head, thorax, and abdomen are feen very diftinctly. On the forepart of the head, there arife two flort
horns, Fig. xv. a, each with a ftiff hair growing out of it. Near the horns appear the eyes, which are red, pretty large, and of a reticular net-like form; between the eyes, there ftretches along the middle of the head, a black zone or prominent ftreak, in which are placed three feparate and difinct eyes in the form of a triangle. Thefe are much more difcernible on the Fly's firft appearance in the air, than afterwards, as the ftreak or zone juft mentioned requires fome time to grow black, and has, befides, fome hairs on it, which do not erect themfelves, till, by drying, they become fufficiently firm for that purpofe.

The thorax is covered with fliff hairs, of a brown colour, but of a polifhed and mining furface, like a looking-glafs. From its lower part rife fix legs: the firt or fore-pair of them, $b b$, are almoft black: in the fecond pair only, the joint near the breaft is of this colour; and the other two extreme joints, $c c$, of a dark brown. The third pair, $d d$, very nearly refemble the firft : but thefe colours are not exactly the fame in all the Flies of this fpecies. All thefe legs are covered with fliff hairs, and are each of them armed at their extremities with two claws, by means of which the infect runs very nimbly upon glafs, by darting them into the pores of it, not but that it can walk very well when thofe
nails are cut off; but then, though its feet are moit, it cannot hang itfelf to fo fmooth a fure face. The wings are two; they are of a beautiful conftruction, and arife from the flope of the breaft, ee; they are bordered with fine hairs, and the filaments which run through them like fo many little nerves, are no other than ramifications of pulmonary tubes. The membrane which fills up the fpaces between thefe ramifications, is likewife elegantly conftructed: it is covered with little prominent papillæ, but a drawing ten times larger than this, would hardly be fufficient to do juftice to this and other wonders, difcoverable in the wings of flying infects. The hinder part of the thorax is, by way of ornament, furrounded with a little prominent border ; near which appear two very fmall oblong particles, with round heads, refembling mallets or hammers: it is by ftriking thefe little hammers againft its wings, that the Fly makes the humming or buzzing noife that is peculiar to it \%.

The body confifts of feven rings; it is covered with delicate hairs, f, and is of the fame refplendent dark brown colour with the thorax.

The female differs from the male externally; in nothing but fize: but the genital parts of the two fexes are very different, as I hall now endeavour to demonfrate.

Of the genital parts of the male and female Mite-Fly, and the manner of their coupling.

THE Mite has a penis, two tefficles, feminal veffels, and proftatæ; and the female its ovary, its womb, and the parts naturally belonging to it. The penis of the Mite is fo artfully contrived, that the feven wonders of the world together, cannot compare with it; nor is it furprifing they fould not, they being the works of men, whereas this little organ is the conftruction of an Almighty and all-feeing Architect. It is partly membranaceous, and partly of a fubftance between bone and horn; the length, and inflexions of it alfo, are fo uncommon, that it is impoffible to confider it, without being loft in aftonifhment.

That part of the penis, which confifts of a fubfance between bone and horn, is black, and extends only along one fide of it, Tab. XLIII. Fig. xvil. a; but this is enough te give the penis great ftrength and firmnefs, and to keep it always open, in readinefs to perform its duty. The other fide of the penis is membranaceous, b, and confifts of many tranfparent rings and globules. The fore-end of the penis is alfo membranaceous and obtufe, c, though I have fometimes feen it pointed with fomething like an articulation at its extremity. It generally, however, appears blunt and open. I cannot tell whether or no the penis can erect iffelf through this opening; but I know of a certainty, that the vulva of the female paffes into the faid opening, fo
as to form a kind of copulation, quite different from that of other animals, in which the penis is received into the female external organ of generation. It was by meer accident that I difcovered this fingularity in the copulation of the Mite-Flies: on examining a female, which had died for want of food, in the very act of copulation, I found the penis of the Mite withered round the vulva of the female, where it had been applied; but was then fo loofely engaged, that I eafily feparated them.

The penis lies on the outfide of the body, and is very eafily difcerned, as it extends along the body, with only its right fide covered by the laft ring. It is elegantly coiled up, and refembles very much the penis of Drakes, which is likewife folded up in the fame manner. This bird, it feems, does not ejaculate its feed through any perforation within the penis, but by a furrow or channel on its outfide. This I have likewife found to be nearly the cafe in fome other animals.

The other parts of the male Fly fubfervient to generation, are likewife very well worth our attention, but they lie hid within the body. The firft that offers itfelf to our confideration, is the nervous root of the penis, d, which is of a very bright white, and reaches to the laft ring of the infect's body, where the external part of the penis is covered with very fine hair. This white

[^77]root of the penis is bent in a very wonderful manner, and grows broader at its extremity, e, where it unites with feveral other parts, amongit which the tefticles $f f$ deferve our particular notice, on account of their fingular figure and conftruction. They are of a pale brown colour, variegated with red; but the fperm contained in them is white, and that, as well as the coat of the tefticles, appears thro' the microfcope, as if made up of little globules. The vafa differentia, $g g$, next prefent themfelves. Thefe veffels widen confiderably at a little diftance from their union with the tefticles, and refemble, as it were, the two globofe appendages of thefe parts, $b b$. There is fo little difference between the other parts, that I cannot diftinguifh them from one another, though I take the longeft of them, as appears by my drawing, $i i$; for the feminal veffels, and the others, which are more globofe for the proftatæ, $k k$. All thefe parts are of a delicate whiteness, and they convey a feminal matter of the fame colour to the cavity of the penis. Thefe are all the parts I have examined in the male Fly, as it was the Worm alone, of which I propofed to take a full and accurate furvey.

The female, on the other hand, is furnimed with a double ovary, conftructed nearly in the fame manner with that of Herrings. But I hall defer fpeaking of thefe organs, till the external parts of the uterus are defcribed. - The female hides its vulva, and the extremity of its uterus, under the two laft rings of its body, Fig. xviri. a a. The vulva confifts of three joints, the firlt of which is oblong, and hairy at its extremity, $b \dot{b}$, and is furnifhed in the middle with two little black horny bones, which help greatly in the protruding of this organ out of the body. The fecond joint lies entirely within the firft, as within its prepuce. It is naked, or free from hairs, and it ends in a horny bone, $c c$. The laft joint, which, properly fpeaking, conftitutes both the vulva and anus, is perfectly black, and is compofed of a horny bone, and a membranaceous fubftance, with here and there a few hairs, d. Thefe parts of the Fly generally hang out of its body, on its quitting the Nymph-ftate, in order that they may dry to a proper confiftency; they then void a drop or two of a fluid, which looks like water mixed with chalk. The excrements afterwards, thrown out from thefe parts, look little balls with tails to them, and confifting of a fubftance that very much refembles plaifter of Paris.

In diffecting this Fly, I found it contained an ovary divided into two partitions, each confilting of thirty-two oviducts, with four eggs in each, one pretty large, Fig. xix. a. and three imperfect ones b; fo that the ovary of this fingle little creature contained no lefs than 256 eggs. Thefe eggs were white, oblong, and crooked ; the colour of the fmallent was wa-
tery. When viewed with a microfope, they appeared to confift, as it were, of little globules, and the oviducts fhewed themfelves in the fame manner. All thefe oviducts difcharged their eggs into the uterus by two common paffages, and the uterus conveyed them out of the body by a fingle channel. I furveyed the other vifcera, or entrails lying thereabouts, but very flightly; fo that I could only fee that the fat that had exifted in the Mite, was now almoft totally wafted away, and that the inteftines formed a great many more folds than they had formerly done, though they were grown confiderably fhorter, and lay now entirely on the abdomen. Nor were the eggs yet perfect, tho' the Fly I diffected was four days old.

Flies are by nature of a very warm and luftful conftitution; fo that the female, immediately after its firft appearance in this form, and before it has changed its gray colour, invites the male to copulation. In this act, which lafts for a confiderable time, the male always gets upon the female; and in this fituation he is carried by her up and down like a man on horfeback. All this time the female keeps her wings expanded, and extending her vulva to that part of the male's body, where the penis lies, thrufts it into the cavity of this organ, which does not, upon this occafion, fuffer any erection. And this manner of copulation obtains in many other kinds of Flies, and likewife in fome kinds of Hornets. It is very fingular to obferve how the male gently pats the female during this operation with his body, and preffes himfelf upon her juft as a Cock does with the Hen, tho' the copulation of thore fowls is very fpeedily performed, and that without any abfolute corporal conjunction.

The Flies under our confideration, are very ftout and vigorous; fo that it is no eafy matter to deftroy themby drowning: after lying in the water a confiderable time, fo as to appear quite deftitute of life and motion, they will immediately recover on being expofed to the fun, and fly off as brifkly as if nothing had happened to them. They have two methods of flying ; in the one their motion is flow and regular, and in the other it is rapid and diforderly. I fed fome of thefe Flies with new milk-cheefe fteeped in water, which they fucked up thro' their trunk, or probofcis. This ufeful and curious organ is placed on the lower part of the head, a little below the horns, or antennæ, and it confifts of three hairy joints. I likewife had the pleafure of feeing them lay their eggs in a piece of cheefe, and I found in a few days afterwards a number of Worms which had fprung from thofe eggs, perfectly refembling thofe of the firft brood that had produced the parent-fly.

The manner in which thefe Flies lay tbeir eggs; with an account of the membranes they throw off on leaving the $N y m p h$-תate.

$\mathbf{I}^{\mathbf{T}}$T appears, at length clearly, by what I have obferved concerning thefe infects, how readily the females can lay their eggs in the fmalleft cracks of a cheefe ; and I have feen them myfelf thruft out their tails for this purpofe, to an amazing length, and by that method bury the eggs in the deepeft cavities. Thefe cggs in time produce Worms, which afterwards turn to Nymphs, and then to Flies: and this bufinefs conftantly proceeds according to the immutable decrees of providence, in one uniform circle of production, without the leaft variation in time or place, unlefs it be when the Flies cannot find cheefe to reccive their eggs, for then they look out for fome other kind of food, as much refembling cheefe as poffible, in its nature and qualities. Thus has this fpecies of little creatures been kept up from the time of Adam to our days, thro' a fucceffion of many thoufand generations.

After having made the obfervations already related, I thought it worth my while to examine the skin which is fhed by this infect, on its appearing abroad in the Fly-ftate; and upon infpection, I found that it contained a very delicate tranfparent membrane thrown off at the fame time. In this membrane I could difcern a great many of the pulmonary tubes
which had likewife peeled off from the body: and what was ftill more furprifing, the fnout of the Worm, with its teeth or claws, remained entirely with it. Thefe unfeemly organs, with which they heretofore ufed to crumbie and take in their unfavoury food, and to run about and burrow in their putrified habitations, are no longer neceffary in the Fly-fate. Thefe creatures have, inftead of them, a trunk or probofcis, by means of which they fuck up the fiveeteft juices, and a pair of fwift and beautiful wings, wherewith they ramble at pleafure thro the untainted air, and raife themfelves far out of the reach of ftench and putrefacs tion.
I heartily wifh you, illuftrious friend, a fimilar change and refurrection, of which that now twe have been confidering, feems to be ani earneft; for I am firmly perfuaded, that by treading courageoufly to the end of this mortal life, in the footfeps of our Divine Mafter, we fhall then change it for a better; and lay down this corrupt body, to which we are now confined, in order to aflume a far more perfect one. God, the giver of all good things grant us this neceffary perfeverance, thro the infinite merits of his only Son, our Lord and Saviour. Amen.

Ihe End of the furprijung liflory of the Acarus, or Mite, and the Fly produced from it.

The bifory of the Worms found in the tubercles and fwellings of the leaves of the Willow.
 $\mathrm{P} A \mathrm{R} T \mathrm{I}$,

AS in enumerating the Infects which belong to my fourth order of changes, I have affigned there the place for all thofe Nymphs which are found enclofed in fruits, tubercles of plants, trees, and their leaves; I fhall now propofe fome of thofe Nymphs, by way of a particular example. In treating of the Worms found in the tubercles of Willow leaves, I fhall defcribe the Tubercle itfelf, the Egg, the Worm, its Web, the Nymph, and the Fly.

The warts or tubercles of the leaves of the Willow, Tab. XLIV. Fig. I. are fo obvious to the view, that there would be no neceffity to defrribe them, provided each of us had the fame ardent defire, and equal curiofity. But as all men are not delighted with the fame thing, the moft common objects in nature fometimes remain unknown, and affect the ignorant with a rapturous admiration. For this reafon, I Thall briefly, in this place, explain the conffruction, figure, colour, fituation, bignefs, tendernefs, hardnefs, and friallnefs of thefe tubercles.

That the conftruction of the feveral fwellings that are obferved in the leaves of the Wil-
low trees may be diftinctly known, we muft firft confider particularly the leaf itfelf on which they are found. The leaf of the common Willow confifts of three coats; the internal as well as external, are very thin, and are fet with light hairs, or a kind of down; but the middle coat is nervous and flefhy, if I may be allowed the expreffion; fince the nerves, or rather the vefiels which convey the nutritious juice to the leaf, are placed in that part. Thefe veffels are, indeed, extremely numerous, and are divided into fo many fcarce vifible branches in this coat, that they may be properly called the parenchyma, and compared to the flefly fubftances in the vifcera of animals: this may be feen moft diftinctly in thofe kinds the leaves of which are thick and fpungy.
The outward coat, or external fide of the leaf, I call that part wherein the nerves or ribs are prominent, Tab. XLIV. Fig. I. a. beyond the reft of the furface: the external or outer coat, and the inner coat, or inward fide, I call that part of the leaf which exhibits thefe nerves, not fo diftinctly confpicuous $b b$: Between thefe two coats the tubercles of the leaves, whereof we are treating, are fituated,
and they are nothing elfe but the dilatation, or more remarkable, yet irregular excrefcences of the inmoft and nervous part of the Willow leaf. Thefe tubercles, therefore, are properly compofed of a collection of the very fine veffels of the leaf, which, concreting together into a mafs, form an extuberant little knot; to which the two coats of each fide are fo ftrongly joined, that they cannot, but with difficulty, be feparated; nay even, thefe too are fo much dilated by force of the tubercle, as to lofe their down or hairs in that part.
The external figure of thefe verrucx, or tubercles, is very irregular: they are fometimes roundifh or oval c, fometimes oblong d, and they are wrinkled e, fmooth, and of many other furfaces and forms. Their internal ftructure confirts, as it were, of little grains, refembling broken free-ftone of a large grain, and is filled with fmall chinks and corners, vifible only with a microfcope.* The outward furface is of a (fometimes faint, and fometimes full) green colour, and is variegated with purple, red and yellow, all together or feverally: there are likewife fome rufty, fmall and blackifh fpots obferved in fome of them, which are like marks of vermiculation f. Thefe tubercles are within of a full green, and at the fame time fomewhat yellowifh here and there : this yellownefs probably arifes from hence, that the Worm hath confumed the inward fubftance about thofe places.
Thefe warts occupy various parts of the leaf: they are fometimes found g in the middle region, adjacent to the nerve; they lie b fometimes near the extremity of the leaf; fometimes they are on the nerve i; fometimes more fwollen or depreffed, and again are fituated at a greater or lefs diftance from each other ; and therefore nothing certain or regular can be determined, in this refpect, about them. They are conftantly extuberant beyond the furface of the two coats of the leaf : but in that fide of the leaf where the nerves run, they commonly project more than in the inward fide; tho' I have found fome which rofe to an equal height on each fide k. I have likewife feen fome which occupied the footftalk of the leaf l; but thefe were fewer.

There is great difference between the warts, in regard to bignefs and fmallnefs, and alfo with refpect to their greater or lefs number. In fome leaves there are feen only one or two, in others ten or twelve. They differ alfo greatly in fize. The reafon of which is, that fome of them are riper than others; or they are older, or have begun to increafe afrefh. I thall hereafter treat of this matter in the hiftory of the egg, and thall then likewife defcribe their hardnefs and tendernefs.
When I opened fome of thofe warts of thefe leaves, on the 14th of June, I met with quite different things therein. In fome, which were

Thut very clofe, I found a Vermicle, or Worm, like the Caterpillar of the Bindweed, together with its excrements, and a caft fkin near it. In another, which opened outwardly, with a round or orbicular orifice, I found another Ca terpillar, of the fame flape with the former, but confiderably larger. In others that were not perforated, and fill contained their Ca terpillar of the fame kind within, I cbferved this was fuffocated, or had been killed, by fome other Worms, which likewife lodge themfelves in the warts. I obferved that the rain had fallen into fome others, that had holes, and were deftitute of an inhabitant. In others again I found other infects, which had caft their eggs there. Nay, I fometimes found the little caverns of thefe tubercles occupied by fmall Spiders, which had fhut up the orifice with one of their webs. I fhall treat of all thefe things more particularly hereafter.

There differences, obfervable about one and the fame kind of tubercle, may, no doubt, lead ignorant perfons into error. Indeed, I am firmly perfuaded, that all who apply themfelves to experiments will be deceived, unlefs they thoroughly inveftigate them, and endeavour to find out their firt principles. Wherefore, as I had at different times obferved what is before related, I have again, at length, examined thefe excrefcences with all the care poffible. And thus I have, at length, difcovered the real eggs out of which thofe firf $\mathrm{C}_{2}-$ terpillars, which I faid I found in the tubercles, are produced. At the fame time alfo, I difcovered the reafons why other infects alfo go into thefe warts.

On the faid I4th of June, I opened a great number of tubercles, of all kinds and figures: in the fmalleft of them I found real and perfect eggs, fo circumftanced in every refpect, as if they had been laid there by the infect. The leaf of the willow, in which I found fuch an egg, had but very lately budded, and was ftill tender, though it had obtained its full fize and form. I found in this leaf the rudiments of feven fuch excrefcences, which I reprefent in each fide of it, Tab. XLIV. Fig. I. m. Some of thefe were a little larger, others fmaller ; but the minuteft of them were fo fmall, that they could be obferved only by reafon of the fmall change which was obferved in the colour of the leaf. The largeft of the tubercles, which began to fwell a little, were of a yellowifh green colour; but the fmalleft of all, which did not yet project beyond the furface of the coats of the leaf, was diftinguifhed from the leaf itfelf only by a paler yellow colour.
We muft here obferve, that the egg was alfo fimaller in the fimalleft than in the largef excrefcences; in which I conftantly found it much larger, and more advanced and forward. This egg was of an oblong figure, Fig. II. n, without any rings, having one end thicker,

[^78]the other more acute. It appeared tinged with a watery colour, and had an extended fmooth furface. Thefe eggs lay loofe and difengaged in thefe tender tubercles. There was no particular little cell; but they were every where equally furrounded with the inner fubftance of the tubercle. But when the wart afterwards becomes larger and harder, and by degrees lofes its fliffnefs and tendernefs by accretion, then it is obferved, that it infenfibly opens on the infide ; and in procefs of time is divided, as it were, into two diftinct parts: in one of which only an egg is placed, Fig. I. 0 , and is gradually increared and augmented.
About that time one may very diftinctly fee, that the egg is no where fixed or annexed to any thing, nor has any veffels, filaments, fibres, or, any other ties, by the help of which it may cohere with the wart, and receive nourihment from it. Indeed, it never has any certain place in the tubercle; for it is fometimes fixed in this, fometimes in that fide: it is fometimes in the middle: it is fometimes at a greater or lefs diftance from the chink, which is naturally obferved in the body of the tubercle. There are as yet no excrements found in the wart ; but all things appear pure and clean.

It is very certain, that this egg is then in a flate of nourifhing; for one may plainly fee, that it is confiderably increafed, from time to time, and augmented. But the moft obvious figns of this are obferved chiefly in thofe Worms which are a little older; for in fuch the fore part of the egg is confiderably fwolien, fo that even the head and two eyes of the Worm or Caterpillar, enclofed in it, are gradually feen through its integuments, and are obferved, Tab. XLIV. Fig. if. p, to grow continually blacker.

If therefore it be afked, how this egg is nourihed? I anfwer, it may conveniently have all neceflary food from the effluvia and tranfmitting liquids, which perfpire into the cavity of the divided and broken excrefcence, and likewife may eafily penetrate the coat whereby the egg is invefted; fo that they may be fucked in, and fwallowed by the Worm that lies within. All membranes ferve to illuftrate what I have here afferted; for thefe being put into a damp place, are likewife affected by the moifture : but when they are furpended wet in the air, or are expanded, again they exhale, by a contrary action, all the moift humours which they contain. Nay, it is plainly feen that gum tragacanth, though tied up in a membrane, is notwithfanding confiderably fwollen, when put in a moift place. But here it deferves particular notice, how powerfully falt of tartar attracts water to it. In the roots of trees and herbs, wherein open pores are not yet demonftrated, no other mode of nutrition can indeed obtain or prevail. However this matter be, I think the juice, perfiring from the fubftance of the warts, feeds the Worm that is thus contained within it.

Now, as an egg is nothing elfe but a Nymph enclofed in the pellicle, not yet having the firm-
nefs and ftrength neceffary to break open this coat with which it is furrounded, one may eafily comprehend how the Worm, fill contained in the fhell of its egg, may fuck the nutritious juice which penetrates into the cavity of the egg. And indeed this obfervation, by which it is evident that the egg is nourifhed, and becomes bigger, whilft it is and remains an egg, moft ftrongly proves, that the egg is really the infect ittelf; nor is there any other difference between this and that, only in refpect of the invefting coat, which prevents our feeing the contained infect; though, in fome cafes, one may diftinctly enough obferve it tranfparently through the fkin of the egg. The egg, of which we treat in this place, is, in this refpect, different from thofe of many other iníects, becaufe the latter never increare, but for fome time only cover the contained little infects; juft as the membranes of the Nymphs furround or environ the enclofed infects for a time.

When this little creature afterwards has broken out of its egg, it has the form of a thin and fmall Caterpillar, and is twice as long as the egg wherein it had been hid a little before. It is then always found within the tubercle, that the fkin caft off by the little infect lies near to it. This little Caterpillar is at this time fo fmall, that, if it were delineated according to its natural fize, it would fcarce be as big as a point : wherefore I reprefent, Tab. XLIV. Fig. I. q, it rather at its full maturity, as it appears when it hath bored its way through the tubercle, and crept out through the hole r it made.

This little Caterpillar properly belongs to what are called the Bind-weed kind. If you view it with a microfcope, you will fee it compofed of fifteen annular incifions, which conftitute the head, thorax, abdomen, and tail. The head is of a raven-black colour, and exhibits, Fig. III. s, the eyes placed on each fide. In the fore part, in the lower region of the head, are feen two hard horny or bony jaws; the extremities of which are divided into many fmall fharp-pointed teeth. With thefe the infect, when provoked, is not afraid to bite even at a fteel-needle. Thefe teeth are of a brownifh red colour, and tranfparent fubftance. The fix firt legs, $t t$, each of which confifted of five joints and one claw, were articulated with the three foremoft rings of the thorax. The two rings immediately following had no legs affixed to them. But twelve other legs, Tab. XLIV. Fig. III. u, adhered to the lower part of the fix rings of the body. Finally, the tall was alfo furnifhed x with two: fo that this infect has in all twenty legs. In the pofterior part of the head, and in the neck, as alfo about its tail, there are fome black fpots. This Caterpillar, like the Coflius, or Worm of the Beetle, had a wrinkled fkin, here and there fet with hairs. It twifted and gathered together the pofterior part of its body, like the Bindweed Caterpillar. It did not frequently make ufe of its middle, or laft feet, except
when it endeavoured to wind and twift the pofterior part of its body about the extremities of leaves; for then it faftened itfelf in the place with its feet, making no ufe of its fore legs at the fame time. When it walks, it ufes only the fore legs, and then draws after them the hinder part of its body. This is likewife the cafe in regard to the Caterpillars, before mentioned, which have many legs; and which likewife change into Butterfies fo conftantly, that I have hitherto obferved no example to the contrary. The points of refpiration were feen to open in the furface of the body, and the pulmonary tubes were tranfparent through the fkin. In the hinder part of the body, the heart fhewed itfelf alfo, beating.
While thefe little Caterpillars are fmall, they are of a colour mixed of a yellowifh white and pellucid green, which by degrees improves and grows ftronger. Even while they are, as it were, ftill in their cradles, a narrow line of a deep green colour, which denotes the aliment contained in the fomach, is feen through their fkin ; and this becomes of a more and more dunky green, the more the Caterpillar approaches to maturity; and the Caterpillar itfelf then alfo gets a much greener colour all over, only that it continues of a yellowifh white about the belly. Thefe little creatures feveral times change the fkin within thefe warts, and grow whitifl for a time, on cafting it.
The inner fubflance of the wart is their food, which they immediately begin to eat, as foon as they come out of their eggs. About that time their excrements alfo are found in the tubercles; and there is the greater quantity of them accumulated, the more the Caterpiliar is grown. I have fometimes found fo great a quantity of thefe excrements in the tubercles, that it was three times bigger than the body of the infect. This principally proceeds from rain, which fwells thefe feces, and fometimes kills the little Caterpillar. This moft commonly happens, when it has already bitten through and perforated the coats of its wart, or tubercle. Thefe habitations are commonly pierced through by the Caterpillars, when thefe infects are arrived to their full fize; for then they always eat a hole through their tubercle, and then thruft the hinder parts of their body through the hole, fo that they may caft out their excrements, Tab. XLIV. Fig. I. y. The Caterpillars behave in this manner chiefly in rainy weather; for then their excrements fwell vaftly by the force of the wet, and would occupy too large a fpace, being otherwife not bigger than fmall grains of fand.

In procefs of time the whole fubftance of the wart is fo cleanly eaten out by the Caterpillar, that abfolutely nothing remains of it but the two outmoft coats of the leaf. After this the creature ceafes to eat, though it fometimes alfo abftains fooner. It is indeed very worthy of confideration, that the Worm in this excrefcence finds its aliment in fuch plenty, that it is never in want. On June 29, I obferved that many of thefe Caterpillars had crept
out of the mouths or orifices of the verrucles, or little warts; nor could I, notwithftanding, find any of them either on the tree, or under it on the ground. In another tubercle, which I then opened, I found a dead Caterpillar. In another, the little creature had been entirely confumed, its remains refembling only a thin fkin; and near it lay a Worm without legs, which had probably confumed the entrails of the Caterpillar, and afterwards had crept out of the tubercle, in order to undergo its proper change. As I had unluckily given this Worm a little wound, I could not further profecute its changes. I haill not prefume to affirm, as a certainty, that the vifcera of the dead Worm were confumed, or had been pierced, by this creature.

In order to inveftigate further what is done by thefe little Worms, I brought fome leaves and little branches of Willow-trees into my chamber, and there put them in moift fand. But fo it happened, that the Worms of thefe, having quitted their tubercles, got into the fand out of my fight. As I imagined it was the want of food that made them leave their abode fo quickly, I put fome leaves and entire warts of them upon the fand : nay, I likewife offered fome of them a mafs or lump, prepared of fome bruifed tubercles, in order to invite them to ear ; but all was to no purpofe. I therefore finally enclofed fome of them in a dry box, into which I had before put fome rotten wood, that I might fee whether they would make their webs there. All thefe died likewife, pining away, fome fooner, fome later: wherefore I at length learned, that they could not live naked or uncovered in the air.

On the 5 th of July I obferved, that fome of thefe little Worms had dug into the fand, and there began to weave webs; and this was the firtt opportunity I had of difcovering any approach toward their change. For, when I diligently examined the fand on the infide, I found a great number of them in it, fome of which lay much deeper than others. And thus I at length difcovered, that there little creatures, after they have eaten fufficiently, quit the Willow-leaves, and fall; and then dig into the ealth, in order to weave their webs there, and fuffer other changes.

Out of this fand likewife I took fome perfect webs. They were of an oval figure, Tab. XLIV. Fig. iv. a; fo that if they were expofed on the furface of the earth, the moifture or rain could not do them great harm. I have likewife obferved fome Spiders woven up in webs. Thefe webs were of a bright purple, approaching to fcarlet. I afterwards opened one of thefe webs, woven by the infects; but found that the Caterpiliar, in the infide, was not yet changed. On the 6th of July I cut open fuch another web; and in this alfo there the infect fill lived, in full vigour. In the third web which I opened, I found the creature juft on the point of fuffering its change.
Its green colour began by degrees to difappear. The body became a faint yellow, and
decreared very much in bulk, becoming at the fame time clear and perficuous; as is likewife the cafe in Silk worms. The little line on the back, produced by the contents of the ftomach, became likewife obliterated by degrees; fince the Worm had now cleared its inteftines of all their grofs contents, afterwards lying in its web without any remarkable motion.
July I_{3}, I found fome dead in their webs; but others had by that time affumed the habit of real Nymphs. Therefore it is evident, that thefe infects ftrictly belong to the firft mode of the third order of natural changes; though I fhall not here refer them to it, becaufe they weave their webs, and are changed in a very obfcure manner under the earth.

Some days after, that is July 18 , I obferved many little black Flies iffuing, Tab. XLIV. Fig. Iv. b, out of thofe webs which I had taken out of the fand, and put into a dry box. This little Fly, being viewed with a microfcope, thews itfelf divided as ufual into a head, thorax, and belly. Out of the fore part of the head arife two black horns, Fig. v. c. Thefe are placed before the eyes. The thorax is elegantly divided, and fhews four membranaceous wings fixed to its fcapulx, whereof the lower pair are covered by the upper, and all together cover the body. The upper wings are provided with many pulmonary tubes, paffing through them, and near their extremities are marked $d d$ with two blackifh fpots. Six legs adhere to the loweft region of the thorax, $c e_{2}$ that are divided by joints and two claws: they are of a colour approaching to black. The abdomen alfo is black, and is divided into rings. Some of thefe Flies alfo had a tail, others not.

The males I found had tails, but the females none. If the laft rings of the females abdomens were preffed out, Fig. vi. $f f$, towards the hinder extremity, a fharp-pointed part was forced from thence ; which being carefully examined with a microfcope, exhibited an inftrument like a faw, g fituated $b b$ between two pointed horny or bony little parts, and confequently fit for piercing the coats of leaves; as I fhall relate hereafter. On viewing the under part of the female's body, I obferved that it grew white about the breaft, but that the legs were ruddy there.

But when I afterwards opened the female's abdomen, I found perfect eggs there, exactly like thore, which I before defcribed to be found in the tubercles of the leaves: fo that doubtlefs, they are eggs of this Fly, which are found in the tubercles. This Fly is of the fame difpofition with thofe which proceed from confumed Chryfallides. Nor did Flies break out of thofe webs only, which I had put into the box: they likewife iffued out of the webs, which were yet buried in the moift fand. Hence I faw fome fuch little Flies lying dead in the fand, and others that had grown faint and weak with the moifture.
In fome other webs 1 found living Flies which iffued from thence fo quickly, that I could not catch them. I likewile opened fome males of this kind, and therein found the male organs of generation: however, I cannot now fay much of them ; becaufe I did not commit my obfervations thereon to writing. Thefe little infects are changed in a double manner: for when it happens, that their Worms, at the end of the year, creep into the ground, and there form webs; Flies do not proceed from them before the fpring of the following year.
I cut open alfo the webs that were forfaken by thefe Flies; which indeed, they break in a very fingular manner: they make a round hole i, Tab. XLIV. Fig. iv. in each, like that in a barrel. In thofe webs I found a $\mathfrak{f k i n}$, which the little creature caft off, when it became a Nymph, and alfo a tender fkin, which the Nymph, on being changed into a Fly, had afterwards caft.
After the creatures forfake the tubercles; thefe latter grow dry entirely, and in fome days become contracted together. But as my curiofity had proceeded fo far as to keep all thefe little infects, as they are circumftanced in ail their changes; hence I learned, that thefe tubercles could not be otherwife kept in the Willow leaves, than by filling them with a fufficient quantity of dry fand, and then leaving them to themfelves, until they grow dry : after this, the fand may again be eafily taken out of their cavity. Let this fhort defrription of this great and unheard-of natural miracle fuffice; in which the wifdom and providence of Gud are clearer than the meridian fun.

In what manner the eggs of thefe little creatures come into the leaves of the Willow-tree.

MANY who call themfelves fearchers into nature's fecrets, agree, that all obfcurer modes of generation muft be attributed to putrefaction as their caufe, which is the effect of moifture joined with heat. And this opinion extends even to ftones; for they obferve, that fome infects iffue from them. It is however very remarkable, that they cannot prove or illuftrate that affertion by any one folid argument, or fair experiment. They rely only on their own erroneous opinion, occafioned by an
univerfally prevailing error. I except only Dr. Francis Redi, who has pointed out a very different and much better way: for he, having firft, by irrefragible arguments and reafonings, deftroyed the fyftem of generation by putrefaction; yet not improbably infers, that thefe little infects, which are found in leaves, fruits, and the like fubftances, are generated there from the very foul and natural vigour of the vegetable which produces the fruits and plants. I fay, the opinion of this gentleman is not al-
together improbable ; for the experiments that may be made concerning the matter, are involved in fo many difficulties, obfcured by fuch thick darknefs, and are fo inextricable, that one may be eafily induced to think there little creatures are really generated from the plants themfelves.

This induced me to inveftigate, with much labour and difficulty, the origin of the Worm in the tubercles of Willow-trees. Dr. Redi fays, he could never fee that the Worm itfelf is changed; and, I confefs, I thould eafily have concurred in opinion with this gentleman, if I had not, though he did not fucceed, difcovered the abfolute change of this Worm into a Fly, and had not obferved the eggs in the Fly's body to be like thofe which are found in the tubercles. I cannot agree with this very learned author, that the Worm has only fix feet, as it is reprefented by him; for I find, on the contrary, that it is provided with twenty.

Thefe are errors into which each of us may eafily fall. And, indeed, I have not advanced what I have hitherto faid with defign to confute a gentleman who is my friend; for Ithink none ought to be cenfured with the rod of correction, but thofe petulant perfons, who, fwollen with vain-glory, bark like Dogs at all writings whatfoever, and feek laurels for themfelves by defaming others, which Bartholinus endeavours to do on every occafion; and hence even his thefes are debafed by railings. Indeed, all our writings out to be directed to find out the truth with our beff ftrength: I fay, the truth, to which we all ought to adhere, whether it favours or oppofes our own opinions, fince there is nothing really amiable but its beauty only. Therefore, though the opinion has an air of probability, I fhall not agree with the celebrated Redi, that any creatures are ever produced from vegetables, in the fame manner that leaves and fruits iffue therefrom.

I know indeed fome learned men, and fome of very eminent rank alfo have been brought into this opinion. But I know too, that it will never be proved by experiments, however fair it may appear. For I am really obliged to confefs, that opinion feems to be fo confonant to truth, that, unlefs thefe Worms had increafed into winged and ftinged animals before my face, I could fcarce have faid any thing to the contrary. Finally, in order to give my own opinion, with which I obferve the very excellent phyfician Dr. Francis Redi formerly concurred, I think, indeed, that all thofe tubercles of plants, leaves, fruits, and excrefcences in the which infects are found, are of no other ufe, nor do they grow for any other end or purpofe, but to give a fafe habitation to the animals in them, in order to preferve them, and likewife to ferve for food *. Indeed, extreme neceffity, in this cafe, required fuch provifion; for many of thefe Vermicles have no feet, by the help of which they might move
about, and get food for themfelves. This is particularly remarkable with refpect to the Worms of Bees and Ants, which have no feet; fince the former are, for this reafon, very carefully nourifhed by the Bees themfelves; and the latter are, for that reafon, continually removed into different places, in which they can get food without affiftance. 'Tho' the Worms which we have above defcribed have feet, they make moft ufe of them when they feek for the habitation, wherein they weave their webs; but they by no means ferve them to find out their food. Therefore, both in the conftitution of the parts, and in the food, which the Worms found in the tubercles, there feem to appear reafons of great moment, why thefe tubercles are produced. Thefe are perhaps, however, mere conjectures; while Nature herfelf never intended, in her works, any thing to verify them. God fhews himfelf every where equally adorable and immenfe.

I think thefe Worms, which are found yearly within the fame kind of tubercles, and are peculiar and natural to them, are produced only from eggs of infects of the fame nature, or congenial with them; that is, fuch infecis as depofit their eggs on the plants, leaves, or fruit, and convey them thither from without. This is indeed evident from what I have before obferved, with refpect to the eggs that lie in the tubercles of Willows, and thofe that are found in the bodies of Flies produced from thence: for there two kind of eggs do not in the leaft differ from each other.

Now, then nothing further remains but to explain the method whereby thefe eggs are conveyed into the leaves of the Willows. Nor do I fee much difficulty in this matter: for, fince the mother Fly is armed with one or two weapons, proper to pierce fuch fubftances, and with another inftrument, which is fitted for directing and guiding the eggs iffuing out of her body; the may very eafily pierce the tender leaves, when recently fpringing out, and may caft her fmall, and almoft invifible eggs, into the little holes that are thus made : that this really happens, and in this manner, is the more manifeft; becaufe, in the new leaves that have juft appeared, the little egg is found every where loofe and difengaged; and only a part of it is fituated between or under the coat of the leaf: nay, I have fometimes thought I faw the little holes, thro' which the eggs were conveyed into the fubftance of the leaf.

I own, this hiftory would at length be completely perfect, if I could fee all I have advanced, as my opinion, which, I think, I fhall hereafter be able to do. But though I have not hitherto done that, the experiments which I have now propofed, to confirm my opinion, feem to me fo ftrong, that no body can defire more convincing. I willingly confefs, I have not accurately and diftinctly feen the perforation of the leaf in all its circumftances: but I fhould think, thatit is not poffible for it to come withinthe

[^79]cognizance of the eye-fight. For, who can fee the wound in his fkin, made by the flroke of a Gnat or Flea, immediately after it is inflicted? Surely no one. What one fees in the fkin, is nothing elfe but a change of colour: and this is likewife obferved in the leaf of Willows; that is, the place through which the egg is conveyed and joined to the leaf, is diftinguifhable in no other manner but by a finall difcolouring. To which we may add, that the little wound, given to the fucculent leaf, by fo fmall a creature, eafily clofes up again, and is ftopped and filled up by the impelied humours.

It will be afked, why are tubercles produced in the Willow leaves, for the benefit of thofe eggs conveyed into them? And how are thofe rare and admirable excrefcences generated in other plants and trees? I confers this queftion is very difficult to explain. Nor do I know what other anfwer to make to it, but that the firft ftroke, which the infect mother gave the plant, fruit or leaf, into which it endeavours to put the egg, is the real caufe of the tubercles produced afterwards, whatever form or figure it may affume. Do not we thus on Pompions, and other fruits, and even on trees, by the help of a knife, or bodkin, cut letters and characters; the veftiges whereof infenfib:y fwelling with the humours, raife themfelves up confiderably beyond the common furface?

I do not think this is done by chance, but by a previous defign of nature, which has ordered, that this generation of infects, and the tubercles which ferve for nourifhing them, fhould be produced in this, and in no other order. Therefore alfo, the generation of thefe infects is plainly regular, and is not fubject to any fortuitous change. The great Harvey, in bis book of generation, fully demonftrates, how much the ftrokes, ftruck with one and the fame external inftrument, differ from one another; when he fays, from experience, 'That the flefh itfelf diftinguighes the - poifoned ftroke of a fting, from that which is ' not poifoned:' and further proceeds: ' And - therefore, from the poifoned wound, it is - frained and condenfed, and therefrom arife ' tumours and inflammations. I once, fays he, - for the fake of the experiment, pricked my ' hand with a needle, and immediately after, in ' another place, with the poifonous tooth of an - African Spider; I could not difcover any dif-- ference between thefe two little wounds in feel-- ing; but there was a great difference fhewn in ' the fkin; for when the poifoned puncture had 'been made, it fuddenly fwelled.' Who can prefume to deny, that plants have this kind of fenfe? I hould indeed think they would exhibit manifeft figns of fenfe, if they had murcles; the want of which feems to be only the caure, that prevents their being able to fhew us their faculty of fenfation. This is evident in the celebrated fenfitive plant; which, in my opinion, has a certain fpecies of mufcles, by the help of which, it extends and contracts its little boughs, almoft like arms.

As to the different figures of thefe tubercles, which are never found on plants, but they are
pregriant with little infects, to be nourifhed within them; I think they are caufed principally by the variety of the ftroke, whereby thofe creatures perforate plants, and fix, and, as it were, inoculate their eggs in them : this may be likewife feen in all inoculations. For the fame reafon, the Flea forms with its flroke in our fkin, a fwelling altogether different from that of the Bug: and the latter differs alfo from that of the Bee. All there things are far from being fubject to chance; they proceed in a certain order, and they are obferved to be always fimilar: except when the plants, or bodies of animals, have different figures; as the celebrated Redi hath accurately and clearly obferved in regard to the bites of ferpents.

I have ofien feen the legs of infects fo ftrongly impreffed upon the tender branches of trees, that they could not be taken off without injuring them. But, principally, the Dutch phalæna, which proceeds from the Worm, found cliefly in the bark of Willow-trees, and of the Maple, which it corrodes in fome meafure, and impreffes its eggs outwardly on the bark: hence it follows, that the Worms produced therefrom, afterwards make a paffage for themfelves inwardly towards the wood. Nay, if you pull thefe Worms out of the tree, they firft weave and cover themfelves with a web; and then having afterwards broken it, they pierce the wood with their teeth; and, in fo doing, reft upon the web on their backfide, in order to get fufficient power and flrength to penetrate.

This winter, I obferved in turnips many warts and tubercles of various fizes, in which lay fo many Worms without feet, but furnifhed with eyes and hard teeth. In the fmalleft of the warts or tubercles, I found a little egg; and in the larger fort, a tender and foft $\mathrm{W}_{\mathrm{orm}}$. In regard to thefe Worms without feet, that are found in tubercles on plants; it is worthy of notice, that they can by no means be kept alive, when they are drawn out of the cells, which they have formed for themfelves, in proportion to the bulk of their body within the excrefcences, and in which they are nourifhed. The cavity, wherein that wonderful Worm is lodged, which lives enclofed in the young buds of Willow trees, as in a rofe, which will be afterwards particularly defcribed, exactly anfwers to the bulik of its body. The Worm that lies in Turnips, has a cavity fomewhat larger than its body. I have obferved alfo, that thofe little cells, which the Worms, without feet, form themelves with wonderful art in dry timber, are nicely fitted to their bodies; and they can therefore, with fufficient quicknefs, move through there cavities. They perform this motion by drawing in, and fixing their hinder parts to the wood, and ffretching cut their forepart: and thus they move forward with great fwiftnefs in thefe burrows.
When there little infects are deprived of their cells or caverns, and the nourifhment they have there ready; they cannot move any more; they ftiffen with the heat and drynefs of the air, and perifh by innumerable other ways. Many feetlefs infects alfo, that live under the earth, and in
the water, are nourifhed and fuftained in the fame manner. For thofe that have no feet, and live in the water, change place by the help of their tails and certain appendages, which ferve them inftead of oars. But the Worns that live under the earth, advance forward almoft in the fame manner as the Worms of Beetles, and creep in this manner between the cracks and fiffures of the mould. What happens to the feetlefs vermicles of Flies, Ants and Bees, may be feen in the hiftories I have already given of thefe infects. As to the Caterpillars, and other of the many-leged infects; the matter is clear, and without all difficulty. Nay, it is no way repugnant to my propofition, that fome infects are obferved to iffue, after fome years, out of rotten wood: for, we know, that thefe infects arife there alfo from Worms, and that thefe draw their origin from eggs; the females regularly betaking themfelves yearly to fuch wood, and cafting their eggs into it. It is often neceffiary, that fuch Worms fhould receive increafe for fome years before they arrive at their time of change; as is manifeft in the Coffus, and in that Worm alfo, from which the Holland Cantharis, commonly called the Golden Beetle, is produced. The fame thing likewife holds in the Aquatic Worms, that live in the tubular cells, as I have already remarked in the hiftory of the Ephemerus.

We muft further obferve, that many creatures that are faid to want feet, are really provided therewith. Thus the Earth-worms indeed have many feet, but they are conftituted in another manner than feet commonly are. I have clearly feen the fame thing in ferpents: thefe I have indeed obferved, have five forts of feet. Some of them have a thomy or fpinous excref-
cence in the middle of their body, with two heads, almoft like the military Caltrops, and contain in the middle a little bone, which is articulated in the os pubis, and covered with a Ikin; by the help of this, they can move quickly over the rough furface of the earth; and in cracks of rocks, I have feen others again provided with two fuch machines for their greater fwiffnefs. Two feet of a certain third fpecies were prefented to me, which being compofed of diftinct articulated bones, likewife carry claws on their extremities, which may be drawn out of them, like the hollow claws of hogs feet. I myfelf have examined a fourth fpecies, which had four articulated, but very fmall feet; the foremof of which confifted of three joints, and two toes; the tops of which were armed with claws: another fhorter joint alfo, or, as it were, fmall thumb, armed with a claw, projected alfo out of their infide. The hindfeet alfo were made in the fame manner, only that they had one toe more than the forefeet. Lafly, D. Frederick Ruy Cch , profeffor of furgery in Amfterdam, made me a prefent of a fifth fpecies, furnifhed with very tender feet; each of which confift of three joints, but they are not diftinctly vifible ; becaule they are covered even to the extremities with the fcales: at the extremity of them, is feen only a fimple claw, without any divifion into toes. Therefore, that little ferpent feems capable of making ufe of thofe feet, only on certain conditions or occafions; fince, on account of their great tendernefs, they are not able to fupport the body, tho' they may often contribute to move it with the grearer jpeed. Behold, how admirable God hews himfelf in all his works! the fmalleft of which moft clearly expofe to view his Magnificence, Majefty, and infinite Wifdom.

Of other infects found in the tubercles of Willows; and bow they come there.

IN the preceding pages I have obferved, that when I opened the tubercles of the Willow tree, I found various other infects befides the Caterpillars there mentioned; and this may impofe upon, or deceive, the unexperienced, who are accuftomed to make experiments only flightly: fince it may be poffible, that one animal fhould be taken for another, and wrong conclufions drawn from thence. For this reafon, I fhall now explain that matter more fully. I have before obferved, that in fome animals not yet perforated, I found fome other animals, from which the infect before deifribed hath been fuffocated and killed. But in order to make this underftood, we muft obferve, that the leaves of Willows are frequented by various fpecies of infects, which indeed lay their eggs either in or upon thefe leaves; and thefe eggs at length grow into vermicles, fome with, others without feet. The unperforated tubercle, whereof I now treat, contained two kinds of animals; the Caterpillar, which I have defrribed above, and a Worm without feet, both which lay together in the fame cavity. But as both were nourifhed with the fubftance of the tubercle, and both difcharged their excrements into it; it happened,
that the Caterpillar was fuffocated, and fo defroyed by its companion.

When I firf faw fome of there feetlefs Worms in the tubercle, I took them for the Caterpillars I defcribed before, thinking, that thofe fprung from their eggs without feet ; and afterwards, when they grew fomewhat bigger, that their feet appeared. But at length I difcovered, by repeated obfervations, that thefe feetlefs Worms are of a different fecies: though, notwithftanding I am very certain, that their eggs are thruft into the leaves of the Willow tree, in the fame manner as the Caterpillar ; and that the Vermicle that is to fpring from therce, is there nourifhed, and undergoes a change. The feetlefs Worm here mentioned, had already grown a little more than the Caterpillar. It has a paler head, and difcharges a great deal of excrements: But becaure, I never obferved a confiderable number of thefe Worms, in the warts or tubercles of Willow-leaves, which they only occafionally inhabit; therefore the opportunity of inveftigating their change to the Fly-ftate failed me. Perhaps I fhall hereafter take farther pains in this inquiry.

In another excrefcence, I found a third fpecies of Worms, which were likewife without feet, and were twice as little as the former. Their head was formed almoft in the fame manner: but it was thicker, where it is joined to the thorax. I obferved alfo, two black foots in the head, which probably were the eyes: thefe Vermicles changed their fkin alfo, and crept pretty quick. Sometimes two of thefe are found in one tubercle; and they then live feparated by their excrements, as by a wall betweein them : this very thing I have likewife fometimes obferved, when their tubercles touched each other. Thefe Vermicles or Worms, likewife feem to undergo their changes within the excrefcences; but at this time, the excrefcence affumes a rufty colour all over it. I have not yet diftinctly feen their change; becaufe they are not found to be very common. It muft be good fortune, if any one fhould happen to difcover the order, in which the limbs and parts of thofe animals increafe. I made thefe obfervations on the 28 th of June.

When there feetlefs Worms have undergone their tranfmutation, or the Caterpillars, which I have defrribed, have left their tubercles; fo that thefe are open and empty, then various other little Worms with feet, vifit and hide themfelves in them, or caft their eggs there, in order afterwards to nourifh their young in thofe cells. The fmaller Spiders alfo frequently betake themfelves to thefe warts on leaves, that they may lie in wait, and catch the leffer infects that pafs by, and when caught, feed on them. For the Willowleaves feed an infinite number of very fmall infects; fo that a whole treatife might be wrote on the different fpecies of minute infects that are found about thefe trees.

Among other infects, I found on thefe leaves a very fmall Cicada; which, as to its changes, and its manner of living, is altogether like the larger Cicadæ of France and Italy. Very fmall Caterpillars are likewife found there, affixing an oblong and gold-coloured web to the leaves; out of which fome remarkable fpecies of fmall Flies are ufually afterwards produced. When thore Flies iffue out of their little cafes, they likewife throw out of them an operculum or cover, which is exactly round, as I have related of the web of the Caterpillar, which I have defcribed before and delineated.

Among the little infects which come from without, into the tubercles, I have obferved a very fmall one, that was white, oblong, Tab. XLIV. VII. and has very great vital frength. It had two black eyes, fittuated in the loweft region of its head towards the thorax. Out of the forepart of its head projected two antenne. It had fix legs, over which were feen four wings, enclofed in little knots. The body appeared to be divided into rings. This litele animal was changed afterwards in to a black oblong Fiv, with wings as long as the body. But when this change happened, the infect was not at all deprived of its motion ; therefore it belongs to the fecond order of changes. The reafon why I defribe it under the fourth order, confifts in this, that its change is inwardly perfected in a concealed manner in the hollow tubercles of the Willows. It is fo fmall, that it can hardiy be delineated in its natural fize. One mult therefore firft know thofe different modes of changes, and what infects vifit the excrefences of the Willows, before one can, without error, make experiments on this mater.

A particular defcription of certain inferts, wowich live between the firf and fecond
coai of the Willow leaves, and are cbanged into Beetles.

BESIDES the tubercles hitherto delineated, which contain the Caterpillar before defcribed, there is likewife another fpecies, Tab. XLIV. Fig. vili. of Worms without feet, obferved to lie between the outmoft and inmoft coat of the Willow leaves: thefe I fhall now defribe, and delineate them magnified, but I thall firft treat of the leaf iffelf. The Willow leaf, as I have obferved before, confifts of three coats; whereof the inmoft is the moff fucculent; and may therefore ferve many infects which eat the entire leaf for their proper food: but the Vermicles whereof I now treat, eat only the inmoft part of the leaf, leaving the inward and outward coat entirely untouched : they do not indeed devour the little nerves of the inward flehy fubftance, but only the matter in their inteftines. Since thefe Worms therefore confumed only the middle of the Willow leaf, hence it is, that they are always found lying immediately under the inmoft coat of that leaf; for this they eat and confume by degrees on the infide, until they come to the external coat, which very flrongly fupports the nervous filaments of the leaf. Thus at length it happens, that the infide of the Willow leaf is
hollow underneath, and becomes feparated from the external: this is the reafon alfo, why the two coats of this leaf grow dry in that part, and affume a rufty colour: and this fhews plainly, that the little animal lies between thefe two coats.
I fometimes have found feventeen fuch Worms in one Willow leaf, which then indeed appeared to be divided into fo many rufty coloured fpots. In order to underftand thefe matters more clearly, I have judged it proper to reprefent two of thefe fpots in the natural fize; whereof the one is clofed, and the other open, Tab. XLIV. Fig. I. $z z$. In the open fpot, it may be obferved, that the inmoft coat of the leaf is entirely removed from the middle larger nerve. It likewife appears there, that the fmaller nerves of the one fide, are entirely naked, and the matter that had filled their interftices is confumed. In the oppofite fide, befides fome excrements, there is feen the naked head of the Worm, together with the body, tranfparent through the elevated coat.

That what has been hitherto faid, as well as the method whereby the Worms performs all thefe matters, may be more clearly comprehended ; I hall now delineate the infect itfelf
magnified, and fhall defrribe its external parts. This Worm, or Vermicle, has no feet ; but it confifts of fourteen annular incifions, which conftitute its head, breaft, belly, and tail. In the forepart of the head are feen two teeth a. The thorax, in that here reprefented, was very much expanded in breadth $b b$, and hewed in its firft ring two fpots of a rufty colour, approaching to brown. The head alfo appeared to be of the like colour, but fomewhat paler : there were alfo, very many tranfparent pulmonary tubes feen in the breaft. The reft of the body was formed cc nearly like the thorax. Out of the fides of each ring of the thorax and belly there fprung hairs like flaxen threads. The laft rings of the body alfo, were variegated with fome black fpots. This whole Worm was of a beautiful white colour, fomewhat approaching to green. It moved a flow pace, going forward by the affiftance of the rings of its body; which it fometimes contracted, and again expanded : and this it did more readily, whilft it lay between the coats of the leaf, than when drawn out of it. The exuviæ, or skin which it cafts, was left between the coats of the leaf; where likewife lay the excrements, which the Worm had even thruft into the hollow interftices of the little nerves.

I have not yet feen the egg of this Vermicle, though I have very diligently fearched for it; but I had begun that obfervation on the 20th of Auguf, when the Summer draws to an end. I afterwards obferved, that the Vermicles were too far advanced for me to be able to find out their proper conftruction and hiftory. The inveftigation of that matter muft therefore be deferred to another opportunity. However, even at that late feafon of the year, I found, in a Willow-leaf, a very fmall kind of orbicular fpot, which I have figured therein, near the former fpots, Tab.XLIV. Fig.I. zz. I expected to have found an egg in this; but when I opened it, I found a very fmall oblong, black Nyinph ; which, I found on examining it with a microfcope, would at length change into a fmall Beetle. But I could not then difcover either the worm or the egg of this Nymph. When I attempted, and was defirous to keep the Nymph , it was loft from my fight, on account of its extreme fmallnefs. Confider, reader, therefore, how minute that egg muft be; the Nymph of which was almoft invifible. I began this obfervation on the 30 th of Auguft.

It is evident from what I have faid of the teeth of thefe Worms, with what inftruments they gnaw and break open the inmoft coat of the leaf. For the Worm, in a very irregular manner, hollows the leaf, forming a finus which runs into various angulated and ferrated borders; by which means it widens its habitation by degrees, eating the fubftance of the leaf fometimes round it, fometimes lengthways, and at other times through the angulated curvatures. It is very admirable, that the Worm never eats even the fmalleft hole in the coats of the leaf. It feparates the internal from the external coat fo carefully, and without injury,
that the nethod whereby it is done would indeed be incomprehenfible; unlefs we confider its fine teeth, by the help of which it confumes the middle fubftance of the leaf. Hence it is likewife evident, that the orifice mult be very fmall, by which the egg of this Worm is firft conveyed through the inward coat into the fubftance of the leaf, that it may live, be nourifned, and perform its metamorphofis there.

On the 24 th of Auguft, I faw a Fig. x. one of thefe Vermicles put on the form of a Nymph in my chamber. This may be feen very exactly, by holding the leaf to the light of the fun or candle. I obferve, that this Nymph properly belongs to the firft mode of the third order; fince it very clearly, and without impediment, exhibit its limbs to view. In the beginning of this change, the Nymph is white ; but it afterwards becomes gray, and by degrees black. It very ftrongly moves its tail; by the help of which it can go between the coats of the leaf. On Auguft the 26th, it became as black as pitch.

The head, thorax, abdomen, and all the other limbs of the future Beetle were now feen in it. In the forepart of the head were fituated two crooked, Tab. XLIV. a briftly hairs. In the lower part of the head, its mouth or trunk lay hidden in an oblong cafe. On each fide, near the head, appeared the horns $b b$, elegantly compofed, as it were, of little joints or knots. Near thefe was feen the firft pair of legs; and under the latter another pair, out of which projected $c c$ two briftly hairs like two crooked prickles. Below thefe legs appeared the fheaths or cafes of the wings ; which proceeding from the back and bending, lay along upon the belly, and were beautifully divided with ribs $d d$. Underneath them lay the membranous wings themfelves, enclofed in a membrane; immediately under the cafes, the bending of the third pair of legs fhewed itfelf: and this pair alfo was armed ee with rigid brifty hairs. Next followed the rings of the body, and fome prickles f projecting out of the tail; by the help of thefe the Beetle probably pierces the leaves. But this is merely conjectural ; nor have I obferved it, being then engaged in other bufinefs.

On the 30 th of Augurt, one of thefe Nymphs was changed into a Beetle, Fig. xir. after it had fome days worn the appearance of a beautiful Nymph. When at the fame time, I opened fome other fpots of the Willow-leaves; a great number of Nymphs prefented themfelves on the infide; which when, after cafting their skin, they were changed into Beetles, I obferved, eat thro' the leaves, and made very confpicuous holes.

I have been informed by many travellers, that in hot climates, Worms are found in leaves an inch long: on thefe many fine experiments might have been made, if the inhabitants of thofe places had not laboured under the curfed thirft of gold, and prematurely broken the thread of life with intemperance. This Beethe is divided into a very beautiful head, thorax and tail. The eyes are very black, of a reticu-
lated confruction, Tab. XLIV. Fig. xiri. a, and fituated in the head at a very little diftance from one another: under the eyes is feen a black, crooked fnout, full of little cavities, and of a fubfance between bone and horn b, and on the forepart of the fnout are placed the teeth of this Beetle. The little horns are very difcernible, and are of the fame colour with the flkin of people who have been much expofed to the fun: they arife very gracefully from about the middle of the fnout $c c$. They are each compofed of eight joints, and are fo thick at their ends, that they may very properly be called prepilata, or knobbed horns. The thorax confifts of a very black horny bone, and is full of white hairs, and little cavities; from the lower part of it arife fix legs $d d d$; they are of a moderate thicknefs, but flenderer at their extremities. Thefe legs are covered with hairs, and with little irregular eminencies; in colour they refemble the horns. Each leg confiits of fix joints, and each foot of four, of which the laft are armed with two nails. The fecond joints of the two hinder feet are fome-
what blackifh, and much thicker in proportion, than the fame joints in the fore legs.

The reafon of this difference feems to be, that the former contain fome very frong mufcles, by means of which this infect can fpring on its hinder feet in the fame manner as Flies, but fomewhat flower. I faw one of them make a leap of three inches and a half, which is abour twenty-eight times the length of the creature's body. The cafes of the wings are likewife black ce, but covered with a fine white down, and are furrounded with a fmall border ; they are alfo ribbed, and full of cavities; notwithftanding which, they fhine like the beft polifhed looking-glafs. The wings are membranaceous, and twice as long as the cafes, fo that to defend them, they muft be folded up, which they accordingly do in a moft exquifite contrivance. Tho' I could eafily procure infects enough of this kind, I could not find time to diffect them; for which reafon I have nothing to fay of their eggs, or of their genital, and other internal parts.

An account of fome frall Worms that are bred within the new and tender leaves of Willows, and afterwards cbange io Flies.

ON the twenty-eighth of June I obferved, in looking over fome Willows, that fome of their young leaves, which had but juft made their appearance about the tops of the branches, began already to dry up and wither, Tab. XLIV. Fig. xiv.a. This was enough to engage my curiofity; and accordingly, I immediately fet myfelf to difcover the reafon of fo fudden a decay. On feparating thefe withered leaves from one another, I found between them many collections of living Worms, to the number of eighteen or twenty together b, and as it were, in the moft friendly and fociable manner. Thefe infects were of an oblong figure, but fomewhat broader in the middle than at the extremities, and of a moft delightful bright orange or faffron colour. Some of them had already begun to make their webs, and others were employed in preparing themfelves for i.

On this difcovery I fearched fome other new leaves, and found in them a great variety of Worms of the fame fpecies, fome more grown than others. I found alfo in fome of the leaves the eggs from which thefe Worms had been hatched; but they were lodged only between the folds of the leaves, and not within their fubfance, as was the cafe in the laft obfervation.

Thefe Worms lived merely upon the juices flowing from the leaves where I found them; but as this juice is very tough or vifcous, it may naturally contain fufficient nourifhment for them, and fo render unneceffary their preying on the fubftance of the leaf itfelf. Whether this juice flowed fpontaneoufly from the leaves, or whether they made incifions in them to extract it, is a thing which I cannot take upon
me to determine. I never faw any of thefe Worms ftir from under the foldes, and wrinkles of the leaves, but obferved, that they conftantly crawled under cover, from one cavity to another, till they had attained their full growth, and the embryo limbs contained under their fkins, were arrived, by the due degrees, at a proper fize, to prepare for their fucceeding appearance.

When the leaves, whofe greennefs and growth is deftroyed by thefe Worms, begin to harden and dry up, the Worms, without ftirring from under cover, form themfelves webs, in which they at length become Nymphs. They make their webs ftronger and thicker about the head and thorax, than elfewhere, as thefe parts are to be the chief fcene of the enfuing changes, and of the growth of new limbs; and therefore require an extraordinary bulwark to defend them, efpecially as the leaves about this time grow very hard and rugged, and therefore more apt to crufh, and otherwife hurt the enclofed infects. As thefe communities of Worms live under one cover, and in a kind of brotherly fatat, on the fame fpot, they form their webs one clofe to another, without any difturbance and encroachment one on another.

The Nymph of this Worm is very fmall, but it exhibits, notwithftanding in its parts, the figure of the future Fly. It lofes all manner of fenfible motion, except in the tail, which it is ftill able to ftir with great violence. On the fourth of July, I obferved that thefe infects were turned to Flies, which appeared through the microfcope, of a mof delicate conftruction, Tab. XLIV. Fig. xv. The head refembling that of a pin, was joined to the thorax by a
very fine and flender neck. On the forepart of the head, were placed two oblong horns. It had fix long black legs, and wings longer than the body, which glittered like mother of pearl. The body fcarce differed in colour from that of the Worm. This Fly, when moving through the air, appears no bigger than an atom of duft. It is very furprifing how ingenuous thefe little animals
are in depofiting their eggs within the tender buds of fuch leaves as are fit to afford thelter and nourifhment to the Worms that are to rife from them, that, by this means, they may be able, in obedience to the immutable laws of nature, to renew their fpecies from year to year, and continue it even to the end of the world.

Of Worms which are found enclofed in tubercles like Rofes, that appear on the tops of IVillow branches; and likewife. in many of the dwarf Willows that grow upons beatbs and comnnons.

WE not unfrequently fee a tubercle formed at the ends of Willow branches, in the fhape of a Rofe *, and which the learned Mouffet accordingly calls by that name, Fig. xvia. In fome feafons, thefe tubercles appear in great numbers, and in others, they are fcarce. I once obferved, in company with Meffieurs Thevenot and Henon, that there was hardly a fingle Willow branch in all the open country, that lies near a little fea-town called Egmont, which had not one of thefe tubercles at its extremity.

After breaking off the external leaves of this tubercle, there appears in the middle an affemblage of other tender leaves, in form of a pear, Fig. xvi. 6 ; which lie one over another, in the tame manner with the innermof leaves of the Cinara or Artichoke, fo as to make it neceffary to pull them off one by one, Fig. xvir.c. in order to obtain a fight of the Worm, d, which lies hid within them, wrapped up in a tender and delicate membrane, or kind of web, e. This Worm lies there in an inverted pofture, with its head the loweft, and its tail the highef part of its body ; and it is fo narrowly confined within its web, and in the furrounding leaves, that it feems very probable, it cannot either move at all, or, at moft, not without great difficulty: in this refpeet, it differs extremely from all the other Worms that have been before defcribed. On extracting it from the place of its birth, f, its body appears compofed of various rings, and is fomewhat flenderer towards the tail, than the head. Its colour is of a florid red, and by no means unhandfome.

The food of this Worm is no other than the juices of the Willow, flowing to the extremities of the branches, where the infect is moft conveniently placed to receive them. There is not the leaft excrement to be found with this Worm, nor indeed with thofe laft defribed, which makes it probable, that, like the feetus, while it lives in the mother's womb, and is there fubfifted by nourihment, taken in after a peculiar manner, thefe infects retain their excrements till they appear in the Fly-ftate. I omitted unfortunately diffeating this infect, though, by doing fo, I might have attained perhaps, a fatisfactory folution of this uncommon circumftance. I could not have found any difficulty in invefligating the
matter that way, as I could eafily have procured what number of thefe infects I pleafed: but our negligence and inattention are fo great, that we generally defpife thofe things that are under our hands, to fatisfy an inordinate curiofity of knowing and poffefling thofe which lie at a greater diftance, and are hard to be obteined. The beft of us muft own himfelf fo far the flave of vanity, as to be more defirous of producing any thing foreign and unheard of, than that which is fpontaneous in our own country. Though the Majefty and Wifdom of God, the fountain of all revealed wonders, moft evidently thew themfelves the objects of our love, praife, and adoration, equally in every creature.
A fault of the fame inexcufable kind, made me forget myfelf fo far, as to neglect examining the egg of this infect, though the little rofe, which had firt engaged my attention, is produced merely to cherifh it. This is plain from the Willow branches never bearing any fuch excrefcences, unlefs thefe Worms are in them; for, when the parent infects happen not to depofit their eggs at the extremities of the branches, they hoot into feparate leaves of the common form. Thefe Worms perform their changes for the Fly-ftate at two different periods, namely about mid-fummer, and in fpring, when the Willows begin to bud. Thofe which affume the Nymph-ftate, Tab. XLIV. Fig. xvir. g, in fummer, without ftirring from the place of their birth, in a few days after become Flies, b. But fuch as happen not to be changed to Nymphs till autumn, continue enclofed in their covertures till the enfuing fpring; when, on the fun's nearer approach, they likewife become Flies: all thefe Flies immediately betake themfelves to the Willows, where they may be fure their offspring will find convenient food and lodging.

The Fly is of a middle fize, but of a very delicate conftrucion. The extremity of its body is armed with an aculeus or fharp weapon, by means of which, it may open a paffage for its eggs into the tender tops of the Willow branches. It has two horns on the forepart of its head, two membranaceous and confiderably long wings, and fix long flender legs, formed very like thofe of the common Gnat. As to its chlour, I forgot to obferve it particularly. Thofe Flies which I

[^80]dried, in order to kecp by me, are of a dark gray. I have fometimes obferved four Flies to proceed from one of thofe Willow rofes, but they were four times lefs than thofe kinds, which require each a whole rofe to itfelf. There fmaller Flies were of a refplendent jetty black colour, had fix legs, and fhorter horns than the other kind. Their two wings were adorned with a black fpot, each in the middle of its ex-
tremity: fome of them alfo were provided with a fharp aculeus or weapon at the tail *.

At prefent I can fay no more of thefe Flies, being fo much taken up with other bufinefs at the time of my writing thefe obfervations, that I have not leifure duly to revife them. I muft therefore refer this tafk to another opportunity, if it thould pleafe God, the difoofer of all things, to offer me the means of performing it.

Of certain Worms without feet, found in the Hazel-nut.

THESE Wormsare fo common, and fo eafily to be had, that a defcription of them may feem in fome degrees fuperfluous. Their bodies are white, foftand hairy, their heads are red, and armed with two fharp teeth, with which, in autumn, they bore themfelves a paffage through thofe nuts in which they had hitherto refided; but which they then forfake. Thefe Worms may be found fometimes lying in hundreds together, at the bottom of drawers and bafkets, in which hazel nuts have been kept. I have often formed a refolution of examining accurately the nature and difpofitions of thefe Worms, but have not as yet an opportunity of doing fo. Neverthelefs, I fee no reafon to doubt, but that they, as well as all other animals, derive their origin from an egg, thruft from abroad into the fubftance of the young nut, or perhaps into the bud or flower, out of which it is to be formed, as has been already obferved, of many other little animals of this kind.

There is no keeping thefe Worms in dry boxes; for they will live in this confinement but a few weeks. But in pretty moilt fand, fome of them have furvived with me the rigour of a whole winter, and lived to the 24 th of March;
and all that time without any food. Some of them, after undergoing this fevere treatment, were yet vigorous enough to fet about their mutations: but, by digging continually into the fand, in order to fatisfy my curiofity, in feeing what they were doing, I wounded fo many of them, that as yet I have not been able to difcover what kind of creature they finally become.

I obferved befides, that fome of them burrowed much deeper into the fand than orhers; and I even found fome at three inches under the furface. I never could perceive any web about them, nor do I believe that they form any, as they always appeared lying in the fand entirely naked. Neverthelefs, I do not think there is any reafon to doubt, but when thefe Worms efcape from the nuts, and leave the hazel fhrub to live in or under the ground; they, in this laft fituation, change to Nymphs, and afterwards, in the enfuing fpring, to a kind of Flies, which again depofit in the tender rudiments of young nuts, eggs, like thofe from which themfelves originally were produced. It would be no difficult matter to afcertain, by experiment, the truth of this conjecture.

Of Worms found between the two coats of the Alder-leaf.

FIRST OBSERVATION.

ON examining fome Alder-leaves on the $20 . \mathrm{th}$ of Auguft, I obferved the fubftance lying under the furface, formed by the internal coat of the leaf, was in many of them irregularly gnawed away in little angular cavities, without any parfage to the outfide of the leaf, that I could difcover; nor had the leaves, in which thefe cavities appeared, loft any thing of their greennefs or frefl hue, as the Willow-leaf juft fpoke of had done. The internal coat, hollowed in this manner, rofe confiderably above each hollow, into a kind of little canopy, Tab. XLIV. Fig. xviri. a, whereas, on the oppofite parts, the other fide of the leaf, which is covered by the external coat, was only a little altered by a few fmall wrinkles, $6 b$; this no doubt was the true caufe of the extraordinary roundnefs and convexity of the oppofite tumor.

On opening one of thefe fwellings, I difcovered between the two coats of the leaf now fpoken of, a perfect web, formed exactly like that of the Moth in its Worm-ftate; and, on opening this web, I difcovered a Chryfalis, c, in
point of fhape and confruction, plainly belonging to the fecond mode of the third order of changes. The fkins under which this infect had lived in the Worm-ftate, lay near it under the fame web. I could alfo difeern that it was, by means of this web, the Worm had reduced the furface of its cavity, formed by the external leaf, to the appearance already defribed. On each fide of the web lay the Worm's excrements. The method ufed by this Worm, to form itfelf, between the two coats of a leaf, a cavern or neft in which it may conveniently perform its mutations, is certainly one of the moft furprifing objects that natural hiftory offers to our confideration.

As to the Worms themfelves, I could not difcover any of them, or any of the eggs, out of which they muft have been hatched. In all the leaves I examined for this purpofe, there appeared nothing, only webs; fo that the feafon, for finding eggs or Worms was certainly elapfed, at the time when I looked for them. The Chry-

[^81]falis, viewed through a microfcope, plainly exhibited the form of the Butterfly, to which it was thereafter to be changed. It was oblong, fomewhat flatted and broad on the fore part, where it terminated in a point, Tab. XLIV. Fig. xix. a, whilft its hinder part grew gradually narrower, fo as to refemble a pyramid or cone, b. Each fide of the body was covered with a few, very delicate hairs, $c c$. Its furface was of a pale brown colour. The eyes appeared on the head, $d d$, and under them a double trunk e. A little lower down, and juft by this, the firft and fecond pairs of legs were feen, $f f$. The antennx or horns, which were of an extraordinary length, extended from the eyes to the very extremities of the two firt pairs of legs, $g g g g$. Near thefe lay the wings, $b b$. The hinder pair of legs was placed between the antennx, and fretched beyond the extremities of thefe parts, i. The body confifted of feveral rings, $k k$. This Chryfalis looked as if it had caft its fkin but a few days, and it moved i:s tail very vigoroufly, making ufe of it to turn itfelf, and indeed to move from one place to another.

On the 26th of Augunt, two of thefe Aurelix yielded two very elegant Butterflies, lefs than Moths of cloaths; but. like them in colouring and ornaments, as may be feen by the drawing 1 have given of them, where they are reprefented of their natural fize, Fig. xx. It is hardly poffible to conceive a more beautiful little animal, than what this Butterfly appeared to be, when viewed with a microfcope, Fig. xxi. It confifted of a head, thorax, and abdomen. The head was furnifhed with two antennæ or horns, $a a$, and a fiort and crooked double probofcis or trunk, b. From the houlder blades of the thorax fpring four wings, and from the under part fix legs. The wings were partly of a mere membranaceous fubflance, and partly compoied of delicate feathers, or fcaly hairs. The upper pair fhone and glitered moft glorioufly with crefcents of gold, filver, and brown, $c c$, furrounded by borders of a delicate black: befides this, they had a black fpot at the extremity of each.

Moreover, thefe extremities were edged with little feathers, which made them look like a creft, when they lay clofe upon the body, one folded over the other. The lower wings are likewife in a great meafure covered with feathers, $d d$, and are of a pale colour, and filvery brightnefs. Along the middle of the wings there runs a membranaceous. little feem, from which iflie the feathers that, in a manner, compofe them; and even this ftem has, as it were, its own fcaly feathers to defend and adorn it.

All the ornaments beftowed with fuch profufion on the wings of this little infect, confint in reality of feathered fcales of different lengths, and various diverfified colours; and they are divided, more or lefs, into lateral branches, like the feathers of the larger winged animals. The colours are more lively or faint, according as the fcales forming them lie together in greater or finalier quantities; and from the fame confruction, and contrivance alone, refults all that ftriking variety in the wings of Butterflies: for, on rubbing of their feathers, they appear entirely even and plain, like the furfaces of all other membranes.

The legs of this Butterfly are entirely covered with the fame kind of plumage, and they are divided into joints: every extreme or loweft joint is armed with two little claws. The hinder legs have, befides thefe, three little white prickles, or fpurs, Tab. XLIV. Fig.xxi. ee. The body is divided into rings, and covered likewife with feathered fcales of a bright filver whitenefs. This little animal, being put in a box that had ferved to keep Brazil-fnuff, began immediately to tremble, and in lefs than two minutes expired in a convulfion that feized every limb. As yet I have made no more obfervations of this infect. The furprifing manner wherein the Worm, from which it is produced, neftles and feeds between the coats of the Alder-leaf, will, I hope, alone be judged fufficient to recoimmend to the curious what I have faid upon this occafion.

SECOND O BSERVATION.

THE 3oth day of Auguf I found, between the fame coats of Alder-leaves, a flattifh Worm, of the fize and form reprefented at the letter d_{2} Fig. xvini. as it appeared on removing from it a part of the coat belonging to the leaf on which it had fed. The body was oblong, and fomewhat broader about the thorax than at the belly or tail. The head was large, of a pale brown colour, fomewhat flattifh or depreffed; and on its fore part furnifhed with two eyes, and a pair of fharp teeth. From each fide of the lower part of the thorax there arofe three legs. In the tranfparent body there appeared a little green ftreak, produced by the Worm's food. Counting the head and tail, this Worm confifted of twelve rings.

I dilcovered alfo, that this infect had caft a !kin, in the fame place where I found it. The
internal fubftance of the leaves, where it refides, ferves it for food; and it had accordingly gnawed this fubftance away, without offering to touch the adjacent coats, into a great many windings and turnings. As this parenchyma, or pulpy matter, had been but lately devoured, the leaf, even in the fpot where the devaftation had been made, filll'retained its verdure; but foon after it withered, and changed to the colour of the leaves of the Alder that fall in Autumn. The external coat of the leaf, in which the ribs appeared, was very ftrong and thick; but the other fide, or internal coat, was very thin and delicate. The excrements, which were at frit green, and then grew black, rolled freely backwards and forwards within thefe two coats. I could not difcover in thefe leaves the finalleft opening, by which the enclofed

Worm might be fuppofed to have infinuated itfelf into their fuiftance. Some of the Worms within thefe coats were dead, which I attributed to the friking of the leaves againft one another with the wind; or to their withering and wrinkling up, for want of notrifhment; or, finally, on account of other external injuries. As yet I have had no opportunity of
tracing this infect through its changes, fo that I have nothing more to fay here concerning it, but that it was very delicate, and moved itfelf but weakly. On taking it from within the leaves, it died in a day or two. The Alder is not the only tree inhabited by thefe Worms: they are to be found alfo on the Pcar and. Apple, and many other kinds:

THIRD OBSERVATION.

CN the 3 Ift of Auguft I found, within the fame coats of certain Alder-leaves, a third fpecies of Worms which had no feet, and were divided into twelve rings. This fpecies had a much rounder body, Tab. XLIV. Fig. xvili. e, than the firft, with a very fmall head and teeth. The back and belly were diverfified with various white fpots, which appeared through a yellowifh green tranfparent fubftance, and feemed to me to be fo many particles of fat. The neft which this Worm had gnawed itfelf within the coats of the leaf, was not fo fpacious as thofe of the two Worms laft treated of; and fometimes one nef contained two Worms, which lived and fed together in common; but in this cafe, the neft was fomewhat larger. In another leaf I found two of thefe Worms, that had each formed itfelf an oblong web, f : In the fame place I alfo found their excrements, and the fkins they had caft off.

Thefe webs were red, as were alfo the flrivelled coats of the leaf that contained them. On opening one of thefe webs, in hopes of finding a Nymph, I met with a Worm, which as yet had fuffered no change, except that of being grown a great deal fmaller
than before; and it was impoffible it Chould not have loft fomewhat of its bulk, confidering the great quantity of filk it had drawn from its body, to form itfelf a covering. Four weeks after this; I opened another web, little thinking that I fhould meet with a fecond difappointment, yet fo it happened; for there was no Nymph even yet, but only the Worm lay there quite unaltered. I have therefore laid by fome of thefe webs, in order to difcover next year, if poffible, what kind of an infect they produce, which is poffeffed of the furprifing art or power, as a faculty of burying its eggs thus fubtilely within the two coats of leaves. When thefe Worms are very fmall, their nefts, which they gnaw themfelves, are very fmall likewife, Tab. XLIV. Fig. xvini. g; but they widen proportionably by degrees, $b i$; as their inhabitants grow bigger and bigger. From whence I conclude, that the holes in which they have been originally depofited, in form of eggs, muft have been of a minutenefs almoft beyond conception. But, as yet, 1 have no experiments or obfervations to enable me to fay any thing certain on this head.

The fame fubject continued. Hifories of infects that are found in fruits, tubercles or warts, and leaves of plants. An obfervation on the common Thifle growing in the fields of Holland.

WAlking about the middle of fummer into the country, in order to find leaves for Caterpillars I was at that time feeding, I happened to obferve on a common Thiftle, not as yet arrived at its full growth, a yellowifh flender Fly, Tab. XLV. Fig. I. a, with a large head, red eyes, two fhort antennæ, and wings very elegantly coloured. This infect had thruft out, to a very great length, the extremity of its uterus or womb; and was employed in endeavouring to bore, by means of this part, a hole into the fubftance of the leaves, wherein it might depofit its eggs. This curious fight could not fail of cngaging my attention, and accordingly I fpent a long time in viewing it, cqually aftonifhed at its novelty, and overjoyed at having an opportunity of feeing, with my own eyes, the manner in which this kind of
infects attack the plants, which are proper to afford their Worm-offspring a never-failing food and fhelter: as likewife to obferve their method of conveying into thefe plants the eggs from which their Worms are to proceed. In that part of the plant where thefe eggs have been depofited, there afterwards grows a large globus, or round tumour, in fubftance not unlike the calix or cup of the Hazel-nut, which by degrees becomes lignenus, and hardens to a more compact fubfiance, refembling wood. Within thefe fwellings there appear, here and there, certain white Worms, which change firft to Nymphs, and then to Flies. Some pretend this Worm, carried in a purfe, along with its tubercle or fwelling, is good againfo the piles.

Of Worms found within the tubercles or fwellings of the finging Nettle.

1T is very remarkable, that even in fome finging Nettles we meet with Worms, which are deftiture of feet, and derive their origin from a very fmall but yet difcernible egg. Thefe excrefcences are found on the Nettle, in a great variety of forms. Some are produced upon the ftalk, Tab. XLV. Fig. II. a; others on the ribs of leaves, or the tender buds, b : fome again lie confufedly, here and there, all over the furface of the leaves, c. The fubftance, of which thefe fwellings are formed, is very hard and compact, which makes it an eafy matter to crack them. In colour they are fomewhat of a yellowifh green. On the 28 th of June I found a great many, both eggs and worms, in thefe fwellings. The fmalleft of them contained each one egg; thofe fomewhat larger, a worm; and the largeft of all, which were compofed of two or three of thefe fwellings growing together, afforded fhelter to two, three, or even four Worms of different fizes, and all this at one time.

The largeft of the Worms I difcovered at this period, were exactly of the fame fize with that, whore form, taken from the life, I exhibit in this figure, Fig. III. d. This Worm, viewed with a microfcope, appeared fomewhat broad, and depreffed in the middle, e, and armed on its forepart with a delicate flender fnout, f; its body was almoft white, but a yellow ftreak appeared within it, which the Worm's tranfparency rendered very difcernible. I found afterwards that this was an inteltine, and that the colour of it was entirely owing to its contents. The fkin of thefe Worms had fome delicate hairs fcattered loofely here and there over its furface, g.

On opening fome more of the fwellings on this plant on the third of July, I found fome of the enclofed infects were changed into Nymphs. Such of them as had lately caft their fkins were white, but the older Nymphs exhibited a variety of colours. Thefe Nymphs belong to the firft mode of the third order; for it was eafy to difcover in their limbs the form of the future Fly. They very plainly appeared to confift of a head, thorax, and belly. In the head, I could difcern two remarkable eyes, Fig. iv. b, of a reticular form, which were beginning to look red; and on the fides of the head the horns, legs, and wings,
were curioufly folded up, and might be feen fpringing from the thorax. The rings of the body were very confpicuous, and it had a little tail bent back, fo as to lie over them in a very elegant manner, i. All thefe parts, the legs and wings excepted, were changed by degrees from white to yellow, which they afterwards loft, to affume a deep brown colour, and finally a perfect black.

On the ninth of July, many of thefe tubercles were burft open; and they no longer contained any infects, but only fome of the caft-off ikins. This gave me room to judge, that the Nymphs I had obferved on the third of thismonth, had paffed in the interval from that time, into the Fly-ftate, and my conjecture was confirmed by what happened in the tubercles 1 kept at home in boxes. To me it appears probable, that all thefe tubercles open of themfelves *, at the time when the enclofed infect has its wings, and is in readinefs to launch out into the air; and this may ferve to account for my finding Nymphs at this very time, in fome other tubercles which remained unopened, which had not as yet acquired their proper colouring, nor ftrength enough to caft their k ins.

The Fly thus produced k, is furnifhed on the forepart of its head, with two longifh black horns. The head is of a dufky brown, with a fine tinge of blueifh green : and the eyes are red : from the upper part of the thorax arife four membranaceous wings, and from the lower fix legs of a colour between red and white. In the males the body ends in a little tail, divided into two ftiff hairs, or in a forked manner; fo that this Fly is to be referred to the order that takes its name from this circumftance, Bifetx; but in the females, this part terminates in a pointed weapon. The breart and body of thefe Flies is of a very delicate and refplendent green, like that of Spanih Flies, or Cantharides, fo as to afford, when viewed with the microfcope, a moft entertaining and elegant fpectacle. I unfortunately omitted diffecting thefe infects. To preferve thefe Flies and their Nymphs, I extend their limbs on white paper, and there faften them down with a little moif ftarch, for they are too delicate to be fixed upon pins.

[^82]
Of the Worms that are found in fome downy excrefcencies of Oak-trees.

THE Oak-tree affords fhelter and nourihhment to as great a variety of infects as the Willow ; of this, at prefent, I fhall produce only two inftances. The firft I take from the infects which breed within a kind of downy or foft excrefcence at the extremities of the branches; the fecond from certain other kinds which we find enclofed in a moft remarkable and furprifing manner, within the tubercles arifing on the leaves. This woolly or downy excrefence, of which I now intend to fpeak, is found in the form of a ball, Tab. XLV. Fig. vi. $a a a$, and is made up of a foft thready matter, like wool or cotton: it is compofed of very delicate hairs, running in every direction fo as to form a very firm and fubftantial web; but the hairs are not very ftrong in themfelves, for they are hollow, and look as if they confifted of fmall globules. They arife from the footftalk, of from tops of the Oak branches b, and fometimes from the leaf, which in many inflances fhoots, as it were, from the central part of the excrefcence c, fo as to appear entirely furrounded with this down. But the principal foundation of there hairs is no other than fome little oblong hollow bags or tubes, Fig. vir. d, if I may give them that name, which are at firft foft and tender like purfes, but afterwards harden to the firmnefs, as it were, of wooden pipes.

Each of thefe cavities is conftantly found to contain one Worm, which lies hid, and grows in them, till it changes in the Summer months to a Nymph, properly belonging to the firft mode of our third order. Neverthelefs, as I have already often hinted, I rank thefe infects in the fourth order, becaufe they perform their changes in a dark and myfterious manner, which nothing but the indefatigable diligence and attention of the curious can bring to light. It is owing to this that thefe infects have been hitherto treated, not according to the laws common to other animals, in which the great Creator has been pleafed more openly to manifert his glory, but according to falfe notions, fuggefted by our human ignorance and prejudice. I muft here, however, do juftice to the illuftrious Redi, who has treated the works of nature in a very different manner, and thereby refcued the operations of that great but fubordinate agent, from thofe thick clouds of darknefs which human error and ignorance had raifed about them : by what other name can we call that abfurd opinion, which attributes every thing to chance and putrefaction. Certainly, whatever allowances we may make on this occafion, to the generality of mankind, thofe among them, who would be thought
people of fenfe and learning, are altogether in: excufable in countenancing fuch a thought: This grofs error is the natural confequence of mens imanner of proceeding, when contented with fitting quietly in their ftudies, and looking over books; they neglect to trace the ways of God, the great Author of all things, in his works, which furround us on every fide, neglecting them, to follow the delufions of their own feeble imaginations.

The cavities now mentioned, are fometimes found to the number of ninety; or even a hundred, or more, growing through one another; and wrapped about in the woolly down, or cot= tony matter that is lodged in the fame place. When the Worms, enclofed in them, have changed to Nymphs, and afterwards acquired their proper degree of ftrength, they each throw off a delicate fk in, and are thus turned to very fmall Flies ; theii they bore with their teeth through both the little tubes in which they hitherto have lain concealed, and the down that furrounds them, and then iffue forth at a great many openings; Tab. XLV. Fig. vi. ce, in a very entertaining manner. On this occafion, ignorant fpectators are loft in wonder, and form to themfelves variety of fyftems to explain fo unufual an appearance; but when they come to relate their opinions, we generally find them void of reafon, and altogether ridiculous.

The Fly produced from thefe Worms, is divided into a head, thorax; and body, Fig.viII. f. The head is furnifhed with eyes, and it has two long antennx. From the upper part of the thorax fpring four membranaceous wings; that hine like mother of pearl, and the upper pair are adorned alfo with two black fots, and with feveral very pretty ramifications of the nerves. To the under part of the thorax are fixed fix tranfparent legs of a delicate redifh brown colour. The body confifts of feveral rings, and is armed, at its extremity, with a weapon of an oblong form that is plainly difcernible : no doubt, this is the inftrument with which the infect pierces the Oak branches, in order to depofit its eggs within their fubftance. This Fly is altogether black in the body. I have not yet had the good fortune of difcovering its eggs, either in the excrefcencies wherein they are hatched, nor in the body of the female, as I never have diffected any of them. I made the foregoing obfervations on the 26 th of June, when a great many of thefe furprifing Flies iffued from their nefts, which they likewife continued to do, till the 8th of July. The males were fmaller than the females.

Of fome little infects that are found concealed in the tubercules, or fwellings of Oak-leaves, in so artful and wonderful a manner, that the foregoing relations muf yield the preference to their hifory.

THE obfervation I am now about to exhibit, is fo uncommon in its kind, that nature perhaps cannot furnifh any thing to excel it. On this occafion the infinite power and wifdom of the Great Sovereign of the univerfe ftrikes our eyes with its full luftre, and indeed fo plainly fhine forth in his creatures, that we muft confider the meaneft of them as fo many voices engaged in publifhing his praife; and thereby puting us in mind to yield him that tribute of love and adoration, which we owe on fo many accounts: us, I fay, on whom he has beftowed the ineftimable faculties neceffary to inveftigate and confider him in his works.

To proceed with due order in this relation, I thall firft defribe the excrefences of the Oak-leaves, in which thefe wonders are found *, and add a figure to render the defrription more intelligible. I thall then, in the fame manner, give a fatisfactory account of the infect bred in thefe excrefcences, as it appears in the Worm, Nymph, and Fly-ftate. As to the excrefcences themfelves, the particulars in them mof worthy of our attention, are their fituation, conftruction, figure, colour, and fize. Their fituation is irregular, and it is pretty like that of the excrefcences on nettleleaves already defrribed. Some lie on the fore part of the leaf, upon or clofe along the fides of its nerves or ribs, Tab. XLV. Fig. xir. aa. Others appear in the middle of a leaf, feated upon the main rib, b. And fome, in fine, are fcattered confufedly about the edges, $c c$.

Thefe tubercles confirt of a hard, knotty, and compact, but brittle, fubftance, without the leaft toughnefs; fo that, in this refpect, they very much refemble a cartilage. But, upon the whole, I know nothing to which this fubftance may be more juftly compared; than to the cup or covering of the hazel-nut or filbert, before it ripens, or has been pulled. Thefe tubercles, or fwellings, are formed between the two coats of the oak-leaf, and acquire their hardnefs when the delicate parent Fly has buried its eggs there. Thefe tubercles are fometimes round, fometimes oval or oblong; and we often meet with two, three, or four of them growing into one, fo as, in a manner, to compofe but one continued body. Their colour is generally a deep green, fometimes a watery fky-blue, and in fome inclining to white and yellow. In point of fize they differ greatly, according to their age, or perfection of growtb, and their joining two or more into one tubercle, b.

I have not as yet had the fatisfaction of feeing the firft rudiments of there tubercles, which firtt I took notice of by mere chance, in company with my much honoured friends, the principal magiftrate of Niewenrode and his lady, in the Hague-wood, from whence I took many of them home to examine at my leifure. I fhall, therefore, now defribe thofe wonders I obferved in them, in the courfe of a mort diligent inquiry. In one of the largeft of thefe tubercles, which I opened by paring off its upper part, Fig. xini. d, I found a pretty large cavity, in which there again appeared three other peculiar or feparate excreseres, e. As to the manner of their coming there, it is more than I can conceive. Thefe fmaller excrefcences lay fingly each within a kind of hollow, but without any partition between them. On taking out thefe three feparate excrefcences, f, I found that in figure they greatly refembled a kidney-bean, which has one fide more convex than the other. On infpecting them with a microfcope, they looked as if they had been connected by the middle to a kind of pod, by means of a petiolus, or little ftalk.

Thefe fingularities ferved only to make my curiofity more eager, to examine attentively the other tubercles that I had taken home with me; and I found them all filled with the miracles of the Great Creator. On feparating in the middle a tubercle, that wanted a great deal of being arrived at the fize and perfection of that already defrribed, I found no hollow or yoid fpace within it; but only two fuch peafhaped fubfrances as I have before taken notice of, and two little Worms, which I had cut in two, along with thofe fubftances. All this is plainly fhewn in the figure I give of them, Tab. XLV. Fig. xiv. little larger than nature; in which may be feen the two diffected or cut fubftances, fituated in the middle, and about them the fubfrance of the tubercle, by which they are clofely furrounded, like the feeds of an orange by its pulp. I could likewife obferve, that the external coat or fhell of the tubercle was much more sompact, and of a greener colour, than the infide; which difference I have endeavoured to reprefent in the figure, as if there had been a feparation between the differing fubfances, though, in reality, there is no feparation in this fate of the production.
On opening a third tubercle, that was fomewhat more grown, I could difcern that its internal fubftance was drying up by degrees, and

[^83]feparating from the enclofed kidney-bean-like fubftance; by which means this came at laft to lie in the tubercle as within a hollow, and to reft againft one fide or another of this hollow. In this manner I plainly difcovered, that the three detached fubftances, in the tubercle I firt opened, had obtained, by evaporation, that wonderfully elegant fituation in which I found them. This difcovery was afterwards confirmed by all the other tubercles, and their internal fubftances. On my firft obferving thefe furprifing changes, without knowing the ends which Nature intended to anfwer by them, I looked upon the whole as a moft inexplicable riddle; as did likewife the ingenious perfons then in my company: for our walk was made merely with a view of regaling ourfelves, together with a contemplation of the ftupenduous miracles of the Univerfal Parent.

We find in nature many other things, which agree and correfpond with what I have been juft now relating. The feeds of apples and pears, buried within the flefh of their refpective fruits, fall off, little by little, from their coats and cups. The fame thing is obfervable in the kernels of filberts when they grow dry, and even in the nut itfelf or filbert, which at laft drops from its cup. But what is altogether fingular and uncommon, in the tubercle now under confideration, is, that this fubftance, which feparates from it, and lies loofe within its body, fhould contain a living Worm.

When thefe fubftances, in confequence of the hollow occafioned in the tubercle by a large evaporation, have newly become loofed from it, their circumference is fomewhat rough and uneven; but as it dries, it grows even and finooth to the naked eyes: but the microfcope always difcovers on the furface the remains of the former ruggednefs, Tab. XLV. Fig. xv. f. In the fame manner the fpot, at which this fubftance received its nourifhment, never entirely difappears; but remains difcernible to the laft, in the form of a little cicatrix or fcar, b.

The fubfance of thefe internal nodules is at firft foft and tender; but it afterwards hardens and dries up, and affumes a brownifh red colour, which it never afterwards lofes; fo that, when viewed within the hollow of its green tubercle, it affords a moft pleafing féectacle. When thoroughly dried, it is of a pretty compact and firm texture ; and in refpect to its coat or cruft, it greatly refembles the rind of a chefnut, only this laft is much thicker. But neither thefe fubftances, nor the Worms they contain, are all of the fame fize.

Likewife the number of there contained within the tubercles, varies greatly. In fingle tubercles, every one lies by itfelf in its own particular hollow; but it is the reverfe in the double or more compofed tubercles. Sometimes alfo, though three or four tubercles grow in one, all their inner fubftances have notwithftanding each its own little cell, feparated by a
kind of diaphragm or divifion. The fpots on which thefe fubftances grow within the tubercles, is generally a little moift or damp, which keeps them from rolling about. The cavities alfo of the tubercles differ in fize, which I attribute to the tubercles themfelves having been fome bigger than others, or to their having been dried up in different degrees. But, in general, there is found only one detached fubftance in every tubercle.

On opening one of thefe fubftances, that I had taken out of its tubercle, I found in it a living Worm, compofed of many rings, as I have reprefented it, larger than nature, on the middle of the Oak-leaf, Tab. XLV. Fig. xir. m. The figure of this Worm was oblong, and its colour white. On its back appeared a gray ftreak, approaching to black; which I afterwards, on diffecting the Worm, found to be no other than one of its inteftines, which appeared through its tranfparent fkin, and owed its colour to the half-digefted food which it contained. In other Worms this ftreak was fometimes brown, fometimes red, yellow, or green, owing to the caufe alreaady affigned. This little Worm lay in its beanlike fubftance in the form of a crefcent, quite free and loofe on every fide. I could not even difcover in it any umbilical veffels, or other connecting filaments, by which, according to the vulgar opinion, it might have drawn in its food. It moved and turned itfelf about at pleafure in this little habitation, being very vigorous and lively. There appeared no excrements in the cell, nor yet the leaft opening by which it could empty them. The hollows of the tubercles were equally free from any foulnefs of that kind: every place was perfectly neat and clean.
Neverthelefs I fhall not deny that this little infect received nourihment within its covering, fince the contrary is plainly feen from the altered food which appeared in its inteftines, in the form of excrements. Hence I conclude, as a certainty, that this Worm fubfifted on the juices of the Oak-leaf, which were conveyed into the cavity of the fubftance by its ftalk, and that it took in thefe juices with its mouth. As this aliment, no doubt, is of the moft refined kind, there is the lefs reafon to wonder at the Worm's not voiding any excrements, in confequence of its ufing fo fine a nourifhment. On the contrary, retaining within its body the little that was fecreted, till an opportunity offered of difcharging it all together, when it fhould be turned to a Fly in due courfe of time, and freed from its confinement. It is common with feveral infects, produced from Nymphs and Chryfallides, to evacuate their excrements very copioufly, within the firft quarter of an hour after their appearing in the Fly-ftate. Nor is there any reafon to wonder at a creature's being able to grow without difcharging any excrements, fince new-born Lambs and Calves furnifh us daily inftances of this kind. Thefe animals

A a
never
never void any excrements at the anus, till they are dropped from their mothers *.

I think it probable that the fubftance of the tubercles does not begin to dry up, till the enclofed Worm, having attained the full term of its growth, becomes mature and ready for the Nymph-ftate; and even at this time, the lower part of the fubftance fill continues moift, fo that the enclofed infect may, at this period, alfo draw nourifloment through it, from the afcending juices of the tree, in cafe it fhould happen to require any. Thus we have another inffance of God's all-feeing providence, which, with fo much goodnefs, watches inceffantly over his creatures; and this inftance is the more friking, as the lower part of the bean-like fubftance grows loofer and drier by degrees, on the Worm's actually entering into the Nymph-ftate; fo that the moifture I have been fpeaking of, begins little by little to dry away, when the time approaches for this Nymph to appear abroad in the Fly-form. Sometimes indeed the detached fubftances, at this period, are found quite loofe in the cavities of their tubercles.

One of thefe Worms, which I had extracted from its bean-like fubftance, lived, notwithftanding, from the fifth of June to the fifth of July. When the Worm has received fufficient nourihment, it draws the rings of its body clofer to each other, 'Tab. XLV. Fig. xvi. It after this cafts a delicate fkin, and at length affumes the form of a Nymph, which is at frft white all over, but grows blacker and blacker by degrees, in the fame proportion as the enclofed limbs of the future Fly acquire fufficient flrength to expand and produce themfelves. At this time, there very plainly appear on the Nymph's head, two reticulated or net-like eyes, Tab. XLV. Fig. xviI. $a a$, and underneath in the thorax, the two teeth, which were before difcernible in the Worm. Along the body lie the antennæ, $b b$, and between them the fix legs, and the wings neatly folded up. The rings of the body fhow themfelves very diftinctly in the lower part, c. I refer this Nymph to the firft mode of the third order of natural mutations, as it clearly reprefents the limbs of the future Fly, in the fame manner with the Nymph of the Ant.

The two figures I give of this Nymph reprefent it, one of its natural fize, Fig. xviII. the other as it appeared through the microfcope, Fig. xIx. It is divided into the head, breaft and body. The eyes are feated in the head, and before them are placed two moderately long antenne, a a. The breaft bears four wings, $b 6$; the upper pair, which are the largeft, are ftretched over the body ; to the under part of the breaft, are articulated fix red legs, each armed at its extremity with two claws, $c c$. The belly of the females is thick, fwollen, or diftended; but it ter-
minates in a fharp point, d, which perhaps the creature makes ufe of as a weapon, to bore the Odk leaf, and afterwards as a channel to convey the eggs into the hole made in that manner. The furface of the body is fmooth all over, as if polifhed, and is of a fhining deep black, which gives the Worm a pretty appearance. Thefe Flies broke from their confinement the 28 th of June; but I diffected none of them, fo that I can fay nothing of their eggs, or of their genital parts.

We are now to confider ancther wonder, equal to any of thofe I have yet related; and this is the fingular and uncommon manner in which the all-wife, and all-powerful Architect has provided for the delivery of thefe Flies, without their meeting with any oppofition. At the time the Worm has attained the Nymph-form, the enclofing tubercle begins to grow thinner and thinner by degrees, at a certain determinate and felect fpot. This circumftance I have endeavoured to reprefent in a tubercle, where I found two detached fubftances, Fig. x $\bar{x} . i i$; nor is Na ture content with only reducing the thicknefs of the tubercle in this manner; but fhe likewife ordains things, fo that it dries up and hardens in the rame place, in order to make the perforation of it, by the teeth of the Fly, eafier than it otherwife would be. The little prifoner, on its becoming a Fly, firf gnaws through the inner fubftance, and then through the tubercle itfelf, a round hole, Tab. XLV. Fig. xir. k, juft large enough to afford it a free paffage to its new. element.
We may know of a certainty, when thefe infects are about to turn to Flies; for the dry fpots at which the Flies are to make their way, appear very obvioully on the furface of the tubercles, $\%$. On infpecting thefe tubercles again, a few days after the 28 th of June, I found many of them perforated, and that the Flies bred in them had made their efcape, fo that nothing remained in them but the detached fubftances, which were likewife perforated. The tubercles wrinkle and wither away, for the moft part, on their inhabitants quitting them. There wonders all return with the fucceeding year, and thus call upon us without ceafing, to publifh the praifes of their Author, who has openly manifefted Himfelf in all his creatures, and has given to man alone, amongt all fublunary beings, the faculty of knowing Him. In what a bad light therefore muft thofe appear, who, unaccountably blinded by their ignorance, dare to oppore the exiftence of that all-watchful and adorable Providence, by foolifh arguments! Behaving in this manner, and working their own deftruction, they debafe themfelves below the rank even of beafts, and deferve to be confidered as monfters in the nature of things.

[^84]
Of certain Worms that feed wittbin the fpongy excrefcence of the Dog-rofe.

THE excrefcence of the Dog-rofe, as to its external appearance, is not altogether unlike that of the Oak reprefented in Fig. vi. of this plate, though it is not of a woolly, but on the contrary, of a fpungy fubftance, in fo much that it may, with great propriety, be called the fpunge of this Chrub. The colour, when dried, is a blackifh gray; and in the fame ftate, the furface of it is full of little cavities and prominencies, Fig. Ix. aa. It grows as the other, at the extremities of the branches, where it ftands upon the center, juft as the bud of the Rofe does upon its ftalk b. On opening this excrefcence, we find in it a great many cells, Fig. x. c, full of little white Worms of different fizes and ages. Thefe Worms affume, by degrees, the Nymph-form, in the fame manner with all the Worms living in excrefcences, that I have hitherto mentioned ; and under this form they moft manifeftly exhibit the limbs of the future Fly: this happens about the end of fummer.

I had the pleafure of obferving two fpecies of Flies iffue out of thefe fpunges, thro' holes
they had made in them for that purpofe. The firft fpecies was not unlike the Flies that had been produced, at my houfe, from the tubercles of the Oak, only, that they had fomewhat thicker bodies, Tab. XLV. Fig. xi. d, with black eyes, and all the reft of them was of a redifh brown colour. The other fpecies e were of the Bifetæus kind, or had two hairs at the tail, though this character was peculiar to the males. They had likewife, in common with the firft fpecies, four wings and fix red legs. Their bodies were oblong; and their heads, which hung to the thorax by a very flender neck, were furnifhed with a pair of redifh eyes. Their bodies all over Thone like thofe of the Cantharides, or Spanifh Flies, with a gilded green, fo as to afford a very entertaining fpectacle. Thefe Flies did not all appear abroad at the fame time, but were employed for feveral days fucceffively in making themfelves openings in their habitations : this they effected by gnawing the fpungy fubftance with their teeth, into a great variety of holes and cavities, Fig. ix. f.

A careful and exact obfervation wobich I made on the tentb of Yuly, 1674, on the black Poplar, in prefence of the principal magjifrate of Nieuwenrode, and bis lady; both very curious in examining the natural wonders of the creation.

THOUGH all the works of the Almighty are wonderful, we may obferve, that fome publifh his praifes more manifeflly than others. This appears moft eminently in the various organs of generations beftowed upon animals, and the different manner in which they ufe them ; for fome declare, by evident and intelligible characters, the power and contrivance of the great Architect, whereas others reprefent it by marks that are fomewhat obfcure and myfterious.

On the tenth of July, 1674 , as we were going in a chariot to Scheveling, we faw fome red fruit like Cherries hanging from the leaves of the Poplar-tree, in fuch numbers, that they could not but ftrike the eyes of all that paffed by. When we viewed them near, it appeared to us, that they were fo many rough tubercles, or extuberances, on the leaves of thore trees, Tab. XLV. Fig. xxi. a, each of which, when opened, thewed a great number of living infects, to the amount of 60 or 70 . Thofe warts, or protuberances, which projected above the furface of the external coat of the leaves, were fituated exactly under the middle of the nerves or ribs; fo that thefe nerves pafied b over them; being fometimes a little higher, and fometimes lower, according as the warts themfelves projected, more or lefs, without any order from the leaf. Two warts were likewife fometimes found, but very feldom, on the fame leaf. Their fize greatly differed; fome of them, as if young, were fmaller; others larger
and more fwollen ; a third kind allo grew nill larger and higher than all the others. When we firft faw thefe tubercles, we thought they were every way thut up or inclofed: but upon a more accurate examination, we found, that each of them had, on the infide of the leaf, where they were fimooth, an orifice c fomewhat long, thro' which the infect paffed at pleafure.

It is worth notice, that the leaf always fwelled under its largeft nerve, which it conftantly elevated; and likewife, that this tumor was only found about the nerve, and in the middle of the leaf. The reafon of thefe circumftances feemed to us to confift in this ; that the eggs of the infect-inhabitants had been impreffed on that place only, and that the nutritious juice of the leaf was for the moft part conveyed thither. Thus it might eafily happen, that the leaf might be there increafed and inflated by the nutritious juice accumulated by the irritation which liad been produced by the lodging of the eggs in the fubitance. And hence alfo we obferved plainly, that the whole wart on the leaf was nothing elfe but a larger dilatation and expanfion of the leaf itfelf; which caufed the nerve, pufhed out at the fame time, to be twifted into various bendings and windings, which were very confiderable $d d$ in fome of them.

It deferved great confideration to obferve how regularly all thefe things are done. For when the leaf is newly ftruck and begins to
fivell,
fwell, it firft grows yellow, and thence infenfibly red, and is at length expanded like a bag, or a hollowed Cherry. In the mean time, the two edges of this extuberance grow fo exactly oppofite to each other on the infide of the leaf, and are, as it were, fo united together, that the opening, or chink can fcarce be perceived. This is regularly appointed in that manner by the Almighty, in the nature of things, left the eggs or the young Worms thould fall out of this their cells, or lodgings, or fhould creep out before they have attained, their full perfection, and are become able to fly. We have now faid enough of the external form of thefe tubercles.

When we afterwards opened them, we found in the infide the following very obfervable circumftances: in fome we faw Flies full grown; in others, Worms with fix feet, which were real Nymphs of the fecond order; and alfo fome Worms, which, not yet exhibiting the limbs of a Nymph, were only in their firft growth. We alfo difcovered there a downy white fubfance, and fome tough fluids, which feemed to be enclofed in the membrane.

To treat of each of thefe in their order, I fhall firft obferve, that we found the inner furface of thefe warts more fmooth and flat, than the outward. We thought the reafon of this difference was, that in the external furface of the warts, the fmaller nerves, which are there diftributed thro' the leaf, were dilated and extended with the reft. As to the palenefs of the colour, we conceived, that the reafon of it confifted in this, that the whole inner furface appeared fprinkled, as it were, with meal and fmall white grains of bran formed like down. From whence this downy matter draws its origin, we thall examine prefently. We fometimes obferved fomething, tho but little, and that not frequently, of a roughnefs in the cavities of the warts : but whether the caufe of this was, that the old Flies, remaining there for fome time, had fcratched the furface with the claws on their feet, we could not certainly affirm.

The fmalleft Worms we found within there warts, were each divided, like perfect Flies, into the head, thorax and belly, Tab. XLV. Fig. xxir. In the head were feen two eyes and two antennæ. To the lower part of the thorax fix legs were articulated. The reft of the body was fomewhat fhort. They appeared to the naked eye of an azure or fine blue, but greenifh under the microfcope. They caft a fkin in like manner as the other fpecies of Worms. They alfo moved very quick, and were much more vigorous than the larger Worms, or than thofe that were already changed into Flies.

What deferves moft obfervation in thefe little infects, is a heap of flocks or down, which each very beautifully and admirably carries e on the hinder extremity of its body. Whether that down grows out of the very body of the infect; which indeed is very likely, or whether it be produced from the tubercle or wart,
and afterwards is lodged in the hinder part of the body of the Worm, we could by no means difcover ; tho' we were moft inclined to think, that the down grew from the body of the infect, becaure we no where faw it flicking to the bodies of the more mature ones.

In certain Worms, with foft bodies, that live expofed to the fun upon the leaves of the Lilies, I have obferved, that they heap together all their excrements on the hinder-part of their body.

In others that lived among the leaves of Thiftes, I have obferved two fliff brifly hairs flanding in the hinder-part of the body; on which was always fixed the fkin which the infect had caft off, together with fome excrements. Thus they lie under their fk in, as under a pent-houfe, free from the fun's heat, and walk up and down with it among the leaves. The firft fpecies of thefe Worms, at length, changes into a Beetle, of an orange red colour, with black horns and legs; but the other into a large Tortoife-beetie, in like manner, with black legs and a black body. Thefe two very extraordinary contrivances do not much differ, with refpect to the down, from that which the infec, whereof we here treat, carries on the hinder part of the body. We may likewife fee from hence what miferies all creatures are fukject to in this vale of filth and calamities, finining their lives continually under unhappinefs and misfortunes.

The whole inner cavity of the wart, as I have already mentioned, is fet as it were, or rather fprinkled over, with that farinaceous down. And this, doubtlefs proceeds from the exuvix, which the infect contained in it has caft off. At the time they caft the fk in and this down together, they diffure it every where about by running up and down. This downy fubftance is very elegantly divided into branches, and greatly refembles that fpecies of nitre which rifes out of walls newly built in fome parts of Holland: when viewed with a microfcope, it feems like the fmailer or branched mofs of trees.

As to the food of thefe Worms, it is very hard to demonftrate what it is : however, it is very certain, that they are nourihed within the cavity of their warts. Probably, that white, tenacious, and glutinous moifture which I have before fhewn to be fecreted within the warts. Hence, that humour is fo admirably ordered by the all-wife Creator, that it never flows away, nor does it wet, nor can it fuffocate thefe little creatures. As it is ropy and clammy, the down immediately adheres to it, and performs the bufinefs of a membrane or bag, in which, as in a clofe veffel with a fpout, it lies enclofed, and cannot run out of it.

I compare them to thofe clofe vefiels, becaufe there are fome of thefe bags of that figure, Tab. XLV. Fig. xxini. f. and by means of a hollow footftalk, are fixed to the furface of the wart, where the humours, juft now defcribed, probably flows out of that excrefcence. Therefore, this is probably the real and only ufe the faid down is of to thefe warts, and to

The HISTORY

of I NSECTS.
the little creatures, it ferves to confine the moifture. When this moifture is confumed, the downy integuments, which furrounded it outwardly, become culled g into each other like prefied flocks of cotton; and therefore feveral fuch downy clufters are found gathered together in the warts.

The bags juft now mentioned, containing a fluid, are all furnifhed with a petioli, or footftalk, by means of which they adhere to the inner furface of the tubercle : but whether that fluid be the real aliment with which the Worms are nourifhed, according to my opinion, or whether they are there fed with fome other matter, has not hitherto appeared to us from experience. But this is certain, that thefe Worms have neither a trunk, nor any teeth. Nature hath given them only an acute and delicate converging beak, not unlike that of the Cicada, which fucks the dew : by this beak they can penetrate eafily enough thro' the downy coat of their bags, and fuck the moifture before defcribed. But whether thefe creatures do really nourifh themfelves in this manner, or not, I cannot yet affirm, tho' it is very probable.

We poured a fmall diop of water into the cavity of thefe warts; and it was immediately covered round with that farinaceous down, and was deprived of its fluidity to fuch a degree, that when it was afterwards fhaken on dry paper, it did not wet it, but flipt and rolled over it, and did not flick to it : this was a very agreeable fight.

There is not fuch a great quantity of that down about the largeft, as about the fmalleft Worms. On thefe indeed there grew four buds or rudiments of coverings of legs, on each fide near the fhoulder-blades. I have reprefented them $b / 2$ on each fide of the thorax, above the hinder legs. The principal cafes, or firf buds of the limbs are, in reality, a kind of covers, in which the wings lie folded up. Therefore, thefe creatures may then be properly called Nymphs belonging to our fecond order of natutural tranfmutations; for in that order, the infeas do not at all lofe their motion during the time whilf they are changing into Nymphs; but on the contrary, walk, ftand, eat, and move about, until they change their skin; and having at length caft their exuvix, they affume, as it were, another ftructure, and acquire only wings. This muft be well obferved. I would likewife have it remembered, that I have ranked thefe Nymphs
in the fecond order, becaufe they peiform their change in fo obfcure a manner, in the warts of the leaves.

Thefe Nymphs, which are to change, caft a very fine skin or integument, which is left in the cavity of the wart *. When this is caft, they acquire, Fig. xxv. the form of delicate fimall Flies, with four wings. Thefe Flies are of a blackifh colour, except the membranaceous wings, which have brown nerves, and elfewhere approach fomewhat to red. The limbs, and other parts, that is, the head, thorax, abdomen, antenna, eyes, legs, and the reft, may be now feen much more diftinctly in the infect, now perfectly mature, than when it appeared in the form of a fix-footed Worm.

The horns appear to be divided into fix joints; and are very beaatiful; they are compofed, as it were, of grape-ftones, or are like a fmall piece of cinnamon, incruftated or rough-caft with fugar. The eyes are confiderably large, and reticulated; they appear very diftinctly when the creature lies on its back. The beak is clofely applied to the lower part of the thorax, and is there feen extended downwards between the firt pair of legs, juft in the fame manner as the Cicada. The wings, befides their nerves, and the veffels, wherewith they are elegantly diftinguifhed, exhibit two oblong black fpots, with which they are ornamented.

This creature flies very flow ; indeed it does not move with fo much fwiftnefs as the fmall Worm, out of which it is produced. I have not yet difcovered, by diffection, the difference between the male and female; nor have I ever feen the eggs of this Fly. I am inclined, however, to think, that they are lodged by the parent, on the inner coat of the Poplar-leaf: and that the wart or tubercle here defcribed, is afterwards formed there by nature, in order to hatch and nourifh them, and to keep them in fafety. But how all thefe things are performed, we can yet only conjecture : fince they muft be known, not by reafoning, but from folid experiments. I fhall here therefore furl my fails, and in amazement, celebrate the great Creator, who hath hidden fo many, and fuch inexhauntible natural and important miracles, full of true knowledge and erudition, in his creatures; fo that the air, the water, and the earth; the plants alfo, that vegetate therein, abound with them ; and all vegetables and animals, however fmall, proclaim the glory of the Supreme Being.

[^85]
Of the footlefs Worm of Cabbage-leaves, which properly belongs to the fourtb order or clafs of natural cbanges.

ON the $5^{\text {th }}$ of Auguft, I found on Cabbage leaves feveral footlefs Worms, and fome of their Nymphs. The body of the Worms, was in the fore part fomewhat pointed, but in the hinder part a little thicker, Tab. XLV. Fig. xxvi. They were alfo divided into annular fegments, which appeared in the fkin like fo many fmall incifions. They were of a pale green colour ; but they appeared variegated, by means of certain white vifcera, which were feen through the tranfparent fkin. This creature was by nature very flow and heavy, though, when touched, it fhewed greater agility and fprightlinefs. Whether it ufes Cabbage leaves for food, or hunts there after fome green little fix-footed infects, which are at length changed into Nymphs of the fecond order, and from the latter into Flies; I have not accurately invertigated: I know fome are of this laft opinion. This Worm ufually flretches aloft the fore part of its body, in the fame manner as an Elephant does its trunk, when it firf begins to move and go forward. Therefore, I do not doubt, but it is the very creature which. Goedaert defrribed, Exper. XI. part II.

When this Worm hath at length fed enough, and its internal parts have acquired fufficient ftrength to put on the form of a Nymph, it is then changed, Tab. XLV. Fig. xxvir. and xxviri. into a real Nymph of the fouth order; which change is performed in the following manner: We firft obferve, that the Worm, before it cafts any fkin, becomes infenfibly fhorter; that its head is entirely contracted on the infide, and at the fame time it becomes thicker; but the hinder part, by degrees, grows fmaller, and more flender, the body thus lofes its former figure. For the blood, and all the fluids, are propelled forward to the new parts, which are now increafed, and fwollen under the Worm's uncaft fkin, and appear divided into the head, eyes, thorax, legs, wings, and body: this may be clearly feen, if this Nymph be artificially ftript of its yet uncaft flim. One may likewife fee the feveral particulars beforementioned through the fkin iffelf; when the Nymph, being fome days old, begins to acquire its proper colours.

As the colour of the Nymph, on the change is white, and is afterwards altered into a green, mixed with a pellucid white; the red eyes in the head appear, Fig. xxviri. a a, gradually through the tranfparent fkin. The fame thing holds, b, in regard to the thorax, which exhibits fome pellucid hairs on its furface. In the hinder part of the body, the abdomen is feen through the flkin, divided $c c c$ into feveral rings, which are likewife fet with fmall hairs. On one fide of the body is feen a wing d fomewhat pellucid. Towards the hinder parts, and near the tail a curled little veffel, Tab. XL.V. Fig. xxviri. e, which indeed feemed to me to be a pulmonary tube rolled out.

When this Nymph is grown older, and at length becomes all coloured, then there parts appear moft diftinctly, if the fkin be taken off: this will be evident from the magnified figure thereof, which I have given here. In this are difcovered, Fig. xxix. a, the Nymph's reticulated eyes; above and between which are two fhort 6 horns. The probofcis or trunk is laid along the breaft c, and near it, the firft and fecond pair of the fore legs, are feen to be beautifully difpofed. On each fide of the breaft lie the folded wings, $d d$, and under them the laft pair of legs, e. What deferved the greateft notice in this creature was, that the extremities of the genital parts, were placed, $f f$, as it were, beyond the rings of the body, and terminated in fhaggy points: which are at length drawn into the body, when the Nyimph puts on the form of a Fly.

This Nymph is therefore a very uncommon one ; and though properly referred to the fourth order, yet it undergoes confiderable changes, and exhibits no more of its former fhape than the fkin only, which it does not caft, but retains. The reafon why this Nymph fo much differs from others, of the fame order is, becaufe it is invefted with a tender and thin fkin, which obfequioufly accommodates itfelf to the growing and protuberant limbs within. All this I have explained in the preceding pages, where I treated exprefly of the nature of the fourth order. We muft further obferve, that this Worm, when changing, is not difengaged from the Cabbage leaf, as is the cafe in regard to many other infects: on the contrary, it firft glues iffelf thereto by a vifcous matter, which appears Fig. xxvint. $f \hat{f}$, like a thin membrane on the leaf.
The Worm having had this form fixteen or feventeen days, the hidden Nymph then breaks open, and cafts off the outward fkin , and at the fame time draws a thin film off from the whole body, and from all the limbs, which is left on the infide in the old fkin. Thus the Nymph appears, Fig.xxx. at length under the form of a Fly. The young Fly is much fmaller at firft, than in a quarter of an hour afferwards; for its parts are in that time infenfibly extended, particularly about the head and belly, fo that the Fly becomes almoft twice as large, in fo fhort a time after it is produced; after which it never increafes any more. If any one would know the reafon how the body of this Fly is fo remarkably diftended, it will appear, on examination, that it confifts in refpiration, which fills all the pulmonary tubes, and pneumatic bladders with air ; and thefe, on the other hand, expand the hitherto foft body of the creature, and give it a firm and durable figure.
This Fly is beautifully divided into the head, thorax and abdomen, and has fix legs and two wings. Behind there, two little parts are obferved to be fixed to the thorax, fupported, as it were, by two fine footfalks, with their extremities
headed; fo that they refemble two little hammers, which, the Fly friking againft the wings, forms the noife peculiar to it. The eyes are ruddy, the thorax is greenifh; the abdomen, on the contrary, is yellowifh, and is variegated with blackifh hairy wreaths.

I have often feen inftead of the Fly, which is commonly produced from the Worm before defrribed, eight other Flies iffuing out of its Nymph, which had indeed drawn their ori-
gin from the Worms that feed on the internal parts of that Nymph, and were changed within it, into fo many fmall Nymphs. When thefe little Nymphs had at length grown into Flies; they flew out, after piercing the fkin of the larger Nymph. Thefe Flies had each fix red legs, four wings, and a body that glittered with a golden and very lively green, excelling the light of the fun's rays.

Of the Worms called Motos.

THOUGH the Moth is a very common creature, yet few know it; for it lies hid, and does not exhibit itfelf to open view ; for that reafon it is the more mifchievous. Moths are in reality Vermicles, or Worms that live in woven cells, at all times, except when they build their nefts, in wool, flkins, or birds feathers: in thofe cafes, they ufually build themfelves irregular cells, becaufe they have both the habitation and food, which they then irregularly grind with their teeth, always ready.

They build their habitations very artificially, fo that they are always larger in the middle, and narrower, Tab. XLV. Fig. xxxi. a, on each fide, where the paffage is: and that ftructure does this fervice to the Moth, that it can the more conveniently turn itfelf in the middle of its habitation, and go out through either orifice when neceflary. It is alfo obferved fometimes, that the Moth fpins a fine thread, efpecially when it creeps near the walls and beams of houfes, feeking its food there; for this is of various kinds. In that cafe it forms this thread, to prevent falling down, when it ceafes working, and goes into its cell ; for at that time only it hangs fufpended, b, from the thread. I have likewife often feen, that the Mooth fpins this thread, when the anterior or forepart of its body has firft crept c out of its little cafe, and endeavoured to fix itfelf fomewhere by means of it: but when the creature was afterwards inclined to proceed further, it broke this thread, and going out of either opening of its cell, fixed it again in another place : and when this is done againft a beam or wall, it forms a very beautiful fight.

In order to defrribe more particularly the little Moth, which I here exhib:t in its natural fize; I muft oblerve, that with refpect to its ftructure, it is not unilike a frmall Caterpillar. It has a glittering raven-black head, in which its eyes, and two fharp-pointed teeth are placed. The reft of the body is of a whitifh or flefly colour. Six legs are fixed to the breaft, eight in the middle of the body; and two are fituated in the extremity of the abdomen under the tail. The Moth, however, never creeps out of its habitation, but by the fix fore feet; by the heip of the other ten, it lies fixed in its little cafe: that is, when that Worm advances forward with its fix fore feet, then it takes hold of its cell within, with the others: and this too is the reafon, why it always carries its cafe with it, not difieting much in this refpect from tortoifes.

But the Moth, while growing, always entirely forfakes its cafe, when it is become to little for its body, being on account of the increafe of bulk, obliged to form ittelf an intire new cell, into which, as into a new habitation, it afterwards repairs, after leaving the old one. The Moth never undertakesthat office, until compelled by neceffity; that is, when the old habitation is not fufficient to cover its body. The inftinct and prudence of this creature, are moft evident from hence, that in preparing an habitation big enough for its body, it does not defire large and magnificent buildings, which the folly of mankind fo much feeiss after. Man, whom God created with an upright countenance, over-burthens himfelf with heavy labour, nay, he fometimes perifhes under a multitude of houfes and apartments; the tapeftry and hangings of which are expofed to this Moth, only to be gnawed and eaten for food.

When the Moth leaves its former cafe, in order to form for itfelf an entire new cell, it does not get for that purpofe beams of cedar, nor Italian marble: it prudently and ingenioufly makes ufe of that matter which it finds near about it. When it lives in green cloth, it makes the outfide of its whole cell of a green matter; that is, the wool which it bites off the cloth, and artificially interweaves with its web: it lives on the fame fubftance, and ufes it for food; and therefore its excrements are alfo green. It does the fame when it refts or pitches on white, yellow, red, blue or black cloth; or when it finds in its way any coverlid, garment, or cap, that lies unufed and neglected in a corner. If it can find none of thefe materials, it remains in old old houfes, armories, repofitories, and even in flone walls; it eats duft and Spiders-webs, whereof it makes an habitation in the fame manner. I have, on thefe occafions, feen it interweave fmall bits of broken cement with its habitation, in order to make it fronger ; fo that this creature makes every foil its country, and yielding to neceflity, leads a happy life amidft the miferies to which we are fubject.

The Moth never brings any foreign matter into the inner furface of its cell, where its body lies; confequently nothing elfe is obferved there, only the Moth's proper web, which being of a foft, fmooth, and cven texture, ferves both for a habitation and bed. In this manner that Worm lives, till its parts are increafed to their due perfection under the fkin: and at that time, it
covers both the orifices of its little cafe, and cafting of its old fkin within, Tab. XLV. Fig. xxxi.e, is changed into' a Chryfalis, which is properly referred to the fecond mode of our third order; becaufe it does not very clearly exhibit the limbs of the infect to be produced from thence: this is a nocturnal Butterfly, or Moth. When this infect is firf changed, all its parts are beautifully white, but they afterwards grow infenfibly yellowifh, and at length acquire a faint red, which they finally preferve. In the head, particularly the eyes, which are feen through the fkin, firft acquire their colour and perfection; afterwards the whole body finally appears through the flkin, of the fame colour with the nocturnal Butterfly, so be produced from thence.

July i 3 th, the Butterfly appeared, f, after it had lain twelve or thirteen days under the form of a Chryfalis, without food or motion, and its tender limbs had, by the evaporation of the fuperfluous humours, infenfibly acquired fufficient ftrength to break open the outmoft fikin. This Butterfly was provided with four wings, fix legs, two horns, and two black eyes. Its wings and body had many fuperb faly feathers, which very beautifully adorned the creature with various and agreeable colours. Thefe colours being viewed with a naked eye, refemble fine flour, and may be eafily reduced to fuch a powder with the fingers:
and therefore, frail man, as mentioned in furipture, is very properly compared to a Moth.

This little creature, the Butterfly, is commonly called a Moth; though it is noxious on no other account, but that it lays thofe fpheroidal eggs out of which the real Moths, or eating Worms, are at length produced, in hangings and cloaths, in like manner as the Flies producing Maggots lay theirs in meat, finh, cheefe, and meal. When thefe creatures fly or flutter about, thofe who would preferve treafure from Moths, muft be careful to keep them from it; for otherwife their neglect will be a great hurt to them, and caufe much lofs and concern. Thefe are the confequences that commonly attend floth and negligence.

When this Moth hath broken out of its woven cell, it is always obferved, Tab. XLV. Fig. xxxi. δ, to hang a little out of one extremity of the fkin, which the Chryfalis had caft. But if the cafe itfelf be then opened, one may diftinctly fee how even and fmooth it is woven, b. I hould never finim, if I attempted to defcribe and delineate all the fuecies of Moths, fince there is a great number and variety of them. I fhould think, that what hath been hitherto faid is fufficient, fo that there is no need of more; for it is eafy to know a Lion by his paw.

Of certain Worms that, like the Motbs, live inn cells, feeding on the leaves of
Pear-trees, Apple-trees, Plum-trees, and Cherry-irees. Pear-trees, Apple-trees, Plum-trees, and Cherry-irees.

OBSERVATIONI.

IPreferve, in my collection, various and particular fpecies of thefe Worms, fome of which form their cells of bits of wood, which they bite off; and hence are properly called Ligni perdx: but of thefe I thall hereafter treat in another place. The firf fpecies of thofe, of which I am to treat here, was fhewn me on the leaf of a Cherry-tree, by the very experienced and celebrated Dr. Luke Schaght, profeffor of the Materia Medica in the univerfity of Leyden. I afterwards found it likewife on the leaves of the Willow and Alder-tree. The cell which this Worm inhabited was black as pitch, Fig. xxxiri. a; and confifted of a fubftance, as it were, of bark, and woven into wrinkles. Its hinder part was thicker than the fore part, and divided, as it were, into two lobes. Its foremoft extremity terminated fomewhat acutely, and out of it crept its inhabitant, carrying this little cafe entire, obliquely
on its body; but when the Worm refted, the cafe ftood perpendicular on the leaf.

This Worm was, in regard to its ftructure, fcarce different from the Moth. When it has eat enough, it fixes itfelf to the leaf, near the opening of its cell, and is changed within it into a Nymph of the firft mode of our third order, which b grows at length into a very beautiful Fly. On the head of this Fly, which is black, are placed two redifh horns. Its thorax and abdomen are partly red, and partly black. It has four beautiful membranaceous wings, which fhine like very fine Mother of Pearl; and are likewife variegated, nearly in the middle, with two black fpots. It has moreover fix red legs, which are divided into joints, each having two claws at its extremity. This creature is alert and fprightly, and flies very fwift.

IFound a fecond fpecies of thofe Worms, which carry their cell with them, on the leaf of the Alder-tree. This creature fed on the inward coat of the leaf, and therefore confumed it all unto the nerves of that external coat. It does not differ much from the former, except in refpect of its habitation, which it car-
ries every where on its body: but in this there is a confiderable difference; that is, it is of the colour of the leaves that fall in autumn, tho fome of thefe cells are alfo found of a ftronger colour. This cell is triangular, Tab. XLV. Fig. xxxiv. c, at the upper extremity: it fwells a little in the middle; but the part that con-
tains the body of the creature, is again contracted, and therefore it is formed like a bigbellied cylinder.
I havc feen three forts of creatures produced from thefe Worms; for as one of thefe fmall crcatures had, according to the fecond mode of the third order, been changed into a Nymph, which affumed the form of the future Butterfly, I at length obferved a pretty little nocturnal Butterfly or Moth, not much different from the Cloaths-Moth, fprung d out of it. I faw a black Fly e with two horns, four wings, and fix legs, produccd from another fimilar Nymph, which however thewed before the form of a Fly, according to the firft fpecies of the third order. But the moft fingular event of all was, fix or feven very fmall f Flies, which, from more tender Worms, had been firft tranfformed into Nymphs, iffued out of another Chryfalis of fuch a Vermicle as belonged to
the fecond mode of the third order. Whether this be common, and conftantly happens annually, as is the cafe in other Caterpillars; or whether it bc peculiar only to thofe that inhabit the bright brown cells, in which only I obferved it, I have not indeed yet learned from experience. And, indeed, what man can perfectly inveftigate all the changes of parts which happen, even in one creature. I am, indeed, every moment taught by experience, that nature is, in regard to thofe real caufes, by which animals and their parts increare, in many particulars, perfectly impenetrable to man. However, a firm and conftant diligence hath, by degrees, difcovered to me more than one could eafily believe; though what we are ignorant of is, and will remain, much greater than all we know. Hence, indeed, we have knowledge of many things; but our ignorance ftill prevails and predominates.

Of certain Vermicles or Worms, whofe eggs are lodged in the bags wherein muk is brought to us.

IShould never make an end, if I attempted even to enumerate all the hidden changes of the Caterpillar and Worm kinds into winged infects; fo fruitful and manifold is Nature in her genera and fpecies! For this reafon I fhall only add the following obfervation, and afterwards finifh this hiftory of the fourth order with accounts of two Worms which live in tubes, one in the earth, and the other in the water; for the water abounds as much with there infects as the land.

On the roth of July I found a great many finall white Worms, Tab. XLV. Fig. xxxir. in a bag, wherein mufk comes to us. All thefe had a reddifh brown head, and black teeth. Six legs adhered to the breaft. The body was covered with fine hairs, ftanding erect. This mulk-bay was in a little box, not very clofely fhut, the botion of which was covered with white paper, through which thefe Worms penetrated into the wood of the box, by various holes which they gnawed through it. And indeed thofe holes, which are as confpicuous in the paper as in the wood, moved the admiration of the perfons who viewed b them. As they were bit regularly into a round, oblong, or oval circumference. I further obferved, that many of thefe Worms made themfelves in their caverns a pretty thick, oval, lemon-coloured web, whereon they had weaved many cotton-threads, after the bag of mulk had been placed in the cotton.

When I opened there webs, I found real Nymphs in them, Tab. XLV. Fig. xxxir. d, which belonged to the firft mode of the third order; for each very diftinctly reprefented the limbs of a future Beetle. Some of thefe Nymphs were very white; but in others, which were older, the eyes were turned black, and the whole Nymph, from white, infenfibly becane tinctured with various colours; and
was, at length, changed e into a very beautiful little Bcetle, after cafting its fkin. When there Beetles have newly caft their 1kin, in which they appear like Nymphs, they are of a fnowy white colour: they afterwards grow ycllow by degrces, till at laft they become of a dufiky purplifh hue, and afterwards always continue to: fome of them, howiver, conftantly preferved a colour between yellow and red.

They are diftinctly divided into the head, thorax, and belly. They have two black eyes in the head, juft over which project two redifh horns, thick fet with fine hairs of the fame colour. The thorax is likewife adorned with yellowifh hairs, that glitter almon like gold, and exhibit fix hairy legs of the fame colour with the horns, affixed to its lower region. The cafes or covers of the wings are divided with ribs; and the latter, together with feveral little depreffions, are every where fet, as it were, with fine hairs. This obtains chiefly about the fhoulder-blades, and on the hinder part, where thefe cafes or covers are bent, near the extremity of the abdomen; for they have a tuft of whitifh hairs in the forc and hindermoft parts. The under wings are membranaceous, and they very expeditioully fold themfclves under the fheaths or cafes with which they are covered, notwithiftanding their being twice the length of the abdomen.

This fpecies of Beetles may, on account of the conftruction of the horns, be referred to the flying Capricorn kind. I have feen Beetles produced from fome other fpecies of Worms, that livc on rotten and hollow wood; the horns of which were formed in the fame manner as the Silkworm Butterfies. The only difference was, that all their divifions or plates were feverally jointed together. This ftructure formed a very beautiful fight, and clearly demon?trated the wifdom and art of the Creator. This is fill

C c
more
more evidently conficicuous in the Fullo-Beetle, whofe female is delineated in Mouffer ; but it wants thofe ormaments, which are found in many fecies of infects, peculiar to the males, wherein they are more beautiful than the females.
The Worms here defcribed feed on birds
feathers, and therefore do a great deal of mifchief. They are found in feveral places in Holland, and may be reckoned among the fecond fpecies of Worms that gnaw flefh clean from bones; and therefore are very proper to prepare fine fkeletons.

Of certain Worms which lie in little tubes or cells.

OBSERVATIONI.

1Preferve feveral fpecies of tubes in which Worms live *; bur I fhall not, in this place, defrribe them all. The firft which I here exhibit is formed by a Worm, refembling a Caterpillar; which makes, Tab. XLV.Fig.xxxv. a pyramidal tube or pipe for itfelf, to which it afterwards faftens, for greater firmnefs, various little parts, bitten off from plants and leaves
of trees; fo that the furface of the tube refembles thofe chequered works, with which the doors of armories and caftles were formerly adorned : and with this beautiful cell the Worm walks and goes about, till it is changed into a winged creature, being difengaged then from the burthen of its houfe and bed, which it was hitherto obliged to carry.

OBSERVATION II.

THE tube, whofe figure I here add, Fig. xxxvi. to the former, is not lefs beaufiful or artificial in its ftructure. I found it in the falt water, on the coaft of the German fea. It is inhabited by a tender Worm without feet, having many gold-coloured brifly hairs in the fore part of its head; by the help of which it can gnaw innumerable grains of fand, and join them fo accurately together, that even the moft nice artifts muft be aftonifhed at it. The inner furface of this tubulated and pyramidal cylinder is fmooth and equal; but the external part is, on the contrary, uneven. This difference proceeds from hence, that the creature can turn all the plain and polifhed furfaces of the fand inward, and leave the angulated and rough furfaces on the outfide. The figure, by which I reprefent this tube, exhibits only the third part of its natural fize: it could not be all delineated otherwife, for want of room in the plate. I have not yet obferved what kind of metamorphofis this infect undergoes.
It merits great confideration, what kind of faliva or glutinous moifture that is, by which this Worm can faften the grains of fand together in fuch a manner, that the whole contexture dries and hardens in the falt water. I
muft ingenuoully confefs, I am doubtful in this as well as many other matters; fince I can by no means conceive how this piece of art is executed. I have obferved, that many other aquatic infects alfo frame a web or covering, under the water; the thread whereof hardens in the midft of the fluid, in the fame manner as the Silkworm-webs in the air.

In regard to the other aquatic infects, I have obferved, that fome of them form their cells of fmall fragments of ftones; others of larger pieces joined together; fome of fnail-fhells, which they have gathered up and faftened together; others again are made of pieces of rufhes, various parts of plants', wood, and other materials : nay, I have feen fome, which, when they were preparing for their change into tne winged ftate, could weave very heavy ftones into their cells, and fortify them, as it were, with a lattice-work of mafonry. They dived to the bottom of the water by this means, and, being there free from all danger, they changed and renewed their bodies. God is therefore admirable, wherever he is manifefted: he hath reprefented his omnipotence and wifdom in all his creatures; therefore, let him only be honoured and glorified to all eternity.

> The End of the Ifijory of Infects that inbabit fruits, tubercles, leaves, and the like.

[^86]A particular treatije on the Frog and its young, exbibiting its biflory, and coms paring it with injects.

Tab. XLVI.

AComparifon of the metamorphofis, and, if I may be allowed the exprefiion, a tranferetion of the parts, happening in young Frogs, with that obferved in the Nymphs of infects.

As, in the preceding fheets, I have occafionally, though flightly, touched on the likenefs of the change of limbs in the larger or fanguiferous animals, to that which infects undergo; I hall here delineate and explain this fubject more at large, in order to make the knowledge of it diftinct and clear. For this purpofe *,

Tab. XLVI. No. I. exhibits the Frog's real egg, or the Worm of the young Frog, enclofed in its firft coat. It reprefents a fimall a black globule, furrounded $b 6$ by another globe, confifting of a clear, clammy, and glutinous matter. This matter is the real food of the Worm of the Frog, which now lies within, covered as yet with its proper integuments: therefore the Frog's Vermicle or Worm may be confidered as the yolk, and the food the white of this egg.
N^{o}. II. I lightly exprefs the invefting coat or integument before mentioned. It is here caft off c, and rolled back d to the hinder part of the Frog. It likewife appears, in this figure, how much the furrounding aliment is now dilated, ece. Hence the young Frog is circumftanced exactly in the fame manner as all Worms and Caterpillars of each of the four orders are, when they have caft their firtt coat, or their egg-fhell; in which I call them Ovi-form-Nymph-Animals, or Oviform-NymphVermicles, as may be feen particularly in the fourth order, where the egg is confidered.
N^{e}. III. It is delineated to the life how the young Frog, called a Tadpole by authors, fwims in the middle of its food, and alfo in what manner that food appears in the water like a difperfed cloud, $f f f$:. The Vermicle or Worm itfelf is here delineated much larger than it was, when it firft began to fwim into its food, immediately after quitting its fhell, or firf membranaceous integument. Therefore one may now very diftinctly fee its head, breaft, and body. But becaufe the perfon, who I fhall defire to diftinguifh thefe parts, ought to have a thorough knowledge of them, thofe who inveftigate nature but fuperficially, look into that globe only for the young Frog's head, though it really comprehends the whole body; as the incomparable Harvey has before juft obferved. At the extremity of this young Frog's body is feen a long continued tail, Tab. XLVI. N^{10}. ini. b, by the help of which it fwims;
fince the Frog is, whilft it wears that form, a real footlefs Worm, and, in this refpect, refembles the feetiefs or apode Vermicles or Worms of the firt mode in our third order.

Here it muft be well obferved, that the young Frogs never confume their food entirely; which, for that reafon, is diluted by the imbibed fluid, and gradually attenuated; fo that, at laft, it refembles a little cloud floating in the water. Indeed, that gluy cloud is infenfibly dilated to fuch a degree, that it feems defigned for the young Frog as a place to reft in, when it fhall think proper: for which reafon it is likewife obferved, that, when tired with frwimming, it quickly penetrates into this cloud, and there remains without motion.

And here I fhall beg leave to obferve further, that as the infects which are found in cheefe, putrified flefh, and many fruits, and in tubercles, lie furrounded with their nourihment; fo, in like manner, the young Frog fwallows its food, at this time, through its mouth, as they do. There is however this difference, that the young Frog is nourinhed while it yet lies in the integument or coat of its eggs; and this I could never obferve with refpect to any other infects. The infects, in general, lie in the coats of their eggs, in the faine manner as Butterflies do in their Caterpillars, and only increafe in ftrength. Therefore, I do not doubt but the young Frog is provided with umbilical vefiels, of which matter I hall afterwards treat in its place.
N^{0}. Iv. I reprefent how the hinder legs i i are obferved to increafe in the Tadpole, or young Frog; that is, whilft they infenfibly fpring out of the body, as the cups of flowers from out of their foottalks, or as the cafes wherein the wings of infects are at firf repofited: fo that the young Frog is, in this refpect, very like thofe little creatures defrribed under the fecond order; though it again differs from them, in that it is produced from the egg in form of a footlefs Worm.

1 likewife obferve, that about this time the young Frog's fore legs are infenfibly increafed and augmented, under the fkin, in fuch manner as I have before explained, in regard to the Worms and Caterpillars of the third order. For this reafon one may likewife plainly diftinguifh, with the naked eye, the rudiments of the legs, if the fkin be then opened in that part. And this is likewife the cafe in all the Worms and Caterpillars juft mentioned, as I have occafionally exhibited in the former tables.

Tab. XLVI. Ne. v. I here reprefent, to the life, how all the limbs of the young Fro have

[^87]at length arrived to perfection, by a flow increafe. The two fore feet are feen $k k$ ftill lying under the fkin; but the two hinder legs project beyond the fkin, $l l$, though they are, in reality, ftill invefted with the fkin of the Tadpole, which they afterwards are to caft off. This fkin is dilated and ftretched out with the growing feet, as is likewife the cafe in injects of the fecond and third order. Hence it is, that I really very properly give the young Frog, in this form, the appellation of the Frog's Nymph, which it feems may be likewife referred to the fecond or third order. But as the young Frog, while it is under this form of a Nymph, ftill feeks its food, and moves about, it therefore approaches much nearer to the infects of the fecond order, than to thofe of the third; for this reafon, it likewife cafts its flkin in moving and fwimming, and brings to view its fore legs, then refembling thofe of a perfect Frog ; though it fill, for a long time, keeps its tail, which afterwards fhrivels up by degrees, and, finally, dries away.
N^{Q}. VI. I fhow how the Frog, having gradually gone through the forms of an Egg, Worm, and Nymph, at length has attained its

Man bimelf compared with infects, and with the Frog.

1T is evident from comparing the Frogs, as we have juft now done, with the infect tribe, how the fanguiferous animals, or fuch as have red blood in their veffels, are, in repect to their changes, like thefe fmaller creatures. Indeed this likenefs proceeds fo far, that it extends under many names, even to man himfelf: for all the works of God feem to proclaim, only one foundation of propagation and increafe.

I firft obferve, that it is clearer than the light at noon, that man is, like infects, produced from a vifible egg, which, after being impregnated, is brought forth: that is, it is by a local motion conveyed out of the ovary through a tube into the uterus, which is the place wherein man, that rational animal, finds his firf nourifhment, and reprefents, as it were, a Vermicle or Worm, or, to ufe Harvey's words, a Maggot lying in the egg.

Secondly, The membranes which then inveft the Infant-Man, are there likewife dilated, in order to receive an aqueous humour conveyed from without to the Man-Vermicle. Therefore, the human egg likewife refembles the eggs of infects, in that the latter dilate, nay, break open their coats, in order to get elfewhere the nourihment which they do not find in their egg.

Thirdly, We obferve, that the Vermicle or Maggot of Man, as well as the Vermicles or Worms of other infeats, have not completely perfect limbs; therefore it is increafed in fize, even from the beginning, till its limbs project at length out of the 1 kin , and its umbilical cord is divided into two arteries and one vein, which take root in the internal furface of the uterus, and conftitute the placenta, or after-birth.
perfect maturity, and appeais fit for propan gating its fpecies, in the fame manner as infects and vegetables, and thus is able to continue its generation. It muft be obferved here, that the Frog is not abfolutely perfect, or fit for generation, immediately after its metamorphofis. By no means; for, unlefs I am greatly mintaken, this creature does not acquire that degree of perfection until two or three ycars. The Frog, therefore, difiers in this double refpect from the fanguiferous animals, and from infects; moft of which are perfect in one or two hours after their birth, or after their metamorphofis from Nymphs, and then likewife immediately obtain their full fize and maturity, and at the fame time become fit for the office of generation. The Frog which I here exprefs, of full age, is the male; as one may very certainly know from thofe two veficles, Tab. XLVI. N^{O}. vi. $m m$, which are fituated behind its eyes, and are never to be found in the female. There is moreover another certain fign, whereby the male may be diftinguifhed from the female ; but that I fhall detcribe and delineate in a particular hiftory, which I mall fubjoin to this general account.

Fourthly, It is very clearly obferved, that thefe parts of the Man-Vermicle grow by degrees into a head, thorax, belly, and limbs. In the head, the coloured eyes are very diftinctly feen through the fkin; but they are more confpicuous in the beginning than afterwards, when thefkin becomes thicker; for then they can be no longer feen. But it is indeed very admirable to obferve, how the limbs fprout about the fhoulder. blades, and at the lower parts of the body: for, in the beginning, they refemble the fmall cups of flowers jut budding, or the bags and cafes of the parts of infects; the former enclofing the flowers, and the latter the wings; and then, by degrees, juft as the legs of Frogs, they grow out of the body, and are divided in:o joints.
Fifthly, We obferve further, that all the limbs of the Man-Vermicle, in time, acquire their due perfection, and are ftrengthened to fuch a degree, as to be able to break out of the uterms, and to difengage themfelves from all their integuments. And hence this firft ftate of man likewife refembles an infect, in that it hath, under the form of a Chryfalis or Nymph, acquired all the ftrength requifite to change its skin, and appear like a perfect creature. Man therefore, as on the point of his birth he does, like infects, throw off and lofe feveral very confiderable parts, may indeed be defervedly called, at that time, a Nymph ; fince he then is to caft off his umbelical veffels and placenta, together with the skin and the amnion.
Sixthly, This tender and new-born creature leaves the uterus, in the fame manner as the Ephemerus and Libella, that have caft their skin, and leads a new life, and has a different noumin-
ment. The infant-inan, who lived before in the water of the amnion, now breathes the vital air, which rufhes into his lungs, and dilates and extends them. But this miferable creature is very far from meeting with fuch good fortune, as the Ephemerus and Libella, which are in an inftant brought forth abfolutely perfect. On the other hand, his appendage of misfortunes and
trouble, like the tail of the Frog, yet adheres for a long time to him, for he is full of mifery, and is born in tears; and it is very long before he comes to maturity of underffaniding, and full growth of body. It is novi time to come to the fingular hiftory of the Frog; which is highly worthy of confideration.

A particular treatife on the generation of Frogs.

H^{A}AVING hitherto premifed only general obfervations, and fuch as tended to explain the figures in Tab. XLVI. I fhall here treat particularly of the generation of Frogs, and defribie the genital parts of the maie and female, and fhall add fome other obfervations, I hope, of forme ufe. I would, on firft fetting out, inform the reader, that there is a much greater number of miracles, and natural fecrets in the Frog, than any one hath ever before thought of or difcovered; as I fhall evidently demonftrate, when I fhall have opportunities to defrribe particularly the whole hiftory of that animal ; and I am now here to explain a great part of it.

The genital organs of the male are the tefticles, the vafa deferentia and feminal veficles. The tefticles, Tab. XLVII. Fig. I. a a are placed in the loins, and being there fituated over the kidneys themfelves, $b b b b$, are furnihhed with arteries, veins, and fpermatic veffels. Their figure is not conftantly the fame, but is fometimes obferved to be more oblong, fometimes more round, and: fometimes lunated. Some yellow appendages always adhere c to the upper part of the tefticles; and thefe appendages are fometimes fingle, d, fometimes double, e, and at other times triple or quadruple. There litle parts likewife have their blood veffels, and confift of feveral bags joined rogether, and containing an oily or fatty matter; and enclofed in fo many oblong common membranes, produced like appendages. I have likewife fometimes obferved, that this oily matter was joined to the coat invefting the tefticles, and diffured through half their furface. A l kind of fimilar, but white fatty matter, is obferved in Rats, and feveral other animals.

Thefe appendages may be examined with great eafe in Frogs, that are not bigger than the firft joint of one's thumb; for, by the help of a microfcope, we then diftinctly perceive, that they confift of a congeries of minute fpherical and membranaceous particles, full of a yellow, oily, or fatty fubftance; but thefe particles are too fmall to come under the cognizance of the naked eye, to which they only appear as a bright heap of tranfparent gold duft.

The tefticles are generally yellow, with many blood veffels elegantly variegated with black, beautifully running through the coats that inveft them, Tab. XLVII. Fig. r. f. On ftripping this coat from off the tefticles, they appear to confift
entirely, as it were, of fmali globules, $\bar{y} \delta$, but by making this feparation flowly, and by careful degrees; we may clearly perceive, that thefe apparent globules are no other than the heads of fo many leminal ducts; fome of them double, b, or divided into branches, that rife all to the cen ter of the tefticle. In Frogs; therefore; the tefticles is compofed of feminal veffels; and I have difcovered the fame to be the cafe in many other animals, as the cuts I have occafionally given demonftrate.

Some pretty confiderable ferminal veffels, $i i$, rife from the internal fide of the tefticles; part of them lingle, and part divided into branches, which convey the fperm, as it were, by fo many different freams from the tefticles: this may be eafily feen, on compreffing or fqueezing thefe laft parts ever fo little; for then the feminal veffels, firft mentioned, fill with a pale white fperm. Thefe feminal veffels, or natural divifions of the paraftata, run by degrees towards the kidneys; upon which the tefticles lie, and, after paffing through the coats of the kidneys themfelves, and forming a variety of divifions, $k k$, they at length difcharge themfelves into the vafa deferentia; which are feated near the internal edge of the kidneys, $l l l l$, and are there united with the feminal veffels already taken notice of.

We muft here duly obferve, that the kidneys difcharge their urine by the vafa deferentia, thro' which the tefticles, in copulation, eject their fperm : as in man, the fperm and urine are difcharged through the fame urethra. In man, indeed, there is but a fingle vas deferens, diftinct from the ureters; nor has this urine any fuch paffage ; whereas; in Frogs, the great Architect has thought proper to make the fame veffel ferve both thefe purpofes; and this, perhaps, he ordained, becaufe it was proper to contratt or abridge the number of parts that were to be placed in fo fmall a body, and likewife becaufe the Frog was to evacuate its fperm only once a year*:

In the midft, between the two kidneys, are to be feen the arteries, and emulgent or kidney veins, Tab. XLYII. Fig. I. $m m$; thefe I have but rudely defigned. They are diftributed all over the furface, and through the fubftance of the kidneys, by to many ramifications, that great circumpection is neceffary, not to confound the feminal veffels, juft defribed, with thefe blood

[^88]veffels. Beneath the tefticles, and under the skin of the kidneys, there lie two other fingular, and ftrange bodies, $n n$, but I neglected duly examining them.
The vas deferens grows fmaller by degrees, fo as to form but one trunk, 00 , but foon again it dilates confiderably, and in this part we may diftinctly fee the feminal veficles lying againft it, $p p$. Thefe veficles do not differ in conftruction from the correfpondent veffels in man, and other animals, except in regard to their being of a more membranaceous fubftance. They open into the vafa deferentia, and convey to them from a great many little cells, an aqueous feminal fluid, which is perhaps the vehicle of the true fperm. In fine, both thefe veficles, and the vafa deferentia are inferted into the furface of the rectum, $q q$, directly under the bottom of the urinary bladder, where I have reprefented both their mouths, by two openings r that appear through the ftraight gut. Upon this laft inteftine lies a double urinary bladder, $s s$, into which the urine is conveyed by thofe ureters, which at the fame time perform the office of the vafa deferentia. When firft I difcovered thefe vafa deferentia, I immediately fearched for the ureters, with a great deal of attention, as I could hardly think, that a veffel of fuch importance could ferve two fuch different purpofes. But I afterwards found, that the ureters of the female Frog, were conftructed in the fame manner as theie veficles in the male ; and by this difcovery, I became thoroughly acquainted with all thefe parts. I have accordingly exhibit them, as they appeared in the fmaller Frogs, as may be feen by infpecting the fecond figure.

It is now time to fay fomething of the genital parts of the female : thefe are an ovary, uterine tubes, or horns of the uterus, and the uterus itfelf. The ovary lies upon the uterus, with which it is always united; and near the fame place are the fatty appendages, which I defrribed in the male Frog, when I treated of the genital parts. The ovary, which is always double, equally occupies the right and left region, and is conftantly found fubdivided into lobules. I have feen them, to the number of five, on a fide in fome Frogs. Nature, however, does not always obferve the fame order in this particular, except that the ovary never appears, but divided into more or lefs of thefe parts. The blood veffels are principally diftributed through thefe divifions of the ovary, Tab. XLVII. Fig. int. a, and afterwards they diffure themfelves all over it. . Each lobule is hollow, and wrapped up in its own particular coat; fo that, by fixing in a little tube, f, it may be eafily diftended with air, and feparated from the neighbouring lobules, b. This muft be done very cautioully, becaufe this coat is fo tender, that any thing of a rough blaft would burft it. We may then plainly perceive, that all thefe lobules are confined, each to its own limits, and have not the leaft communication one with another.

As the coats invefting the lobules of the ovary are fo very delicate, the eggs may be feen thro' them diffinctly, $c c$: a perfon that was not very cautious, by directing his eyes and hands to this
part, might eafily fancy to himfelf, that the eggs lay on the outfide of the ovary. Thefe eggs are black, and perfectly round, and generally they have a white or yellow fpot in the centre. They lie clofe to the internal furface of the coats or membranes that conftitute the lobules of the ovary, and are fixed there by the blood veffels, as it were, by fo many fhort little ftalks. This circumftance is very vifible, in cutting off one or two of the lobules of the ovary, d, for then the enclofed eggs fhew themfelves moft diftinctly.

But this experiment cannot be conveniently made, unlefs about the beginning of March, or a little afterwards, as it is chiefly at that feafon, that the ovaries abound with perfect eggs : this is moreover the propereft time for examining the genital organs. On examining carefully the ovary at this period, we may likewife find in it a fpecies of eggs different from thofe I have now defcribed. Thefe are fmaller, white at firft, and when pretty well grown, yellowifh. Thefe lant eggs, however, are only the rudiments, not yet perfected; and therefore, they remain in the ovary, after it has difburthened itfelf of all the perfect eggs. But before I treat of this operation, I think proper to defrribe the uterine tubes or horns.
In Frogs, thefe tubes arife very high in the breaft, from whence they ftretch in the middle, from one end of the abdomen to the other, and terminate in the uterus, with which they lie concealed in the lower part of the belly, but fo as to be able to move higher, according as the uterus dilates or contracts itrelf. Every Frog has two fuch tubes, which are placed, one at one fide of its body, and the other at the other fide.

Properly fpeaking, the fuperior part of the tube lies near the heart, and is connected on each fide by the ligament, by which the liver alfo is fufpended. In the fame place, where part of the peritoneum paffing freely over the heart and pericardium, forms with the liver a diftinct cavity, in which the heart, wrapped up in its pericardium, lies under the breaft bone, as in the hollow of the mediaftinum or diaphragm. To fee all thefe particulars diftinctly, it is neceflary to lay open the Frog's belly a little higher than the extremity of the breaft-bone, where this bone degenerates into a cartilage; then cut off the membranaceous parts; and laftly, turn over the breaft-bone upon the head, and fecure it in that pofture with a pin, Tab.XLVII. Fig.iv. a. Thus we difcover a confiderable cavity above and about the point of the heart, b, in which the heart lies hid with its pericardium, under the breaft-bone, as within the diaphragm. At the fame time, we may fee on each fide of the heart, the extreme ends or natural openings of the tubes, $c c$, which moft firmly and immoveably grow there to the peritoneum, and to the ligament, by which the liver is fufpended, fo that they cannot reach to the ovary, which lies at too great a diftance from them. Befides, thefe tubes are yery flender and delicate. They bend a little, efpecially where they lie upon the lungs; for they ftretch over the lungs and the liver, where they arife from very flender membranaceous beginnings. For this reafon, they
always
always are ready to collapre, and are only difcernible by thofe who have accuftomed their eyes to fuch inquiries by frequent diffections. Such perfons can readily demonftrate, or produce them, even without blowing them up.

The remainders of the tubes are mof elegantly curled, and folded up, as it were, in a great many wonderful plaits, $d d$. And indeed, the fhortnefs of the animal's body could not admit of any other conftruction, thefe tubes being fo very long, that, on meafuring a fingle one, feated on one fide of the body, I found it to be upwards of two feet. All thefe beautiful foldings and windings of thefe tubes, are connected by means of a flight membrane, through which there run a great number of blood veffels; c, in a very orderly manner.

The extremities of thefe tubes open by wide mouths, $f f$, into the two fides of the uterus. There mouths appear circular when diffected, after they they have been inflated and dried; but they are oval when the parts are any ways moift, as they then collapfe. The uterus itfelf is double, $g g$: it is of a membranaccous fubtance, and is elegantly overfpread with blood veffels. When full of eggs, it wants very little of being fpherical in flape; but when inflated, it is rather oblong, and fhaped like a pear: the introduced air gives it a fomewhat different figure. Finally, the uterus terminates at each fide of the body, in the rectum, about half an inch from the place where the tubes are inferted into the uterus. In all Frogs, the ftraight gut b is placed between the right and left portions of the uterus, and fhews on its forepart the bladder, which is likewife double in this place, i. I have here mentioned nothing, that 1 have not diftinguiked with my own fenfés in a Frog, which had difcharged its eggs, about half an hour before I diffected it.

The fame figure likewife reprefents the contracted ovary belonging to the left fide, k, feated at a great diftance from the mouth of the tube, with one imperfect egg, which had not as yet difengaged itfelf, but remained entangled with the ovary. One of the kidneys likewife may be here in part feen, l, together with the pinguiferous appendages of the ovary, m. I alfo exhibit two eggs which I found loofe in the abdomen, n, on account of their ftraying from the mouth of the tube, in the act of copulation. The tube itfelf alfo ftill contained another egg, o, fallen into it, after all the others had been conveyed into the uterus. This was very plain from this egg's not as yet having any white. The ftomach, p, and alfo the frall guts appear in their natural fituation; and a portion of the liver, q, and forme of the fineft blood veffels, are diftributed over the furface of the ftomach. On the fide of the liver, I reprefent the gall bladder, r, and the lungs with their veffels,' ss. I made an incifion into one of the parts, to let the air in it efcape, that I might the more clearly exhibit the courfe and opening of the tube; the other, on the contrary, being the right, I exhibit as it appeared diftencied with air. The auricle of the heart is reprefented, t, divided by a membrane
not unlike a valve; it is tranfparent. I bext fhew, in the fame place, the feparated parts if the abdomen and breaft, $u u u$, interfperfed with fome mufcles, having endeavouted as much as polfible to fhew all thefe parts in one and the fame figure, and of their natural bignefs.

Here I cannot omit the opportunity of illuftrating the account of Oligerus Jacoberus, who owns he could not difcover the opening of the tube, and of fhewing him at the fame time how much he was miftaken in thinking, that the tube was inferted into the ftraight gut, which he has reprefented in an imperfect drawing. I fhall tranfcribe his words, efpecially as he has thought proper to charge me with the error which himfelf committed, a proceeding to which he was perhaps prompted, by the flatteries beftowed on him by the younger Battholin, who extols, in the mof difgufful manner, this author, and his treatife on Frogs. But his panegerick ferves only to prove, that he underftands nothing of the moft curious branches of anatomy; otherwife he would be more cautious, not to cenfure in fo fupercilious and dictatorial a manner, performances which he has not fufficient abilities to underftand. For this reafon alfo, he appears a great deal more folicitous about the external appearance, than about the real nature of the fubjects he takes in hand. This may evidently ap: pear by his treatife on the diaphragm, in which he has been at more pains to exprefs neatly, his own face and hair, than to make the figures of the things he treats of plain and intelligible, as if the learned were in love with his countenance.
The words of the illuftrious Jacobæus, in his obfervations upon Frogs, are as follow: "This tube, in the upper part, hides itfelf in the region of the heart, liver, and lungs; but where it afterwards ftretches its courfe, I cannot tell, as I could not get the air I ejected for that purpofe; to afcend any higher than this part. Below; where it runs under the ovary, it dilates into a pretty wide oval mouth, and branches into fibres that unite with the kidneys and ovary, whilf the reft of it is inferted into the ftraight gut; about a thumb's breadth from the oval mouth juft now mentioned." He afterwards adds, "Swammerdam, though very clear fighted upon every other occafion, does not feem to have taken notice of this oval mouth, when in his treatife on the confruction of the womb in women, he fays, that in Frogs, the motion of the egg from the ovary, to the tubes and arteries, is more obfcure, as he tells us, the orifice of the horns of the uterus, or of the tubes, ate about two fingers breadth diftant from the crary, and that not only their orifice is very natrow, but the part alfo is unmoveable; and further, he denies that it lies clofe to the ovary, as in the females of the human and feathered fpecies."

We may reafonably imagine, this learned author did not fo much as think of any part of the uterus; for he does not, in his whole treatife, make the leaft mention of that part, and affirms, that the tube is inferted into the fraight gut; whereas, on the contrary; it is the uterus itfelf that is inferted into that inteftine, and by no
means the tube. Befides, the ovary of Frogs is never found to have naturally that figure, which Jacobæus very raflly gives it, though it is to be obferved, that the uterus, when loaded with eggs, is found on diffection to have, in fome degree, fuch an appearance. Therefore, the oval oftium, or mouth, which this author mentions, is, in my account, really the opening of the tube into the uterus, which, properly fpeaking, thews itfelf where the tube ends, and the uterus commences. See Tab. XLVII. Fig. Iv. letters $f f$, where I have at large defcribed all thefe parts.

Such being exactly the cafe, and it being at the fame time certain, that the inferior extremity of the tube has no communication with the ovary; and that no eggs can enter there from the lobules of the ovary, which are perfectly clofed; and as likewife M. Jacobæus could not difcover the upper orifices of the tubes, I would be glad to know in what manner this author can explain the paflage of the eggs from the ovary, into and through the tube. I really cannot conceive how he can acquit himfelf of this tafk; fo that he has in good earneft made the motion of the egg, from the ovary more obfcure, than he is pleafed to fancy I had done. But I, by no means intend to enter the lifts with this gentleman, or imprudently treat him with rough language; for it is not in fearch of glory to ourfelves, but the great Creator, that we ought to furvey and examine his works. For this reafon, I rather look upon myfelf as under an obligation to this illuftrious naturalift, for having condefcended to criticife, and bring to the teft my experiments concerning Frogs; and, in the fame fpirit, I muft tell him, that he can never mifs finding the opening of the tubes near the heart, provided he looks for it a little after the Frogs have depofited their eggs. At this time, even the whole uterus may be diftended with air through the tube; and, on the other hand, from below, upwards, the tube thro' the uterus. What is fill more, thefe openings of the tubes may be then difcovered without any diffections, by only blowing flightly through a pipe in the adjoining part of the heart. But none of thefe experiments will fucceed, whilft the eggs are only in their paffage through the tube, at which time, perhaps Jacobæus furveyed there parts. Thus the natural opening of the tube becomes very difcernible to thore who take a right method to difcover it. But is it not furprifing, that the defcription given by me, and which Jacobæus muft have feen, as he quotes it, did not open his eyes; for, though mort, it is very plain and intelligible. Mankind is liable to error; but, to perfift in it, after friendly admonition, hhews a perverfe arrogance, that will not fubmit to acknowledge its miftakes.

It is now time to fpeak of the egg's paffage through the tube, from the ovary into the uterus, which is indeed not on!y difficult to exprefs in words, but even to conceive, fo that in the whole fcience of anatomy, equally abftrufe and myfterious, I muft own, that this is very ob-
fcure in many other animals, but in Frogs, it is altogether incomprehenfible; for the ovary, as I remarked above, and am ready to demonftrate in the Frog itfelf, does not in any way communicate either with the tube or with the uterus. The opening of the tube cannot by any means move itfelf towards the ovary. Befides, there are no other mouths at which the eggs can be received, than the narrow membranaceous orifices of the tubes, which above grow to the membranes of the heart ; fo that there does not appear in this place the leaft trace of any oval mouth, by which it is faid, that the tube opens itfelf about the inferior region of the ovary; for it-is very eafy to feparate the tube and ovary from one another: and the ovary afterwards extracted from the body, may by itfelf be diftended with air, and dried, not having the leaft aperture to let the air efcape, or the leaft mark of ever having had one.

I have fometimes diftinctly obferved in breeding Frogs, that whereas the ovary of one thar I diffected, about the beginning of April, ftill contained all its eggs; that of another, opened a few days afterwards, had loft the greateft part of them, Tab. XLVII. Fig. v.a. I could likewife, at the fame time, eafily difcover a great many of the eggs that had efcaped out of the uterus, and were broken, lying here and there in the abdomen $b b b$, between the lungs, and under the finufes of the ftomach and inteftines, among the membranaceous parts of the vifcera, and elfewhere. Some alfo appeared near the opening of the tubes c. Others were ftill adhering to its infide $d d d$, part in its higher, and part in its lower region. I even difcovered an egg lying at the very mouth of the tube e, and in what manner the eggs were leifurely forced thro' the extremity of the tube into the uterus $f f$. I obferved alfo, that the greatert part of the eggs Atill adhered to the uterus; which I here reprefent two ways Firft, I exhibit the uterus as it naturally appears g, with the contained eggs vifible thro' it, but very faintly; and on the other fide I reprefent it as it looks, after having been macerated in water, or on its beginning to dry, after being expofed to the open air for fome time; in both which cafes it very diftinctly fhews the eggs fhut up in its eavity b. I reprefent befides, lower down, the extremity of the double uterus i, which is inferted into the ftraightgut, about half an inch from the opening of the tubes into the uterus. Near the heart appears the beginning of the great artery, with two fmaller arteries fpringing from it k. On each fide, near the heart, are openings of the tubes $l l$; and I have reprefented the lungs as bearing upon thefe openings $m m$, in order to render their, fituation next above the lungs more diftinctly perceivable. It is very remarkable, that living Worms are almoft always found in the lungs of Frogs; I have often met with fix in one Frog.*

[^89]Thefe Worms are, on their fore part, pretty like Lumbrici terreftres, or common Earthworms, but on their hinder part they are fomewhat thicker, and they generally lie in plaits and folds within the lungs. In fize they differ but little from the Worm that gnaws or corrodes the fhell of the common Wilk. Their colour is a yellowifh white, except that they are black towards the tail, which variety in colour proceeds from that of the food they have taken into their bodies. They have their mouths conftantly fixed to the internal membranes of the lungs, from which they fuck the blood. On feparating them cautioully from thefe membranes, we maydifover in the membranes a little opening made by thefe infécts, and even a frall quantity of blood difcharged from that aperture : the mouth alfo of the piratical Worm appears bloody, if immediately infpected. Thefe Worms appear to have another aperture in their breaft, which however I did not fufficiently examine. I omitted alfo taking a furvey of their infide, except that I obferved fome great and fimail guts, and fome diftinct particles; but the infect's fkin being tranfparent, there particulars could be feen without diffection.
Other kinds of Worms are often found alfo in the lungs of Frogs. Thefe are like briftles, with fharp heads and tails, and they coil themfelves up. In colour they differ little from the firft kind, only that on the infide of their bodies they fhew thro' their tranfparent fkins, fome of their inteftines in the form of a little thread or line of a durky brown. On opening both thefe fpecies of Worms, immediately taken from the Frog, I found in them a great number of fmall particles wrapped up in an oblong membrane. On obferving that thefe particles :were not only all of the fame fize, but were likewife regularly placed as in an oviduct, my curiofity led me to examine them with a microfcope, by which I at length convinced myfelf that this prodigious number of particles was no other than fo many roundifh, or oblong eggs, in which alfo there was a very difcernible motion. This induced me to open fome of them. But how great was my furprife on finding, that every egg contained a minute but perfect Worm lying folded up in it, like a young ferpent in its egg! Even thefe little Worms, when extracted from their eggs, moved themfelves exactly in the fame manner with the parent-infect. This was an undeniable proof, that this Worm was both oviparous and viviparous; thus propagating its fpecies in the moft furprifing manner. But I return to my proper tafk; for this little animal, tho' no longer than a young Frog ten days old, contained too many miracles to be publifhed in a few pages.

To return therefore to the Frog itfelf, what I have faid fufficiently flews, how the eggs are difperfed, when they break the ovary, and from thence roll into the cavity of the abdomen. But I would fain know, by what art, regular motion, or contrivance an egg lying
thus loofely in the body, can be conveyed into a narrow tube, whofe opening is placed very high up near the heart ? Certainly, the beft thing we can do on this occafion, is to own fuch a conveyance utterly inconceivable by human underfanding, and humbly to acknowledge the narrow limits of our faculties. It cannot be denied, that at this time, the ovary is diftended very much towards the upper parts of the belly, by the great fize and number of the eggs it contains; neverthelefs, the eggs which poffefs the lower part of the ovary, never lie nearer than within two fingers breadth from the opening of the tube; and in the largeft Frogs, they are at a greater diftance. Let us fuppofe them ever fo near the tube, who will tell us how they can get into the opening of it, which fome of the beft anatomifts could not difcover. The eggs have no motion of their own ; nor are there any mufcles in the way to move them. I therefore conclude, that this motion of the eggs of Frogs lies hid in a mylterious darknefs, too thick for human underftanding to penetrate.

But however incomprehenfible this motion may be, we may derive from it great light into the motion of the eggs in women, in whom this tube is moveable ; fo that it can apply its mouth to the ovary, in order to receive the egg falling from this laft part, a thing which that induftrious anatomift Bidloo faw, and procured a drawing of. I have myfelf obferved more than fifty times in Frogs, that the eggs which had broken loofe from the lobules of the ovary, had infinuated themfelves into the tube, and thro' the tube into the uterus; nor do I fee any manner of difficulty in conceiving how in any animals the egg once got into the tube, fhould from thence pafs to the uterus, the difficulty entirely lies in the paffage of the egg from the ovary to the tube. In the Frog there is all the reafon in the world to call this motion a miracle; indeed, there is nothing to hinder us from giving it the fame appellation in all other animals. The caufes of wonder are the fame in all; and in general, the motions of eggs ferve moft manifently to prove, that the human underftanding is confined within very narrow bounds.

I have fometimes counted upwards of eleven hundred eggs in one Frog, all which are to pars thro' the narrow, immoveable mouths of thefe two tubes; nor can fuch paffage be looked upon as an eafy matter, as thefe tubes fcarce deferve to be confidered as fimple channels, but rather as the horns of the uterus, which other animals exhibit. The white of the egg is formed in them, to furround the Frog's egg, or feetus, and afford the young animal nourifhment for fome days in the fame manner as the colliquamentum, or white, does the Chicken. On this account alfo, it is impoffible to diftend there tubes with air at this time ; it is even a difficult matter to alter, even by fqueezing with the fingers, the fituation of the eggs at that time faftened within the tubes, the matter fupplied by them, for the nourifhment of the Frog's feetus, which it moft reguEe
larly
larly furrounds, being very clammy and glutinous. For this reafon the eggs do not pafs faft, or cafy thro' the tubes, but very leifurely, and by flow degrees, and chiefly by the action of the mufcular fibres adminiftring to the tubes, which little by little pufh the egg and its nourifhment into the uterus.

I find this white of egrss to be a very nourifhing fubflance; for which reafon, when I had young Frogs to rear, I ufed, as often as I wanted, other food that was proper for them, to take a tube from the body of a female Frog, and give it to them cut into pieces, which they immediately faftened upon, fucking eagerly the juices that flowed from thence. This matter even diffolves, and diffufes itfelf in water, like the white of the Frog's egg, being of a fimilar compofition and fubftance: hence the tube itfelf, on being juft thrown into water, becomes by degrees eight times as thick as before : but this experiment muft be made within a few weeks of the eggs paffing thro' the tubes, as afterwards they contain no more of the white or albumen.

This tube, no doubt, is furnihed with its glands; tho' as yet I have not had the fatisfaction of feeing them diftinctly. I obferved, however, that the tube on its infide is thoroughly lined with a regular reticulated glandulous coat; from whofe pores the albumen, or white is fecreted. Behold what, and how many wonders appear in the Frog only! But we ought not to content ourfelves with a fingle experiment; we ought to try every thing that appears, and in every manner in which it can be tried, to acquire a perfect knowledge of any thing we defire to be thoroughly acquainted with.
It is no eafy matter to determine whether the uterus contributes alfo to the generation of the white of the egg, and the full perfection of the egg itfelf, or only ferves to collect all the eggs, and eject them at one and the fame time. To me it appears probable, that the uterus ferves merely as a receptacle for the eggs. It differs greatly from the tubes, as it is membranaceous, and in part fibrous, or compofed of, or furnihed with many fibres; but it is no ways glandular, for which reafon it is always found in a contracted fate, and never exhibits itfelf diftinctly, but when naturally diftended with eggs, blown up with air, or injected with fome kind of liquid. It is even impoffible to diftend it by macerating it in water; fo that upon the whole, no two things can be more different than the tube and the uterus.
The eggs, as I faid before, at the time that the Frog is to difcharge them, break loofe from the lobules of the ovary, to the infides of which they adhered, and are forced by I know not what motion thro' the cavity of the, abdomen into the open mouths of the tubes; but I cannot exactly determine how much time may be requifite for this paffage, as the Frog is very far from being tranfparent like fome other animals. It may not, perhaps, be impoffible to obferve this procefs in fome other fpecies : ne-
verthelefs, the knowledge of this truth could then be only analogically obtained.

About the fame time we find that the tefticles and fpermatic veffels 'in the male Frog fill with fperm. Thefe animals become then io eagerly intent on the bufinefs of propagation, that they take no care in a manner of their own fafety; fo that they may be eafily caught with the hand. I believe that they eat nothing, or very little, during this fit of luft, which lafts more or lefs time, according to the heat of the weather.
To carry on the intercourfe of the fexes, which this great work requires, the male Frog leaps upon the female, and when feated on her back, he faftens himfelf to her very firmly. For this reafon, the Dutch courstry boors, with great propriety, tho' in their vulgar way, call this manner of copulation, the riding feation of the Frogs, as the male is carried about, riding, as it were, by the female.

It is neceffary, thofe who intend to diffect this infect, fhould know how to diftinguifh the male from the female. I have obferved two marks by which this diftination may be made. In the firf place, the male has two air bladders, which he expands in croaking; and the mouths of thefe bladders are feated on the fides of his jaws. Thefe bladders confift of two membranes, which may be eafily parted, and feparately diftended with air, and fo preferved. One of thefe membranes is a continuation of the external fkin; the other a continuation of the membrane of the palate; and this laft is furnifhed with blood veffels and mufcular fibres, which ferve to contract and dilate thefe bladders. Properly fpeaking, the orifices of thefe bladders lie in the upper region of the mouth, where the gums are feated in men; and near them, within the mouth likewife, are to be feen the orifices of the organs of hearing, or of the animals ears. The tympanum, or drum of the ear, lies withoutfide, immediately under the fkin. The fame conftruction obtains alfo in the Chameleon.
The other mark of the male Frog is furnifhed by the animal's thumb, which is very thick in the males, Tab. XLVII. Fig. vi. a. perfectly black in fome kinds, and covered with a great number of papillx, b, which are likewife of an extreme blacknefs, and conftructed in the fame manner with the papillæ on the tongues of oxen. Thefe papillæ become rough in drying, and, like the rough fkin called thagreen, feel very ruggid; their ufe I fhall prefently defribe.

The males, at the time of copulation, leap on the females, and they continue fometimes on their backs, for forty days fucceffively, according as the feafon of the year is more or lefs cold, and the eggs take up more or lefs time in their paffage to the organ that is to thed them. Sometines thefe aninals continue together in this manner even for a much longer time; as when the female is weak or fickly, and the eggs on that account defcend more flowly through the tubes to the uterus, or when they meet with delays in the abdomen or uterus, as I obferved in fome Frogs, whofe intercourfe lafted a very long time.

The very moment the female has depofited her eggs, the male forakes her, having performed the tafk, for which this luft was fo wifely defigned.

This wonderful copulation is perfomed in the the following manner. As foon as the male has leapt upon the female, he throws his forelegs round her breaft, Tab. XLVIII. Fig. I and ri. $a a$, and clofes them fo firmly, that I found it impoffible to loofen them with my naked hands without wounding them; fo that I found myfelf under a neceflity of introducing an iron fpatula, between the female's breaft and the male's legs, the better to feparate them. The male moft beautifully joins his toes between one another, in the fame manner as people do their fingers at prayers. His head refts on that of the female, $6 b$, but in the hinder part, his body hangs a great deal lower than her's, as he lies fo much more backwards than fhe does: this pofture has its ufe, which I fhall hereafter relate. The thumbs of the male's forefeet prefs with their thickeft fides againft the breaft of the female, and the extreme joints of the thumbs are bent a little.

Let the female fhake herfelf ever fo much at this time, the male never lets go his hold, even tho' fhe fhould get out of the water, fo that one may carry them any where in this pofture; which is likewife the cafe of garden Snails, when engaged in the fame bufinefs. Such is the male's eagernefs to act his part, that he is not to be parted from his mate, even by pulling him forcibly from her by his hind legs. Thus thefe little animals fwim, creep, and live together for many days fucceffively, till the female has fhed her eggs, which, at length, the does in a manner inflantaneoufly. I obferved, that when they breathed, during this intercourfe, the external flkin, which immediately covers the drum of the ear that lies under it, near the eyes, Tab. XLVIII. Fig. I. $c c$, continually heaved up, and then fell again againf that organ of hearing; and this alternate elevation and depreffion affords a pretty fpectacle, when they both breathe, and open and fhut their noftrils by turns.

It may be afked, at what time the male leaps upon the female? Whether it be before the eggs have paffied through the tubes, or after this, when they are already heaped up in the uterus? But this circumftance I omitted to examine. However, I cannot help delivering it as my opinion, that the male afcends the female when the eggs have been taken up by the tubes, and fome of them have begun to adhere to the uterus. My reafon for thinking fo is, that otherwife the male might defeat all his endeavours, by compreffing and clofing with his arms the mouths of the tubes. Perhaps, alfo, it is for this reafon, that fometimes fome of the eggs remain in the abdomen, after the others have been ejected. But a certainty, in there cafes, might be eafily obtained by diffection.

When, therefore, all the eggs of the female are got together in her uterus, the tubes are quite empty; and when every egg has received its coat of white in thefe tubes, or in the horns of the uterus, fhe throws them all out together by a fingle effort; and, while this is doing, it may be obferved, that the male acts the part of a midwife, and promotes the expulfion of the eggs by working with his thumbs, and compreffing the female's body harder with his fore legs. Thus, at laft, the eggs are difcharged at the female's fundament in a long ftream, d; and the male, who has no penis, immediately fecundifies, fertilizes, or impregnates them, by an effufion of his fperm, which he likewife difcharges at the anus, e, *. But as the eggs, rendered very clammy and glutinous by the white that invefted them, have grown together, had been compreffed in the uterus, they immediately, on being caft into the water, expand themfelves into their former round form, f. Hence appears the neceffity of the hinder part of the male's body hanging more backwards than the female's. As foon as thefe eggs have efcaped from the female's body, between her's and the male's hinder legs, and have been impregnated by the male's fperm, the two Frogs abandon each other. The male fwims off, and works his fore feet as before, though they had continued fo many days fucceffively, without the leaft motion, in the moft violent ftate of contraction.
The eggs thus dropt, immediately fink to the bottom of the water, unlefs hindered by weeds that grow in ditches, or the like; and in a few days they return to the furface again, if not ftopped in the fame manner. I opened a female about two hours after the had difcharged her eggs in a glafs veffel, where I had kept her for that purpofe, and found the ovary perfectly contracted, as I have reprefented it in the fourth figure of the forty-feventh plate, under the letter k. Befides, there fill remained fome eggs in the abdomen, one in the ovary, and one likewife in the tube.

Upon my proceeding, after this, to examine the ovary, which was emptied of its eggs, I difcovered, in difiecting the body, three different fpecies of mufcles; namely, ftraight ones, interfected by four lines, and oblique defcending and afcending mufcles, lying under the former. When I had laid open the abdomen, I obferved a very remarkable fingularity in the ovary. In the firt place, I could difcern in it eggs of four different fizes and colours. Some of thefe were very fmall and white, Tab. XIVIII. Fig. iII. $a a$; others a little bigger, and yellow, b; a third kind was a good deal bigger ftill, c, and of a dufky colour. There were likewife in this part a great many black little fpots, d, which, at firft fight, I took for fo many eggs ; but the microfcope proved they were irregular particles, or eggs beginning to decay.

[^90]On opening afterwards fome of the lobes, all the foregoing particulars appeared fill more diftinetly; the caufe of the blood-veffels amongft the eggs being very difcernible, e, as likewife the manner in which the eggs were placed upon the fmaller ramifications of there veffels. When I had attentively furveyed and confidered all thefe things, I judged them to be the rudiments of the eggs, that were to be fhed the enfuing feafon; tho' afterwards the irregularity of their figure, and their difference in fize, made me alter my opinion.
Finally, I found at the bottom of the membranes, which conftituted the globules, and amongft the eggs I have juft now mentioned, fome empty and very delicate membranes, Fig. iv. $a a a$, which had ferved to inveft the eggs that had been already difcharged from the ovary; in the fame manner as it appears in the clufter of eggs in Hens, which ftill retain, after the yolks have left them, the little membranes and cells which furrounded thofe yolks; though, in courfe of time, thefe traces contract themfelves by degrees, and entirely difappear.

There particles were moft beautifully interwoven with blood-veffels, to which they were fixed as to fo many ftalks, $b b$; as I have endeavoured to fhew both one and the other, and at the fame time one of the largef bloodvefiels, $c c$; but all of them confiderably magnified.

This obfervation gave me reafon to think, that the eggs I have been laft feaking of, might be, as it were, like fruits, which had not as yet attained their due point of perfection, and might wither and drop off, before they did $f 0$; and I found this to be the cafe, even with perfect eggs, that had remained in the ovary and abdomen, as I have in part reprefented under the letter f, of the third figure. Thefe little membranes, which I have been defcribing, were torn, as it were, and fo collapfed as to form a fmooth plain furface; for which reafon I exhibit only a few of them. But it is time to fee now what becomes of the eggs, when they are difcharged by the creatures now under confideration.

Of the manner in which the young Frogs or Tadpoles grow in their parent's eggs, and are in due time batched or delivered from them.

THE very next day after the eggs had been difcharged, being the 18 th of April, they were of the bignefs reprefented at (1); and the albumen, or white, which furrounded them, was very inconfiderable: but I could fee they grew from one minute to another, fo that the day next following they were of the fize at figure (2). The white, in proportion as the water gradually penetrated it , grew on every fide more and more clear and tranfparent; but the infide, which immediately contained the embryo Frog, rather looked like an agate. As to the foetus itfelf, I could difcern no alteration in it. But not content with external appearances, I refolved to examine thoroughly thefe eggs ; but the furprifing toughnefs of the white threw fuch obftacles in my way, that all my endeavours ended in nothing: and though I, at laft, Atripped the embryo of the coats and other fubftances in which it was wrapped up, it was fo crufhed, and otherwife difturbed by my handling it in the operation, that I could not by any means fatisfy my curiofity.

This difappointment obliged me to take another method. I put a large number of there eggs into different liquors, in hopes fome of thele fluids might prove a fufficient menftruum to diffolve the white. At the fame time I boiled, with the fame view, fome of thefe eggs in water; by which means I indeed fucceeded, but not as perfectly as I defired. However, I could fee that the fkin of the enclofed Frog was regularly wrinkled, as in boiling it had loft by evaporation fome of its humours.

On furveying the next day the eggs I had put into the other liquids, I found that the whites had been coagulated by the liquor, whofe effects I firtt attended to, fo as to appear of a beautiful roundnefs, like bunches of grapes. In colour they in a manner refembled an agate, or the boiled egg of a Lapwing. The little enclofed animal was alfo coagulated, fo as not to fall afunder on diffection, though I could then more eafily diveft it of the yolk.

In another liquor the eggs had acquired a purple colour; but very little of the white was diffolved. I therefore paffed to a third liquor, in which I found the white of the eggs was become more milky, and was a little diffolved; and it had befides loft a great deal of its clamminefs and tenacity. The little Frog itfelf was increafed to twice its fize, and all its contents had in fome meafure contracted a colour : both which circumftances afforded me a very convenient opportunity of examining thoroughly, and with great care, the firt rudiments of this little animal.

The whites of the eggs in the fourth liquor had affumed a greenifh hue, and wanted little of being entirely diffolved; fo that here alfo I could very conveniently furvey every part of the young Frog, efpecially as this was alfo entirely coagulated in the fame manner with the yolk of a boiled egg. Thefe were the different effects, on various parts, performed by one and the fame liquor. On examining, therefore, with a microfcope; the enclofed young creature, I found it to confift entirely of minute grains, which were in a manner uniformly divided, and were yellow and tranfparent, without
without any other contents or vifcera, that I could difcover. The little animal was alfo divided throughout, as it were, into two parts, by a very confiderable furrow or fold, Tab. XLVIII. Fig. v. aa. In the upper part there ftill remained fome traces of a little yellow fpot, that appeared there by fome little openings, cracks, or crevices, b. But on opening afterwards the egg, according to the courfe of the furrow juft now mpentioned, I could difcern that, on one fide of the foetus, this furrow reached almof to the middle of its body, where this body was alfo fomewhat convex, Fig. vi. a, in one part; and in the other part, to which that furrow equally penetrated, it was hollowed into a cavity, b, which received the convexity of the firft. On the oppofite fide of the feetus the furrow was not, by a great deal, fo deep, $c c$, fo that it juft looked like a fuperficial cut on the flin. The broken fubftance of the young Frog's body, compofed of grains, $d d$, hewed itfelf in the place where thefe furrows terminated within.

I afterwards difcovered in a perfect Frog alfo this parting or divifion, which I at firft obferved by mere chance in the embryos of this animal; and this new difcovery procured me great facility in accounting for that fudden expanfion and elongation of the young Frog's body, on the fourth day, when it explicates or unfolds itfelf. Hence I believe, that one part of the unfolded embryo forms the head and thorax of the future perfect animal, and the other part the abdomen and.tail, which grows larger and larger by degrees.

In the fifth liquor, where I had put fome of the eggs, their whites were grown a little redifh, and were almoft diffolved; but the enclofed embryos had fhrunk up a little: by which means I obtained a fight of a very limpid humour, that furrounded the young Frogs, and was itfelf enclofed in a delicate diftinct coat or membrane. On examining thefe appearances with a great deal of attention, I difcovered, that, on one fide, this membrane looked like the allentoies, Fig. vir. a; and I could even difcern, in the cavity of it, a little white coagulated particle, floating in the enclofed liquor. The furrow, already mentioned, was likewife vifible in the midft of this egg, b; and, on the other fide, the little yellow fpot, difcernible in the fæetus, fhewed itfelf through the tranfparent membrane which invefted it, c. This yellow fpot differs in nothing from the other parts of the embryo Frog, except that the folds of the body are here larger than elfewhere ; and for the fame reafon, in proportion as the Frog grows, this yellowners gradually wears away, and changes to black.

This fecond difcovery gave me room to furpect, that the Frog's egg might likewife leave its amnion and its chorion; and I had afterwards the plcafure of difcovering thefe membranes, though I cannot take upon me to fay, that they can be diftinguihed one from another. But I know for certain, that the Frog is wrapped up in a coat or membrane,
which is very diftinctly confpicuous; and thas it floats, moves, and turns itfelf in a mont limpid fluid contained in this coat, juft in the fame manner as the Chicken does in its colliquamentum, or white.
This fingular obfervation made me exceffively eager to fearch, to the bottom, thefe wonderful and furprifing myfteries of Nature. I therefore examined this egg again, touching it a little more roughly. By this means the allentoies dilated itfelf by degrees, Fig. viri. a, as I thus forced into that membrane all the liquid contained in the amvion; from which however, on removing the little infrument with which I had preffed it, it returned to its proper fituation.

At length, by treating this egg fill more roughly, I fucceeded fo far as to make the allentoies fall off from the Frog; and as, in fo doing, I wounded the creature, I could difcern its black fluid particles flowing into the allantois, and at the fame time difturbing the liquor of the amnion, which it diftended, thereby giving it the fhape of a Pear, Fig. Ix. a; I therefore continued this operation, till every part of the allentoies was thoroughly expanded by the fluid particles of the wounded fcetus; as may be feen in the tenth figure, done after nature, but enlarged. With all this harfh ufage, I had not as yet broken any of the membranes.

I next took a furvey of the Frog's infide; but I difcovered nothing diftinet enough to deferve mention. I could only difcern the little grains I have already defcribed, and fromwhich, as from a congeries of coagulated and united globules, this little animal feems to derive its origin. The menftruums had produced in this granulated fubfance a beautiful variety of colours, as yellow, white, purple, and many others.

The obfervations already mentioned, had thrown fo much light upon the fubject of my prefent inquiries, that the third day afier the eggs had been difcharged, Tab. XLViII. (3), I could pretty clearly difcern the young Frog floating in the liquor of the amnion, and fee that it was now gradually expanding itfelf. The whole egg alfo was grown much larger, by the water and food it had imbibed. The albumen that lay next the Frog was fomewhat whiter than before; and I even thought that I could perceive in this fubftance fome white veffels, which, as I fufpected, might ferve to encreare the white of the egg, and convey it to the embryo. We may therefore reafonably conclude this has its umbilical veffels, though too fmall to be difcerned. I unhappily neglected this day to put any eggs into the menftruums I had prepared to coagulate them, and thereby to obtain an opportunity of looking for thefe umbilical veffels.

On the fourth day 4444 , all thefe particulars were fo vifible, even without the affiftance of a microfcope, as not to leave the leaft room to doubt of their exiftence; efpecially as the colliquamentum, or white, and the coats
inveft
invefting the embryo, were likewife greatly increafed in fize, and the Frog had unfolded and dipplayed itfelf under a variety of forms; as may be feen in the figures I have given, to reprefent them of their natural dimenfions.
The fame was to be feen on the fifth day, and formed a moft furprifing and beautiful appearance. I could now alfo difcover by what means the chorion and amnion dilate themfelves gradually, in the middle of the white. The ring alfo, formed by the white veffels of the chorion growing round its circumference, was now extending itfelf; but with all this, no umbilical vefiels yet appeared in the colliquamentum of the amnion, though this liquor was as tranfparent as chryftal. I could now alfo moft diffinctly difern the divifion of the young Frog into head, thorax, belly, and tail, as well as the manner in which it was beautifully adorned about its thorax, and near its head, with fome black fpines, difpofed like a border, and highly worth our notice, as I fhall hereafter explain. All thefe things may be feen in the figure, number 5, Tab. XLVIII.

I muft here obferve, that I could not now any longer difcover the allentoies; but whether the fight of it was intercepted by the dilatation of the chorion or amnion, or whether it had only confifted originally of the folds of thefe membranes, or in what other manner this difficulty may be explained, I cannot take upon me yet to determine. It was matter of great entertainment to me, this day, to fee the embryo Frogs rolling and tumbling about, almoft perpetually, in the furrounding amnion.

On the middle of the fixth day I could perceive, that fome of the young Frogs had difengaged themfelves from the chorion and amnion, and deferted the albumen, or white of the eggs; whilft others were only preparing to break loofe, and others again had not even attained fo much ftrength and perfection as thefe. I obferved alfo, that fome of the eggs had increafed in fize, without unfolding themfelves; and thefe, I believe, were fuch as had not been impregnated by the male's fperm. I afterwards met with two albumina, or whites, which did not now contain, and never had contained, any Frogs, though I could difcern in them a white fpot; fo that perhaps thefe were imperfect eggs, which had dropt from the ovary with the reft, and had received equally with them their proportion of albumen, in paffing through the tubes. Thus did I , in this fubject, difcover a great many of Nature's miraculous operations.
The tenth day (ro) I had the pleafure of feeing the young Frogs, which had deferted their albumina, in an almoft perpetual motion, fwimming alternately to this their primitive habitation, and then from it again, for the fake of reft and food. Thefe Frogs were of the form reprefented by the figure, number 10 , and they were grown very little larger; but I thought it very remarkable, that the little black appendages, like borders, before mentioned, were greatly increafed in bulk. Thefe fpines,
it is probable, were intended by Nature to affirt the little animal in fwimming, as well as in remaining quiet and repoling iffelf in the white. They greatly added to the beauty and fingularity of its appearance, according to the judgment I had at firft fight formed of then.

On the $15^{\text {th }} 1$ diligently furveyed, through the microfcope, the external parts of the young Frog, as I have reprefented in two feparate figures, of its natural fize, in Fig. xı. and in Fig. xII, a, of the fize given by the microfoope, when laid upon its back. I could now moft plainly difcern its divifion into head, thorax, belly, and tail. The eycs lay on each fide of the head, Fig. xil. a a, and were beginning to project a little, though they fill appeared as if they were fhut. On the fore part, between the eyes, appeared the animal's wide mouth, b. A little lower than the head, there were fixed to the thorax feveral particles in two arrangements, twelve on a fide, very much refembling, in form, the little fimbriated appendages already mentioned; which I here reprefent as rifing from the fides of the body, cc. I obferved, that the little Frog could expand there particles at pleafure, and draw them up towards the abdomen, and afterwards reduce them to their former fituation. The divifion of the thorax and abdomen was pretty diftinct. In the belly lay an inteftine, which fwelled beyond the external furface; and, tho not completely coiled, formed a great variety of windings in its way to the root of the tail, where it at laft feemed to terminate, d. The $e e$ tail on each fide was fomewhat tranfparent, but more opake in the middle, owing to its being thicker thereabouts, and to its having alfo there a great many cartilaginous parts, each furnifhed with its peculiar mufcles for moving the tail. I could therefore plainly difcern, that this cartilaginous and mufcular portion of the tail, extended to its very extremity, f, in the midway between the two membranaceous lateral one. The fkin of this young Frog, viewed with the microfcope, looked exactly as if it was thick fet with black fpots, upon a lighter ground, which appeared in their interftices.

On my diffecting this animal, and opening its abdomen for the firf time, the inteftine appeared very confpicuous; but fo delicate, that, with the flighteft handling, it diffolved into a great many globular particles; as did likewife the appendages, which were difpofed with great art, like beautifal round fpots, on each fide of the thorax. Even the fkin itfelf, when handled, fell into particles of the fame form. I could not difcover the ftomach, on account of this wonderful tendernefs of the animal's internal parts. I thought, indeed, I faw the heart ; but I could not perceive either blood or veffels. The contents of the thorax fell alfo into little globules, in the fame manner with the other parts already taken notice of. The cyes exnibited themfelves much more diftinctly within the head, than in its outfide. The cartilaginous rudiments of the tail were grown to
fuch
fuch a degree of firmnefs, that I could but juft feparate them from the adjacent parts. Tho' the tail moved about pretty violeritly, I could not clearly notwithftanding difcover its mufcles, as well becaufe they were extremely minute, as becaufe the fame wonderful fluidity and fpherical configuration fhewed itfelf in the parts of thefe organs of motion. However, I could plainly perceive them growing in another little Frog, near the root of the tail. The colour of the animal's internal parts was a dark gray. This proved another obftacle to my anatomical inquiries, by caufing, in all their appearances, an immediate confufion. I could difcover nothing more than I have already mentioned in fome of thefe Vermicles of Frogs, which I had fet apart as larger, and coniequently fitter for diffection than others. I could only obferve, that thofe round particles or grains, of which I faid, at my fetting out, that the eggs confifted, went likewife to compofe the fkin and internal parts of the Frog. A circumftance that could not fail of furprifing me greatly, and the more fo, as they were confiderable and diftinct enough to be feen with a common microfcope.

At this time, namely, on the 2d of May, I caught a Frog, which had not as yet difcharged her eggs ; for which reafon I opened her, and fed with them my young Frogs. This animal's miffing the ufual feafon for this operation, might be owing to her wanting a male, or to her being in a fickly condition. Be that as it will, her eggs did not unfold themfelves on being thrown into the water, like the others.

On the twentieth day of thefe experiments, which was the 7 th of May, the fimbriated appendices, Tab. XLVIII. Fig. xir. $c c$, had begun to difappear; and were no more to be feen on one fide of a Frog, fomewhat bigger than the reft. This made me eager to inveftigate the caufe of fuch a change, efpecially as the appendages of the left fide, which had not as yet totally vanifhed, fill continued in motion. In the courfe then of my inquiries for this purpofe, I obferved, that the fkin of the body, which lay between thefe particles, had grown over fo as to cover entirely that of the right fide; and had already begun to take in, after the fame manner, the particle on the left. I afterwards difcovered, that the two particles I have exhibited as lying on the animal's thorax, under its head, with a direction downward, had each of them a paffage to that part under the fkin, which appeared to extend towards the fimbriated appendages; but I could not be fure of this circumftance, on account of the extreme tendernefs of all thefe parts in the young Frog. However, I hence, with great reafon, furpected that thefe particles might afterwards poffibly grow into the young Frog's branchix; for I alfo obferved, that the particle, which the fkin had already
over-riun on every fide, had likewife lof fomewhat of its original appearance and form.

The protuberaint inteftines might now be more eafily difcerned; and their termination, at the place already mentioned, Tab. XLVIII. Fig. xif. d, was become much more confpicuous. The pulfations of the heart, at this period very ftrong, were likewife vcry vifible through the tranfparent fkin *. In the tail the cartilaginous vertebra, and the mufcles fixed to them on each fide, fliewed themfelves very diftinctly, and, in a beautiful manner, refembled a goofe-quill branching on borh fides into fmaller feathers; for thus, nearly, thofe mufcles hung to the cartilages which they were to move.

In diffecting the little animal, I found its inteftines were increafing every way by degrees, but in length efpecially; to favour the increafe this way, they were rolled up into coils, on account of the fhortnefs of the body in which they lay. But they were, however, as yet tender, and their external coats ftill confifted of little globules. I could now juft difeern the ftomach, as likewife the liver and gall-bladder of an aqueous or watry colour, and compofed likewife of fpherical particles. The entire liver confitted alfo of grains of the fame form, and the very heart itfelf, which I took panting out of the body, and at every fyitole ufed to fill with thofe grains, the little tide of whitif blood it drove into the arteries.

Upon the whole, it was manifeft, that the heart was formed in the little Frog, in mucla the fame manner with that of Chickens, according to the account given us of them, by that illuftrious anatomift, Marcellus Malphigi. The blood-veffels alfo, now fhewed themfelves. The eyes, and all their humours fill confifted of little globules; as did even the black part of the uvea. The mouth, contracted like the mouths of Fifhes, was grown a great deal more wide and fpacious, tho' not fo large in proportion, by many degrees, as that of a Frog, arrived at its full growth; or even of a young Frog that has juft thrown off its tadpole fkin; as hall be illuftrated with a figure in its proper place. As to the particles which formerly lay on the outfide of the thorax below the mouth. I could no longer fee any thing of them; nor have I made any other obfervations concerning thefe appendages, befide thofe already mentioned.
May the twenty-third, which was the twentyfixth day after the young Frogs had left their white fubftance, I received a fupply of little Frogs from the country, in a flat-bottomed earthen pot.

Having before diffected all thofe that I had hatched and and raifed myfelf, left the little animals fhould be killed in the paffage by the continual toffing of the water; and in order to afford them refting places, I ordered, by way of prefervation, that the pot fhould be nearly

[^91]filled with duckweed : and have with this foft matter, only a little water. This contrivance anfwered fo well, that I received all the Frogs in good condition. The fmalleft fpecies of them was of the fize exhibited in the the thirteenth figure, Tab. XLVIII. Fig. xiII. and thefe were the Frogs I now took under my confideration, as I had fet out by confidering thofe of the fmalleft kind. This pot contained a good many Frogs of twice the fize of the former, but they were the offspring of a larger fpecies; fo that I only made ufe of them to obtain better notions concerning fuch parts of the animal, as I had before difcovered them in the fmaller fpecies. It is now time to defrribe the many curious things that occurred in the courfe of my fuperficial furvey and anatomical inquiry.

The firft thing that appeared worth notice, without diffection, was the wonderful contrivance and confruction of the mouth, Fig. xiri.a. But as thefe parts of the young Frog are too fmall to be properly reprefented in figures of their natural fize, I fhall rather exhibit them as they appear thro' the microfcope, on laying the creature upon its back, with its vifcera feparated one from another. The external opening of young Frogs mouths, is by no means placed in the anterior extremity of the head, as it is in moft Fifhes, and even in grown up Frogs, but opens in the thorax a little deeper under the head, as in the Shark, fo that the young animal is obliged to turn itfelf on its back, in order to feize any thing that floats upon the furface of the water ; and I have often feen it throw itfelf into this pofture, either when it happened to be very hungry, or intended to difcharge the air from its lungs: upon thefe occafions, it turned fo nimbly, that my eye could farce follow it.

The aperture of its mouth confifts of an under jaw $a a$, Tab. XLIX. Fig. I. and a upper one b, both moveable, of an extreme blacknefs, and armed with very fmall teeth like a faw, with which, confidering its ftrength and fize, the little animal is able to bite exceeding hard. Thefe parts feem to be made of a flender, horny, and pretty flexible bone. There are, moreover, both above and below the opening, a great many little horny bones of the fame kind, furnifhed with a multitude of little black teeth. All thefe little bones are placed upon fome mufcular and very white plaits, which ferve the animal like fo many lips, and fhut its mouth, or keep it fhut ; they firft feize the prey it aims at, and then help it to draw gradually into its mouth the food it has taken hold of: for this reafon the young Frog can move open and clofe all there mufcular parts in a great variety of ways. The fkin lying on each fide beneath the mouth, confifts of a great number of white papillæ $c c$; fo that it affords in the Frog itfelf a very beautiful appearance. A little lower down are the protuberant eyes $d d$. The fkin that covers there and every other part of the body are moft neatly coloured like variegated marble with gold ftars
and fpots as it were upon a black ground. This animal, when turned fo as to lie on its back, fhews on the forepart above the eyes, its noftrils, thro' which it breathes, lifting the head for that purpofe, a little above the furface of the water; and on this occafion it moves thofe parts, which it alternately expands and contracts, in a very elegant manner.
On opening at this time the little animal's thorax, there appear very diftinctly in this part, and a little below the place where the bone of the breaft grows, the branchia, or gills, divided on each fide into four primary orders, or rather ranges ee. We may even fee how each of thefe orders is again, as it were, fubdivided into a great many globular prominent parts, along which the blood-vefiels run in vaft numbers, and in an uncommon and very beautiful manner. At the fame time the lungs are alfo feen lower down in the abdomen $f f$, and they are almoft always found fwelled with air, in the manner I have reprefented the right portion of them; where I have likewife taken occafion to exhibit the blood-veffels difpofed over this organ. The left portion is reprefented as it appears when collapfed; for then there remains in it but a very inconfiderable portion of air, which, on account of the extreme delicacy and tranfparency of the membranes conftituting the pulmonary lobes, appears no otherwife than as a naked bubble of air, lying externally on the part whofe continuation really enclofes it.

This is a moft curious obfervation, as it informs us there is an animal, which, at one and the fame time, has both gills and lungs, both ferving to circulate, cool, alter, and purify the blood. It is probable the air, in this creature, mixes with the blood in its paffage through the lungs; and that afterwards, in company with this fluid, it vifits every part of the body; whilft the water, by paffing thro' the mouth at the gills, has at the fame time the very fame effect.

Thefe gills are no other than the little fimbriated appendages, which I reprefented bigger than the life, in Tab. XLVIII. Fig. XII. as hanging on the outfide of the body; and which, on being taken in by the creature in its growth, are now advanced to the important office of gills. It is in this manner exactly, that the vitellus of the Chicken, which at firft lies without the abdomen, comes afterwards by degrees to be fhut up in the belly, as Dr. Steno firtt defcribed this natural procefs, which he likewife illuftrates with an accurate figure ; and immediately after him, that curious Englifhman, Walter Needham: for thefe two genilemen, who were quite unacquainted with each other, made this difcovery at the fame time, in different countries. Thefe borders or edgings are very difcernible on the little Frog's firft appearance from within its albumen, and while they continue on the outfide of the body. The learned Oligerus Jacobrus was acquainted with there particles, as appears by his being the firft who gave a figure of them, with a
flort explanation, in which he juft takes notice of their difappearing in time; but this circumflance might be eafily known, and without the help of diffection, and I took notice of it my felf more than twelve years ago. The gills heretofore defcribed, may be likewife feen within in the Frog's mouth, through which the water flows upon them, and is then difcharged, afier a!tering the blood that paffes through thefe organs.

Nor could I ever yet difcover, that thefe bran-chix or gills, have any openings on the fides of the body, as is ufually the cafe in filhes.

Here it may be probably afked, whether the blood circulates in the young Frog, both through the gills and lungs? This I camot abfolutely determine; for whilft I was engaged in thefe obfervations, I was difturbed with the cafes of many who were dangeroufly fick, which prevented my having time and leifure for examining this matter in the largeft young Frogs, one of which I have reprefented, Tab. XLVI. under No. V. otherwife I had refolved to render thefe obfervations on the generation and change of young Frogs as complete as poffible. I muft therefore defire the reader to accept what I now exhibit on this fubject, as the prelude only of a more perfee: work, to be hereafier publifhed. Though I have already obferved many things concerning this matuer, I have not fuch confidence in my memory, as to prefume to publifh, before I reexamine ihem.

In order to make fome anfwer from my former obfervations to the queftion I have juft now propoofed, I am thoroughly perfwaded, that the greateft part of the blood circulates in the young Frog through the gills; and that only a fmall part of it is conveyed through the lungs; and this defigned probably only to nourifh them, and to fupply the remaining mafs of blood with air. The reafon why I propofe this opinion is, that only a very fmall portion of the blood circulates thus in full grown Frogs, in which the gills, being probably thrown off with the laft fkin which the Tadpole cafts, wholly difappear; and, on the other hand, the greateft part is after this diftributed into the whole body, out of the heart through the arteries, without touching the lungs. This is made evident in a letter, which I formerly wrote to the celebrated Oldenburg, fecretary to the royal fociety of London, and which is to be found in the philofophical tranfactions of that fociety. I hope alfo, that by this obfervation, I have at length proved $i t$, againft the opinion of the famous Malpighius and Needham, who think the blood is perfected in the lungs; that fanguification, or the making of blood, muft be wholly attributed to the liver. I am perfuaded, that I can demonftrate it very eafily: though fome, ftimulated with envy and vain glory, bark againft it, like dogs againft the glittering brightnefs of the moon. My experiments concerning this matter, indeed, penetrate further than any perfon hath ever probably thought. But I return to the Tadpole or young Frog.
The heart, Tab. XLIX. Fig. I. g, is placed between the gills in the Tadpole; and out of it, one may very diftinctly fee produced the great
artery : this is divided into two branches; and thefe are further divided into very conficicuous frrigs or floots, which have all gills annexed to them: but whether fome of thofe branches are likewife tranfmitted to the lungs, as is the cafe in full grown Frogs, I could not at this time, for the reafons beforementioned, examine: I am ftill doubiful alio, whether all thefe moots are diffributed to the gills alone.
Near the heart is placed the auricula b, which has not yet fuch a fimation or figure, as it has in full grown Frogs. But in the examination of the auricula, and its veffels, I have not yet arrived fo far as to fatisfy myfelf: therefure, I cannot exactly declare, whether thofe two veins, which I delineate under the Auricula, reach to the gills, and carry back the blood from them to the heart, or whether they communicate wish the veffels of the lungs. All thefe matters nill remain to be inquired into. But for this reafon, I do not fcruple to delineate thofe parts, as they appeared to me, without examining them more exactly.
Below thofe two veins is fituated the vena cava and liver, i; this I obferved to Le divided, as it were, into four lobes: it is at this period whitifh, and fomewhat redith. It is plainly difcovered, that the liver is compofed of very regular glandulous granules, which one may take for very fmall glands. Near the liver in the Tadpole is placed the gullet, k, which defcends from the mouth to the fomach, and is delineated here in that form. But, in order to avoid confufion, I delineate the gall-bladder, l, neir the other fide of the gullet. That little bag of gall was at this time of a white, diaphanous hue: nay, the bile itfelf was limpid and perfpicuous, and without any bitternefs; though in the full grown Frogs, it is fometimes fo green and fluid, that it may be ufed to draw lines. The fluidity of the gall feems to me to depend on its piercing bitternefs, which is manifeft fome months afterwards, if paper, rubed over with fuch gall, be put into the mouth. The fpleen in the Tadpole is very fmall, triangular, but fomewhat irregular, and much more red than the liver: this is likewife the cafe in full grown Frogs.
There was nothing more beautiful to obferve in this diffection, than the courfe of the gullet, flomach and inteftines; for thefe parts were obferved to be very admirably convoluted in the body of the Tadpole. The frit finus, into which the gullet was twifted, was about the liver, Tab. XLIX. Fig. I. m, under which I have delineated, n, a certain portion of the mefentery, together with its blood vefiels. The ftomach was in the beginning, and in its fate of accretion, like a piece of red flefh, which being partly fituated over the gullet and fmall guts, began o to fwell and grow thick. But there was likewife obferved a great number of blood veffels, which diftributing themfelves through the ftomach, formed as it were a beautiful net.
1 here difcovered moft clearly, that the fomach in the beginning of the young Frog's accretion, did not yet perform its office, which was in the mean time performed by its gullet and
inteftins
inteftines, which were for that reafon made proportionably larger and longer in the young Frog, than even in the full grown one. On meafuring the length of the inteftines in this little creature, I obferved it to be five inches. When I thoroughly viewed the contents of the gullet, ftomach and fmall guts, I obferved they were all of the fame nature, and contained fome parts, of aquatic plants, little grains of fand, clay or mud. Therefore, when I fed thefe young Frogs with Duckweed for fome time in my chamber, in ftone bafons, I obferved that they eat all the roots of it fo clean, that none remained; but not the round little part or leaf, which is full of air, and fwims on the furface of the water. But afterwards, when they had nothing to eat under the water, I obferved them continually rolling about on their back for hunger, and conftantly catching the refidue of the Duckweed in their mouth, though it was too big for them to fwallow.

At the fame time, I obferved alfo, that the orbicular leaf of the Duckweed is not only full of air-bubbles, and for that reafon neceffarily floats on the furface of the water; but that even its very root of the plant, contains air, tho' not in a proportional quantity: this is probably the reafon why the root fubfides. I further obferved, that the extremity of the peduncle, or root of the Duckweed, is thicker in proportion, and more porous than the ftalk itfelf: and confequently the nourifhment feemed to me to penetrate through that extremity to the leaves. I likewife obfersed, that when I nurfed up one plant of Dackweed in a bafon of water, and expofed it to the rays of the fun, it infenfibly put forth many roats; nay, that the very leaf of thefe little plants multiplied and increafed into two, three, or four other leaves; the leaft of which, afterwards feparating from the parent, formed feveral other fmall ones; fo that this little plant feemed to multiply itfelf without feed, in a very fhort time. I had indeed refolved, yet more accurately, to inveftigate and delineate thefe things: but the reafons before mentioned, have likewife diverted me from this refolution.

Some years ago, examining the tubercles, which are found on the back of Fern-leaves, I obferved that they confifted of fome thin plates, or laminx, in which the pods, containing the real feeds of the plant, were enclofed: though many authors deny that this, and fuch like fpecies of plants have any feed *. Since the art and ftructure obfervable in thefe pods is admirable, I hall
give a brief defcription of them, until I have time to delineate them magnified; as I have formerly done to oblige Dr. Arnold Syen, profefior of botany, to whom I freely communicated this uncommon obfervation, fince it regarded his profellion: of which, however, no further notice need be taken here.

Thofe pods are of a round figure, and are compofed, as it were, of two hemifpheres, placed clofe to each other; but they may be parted in the middle. About this joint or feam is beautifully twifted a little herbaceous cord, which keeps the two fegments of the pod in their fituation. One extremity or bafis of this little rope grows to the fern-leaf; but the other is affixed to the lower hemifphere of the pod; and at length, after furrounding the whole pod, it terminates in the upper part of it.
In the cavity of this pod the Fern-feed lies, and it is indeed fo fmall, that it is with great difficulty to be difcerned by the naked eye; and when blown upon, it vanifhes into the air like fine duft.

But this is only a fmall part of thofe beauties that are obferved about the pod, and its cord. I beg leave to obferve from hence, that when the feed grows ripe on the infide, and the pod dries away, then the cord, twifted round the pod like a rope, is fo ftrongly curled, on account of its contorfons, that it makes the pod fly into two parts, and forces a paffage for the feed to difperfe itfelf.

This may be feen clearly and diftinctly, if the feed be examined in autumn with a microfcope: for as the head is, under this infpection, very near this feed, I have often obferved, that a great number of thefe pods, burft afunder by force of the twifted cords, which are contracted by the breath and heat of the body, and the feed, is by this means thrown out. But thefe things are only faid occafionally in this place ψ.

The pancreas in the Tadpole was obferved, Tab. XLIX. Fig. I, p, to be fituated near the ftomach, and compofed of diftinctly confpicuous glandules. Below the fomach appeared q the fmall gut, with its blood-veffels and contents, which were of a greenifh tranfparent colour. But the convolutions of the inteftines exhibited the mof beautiful fight of all; for thefe were orderly and regularly rolled $r r$ into two diftinct ferpentine forms. One of their extremities was joined to the rectum, s, which at length conftituted the fundament between

[^92]the two hinder legs, t. The difference, however, between the finall and great guts was not very confiderable in the Tadpole; nor is it very renarkable in the human fotus, in which there is, at firft, very little difference between the fmall gut, colon, and rectum; as I can demonftrate in a human foctus fix months old.

The moft remarkable thing in this little animal was, that only the rudiments of $u u$ the two hinder feet of the Frog were yet feen; and from them the toes, not yet frengthencd inwardly with bones, began to fwell, as a branch does out of a tree; though the figure and conftruction of the feet was, however, pretty perfect and evident. But as to the two fore legs, not even the leaft veftige of them yet appeared outwardly, becaufe they hy $x x$ hidden, covered and enclofed under the flkin: nor did they come in view before the flkin was cut open in that part, and then they were feen fituated above the lungs and below the gills, though they were not fo perfect as the hinder feet.

It is evident, from what has been faid, that this animal may and ought to be confidered, in its original, as a real infect, fince it hides its limbs under the fkin, and thefe increafe there until the change of the laft fkin is near at hand; at which time it is obferved in infects, that they are, as it were in an inftant of time, tranfformed into other creatures, and exhibit to view fuch limbs as they did not before appear to have. The fame thing likewife holds in young Frogs or Tadpoles: wherefore this animal ought to be placed in the fecond order or clafs of our natural changes, unlefs the juft laws of method had commanded me to treat of it at the end of this work, in order to make the likenefs between animals which have a red blood, and thofe which contain white, yellow, or green blood in their heart and veffiels, the more evident.

As we fee infects lofe many parts with their old fkin, this is likewife the cafe in the Frog; which, befides other things, plainly cafts off its mouth and tail: fo that, however admirable the art, order, conftruction, and parts of its members may appear to be; yet the nerves, arteries, veins, cartilages, mufcles, and many other remarkable parts, which gradually vanilh, and are, as it were, become infenfible, are deftroyed at once, ceafe their motions, and ftop their feveral functions, on the change. Are not thefe changes admirable? And do not they lay before our eyes the omnipotent hand of God, confpicuous in his inacceffible radiancy and infinite majefty? He, in this cafe, forms another out of one and the fame animal, which though different in appearance, yet remains one and the fame creature. May not the refurrection of the dead be exemplified in this illuftri-
ous inftaiace? All this is very elegantly manifetted in various infects.

As the want of fubjects nibw prevents my being abic to inveftigate further the moft artificial compofitions and changes of the limbs in the Tadpole, I fhall here defcribe only the mufcles, which are moft regularly placed in the middle of the tail, and merit very particular notice. Thofe mufcles are laid fomewhat obliquely, and converge, Tab. XLIX. Fig. i. $y y y$, to cach other from the two fides of the tail towards the middle; and cach of them is likewife divided into many moving fibres. That this may appear the clearer, I have delineated them as if they lay outwardly on the lkin. On each fide of the mufcles is feen $\approx z$ the membranous fkin of the tail, marked with beautiful points: by the help of this part the Tadpole moves its tail, and fwims, fince it ufes it like an oar, to pulh its body forward, with a ferpentine motion.

Before I proceed to other obfervations, which I have made on the full-grown Frog, I thall give the method whereby the Frog changes its fkin. I would have it obferved, that i here treat of the largeft fpecies of Tadpoles, fince the other kinds are much fmaller. To which I muft add, that I increafed it a little above its natural fize, in order to explain more intelligibly the metamorphofis of the fkin. The time when the young Frogs begin to caft their fkin, and to put on the form of a Nymph , is with us about the middle of June, or fomewhat later; that is, a litile more than two months after they come out of their eggs. When this time approaches, the fkin of the young Frog is firft ufually burft in the back, near the head, and through this chink the young Frog immediately puts forth its head. Then is feen the mouth lying, Fig. II. a, in the Tadpole's exuvix; and this is obferved to differ much, b, from the wide opening of the Frog's mouth. Then the Frog turns out its firt pair of legs, which lay till now hidden under the f kin, $c c$, and at the fame time it preffes back the flkin towards the hinder parts. Thus the reft of the body, the hinder legs, $d d$, and alfo the tail, are ftript of their fkin : after which we fee the tail contracted more and more every day, until at laft no veftige of it appears. If the Frog thus produced be a male, two pneumatic kidneys ce are difcovered on each fide of the head, behind the eyes; and the great toes of the fore feet appear alfo thicker and longer $f f$ than in the female. But what parts in particular are left in the exuvix, and whether the gills be difcovered adhering to them, I have not yet examined. After the fame manner Toads and. WaterNewts caft their fkin.

> Of the circulation of the blood in a full-grown Firog.

THE manner in which the blood circulates in the full-grown Frog, is not a point of fmall moment: indeed, it very much recommends comparative anatomy, fince, when that is not thoroughly known, it feems that one cannot arrive at the real knowledge of the ufe of the vifcera. The famous Malpighius, Needham, and many others, fay that the Frog has vifible lungs and refpiration. Nay, they alfo think that the blood circulates through the lungs, is there elaborated, leffened in the globules, and brought to its full perfection: and hence the office of fanguification, which, in former ages, was fuppofed to be done by the liver, is now transferred from thence to the lungs. Befides, fince the fame gentleman has obferved gills in Fifh anfwering the purpoíe of lungs, thro' which all the blood circulates; and as they faw the water ftrike againft thefe in the manner as the air does againft and into the lungs, in other animals, they have therefore made the gills perform the office of making blood.

I confefs, this opinion is very ingenious; if it be fuppofed, that the liver does in no wife contribute to make blood. But from whence fhall fanguification be derived in this animal, which has lungs; but at the fame time they are fo circumftanced, that the blood does not pafs thro' them, but is immediately diftributed all over the whole body, out of the fingle ventricle which their heart hath, without touching the lungs? This plainly is the cafe in Frogs. The fame thing, probably, holds in Toads, Water-newts, Lizards, Chameleons, Tortoifes, Serpents, and other creatures of that kind; all which I have obferved to be provided with membranaceous lungs: tho' I have not yet accurately examined their blood-veffels. We fhall certainly be obliged to return to the liver, and reftore it to its former degree of dignity. Nay, this holds more ftrongly in the Frog, which is deflitute of the lacteal veins: fince its chyle muft, for that reafon, neceffarily enter the great numbers of its meferaic veins, and be thus conveyed thro' the vena porta to the liver. In the extremity of this vein, the blood, which is to pafs from thence into the cava, is broken and divided; and it feems to me to acquire its laft perfection in the cava itfelf. As, I am confident, I fhall, at fome time, more fully demonftrate, with refpect to thofe animals, which have lacteal veins. But I cannot now, for want of time, finifh the experiments, which I have began, concerning this fubject : and which, tho not many in number, are yet fo important, as to promife great difcoveries.
Having premifed thefe things, I fhall now briefly defcribe the principal arteries and veins in the Frog, and flall thew the manner in which the blood circulates thro' them. The Frog's heart, Tab. XLIX. Fig. ini. a, as is the cafe in mont Quadrupedes, is found fituated in
the cavity of the breaft, which is indeed very finall. To the upper part of the heart, the auricle b is obferved to be joined: but it has, like the hearts of Fifh, only one ventricle, out of. which likewife there iffues only one artery; which is in the beginning confiderably mufcular, and fufficiently dilated, and immediately afterwards dividing into two trunks; one of which is detached to the right region c, the other to the left region of the breaft d. Each of there arteries, which are like the fubclavian veins, is further divided into three principal branches. The firft of thefe, which is the leaftee, flretches on each fide to the lungs, and gives them nourifhment : and therefore i call thefe the pulmonary arteries, and they are of the nature of thofe called Bronchials in man and brutes. Thefe, in their courfe to the lungs, are commonly divided into three branches, which I here exhibit as cut off; and after this fletching to the coat that furrounds the lungs, thereon form a very admirable piece of net-work, and communioate with each other by feveral anaftomofes: hence they alfo pafs down by very fmall fhoots, into the inward irregular veficles of the lungs, among which the pulmonary vein is diffufed, and with the latter they form a very confpicuous anaftomofis, vifible even to the naked eye. This is manifeft, if thefe veins and arteries be filled with quickfilver. I keep fome prepared in this manner. Out of the pulmonary arteries likewife proceed two fmall branches, Tab. XLIX. Fig. III. $f f$ on each fide, turning upwards, which are diftributed thro' the parts of the mouth.
The fecond pair of the principal branches, arifing out of the trunk of the great artery, are obferved to be dilated into two remarkable fwollen knots ; thefe are of a grayih black colour $g g$, in the living Frog. Both thefe arte.ries are after this extenuated, and, together with the little branches iffuing from them, feem defigned only to ferve the mufcles of the mouth, and thofe of refpiration. But as each of them afcends higher, it is again dilated into a knotty little bladder. I fhould think thefe arteries are duplicates of the nature of thofe which before ferved for conveying the blood to the gills. This I cannot affirm for certain ; but it may be hereafter examined into by repeated diffections.

The third pair of the primary branches are particularly worthy of confideration; fince thefe properly conftitute the trunk of the arteria magna in the region of the loins, and are there for that purpofe united by a very confpicuous anaftomofis. They rife out of the trunk of the arteria magna, then they bend $b b$. circularly under the lungs; and, after fending out fome branches, they likewife emit i the axillary arteries from off their fides. We obferve, that a little deeper beneath the heart, the carotid arteries arife from them; and that thefe afcending $k k$ from thence towards the head, bury
themfelves
themfelves in the bones of the fkull. The arteries of the vertebre, alfo arife $l l$ from thefe branches; and at length uniting together by a manifently confpicuous anaftomofis, they conflitute the trunk of the loins; out of which rifes the caliac artery, which afterwards fends out from it m, the mefenteric artery. Some arteries alfo, as thofe of the loins $n n$, and thofe that are detached to the tefticles, ovary 00 and reins p, have their origin from the fame trunk; and this fame trunk is itfelf afterwards divided in the laft place into the iliac $q q$ branches.

The blood being driven out of the heart through all thefe arteries, to the circumference of the body and vifcera, at laft returns by a manifeft circulation through the veins to the heart, as to its center; whilft in the mean time only a part of it circulates through the lungs, and indeed exactly in the fame manner in which it circulates through the mufcles and the reft of the vifcera. Therefore, the blood in the Frog circulates in a quite different order, than is obferved in other animal quadrupedes, or in fihhes; in which all the blood paffies either thro' the lungs, or thro' the gills: that is, the upper trunks of the vena cava, which are united to the auricle of the heart, and are here delineated under both trunks of the great artery, do not in the Frog deduce their blood from the lungs; but they imbibe it directly from thefe veins, which run in the upper part of the body, and from fome others that are fituated next to the flkin in the fides lower down, and they likewife get a fmall portion, that returns from nourifhing the lungs. The blood, on its return from the lower parts of the body, does not touch the lungs, but difcharges itfelf thro' the porta and cava, into the auricle of the heart, without coming near the lungs. Therefore, by inflating only one vein of the Frog's body, the arteries may be all inflated alfo.

The diftribution of the Veins differs here confiderably from that of the arteries; for the two trunks of the the cava, are confpicuous above at the auricle, Tab. XLIX. Fig. Iv. a a, where I have opened b, the arteries, emit pulmonary veins out of their lower fide, (here cut off) $c c$, which are twice as large as the arteries. Thefe veins are properiy placed in the cavity of the lungs, and particularly in the extremities of the pulmonary veficles, and in the loins ; and they diffure their capillary, and almoft invifible branches all over the cells; nay, even thro' the coat which invefts them. Here, therefore, in the lungs of the Frog, a confifiderable blood-veffel, namely, the arterial vein, is wanting: the animal has no need of this artificial canal ; fince Nature did not intend that all the blood 'hould pafs thro' the lungs. Befides, the two upper trunks of the cava pafs above the arterics in the Frog, and are allo divided into various branches. Some little veins are from thence detached $d d$, to the parts about the mouth : others, which bend very beautifully in their paffage, go towards the head $c c$, and give a part of themfelves $f f$, to the mufcies of the firtt pair of legs. The axillary veins
alfo, fpring $g g$, from the fame trunks, and emit two very confiderable $b b$ branches, which in the ilia beautifully bend themfelves back under the fkin above the mufcles of the belly; and from thence afcending again towards the thorax, and being there confiderably dilated, they communicate, by a mutual anaftomofis, with the reft of the veins that are fituated about there places. The trunk of the cava, which is fituated beneath the heart, is fimple i, and is there divided into three branches, which are difperfed thro' $k k$ the liver. A little lower, the mefenteric vein rifes l out of the liver: under which the trunk of the cava very beautifully diffufes m itfelf, by many branches over the kidneys; and at length, after dividing into two parts, conftitutes the iliac $n n$ branches, from which the epigaftric vein is obferved to rife 00 very beautifully. This vein goes back along the fraight mufcles into the liver ; where I reprefent it cut off. But if this little veffel, and all the integuments of the belly, be diffected near the liver, and then turned above the hind legs; all the veins of the body may be conveniently inflated through it. By this means veins are difcovered in the liver, the kidneys, and all the vifcera. And from thence I took an opportunity of making, with very little labour, the following very remarkable experiments. Let what hath been hitherto faid, fuffice in regard to the circulation of the blood, and the bloodveffels in the Frog.

Having finifhed the obfervations now recited, as quick as pofible, I afterwards examined fome mufcles, and alfo the fkin, eyes, and blood of a full-grown Frog. I found it eafy to divide the moving fibres of the murcles fo fmall, that they refembled a Spider's web. But when I put them divided in this manner under the microfcope, I found they confifted of ftill fmaller fibres, and thofe of very minute globules. I firt difcovered the epidermis in the ikin; it fupported the real flin, the latter being adorned with beautiful colours and black fpots, and appearing compofed, as it were, of globules: I further feparated the 1kin into a glandular fubftance, which was compofed of very numerous globular glandules. Thofe glandules fecreted that vifcous or flimy matter, which is obferved to be fpread over the furface of the Frog's ikin, and rendered the latter very fmooth and flippery. This fpecies of mucous matter taftes bitter, and offends the eyes with its acrimony; nay, it caufes a fenfible pain, if rubbed to our fkin when wounded a little; fo that we muft be cautious in the ufe of it. I next examined the aqueous humour of the eye in a glafs tube'; but I perceived nothing more than the clearriefs of the liquor. And hence, then putting both extremities of that tube to a Iamp, I boiled that and the whole Frog's eye in water: but there were no globules confpicuous in it from this procefs. Both the white part of the cryftaline humour, which refembles chalk, and furrounds it, and the other fibrous diaphanous portion, which is divided into feveral lamellx or plates, confifted entirely of globules. I faw a ferum in the blood, in which were
a vaft number of orbicular particles, of a flat oval but regular figure. 'Thefe particles feemed alfo to contain another fluid: but when I viewed them fideways, they refembled cryfalline clubs, and feveral other figures; that is, according as
they were turned about in various directions in the ferum of the blood. I obferved befides, that the colour of objects always appeared the more faint, the more they were magnified with a microfcope.

Experiments on the particular motion of the mufcles in the Frog; which may be alfo, in general, applied to all the motions of the mufcles in Men and Brutes.

HOW important and difficult it is to explain the real caufes of mufcular motion, is fufficiently evident from numerous experiments; which though made by very ingenious men, yet have not hitherto difcovered its true nature. The great utility and foundation of further knowledge, which we fhould acquire from that difcovery, lie yet involved in the thickeft clouds of obfcurity. This is the reafon which now induces me to publifh the experiments I made concerning the matter; which, as they feem to me to have great weight, and to contain fome uffefl confequences, I would therefore advife my readers to confider ferioufly, and examine them by the touchftone of truth.
In the conftruction and motion of the mufcles, it merits particular confideration, in what manner the nerve is actually joined to the mufcle ; how it is conftructed in the mufcle; twhat is its courfe, entrance, middle, diftribution, and end; as alfo how it communicates with the moving fibre, and what effect it produces in it; alfo what that very fubtle matter properly is, which is undoubtedly conveyed to the mufcle through the nerve. The knowledge of ail thefe particulars is not fufficient for our purpofe : one muft likewife know the conflruction of the membranes, that inveft both the furface of the mufcle and its inward parts, and the delicate leffer fibres that reach from one moving fibre to the other, and, like a very fine web, diffufe themfelves through the interflices of the latter. It would be likewife neceffary to know the flructure of the vein and artery belonging to the mufcles, and their real conffitution or difpofition in the mufcle, and to undernand accurately what belongs to the compofition of the moving fibres. But all thefe things are fill obfcure and unknown, and will not be probably difcovered till we employ all our time, and the greateft diligence, in inveftigating them: but all difficulties are conquered by induftry, and an unwearied application. As to myfelf, I candidly confefs, that I have not brought every fubject, which I have advanced, to the greateft perfection poffible; for, in order to attain this, I hould have pent my whole life in difcovering one thing, and this courfe is not agreeable to me: for I am thorouglly perfuaded, that, if I came to the utmoft extremity, I hould at laft difcover nothing but my own ignorance. For this reafon, I thought it better to employ my time rather on various things than on one; left, whilft I was too intent on a thorough knowledge of one or two particulars, many of God's work fhould lie hidden from me: for, indeed,
all the knowledge we are capable of, confifts only in this, to love God as we ought.

With refpect therefore to all the fubjects hitherto recited, I fill find many indiffoluble difficulties. And though the excellent anatomift, Dr. Steno, hath difcovered many curious things relative to this matter, yet he ftops alfo in the middle of his courfe. Befides, how far are we from knowing the motion and effect produced by the fubtle fipirit, that continually paffes through the nerves into the mufcles! This matter lies buried in impenetrable darknefs. Since I have made many experiments, at different times, on the motion of the mufcles, I fhall now, however, fet forth the chief of them, and fubmit them to the examination of the learned.

It is a matter eternally certain, and of greateft moment, that whenever the nerves of living bodies are handled, there is immediately obferved a confiderable motion in the mufcles to which they are fent, and this motion does not at all differ from the contraction of thofe mufcles. If we lightly pinch or prick the nerves of the diaphragm in a living dog, opened for the experiment, with the point of a very fine needle; or if we ftimulate them by putting them near the fire, or by pouring acrid liquors into them; we immediately fee the diaphragm performs its natural function : it contracts itfelf, from being arched becomes fmooth, raifes itfelf from the thorax, pufhes out the vifcera of the abdomen, and the cavity of the thorax is enlarged in proportion as the diaphragm contracts itfelf and becomes more fimooth, and is more ftretched out of the breaft.

This experiment is very fine and elegant, fince the motion alfo, which is then obferved in that compound mufcle, appears admirable; and the fame experiment may be often repeated in the fame fubject, if the nerves of the diaphragm be firt irritated, where their beginnings run near the pericardium. In order to irritate them a fecond, third, and fourth time, we muft defcend by degrees, and choofe a lower part of them, until we come to the very place where they are inferted in the diaphragm.

This experiment on the nerve may alfo be very eafily made, not only in this but all the other mufcular parts of the animal's body, with the fame fuccefs. Hence we often obferve, on diffecting living animals, that when the nerves are wounded with a knife, confiderable motions arife in the mufcles to which they belong. This the celebrated Steno hath likewife obferved in his Myolog. Specim. p. 78 and 79, after I had thewn him my old and common experiment on Frogs. This is obferved to
happen not only in quadrupedes, but in birds and fifhes, but efpecially in the Wray-fifh; in the mufcles of which there are very ftrong motions, when the nerves are irritated.
On the foundation of thefe motions, which are produced in the mufcles, when their nerves are only difturbed or ftimulated, I determined to provoke the nerves of the entrails in the fame manner, in which I found very remarkable flefhy fibres. I had a mind to make the fame experiments on thofe nerves which reach to the kidneys, liver, fpleen, lungs, and genital organs; for I would fcarce prefume to affirm, that any remarkable contractions are produced in thofe parts, efpecially in the kidneys, by fuch irritation; and therefore one may penetrate much deeper, by that experiment, into the real ufes of there parts. But I have not yet been able to execute my purpofe, for want of time. Ir is therefore fufficient for me here to have hinted at thefe things in a few words, that others may have an opportunity of labouring further in the difquifition of them; for Nature muft be inveftigated by the joint labours of many. One man can make no great advancement in matters infinite.
I beg leave to obferve here, that the motions of the mufcles, now mentioned, are not fo confiderable in animals which have warm blood, or rather they do not laft fo long, as in thofe that have the blood cold; as fifh, and many other aquatic creatures, which have few or no feet, and in amphibious creatures in general. Hence I chiefly made my experiments on the Frog; for the nerves are very conipicuous in thefe animals, and may be eafily difcovered and laid bare. The fininal marrow and the brain have this peculiarity in the Frog, that, like a fluid falt, they lie enclofed in coats, and, being interwoven with blood-veffels, are every where adjacent to them; fo that they are to be difcovered plainly even in the cavity of the vertebre, and in the fkull. The fpinal marrow glitters like pearl, and is difpofed, in the form of knots, all down the back, along the vertebra, where it appears very confpicuous. This native falt, mixed with an acid liquor, ferments very ftroingly. Its fubftance anfwers very nearly to that granulated and gravelly powder found in the head of the Shark, and fold in the hops, and erroneoully taken by the ignorant, for the brain of the fifh; but this is nothing more than a ftony and gravelly fubftance, which is placed in the head of the Shark, as what is called the Perchfone is in the head of the Perch. I have likewife found fuch a powder in the Wray-fifh's head, which fermented very ftrongly with an acid: and, therefore, I think that the alcaline falt, obfervable in the little fones called Crabseyes, is like this. But though that faline fubfance in Frogs is fluid, like water, it will notwithtanding be dried immediately by the heat of the hand or fingers; but it never hardens to fuch a degree, but it may be very eafily reduced to fine powder with the tips of the fingers. The fame thing likewife holds with
refpect to that calcarious fluid matter in the Wray-filh. Whether this falt has any medicinal virtue, I cannot yet fay; nor can it be known, except from experience. I return to the mufcles.

Another very delicate and ufeful experiment may be made, if one of the largeft mufcles be feparated from the thigh of a Frog, and, together with its adherent nerve, prepared in fuch a manner as to remain unhurt. For if, after this, you take hold, Tab. XLIX. Fig. v. $a a$, of each tendon with you hand, and then irritate b the propending nerve with fciffors, or any other inftrument, the mufcle will recover its former motion, which it had loft. You will fee that it is immediately contracted, and draws together, as it were, both the hands, which hold the tendons. This I formerly (in the year 1658) demonftrated to the moft illuftrious the now reigning Grand Duke of Tufcany, when he gracioully vouchfafed to pay me a vifit. This experiment may be repeated in the fame mufcle, as long as any part of the nerve remains unhurt; and we can thus make the mufcle contract iffelf, as often as we pleafe.

If we have a mind to obferve, very exacly, in what degree the mufcle thickens in its contraction, and how far its tendons approach toward each other, we muft put the mufcle into a glafs tube, Fig. vi. a, and run two fine needles $b b$ through both its tendons, where they had been before held by the fingers; and then fix the points of thofe needles, neither too loofe nor too firmly, in a piece of cork. If afterwards you irritate, Tab. XLIX. Fig. vi. c, the nerves, you will fee the mufcle drawing $d d$ the heads of the needles together out of the places; and that the belly of the mufcle itfelf becomes confiderably thicker e in the cavity of the glafs tube, and ftops up the whole tube, after expelling the air. This continues till the contraction ceafes, and the needles then move back into their former places; and the belly of the mufcle, parting again from the tube, affords a free paflage for the air through its cavity. But if the mufcle be left to itfelf, or put into cold water, with all the apparatus juft now defcribed, we obferve it contracts itfelf by degrees not long after; and is finally fo remarkably bent, as to fill the whole cavity of the middle region of the tube.

Having therefore duly confidered thofe experiments, which I have hitherto fet forth, and at the fame time attentively weighed the force of contraction or mufcular motion, which the mufcle refumes every moment, when its nerve is again and again irritated: one may afk, whether any other communication be neceffary between the nerve and the mufcle, but only that fimple irritation on the touch or commotion? But as a fimilar motion is likewife excited in the mufcles of animals which have hot blood, whofe nerves are flimulated; the fame queftion indeed may be likewife afked here, that is, whether in this clafs of animals alfo, any other communication be neceffary between the brain and marrow, the nerves
and mufcles, except this ftimulus? for I have conftantly found, by all the experiments that I made, that the mufcles are contracted when the beginning of the marrow, or the nerves iffuing from thence, are moved.
Hence I propofe it, as a matter worth confidering, whether we fhould not reject that opinion, which fuppofes a fpirituous matter to be neceflary to excite mufcular motion, and that it flows out of the brain; and that this influx happens with fuch great rapidity and velocity, that thefe new fpirits conflantly propel the former, and in an inftant of time, at the leaft intimation of the will, or otherwife fpontaneounly fhould, and may, be in the moft remote extremes of the body.

I am perfuaded, thofe who derive the contraction of the mufcles from inflation, fermentation, or a kind of explofive motion, will differ from me as to this matter: they will object, that the inflation or expanfion of the moving fibres, is evident even to the eyes, in the contraction of the mufcles; and befides, that all the mufcular parts are filled with fpirits : and therefore, that only a fmall quantity of animal fipirits is requifite to inflate either thefe, or thofe mulcles, and to expand them by contraction, as is evident to the fight.

But all thefe opinions are certainly deftroyed, if it be confidered, how often the motion of each mufcle is reftored by only ftimulating, provoking, or irritating the nerve in my experiment before mentioned: and this, when the nerve hath been for a long time cut off, and the requifite animal firits diffipated, or grown weak, after many times difcharging their duty; and when there is no further communication between the nerve, brain, and marrow. Therefore, I would have it ferioufly confidered, that it cannot be demonffrated by any experiments, that any matter of fenfible or comprehenfible bulk flows through the nerves into the mufcles. Nor does any thing elfe pafs through the nerves to the mufcles: all is a very quick kind of motion, which is indeed fo rapid, that it may be properly called inftantaneous. Therefore the fipirit, as it is called, or that fubtile matter, which flies in an inflant through the nerves into the mufcles, may with the greateft propriety be compared to that moft fwift motion, which, when one extremity of a long beam or board is fruck with the finger, runs with fuch velocity along the wood, that it is perceived almoft at the fame inftant at the other end; nay, that it is further propagated through the nerves into our mufches; and thus produces various motions in them, as thofe who attentively confider this fingular, though plain experiment, well know.

Add to there another argument of yet greater weight, which is, that the mufcles themfelves, when contracting, are not in the leaft inflated or fwollen, but rather they lofe their thicknefs; though the moving fibres in the mean time acquire a different fituation; or, to exprefs the matter more exactly, they are preffed clofer to each other. We obferve fomething like this in a long piece of fpunge, made even and fmooth,
which becomes thicker and more folid by force of compreffion; though in reality it poffiffes a much lefs fpace. Therefore, for the many reafons which fhall be mentioned hereafier, Ithink it may be rightly inferred, that the flortening and clofer compaction of the moving fibres, by reafon whereof they are contrabed into a lefs fpace, is really the true action or contraction of the mufcle; and which is therefore erroneoufly called inflation, tumefaction, \&c.
For what reafon can any one imagine it poffible for the mufle to be inflated? fince it confirts of fuch fubtile filaments, as are almoft invifible; though even thefe are finally compofed of globules. What matter can effect this inflation ? Is it not neceflary, that it hould pafs through thofe very fine fibrillæ, which confitute the nerves, and when curioufly examined, without huring them, are likewife fo fmall as to be almoft invifible? Certainly, if the nerves be confidered to have their origin from the marrow, it is very evident, that they are fo fubtile there, and fo clofely furrounded by the meninges, that the fmalleft brifte, or thread of fpun glafs, can fcarce pafs through the aperture. How fine therefore muft that firit be, which can penetrate into this very cavity, which is likewife ftopt up by the nervous filament that iffues out of, and is contained in, it? Yet authors eftablifh fuch notions; nay, they proceed fo far, as to imagine, that the nutritious matter, to which fome attribute the thicknefs of the white of an egg, pafies through thefe very nerves: but this opinion is fo idle and abfurd, that it does not deferve a ferious refutation. In the fame light I confider the imaginary fermentation between the fpirits and blood, by which the mufcle is faid to be inflated; though the very method of this inflation is contrary to the known confruction of the mufcles.

Another thing that plainly contradicts the inflation and influx of the fuppofed fpirit into the mufcles, is that we clearly fee, tho the mufcle be cut, and its moving fibres feparated from each other, all there parts move again, as it were naturally, as foan as the nerve which belongs to them is irritated: and this experiment, as well as others, may be made on the Frog, and feveral other water-animals, and it fucceeds very particularly in the Duck.

From thefe experiments therefore, it may, I think, be fairly concluded, that a fimple and natural motion or irritation of the nerves alone is neceflary to produce mufcular motion, whether it has its origin in the brain, or in the marrow, or elfewhere.

Therefore, we likewife obferve in many animals, that as foon as the beginning of the fpinal marrow is moved in the brain, all the fubjacent mufcles are fuddenly contracted. And this happens in the fame manner with refpect to all thofe branches of the nerves which arife out of the marrow, at leaft whilf they are handled; tho' only fome of the mufcles, or perhaps that only, through which the irritated nerve is diftributed, are put in motion. We muft alfo take particular notice, that in this experiment, it is never ob-
ferved,
ferved, that the part of the nerve above the irritated region, contract alfo thofe higher mufcles, that have their nerves from thence. We very clearly find alfo by experiments, that the motion produced in the mufcle by irritating the nerve, is always propagated out of the larger into the fmaller branches, and goes afterwards continually defcending. The nerves defigned for the fenfes are circumftanced in a quite different manner; for in thefe, the fenfitive motions, doubtlefs, tend upwards. In order to contract any mufcle, it is necefflary that its nerve be irritated in the region above the mufcle, or at its infertion into it ; fince that motion never tends upwards, but always downwards.

It may now be probably afked, wherein I think the beginning of that natural irritation, ftimulus or provocation of the motion, thus communicated to the mufles through the nerves, confifts? Since I deny, that any vifible flowing and inflating fpirits, are locally moved through the nerves; and, on the contrary, think that a certain inftantaneous irritation is much more fubtile, and capable of the effort, than the fpirits fuppofed by fome neceffary to move the mufcles: and that, from thence, it follows, that this irritation flould not only have its origin elfewhere, but that a force is likewife wanting, by which that motion is transferred through the nerves into the mufcles. I confefs thefe things are requifite, fince experience demonftrates it even to the eye.

To give a proper anfwer to this queftion, I think, the beginning or principle of that motion lies in the fininal marrow, and is alfo in all the nerves of the body ; fo that the marrow, and all the nerves, are conftantly and perpetually irritated to give motion to every muccle of the whole body. I would have it particularly obferved, that I admit no effential difference between the natural and fpontaneous contraction of the mufcles, and that performed by the will. I confider this difference as merely accidental; but, becaufe we move all thefe mufcles, which we move voluntarily, in a contrary direction; that what is faid to be effential in the contraction of all mufcles, is a natural contraction. For this reafon, voluntary motion ceafes, or is changed in us, as well as in all other animals; when either the antagonift mufcles are wanting, or when one of a pair is more powerful than the other, as I have formerly demonftrated in my treatife on Refpiration. And indeed we cannot move mufcles at will, unlefs we have the power of determining the natural motion of the antagonifts to the contrary fide. But if all the motions of our mufcles are continual and natural, when the antagonifts are wanting, as is the cafe with refpect to many mufcular parts of our body, which we have not power to move at our pleafure; only fo far as thofe mufcles are firft dilated by their contents. Thefe perform the office of antagonift mufcles, and give us the power of moving them in a contrary direction at the command of our will:- but otherwife, all things acquiefce in the perpetual contraction.

In order further to explain the origin of this natural and perpetual contraction of the mufcles;

I think indeed it arifes from the continual impulfe of the arterial blood upon the marrow and nerves: for, by means of this blood, all thofe parts feem to be continually moved, excited, and irritated to convey that motion pepetually and uniformly to the mufcles, and to prepare the latter for their perpetual contraction. For this reafon, all the nerves without exception, have not fewer arteries in proportion, than the brain itfelf, and the fpinal marrow have. I fhould think indeed, that this matter might be eafily afcertained by experiments: for which purpofe, I once thought of injecting a peculiar liquid through an artery into the marrow, by a fmall fiphon, and then to obferve carefully, whether any motion was thereby excited in the mufcles. But I would again advife the reader, to confider well that wonderful motion and power of the mufcle, when its nerve is in the leaft difturbed or ftimulated.

It is now time to proceed further; and I fhall, by a curious experiment, demonftrate to the eye, that the muicle is not at all fwollen in is contraction, or becomes thicker by inflating it, and therefore occupies the larger fpace; nay, on the contrary, that its fwelling decreafes: and therefore, in its contraction or action, fills lefs fpace than when it refts flaccid. I fay refts, becaufe I cannot obferve that the mufcle in the living animal, ever abfolutely ceafes from all motion. And therefore it flould be rather faid, that it is lefs ftrongly moved at the time of its relaxation; or then only recollects its elaftic ftrength, that it may be able, the moment after, to make the ftronger effort to contract itfelf. This may be feen very clearly in regard to the motion of the heart and auricle in the Frog; for the blood is there brought back from the circumference of the body, according to the laws of circulation, and being driven in to the auricle, it may be confidered as the auricle's antagonift mufcle, which dilates it : but the auricle itfelf is the antagonift of the heart, fince by means of the blood, which it protrudes into its cavity, it likewife dilates its fubftance, fo that the wonderful, repeated, and continual pulfe of the heart, has its origin from this alone : that pulfe is therefore perfectly natural and neceffary; for thofe two mufcles, that is, the heart, and its auricle, are unequal in fize and ftrength, and therefore their motion is neceflarily varied. If the auricle were as firm and as itrong as the heart, the motion of each would abrolutely ceare ; for, wherever the power of the antagonift is equal, there is obferved no motion of the mufcles, and all things are in both in equilibrio, until there arifes another determination, which, caufing one mufcle, to be contracted fomewhat more ftrongly than another, at length moves our limbs. Such a determination may proceed from various caufes.

If, for example, a man's fkin be very gently rubbed and irritated with a hair doubled feveral times; I often obferved, that the motion of the antagonift mufcles of the arm and hand was immediately determined; fo that the perfon inftantaneoufly, as it were, unknown to him; has pus his hand to the place where he felt the tiillation,
and then fcratched the fkin until he made it red, imagining that it was probably occafioned by a Flea, or fome other infect. But when I ftopt, his hand and arm refted likewife, becaufe the natural contraction was then equal in all the mufcles. If the fame experiment be made on fleeping dogs or cats, it is likewife obferved, that a determinate motion is produced in the mufcles which move their fkin; and therefore it is pleafant to fee them fuddenly draw it up, pricking up their hairs, and fometimes flzaking them in their fleep. By this familiar inftance, it is evident how our mufcles are in like manner voluntarily moved without any great attention of the will, by fomething of this kind, which is proper to determine the natural motion of the antagonift to the contrary fide.

Now, in order to make it certain from experiment, that the mufcle is not inflated in its contraction, but on the contrary poffeffes lefs fpace, we are to take a very lively and found Frog, and diffect it, uncover its heart, and carefully take away the pericardium from it. After this, we muft choofe one or two veins or arteries, which are large enough to be conveniently opened, and to admit a thin glafs tube. By this tube, all the veins and arteries of the body, and confequently the heart, may be very eafily inflated; fince, as I have before hinted, the lungs are in this animal no obftacle.

When the heart is flled with air, it mult be dexteroufly, together with its auricle, tied with a fine thread, and cut away from the body: then let a glafs fiphon be ready, one end of which muft be a narrow and fmall tube. Let the heart thus inflated, and its auricle, be put into the flat end of this tube, and let all be immediately put into that glafs fiphon; the long tube of which muft, in the mean time, be ftopt with a very fmall drop of pure water, or, that it may be the better diftinguifhed, water coloured with blood.
Having duly obferved thefe directions, it will manifeftly appear, that at the time the heart, Tab. XLIX. Fig. vii. a, contracts itfelf within the little fiphon, $b b$, the drop of water adhering near the extremity of the tube, c, defcends in a very remarkable and furprifing manner to the other end of the tube, d, where it fprings from the fiphon; and, on the contrary, it will likewife diftinctly be feen, that the drop thus fallen down, d, will, on the heart's dilating itfelf again, rife to its former fituation, c.

This experiment furnifhes us with an evident proof, that when the mufcle of the heart contracts itfelf, not only all the fibres which ferve to move it, are preffed clofer to each other, but that the heart itfelf alfo, occupies a fmaller space in its fyftole, than it did before in its diaftole.

This alfo is the reafon why the drop of water c moves downwards, d, as it cannot but follow the heart, when this contracts itfelf. But if at the very inftant of the heart's contraction, any inflation, tumefaction, or dilatation, had been produced by the animal fpirits on the infide of this organ, the drops, inftead of defcending towards the belly of the fiphon, d, would infal-
libly have rifen towards the extremity of the tube, e.

As the former never happens; and the latter, the very reverfe of it, is conftantly the cafe, I may fairly and plainly conclude, that the mufcle of the heart requires lefs room by a great deal in its contracted, than in its dilated ftate ; and that hence the fuppofed fpirits, by which it hos been hitherto believed, that the heart, or its mufcle was puffed up at the time of its fyftole, has not the leaft thare in producing that effect.

Moreover, if we open a living Frog, and carefully attend to the motion of its heart and the auricle, we Thall find, that in this experiment, every thing proceeds exactly in the fame man. ner as it did in the former. For, when the auricle contracts iffelf, it very fenfibly grows fmaller, and more compact, ; but when the heart is again contracted, it undergoes the fame alteration; and this obfervation is fufficient to convince us, that there is no manner of difference between the two contractions of the heart, one of which takes place within the fiphon, and the other naturally, except that the heart, out of the fiphon, is in. flated with blood, and with air in the fiphon.

As to the other experiment made in the fiphon, we muft here particularly obferve, what happens in the heart during its dilatation, and what change is feen afterwards during its contraction. When the heart dilates itfelf, we plainly perceive that the auricle begins firt to contract, and while it does this, the air is forced from it into the heart; by which means it is confiderably expanded, and appears in the fiphon as if full of bubbles or bladders of air. It even becomes pale and tranfparent on this occafion, and appears irregularly affected. This is owing to its moving fibres, and flefhy columns, not being every where of the fame thicknefs, fo that fome of the parts of the heart lying between thefe columns, are more diftended by the impelled air than others. Thus at length is effected, the afcent of the drop of water adhering to the glafs tube.

When the moving fibres of the heart again contract themfelves, we obferve that the heart draws itílf in, and becomes fmaller, and immediately after, we fee the air forced from it, in its turn into the heart ; upon which this laft immediately becomes more red and opaque, and fhrinks up fo as to put on an unequal appearance: but as the heart at this time cannot return to the auricle, all the air it had thence received, its moving fibres approach towards each other with fo violent an effort, that they likewife condenfe the air contained in them: and thus is the drop of water adhering to the tube of the glafs fiphon prefled downwards, on account of the heart being then reduced to a lefs fize.

This is likewife the cafe with the heart, which is naturally full of blood; for when this organ in its fyftole is diftended by the blood, it draws away the circumambient air; but when it again contracts itfelf, and difcharges its blood, it grows lefs, and yields to the air in proportion as it Chrinks up, a thing which ought to be well at-
tended to, as it is very confpicuous in a living animal. The blood itrelf undergoes fome condenfation, when violently compreffed by the contraction of the heart, and forcibly expelled out of it; but is alfo on the other hand fomewhat rarified, when the heart is dilated by a new intromifion of blood, fo that this natural action of the heart and blood correfponds exactly with that artificial one of the heart and air in the foregoing experiment.

It may be objected, that naturally in the live animal, the air by no means approaches the heart, and therefore cannot be repelled by it. But the contrary is plain in the cafe of Tadpoles, in which we fee the external fkin fenfibly affected by the pulfations of the heart, and fiwell out and fink in alternately, as that organ dilates or contracts itelf, which is the fame as if the air preffed immediately againft the heart itfelf. It cannot be denied, but that the fame thing muft happen in all animals that have lungs and gills, and a moveable breaft; nay, it muft, without doubt, take place in fome motions of the mufcles.

If you cut a Frog's heart out of the body, and place it in the glafs fiphon, in the manner before defrribed, without firt blowing it up; you will plainly fee the drop of water move in the fame way it did before, though not fo much as if the experiment were made with an inflated heart. In the mean time, the water alfo will fink in like manner, when the heart contracts itfelf. Experience teaches us, that the defcent of the drop of water in this experiment becomes fometimes fo inconfiderable, that it cannot be perceived, even by the help of the microfcope, which is owing to this, that the heart then continues partly contracted, and is not dilated by the auricle, which is now become infufficient to produce that effect, as it neither propels any blood, or air, with which the heart could be diftended. Hence, of courfe, the contraction of the heart muft become proportionally weaker, and the motion of the water in proportion lefs difcernible. But if you blow into the auricles at this time, that this auricle, by contracting itfelf, may force a quantity of air into the heart; the fuccefs of the experiment will immediately become much more confpicuous.

If, inftead of the heart, we fhould chufe to make ufe of fome other mufcle, we may proceed in the manner reprefented in the eighth figure, where the glafs fiphon, Tab. XLIX. Fig. VIII. a, contains within its hollow the mufcle, b, and the nerve hanging from the mufcle is faftened, without being cut or bruifed to a flender twifted filver wire, $c c$, that runs at the other end, an eye made in a piece of brafs wire, foldered to the embolus or pifton of the fiphon, d. Things being thus made ready, a drop of water, e, mult be let into the flender tube of the fiphon by a very fine funnel. Now, if after this, the filver wire be cautioufly drawn with a liefurely hand f through the ring or eye of the brafs wire, till the nerve is irritated by the compreffion, it mult by this means undergo, the mufcle will contract itfelf in the fame manner with the influted heart, whofe alterations, upon a fimilar
occafion, I bave already defrribed, even the drop of water will in fome meafure fink, though afterwards it never rifes again. But this experiment is very difficultly fenfible, and requires fo many conditions to be exaclly performed, that it muft be tedious to make it ; for which reafon, I have bethought myfelf of another that may be more eafily underftood and performed.

You muft have ready a little glafs fiphon, Tab. XLIX. Fig. ix. a, cut through with a diamond near the extremity of its flender tube, b; then pars through the hole thus made, the nerve of the mufcle c : but as the air can eafily make its way through this hole, while the nerve is irritated, till it contracts itfelf, fo as to keep the water from finking ; it is abfolutely neceffary to ftop that paffage on the outfide, which may be eafily done with a little ifing-glafs and farch. But I muft own, that in this experiment, the finking of the drop is fo inconfiderable, that it can fcarce be perceived: for this reafon, the heart is fitter for this experiment than any other mufcle, as it continues and keeps up for a confiderably long time, and with fufficient iftength, the motion it has once received.

There are fufficient reafons why this experiment fhould fucceed better when tried upon the heart, than upon the other mufcles; the principal feems to be this, that in the other mufcles, there is no antagonift to dilate them externally, nor any blood, which introduced into the bloodveffels, can extend them, and difpand the mufcle itfelf from withinfide; though all there conditions are abfolutely neceffary to affect a perfect contraction in any muccle.

The experiments which were fome time ago publifhed with a view of proving, that a quantity of blood is requifite to contract the mufcles, do in reality no fuch thing. Their principal weight lies in the confriction of the aorta, effected after D. Steno's method ; but this is truly nothing to the purpofe, and can only impofe, at firf fight, even upon thofe who examine matters of this kind with the leaft circumfection. For, by only confidering with a fmall degree of attention, that the vertebra, many nerves, and even the fpinal marrow, which are all faftened by the ligament, directed by D. Steno, to be ufed on this occafion, undergo thereby a violent compreffion, it mult plainly appear, that no conclufions can be fairly drawn from fuch a trial. Much lefs can we infer any thing from the other experiment, in which the blood is expelled from the mufcles, to make room for water introduced into them by a fiphon; fince the moving fibres of the mufcle are confiderably injured by this rough procedure ; fo that this coarfe experiment can only fupport a weak argument with unthinking people, being calculated merely to confirm the experiment of D. Steno juft now defcribed. Stronger proofs may be reafonably infifted upon, to demonftrate a thing of fuch importance, and the ligatures of the arteries of the thigh, particularly, in Frogs, muft be allowed to be a great deal more to the purpofe.

We ought, however, greatly to commend D. Steno's circumfpection, in not taking upon him
himfelf to determine the manner in which the motion of the mufcles is performed; neither was he bold enough to pronounce, for certain, that this motion proceeded from the influx or afflux of any new matter. But after I had, fome years ago, made him acquainted with the experiments I had made on this occafion, as already related, he made no difficulty of telling me plainly, that he was in no meafure afraid of abfolutely denying the acceffion of any new matter in the contraction of the mufcles; fo that our opinions of this important operation perfectly coincide.

Even I myfelf, relying on the propriety and certainty of the experiments I have propofed, can now, without any difficulty, maintain, that a mufcle, at the time of its contraction, undergoes no inflation or tumefaction, from the afflux or effervefcence of the fuppofed animal fpirits; but that, on the contrary, it in this ftate becomes fmaller, or collapfes; or, to exprefs my meaning more clearly, it takes up lefs room than it did before.

Nothing can be more evident than this alteration, when a heart filled with air inftead of blood, or one quite emptied, is made ufe of ; in the firf of thefe experiments, there occur many other things worth our notice, which may all have place and force in the contraction of the mufcles : firft the enclofed air in the heart is condenfed, and forced together ; fecondly, the circumambient air is dilated ; thirdly, the fibres of the heart are moft violently compreffed and ftrained in this action, and the little cavities within, or between them, are compreffed; fo that whatever has lain in thefe cavities muft be difcharged. And all thefe things appear chiefly at the time the heart relaxes, as it were for a moment in its contraction : fourthly, the internal air is afterwards again rarified in the heart: fifthly, the external air is on the contrary condenfed, and driven from its place: and fixthly, the fibres of the heart are again extended or dilated.

If any one object, that the air in this cafe is out of the courfe of Nature in its place, I can readily anfwer, by affuring him, that I have found air in the hearts of human fubjects, opened immediately after their death. But as this is not a common cafe, I am content, that blood may be fubftituted to the air which I fuppofed to be found in the heart: the blood contained in the cavity of the heart, is on that cavity's contracting, haken, condenfed, and expelled; the fame thing alfo happens to the blood which then flows through the coronary veins of the heart, and fhaken, or violently driven out of them; upon which account alfo, the fubftance of the heart grows confiderably paler at this particular time. Now, while the heart is thus contracted in its, fubftance, the circumambient air is likewife rarified; and lafly, the fibres which ferve to move the heart violently, become powerfully contracted in the fame manner with the inflated heart, as already mentioned. But the laft appearances I took
notice of on the fame occafion, and which were the reverfe of the firft, deferve to be here likewife confidered, as they act in the enfuing dilatation of the heart, when in its natural fituation, and when it is moved in its natural manner.

From all thefe particulars it evidently appears, that there occur in the contraction of the mufcles, a great many more things to exercife our reafoning and induftry, than authors have hitherto confidered. And above all, we ought moft carefully to obferve, with what ftrength the moving fibres of the mufcles draw themfelves up while the fibres are contracted. This power is fo great, that I have feen them in fome animals become three times fmaller than in their natural flate of conftant contraction. And on this account, all their contents, being all the blood and juices which had flowed into the blood-veffels running through them, were moft violently forced out by this powerful motion. Hence alfo it happens, that the mufcle of an animal, whofe blood is red, is much paler in a contracted, than in an expanded ftate. This D. Steno likewife has obferved.

By this obfervation we are enabled alfo to account for the confiderable heat caufed in the body by the determinate and reiterated motion of the mufcles. For as the mufcles propel the blood from themfelves by their violent contractions, it is impoffible the motion and circulation of the mafs of blood fhould not be thereby confiderably increafed; a circumftance which furgeons, who are informed of it merely by experience, have contrived in bloodletting, to take proper advantage of it ; for at this time they give the patient a cafe of inftruments, or fonsething of that kind, to employ his hands, that the mufcles being thus put in motion, the blood may more freely iffue from the veins: the imagination alone is often powerful enough to have the fame effect, as our mufcles are at that time varioufly influenced according to the lively or gloomy nature of the thoughts which then poffefs us, and proportionably contract and fhut, or expand our hearts.
I faw myfelf, in the hofpital of Leyden, a boy from whofe feet the fkin and flefl had lately fallen off in a gangrene, who by the bare motion of his mufcles, without retaining his breath, could contrive to difcharge at will a confiderable quantity of blood from the wounded part. And I have likewife obferved the fame in the motion of many animals, whofe blood, tho' they wanted lungs, flowed much more freely from them in motion, than when at reft.
This cafe even extends fo far, as to account for laffitude or wearinefs itfelf, which is occafioned by the mufcles being too much diftended by blood, and confequently rendered lefs fit for contraction, as I firft obferved, in thaping with my breath a piece of glafs melted with a lamp heat ; for the mufcles called Buccenatores in my face, came at laft to be fo violently dif-
tended with biood by this operation, that entirely loft the power of contracting them again, fo as to be able to difcharge the air at my mouth, in a manner requifite for the bufinefs I was about.
It is very wonderful, how infects in winter, when all their blood and humours are congealed, as it were, in their veffels, lofe likewife all power over their mufcles ; fo that if their legs and other limbs be extended without doing them violence, they will remain in that pofture till the creature recovers the power of moving them, on the return of warm weather, or by being placed near a fire ; for a very frmall degree of warmth communicated to them in the beft manner, is fufficient to reftore them to life and motion, to enable them to turn about, run, and even fly, till their blood and humours congeal again, which they do in a very fhort time ; and the little animal is thereby reduced to its former ftate of inaction. I have likewife obferved that famous vegetable called the Senfitive plant, is much lefs fenfible in autumn, than in the fummer feafon.
It may be afked how is the effect of the natural determinate irritation of the nerves, or even of that which is produced from without, and by art produced; fince it is not poffible to prove, or reafonable to fuppofe, that any fenfible matter is at that time conveyed, or locilly carried into the mufcle ; but, on the contrary, it muft be allowed, that the mufcle difcharges the matter it contained, fo as to fill a lefs compafs?

I muft confers it a very difficult tafk to anfwer this queftion, and perhaps impoffible, till the true contraction of the mufcles fhall be exactly known. For this reafon I fhall enter upon a method for attaining fome certainty in this matter, like that purfued in acquiring juft notions concerning the ufe of the eye; for the manner in which vifion is performed, was difcovered without any true knowledge of the ftructure of that curious organ, by which we enioy that great bleffing. Hence, were 1 permitted to make ufe of a coarfe fimilitude, I might conceive it effected in the fame manner with the alterations vifible on handling, or touching ever fo gently the parts of the Herba Impatiens, called Touch me not, or podded Ars Smart, orthe Balfamita alteria of FabiusColumna ; the parts of which plant being extended according to the courfe of two or three nervous or herbaceous fibres, in confequence of any momentarry irritation, moft fuddenly contract, and the pods burft.* And certainly, if thefe fibres, which cannot fo expeditioufly contract themfelves, before the feed of the plant to which they belong has arrived at its due maturity, did not curl up and fall off, but
infead of thus perifhing, could be again dilated like leather, when forcibly bent, and excited by a new irritation to a new contraction, we fhould have in them a moft curious example of the action of the mufcles, the principal of which confifts in a contraction following a dilatation ; fo that it is the contraction of the mufcles, and not the dilatation of them, that we ought to confider as their principal ofice, fince even when the anmal is dead, they will ftill endeavour to contract themfelves. I have even feen a mufcle contrat itfelf, when boiled in the fame balfan in which I had preferved it for feveral years.

Let people think what they pleafe of the above-mentioned fimilitude, or comparifon; at leaft the experiment informing us that the mufcle contracts itfelf as foon as its nerve, is put in motion, refts upon a moft folid foundation : but as I demonftrated at the fame time, that a mufcle takes up lefs room in its contracted, than in its dilated, flate, it moft evidently follows, that there does not flow into it at that time, as has been fuppofed, any expanding or rarefying matter, but that that fubftance muft be inconceivably fine and delicate, which at that moment of time can produce in the mufcle fo wonderful a motion; though we are not certain that this effect differs in any thing from that which the wind, a finger, a ftick, or a briftle, has in contracting the little fibres in the contractile pod of the Touch me not plant.

I therefore think, that, as I faid before, it may be from hence fairly inferred, that whenever the nerve is immediately irritated, the mufcle, to which it belongs, muft be in a fate of perpetual contraction, or at leaft in a fate of perpetual effort, and endeavour to contraction. This is a circumftance, which I formerly obferved in my treatife of Refpiration, and fhall hereafter more clearly explain, as I intend to publifh a new method, in which we may in fome meafure confider the conftant motions of the mufcles.

But before I undertake this tafk, and thereby make an end of the prefent treatife, I mult confider in what fate or condition the mufcles were before they exercifed any motion. This may be very eafily feen in infects, and even in the rudiments of the mufcles belonging to larger animals, whofe mufcles at that time are generally compact, white, membranaceous, and feem compofed at their very firft appearance of a kind of glutinous humour. In infects, it is very remarkable, that at the time of their changes, their mufcles become in a menner inviifibe, and afterwards increafe in fize to a prodigious degree; nay, even their limbs difappear, and grow in the fame manner, but more

[^93]particularly their $\log s$, and the mufcles of thofe parts, which fwell and excend every way in a furprifing manner, by means of the blood and humours driven into them, juft as if they had been injected with additional liquors; fo that in courfe of time, they are as it were unnaturally ftretched, and bent in the manner of a bow. But this alteration obtains chiefly in infects, whofe mufcles alfo move much longer than thofe of any other fpecies of animals; and even retain their motion, in many fecies, after the head has been feparated from the body. We obferve alfo, that as foon as infects break from their old fkins, their bodies grow larger every way, almoft intantaneoully; and the fame thing happens, in proportion, to animals whofe blood has an extraordinary degree of heat in it. Hence it is, that their mufcles endeavour the more violently to contract and draw themelves together. In fine, we likewife very plamly fee that the mufcles, when firf they begin to exert their powers, grow much redder, on account of the blood penetrating at that time into their fubtance, and in fome degree expanding it; and they become likewife much larger, by means of the blood-veffels which ren through them, and extend their moving fibres.

From thefe particulars it evidently follows, that every contraction of a mafcle muft be preceded by fome degree of dilatation; and this dilation I fuppofe to be of three kinds. The firft is performed in the natural and voluntary contractions of the mufcles, by the blood forced into, and thereby partly dilating them. The fecond, which obtains, in natural contractions, I atiribute to the contents, which byextending and dilating the moving fibres, and thereby drawing the blood more copioufly to them, occafions a relawation of their contractile powers. The third kind of dilation is that which precedes the voluntary contractions, and feems to be produced by the determination of the antagonift mufcles; for thefe act upon the mufcles, oppofed to them, in the fame manner that the contents act upon mufcles, whofe motions are natural.

Now what does that fubtile matter, which conitantly flows through the nerves into the mufcles, contribute to their contraction? Is it derived to the moving fibres, ferving to open fome of the blood-veffels that furround the nerves lying within the mufcle? Or does it, by mixing with the blood, make it fuddenly efferveice and ferment, and fo excite that motion, by which the mufcles may again fhake off fuch fubtile matter, fo as to caure an immediate contraction of the moving fibres? I muft own myfelf unable to give a fatisfactory anfwer to any of thefe queftions, and therefore leave them, as a moft fruitful matter of contemplation, to the difcuffion of others.

As to the other things which I have hitherto propofed, I think I may thence moft fairly concfode: Firf, That all the muicles are naturally contracted; that is, they are in a ftate of contration before they have performed any mo-
tion. Secondly, That their contraction is, in part, deftroyed by the blood, and fuch other humours as flow into then from their particular veffels; and that this is, as it were, the firft caufe of the dilatation or expanfion of the mufcles, though they fill perift in a fate of contraction in a leffer degree. By this power alfo, the circumambient air is ciriven our of its place, and becomes condenfed, in the fame proportion wherein the mufcles are expanded. Thirlly, The contents of the vifcera, cavities, and little tubes of the body, about which the moving fibres are difpofed, contribute greatly, as a fecundary caufe, which obtains in natural motions, to the complete diftention or dilatation of the mufcles; whereas, in voluntary motions, fuch complete diftention and dilatation muft be attributed chiefly to the contrary determination of the antagonift mufcles: for the moving fibres in thefe two fpecies of mufcles, which are differently fituated, are confiderably expanded by thele two caufes, which likewife difpofe the blood-veffels, belonging to the mufcles, to receive a far greater quantity of blood; fo that the dilatation being once arrived at its higher pitch, the returning contraction may be the more powerful. Fourthly, The air, already repelled and condenfed, contributes greatly to produce this effect; for, by being immediately urged to dilate itfelf by the equilibrium of the atmofphere, it, in its turn, acts with the greater violence upon the mufcles, to oblige them to return into their late fate of contraction; which is befides fo natural to them, that they would reaffume it of themfelves, fooner or later, without any fuch compulfion. Fifthly, We muft add to the caufes already affigned, the perpetual and natural irritations which the nerves are confantly exciting in the moving fibres of the mufcles themfelves, and which are continually engaged in urging them to contraction. I would here be underfood to mean thofe fimuli, which are produced by the blood in its circulation, and in its paffage through the arteries to the origin of the fpinal marrow, and all the nerves; or elfe thofe fimuli which are communicated to the beginning of the fpinal marrow, and the nerves, by external objects, which make an impreffion upon the blood. Hence therefore, in the fixth place, the mufcles, as well the natural and moveable ones as thofe fubject to the dictates of the will, are neceffarily difpofed, and in a manner conftrained, to return to their original and natural ftate of contraction. Hence, feventhly, I may reafonably conclude, that in all the reciprocal contractions of the mufcles, their contents are again forcibly difcharged, fince the moving fibres, which were before extended, at this time come nearer again to each other, and become very compact, fo as to recover the fituation they were in, previous to their being dilated. For this reaton alfo, they muft then take up lefs room, though we may fee forne tumours arife at this time on the furface of the mufcles; thefe tumours being produced by the extmordinary companaefs of
the fibres, of which the mufcles are compofed, and confequently by the fubfiding of the adjacent parts, rather than by any intlation of thoie parts of which they themielves confift; as the authors, who have hitherto treated this fubject, have fally imagined. Seventhly, and laftly, therefore, I from hence conclude, that all the actions of the mufcles confift in contraction, or in a return to that form and difpofition they had before they were dilated; fo that the mufcles, as often as they are again dilated, or determined a contrary way, by the caufe already affigned, or by means of their contents, or by the action of the antagonift mufcles, conftantly return afterwards to their former fate of contraction, whether the motions they are to give be natural or voluntary.

Though this be ufually the cafe, and principally with regard to the natural motions of the mufcles, it neverthelefs is obferved to take piace in their voluntary motions alfo; though, to effect thefe laft, the confent of the will is likewile neceffary. For we find, that, in all the voluntary motions of the mufcles, there is inkewife abfolutely required fome internal or external caufe, by means of which a contraction of the antagonift mufcles may be determined another way.

Therefore, fince all the mufcles are in a perfeciual fate of contraction, it is eafy to conceive, that the leart degree of determination, whatever caufe may ferve to produce it, is fufficient to difpofe them to move the body, make it advance, remove it from place to place, and actuate it in a thoufand other different ways.

Nor is it in natural motions alone, that things are obferved to proceed in this manner, as plainly appears by the contraction of the pupil of the eye, which inftantaneoufly expands and dilates itfelf, by means of its murcles, as the eye is more or lefs irritated by the particles of light. The fame may be obferved of the moving fibres of the intertines, which conttantly alfo contract and expand themfelves, in proportion to thicir contents; fo that their motion perfectly refembles that of the fea, whofe waves follow and mutually prefs upon one another.

We often obferve, that a natural contraction takes place in thofe mufcles, which are faid to move as the will directs; as is manifeft in our walking, ftanding, and making ufe of our hands: for we certainly move our limbs almoft every moment, without reflecting in the leaft upon what we do. Thus, with regard to external objects, we often falute a perfon we meet, merely becaufe another in our company takes off his hat, or becaufe we are affected by fuch external object, though we do not know who the perfon is we have faluted, nor fo much as think of our faluting him. For this reafon therefore it is plain, that as our memory is local, and is affitted by the image of one thing in pafing to that of another, and fo on without end, the contractions of our mufcles are in like manner natural; and the mufcles themfelves are urged ly one caufe of motion to another,
and from this to a third, and fo on without any interruption.

It is for a fimilar reafon, that, when we find ourfelves too near the fire, we retire to a greater diftance from it, and put our limbs, by means of various motions, into thcir former pofture, without attending in the leaft to what we do; but merely in confequence of the imprefion made upon us by the irritating objece. From hence it appears, that we can never be trucly faid to move voluntarily, unlefs when the will itfelf is put in motion by the objece, and then by its own motion produces a third; for whenever the light happens to be too ftrong, we flut our eyes, turn our head afide, and give ourfelves many other motions, as we are varioufly excited to them by the objecis that prefcit themfelves.

All thefe facts abundantly prove, that thore very mutcles, by whofe affiftance we perform our voluntary motions, are notwithftanding always themfelves moved in a natural manner, not only becaufe an internal or exterial principle, caufe, or object is alone requifire to determine them; but likewife becaufe a voluntary motion is never produced, unlefs fuch a determining principle, whatever that may be, precedes it, though it fhould be but a thought merely cafual, let alone one previoufly excied. Cannot a fimple dream, or fome abfolute phantom, prefenting itfelf before us in the night, fo affect us? Even in this cafe, we immediately fart, tremble, and perhaps get out of bed, fhriek, and call for affiftance. And all this we do merely becaufe we then juft determine another way our mufcles, already prepared for action. We may obferve the fame things alfo in our fpontaneous or natural motions, though fuch motions can be but very feldom determined by us, and that alfo under certain conditions only. For our will, as I took notice in the beginning, has very litile power in determining fuch of the mufcles as have no antagonifts; and indeed, if nature had not be-fowed upon us fuch antagonift mufcles, we fhould have been little better than vecetables, which cannot ftir from the place wherein they have taken root.

It is evident, from the foregoing obfervations, that a great number of things concur in the contraction of the mufcles; and that we fhould be thoroughly acquainted with that wonderful machine our body, and the elements with which we are furrounded, to defcribe exactly one fingle mufcle, and explain its astion, in a fatisfact rey manner. On this occafion, it would be neceffiary for us to confider the atmofphere, the nature of our food, the blood, the brain, marrow, and nerves, that moft fubtile matter which inflantaneoufly flows to the moving fibres, and many other things, before we could expect to attain a fight of the perfect and certain truth. For my part, I own that I have endeavoured to offer fomething on this important fubject worth the publick's acceptance ; but yet 1 am fenfible, that all this time I have been, as it were, reprefenting with a coal the
fun's
fun's meridian rays: fo that this my little effay can pretend to no merit, on any other account, but that of its conformity to Nature, which I hope I fhall, in time, be allowed not to have mifreprefented. And that time will be, when happier geniufes thall have made all thefe things clear and evident; for this may certainly be attained by laying afide all little thoughts of our own glory, in inveftigating the works of Nature, and thinking of His only, without whofe affiftance we could not even know any thing of them. At that happy period, the defire of writing for the fake of being talked of, will no longer prevail : we fhall not then be anticipating our own praifes, fince all our intentions being directed to the honour of the Creator, we fhall of courfe refift the corrupt
motions of our hearts, apt to be delighted with flattery, and fond of obtaining the title of learned and ingenious men: all which I only confider as vanity of vanities, fince trath is the only thing upon which we ought to depend, as on a firm foundation, and for which we ought to value ourfelves. Who is it amongit us, that fhall difcover the truth, confidering our biindnefs in judging even of the vifible objects that furiound us? Hence therefore, to conclude this effay, I fhall obferve, that every true and valuable difcovery is the gift of the Divine Grace, which God diftributes as he pleafes, and makes manifert at his own time. My obfervations, concerning the nerves, may be found in my hiftory of the Rhinoceros Beetle.

The End of the Natural Hifory of Frogs.

A comparifon of the changes in the Clove- Julyflower, with tbofe in infects during their. Nymph-fate.

Tав. XLVI.

1Exhibit in the figure of this Table, N^{C}. I. The garden Caryophyllus, or CloveJulyforver, under its frift coat or tunick, within which it goes by the name of the feed of the plant.

Il. The faid coat or tunick fallen off from the latent rudiments.
III. The little new germen, or firft fhoot of the plant.
IV. The faid germen opened into a few leaves.
V. The fame germen or bud, when its folliculus or flower-cup is called a gemma, or bud; in which condition I confider it as a Nymph.
VI. The Caryophyllus or Clove-Julyflower itfelf, after it has burtt open its gemma or bud, and is become ready to thew its feeds.
Having fhewn in general, in the firft part of this work, the fimilitude there is between the changes of vegetables and thofe of infects, I fhall now, to make it the plainer, give a particular inftance of it in the Caryophyllus or Clove; adding figures, to make every thing the more intelligible \%.

Tab. XLVI. Fig. I. Firft then I give a figure of this plant's feed, as it appears to the naked eye; and then, at the letter A, I reprefent it as it appears through the microfcope. Near the middle of it there appears a white protuberance; by which, while it remains in its cell, it receives life, nourihment, and increafe, in the fame manner with the eggs of infects in the ovary; fo that we may confider
this firft principle, which is likewife found in other feeds, as the cicatrix of the navel-ftring, after it has been cut and tied up. There appear alfo, on the furface of the feed of the CloveJulyflower, fome very pretty little jagged unevenneffes, interfperfed with black fpots; by means of which it looks not unlike that rugged fkin called chagreen, and may indeed be very aptly compared to that kind of ikin.

Fig. II. Secondly, I exhibit the coat, fkin, fhell, peel, rind, or tunick, which the Clovefeed throws off, in order to appear under the fhape of a germen, or firft fhoot, iII, juft as infects caft their fkins at the time of their changes.

After having reprefented the external appearance of the Clove-Julyflower-feed, N^{N}.I. and A, I give the form of the fkin it has caft off under N^{0}. II. At the letter B, I give the true appearance of the feed contained within that flin or coat, drawn after nature ; and at the letter C , as it appeared through the microfcope, that my readers may be able to form jufter notions of it. There are two things in this feed which deferve particular regard; namely, its prominent apiculus, or point, and that bivalve divifion or parting which is to be feen in the reft of its body. On the feed's being committed to the earth, we obferve that the point or cone bends downwards, and divides into roots at its extremity, N^{0}. III. whilft the reft of the body of the feed, opening more and more, at laft throws off its external coat, N^{e}. II. and conftitutes the two firft leaves of the future plant.

* In the courfe of vegetable nature, if the fyftem of verctable generation, juft publineà by Dr. Hill, be found to anfiver equally in all other plants as in the inflance there propofed, the origin of this part of Nature's products is very fimple. There remains nothing of that incomprehenfible doctrine of invigorating atoms, or a feminal air; but the whole operation is a continued growth. The fibres of the root are compofed of five fublances, laid over one another, and thefe terminate in the feveral parts belonging to the fower. The flefhy fubftance of the ftalk terninates in the antherx, and each termination of it is in a minute plant, which is Hodged in a grain of farina, and defended by a watry fubtance: it is with this carried down the fyle into the feed-vefels, and ionded in the feeds. Thefe cover it with new membranes; and when put into the gromad, it calts off thefe membranes, and uquises its growth, juft as this author obferves of the Clove; confuning all his ubiervations.

Fig. iII. As reprefented after nature, under the third number. I here exactly exhibit the two firft leaves of this plant, with its root, and the fibres belonging to that part, and all the tender little rudiments of the infant CloveJulyflower, which at this period exactly refembles an infect ; that has juft crept out of its firft coat or fkin.
Fig. Iv. Fourthly, I exhibit the germen of the Caryophyllus, or Clove-Julyflower, fome-what more grown, and adorned all round with excrefcent leaves, which may very well be compared with the little bundles of hair fpringing from the fkins of Caterpillars.
Fig. v. I fhew in what manner the germen, or firft fhoot, has at laft grown to a gemma or bud, calyx or cup, which contains the latent Clove-flower, neatly folded up; in the fame manner that the Nymyh or Chryfalis contains the future flying infect. But there is this difference, that the parts of the Clove are uniformly furrounded with one continued coat or flkin, like the embryo Chicken in the fhell of its egg; whereas all the limbs of Nymphs or Chryfallides are wrapped up each in its own pecular covering, without being ever found under one common coat, unlefs it be in fuch infects as never throw off their laft fkin; as is the cafe in the fourth order.
Fig. vI. Lafly, I give a drawing of the Clove, at the time when it is in flower: when, after having burft its calyx, gemma, or bud, in the fame manner that the new Butterfly breaks from its Nymph or Chryfalis, and acquired its full fize, and age proper for fhedding its feed; it feems to wait, in its gay attire, for the coming of its mate, juft as infects do for an intercourfe with theirs. But as the Great Architect has not allowed plants a power of motion, and has ordered that they fhould propagate the fpecies without copulation, this little flower by degrees breathes forth its life, by a continual evaporation of the moft fragrant odours, re-
fembling the breathing forth of fo many amorous wilhes; and finds only in its death the means of making itfelf immortal in its offfipring.
Thore are likewife infects, as I have elfewhere obferved, which, though diftinguifhed into males and females, propagate their fpecies without any venereal intercourfe. Of this kind is the Ephemerus. Even animals that have blood, as fifhes, for example, are found alfo to perpetuate themfelves in the fame manner.
If, therefore, we attentivety confider the order in which the parts of infects, larger animals, and vegetables increafe, and alter from one form to another, and the other particulars belonging to fuch increafe and changes, we fhail evidently fee, that all God's works are really founded upon the fame rulcs, and agree together with an inconceivable regularity. But who is it, that, after ferioufly reflecting upon fuch an agreement, dare maintain, that the meaneft being under the heavens can owe to mere chance its effence, exiftence, perfervation, and rank in the creation?

As the generation, breeding, increafe, and changes obiervable in the Louie, the Dragonfly, the Ant, Butterfly, and common Fly, how often foever repeated, are obferved to obey conftantly the fame laws, remain within the fame limits, and proceed in one uniform and certain manner; what reafon can there be to fuppofe, that the other parts of the creation fhould be governed with lefs widdom, power, and goodnefs? What grounds for the leaf diffidence in the Great Lord and Mafter of fuch an univerfe? What powerful motives rather have we not, to acquiefce humbly in his counfels, adore his omnipotent hand, and praife his works, whofe exquifitenefs infinitely furpafies the ftrongeft efforts of the moft fubtile and daring imaginations?

The Conclufion.

C^{C}Oncluding this work, I cannot but obferve that the manner in which the infects I have treated of, and all others, efcape the injuries of the cold and rainy feafons, is of too much importance, and too furprifing in itfelf, not to deferve fome fhare of our attention. Experience has taught me, that they do this in four different ways.
Firf, I have obferved that the infects themfelves, which have acquired their full growth and perfection, outlive the rigours of winter; at which feafon they fo entirely lofe all power of motion, that when taken from the little places of retreat they had chofen for themfelves, during the autumnal months, as bert agreeing with their feveral natures and difpofitions, they cannot by any means reinftate themfelves. But if you cherifh them gently with a warm hand, or hold them at a proper diftance to the fire, they not only foon recover the
power of moving themfelves, but likewife the ufe of their wings, with which they fly about as before, till the coldnefs of the circumambient air has again numbed them, or they have found other convenient winter-quarters. That all infects do not equally lofe this power of moving themfelves, is plain, among many others, in the cafe of Bees; for thefe not only open and fhut the doors of their hives in the winter feafon, but tenderly and diligently nurfe and rear their young offspring in the very depth of it. Hence it is, that not only young Bees may be found in the hives at the firf dawn of fpring; but that even it is a common faying amongt thofe that delight in this ufeful infect, that young Bees and Swallows make their appearance at the fame time.

Swallows feed upon Bees and other infects, which they feize in their moft rapid flights. For this reafon, in rainy weather, when no in-
fects are to be found in the air, thefe birds, in order to take them, fly near the ground ; a circumftance which has given a handle for that very abfurd notion of fome people, that Swallows can forefee an impending ftorm; whereas, as I have been juft faying, they fkim the earth in heavy, cloudy, rainy, or formy weather, merely to come at the infects, upon which they prey, and which, at thefe times, always betake themfelves to reft. For the fame reafon I believe Swallows conftantly follow the courfe of the Sun; and when winter comes upon us, retire to the other climates which enjoy at that time a pleafant Spring, a fruitful fummer, or a temperate autumn, and are therefore qualified to fupply them with a fufficiency of food.

I have obferved, that fome infects can only endure the winter in the worm-ftate. Thefe are found not only above and under ground, in the hollows of trees, between the leaves of piants, in the hearts of fruits, and in vegetable excrefcences, but even in the water, and are often enclofed in ice. But then it is obfervable of thefe infects, that moft of them are much fronger at this period, than ever they are afterwards, when they have gone through their changes, and are become capable of propagating of their fpecies. Thus we find that the Water-worm, which changes to an Ephemerus, is fo tenacious of life, that it can live many days after being run through with a pin; whereas in the Fly-ftate it lives even without receiving the leaft injury, but four hours at longeft. However, we likewife know by experience, that thefe creatures, tho' vigorous and robuft, perifh very fuddenly, if they do not happen to find quarters adapted to their nature. Of this the Worms found in Hazelnuts and filberts, are a friking inftance; for unlefs you place them in moint fand, where they dig themfelves holes to ferve them for winterquarters, not only they die very foon, but even in the face of one fingle night, will harden, and dry to fuch a degree, that thev will in a manner fall to duft between the fingers. I have obferved allo, that this is the cafe with the Worms bred in the tubercles of Mal-low-leaves, tho' they never make holes for themfelves it the earth, in whicn they may pafs the winter, but defend themfelves againft its rigours, by fpinning a commodious covering for their bodies.

Thirdly, I find that other infects pafs the winter in the Nymph-ftate, in which they may be found as well on the furface of the earth, as buried under ground; and even in the water, where they will live for fome months without any food ; for at this time, they want ftrength to take any, as well thro' the weaknefs of their limbs, as on account of the great quantity of fuperfluous moifure with which their, bodies are charged. I have likewife remarked, as I already mentioned, that the greateft part of thefe infects, which outlive the winter in a periect fate, require no food from one end of that feation to the other; for at that time their
juices move very flowly, and are in a manner condenfed by the coldnefs of the circum ambient air; both which are fufficient to account for fo long a faft.
Hence it is alfo, that there little creatures, when cherifhed with the leaft warmith, recover their former fenfes and motion; whereas, before, they were fo entirely motionlefs, as even not to void any excrements. And this circumftance affords us another proof of their not taking any food at that time; for where there is no lofs, there can be no neceffity for any nourifhment to repair the wafte.

Fourthly, and laftly, I have found infects to furvive the winter in their eggs ; in which, as I have heretofore obferved, they often wear the form of Nymphs.

But I fhall hereafter explain the advantages that accrue from this condition of Infects in the Nymph, and other flates, when I come to defcribe after what manner they bury their eggs in fpring, on the approach of warm weather, in the tender germina or buds of plants, and in the leaves of trees; a thing which 1 mightily long for the fatisfaction of fecing with my own eyes. Perhaps I may at laft find the means of fatisfying my curiofity. And, as no defcriptions or drawings can impart full and jut notions of the form and external appearance of thefe little creatures, I have formed a refolution of collecting fome hundreds of them, in order to preferve them in balfam, after having fufficiently dried them.

I could prove by the teftimonies of people of all ranks, that I have in my mufeum fpecimens of all the infects I have fpoken of in the foregoing treatife, to the number of more than twelve hundred, with their Nymphs, Chryfalides, and Vermiform-nymphs. But here, in order to do myfelf juftice, I appeal to that moft curious and learned gentleman the Abbé Boucaud, who, after he had been firft to fee me, in company with the celebrated Olaus Borrichius, Profeflor of Phyfick in the Univerfity of Copenhagen, thought it not beneath him to return often to my houre to examine the great number of natural curiofities I have there treafured up.

I might likewife appeal to the moft noble and accurate Paul Falconier, who fome time ago did me the honour of a vifit, and was pleafed to approve my occupations and fudies. But I would not have the readers imagine, that I have minutely examined every fingle infect of my collection; I have only reduced a great many of them to my four orders, as may appear to any one, that will be at the pains of confidering what I have faid of thefe orders. And this caution I gave in the fame place, for fear of deceiving others, and perhaps myfelf, with expectation of more being done in this branch of natural hiftory than there really is. Though, let us do as much as we can, I believe it fo far from poffible to know every fpecies of infects, and the changes of each, that I believe the labour of ages would not be fufficient to difcover all the kinds of them. In the mean time, I challenge any one to produce a
fingle infect, that may not be referred to one of the four orders of mutations which I have propofed; for to me, if I may here truft my reaion, the thing appears impoffible. I leave it to time to difcover the truih of this affertion ; and do not defire any credit to be given to my relations, unlefs the things I fpeak are found to agree exactly with the originals, as I have defrribed them after nature with all the exactnefs and perfpicuity I was mafter of.

Huvins thus produced every thing, which in my opinion could be faid in general, or in par-- hiar, concerning infects, 1 had refolved to add in Niler differtation on their eggs, worms, and Nymphs: but I muft defer this to fome other apportunity. I had even flattered myfelf with the hopes of being able to prefent the public with a feparate account of the little infects found in the bodies of others of a larger fize; but as yet I want fufficient experiments for that purpofe, though I am firmly perfuaded that nothing is to be attributed to chance in the generation of them.

I fhall now fay no more on this fubject, as it is moft evident that all God's works are governed by the fame rules; and as the true and primitive origins of them are infinitely beyond the reach of our comprehenfion, fo that we cannot be faid to know more than the bare outlinés of that infinite Being's image, to whom they owe their exiftence; fo I may hence, for certain, conclude, that all the knowledge and wifdom of philofophers, confifts merely in an accurate perception of thefe elegant appearances or effects, which are produced by firft caufes, and are often themfelves, in their turn, the caufes of other effects. For this reafon, we fhould flrenuoufly endeavour to make ourfelves well acquainted with thefe appearances, and then draw from them firm rules and principles; otherwife, as I have hinted in my preface, we may eafily lofe our way, and ftray into the paths of error, as difputing on nature, which is quite inexhauftible, without fufficient experiments, which, on fuch an occalion, are as neceffary to find us a path, confidering with what darknefs of ignorance we are furrounded, as a ftaff is to the blind. It often happens, through our own fault, that thofe things, of which we might acquire competent notions with very little trouble, become not only dark, but quite incomprehenfible to us, fo as to encreafe our blindnefs, by the erroneous inferences we draw from them, rather than add to our knowledge. Of this our great weaknefs, Goedaert alone is a fufficient example; for that author, by falfely imagining to himfelf, for want of proper experiments, that Caterpiltars, degeneraied into crippled and imperfect infects, as often as they performed their mutations, without being properly grown and fed for that purpofe, not only in confequence of this falfe pofition, involved all his other experiments in the moft perfect darknefs, but contracted himfelf fuch a blindnefs, that he could not perceive one of the moft excellent principles of natural hiftory, though it lay directly under his eyes. I omit naming many other naturalifts, who, too lazy,
of too proud, to make experiments. and guided only by their weak reafon, or weaker imagination, lave argued on the mutations of infects, with juft as much propriety, as a blind man may be fuppofed to fpeak of colours; infomuch that I fhould be aflhamed to put my readers in mind of their empty and childifh reafonings. Nor is there the leaft fhadow of excufe, for the unwarrantable boldnefs of fuch perfons, who were not afhamed to fpeak without any hefitation or doubt of things, whofe caufes and principles they were aterly unacquainted with. But, to fpeak my mind with freedom and candour: if we are to regard as idle and vain, all thofe reafonings of ours, which cannot be primarily demonftrated by experiments, and do not ultinately terminate in them, no reafonings can be fo ftrong and certain, as thofe which are drawn from the very obfervations and experiments, in which they may likewife be found to terminate. All fuch arguments, therefore, as want this firm and immoveable bafis of experiments, are to be greatly furpected of error, whatever fyllogifuns and enumerations people may think proper to build them upon; and when they do not exactly agree with experiments, they deferve to be rejected. Of this opinion was likewife the illuftrious Des Cartes, who, in his effay upon method, has the following words. "For I was always of opinion, " that more truth is to be found in thofe reafon" ings, which men make ufe of in the com" mon affairs of life, whofe bad fuccefs may "prove a kind of puniflment for their reafon" ing ill, than in thofe which fome idle doctor, "cooped up in his fudy, has invented concern-
"ing this entia rationis, and fuch other empty "queftions, that conduce nothing to the eafe and " happinefs of life, and from which he expeas " no other advantage, unlefs that of reaping fo " much the greater harveft of emply glory from " his arguments; as they contain lefs of truth " and common fenfe, on account of the extra" ordinary ftrength of genius, and application "requifite to give an impofing air to fuch ab"furdities."
If we duly confider the words of this able philofopher, and the great weight and importance of experiments, I believe we fhall find it not unjuft to dignify with the name of reafon that faculty of our minds, by the affiftance of which, we form clear and diftinct notions of things, whilft we make proper ufe of our fenfes in fufficient experiments, fo as to be able afterwards to effect exact copies of the originals we have thus endeavoured to be thoroughly acquainted with. For this reafon it is, that our idea of any thing is faid to be more or lefs clear and diftinct, according as we can produce another thing more or lefs like it; and are therefore faid to have more or lefs the power of it. This being granted, it fhould follow, that we have no clear, difinct, or perfect knowledge of any things, except of fuch as we can truly and effectually produce, according to the notions we have of them : fo that folid and perfect knowledge munt be allowed to be a very uncommon thing in man, and to be confined within very narrow bounds. This is an
imperfection we fhould readily confefs, if a principle of vain glory, cherifhed by that very ignorance, did not prevent us. To give an inftance of thefe things, which are in fome fort underftood by us, I believe phyficians, if they had clear and diftinct ideas of the ftructure of our bodies, and of the motions of the blood, and other juices belonging to them, would be able to mend radically any unnatural difpofition in thefe parts, as they could then prove the validity of fuch clear and diftinct ideas, by reducing them to the teft of experiments, which is allowed in every country to deferve credit, more than reafon irfelf. But as hitherto they are very unhappy in their attempts to cure our diforders, and are always perplexed by crofs events, from the weaknef's of their reatonings; we cannot but allow from this, and all, that the great Defcartes has beftowed no commendations on experiments which they do not highly deferve.

It is plain, from what has been faid, that fomething may exift in the underflanding, which never before had been taken notice of by the fenfes, tho' we cannot comprehend them ciearly and difinctly, unlers they terminate in the fenfes, or at leaft may effectually terminate in them. Befides, our underftanding becomes at length to difcerning, as through a frequent and attentive cblervation of experiments and fenfible effects; fometimes we are enabled to judge truly and folidly, without any previous experiment of things, which have never fallen under the cognizance of our fenfes. To this purpofe, is what Arifotle fays in the tenth chapter of his third book concerning the generation of infects. "We " muft truft our reafon, if what it demonftrates " be found to agree with the informations of " our fenfes."

All things therefore duly confidered, it does not feem unireafonable to determine, that if we had clear and diftinct ideas of the fructure of the human body, the motions of its juices, and every thing elfe relating to that wonderful fabrick; not only we fhould be able, by making a proper ufe of fuch ideas, to mend it when impaired, but might even fo far go beyond the bounds of nature, as to reftore its health and vigour, when entirely loft and decayed. For our induftry fucceeds the better, in producing things the more clearly and diftinctly it comprehends them ; whilft ignorance, on the other hand, is attended with a proportionable degree of weakneís.

But as it is not always in our power to make accurate experiments or obfervations, fo neither are fuch experiments always fufficient to give us clear and diftinct notions of the things themfelves. Such, for example, as on account of their extreme minutenefs or remotenefs, elude the fharpnefs of our fight. Let therefore no one be childifh enough to perfuade himfelf, that we can, by the bare efforts of our reafin, ever thoroughly underftand the genuine caufes of fuch things; not to fay the true effects produced by them.

For the higheft degree of wifdom we are capable of attaining, does not confift, as I obferved before, in the knowledge of caufes, but
only in the clear and diftinct comprelenfion of the true appearances or effects, by which fuch caufes difcover themfelves to our fenfes; but we afterwards make ufe of thefe effects, as fo many fteps by which we may climb to the firft caufes, and by the juft notions we thus acquire, we are enabled to produce an infinite number of things requifite to make life eafy and happy. Nay, even this knowledge reaches no higher than the perception of theie effects, as they are made known to us by a circumfpect ufe of our fenfes. And therefore, all our realonings that are drawn from experiments already made in one cafe, and then applied to another, in which we have not as yet made any, are to be held as dubious and furpectible till they end in, and are confirmed by immediate experiment.

For this reafon I am greatly pleafed with the illuftrious Harvey, when in the preface to his treatife on the gencration of animals, he fpeaks of the methods of finding truth, in the following words: " The prefent method " therefore, of inveftigating truth, is alto"gether erroneous and childifh, whilf the " generality are taken up in inquirng not what " things are, but what others fay of them, and "then drawing an univerfal conclufion from " fingular premifes, to which they often af" terwards add analogical reafonings, and al" moft always palm upon us for true, things " that are feldom more than at the utmof " probable. Hence it is, that many fophifts, " after ranfacking the inventions of others, " prefent them to us as their own, though " they have done no more than change the " original author's order and words, and made, " perhaps, fome few inconfiderable additions; " by thefe means they render philofophy, " which ought to be certain and perficuous, "dark, intricate, and confufed. For thofe, " who whilift they read an author's words, do " not abftract the images of things, compre" hended in their words from their proper "fenfes, inftead of furnifhing their minds " with true ideas, fill them with falfe idols " and empty fancies, which they work up in " their imagination, into fhadows and chime"ras; fo that all their fine theories or con" templations which they dignify with the " name of knowledge or fcience, ought ra" ther to be confidered as the dreams of men " awake, or the ravings of lunaticks." And a little before, he fays, "For the images of " things that come under the cognizance of "our fenfes, remain when the things them"felves have difappeared; and thefe images "confitute memory, which, by taking in a " great number of objects, forms in its turn, " what we call experience; and from expe" rience we derive univerfal reafon, definitions, " and maxims, or common axioms, which " are the certain principles of knowledge." He again fpeaks to the fame purpofe in his forty-fourth exercitation, and in the following terms. "It is therefore, no fuch wonder, "that fo many errors fhould have defcended
"even to our times from the remoteft anti" quity, with the unanimous confent and ap" probation of mankind; or that men of great "abilities in fome refpects, fhould have com" mitted miftakes, as they thought it fufficient " to be wife with the wifdom of others, or " learned with their learning, and to fill their " memory with the opinions of learned men.
"But thofe who philofophize in this manner
" by traduction, if I may thus exprefs myfelf,
" are not a whit wifer than the inanimate
" books through which they come at their " ill-digefted notions."

Thus alfo, the great Deffartes fpent his whole life in endeavouring to make philofophy a practical fcience, inftead of a merely theoretical one, as it had been to his days, that thereby he might make it fubfervient to the moft important purpofes of life and health. But as he confidered he might not perhaps live long enough, or be able to make enough of experiments to accomplifh fo noble a defign, he warmly exhorts men of fuperior abilities to fuch a tafk, and to lofe no opportunity of making experiments, and reducing every thing to that fure and infallible teft. To this purpofe he fpeaks as follows, in his effay on method. "But as I had propofed to fpend my " whole life in the acquifition of fo neceffary " a fcience, and fell upon a method, which I " thought would enfure me fuccefs in the en" terprife, unlefs death, or a want of expe" ments fhould interpofe; I judged the beft " thing I could do to remove thefe obftacles, " would be to lay before the publick a faith" ful account of all the advances I had made, " however inconfiderable; and at the fame " time endeavour to perfuade men of extra" ordinary genius to purfue what I had be"gun, and make each of them in particular " as many experiments as he could, and then " inform the publick of every difcovery made " this way, that by the laft beginning where " their predeceffors in this ufeful undertaking " had left off, and then joining together the " lives and labours of a great many, we might " fooner obtain our purpofe, than could be " done by the unaffifted endeavours of fingle "perfons. I have always found the more any " perfon knew, the more he ftood in need of " making further experiments."

The illuftrious Boyle, to whom mankind is fo highly obliged for his admirable writings, not only conftantly endeavoured, and that with great labour and expence, to add to the number of ufeful experiments already made, and thence derive certain, and folid conclufions, but likewife ftrenuoufly, tho' candidly, endeavoured to prove by the weightieft arguments,
the great ufefulnefs and neceffity of experimental phyfiological. Thefe are his words, in his proemial effay to certain phyfiological effays.
"If men could be perfuaded to mind more " the advancement of natural philofophy, " than that of their own reputations; it were " not, methinks, very uneafy to make them
"fenfible, that one of the confiderableft fer-
" vices that they could do mankind, were " to fet themfelves diligently and induftri" oufly to make experiments, and collect ob"fervations, without being over-forward to " entablifh principles and axioms, believing it " uneafy to erect fuch theories as are capable to " explicate all the phænomena of Nature, be" fore they have been able to take notice of " the tenth part of thofe phrnomena that are " to be explicated. Not that I at all difallow " the ufe of reafoning upon experiments, or " the endeavouring to difcern as early as we " can, the confederations, and differences, and " tendencies of things: for fuch an abfolute " fufpenfion of the exercife of reafoning were " exceeding troublefome, if not impoffible."

But that I may at length conclude, the fuccefs of my labours fo apparent in every page of this work, proves abundantly all that I have advanced on this occafion. For when I confider within myfelf, that by the help of experiments, I have here been able to difcover things, which not only men of moderate parts, but even the greateft geniufes, from the age of Ariftotle, to the prefent, during an interval of about two thoufand years, have in vain endeavoured to find out, I cannot but look upon this happy refult of my labours as the beft proof of the fuperior excellency of experimental philofophy. Nor is there here any occafion for a great parade of words to demonftrate the abfolute neceffity of diligently examining things in themfelves; for if our jufteft reafonings ought to terminate in experiments, to be built upon experiments, and purfue the courfe preferibed us by experiments, who is there, that would not, in forming his judgment of things, much rather truft to experience, then to the idle fancies of his imagination; nay, I may ank, who will hereafter dare to affirm, that we may depend upon our reafon alone, to come at the knowledge of every kind of truth? whereas it is moft certain, that by making a proper ufe of our fenfes, we may from the things we fee, gather fufficient information concerning thofe that we cannot : the end of the general and particular treating of infects, all which I have reduced to four orders, and proved to reft upon one fingle foundation, which is the Nymph.

A P P E N D I X.

The anatomy of the * Sea-Sepia or Cuttle-Fijf. Inforibed to the mof excellent Francis Redi, phyycian to the great Duke of Tufcany, a mof indefatigable Searcher into the miraculous works of Nature.

THEINTRODU̇CTION.

THERE is not among the foft fifhes, which are faid to have no blood, any that claims our attention fo much as the Sepia or Cuttle-fing ; as well on account of its external figure, which is wonderful beyond all defcription, as for the ftructure, order, and difpofition of its internal parts, which moft evidently fhew themfelves the work of infinite wifdom. I fhall not fpeak of the common mittakes and errors of the generality of mankind concerning this creature, much lefs attempt to cenfure thofe eminent writers, who before me have treated of this fubject ; for every one of them wrote of natural hiftory according to his own genius and fancy. I choofe rather to exhibit in a few words the external and internal parts of this extremely fingular animal. And whilf I do this, I appeal for the truth of my relation to the reader's own eyes, by defiring him to infpect the creature itfelf. Certainly, thofe who would avoid being impofed upon, fhould ftudy nature in herfelf; for fo many fallacies and errors have crept into the writings of preceding ages, that people cannot but be led aftray by them, as often taking things upon truft, they neglect to fee for themfelves. This will evidently appear by the following hiftory, which, tho' a new relation, does no more than exhibit in a new drefs the truth itfelf, than which nothing can be more ancient.

The Sepia or Cuttle, is a creature that has eight legs, two long arms or claws, a Mort head, very large eyes, and the beak of a Parrot. The body is fomewhat oblong, confiderably broad and thick ; and the back is prettily marked with feveral whitifh furrows, and elegantly dotted. The Sepia or Cuttle is frequently found dead on the Dutch coafts in the fummer months; it was there I firft met with fome of them, and made drawings of their vifcera. But the hiftory I am now about to give, is no more than a bare narration of what I obferved in two of them, which were brought me from the fea about the middle of May, and of which I took fhort notes and drawings, in great hafte, during four days that 1 fpent in this inquiry.

The moft confiderable parts of the Sepia,
which firft offer themfelves to our view, are its legs and arms or claws. The legs to the number of eight, are feated round its mouth. The two forefeet, Tab. L. Fig. i. aa, are very thick, and appear broad, when the filh lies flat upon its belly. The other fix are very like one another in fize and form. One fide of all there feet is covered with a common fkin, which is pretty ftrong, and of a purple colour interfperfed with many black fpots; befides which, the two larger legs are marbled as it were with fome white furrows b.

But the moft remarkable thing in thefe legs, is their being all thick fet with a prodigious number of particles like flattifh but hollow globules, and each fixed to a kind of ftalk. ccc; Yet the extremities of the arms or claws, to which authors have given the name of Promufcides, are ftill more largely furnifhed with therekind of tubercles. Thefe brachia or arms are very long, if compared wirh the legs, and they are placed near the bill or beak, in the midway between the broadeft pair of legs, and the pair next to it $d d$. They are of a cylindrical figure, and of a white colour intermixed with black and purple fpots. The fubftance of them, as well as that of the $x x$ legs, is foft; and they have the fame kind of fkin, but it covers them all over, which is more than it does in the legs. The extremities of the legs and arms are pretty much of the fame form, only that the tubercles of the arms are larger, and the ftalks upon which thefe tubercles grow much longer and ftronger than thofe of the legs e. The extremity of one of the arms is always larger than that of the other.

As thefe globules are hollow, authors have thought proper to call them A cetabula or fawcers. Rondoletius tells us, that this ftrange fifh can faften itfelf by its arms to any body it neets with, in the fame manner as cupping-glaffes ftick to the fkin by a kind of fuction. And certainly this is a very juft comparifon, as appears from the moft wonderful contrivance of thefe parts, which I fhall prefently defcribe.

It is to be remarked, that the fame kind of fkin which covers the under furface of this animal's eight feet, does not cxtend to the upper ; it

* The Sepia or Cuttle-fin is one of the animals of the fixth clafs in the Linnæan fyffem, which he entitles Vermes: it comes under the fecond order, to which he has given the name Zoophyta, and is arranged with the Star-fifh and Polype. The charatters of the genus are thefe; the body is oblong and deprefled, the feelers or tentacula are ten, and two of thefe are much longer than the others, and have a kind of foot-falks. Befide the Cuttle-fifh, this genus comprehends the Loligo, which the French call the Calamarie, and the Oftopedi defcribed in the Upfal-tranfactions. Of the Calamary we fhall have occafion to fpeak largely hereafter.
goes no further than the globules $f f f$, and there it forms a loofe border to the feet, which when the creature fwims, floats in the water. For this reafon, that loofe fkin can cover all the furface of the feet, and their acetabula at the creature's pleafure, as the edges and corners of a cloth, may fold over any thing that is laid upon it. Nor is it to the middle and bafis of the legs only that it performs this office, but even to their fharp ends, where the acetabula $g g$ are fmaller than in any other part. But thefe borders are more confpicuous about the extremities of the arms than elfewhere; for which reafon I have reprefented thofe belonging to one of the arms $h b$, as they appear when they cover the globules, except its being a little turned back.

The fkin which fpreads itfelf over the intervals of the globules, and covers the infide of their ftaiks, and even the external fkin's borders which I juit now mentioned, is in fome meafure as it were mufcular, and is of a much more delicate texture than the other skin. It muft likewife be obferved that the parts fupporting the acetabula tho' called ftalks, are not really fuch, but pretty confpicuous mufcles adminiftring to the acetabula.

I have obferved alfo, that thefe little mufcles are here and there diftributed over the infide of the borders of the external, fo as to be able to move thofe parts as well as the acetabula. For this reafon I confider what is called the skin in thefe places as a mufcular fubftance.

I have reprefented fome of the mufcles belonging to the acetabula of their natural fize, in order to give the reader a more juft jdea of them. Tab. L. Fig. 11. N°. I. fhews, how the mufcle is inferted underneath into the bafe of the globule, where it is fomewhat hollow; and how by expanding itfelf, and then contracting again a little, and afterwards expanding itfelf again, it in a manner entirely forms the globule. For as far as I could inform myfelf by diffection, the acetabula are altogether mufcular, and the tendons of thofe mufcles are inferted into a ring of a fubftance between horn and bone, which lies between the moving fibres of every acetabulum.
It appears, on examining the upper fide of the acetabulum, and the ftructure of its hollow, $N^{n} .2$. that it is likewife mufcular in thefe places; the little ring now mentioned hews itfelf very plainly on this occafion. The upper edge of this ring is generally black, but this blacknefs is only fuperficial, being no more than a portion of the external coat of the globule, and therefore it may be eafily removed.
By taking out this ring, and placing it on its fide, $\mathrm{N}^{Q} .3$. we obtain a good view of its conftruction, and the blacknefs of its upper edge ; we even difcover by placing it in this fituation, in what manner it is perforated in the middle, and its upper and lower edges waved in a ferpentine manner. Jhis conftruction, fo well contrived for receiving and holding the mufclar fibres, wonderfully contributes to keep the fing firm in is fituation.

The better to thew the black edge of this ring, and the manner in which it is turned, I have reprefentedit, $N^{0} .4$. in a convenient fituation
to thew all its upper circumferences: and have added a fmall fegment of it, $N^{0}: 5$. to make the conftruction of this part as inteligible as I poffibly could ; for it would be extremely difficult to underftand the ufe of this ring, without knowing exactly in what manner it is formed.

The advantage of this fingular conftruction confifts in this, that the mufcular fibres of the acetabulum can by contracting themfelves raife the ftalk or mufcle of the globule very high within the cavity of the ring, and thereby of courfe ftreighten the cavity of the acetabulum, whilft on the other hand the mufcle of the ftalk, by exerting itfelf at the fame time, again raifes itfelf and its fibrous parts out of the globule, fo as to make its cavity much wider and more fpacious than it was before.

Nor do I in the leaft doubt, but all the Cuttlefin's power of faftening itfelf, to bodies, or taking hold of, and conveying any thing to its mouth, depends entirely on the fingular conftuction, and exertion of the part juft now defcribed. Whenever this frange animal applies to any body that prodigious number of globules, with which its arms and legs are furnimed, and then immediately withdraws the mufcular ftalks of there globules, from within the hollows of the acetabula, taking care at the fame time, not to let any water into there cavities, the water repelled in this manner muft prefs fuch parts againft the body, againft which they lie, with an extraordinary force: And this end is the more certainly obtained, as the borders of the fkin which covers the arms and legs are likewife mufcular; and by containing and enclofing the globules at the time of their action, contribute greatly to hinder any water from infinuating itfelf within the cavities of the acetabula.

We muft therefore be more than blind, not to difcover by this fingle inftance, how wonderful God is in his works, feeing he has here effected, by means of repelled water, fuch a fuction (to make ufe oŕa common expreffion) as he has produced by means of repelied air in the vital element we breathe. Hence alfo we may eafily underftand, what Rondoletius fays of the brachia or arms of this animal ; and of the manner wherein it remains in the moft ftormy weather immoveably fixed, and as it were at anchor at the bottom of the fea; for at fuch times no doubt it dilates its acetabulum to the utmoft breadth, and faftens itfelf in its poft, by their means with an extraordinary degree of power.

The beak, Tab. L. Fig. I i, which lies in the center of the legs, is like that of a Parrot, and confifts as it were of two maxillæ or jaws, both moveable. Thefe maxillæ join each other in the fame manner with the body and the lid of a box, when the former flides up within the latter. The flefh which furrounds this beak, inftead of lips k, is regularly orbiculated and fometimes appears plaited or folded back in wrinkles, like a purfe that has a border to it.

Under the beak and legs appears the head, in which the eyes $l /$ are very confpicuous. The moft remarkable part of thefe is the cornea, which lies
upon
upon them fo loofely, that it may in a manner be moved backwards and forwards like the nembrana nictitansor winking membrane in birds. The operculum $m m$ of the pupil, makes its appearance very clegantly thro' the cornea, which is tranfparent : but this operculum does not appear any where to fo much advantage as in the Ray-fifh, as Stento has moft exactly defrribed it. I have likewife difcovered this operculum of a black colour in the eyes of horfes; at one fide of the eye, the pupil projects a little, nor is it exactly round in this place. On drawing this operculum over the pupil, the eye lofes its fight. Some time ago, I obferved that the crocodile lias a car's eye, having an aperture to its pupil, which in the day-time refembles a long flit.

The Cuttle-fin's neck is very floort, and like the head is elegantly covered with black fputs upon a purple ground. The upper extremity of the back n rifes by a remarkable procefs over the neck; fo that the creature can hide its head under it, in the fame manner that the naked Snail hides its head under its verge or border.
All the paris of the Cuttle-filh, yet mentioned, are foft, except the beak, and the carrilaginous rings of the acetabula. But the back is hard, firm, and incapable of motion, as the bone of the creature lies here, rusning quite thro' the back to the tail, without any vertebre or like divifions. The mufcles of the creature are inferted into this bone. That part of the body which lies at the two fides of the bone, is foft and mufcular 0000 , which makes it probable, that this extremity, which terminates the back and belly of the Cuttle-fifh, may be of great ufe to it in fwimming. The back-bone alfo is well contrived to anfwer the fame purpofe, for it floats on the furface of water, even when it is juft taken out of the fea, and before it has had time to lofe by drying any of thofe pieces, which may be fuppofed to make a confiderable part of its weight.

The colouring of the back afforded a very entertaining fight, for its furfuce was raifed with a great many white ftreaks and furrows like fo many veins interfperfed with very fmall black fpots; but between thefe freaks the fkin was of a deeper colour, and marked with larger black fpots. Where the flreaks ended, there appeared a great number of white fpots, which were either round or oval, even the extremities of the ftreaks were either round, or fhaped like a pear. The foft margin of the body was of a fomewhat deeper purple, fprinkled with fmaller black fpo:s, and fome others that were round and white; but it then grew whiter towards its extremity, where it ended in a deep purple edge. On the hinder part, where in other animals are feated the arms and tail, the margin was fomewhat divided or dented in, p; fo that from this nick, the body of the Cuttle-fifh appeared naturally divided into a right and left fide.

On handling the beak a little, it fell from the head, which gave me a very convenient opportunity of examining its fubftance, colour, and conftruction. The fubftance of this part is be-
tween bone and horn, and thicker and more compact on its upper part, with which the animal bites, but on the lower, to which the mufcles of the beak are fixed, more tendinous and inembranaceous. In figure it refembles the Hawk's or Parrot's beak, and has many things in common with it. The upper part, which, as I faid before, in the thickeft, is of a deep brown colour, which grows redder and redder in proportion as the beak grows more and more membranaceous. But as the beak confifts of two maxille or jaws, an upper and a lower, which meet together, and move one upon and towards the other, fo likewife they differ in conftruction. The lower part fpreads as it were into two wings Fig. rir. aa, between which the upper part finks, and fo meets this lower. The lower maxilla, or jaw, is on its hinder part folded back within itfelf $b b$, not unlike a paper tube bent back, by which means its flarp extremity becomes twice as thick and Arong as it would otherwife be. On the lower part it bends itfelf back, fo as to form a hollow furrow c. This beak appears altogether fibrous, and feems to be compofed of membranaceous tendons, hardened by degrees into a horny bone. The upper jaw of the beak d, is of the fame fubftance with the lower, from which it only differs in its curvature and form ; befides, its internal finus is much more deep and broad $e c$, to afford the tongue, which lies in this finus, the greater liberty to move itfelf. The mufcles alfo find better infertions in the hollow finufes of this horny bone, in whofe membranaceous expanfions they are fixed.

The tongue, which is thought to be a fungous fubfance, confifts of feven little cartilaginous bones, which lie very clofe to each other, and are befides united by means of a particular membrane. The upper extremity or point of the tongue is fomewhat crooked Fig. Iv. a, but the lower part is united with fonie mulcular and fungous flefh, in which it lies, as in a hollow tube. This flehy portion of the tongue is full of wrinkles and elegant folds b, which feem to contain a great many fmall falival ducts. I have found by diffection that a very confiderable falival duct 6 opens and difcharges into this flefhy part.

This falival duct defcends by a long tube, d, through the animal's neck into its breaft, where it divides into two branches, that terminate in two very confiderable glands, ee. Thefe glands feem, on nice infpestion, to be of the kind called conglobate, or by anatomints, though externally, they appear of the other kind, known by the name of conglomerate. On opening them, I found a kind of hollow in them, made to receive the faliva, fecreted by their fungous fubfance; but I could not difeern the ramifications of thefe two parts, which, no doubt, fpread themfelves through the parenchyma or flefhy fubfance of their glandules; but the coloured liquors I injected, thewed no fuch thing. Thefe g'ands lie within the breaft, on each fide of the gullet or throat, in fuch a manner, that this laft channel runs above and between them: this beft appears on opening the body of the fifh, af-
ter turning it upon his back. The tongue and parts belonging to it, when taken out of the beak, generally bring along with them fome of the mufcles, two of which, $f f$, I have here given a cut of. But I return to the tongue.

The contraction of the tongue, which, as I have faid, confifts of feven cartilaginous bones, becomes very vifible on parting it from the fungous flefh to which it is faftened, and in which it is wrapped up; but it may be made fill more conficicuous, by drawing off the membrane, Fig. v. a, with which the inferior part of the tongue is covered, and afterwards feparating from each other with a fine knife, at the extremities, the little cartilaginous bones, of which it confifts, b. After treating the tongue in this manner, we may fee by the microfcope, that every one of thefe bones is furnifhed with above fixty crooked cartilaginous papillæ, Fig. vi. a, in form of teeth, and in fome meafure refembling the papilla on the tongues of black cattle. By there the CuttleFifh, when feeding, is the better enabled to move its food, and difpofe it for an eafy fwallowing. The fore-part of thefe papilla, is of a clear and tranfparent amber colour, but the hin-der-part, which conftitutes the bafe, or root of the tongue, is of a tranfparent white. The beft way to examine the tongue, is to invert it, and then furvey it with a microfcope on the under or lower fide, where its bafe or root lies; for, by this means, we difcover, that in ftructure it exactly refembles the moft regular web, Fig. vii. a a, from the frame, or combination of the cartilaginous bones already defcribed. The fight of this admirable contrivance, induced me to take out the tongue and dry it ; but all its beauties vanifhed almoft entirely in the operation.

The body of the Cuttle-Fim, when laid on its back, appears much whiter, and has by far fewer fpots. But the moft remarkable thing in this animal, is an opening in this under part of its body, in which an expanded hand may be entirely buried: this is between the body and the mufcular partition that covers it on its fore-part.

On opening this lower part of the body, Tab. LI. Fig. I. a a, in a right line through the middle of the belly, $b b$, from the begimning of the breaft to the tail, c, and this without injuring the contents; there immediately appear feveral remarkable internal parts, fome quite plain and naked, and others appear more faintly, as lying deeper in the breaft and belly, and only fhewing themfelves through fome interpofing tranfparent membranes.

The firft thing which prefents itfelf here, is a bag or bladder lying in the fuperior region of the breaft, which I call the common excretory bag, or bladder. The colour of this part is white, its fubftance is mufcular, and its fhape is like that of an inverted funnel, very facious and broad at the bottom, d, and flender at top, e, it joins on each fide with two oval cartilaginous, mufcular and hollow little bodies, $f f$, which ferve to receive thefe two greater papilla, or cartilaginous eminencies, $g g$, which I have reprefented, one on each fide of the mufcular partition, loofely furrounding the contents of the belly, and
cut away by me upon this occafion. By this junction of the excretory bladder, and thefe oval bodies, it is provided, that nothing fould move foon, or be difcharged by the inferior parts of the body, without paffing through this excretory bag; and the fame wife difpofition of thefe parts, keeps the Fifh's eyes from being injured by the excrements, fperm, eggs, and black liquor, which all make their way through this funnel, as they certainly would, if thefe difcharges were to be made between the funnel, and the mufcular partition of the body: for this reafon alfo, nature has formed this bag or bladder of a mufcular fubftance, the better to difcharge its contents at the creature's pleafure.

As yet, I cannot fay for certain, whether or no the papillæ juft fpoken of, are naturally and conftantly united with the oval acetabula, which I have defcribed; for I have fometimes found them independent and disjoined. But as I could never find in there parts, the leaft mark of any rupture or fraction, the acetabula, on the contrary, always appearing quite fmooth, and the papillx of a bright polifn; I think it very probable, that the Cuttle-Fih has a power allowed it by nature of joining and feparating thefe parts, as neceflity requires.
The office of thus joining and feparating there parts, I am inclined to attribute to a pair of compact, oblong, white mufcles, Fig. I. $b b$, which at their upper extremities unite with the acetabula, and are contained within the lower edge of the excretory bag or bladder. Thefe mufcles are among the parts, which appear naked in the breaft, without any previous diffection. Nor do I fee any ufe they can be of except that which I have affigned them, of joining and feparating the acetabula, and the papillx, by doing which, the excretory bag or bladder is at the fame time dilated, fo as to facilitate the difcharge of its contents through the funnel already mentioned.

Hence, it is impoffible to thruft all the hand in the manner beforementioned, into the CuttleFih's body, without firft feparating the papilla from their acetabula.

On opening this excretory part, it appears compact and mufcular, and forms withinfide, on its lower part where it joins the breaft, a kind of lobe in the chape of a broad tongue.

The other parts that appear in this place, without further diffection, are the gills, $i i$, of a foft fpungy fubftance, placed on the two fides of the body, and forming a very agreeable appearance, on account of the extreme whitenels of a great number of blood-veffels, with which they are provided; and the colour of thefe veffels is greatly heightened by the greenifh hue of the gills through which they run.

Examining one of thefe gills, I found in only half of it more than forty divifions or ramifications of the greater blood-veffels; that is more than eighty to a fide. But if we confider alfo the prodigious number of thefe ramifications, which penetrate into the fubftance of the gills, Fig. I. k, where the mufcles adminiftring to thefe parts likewife run, we fhall have reafon to
think the number of there ramifications is almoft infinite.

Words cannot do juftice to the contrivance, order, invention, and moft elegant conftruction of thefe parts; fo that my figures deferve only to be confidered as the faint fhadows of their perfection. The gills are membranaceous underneath, near the roots, where they end in a flender ftalk, as it were, and are faftened, as appears, by a pretty ftrong ligament, $l l$, though as yet, I am not fure but this ligament itfelf, may be compofed of blood-veffels, not having had fubjects enough to examine thefe parts fo much as they deferved. On opening the divifions of the gills, this ligament makes a pretty appearance ; at the fame time, that we may difcover how thefe parts grow more and more flender towards their roots, m.

Indeed the conftruction of the gitls is more apparent in other kinds of fifh, whofe blood is red; for in fome we meet with cartilages, and in others real bones, over whofe furface the blood veffels are diftributed. This circumftance I formerly moft evidently difcovered in the Sturgeon, the Whiting, and other fifhes, by injecting their blood veffels according to a method peculiar to myfelf, and of my own invention. This I could difcover, and I faw it with the greateft aftonifhment, that the contrivance, ftructire, and order difplayed in thefe parts by the fupreme Architect, and difcoverable by thofe who love to contemplate Him in his works, were infinite in perfection and number, as I thall hereafter endeavour to prove by defcribing and delineating fome of them by way of fpecimen of the reft. In the mean time, I can fhew the curious the parts themfelves injected by me with wax of feveral different colours.

In that part of the Cuttle-filh's body, which I confider as the thorax, there is a protuberance, Tab. LI. Fig. I. n, by naturalifts called mutis. Upon this part there is always found lying an open pipe, quite loofe, fo as not to be confined to any one place 0 , but floating freely in the body. This pipe is, properly fpeaking, the animal's rectum, or fraight gut. It has alfo a remarkable aperture at its end, by which the fin difcharges its inky liquor from the bag contrived by nature to contain it. This bag lies in the lower region of the belly, where it dhews itfelf thro' the tranfparent interpofing parts p. Near the lower part of the ftraight gut there are two more fhort, open-mouthed tubular channels $q q$, for the difcharge of the feminal matter, the veffels of which lie under thefe channels, with an extuberant membrane between them r. Lower down in the fomach s, and under the ftomach, a certain little particle or body t, belonging to the fpermatick veffels, fhews itfelf thro' the tranfparent parts that lie over it.

In that part of the body where the extremity of the fraight gut floats loofely on the right, there is on the left another loofely-floating tubular aperture u, thro' which the tefticle itfelf difcharges its fperm, which is afterwards to be carried off into the water, thro' the com-
mon excretory duct. This tefticle is placed with its vas deferens, on the left fide under the gills x, and hews itfelf faintly without diffecting the parts that cover it.

It is now time to give a more complete enumeration of all the parts hitherto mentioned, with a fuller defcription of them; and the figures will make it ftill more intelligible : this I fhall do, after having firft taken fome notice of the parts of the Cuttle-fifh belonging to its head, which lies upon the back. It is here that we fee its beak, and the mufcular circumference of its mouth a, which I have here reprefented a little lefs than nature ; but in every thing elfe perfectly agreeable to the life. But, not to make mydrawings too large, I have taken the liberty of curtailing the legs, and the two arms in this figure $\beta \beta$, which I have exhibited in their natural fituation and pofture. I have likewife taken great care to fhew exactly in what order the acetabula are placed on the two forelegs, when the mufcles of there acetabula are contracted ; for it is an eafy matter to procure a fight of them in this ftate, even in a dead fifh. This is done by cutting fome of them off, with part of the leg to which they belong, and then dipping the whole in boiling water; for in lefs than a minute they become perfectly contracted.

I likewife give a drawing of thefe mufcles with their acetabula, as they appeared at the extremity of one of the arms, which I had ftripped of its internal fkin ; fo that their infertion and conftruction, Tab. LI. Fig. iI. a, may, by this means be very diftinctly feen, as likewife the order in which the acetabula themfelves are united with their mufcles b. It likewife appears by this figure, that both the acetabula and their mufcles, are much larger about the middle of the arms than at either of their extremities $c c$.
I have thought proper to reprefent in a fegment of one of the larger leg's, that lie over the head, Fig.I. $\gamma \gamma$, the internal ftructure of the legs themfelves. Their texture on the outfide is fibrous and mufcular ; but within-fide it is a little more fungous. In the middle of them there appeared fomething that I took for a blood-veffel, and I have here reprefented by a black dot δ.
'To take a furvey of the Cuttle-fifh's infide, it is neceffary to cut away the common excretory duct, and the mufcles which move its two acetabula, and then very cautioully to open that part which 1 call the thorax, and raife from it its membranaceous covering. This done, there appears the loofe fungous body, called mutis by naturalifts, and thought by them to have a great refemblance to the liver. I have always found this mutis regularly didivided into very diftinct parts. The upper part is very, thick, and with gentle treatment it may on each fide be eafily parted into two lobes, Fig. III. a. Otherwife, on wounding the coat that invefts it, its fubftance readily flows off, being exceeding foft, and like a liver bruifed by an anatomift, in order to extract its parenchyma,
parenchyma, or pulpy fuoffance. In the middle this mutis is very thick and fpungy, and at its-lower extremity conftantly ends on each fide in an obtufe appendage $b b$, which extends to the belly. The upper end of this organ lies in part on the throat, which lies itfelf alfo on the falival glands, Fig. V. beb, and thus runs under the mutis to the ftomach. Under the throat appears the great artery, which rifing upwards from the abdomen (where this animal's heart lies) fends to the mutis two confiderable branches, Fig. III. $c c$, that iffue from thence, as if they deicended from the thorax. The greatent part of this body lies upon the bone of the fifh, on each fide of the bone, and of the great artery, and it is only divided from the bone by a kind of fibrous membrane.
After this, the courfe of the blood-vefels running thro' the mutis, is difcovered by opening and turning over, Fig. III. d, the membrane that enclofes it. But the fubftance of this part is fo very foft, that by expanding itfelf like a liquid, it intirely hinders the view. This makes it neceffary to feparate with a fpatula this pulp from the veffels that go thro' it, and afterwards thoroughly wafh the veffels themfelves with water. Thus, at length, a fatisfactory fight may be obtained of the difrribation of the blood-veffels, Fig. IV. e. By this procefs we likewife difcover that the fubtance of this part is in a manner entirely compofed of an infinite number of little grains, being loofely connected with the blood-veffels f; but then a good microfcope is requifite to diftinguifh thefe fmall corpufcles. The colour of the mutis is between red and yellow, fomewhat inclining to a brown. I cannot determine what the ufe of it may be; it lies entirely by itfelf, within a peculiar membrane, and confifts of two diftinct bodies, without having the leaft refemblance to the liver, as heretofore idly pretended. Neverthelefs, I cannot take upon me to deny its performing the fame office with the liver, as the wonders of nature are inexhauftible, and God the mafter of nature has, in different animals, formed in a various manner organs fubfervient to the fame purpofes; this will evidently appear by the furprifing fructure of the genital parts of this animal, which are contrived with an art and elegance that furpafies all defcription.

The throat, as I faid before, runs under the mutis, and has its origin in the fame place nearly where the fauces terminate. By the fauces, I mean that wrinkled and mufcular part of the fkin, which reaches from the beak and mouth, Fig. V. a, to the beginning of the gullet, or that tube which runs from the mouth to the fomach. . This gullet paffes under the brain, and then defcending into that part of the body, which I call the thorax, it there lies fofly upon the falival glands $6 b$, and is connected with the two already taken notice of; from whence it runs in a ftraight line to the abdomen, where it opens into the ftomach c. The flomach refembles in a manner a fpherical bag; but it is fome-
what indented in the midile. There run thro' it a great many blood-veffels d, which are feen the better by injecting the arteries with fome coloured liquid. This organ confifts of three cuats ; the external coat is membranaceous; the middle coat mufcular; and, as to the internal coat, it readily feparates from the middle coat with the food it immediately enclofes, and fo may be eafily taken out of the ftomach with all its contents.
The Cuttle-filh, I could oblerve, feeds upon Shrimps; for there remained in its ftomach the eyes, legs, and tails of Shrimps, with fome of the rings of their bodies. I could difcern alamong thefe, remains of the back-bones and ribs of fome very finall fifhes.
The ftraight gut, Fig.V.e, iffues immediately from the ftomach, and is the only intertine I could difcover in this animal; fo that the veins muft take the aliment immediately from the ftomach, and then convey it to the heart, whofe bufinefs it is to diftribute it over the whole body.

Under the ftraight gut lies an appendage of the fomach, into which it opens by a particular orifice, after twifting like a fnail in a very remarkable manner f. I cannot fay for certain what this part may be; tho' to judge anatomically of it, I foould take it for the pancreas, which, except its not being twifted, appears of the fame conftruction in a great variety of fifhes, as may be feen in a treatife of mine on that part of the creation, adorned with figures, printed by Commelyn of Amfterdam, and dedicated to the College of Phyficians of that city. This organ is very fmooth and flippery on its infide, and contains a mattes like the pancreatick juice of other fifhes.

The white bag which contains the Cuttlefin's ink g, lies principally in the left fide of the body, and communicates by a flender channel with the upper extremity of the ftraight gut h; fo that both the feces and the ink are difcharged thro' the ftraight gut by one and the fame orifice. This bag is in part membranaceous, and in part mufcular ; and. is furnifhed with blood-veffels, which run over its furface i. Within I difcovered a little glandulous body, or mafs, which perhaps ferves to generate or prepare the ink ; for I had not opportunity to examine it thoroughly, on account of the ink's flowing fo confpicuoufly, that it was impoffible to wafh it off faft enough to obtain a fatisfactory view of this organ.
It is therefore neceffary not to wound this part on diffecting the Cuttle-fifh, as by pouring out its contents it would infallibly render all the other parts invifible. The ink contained in one bag is fufficient to communicate a blacknefs to feveral pails of water, fo intenfe is its colour. I fhall not pretend to fay abfolutely what the ufe of this ink may be; or whether or no it may ferve to obfcure the furrounding waters, and thereby fecure this animal from other filhes which would devour it ; for, as yet, I have had no experience in this matter. But it is certain that the Cuttle-fifhes I found
dead on the fea-fhore contained a greater quantity of this ink than thofe which were brought to me alive. The liquid is infipid to the tafte, without the leaft fowernefs or bitternefs; fo that I cannot fee how this infipid fubftance, by being boiled with the Cuttle-finh, can in the leaft contribute to give it an extraordinary relifh, as thofe pretend who feed upon it ; tho' the moft general manner of ufing this fifh; is barely to give it a drying in the open air.

The ink taken out of its bag, and poured into a glafs coagulates and grows hard in a few days, when it feparates into. a great many little pieces, which, ground upon a ftone, afford the moft elegant black paint. This convinces me that the Indians prepare their ink with nothing but this juice. I have even obferved that this fubftance, while in a liquid form, fruck fo ftrong a black, that no warhing could get it out; as particularly appeared in a black coat made of a flight dutch cloth, which had fome yellow ftains from aqua fortis : near the ftomach, and between the folds of the pancreas, there lies a glandulous body, which runs to the throat, Tab. LI. Fig.V. $k k k$; but Iam as much in the dark, as to its ufe as to that of the inkbag ; tho' I think it belongs to the organs of generation, which I fhall hereafter take notice of, having firft deffribed the heart, brain, and nerves; and likewife faid fomething of this creature in particular.
The heart of the Cuttle-fifh, contrary to what we obferve in moft other animals, lies in the abdomen, Tab. LII. Fig. I. a. It is of an oblong triangular form, and in colour very like a mufcle that has neerly loft all its blood. Its external furface is tolerably fmooth and even, and its internal one fibrous, and divided into little hollows, and prominent columns. I could difcover but one ventricle in this organ.
The Cuttle-fifh's heart has two auricles; for as the gills in this animal are placed on each fide of the body, and at a great diftance afunder, nature it feems, has thought proper that, inftead of one, this fifh fhould have two auricles $b b$, which I have here reprefented, as they appeared on feparating them from the blood-veffels of the gills $c c$. They are of a membranaceous texture, and, when blown up, are of the fame figure exactly with the defign I give of them. I have no more at prefent to fay of thefe parts; for they had almoft efcaped my notice when I happened to difcover them ; fo that to acquire a thorough knowledge of them, I fhould have had more fubjects; which are not to be obtained without great trouble and expence, on account of the brutality and avarice of the filhermen, who fell the produce of their hardeft labours for nothing in a manner, whilf they fix an extravagant price on fuch things as come in their way without their being at the pains to look for them. In the mean time I muft obferve, that this fifh's heart having but one ventricle, at the fame time that it has two auricles in common with other animals, is altogether fingular, and may well deferve to be confidered as a paradox. The blood
of the Cuttle-fin is white, which is all I can fay of it, as I never examined it ; tho' I had refolved to fave fome of it in a glafs tube for microfcopical infpeCion, and in order to find out its analogy to the red blood of other animals.
The great artery, which firft rifes from the heart d, is of the fame conftruction with that of fifh; but it grows fomewhat fmaller in its courfe, and fends forth two pretty confiderable branches, which immediately difpatch lefs ones $c e$ to the mutis, whilft the others run to the mufcular parts of the reft of the body; fo that fome of thefe ramifications are feen plainly thro' the tranfparent fkin under the two mufcles, which move the acetabula of the common excretory duct, Tab. LI. Fig. I. y; from whence they extend to the gills and feveral other parts. After this the artery formed into one trunk, ftretches to the bafe of the brain, Tab. LII. Fig. I. f, where it divides into various branches, fome of which run thro' the cartilages, that enclofe the brains in place of a fkull, whilft the reft diftribute themfelves to the legs and other parts of the body. But it is yet unknown what is the courfe of the veins in this creature, and whether it has like finhes a firt and fecond artery, thefe are things I have not yet been able to difcover ; neither can I tell for certain, whether or not the two veffels fpringing from "the lower region of the heart itfelf $g g$, and here moft exactly reprefented by me after life, are really veins, as I think they are. But all thefe doubts may be cleared up by repeated diffections.
The brain of the Cuttle-fifh is very fmall, and is plainly divided into a right and left portion, Fig. II. a To fee this conveniently, it is proper to turn the animal on it's belly, then open its head, and cut away with a very fharp knife the cartilages that contain the brain, ufing great caution for fear of injuring the nerves which iffue from it. The brain lies on the back part of the head, in a manner entirely buried in fat, which I have here for diftinction fake reprefented by dots b. It is no eafy matter to feparate this fat on every fide without hurting the brain on account of it's exceeding foft and delicate texture. The optick nerves $c c$ are likewife at their origin furrounded with fat; but in their progrefs, after running thro' the cartilages of the brain, they dilate into a confiderable knot $d d$, which feparating into two tubercles, as it were, fends thence towards the eyes a great number of nerves cece, as I have endeavoured to reprefent them one fide. This numerous body of nerves is interfected by a confpicuous blood-veffel f, before they can reach the choroide tunic, or coat of the eye; which is remarkable for its great variety of beautiful colours; and is fo invefted with thefe little fibres, which embrace and furround the eye on every fide g, and have a great fhare in compofing it, that this ufeful organ muft receive great ftrength from fuch an acceffion. About the upper region of the eye, where the iris fhews itfelf in other animals, this coat forms in this
a globular prominence b, from which a cryftalline lens partly projects i.
I have thought proper togive a feparate drawing of the pupil's covering or lid, continued to the extremity of the choroide tunic ; I firft reprefent it on that fide where it was cut from the eye Fig. ini. k, and looks of a deep green colour, which by degrees grows paler, and is interwoven with delicate veffels. I then exhibit its other fide, by which it may be faid tofloat freely in the aqueous humour, and reft againft the crytalline lens. In this part it is of a filvery whitenefs, and interfperfed with very delicate ftreaks or fibres. Thefe fibres look as if they were continued not only to the filaments of the iris, but likewife to thofe of the choroide tunic, which I have already reprefented. This covering or lid of the pupil is of an extreme blacknefs in that part of it, which lies over the fuperior region of the cryftalline lens.

I could find but very little of the aqueous humour on the infide of the eye, whereas that confituting the cryftalline lens was in confiderable quantity, and was tolerably compact. But there was fomething fingular in this laft part, namely, its coat's being of an extraordinary thicknefs, and likewife its ciliary ligaments penetrating fo deep into the cryftalline lens, that it in fome meafure as it were divided this part of Tab. LII. Fig. Iv. m, the eye; thismay be beft feen on the fore part. On boiling this eye, and then pealing off the ciliary ligament, along with the coat of the cryftalline lens; and likewife the fore fegment of this lens from its back fegment, the lens itfelf appears exactly like a globe contained in a femiglobe, or like a fphere in a hemifphere.

The vitreous or glafly humour was in a manner fo perfectly fluid, as rather to deferve the name of an aqueous than vitreous humour. I could not difcern exactly the retina, as the black juice of the avea happened to get out of its membrane, and thereby fpread an impenetrable obfcurity all over the adjacent parts. This accident for want of fubjects, obliged me, to put an end to my anatomical furvey of the eye; and therefore I thall return to the brain, and the nerves that iffue from it.

From the fore region of the brain, there arife three confiderable pairs of nerves, which, after making their way thro' the cartilages of the brain, run in a moft beautiful manner to the mufcles of the head, beak, legs, and adjacent parts. But the conftruction of the middle pair is more admirable than that of the lateral ones, as it fwells into a node or globule Fig. ir. n, from which the nervous branches iffue in a mof elegant manner, like rays of light of the fun's body.

The better to fhew the fituation of all there parts, I have given a particular engraving of the cartilages which furround the brain 00 , as well as thofe ferving for a foundation or prop to the eight legs, $p p$, in the center of which lie the mouth and the beak. From the back part of the brain iffue two very large nerves, q, which form each of them a remarkable knot, $r r$, after having paffed through the thorax, and under the mufcles that ferve to move the acetabula
of the common excretory duct. I could count more than twenty little nerves, which fprung from each ganglion, and were diftributed to the region of the gills; after running on each fide of the acetabula, of the common excretory duct, where they in part hewed themfelves through the tranfparent fkin, Tab. LI. Fig. I. z.

The genitals of the male Cuttle-Fifh may be divided into three parts, one teficle, and two glandulous parts, between which there lies another glandulous body, divided into a great many lobules; and lafty, a peculiar glandulous and fpungy body, in Chape like a heart, feated under the animal's ink bag.

That part, which I call the tefticle, on account of its external appearance, is fo admirably contrived, that it greatly furpaffes all the wonders I have hitherto related of the Cuttle-Fifh. It ends in a particular open-mouthed tube, which floats loofe in the body, like the end of the ftraight gut, u. It is through this tube the tefticle difcharges its fperm, fo that it may very properly be called the vas deferens of this organ. I could fometimes obferve fome very tender and delicate white fibres hanging from this part, Tab. LII. Fig. v. a; but I cannot fay whether they were natural, or were occafioned by fome diforder in the animal, as I never examined them in a live one. This fingle tefticle is oval, but it ends at the bottom in a kind of a point, 6. In the centre of it there is a little body, which very nearly anfwers the paraftata, or corpora variaformia of quadrupedes, and even of man, c; but I have not yet been able to difcover where this veffel begins or ends. The nearer this little body, juft taken notice of, approaches the tefficle, the broader it grows: this circumftance may be beft feen, by turning the tefticle upfide down, and then divefting it of the great number of membranes which cover it, e. I have fome reafon to think, that the whole tefticle may be unfolded, and wound into one long veffel, fomewhat flenderer at its beginning and at its end, than in the middle, and terminating in a curious curled little tube, d. The texture of the genital parts already mentioned, is glandulous. In the narrow parts of the channel juft now fpoke of, there is found a white fpermatick matter, which, on wounding this part, iffues forth in form of coagulated milk; but the fubfance contained in the fomewhat wider parts, is tranfparent : the wideft parts of all are full of an infinite number of little delicate white parts, fomewhat crooked, which are altogether free and loofe at their hinder ends, Tab. LII. Fig. vi. f; but at their fore ends, they terminate each in a very delicate filantent, g, by which they are in a manner linked to each other. Thefe delicate fine threads may be unwound, to double the length of the other parts to which they adhere; and on taking both the threads and thefe parts into the open air, the former immediately harden like the threads drawn from filk Worms, and fhine and glitter like a looking glafs.

The moft furprifing circumftance in this part is, that on throwing fome of thefe into water, they, after a little time, begin to move, and then open-
ing at their hinder, and fometimes at their fore, extremity, they fuddenly difcharge a little white body, which, on its efcape, rolls and curls itfelf up in a ferpentine manner, b, the larger part, all the while continuing in its former ftate, without the fides of it falling together. This furprifing little body, when viewed with the microfcope, looks like a very white Earth-worm, divided into a great many exceeding fmall rings; and if left in the water for fome time, it expands and grows bigger by degrees, by the water it imbibes, which makes me imagine, that the water may poffibly be the caufe of that wonderful motion obfervable in thefe parts, on their being put into it.

There particles, when thrown into firit of wine, remain perfectly quiet, without any opening.

Thefe parts may be very diftinctly feen thro' the tranfparent coats of the teflicle; and they appear divided into a great many rows. Sometimes even they may be obferved to have rolled themfelves into ferpentine coils, and difcharged their white particles, before the tefticle has been opened, Fig. v. ii.

On examining with the microfcope one of thefe minute parts, we may plainly perceive its conftruction, and can fee a tranfparent fpace, like an air bubble, at its hinder end, Fig. vir. a a A little higher up is the region, within which lies the little furprifing moving white particle, juft now fpoke of, b. But I have here reprefented it much fhorter than it appears through the microfcope, for fear of enlarging the drawing to too great a fize. This little part grows tranfparent again near its fore end, Fig. VII. c. But the fore end itfelf is very neatly curled, d, and it is from this extremity that the filament iffues, which hardens in the air, like the Silkworm's thread, e e.

Whether there filaments be hollow, and whether the fperm be generated in the cafes which contain them, as in fo many kind of feminal tubes, or whether all the cafes themfelves, with their contents, be difcharged by the animal at the time appointed by nature, for is fhedding its fperm, are very obfcure queftions, which as yet I am not able to anfwer *. Let it therefore fuffice, that I have juft exhibited, to the glory of the Great Architect, the admirable beauty and
con-

* The public received fome few years fince, an account of thefe veffels in a fpecies of Cuttle-Fih, from the ingenious Mr. Turberville Needham: but we fee the firt account of them is owing to this author; and much is yet to be expected in the perfeeting their hiftory, from fome future philofopher accuftomed to thefe inquiries, who fhall have opportunities of obtaining the animal alive. The fpecies mentioned by Mr. Needham is, as we have before obferved, the Loligo of authors; and his obfervations on the conftruction and action of thefe particular parts, is this-
The outward tranfparent cafe is cartilaginous and elaftick: its upper extremity is gathered into a round head, which is in reality nothing more than the top of the cafe involuted into itfelf, and by that means clofing the orifice, through which the interior apparatus fprings in the time of action.
Within this is contained a tranfparent tube, elaftick, as it appears from the phenomena, in all directions, and forcing its way whereever it finds a paffage, which tho' the continuation of it is not equally fenfible in all parts, may be eafly difcovered in a courfe of experiments to inveft the fcrew, fucker, barrel, and that fpungy fubltance, which imbibes the femen. The fcrew is inferted in the upper part of it, and throws out of the head of it two flender ligaments, which faften it with the whole annexed apparatus to the top of the outward cafe; the fucker, and barrel or cup, are lodged in the middle of the tube, and the fpongy fubftance containing the femien diftends the lower part.

I fhall now proceed to the feveral phxnomena's that appeared in the action of this minute machine, which to me at leaft feemed fo furprifing and inexplicable, that I think myfelf obliged to premife, that I am in no wife anfiverable for any feeming contradictory confequences, which may poffibly be drawn from matters of fact I dont pretend to account for: all I can affure the public of, is, that they are literally true, jult as they are related, and were feen by feveral perfons, as well as myfelf. The objects I have now by me preferved in fpirit of wine, which, though they retained their activity for more than twenty days after they were taken out of the predy of the fifh, and immerfed in fpirits, without any fenfible diminution, yet now have in a manner totally loft it, though they remain to all appearance in the microfcope perfectly the fame. If therefore any of my readers defire to verify the facts I have mentioned, they muft apply in the feafon for frefh objects, and do their utmoft to procure the milt-veffels when perfeetly ripe for action; for thefe only will anfiver to all the phænomena I have taken notice of, though the lefs mature will fuffice for moft of them.

Tho' many of the milt-vefiels, when they are ripe for action, and difengaged from that glutinous matter which furrounds them while they are in the milt-bag, will act immediately in the open air, for which perhaps the flighteft preffure during extraction may be fufficient, yet the generality of them will not only bear a tranflation to the object-plate, and lie quiet for obfervation, but alfo require a drop of water to moiften the upper extremity of the enclofing cafe, before they begin to operate.

Upon application of this, the extremity begins to evolute and unfold itfelf, and the two flender ligaments, which emerge out of the cafe, turn and twift themfelves in various directions: at the fame time the ferew moves upwards with a flow motion, the fires at the top gathering clofe together, and acting againft the head of the cafe, while thofe at the bottom advance proportionably, and feem to be continually fucceeded by others out of the head of the pifton; which fucceffion I believe to be apparent only, and not real, the appearance being owing to the nature of the motion in the fcrew : in the interim, the fucker and cup, or barrel, move gently on in the fame direction ; and the inferior part of the apparatus, which contains the femen, extends itfelf in length proportionably, with a motion at the fame time upwards, which may be perceived by an increafe of the vacuity at the bottom of the cafe. Soon after this, the top of the fcrew, with its enclofing tube, appears out of the head of the cafe, and as it is there fattened by its ligaments begins to bend: the motion of the whole continues thus flow and gradual, till the fcrew, fucker, and cup have forced their way, and emerged totally, when at that inftant the remainder of the apparatus fprings out at once, the fucker feparates from the cup, the feeming ligament below, the cup fwells out to the diameter of the inferior part; the inferior part, though diftended confiderably in breadth, more than it had been in the cafe, extends itfelf to five times its original length; two knots, between whicl the tube contracts itfelf in diameter, form themfelves, each at about the diftance of one third of the whole from both extremities, and the femen flows out of the cup, confifting of fmall opake globules fwimming in a fort of ferous matter, juft in the fame form, and without any appearance of life, as I had feen it before, when diffufed at large in the milt-bag. After the operation, it is to be obferved, that the fringed edges between the two knots appear upon examination to be nothing more than the interior fongy fubftance broke and disjoined at almoft equal dittances, as will be clear from the fubfequent phænomena.

Sometimes the fcrew, together with the tube, breaks juft above the fucker, and the fucker remains in the cup, of which I have alfo given a drawing: in that cafe the invefting tube clofes inftantly at the extremity of the fcrew, as far as it will permit, and contrats itfelf nearly in a cone, which plainly indicates its great elafticity in this, as its conformation to the fhape of the enclofed fubftance upon the leaft change does in every other part.
At firft view, an obferver would be inclined to think, that the action of the whole machine is to be derived from the fpring of the〔piral fcrew; but the following experiments, which I tried with a view of fatisfying myfelf in that particular, not only evince the falfehood of that fuppofition, by demonftrating that the fcrew can at moft act but as a counter to a force entirely latent, but afford a train of phenomena fo furprifing, that they totally filenced all the hypothefes I was capable of forming. The experiments were tried upon milt-veffels, which though not fufficiently mature for the ejection of the fucker, dilatation of the feeming ligament below the cup, and the expreffion of the femen, had already attained the full force requifite for the exertion of the interior apparatus out of the enclofing cafe; thus they completely anfivered my prefent purpofe, as well as the moft mature could, and remedied the misfortune I had of lofing the only parcel of mature milt-veffels I have found in the courfe of my inquiry, which I had laid by for further obfervation.
contrivance of thefe parts; contented as I am in being thought ignorant of every thing elfe belonging to them.

As to the other parts, compofing in my opinion, the organs of generation, the conftruction of them is very remarkable; for they feem as it were to confift of two diftinct glands, placed at the fides of the abdomen, and thereconnected with the gills, Fig. viri. aa, from which I feparated them. Thefe glands are white, and there adheres to each of them another glandulous body, by means of a glandular tube, in form of a ftalk $b b$. Thefe corpufcles are of a fomewhat grayer colour than the reft, and have each of them a confiderable flit, with a great many little openings at the bottom, through which iffues the feminal matter formed in there and the inferior particles.

This feminal matter, after flowing from its glands, is conveyed to a bag that lies at one fide, and is reprefented under the letter r of Figure I. Tab. LI. from whence it is difcharged out of the body by two diftinct tubes. The mouths of thefe tubes appear very plain at the fides of the flraight gut; and the matter they contain, may even be fqueezed out of them. Thefe tubes are exhibited in the figure and table laft mentioned, under the letters $q q$. But I cannot as yet take upon me to fay whether or no they ought to be called the proftaftx, or what other organs they may properly be.

Among the parts I am defcribing, there lies a glandulous body divided into lobes 'Tab. LII. Fig. $c c$, viil, and connected by means of fome delicate membranes $d d$. Thefe lobes are again moft beautifully divided, as it were, into a great many branches, covered with tender, and in fome fort membranaceous, glands, which in the animal itfelf forms a moft entertaining fpectacle. From this body there arifes, on preffing, another kind of fpermatic matter. The lobes laft mentioned, and their glands, are of different colours, partly white, and partly inclining to gray ; the glandulous body itfelf alfo, which I heretofore reprefented as adhering to the ftomach, feems to have a communication with thefe glands; for as
yet I cannot take upon me to affirm pofitively, that it has any. I mult have more fubjects to examine, before I can determine any thing in regard to this and feveral other particulars relating to this Cuttle-fifh. The beft time to take a thorough furvey of the creature, would be when the fperm is not as yet arrived at its full maturity. But fuch a furvey would require a great deal of attention and leifure.

The third part belonging to the fpermatic veffels has been already exhibited, as it appears through the tranfparent k in under the letter i, in the firft figure of Tab. LI. Fig. I. It lies in the lower region of the abdomen, under the ink bladder. It is of a glandulous fpungy fubftance, and contains a feminal matter, which may be eafily preffed out of it. Its fuperior region is fomewhat broad, flattifh, and depreffed, Tab. LII. Fig. ix. a; the inferior terminates in a manner in a double or forked point b, fo as in fome degree to refemble the fhape of a heart. I cannot fhew the channel by which this part difcharges its fpermatic matter, as I tore and broke it, on ftriving to take it out of the creature's body.

I could not at this time narrowly infpect the genital organs of the female Cuttle-finh, becaufe I wanted a fufficient number of fubjects; and thofe, in which I obferved all the particulars hitherto related, were both males. For this reafon I cannot now take upon me to give a fatisfactory account of the parts vifible in the female, or to fay whether or no it has any genital organs anfwering to thofe, I have already defcribed and delineated, as belonging to the other fex. I fhall therefore attempt no more at prefent, than juft to give a drawing of the genitals of a female Cuttle-fifh, which I fome years ago took care to prepare and preferve, referring to fome other time, when I fhall have inclination and leifure to perform fuch a tafk, a thorough furvey of thefe parts.

The firft thing Ihere reprefent, is the ftraight gut a, Tab. LII. Fig. x. to the fide of which adheres the channel by which the ink is difcharged b. The ink bag itfelf c, lies upon the ovary $d d$. At the other fide of the ftraight gut

If the milt-veffel be divided juft below the cup, that part which contains the femen extends itfelf infantly; and though a part only, and not the whole of it fprings out at the opening, as it does not when fevered from the reft of the apparatus, yet upon application of water, it works itfelf out by degrees with a flow motion, and emerges almoft entirely out of its cafe.

If the lower extremity of the outward cafe be cut off, it difends the feeming ligament below the cup to an inconceivable tenuity, breaks it without deranging the fcrew, or caufing any alteration in the fuperior part of the apparatus, and goes out at the opening.

In one of thefe experiments, the feeming ligament breaking after diftention, ftruck with fuch fmartnefs the fide of the enclofing cafe, that, though cartilaginous, its extremity forced its way through by its elafticity, and retired twifting itfelf again into the cafe; which can be accounted for no other way, than by fuppofing it extremely elaftick, and its force upon this occafion fomething analagous to that of a filken thread, which, if fuddenly emitted after diftention, with a certain direction that it receives from a peculiar tlight of hand, will open itfelf a paffage through a fheet of ftrong paper.
If the milt-veffel be divided both above and below the femen, it emerges at the two extremities, by extending itfelf in both directions, which being contrary to each other, detain it in the cafe with this additional effect, that it renders the enclofing tube confpicuous, by fevering afunder at fome of its divifions the fpongy fubftance which contains the femen. I mean by divifions the rings throughout its whole length, refembling thofe of a Worm, though not fo regular, as they appear through the greatelt magnifier of the common double reflecting microfcopes; yet, with the third magnifier, from which thefe drawings were taken, they are feen as exhibited in the figures, like a fringe invelting the edges. I have fometimes upon this occafion counted no lefs than nine feparations, though no more than four appear in the drawing; for in this particular, there is no determinate regularity.

If the leaft orifice be opened with a lancet in the fide of the outward cafe, it inftantly conforms itflelf to it, and comes out double.
'Tis obfervable alfo, that the fcrew, upon feparation, ceafes in every refpect to operate, and lofes irrecoverably its activity, which is an evident proof, that the whole force of the milt-veffel is to be derived from the action of the inferior part.

The application of water is for the moft part neceffary, and yet the milt-veffels will often act without it : fpirit of wine will alfo fuffice, though the effect is confiderably flower, and the fpring, with which the inferior part at the clofe of the operation, when regular, fuddenly ftarts out, is totally impeded; but this was underftood of a fingle milt-veffel placed upon the object-plate; for when the whole bag is immerfed in fpirits, even fo that the liquid has free accefs to the whole collection, it caufes no other alteration, than that the inferior part is fomewhat extended in length, and recedes fome little from the bottom of the outward cafe. Oil has no manner of effect in any refpect whatfoever, though more lubricating than any other liquid.
is an open-mouthed tube or ducte, by which the eggs are voided. I here exhibit three of there eggs f, one half lefs than the natural fize. Upon the ovary and ink bladder are placed two very beautiful glandulous bodies, reprefented at $g g$; but I cannot now fay any thing certain concerning them, as moft of my former obfervations are only recorded by draw'ings, with a bare explanation. Above there two bodies, or rather in the midway between their appendages, appears a remarkable little bladder or bag, which contained a red juice h. Lafty, I exhibit at one fide all the parts already mentioned, and the gills $i i$, together with their vefiels and divifions, in their natural fituation.
I fhould here finifh this effay, if for order fake I did not think it proper to add fomething concerning the Cuttle-fifh's bone, being the only one to be found in the body of this wonderful animal. The flefh clofely furrounds this part on every fide, in the manner obfervable in man and other animals. To obtain a fatisfactory fight of it, no more is requifite than to make an incifion in the fifh's back, and feparate the bone itfelf from its membranes, and other integuments; all which may be very eafily performed.

This bone, when newly cut out of the animal , is of a middle nature between a dry and a moift fubftance; it floats upon the water, if immediately thrown into it. And this, no doubt, is the reafon of its having been called fpuma maris, or fea-froth. Hence alfo it happens, that fo many of thefe bones are feen during the fummer months floating near our coafts, upon which they are at laft thrown, in proportion to the number of Cuttle-filhes that have died fince the preceding feafon. The fifhermen gather thefe remains, and fell them to the different tradefmen, who have occafion for them. It would take me up a large volume to defcribe all the wonders obfervable in this bone, in regard to its figure, colour, texture, and other qualities; I fhall, therefore, only juft account in a few words for its floating on the furface of the water.

This bone which lies in the animal's back, on breaking it, after having firft cut with a file thro' the hard cruft that covers it, fome inches from its fore end, appears to confift of feveral teftaceous plates a, Tab. LI. Fig. vi. Of thefe the upper ones are the longeft, and moft crooked; and they lie clofer to each other than the lower ones, which being applied to the hard cruft of the bone that had been filed off, yield fomewhat in length to the former. The reafon why the lower plates fhould lie loofer, or at a greater diftance afunder, than the upper ones, feems to be this; that the former have received more nourifhment during the fifh's time of growth, than the latter, and therefore increafed in bulk a great deal fafter. Befides, the hard cruft of the bone, by lying nearer the upper plates than the lower ones, is fufficient to make the former full amends for fuch a deficiency.

Between thefe plates there are a great many filaments reaching from onc plate to the other, like fo many props or columns, fo as to hinder the plates from clofing together. And the great lightnefs of the Cuttle-fifh's bone, in conlequence of which it cannot but float like a froth upon the water, depends entirely upon this conftruction.

To make this very confpicuons, nothing more is neceffiary, than to feparate two of thefe plates which lie at the greateft diftance afunder, from the adjacent ones; and this may be very eafily effected, by breaking with the point of a fmall pin, the filaments which unite thefe plates together, at the fame time that they keep them at a proper diftance afunder; for their filaments are fo fine and delicate, that they yield to the leaft impreffion.

On viewing with a microfope the plates prepared in the foregoing manner, the difpofition of the columns or props c, between the upper and lower plates de immediately appears, as likewife their figure, and how they confift of a great many very fmall fibres which are compofed, as it were of minute globules. We may even obferve fome tranfiverfe fibres, ftretching from one colunin to another, and fo ftrengthening them, and connecting them together. Befides, many of thefe props have a deeper foundation than the reft; and there is likewife a great variety in their figures.

To comprehend thoroughly the conftruction of thefe parts, and their admirable contrivance, it is proper to take a piece of the bone prepared in the manner juft now explained, and having faftened it in a fafe place, with a little ftarch pafte, leave it there till it dries. After this, care muft be taken to feparate the upper plate from the props fupporting it, without doing them any injury, which however difficult, I have offen accomplifhed with perfect fuccefs. By this means it will at length appear, that thefe columns are fo many hollow flender tubes, Tab. LI. Fig. virf. g, naturally full of air, which is a fufficient reafon, why the Cuttle-fif's bone, when thrown into the water, fhould always fwim on its furface.
In this fate, fome of the columns appear like perfect tubes, others of a lefs regular form, and many are beautifully bent, like paper folded in a variety of forms. This inflexion is very like that which we obferve within the noftrils of hunting hounds, in the bone upon which the fcent acts; as alfo, in horfes. This conftuction of the props cannot be perceived with the microfcope, till one of the adjacent plates is removed, otherwife they all appear cylindrical, becaufe they are tranfparent. For it is the. property of that kind of glafles to give almoft all hollow tranfparent bodies a round appearance.
The fubftance forming the crutt of thefe plates and their props, is in a manner of the nature of an alcaline falt; it ferments violently with acids. But on feparating from it the membrane, that covers the back part, it appears entirely compofed of the fame matter with the plates themfelves, and the interjacent columns, which makes
P p
it not improbable, that this fony and faline bone, found in the back of the Cuttle-fifh, is originally compofed of hardened membranes, and this conjecture is confirmed by confidering attentively that part of the Cuttle-fifh's bone, which lies within its tail, and the membranes invefting it; for thefe laft when examined with the microfcope appear of the fame conftruction with the plates and columns themfelves, But it is no eafy matter to feparate thefe membranes; they are fo firmly connected in that part with the hard cruft covering the bone. When cautioully picked of, they leave a view of the manner in which this animal's bone grows at this place into a fharp tale Tab. LI. Fig. x1. b, which in full grown Cuttle-filhes is much longer and more pointed, than in young ones, as in there laft the membranes are not yet hardened. It may therefore be fairly concluded
from all the foregoing particulars, confidered together, that this fony bone of the Cuttle-fin, is formed in the fame manner with the bones of men and quadrupedes. Nay, we can very plainly fee that the blood veffiels not only run over the furface of this bone, but penetrate into its fubftance.

To clofe this treatife, I muft offer 'my moft humble praifes to the great Creator, for having made known to us fo many fpecimens of His inexhauftible wifdom, power, and goodnefs, all the glory of which we ought to give to his Di vine Majefty, praying Hirn at the fame time to make us truly obedient to his will: fo that we may henceforward do nothing but what is agreeable to Him, for in this exaac conformity to His pleafure our prefent and future happinefs entirely confifts.

> THE END

A treatife on the Pbyfalus *.

THI S creature, which Rondolet defribes from his own obfervations, and from Ælian, is found in the German fea, and fometimes is thrown afhore on its coafts in the fummer months. I can produce one of them, which ftuffed with tow, by a hole made in its back, and afterwards fowed up, has its fkin changed to a kind of real leather. I many times this fummer fpoke to the fifhermen to get me one of thefe animals frefh, as they gave me to underfand they often caught them alive in their nets, but as yet I have not had the good fortune to obtain any of them; I can therefore do no more at prefent than defcribe it, and illuffrate my defcription with figures from fome llight notes and drawings I formerly took of this creature; thefe obfervations, however, may throw great lightupon what Rondolet has wrote concerning it, efpecially what he has affirmed after Ælian of its furprifing inflection. The Phyfalus when turned on its back, Tab. X. Fig. viII. appears fomewhat broad in the middle, on the forepart toward the head it is a little narrower, and at the tail it ends in a point. The abdomen is full of wrinkles, and is covered with a very delicate kind of biffus or cottony matter. This creature has on each fide of its body twenty eight protuberances, called by Rondolet dorfal warts, from which there fpring very ftiff briftes a a a. The learned Oligerus Jacobeus, when here in Holland, made me a prefent of a creature of this kind, and called thefe briftles its legs ; but I cannot fee any reafon he could have for giving them that name, as the creature cannot ufe them as fuch, tho' perhaps it may employ them as oars in fwimming \dagger. The Phyfalus has other protuberances befides thofe
already mentioned; and except their being fimaller and Marper they are of the fame conftruction.

In fome of thefe warts, which I cut from the creatures fides, Fig. ix.b, I could count fixteen briftles difpofed inwardly into three rows, and united together in each row, by a particular ligament Fig. x. c, and all the fixteen by another common one. The firft row confifted only of two moderately ftiff but very large briftles d. The fecond confifted of fix e, and the third of eight f, differing in length, ftructure, and firmnefs; all thefe briftes were of a Mhining black, but there are other fpecies of this creature, whofe briftes are of a bright gold colour. Such arethefe mentioned by Jacobeus in the Acta Danica Medica; and I have myfelf feen fome of this kind. There are alfo Phyfali with green briftles, if we may believe Rondolet, who calls thefe briftles green hairs. Some of thefe brifles, which give the creature a refemblance to the Porcupine or Hedge-hog, appear thro' the mifcrofcope flatiifh and fharp Fig. xi. g, whilf others appear cylindrick, and fomewhat thicker about their fore parts, Fig. xir. b, where they at laft terminate in a blunt point.

Under the parts laft mentioned, there grows on each fide of the body a prodigious number of delicate gold coloured downy hairs. I have only reprefented thofe on one fide Tab. X. Fig. virf. iii, where the briftles are omitted, to afford a better view of them; thefe delicate hairs fpring likewife from the centers of certain warts, over whofe furface they afterwards fpread themfelves, Fig. xiri k. The laft warts lie clofe under the others fupporting the briftles, with which the hairy down growing in the form of flocks of wool is naturally intermixed, efpecially on the

[^94]upper part of the body, and on the fides. The opening of the mouth lies forward near the head Fig. viir. l, and over it is a little body refembling in figue and conftruction one of the beards that are to be feen in fome fifhes.
What has been faid, is fufficient to give the reader fome notion of this infects conftruction on its upper part or back, Fig. xiv. where it appears as if entirely compofed of an affemblage of downy hairs and briftles, the furface of this part alfo is rounder, and more convex, and the warts growing on it are fhorter and flenderer than tho?e already fpoken of, as lying upon the parts, to which the name of feet has been given.

On opening the back of this creature, I found the fkin in that part lay quite free and loofe over the adjacent flefh. I likewife difcovered in this place on each fide of the body, a prodigious number of holes Fig. xv. a a a a a a, which by running a probe into them, I found to extend under and between the brifly tubercles, furrounding each fide of the body, with openings on the outfide, thro' which the creature by an alternate dilatation and contraction of its upper skin, takes in the water requifite to moiften its gills 6666 , which are all the other parts to be feen within this hollow of the skin, and are conftructed like the fcales on the lower part of the bellies of Serpents. As to their texture it is membranaceous, with a fmooth furface; and they are difpofed in the moft beautiful order, for the upper ones, tho' moving freely over the lower, always cover fome part of them.

If we duly confider this conftruction of the body, we cannot be at a lofs to account for the manner in which the Phyfalus, is able to fwell and bloat itfelf up with air, and afterwards burft, or as I think I may more properly exprefs myfelf, collapfe into its former fize and figure ; to do all this, it need only firt dilate the upper portion of its skin, that, on its floating to the furface, as it muft neceffarily do when its bulk is thus increafed, the air may get into the cavity fo formed, and then contract the fame part, fo as to make it ex-
pell the air contained therein ; it then falls flat againft the lower part fo fuddenly, as to imitate the noife as well as appearance of a real burfting. Hence we may alfo fee why the Phyfalus, during this laft operation fhould appear quite tranfparent, as the fubtile air impelled at this time under the skin, cannot but open an eafy paffage thro' it, for the rays of light.

As to the vifcera of this creature, there are many and remarkable fingularities in them; but as I have yet beftowed little notice and few defigns on them, I cannot fay much of them at prefent. I only remember to have obferved that the parts about the mouth of the Phyfalus are moveable in the manner of thofe of the Snails, and are of a pyramidical form, and of a very wonderful contrivance; its heart alfo, and blood-veffels fhew themfelves in a very beautiful manner. In the middle of the body I found a part which feemed in its upper portion to anfiver the purpofe of a fomach, and towards the tail that of inteftines. This veffel was divided into a great many ramifications, which were united, as it were, by mutual anaftomis's or inofculations, Tab.X. Fig.xvi. c, and were full of, and turgid with, excrements of a kind of earthy clayey colour, divided into little lumps.

As I never faw this creature alive, and even dead, only after it had been toffed about by the waves from one part of the fhore to another, I can propofe but few things of it as certain. I don't know whether it is to be accounted venomous, as Rondolet feems to entertain that opinion; neither can I take upon me to determine among what fecies of animals it is to be clafled, tho' it feems to deferve a place amongt Echini, or Sea-Urchins. Rondolet reckons it among hisSea-Caterpillars; but I cannot difcover in it the leaft refemblance to thefe creatures. I hall therefore, for the prefent, conclude this hiftory; but fhall endeavour to complete it, if an opportunity offers, at fome other time, when I may have leifure fufficient to beftow on fo interefling a fubject.

The end of the Hifory of the Pbyalus.

An epifolary difertation on the Felix Mas, or Male Fern of Dodoneus.

Sir,

YOU do me no more than juftice in attributing to me the firft difcovery of Fern; for which reafon I fhall now lay before you a very curious obfervation on this fubject, with drawings to illuftrate it. Were this a proper feafon to obtain one of thefe vegetables frefh and in good order, I fhould endeavour to fend you more particulars worthy of your attention; what I now offer being only the refult of a furvey taken of it in a dead and dry condition: I may fay, however, that it is now feveral years fince, on examining by chance the tubercles growing on the under-furface of the Fernleaves, I difcovered in them certain little capfules,
containing the true feed of this plant; tho' many celebrated writers had denied that it had any, whilft others, who believed the contrary, knew not how to convince the former of their miftake.

The Male Fern of Dodoneus is a plant too common and well knownto require a defcription; fo that I fhallonly give a drawing of it, Tab.LIII. Fig. I. $a a$, and the tubercles $b b$, which grow uponits leaves. Thefe tubercles, which the ignorance and negligence of writers had confidered as little collections of fine duft and diit, when carefully viewed, exhibit the moft wonderful conftruction that the mind of man can imagine, and fo eminently difplay the contrivance,
order,
order, providence, and wifdom of the Great Author of all things, that perhaps a more ftriking fpecimen of thefe His adorable perfections is not to be found in any other part of the vifible creation.
Every tubercle confifts of certain fmall leaves, which contain the pods, or true capfules of the feeds. At prefent I cannot tell the number of thefe little leaves, as I have none but dry plants by me, in which there appear in a diforderly manner, and curled up like the Fungus we call Jews Ears.
The pods juft fpoken of lie within there little leaves in the fame manner as the flowers of the Moly are dipofed within the globule fcabbard, or cup which furrounds them, before it burfts and expands itfelf into leaves: at this period, thefe flowers refemble fo many round balls placed upon falks; and the fame conftruction obtains in the pods of the Fernfeeds, which ftand within the leaves furrounding them, each upon its own ftalk or pedicle, and look in a manner like fo many flender ftems with large heads.
To give you, Sir, a fall better idea of this fubject, I lay before you a drawing of thefe pods, with their foot-ftalks, and I fhall add a defription of them. Thefe falks are fometimes fingle, Tab. LIII. Fig. if. ccc, and fometimes double, dividing at a little diftance from their roots d; in this cafe each branch carries its own feparate pod.
That end of the falk next the pod, is of the mofe fingular confruction that can well be imagined; it there refembles in that part a furrowed or fluted cord ece, which beautifully encompaffes the pod in form of a crown, and furrounds it like an herbaceous zone; fo that the two hemifpheres of the pod fwell beyond it on each fide $f f$. The colour of this little cord, when the feed is ripe, is of a very pale brown, within the flutings ; but the oblong intermediate protuberances are of a fomewhat deeper brown. There are twelve of thefe protuberances, befides fome certain ones, which fometimes fpread over the furface of the pod itfelf.

The pod is membranaceous, and very delicate g; and it is conftantly of the fame colour with the feed it enclofes. Near the middle of it there is a kind of furrow or flit, which divides it into two portions. When the feed is full ripe, the pod which till then, was of a tranfparent whitenefs, turns to a blackifh brown.

As foon therefore as the feeds have acquired their perfect degree of maturity, and the little cord is contracted, by drying into the form of an extended line, by a kind of elaftic power, it endeavours to form a ftraight line, Tab: LIII. Fig. II. $b b$, and by that means, on a fudden, very exactly divides the pod into its original, two hemifpheres $i i_{i i}$, fo as to fcatter with fome violenee the enclofed feeds into the air. And when this has juft happened, we may fee the cavity of the pod divided by little partitions into a number of cells where all the feeds have been feparately formed.

All theefe particulars, Sir, may be very ciearly and diftinctly feen, by examining the feeds with a microfcope towards the end of fummer. In doing this myfelf, I found it neceffary to bring my head very near them, and I very ofen had the pleafure of feeing a great number of the pods burt, and fcatter their feed by the force of the furrounding cord, at that time endeavouring to extend itfelf, in confequence of the contraction or crifpation caufed in it by the breath from my mouth, and the heat of my body.

As to the fize of thefe pods, it is a hard matter to give a drawing of them after nature, on account of their exireme minutenefs, which renders them almoft imperceptible to the naked eye. Nay, a dot of to finall extent can fcarce be made on paper with the fineft pencil: but the feeds themfelves are of fo amazing a minutenefs, efpecially when dry, that the fharpeft eyes cannot, unaffifted, difcern them at all. I reckoned above forty-one of thefe feeds in one pod, though it had before thed a great rumber.

Who then, Sir, can preiend to fhew in this feed, as may be done in fome others, the germen or bud, the rind or bark, and leaves of the future plant? No one certainly; here therefore, the Great Creator gives us a complete fpecinen of His excellent work; to exhibit which properly , is far beyond the reach of the greateft genius for defrription and drawing; and it is fcarce a wonder, that the greateft naturalifts were fo far miftaken, as to affirm, this plant was quite deflitute of feeds.

I cannot at this time give you a drawing to reprefent the true figure of this feed, as what I have by me are dried up, and fome of them appear larger than others; however, I cannot help letting you have one made as well as I could, from fuch a dried feed in this cloudy winter feafon. Its furface is fomewhat irregular and angular, with certain tubercles on the upper part; which, under the microfcope, appear of a net work form, Tab. LIII. Fig. MII. k; but it is very difficult to examine thefe feeds when expofed to the air, or turned to the light, becaufe they are of a deep brown colour, as I difcovered, by endeavouring to view them in the open air, fixed to a hair of my head, which, in comparifon with there feeds, appeared like the maft of a firft rate fhip.

Neither can I at prefent determine what the number of the pods may be, though I believe every tubercle contains more than fixty, from whence it would follow, that every tubercle contained at leaft 2460 feeds. The pods, when opened in the middle, plainly fhew the little feeds diftinctly fowed up in them, Fig. II. l; and as thefe grains have then acquired the utmof degree of maturity, and confequently lie loofe, they may be eafily fhook out of their cells: but this is a fight we muft expect to obtain rather by chance, than certainly procure by diffection; it fo feldom happens, that any attempt to open a pod regularly is attended with fuccefs. I can at all times fhew the feeds and cords, and every thing befides, which I have here defcribed, as I did fome time ago to Mynheer Arnold Syen,
brofetior of botany, and Doctor Juftus Schrader of Amfterdam, who both took great pleafure in contemplating thefe wonders of Gcd in the vegetable kingdom. It is my real opinion, that the Fungi or Murhrooms, Corals, and other natural productions of that kind, have alfo their feed like the Fern, as I fome time ago endeavoured to demonftrate in the Coral in particular, in two letters wrote to Monfieur Boccone upon that fubject.

I cannot, Sir, find words to inform you with what wonderful order, and in how regular a manner, thefe pods burft under the microfcope; with what force they then fcatter their feeds; or with what a furprifing motion the cords extend themfelves; and with what incomprehenfible wifdom and contrivance, the fupreme Architect has fo difpofed every thing, that each part or portion of the burfted pod, fhould remain fixed to its cord at a particular place. But I hope the drawings I fend, may be found fufficient to give you fome notion of all thefe things.

I have found the fame conftruction to obtain in the pods, feeds, and cords, of feveral different ípecies of Ferns. : and I make no doubt, but it may be found in the Spleenwort, Hartftongue, Hermonites, and other plants of that kind.

Hence you may conceive, with what rapidity there feeds may be wafted about by the wind, fo as to account for thefe plants being found on the tops of the higheft trees, and on walls, whereever they can find mould enough to take root in.

The great obfearity of the human underfanding, is clearly proved by this obfervation ; for was it not very dark indeed, how could it, during fo many ages, deny that this plant had either feed or flowers? infomuch that it was one of the firft errors taught young people in books, as well as heard in converfation. We ought therefore to thank the fun of divine grace, and true fountain of all ufeful knowledge, that we are at laft fo happy as to attain more juft notions of this matter. Should not this miftake teach us modefty in our opinions and our judgment upon many other occafions, feeing, upon this, the moft penetrating geniufes have all gone aftray? If we are fo liable to miftakes in regard to things that lie open to our infpection, what are we to fay of our opinions of things which are invifible? How many idle notions are formed on fuch fubjects? how many fenfelefs conceits, with which, however, we fometimes fo far fuffer ourfelves to be deluded, that we make nothing of injuring both in character, and perfon thofe who happen to be of a contrary opinion ? It is therefore abfolutely neceffary we fhould always diftruft ourfelves, and act with the greateft circumfpection. In our prefent wretched condition, we are furrounded with ignorance on every fide, and have no other true knowledge than that of our own weaknefs and imperfections. Of ourfelves we can do nothing; all we have, we receive from the gracious hands of the Supreme Being, the munifim cent rewarder of good actions, of whofe divine favour, I wihh you an uninterrupted enjoyment.

Short EXPLANATION of the TABLES,

B O O K of N A T URE, 0 R, HISTORY of I NSECTS.
 By J. Swammerdam, M. D.

T A B. I.

Explains the changes of the firl order or clafs, which are reprefented to the eye, by the afiftance of figures; for which purpofe the Loufe is exbibited as an example.
N. B. The numeral letters diftinctly fhew, after what manner the feveral changes fucceed each other; fome of the figures are reprefented as they are magnified by the microfcope; the reader muft obferve in general, that the fame method is alfo obferved in the examples which belong to the fecond, third, and fourth orders or claffes of the changes of infects.

No. I. HEWS the nit or fmall egg of a Loufe, delineated in its natural bignefs, in which the Loufe is contained; being yet clothed in its firft fkin or coat. The fame may be feen fig. I. as it is magnified by the microfcope.

No. II. Is the empty fhell of the egg, or the coat or fkin of the nit, calt off by the Loufe; after it has crept out of it.

No. III. Shews the Loufe juft excluded from its egg, where it plainly appears, how the creature has crept out of the membrane wherewith it was furrounded, in a perfect fate; and is not obliged to undergo any further change, tho' afterwards it increafes in bignefs, and often changes its fkin. Therefore we have named the Loufe in this fate, an oviform-nymphanimal : becaufe it iffues from its coat or fkin, perfect in all its limbs.

No. IV. Is reprefented the fame Loufe fomewhat bigger, and invefted as it were in its third or fourth fkin; which alfo foon after is to be caft off.

No. V. The Loufe, having now attained to the full period of its increafe, in which ftate we called it a nymph-animal; from its being then in its laft 1 kin that it fheds, and indeed we meet with fome infects in the firft clafs, which are alfo fomewhat changed about the time that they caft their laft fkin, which plainly appears,
among other inftances, in the Longipede, or long-legged Spider, the legs of which increafe in length when it is cafting its laft fkin. After that is caft, the infects which belong to this firft order grow no more, neither are they changed in any refpect ; as may be more plainly underftood from the figures of the following examples of the four orders, undernumber V.and VI.

No. VI. The Loufe, having attained its perfect ftate, and being fully grown, fo that it is now capable of generation; is reprefented fig. III. as magnified by the Microfcope.
FIG. I.
a The oviform border or margin, with which the head of the nit is furrounded, within which are vifible certain little cups or uvula, of no regular or determinate figure. Thefe cups appear a little bent, and then again fwell out in the middle, as it were into a whitifh top. It is obfervable that thefe cups do not wholly fill the internal parts of the border or margin with which the head is furrounded.
66 Are two tender fwellings or extuberances, wherein are placed the eyes of the Loufe; wherein are placed the eyes of the Loufe;
A
Thefe

The egg, or nit of the Loufe, as magnified by the Microfope.

Thefe eyes, by imperceptible degrees, grow browner, and appear through the fkin , and at laft become entirely black.
c Is a certain white tranfparent part, in the middle of the nit, which we have often feen beating regularly in the fame manner as the heart. This little part is reprefented in fig. VI. by letter b, and called by us the pancreas, becaufe it moves up and down with the ftomach.

F I G. II.

The foell of the egg, or the empty nit, and the firft Jkin which the Loule cafts.
a The border or margin of the head burft open, with its little cups or uvulæ, and turned back by the Loufe's creeping out at the upper extremity.
b The other part of the empty and caft fkin of the nit, from which the border of the head is feparated, by which means it has the appearance of a tankard without its cover.

F I G. III.

Sherws the Loufe placed on its belly, and magnified by the microfcope.

There appears a fhining fkin on its head, with fome little holes and divifions. Upon its breaft or back there is an elegant delineation of a fhield, which is as it were painted in the middle; and this fhining fkin is ornamented with little holes. To the breaft are fixed the legs, which are full of little fwellings or extuberances, like thofe on the Chagreen fkin; but they become by degrees imperceptible at the extremity of the legs. By the affiftance of the microfcope it has been difcovered, that at the margin of the abdomen, the fkin there appears alfo painted and rough, with little grains like Thagreen as before defcribed; but by the help of the beft microfcope, I have at laft found that the fkin is really formed of irregular chequered work, globules, and fuch like appearances.
N. B. In fig. IV, next to be explained, will be pointed out by letters all the remaining parts of the Loufe, one after another.

F I G. IV.

The external and internal tranfparent parts and limbs which are feen in the Loufe, as lying on its belly.
a The Aculeus or fucker.
$b b$ The antennæ or little horns. $c c$ The eyes.
$d d$ The fix legs. ee ee The claws.
f The cloven tail, in which the anus is feen.
$g g$ The white tranfparent veffels in the belly and breaft, which are properly the ramifications of the trachea.
I $234 \mathcal{E}^{\circ} c$. The feven orifices of the pulmonary pipes, on one fide of the body, which with
feven others on the oppofite fide make together XIV.
$b b b$ The large branches of the afpera arteria, in their firft beginning where they open by fpreading branches into the extremities of the belly, and afterwards communicate together by an anaftomofis, or inofculation.

F I G. V.
 The Loufe, lying. on its back, delineated according to its natural fize.

F I G. VI.
The Loufe delineated with the afiztance of the microfcope, in which thofe parts rebich could not be fhewen in fig. IV, are bere reprefented.
a A brown tranfparent part of the abdomen, which is obferved to be in continual motion, with its double tranfparent appendages, which are ftretched far into the breaft. This brown part with its appendages, is properly the fomach; in the middle of them is placed the fpinal marrow.
b A white fpot in the middle of the belly, tranfparent, which I imagine to be the pancreas. In a live Loufe it appears to be united with the ftomach, and, together with it, is moved up and down.

Further, in this Loufe, the articulations of the legs with the breaft may be plainly feen, alfo the bright tranfparent pulmonary pipes, together with the black coloured contents of the ftomach. At the extremity of the abdomen appear the double claws, like crefcents, which cover the vulva.

F I G. VII.

The branch of the afpera arteria of the Loufe, confiderably magnified, yet reprefented in its natural form.
a The rings of the trachea, by which it is always kept open.
b The ferpentinewindings of thofe rings.
c The part where thofe windings appear to be interrupted.
d The part where the rings are largeft.
e The part where the rings become fmall again; when the afpera arteria fhoots out into another branch.
f A fmall membrane in the middle of the rings, which properly contains the air.

FIG. VIII.

The feven orifices or refpiratory points of one fide. Separately delineated.

I 234567 Thefe figures thew the natural fituation of the refpiratory points or orifices

A Short Explanation of the TABLES.

of the afpera arteria, in one fide of the human loufe.
a a The refpiratory points in the belly, which appear with little protuberances like fmall nupples; beyond the margin of the belly.
6 The refpiratory point in the breaft.

T A B. II.

F I G. I.
The blood of the Loufe.
a a A fmall glafs tube, in which the blood of the loufe afcends.
b The globules of the blood as they appear through the microfcope.

F I G. II.

The mufcles of the Loufe.
a A broad mufcle. b Another narrower.
c A double-bodied mufcle.
FIG. III. IV: and V.
The fieath or cafe of the aculeus, or fucker, the aculeus, the throat, the fomach, the pancreas, and intefines.
a The cafe of the aculeus fwelled out.
b The aculeus or fucker.
c The cafe of the aculeus delineated a little larger, and the whole of it reprefented.
d Certain claws which are placed at the end of the cafe of the Aculeus.
e The Aculeus a little bent.
f The gullet beyond the jaws.
g The fame a little dilated.
b The fame part where it becomes narrower again, and is joined to the fomach.
ii i The ftomach, which appears to be compofed of certain globules.
$k k$ The two hidden appendages of the fomach.
llll The pulmonary pipes of the fomach.
m The fituation of the pancreas.
12345 Five different delineations of the pancreas.
n The Pylorus. 00 The fmall gut.
$p p p p$ The four fmall guts.
q The intertine colon.
rr The dilatation or extenfion of the inteftines, or Cloaca; where the excrements acquire their figure.
s The ftraight gut. t The anus.
v The part where the blood firf paffes through the aculeus into the mouth.

* A remarkable extenfion, occafioned by the blood's extending the jaws; there it becomes vifible, beyond which the gullet is afterwards feen, which conveys the blood into the ftomach; as has been already hewn at letter f.

F I G. VI.
The various motions which the flomach makes.
I The ftomach dilated.
2 The manner in which the ftomach contracts itfelf.
3 The fame contractions changed.
F I G. VII.
The spinal marrorv.
a a a Three knotty dilatations, or fwellings of the final marrow.
$b b b$ Six nerves which arife from the marrow, and extend to the mufcles of the legs.
c c The nerves which fpring from the hinder part of the marrow, and are diftributed through the reft of the vifcera.
$d d$ The pulnonary pipes in the membrane of the marrow.
e The beginning of the marrow iffuing from the brain. $f f$ The brain.
g_{g}. The Dura Mater, with its pulmonary pipes. $b b$ The optic nerves. $i i$ The eyes.

F I G. VIII.

The ovary of the buman Loufe.

a a The vulva, or outward aperture of the ovary, opening into the lower part of the abdomen, clofed with double plain claws; under which are fome hairs.
$b b b b$ The five double extremities of the pipes which form the oviduct of the ovary, explained in the figure of one fide, and are alfo fhewn in the figure on the other fide; as they are naturally joined together in one point in the body.
c One of the ten oviducts of the ovary.
d A perfect egg placed in it.
e The rudiments of four eggs.
$f f$ The divifion of the ovary into common double pipes.
$g g$ The five oviducts of one fide, nearly reprefented in their natural fituation.
b The uterus.
i The egg or nit almoft at its perfection, remaining in the uterus.
$k k$ The facculus, or bag which contains a glutinous matter.
l The neck of the uterus.
m The manner by which the eggs are clofely embraced in the oviduct.
n Certain pulmonary pipes which are feen in the oviduct.

$$
\text { F I G. IX. and } \mathrm{X} .
$$

The fructure of the external אin, with its va: rious appearances under the microfcope.
a Globular particles vifible in the fkin.
66 Long channels or pipes.
c Another
c Another kind of globular particles is feen among the channels or pipes where the fkin is membranaceous.
d Irregular fquares in the margin of the fkin.
e Circular grooves. f Globules.
g Globules and grooves.
b b The fkin marked with points or dots.

The end of the explanation of the figures of the Loufe.

Obfervations on Scorpions, reprefented in Figures.

T A B. III.
FIG. I.
The common Scorpion, and the particular parts of it.
a The head jointed to the breaft like as in a lobfter, is confpicuous in the fore-part, in which are two fmall forceps or pincers, and above are feen four eyes; in the middle of the breaft there are alfo two eyes, there being fix in all: which may be plainly known to be the number of the eyes.
$b b$ Its eight hairy legs, each divided into fix joints.
cc Two crooked arms with pincers, each compofed but of four joints, if you except that by which each arm is joined to the breaft. Thefe forceps or pincers are fometimes found broken.
${ }^{d}$ The feven divifions or rings of the belly.
e The briftly part, compofed of fix joints.
f The aculeus or fting.

> F I G. II.

Another kind of Scorpion.

a a The crooked arms with their forceps, which differ very much from thofe reprefented at letters c c. There are in this Scorpion eight diftinct eyes, in other refpects it agrees with the former.

F I G. III.

A large kind of Scorpion brougbt from the EafIndies, in wobich the parts that were defcribed in the two former are more clearly Seen, particularly the following.
a The two forceps or pincers placed foremoft under the head and breaft.
6 Above which there are, on each fide, fix eyes, fome much larger than others: befides thefe there are, in the middle, as it were above the breaft, another pair of eyes. There is alfo a remarkable difference in the tail ; but I am doubtful whether it was fo naturally.

FIG. IV.
A fmaller kind of water Scorpion, which belongs to the fecond clafs or order of changes, reprefented in its natural fize.
a The crooked probofcis.
$b b$ The upper pair of wings.
c c The lower pair of wings.
$d d d d$ The four legs, with two claws at the end of each of them.
ie The arms. f The double tail.
g One of its nits or eggs reprefented in its natural fize.

FIG. V.

The water animalcule in its egg, delineated as it appeared under the microfcope, which in Fig. IV. letter g, was reprefented in its nit of its natural fize.
a The head. b The eyes. $c c$ The legs.
$d d$ The animalcule, with its legs, laid on its back.

> F I G. VI.

The parts of generation of the male water fcorpion.
a The rervous body of the penis cut off.
b The vas differens, as it is elegantly formed by nature.
c Another vas deferens, unfolded.
${ }^{d}$ The true vafa deferentia.
ee The tefticles, confifting each of five fmall glands.
ff The veffels of the tefticles united with the fmall glands of the tefticles.
g Oṇe of thefe veffels, unfolded.
$b b$ The fmall feminal veffels.
FIG. VII.
A particular part of one of the oviducts, with its eggs, cut out of the ovary of a female waiter Scorpion, reprefented as magnified.
a a A particular part of one of the oviducts.
b The briftly appendages of the firft and lowert egg.
c The fame fhewn in the fecond egg.
d The like appearance about the third egg.

F I G. VIII.

The egg feperately reprefented, more confiderably
magnifed.
a The lower fmooth and round part of the egg.
b The part where the feven briftly appendages of the egg begin to grow of a red colour,
c Where they change to a white colour.

> F I G. IX.

The largef kind of water Scorpion.
a Its long and flender body.

A Short Explanation of the TABLES,

$b b$ The two fharp fmall points to which the two crooked claws of the arms are united.
cc The flender legs fet with rough imall hairs.
d The membranous ornaments of the upper wings.

T A B. IV.

This table exbibits the covered or common Snail.

FI G. I.

The Snail wieth all its parts entire, witbout its Bell.
a a The two upper antennæ or horns, with a certain black fpot; which is the eye.
$6 b$ The two lower horns ; without eyes.
c The outermof lips and the mouth.
d The aperture, through which the parts of generation iffue; which is very wonderful.
e The border or lip of the fnail.
f The opening through which the excrements are excluded.
g The aperture through which the Snail breathes.
$b b b$ The extreme fringes of the Snail, which ferve it inftead of a foot.
k The foft part of the body of the Snail, on which appear the fame windings as in the fhell, in which the liver is placed in the largeft part.
l The tranfparent heart ; furrounded with dots.
n The Sacculus or alkaline bag fwelling under the fkin.
t Tranfparent particles formed like a chain.

> F I G. II.

The bard Jkin or Sell of the Snail.

i The fhell or habitation of the Snail in which it hides itfelf.
s The incifions or divifions on the furface of the fhell.

F I G. III.

The Operculum or Cover.
m The operculum of the fhell of the fnail, which fhuts up the thell in the winter, but is again opened in the fummer.
F I G. IV.

A boiled Snail reprefented of a lefs fize.

- The alkaline bag fwelled quite out.
p The extreme convolutions or windings of the liver.
q The border of the Snail contracted.
r The teeth as they appear under the fkin which is drawn back, and the internal lips.

> F I G. V.

A part. of the firlt pair of horns, reprefented as
magnified.
a The eye in the middle of the extreme point of the horn, placed a little on one fide.
b The optic nerve.
c The extreme point of the mufcle of the eye.
d An interfection of the eye in the middie, between the mufcle and the nerve; where the eye is firt drawn in.
e ee Small glandulous grains in the outermoft fkin of the horn.
f The inner cavity of the horn, which is faid to be poffeffed of a mufcle and nerve.

F I G. VI.
The brain, nerves, and mufles.
1234 The four horns inverted.
a a The mufcles of the larger horrs.
$b b$ The two fmall mufcles of the leffer horns.
cc The four horns of the lips, from which the two little ones fpring.
d The brain.
e The fkin drawn off the head, by which the hinder brain is moved when the Snail rolls the fkin out again.
f The part in which the teeth are fixed, defrribed by dots, which are of a fubftance be-tween horn and bone, and formed like a pear.
g The parts of the jaws, mouth, palate and tongue, which are all moveable, and drawn within the body.
b. A particular part of the ftomach and gullet.
ii The falival veffels.
$k k$ The optic nerves of the upper horns.
I/ The membranes which extend, and are fixed to the optic nerves.
n The part of the mufcle in which the optic nerve is inferted.
n The fpiral windings of the optic nerve.

- The mufcle, which involves thofe nerves, open.
p The extreme fwelling of the optic nerve.
q The eye placed in the extremity of the optic nerve.
r The nerve of the lower horn of one fide,
s The origin of the nerves of the lower horns.
t Two nerves which are difpatched to the larger horns.
v The two nerves of the mouth, jaws, and palate.
x Part of a mufcle which draws the nerves of the mouth together with the jaws, tongue, palate, and brain, inward, at once; in a very wonderful manner.

F I G. VII.

The eye, with its particular parts, reprefented as magnifeed.
a The external figure of the eye:
666 A mufcle which embraces the optic nerve; unfolded, like a gray-coloured membrane.
c The nerve itfelf, in which the eye is fixed.
d A part of the inverted horn.
e The inverted cavity of the horn.
f The part where the mufcle is faftened in the nerve.

A Short Explanation

FIG. VIII.

The three bumours of the eye.

a Two needles with which the tunica uvea, lying under the microfcope, is pricked.
b The aqueous humour iffuing from the woundded eye.
c The vitreous humour flowing out in the fame manner.
d The cryftalline humour iffuing like the others.
TAB. V.

F I G. I.

The open parts of the mouth and jaws.

a The external fk in in the form of teeth.
b The tooth, placed high in the mouth, cut, with the fkin, from one fide, expofed to view.
c The tooth fpread out into horny bony points, like needles.
d The falival veffels, with their openings.
e The inner lips, behind which the mouth is folded together.
f A cartilage which covers the tongue, when the Snail fwallows its food, under which the tongue may be fheltered in the carity. All thefe parts are fhewn, unfeperated, Fig. IV. Letter r.

F I G. II.

The Tooth.

a The whole horny bony coalition of the teeth.
b. The eight prominent teeth of it.
c The crooked crefcent form of the teeth.

F I G. III.

The tongue, and certain mufcles.
a The tongue, taken out of the mouth.
b The root of the tongue, with its fituation; the tongue itfelf, as it appears, where all the parts of the jaws and mouth are reclined to the other fide.
c The two horny bony teeth in the acute extremity of the tongue.
d The three mufcles, which move the parts of the gullet and mouth forward.

> F I G. IV.

The beart, its auricle, and the blood and Salival velfels:
a The reins, which are vifible in the internal membrane of the border of the Snail, as they are derived from the trunk of the vena cava.
b The aperture of the border.
c The heart with its two valves, and fibrous columns.

of the TABLES.

d The auricle of the heart.
e The alkaline bag, in its proper place, near the heart.
f The ftraight gut, near which runs the pipe of the alkaline bag.
g The fpreading branch of the great artery.
b Certain large branches and fprigs of the great artery.
i i i i The circumvolution and fhape of the body reprefented by dots; that the fituation of thefe parts may be the more exactly demonftrated. Here may be further obferved:
n The oblong grooves or channels of the ftomach.
0 O The falival veffels.
$p p$ The trunk from which the falival veffels fpring.
q A fmall veffel which runs over that trunk.
r. All the parts of the mouth.

F I G. V.

The alkaline bag.
k That part of the alkaline bag which is connected with the Pericardium.
l The angle where the alkaline bag is connected with the inteftine and liver.
m Another part of the alkaline bag adjacent to its own pipe, and of a waterifh colour.
N. B. We have joined in oneTable the Fig. IV. and V. the explanations of which are here feperated, becaufe though we found, in the author's manufcript, the explanation of Fig. V. by itfelf, yet we could not meet with the figure itfelf apart in the Table; but that does not fignify, as it may be underftood by the fourth figure.

FIG. VI.

The fomach, inteftines, and liver.

a The extreme winding of the liver.
$b b b$ The lobes of the liver, where it appears at once, after what manner the inteftines are wound about ; a certain part of it, with the ftomach, is reprefented out of its place.
c The ftomach. d The Pylorus.
e The Atraight gut.
f The paffage of the inteftine into the border:
g The part where the biliary ducts empty themfelves into the inteftine.

F I G. VII.
The fame parts reprefented, as reviewed from the other fide.
a The liver. $\quad b$ The inteftines:
c The fraight gut. d The fomach
F I G. VIII.
The biliary ducts.
a The naked biliary ducts, with a fmall part of the liver:

6 The
b The fomach. © The fmall guts.
d The ftraight gut.

F I G. IX.

The veffels of the liver.
a Several veffels of the liver feparately reprefented.

FIG. X.

The genital parts of the male and female,
a The penis.
66 The length of the penis, and the extreme point of it.
$\operatorname{cc} c$ The uterus. $\quad d d$ The ovary.
e The tefticles, which are fmall filaments that fpring from two trunks.
f The hidden appendage of the uterus.
g The common duct between the penis and uterus.
$b b$ The oblong vas deferentia.
i Its fmall tube, which opens itfelf into the uterus.
k The pear-fhaped little ball, in which the purple Snail keeps its purple liquid.
l A little part twifted like a chain.
m Its duct, or little pipe.
$n n n$ The ligament of the uterus.

- The mufcle which leads the penis outward.
\boldsymbol{p} The mufcle which draws the penis inward.
q The nerve of the penis,
r The mouth of the vulva.
s The broad mufcle of the uterus.
t The flender mufcle of the uterus.
v The nerve of the uterus.
z The extremity of the chain-like little part.

FIG. XI.

The teficles.
x The little tubes of the tefticles, confifting of filaments, of which fixty-fix are reckoned.

FIG. XII and XIII

The blind appendage of the uterus opened, with the faline bony contents.
y The blind appendage of the uterus divided in the middle, between which the faline bony part, which readily ferments in aqua fortis, is feen.

- The root of the faline bony part, by which it is joined to the mufcular and nervous pearfhaped globule.
6 The fine fmooth part of it, which is all hollow ; and by degrees becomes more flender and acute.
c The pear-fhaped globule, to which the faline bony part is fixed.
N. B. Here again we have marked a fingle figure with a double number, becaufe we could only find, in the Tables, the XIIth
figure, although in the body of the work ${ }_{3}$ and in the fhort explanations of the tables, we find the XIIIth quoted: but this is of fmall importance, as the figure which we have given contains all the particulars that we want.

> F I G. XIV.

A particular finall fony, or Saline bony part, as feen by the microfoope.
$d d d d$ The four margins, or furrounding backs:
e The cavity ftretched out in the middle of the boney part.

> F I G. XV.

The cbain-like part.

a The extremity of the chain-like part un: folded, in order to fhew its conftruction.

FI G. XVI.

The uterus.

r Exhibits the cavities of the uterus blown up; in order to fhew how the divifions of it are formed.

F I G. XVII.
a Here are feen in the neck of the amorous Snail, the external opening of the vulva, or genital parts, which with the part under the penis, and the appendage of the uterus, together with all the fpermatic veffels have been already reprefented in fig. X. let. r.

F I G. XVIII.

The penis and uterus themfelves turned out and crected.
6 The penis and uterus turned out and erected and ftretched out beyond the neck.
ii The two upper horns.
k One of the lower horns, which is then a little removed from its place.

F I G. XIX.

The penis, and internal orifice of the womb.
c The penis only, not wholly, turned out of its cavity, and erected.
d The internal orifice of the womb alfo a little turned out, and extended out of the neck.
l The lower horn removed from its place, toward the horn of the other fide.

F I G. XX.

Of their copulation:

e The penis of one of the Snails rolled out:
f The apperture of the uterus of the other Snail, admitting the penis of the former.
gb The

viii

A Short Explanation

g The aperture of the uterus of the firft Snail, which in like manner admits the penis of the other Snail b.

T A B. VI.

The brain and nerves.

a All the parts of mouth, jaws and palate.
b The gullet cut off. c The brain.
$d d$ The beginning of the fpinal marrow, divided into two ftrong nerves.
e The knot or fwelling formed by the nerves.
f The mufcle by which the knot, or fwelling of the fpinal marrow is inwardly moved.
g The two parts of the mufcles, which belong to the inward lips of the mouth, which are inferted by fome tendons in the knot or fwelling of the fpinal marrow, and which, together with the nerves, the mufcles draw within the body.
$b b$ A pair of nerves which are feen in the mouth, jaws and palate.
ii A pair of optic nerves.
$k k$ A pair of nerves which reach to the roots of the horns and to the 1kin.
ll. The nerves of the lower horns which arife from the former pair:
$m \mathrm{~m}$ Two tender nerves, which reach to the mufcles of the fkin and head, cut off.
$n n$ A pair of nerves fituated under the parts of the mouth.
00 Other pairs of nerves which are difpatched to the mufcles of the neck.
p A nerve which reaches to the fpermatic veffels, to which alfo a fmall part of the penis adheres.
q The nerves which are diftributed thro' the membranes of the neck.
rr The nerves which are difpatched to the mufcles at the fides of the body.
s A nerve and mufcle which reach to the uterus.
t A nerve of the verge ftretched inward to the right fide.
v A like nerve on the left fide.
x The nerves fixed in the tendons of the two ftrong mufcles, which move the middle of the body. See fig. I I. $n n$ of this Table.
yyy The nerves which reach to the verge of the foot of the body.
z Some of thefe nerves cut off from the right fide are omitted, to avoid confufion.

F 1 G. II.

The mufcles of the Snail.

a The part of the ftony bone or thell of the Snail, where the mufcles are inferted.
$b b$ The infertion of the two ftrongeft mufcles of the Snail, by the affiftance of which it creeps and moves.
c The part where thefe mufcles ftretch the tail itfelf backward or inward, and which pals under the pillar of the fhell.

of the TABLES.

d. The part where the mufcles of the verge are inferted.
e The mufcles which draw in all the parts of the mouth, jaws and palate.
f The acute extremity of the tongue.
g The bafis or root of the tongue.
$b b$ The mufcles of the eyes.
$i i$ The curled foldings of the nerves among thofe mufcles.
$k k$ A part left of the firft pair of horns, ftill adhering to the mufcles.
ll A pair of mufcles which draw the lips and the knot or fwelling of the fpinal marrow inward.
$m \mathrm{~m}$ The mufcles of the lower horns, which arife from the former pair.
$n n$ Two ftrong mufcles which draw the middle of the body into the fhell.

- The part where they are inferted.
$p p$ The internal furface of the fhell, in which its fpiral windings, cells, and circumvolutions are feen.
$q 9 q 9.9$ The fringe or border, or foot of the Snail.
r The cavity of the pillar.

> F I G. III.

The convolutions, or windings of the 乃eell.
a The outward opening of the fhell at which the Snail creeps out, and the winding which forms the firft cell or inward divifion.
b The fecond divifion. c The third.
d The fourth. $\quad e$ The fifth and laft.

> F I G. IV.

The internal part of the Sell broke open.
I 2345 Are feen the inward windings of the fhell, when all the partitions are broke open.

> F I G. V.

The Pillar.

a The upper aperture and windings of the pillar.
b The lower aperture of the pillar, which may be feen more plainly in fig. II. r.

FIG. VI.

The Pillar.

c The aperture, the fpiral windings, and the conftruction of the pillar diftinctly reprefented.

F I G. VII.

Sheres in what manner the greater or lefs divifions of the fbell may be formed, as it is broken off from the pillar and its partitions.
d A part of the fhell broken off, almoft to the end of its fpiral winding.
e. f Two others, lefs broken

A Short Explanation of the TABLES
 T A B. VII.

F I G. I.

The Turbo or Verticillum.

a The beginning of the windings of the Turbo.
6 The end of thofe windings.
F I G. III.

The voluta, or the cylinder or pyramidal Snail,
a The opening or entrance of it.
b. Where it becomes narrower.
c Another convolution or winding.
d The pillar and the other internal fpiral windings of it.

F I G. III.
The Concba Veneris.
a The entrance divided into little teeth.
b The windings round the pillar.

F I G. IV.

The pencil Snail.
a The outward entrance of it.
b Another of its winding divifions.
c The third. d The fourth. ${ }^{e}$ The fifth.
f The fixth: g The feventh.

F I G. V.

Thbe tubular Snail.
a The beginning like a plain tube or inteftine.
b. Its fpiral windings and convolutions.

> F I G. VI.

The tubular Snail.
cc The cavities which the tubular Snail forms, when the partitions of it are gradually convolved together, and applied one to another. But if their cavities are joined to others, the cavity of the pillar is thereby formed. See Tab. VI. Fig. II. r.

FIG. VII.

A Snail like the Cornu Ammonis.

a The hollow perforated partition in the beginning of the Snail,
12345 © c. The divifions of the Snail, which are formed by the various number of the partitions.

F I G. VIII.

The partitions, woith the naked furrounding Joell,
66 Six partitions, from which the outward fhell is removed.
c The part where the little tubes of the partitions are mutually received.

A partition, woith its little tube reprefented of a large fize.

$d d d$ The extreme compafs of the partition.
e The aperture of the partition which leads to the little tube.
f The perforated handle, or little tube of the partition.

> F I G. X.

Three partitions of different fizes, which mutually receive each other.
${ }_{8}$. The little tube of the firft partition, fixed into the little tube of the fecond partition.
b The little tube of the fecond partition, fixed in the tube of the third partition.
iiii The partitions, with their little tubes gradually decreafing in fize.

> F I G. XI.

The oval Turbo, with its windings turned contrary to thofe in otber Snails.
a The entrance opening into the oppofite fide, and obliquely winding afcends towards the left.

> T A B. VIII.
> F I G. I.

The little Turbo.

a The fhell of this Snail, with its windings turned the contrary way.
b Part of the body of the Snail creeping out of the fheil.
cc Its two larger horns, in which the eyes are placed.

> F I G. II!

The hoell of the Snail reprefented, and of an en= larged fizes
a The entrance extended to the oppofite fide?
b The aperture of the pillar.
$c c c$ The ridges, or ribs of the furface.

> F I G. III:

Tbe foell of the frall Snail, found under the. barks of the Willow.
a The fhell of the fmall Snail; a little flatted.

FIG. IV.

The fmall water oval Snail.
a The oval channelled fhell of the Snail.
b The hinder part of the fhell convolved into a double fpiral winding.
c The body of the Snail which creeps out from thence, marked with black points or fpots.
d The two obtufe horns, in which the eyes are ăre placed, alfo the upper, lower, and fmaller horns.

> F I G. V.

> The garden Snail.
a The aperture of the genital parts, placed a little lower in the neck than in the common Snail.
$b b$ The uterus.
$c c$ The ligament of the uterus.
d The bag which holds the glutinous moifture.
e The chain-like little part.
f The little legs in the ovary.
g The extreme firal part of the liver.
b The purple little knot.
i The other fmall tube of the purple little part.
k The connexion of the purple little knot with the uterus.
l The blind appendage of the uterus.
m The tefticles
n The alkaline little bone. 00 The penis.
p The mufcle which draws the penis.
q The common duct between the penis and uterus.
${ }_{\gamma}$ The acute end of the penis, curled into various windings.

F I G. VI.

Two garden Snails, in the act of coition.
a The penis of each wonderfully twifted together.
b The penis of one of the Snails infinuating itfelf into the
c Uterus of the other.
d The penis of the other Snail, in like manner, infinuating itfelf into the
e Uterus of the former Snail.
f The aperture and divifions of the verge, as feen in this Snail, at this time.
g At the fame time nothing is feen of the verge in the other Snail.

F I G. -VII.

The naked boufe Snail.
a 'The upper horns, which have eyes.
$b b$ The lower horns, which are much fmaller.
c c The velabrum, or eminence which is fixed to the body.
d The aperture in the neck, through which the genitals are extended.
e The aperture of the velabrum, by which the Snail breathes.
f The prominent part of the tail, like a cock's comb.

> F I G. VIII.

The Snail fone.
a The hollow like Snail ftone.
b The furface of it, interwoven as it were with veffels.

F I G. IX.

The genital parts of the boufe Snail.
a The three apertures of the genitals, in the neck, which unite in one paffage on the outfide.
$b b$ The penis. $c c c c$ The uterus.
d The purple bag
e A fmall filament, which reaches from the penis to the ligament of the uterus.
$f f f$ The ligament of the uterus.
$g g$ The fmall eggs ficking in the womb.
b b A bag, containing a glutinous matter.
i i A chain-like little part.
k The ovary.

> T A B. IX.

FIG. I.
The field or path-way Snail.
a Its larger horns.
b The aperture of the velabrum, or the eminence, by which it breathes, and difcharges its excrements.
c c Glandulous triangular protuberances, which rife obliquely from the body.
$d d$ The glofly red verge which furrounds the body.

F I G. II.
The internal parts of the field or patb-way Snail.
a The mouth and palate.
$b b$ The larger horns drawn in.
c The fkin of the head divided.
d The gullet. e The brain.
f The beginning of the ftomach.
$g \mathrm{~g}$ The falival veffels.
$b b$ The glandular corpufcles, from which the falival veffels arife.
i The ftomach covered with veffels.
$k k$ The intertines. lll The liver.
m The large gall-bag, which difcharges itfelf into the inteftines.
n The aperture of the genitals in the neck.

- The penis.
f The little tube which opens from the penis; into the uterus.
q The purple bag.
r The little tube of the purple bag, which is inferted in the penis.
s The ftrong and thick origin of the uterus.
t The flenderer part of the origin of the uterus.
$u u u u$ The uterus itfelf.
$x x x$ Whitifh veffels, which connect the uterus and its ligaments.
$y y$ The glutinous bag.
z The chain-like little tube.
α The fmall gut. $\quad \beta$ The ovary.
${ }_{\gamma}$ The heart in its place. of The alkaline bag.

A Short Explanation of the TABLES.

F I G. III.
The ovary of tbe field or path-way Snail.
a The ovary large and expanded, as it appeared fome months after coition.
$b b$ The little eggs, vifible in the ovary.
c The chain-like little part.

F I G. IV.

The common water Snail.
a Its turbinated Thell.
$b 6$ The eyes placed at the bottom or root of the horns.
c c The horns, which terminate in fharp points.
d The aperture of the verge.
e The aperture through which the penis comes out.
f The opening of the uterus.
$g g$ The verge fitted to the internal furface round the fhell.
b The tooth.
ii i The body, by which the Snail creeps and fwims.

> F I G. V.

The internal parts of the woonderous viviparous Snail.
a The Snail taken out of the fhell.
b The head. $c c$ The horns.
$d d$ The eyes. e The vulva. f The gills.
g The verge.
b The windings of the body.
i i i The part which ferves as a foot.
k The cover of the fhell, which is placed on the foot.

> F I G. VI.

The internal parts.
a a The cover of the Snail preffed clofe againt the fore parts of the body.
b The horns and mouth contracted.
c The Vulva.
d The fringe or margin, beautifully folded.
e The end of the fraight gut.
f The gills.
\boldsymbol{g} The uterus, open; containing the living fetus.

> F I G. VII،

The little Worm found alive in the wonderous viviparous Snail.
a The oblong figure of the Worm.
b The oblong tranfparent furrows or ridges which appear in the body of the Worm.

F I G. VHI.

$\tau_{\text {wo }}$ fnaller Worms, which ifued out of one of the Worms in difecting.
a Its thick head. b The flender tail。

A fmall live Snail, found in the uterus of the zoonderful viqiparous Snail.
a. The fize of that fmall Snail, equal to that of a common pea.

F I G. X.

The Juell of that Small Suail, as magnifeed.
b The beautiful conftruction of the fhell.
ccccccc Seven rows of briftly hairs, with which it is furrounded.

> F I G. XI.

Perfect eggs found in the uterus of a viviparous Snail.
a a a The little navel-ftring by which they are fixed to the uterus.
$b 6$ The double navel-ftring of one of the eggs. $c c c$ A fmall Snail, fticking in an egg.
$d d$ The fame taken out of its egg.
e A Snail, fticking in its egg, which fell to the bottom; when the fhell was fufpended by its ftring.

> F I G. XII.

A fmall Snail taken out of its egg, and magninified by the microfocope.
a a Its eyes, black like pitch.
b The horns. c The mouth.
d The reft of the body.
e The operculum, or cover annexed to the tail,
f The fhell of the fnail.

> F I G. XIII.

The foell of the viviparous Snail, reprefented in its natural fize, cleared of its foulnefs and periofeum; in order to foerw, the more difinctly; its form and confruction.

F I G. XIV.

The fea Snail, called by the Hollanders Aliekruyk: they are found among mufcles.
a The Snail itfelf, with its little horns, eyes; and foot.
b The part where the fhell of this Snail is of a globular form.
Prominent hollows or channels on the fur: face of the fhell.
I 2345 The windings of the fhell。

FIG. XV.

Another Species of the Suail, called Aliekruyk, commonly fold in Amferdam.
d A kind of wreaths, which furround the fhell, adorned with a colour like that of mufk, in the interfices of which the fhell appears green.

Five
e Five oblong, crooked, hollow openings; eaten through by worms.

F I G. XVI.
One of thofe worms webich eat through the Boells of the Snails, reprefented of its natural fize.

F I G. XVII.
The Same Worm, reprefented as magniffed.
a The head. b The tail.
c c Many fmall hairs on each fide of the body.

F I G. XVIII.

The Snail, called Aliekruyk, reprefented as magnifeed.
a The head and mouth. $b b$ The horns. ,
$c c$ The eyes. $d d$ The foot or verge.
e The cover of the Snail, of which only a fmall part is feen.
f The fhell very large, with its wreaths worn out.

> F I G. XIX.

The cover of the Snail, reprefented as magnifed.
g The cover, whofe convolutions are formed like the windings of the fhell.

> F I G. XX.

The tongue of the Snail, called Aliekruyk, of its natural fize.
b The fore part of the tongue, fituated in the mouth.
i The part of the tongue placed within the body, beautifully folded in ferpentine windings.

$$
\begin{array}{ccc}
\text { T A B. } & \text { X. } \\
\text { F I G. } & \text { I. }
\end{array}
$$

The fmall water Turbo.
a The fhell of the fmall water Turbo, which is formed very like the viviparous Snail.
F I G. II.

The umbilicated marble water Snail.

a The fore part, formed like an umbilicus, or navel.
b The oval broader part.

> F I G. III.

The flattened water Snail.
a a The two lips. $b b$ The verge or foot. $c c$ The black eyes. $d d$ The horns.
e The long flender body.
f The air hole in the verge.
${ }_{g}$ The aperture of the genitals.
ob The fhell of the Snail flat on the left afide.

of the TABLES.

F I G. IV.
The other fide of the Jhell, of the fame Snail, reprefented.
a The right fide of the fhell, which is concave, and, finking in the middle, is rolled into itfelf.

> F I G. V.

The fmall flattened Snail.
a A fmall margin, which frrrounds the fhell.

F I G. VI.

The frefh water Mufcle, found in the rivers in Holland.
a a The lips or verge which furround the whole body.
$b b$ The papillæ, or nipples of the mufcle.
$c c c c$ The four large gills.
$d d d d$ The four fmall gills.
e The hard part of the body.
f The foft part of the body.

F I G. VII.

The infide of the flell of the Mufcle reprefented.
a The part, in the acute extremity of the fhell, where the mufcle is faftened.
6 The part in the thick or broad extremity of the fhell where the mufcle is faftened: where are vifible four fimall holes.
$c c c$ The part where the mouth of the mufele is faftened.
d The firal winding of the fhell.
oe The two eminences, by the help of which both valves are ftrongly joined together, as by ginglymus.

F I G. VIII.

The Pbyalus laid on its back, in order to exbibit the wrinkles on its belly.
a a a Twenty-eight of the greater, and fome of the leffer external, parts, extant on each fide of the body, and from which there fpring black fiff briftles, of which there is but one fide to be feen in this place.
i i i Some woolly hairs like down, of a gold colour, and placed under the parts, containing the lateral briftles. But I have here omitted thefe briftles, in order to render the hair itfelf more confpicuous.
l The opening of the mouth, above which appears a kind of beard, like that of bearded firhes.

F I G. IX.

One of the above cigbt and twenty greater external parts, feperated from the body, and exbibited by itfelf, with its black brifles.
b An Articulus, or joint, reprefented by itfelf, and fhewing in what manner the briftles grow from under it.

FIG.

A Short Explanation of the TABLES.

F I G. X.

The faid brifles, reprefented in tbree orders, as they appear when plucked from the parts producing them.
c The ligament that connects the briftes, and afterwards appears about all the other briftles.
d Two of the largeft and fiffeft briftes with their ligament, which is placed almoft in the middle of them.
e Six briftles with their ligaments fome of which are more fine and delicate than others.
f Eight briftles with their ligament, differing in ftructure, length and ftiffnefs.

F I G. XI.
One of the faid brifles feen through a microfoppe. g A flattifh briftle ending in a point.
'F I G. XII.

Another brifle vierved likewife through the microfoope.
b A long round fmooth briftle, fomewhat more fwollen on the forepart, but afterwards terminating in an obtufe point.

F I G. XIII.

Some bairs of a golden colour, with their roots.
k Some very fine hairs, like down, fpringing alfo from one centre or fpot like the brifles.
F I G. XIV.

The Moping region of the back, covered with brijtles and delicate bairs, and moreover of a fomerwat convex form.

F I G. XV.

The back of the Pbyfalus laid open.

a a a a a The natural openings' on each fide of the body, thro' which the water flows to and from the gills.
6666 The membranaceous gills which move freely one over another, like the larger fcales in fifh.

F I G. XVI.
The inteffines of the Physalus rudely delineated.
a The ftructure of the intefines, which look as if they communicated with one another.

T A B. XI.

FIG. I.

The Cancellus, with its bony or Jhelly Jkin
a The fhell, or true fkin of the cancellus.
6 The five fpiral windings of the fhell.
c Two eyes, below which are fome briftly articulated hairs.
$d d$ Two horns.
e The right arm, and its forceps, which is the largert.
f The left arm, which is the leaft.
$g g$ The four foremoft legs.

F 1 G. II.

The Cansellus, out of its kin or fuell, lying on its back.
a a The eyes, between which are feen four briftly articulated hairs.
$b b$ The horns. c The left and leaft arm.
d The right and largef arm.
e The two firft pair of legs.
ff The third pair of legs, which has fmall forceps.
$g g$ The fourth pair of legs, which are worthy of notice, becaufe perforated by a double little tube of the genitals, to which it yields a paffage.
$b b$ Three articulated briftly hairs, to which the eggs are ftrongly fixed.
i The tendinous point of the mufcles, or the part in which the tendons of the mufcles meet, and where the Cancellus is faftened in his fhell, that it can never go entirely out of i.
k The tail, with its particular part.

> F I G. III. IV. and V.

The tail, the fraight and clofed guts, and appendages of the Cancellus, reprefented a little larger than they naturally are.
a The tail, confifting of two teftaceous articulations.
6 The verge of the anus, which being bent inwardly may be hid under the tail.
c The ftraight gut.
dd Three little teftaceous bones on each fide of the tail, which are articulated among themfelves and with the bone.
e A fmall part of the inteftine.
f The blind or clofed gut, or what is anologous to it.
$g g$ The appendages, which in the living cread ture are feen beautifully through it.
$b b$ The origin of the appendages, which fpring from two diftinct ducts.
ii The appendages, whofe fituation was fhewn at letter $g g$, are feen here feparated.

F I G. VI.

One of the pair of legs Jeparate from the reft, reprefented magnifeed, together with the genital veffel, entire, by which that leg is on one fide, perforated.

12345 The five articulations of the fourth pair of legs.
a a The winding of the genital veffel.
$6 b$ Its fpiral windings which terminate in one narrow tube.

D
6 The
c The extremity of its end.
d The part in which the genital veffel, after a wonderful manner, perforates the fourth pair of legs throughout the fifth articulation.

FI G. VII. and VIII.
The beart and one of the gills, reprefented as magnifeed.
aa The heart. $\quad b$ Four veffiels iffuing from the upper part of the heart.
c Two other veffels iffuing from the lower part of the heart.
d Some blood veffels difcharged of their flefh, and rolled out.
e One of the XXII gills.
f The thick and broad part of it
g The acute extremity.
b The divifion of the gills.
N. B. Thofe white hollows or grooves, which run longitudinally through the middle of the gill, Jhew the cartilages, near which the blood veffels are conveyed; in which part they appear thicker and whiter.

FI G. IX. X. and XI.
The brain, Spiral marrow, eyes, cornea, and inverted pyramidal fibres, reprefented as magnified, beyond their natural fize.
a a The brain.
${ }_{b} b$ The optic nerves, one of which is laid entirely bare.
c The origin of the firal marrow, which is feparated, and affords in the living infect a paffage for the gullet to the ftomach.
d The firft knot or fwelling, with the nerves it emits.
eeeee The remaining five knots of the marrow.
ff Nerves which fpring from the marrow.
g There nerves elegantly decuffate one over the other, iffuing from the right to the left, and from the left to the right fide-
b Part of the cruft as yet fticking to the eye, near which the naked nerve is vifible.
i The cornea tunica, and the manner by which the annular cruft like a tooth infinuates itfelf into it.
k A gelatinous hexagonal matter placed within the eye, above the inverted pyramidal fibres, which appears on removing of the cornea.
l The inverted pyramidal fibres and their fituation.
n The black part of thofe fibres, which fpring from the tunica uvea.
n The lower part of the fibres which appears brown.

- The middle part of them which is limped.
$p p$ A certain part of thofe fibres, enlarged by the microfcope, by which it appears, that each of thefe fibres confifts of many other fruall fibres, all which are again compofed of regular globules.

T A B. XII.

No. I. The vermicle or worm of the Libella or Dragon-fly, flicking as yet in its firft fkin, when it is called an egg: reprefented magnified by the microfcope.
II. The egg itfelf, deferted by the worm, reprefented of its natural fize.
III. The worm, as come out of the egg, called, by this author, an Oviform Nymphvermicle.
IV. The fame worm a little more grown, when the follicles, or membranaceous bags of the four wings are obferved to fpring.
V. The fame worm, perfect, with its four follicles or little bags, increafed to their due fize, called in this flate the Nymph-Vermicle.
VI. The Libella or Dragon-fly in its perfect ftate, having attained its full age, and fit for generation.

> F I G. I.

The egg of the Dragon-fly, as magnifeed by the microjicope.

FIG. II.

The Nymph-Vermicle of the Dragon-fy, cafing its Jin.
a a The feet fixed with the claws.
b The head and eyes burft forth.
cc The fix legs, now cleared from their flins. $d d$ The wings, as yet folded up.

> F I G. III.

Of the copulation of the Dragon-fies.

a the tail of the male.
b The female receiving into her neck the tail of the male, and embracing it with her legs.
c The tail of the female turned toward the breaft of the male.

> F I G. IV.

The nymph of the largef Dragon-fyy.
aa The eyes. $b b$ The horns. c The teeth. $d d$ The legs armed with fharp claws.
ee The little bags, or cafes of the wings. $f f$ The divifions of the abdomen, g The Atings, or prickles of the tail.

FIG. V.

The Nymph-Vermiclc of the middle fized Dragonfy.
a The lips and teeth. b The hairy legs.
c The little bags, or cafes of the wings.
d The ftings, or plickles of the tail.
FIG. VI.

A Short Explanation of the TABLES.

FIG. VI.

The Nymph-Vermicle of a fingular kind of a Dragon-fly.
a The horns. bb Six long legs.
c The little bags, or cafes of the wings.
d The hairy belly.
e The triangular appendages of the belly.
F I G. VII.
The Nymph-Vermicle of the fralleft Dragon-fy, found common in Holland.

> T A B. XIII.

FI G. I:
The Worm of the Ephemerus, of the firt year's growth, three quarters of a Dutch inch long, in whbich is not the leaf appearance of wings; but the five gills are vifible on the back, from wobence coine in fight the ten lower rowing fins.

F I G. II.

The Worm of the Epbemerus of the fccond year's groweth, five tbirds of an inch long; the little bags or cafes in wobich the wings are enclofed.
F I G. III.

The Worm of the Ephemerus of the third year's groweth, a female, about two inches and a balf long; provided with the little bags or cafes of the wings, which are now vifible.
F I G. IV.

The larget Worm of the Ephemerus, in wobich all the parts elegantly and difiinctly appear,
a The eyes, which are twice as large as thofe of the female worm.
66 The horns, and the diftinct articulations of them.
c The forceps, mouth, or dentated jaws, by which they dig into the earth.
$d d$ The firft, fecond, and third pair of legs, with their articulations or joints.
e The little bags or cafes of the wings, which enclofe the firt pair of wings, like a tender little flower, Shut up in its cup.
$f f$ The gills, perpetually fluttering, very white and limpid, and covered with innumerable fine hairs.
g Three briftly hairy tails, with their appendagee.
The rowing fins in Fig. I. and III. may alfo be feen.
F I G. V.

Oblong or bollow tubes, or cells, made in the mud or clay, in which the Worm of the Ephemerus creeps, and is moved and nourihed.
a a The tubes made in the mud by the largeft worm.
$6 b$ The tubes that are hollowed out by the fmalleft worms.

F I G. VI.

The male Ephemerus freed from the firft exuvic, or fkin, entirely ftript of its former likeness of a Worm.

FI G. VII.

The Worm of the female Epbemerus, about to undergo in a little time its change, in which may be Jeen the wings through their little bags or cafes.
a a The little fheaths, cafes, or bags of the wings, through whofe fmooth external little membranes may be feen diftinctly, the folded wings lying hid within them.

F I G: VIII.

A. female Ephemerus, Aript, on the furface of the water, of its Rkin; and quitting the form of a fwimming Worm is cbanged into a fying infect.

> F I G. IX.

The manner bow the wings expand themfelves. But in the following XIVth Tab. Fig. I. under let. ε E may be feen the natural foldings of the wings, wobich bere Separate by degrees one from another.

F I G. X.

The fame wing, firt fmootbing its ferpentine foldings, afterverrds its oblong folds.

F I G. XI.

The fame wing not entirely expanded.

> F I G. XII.

The male Ephemerus, employed in changing its Kin, which is very Jlowly completed on dry land. Here balf tbe body is now fript of its Rkin. The Jin is fript off the bead, thorax, and legs, in the Jame manner as we draw our feet out of our Jhoes; but as to the wing's, the Jkin is drawn off tbem in fuch a manner, that the infide is turned outward.

F I G. XIII.

A male Ephemerus, which bas almoft gone tbrough tbe change of its Jkin, fo that its double external wings aud tail might be taken only for a Jender part as yet to be caft off.
F I G. XIV.

The very Jlender caft finins of the Ephemerus, wwhich do not retain the form, as bere reprefented, becaufe the parts in which the wings were included, are commonly wrinkled, and by that means change the form.

FIG. XV。

FI G．XV．

A male Ephemerus，which bas caft both its Jkins， changed into a fying infect；wobofe legs，wobich in the worm－ftate were flort，are now as long again as they were，but the tails which were before twice that length，are now become three times as long．

T A B．XIV．

F I G．I．

A diffection of the Worm of the Ephemerus．
a a The pulmonary tubes，or two air trunks， running along each fide of the body．
$6 b$ The tubes reaching to the brain and nerves．
$d d d d d$ The pulmonary tubes tending to the mufcles of the abdomen，from one fide； but from the other fide are feen，at the fame letters，the naked mufcles of the abdomen， with their tubes，alfo the oblique，afcending and ftraight mufcles，hidden partly under the former．
eee The air pipes，or tubes，running to the fpinal marrow．
$f f f f f f$ The air pipes diftributed through the fmall guts，or feminal veffels of the male． One of them reprefented in its natural fitua－ tion，and another of them removed out of the body，and reprefented magnified more than the other．
$58 g$
g
g The air pipes diftributed to the gills． Only two of the gills are here reprefented， the other ten being cut off，to give an op－ portunity of feeing the ten rowing fins under－ neath them．See let．rrrr．
b The air pipes running to the loweft parts of the inteftines，and alfo to the fpermatic vef－ fels placed near them．$\gamma \gamma$ ．
ii i The air pipes which fupply，refrefh，and nourifh the fat，membranes，and fkin with air．
$k k$ The air pipes．
$\not ヤ \not ロ タ$ Three exraordinary air pipes difpatched beyond the body，towards the gills，cut off．
$q q$ The middle of the three firt pipes，being black，but about the middle fhining with white，in fuch a manner，that the black line of the gills appears as if marked with a white point oppofite．
rror The five rowing fins ffretched out from each fide of the body，with Atrong briftly hairs，of an obfcure yellow gold colour，
ss A feathery little part fituated underneath the firt pair of gills．
yyy The fpinal marrow，confifting of eleven knots or fwellings，from which fpring the nerves that are diftributed through the whole body．See Fig．VI．Tab．XV．
$z z$ The parts to which the fpinal marrow is faftened，by the means of ftrong ligaments．
＊＊The optic nerves，derived from the brain， or origin of the fpinal marrow，where it forms the firf knot or fwelling．
a a The mufcles of the breaft，employed in moving the legs．
$\beta \beta$ The mufcles of the breaft，employed in moving the wings，cut off．
ry Two little parts，which I take for the fer－ matic vefiels of the male．
：The ftraight gut cut off，in Tab．XV Fig．V． that it may be the more perfectly feen．
$\varepsilon \varepsilon \varepsilon$ The extremely artificial folding of the wing，whilf it yet lies in its cafe or fheath， $k k$ ．being very eafy to be unfolded．See Fig．IX．X．XI．Tab．XIII．

F I G．II．

All the parts juft now reprefented in their natu－ ral fize．

T A B．XV．
FIG．I．
Il Some branches of the air pipes which run to the ovary of the Ephemerus．
$m m m m$ The fame air－pipes running into and over the membrane invefting the ovary．
cc The mufcles employed in moving the fix gills and five rowing fins，placed on each fide of the body．
$f f$ The fomach and inteftines，which are vi－ fible through the membranes of the ovary． See Fig．V．of this Table．
ii The mufcles of the ftraight gut employed in voiding the feces．

F 1 G．II．

The little eggs of the Ephemerus，as they appear to the naked eye．

F I G．III．
The double ovary of the Ephemerus，conffing of innumerable little eggs．

F I G．IV．

0000 Some air pipes leading to the heart of the Ephemerus，partly cut off．
$t t$ Part of the heart，like an oblong tube， which is fomewhat fwollen on each fide．
ขขขข Some air pipes cut off，leading towards the heart，and then to other parts．
$x x x x$ The parts in which the tube of the heart fwells up a little．

F I G．V．

a Part of the oefophagus or gullet，cut off near the ftomach
b The pylorus of the ftomach
c The ftomach itfelf，with certain air pipes， which creep all orer it．
$d d$ The fmall gut continued from the ftomach．
e The thick gut or colon，diftinguifhing itfelf by fome little oblong tranfparent channels or furrows．

A Short Explanation of the TABLES

f The ftraight gut elegantly folded, or wrinkled. g Certain femilunar little valves of the fmall gut.
45678 , ©̧c. Eleven annular fections, into which the body is divided.

F I G. VI.

The brain, fpinal marrow, and the nerves, fpringing from thence, according as they are placed in the living Epbemerus.
r. $23, E_{c}$. The natural fituation of the fpinal marrow in the body of the Ephemerus. At the fame time is fhewn how the annular interfections are placed.

F I G. VII.

12 Air pipes together with a part of the ovary, drawn out of the body, the more conveniently to fhew how thefe pipes ftick fait to the eggs.
g^{r} The eggs, of a plain round oblong figure.

T A B. XVI.

No. I The Ant's egg delineated in its natural fize, or the Worm of the Ant in its firt flin or coat, wherein it is called an egg; which is exhibited in the firtt figure magnified.
II. The beforementioned covering, being quitted by the Worm of the Ant, is rolled up as into an invifible point.
III. The Worm of the Ant come forth from the egg, with its parts imperfect; delineated in its natural fize and fituation. Figure the fecond reprefents it magnified by the micivofcope.
IV. The fame Worm at the full period of its increafe, all the parts of the Ant being contained hidden within it. Figure the third fhews it as magnified.
V. The fame Worm frript of its fkin, and now called a Nymph.
VI. The fame, having quitted the form of a Nymph, changed to a real and perfect Ant.

F I G. I.

The egg of the Ant magnifed.

F I G. II.

The Worm of the Ant, as delineated under the microfcope, with its bead bent towards the breaf; called improperly the egg of the Ant.

F I G. III.

The former Worm, baving arrived at its full bignefs, about to quit by and by it skin, in order to be changed into a Nymph. This is alfo larger than naturally.

FI G. IV.
The Nymph of the Ant delineated by the afilance of the inicrofcope, wobich is reprefented No. V. in its natural /ize.

> F I G. V.

The fome Nymeth, Sying on its back; marmifed.
F I G. VI.
The fame Worm delineated again, as it appears under the microfoope; and all it parts difinguifbed by annexed letters.
a a The two eyes in the head. $\quad b$ The teeth.
co The horns, folded near the legs, upon the breaft.
$d d$ The firft pair of legs.
ee Another pair of legs, vifible under the firft. ff The third pair, laid on the belly.
g. The rings of the belly, and margin or bordes of the belly.

> F I G. VII.

The Ant baving completed all its labours, and now attained the full maturity and Arength of it age, exbibits the number of its parts and limbs complete.
a The tecth of the Ant, in which it carefully carries its Vermicle, or little Worm.
66 The two very black eyes.
cc The horns, of a light red colour.
d The fix . fharp pointed prominences, into which the rings of the thorax divide themfelves.
c The loins, confifting, as it were, of three knotty joints or vertebræ.
ff Six hairy legs, compofed of four joints.
g The fhining hairy abdomen.

F I G. VIII.

The male Ant, in its natural fize.

F I G. IX.

The male Ant, delineated as magnified, in which all the parts are diftinizly reprefented.
a The teeth, a little lefs.
b The eyes, on the contrary, larger.
cc The horns.
$d d$ Four wings, peculiar to the male, the firft pair of which are much fironger and larger than the hinder ones.
e The loins, and
f The belly are both differently formed than thofe parts are in the working Ants.

FIG. X.

The female Ant, in its natural fize.
FIG. XI.

FI G. XI.
The female Ant, reprefented magnified; that the external difference between it and the otber kind may be made to appear.
a The teeth.
$b b$ The eyes.
co The horns.
d The thorax.
ee The legs.
f The loins.
g The belly.
F I G. XII.
The little bag or cafe, in wwhich the Worm of the Ant, being Jbut, is cbanged into a Nymph; as yet entire, and of its natural jize.

F I G. XIII.
The fame, opened.
F I G. XIV.
Anotber kind of Ant, found in Holland.
F I G. XV.
A fixth kind of Ant, found allo in Holland.
FI G. XVI.
The largef kind of Ant, found at the Cape of good Hope.

T A B. XVII.
Which reprefents Bees.
F I G. I.
The common or labouring Bee, whofe external parts, are particularly defcribed in the following figure.

F I G. II.

The fame labouring Bee, in which all its external parts are difiinctly pointed out by annexed letters.
a a The two oval eyes of this Bee, which are much fmaller than thofe of the male Bee.
b The particular little eyes, placed in the middle between the two former larger ones.
c c The antennæ or horns.
d A kind of horny or bony lip, which is not obvious in the males.
ee Two long teeth, which are fhorter in the female, and very fmall and fhort in the male Bees.
f The long probofcis or trunk, which is much fhorter in the male.
g The thorax is roundifh, and in the upper fide of the hinder part it is provided with a fomewhat prominent margin or border.
bb The two upper wings.
ii The two lower wings, which are lefs than the former.
$k k$ The two foremof legs.
$1 /$ The two middle legs.
$m m$ The two hinder legs, larger than the former ones, and that particular part of them which we call the foot.
$n n$ The claws of the feet.
00 Part of the hinder legs, which is called the thank, the foot of which of one extreme part, is joined to another part called the thigh.
The abdomen. q The aculeus or fting.

F I G. III.

The female Bee, commonly, but improperly, called the king. By comparing this with the common or working Bee, reprefented in the laft figure, and with that of the male in the folloreing figure, the difference between the tbree kinds may be objerved.

> F I G. IV.

The male Bee, wobich differs from both the fennale and working Bee.
F I G. V.

The probofic of the Bee, weith its parts as reprefented by the microfope.
a a The firft pair of joints of the probofcis, which are partly of a fubftance between horn and bone, and partly of a membranaceous fubftance, and here and there are covered with rough hairs. This cut reprefents them a little drawn in, and in readinefs to move the probofcis backwards, and withal to comprefs and cover it ; and likewife to force the honey through it towards the ftomach.
$6 b$ The air-tubes, diftributed through that part of the probofcis, which is of a fubftance between horn and bone; and which, by being tranfparent, affords a view of them.
$c c$ The extremities of the firft pair of joints; thefe extremities are a little crooked.
$d d$ The articulation of thefe joints with the root of the probofcis.
$e e$ The next pair of joints belonging to the probofcis, conftructed much after the fame manner with the firft. This fecond pair greatly affift the probofcis in its fuctions.
$f f$ The lower articulation of thefe joints, of a pretty confiderable length.
$g g$ The two upper articulations of the fame joints, which are fhorter.
$b b$ The third pair of joints forming the probofcis, which are fomewhat of a fubftance between bone and horn, but for the greateft part membranaceous, and likewife covered with rough hair: Thefe joints alfo are of fervice to the probofcis in fucking the honey, which

A Short Explanation of the TABLES.

which they likewife help to forward towards the ftomach.
i The feventh joint of the probofcis, being a fingle one; or the probofcis itfelf, confifting partly of a membranaceous fubftance, and partly of a fubftance between bone and horn. It is the underfide of it that I have here reprefented, as it may be fuppofed to appear, on turning the Bee upon its back.
$k k$ Part of the probofcis itfelf, of a fubftance between bone and horn, conftructed in fuch a manner, that the Bee can feperate it from the main body of the probofcis, and give it a circular form.
l The gullet reprefented cut off.
m The membranaceous part of the probofcis itfelf, which lies beautifully folded up under the other portion of the probofcis juft now mentioned, as confifting of a fubftance between bone and horn.
$n n$ The part of the probofcis which confifts of a fubftance between bone and horn, tending inwardly, and forming, as it were, a narrow channel.
00 The fore extremity of the probofcis covered with crooked hairs, and furnifhed with a little head, in which there is a hole that feems to be the cavity of the membranaceous part.
p That part of the probofcis, which confifts of a fubftance between bone and horn, divided at its fore extremity into two fhanks.
$q q q$ Three very black, but fhining, joints of the probofcls, of a fubftance between bone and horn, and forming the lower part of the probofcis. The middle of thefe joints is the fheath or cafe of the probofcis, and is furnifhed with mufcles, which belong to the fecond pair of joints $e e$ of this organ. But the two extreme joints of the part now before us, contain mufcles that adminifter to the firft pair of joints a a.
rrrr The articulations by which the three joints $q q q$ are united with the parts of the head.
ss The ftrong mufcles ferving to move inwards the probofcis, its joints and fheath.
t A thin tranfparent membrane, through which the mufcles's may be difcerned.

FIG. VI.
More diftinctly exbibiting in zobat manner that part of the probofcis, which conjifs of a fubfance between bone and born, and which is reprefented under the letters $k k$ Fig. V, can form itfelf into a circle, and dilate the membranaceous parts of the probofis at the time of its fuction.
a a a That portion of the probofcis, which confifts of a fubftance between bone and horn. This part is much blacker and ftronger in the middle of it than elfewhere, as is very difcernible.

6 The circular form or bending which that part acquires at the time of fuction.
$c c c c$ The expanfion, in form of a fail, of the membranaceous part of the probofcis, that lies folded up under the other part that confifts of a fubitance between bone and horn. The former part acquires the faid form, when the latter projects itfelf in that of a circle.
d The papillx, or glandalous protuberances of the membranaceous part of the probofcis. Thefe particles appear moft vifible when the faid part is expanded.
e The place where that part of the probofcis, which confifts of a fubftance between bone and horn, tends inwardly, and uniting with the remaining hairy part of the probofcis, forms, as it were, a narrower channel.
f The fore extrenity of the probofcis, covered, as it were, with crooked hairs, and perfoforated in the middle.
g The hairs of the probofcis, which are not of an equal thicknefs, but fomewhat bigger near the roots.

FIG. VII.

The probofis of a Waf, vierved on its lower. fide.

a Part of the probofcis of a horny fubftance; which conftitutes the lower part of the infect's head. This part is covered with hair on its fides, and is all of a chining black, except two yellow fpots.
$b b c$ Three horny particles or joints, which ferve in a manner to form the root of the probofcis. The two lateral $b b$ contain the mufcles, that govern the briftles $d d$; but the middle joint c ferves, as it were, for a cafe or fheath to the probofcis.
$d d d d$ Four articulated briftes, which affift the probofcis in its fuctions.
$e e$ The place where the teeth are broken off.
f The probofcis itfelf, adorned with four beau- o tiful white particles, or rather protuberances, that terminate in little round knobs.

F I G. VIII.
The bair of a Bee, as it appears through the. microfoope, in the form of a feather.
a The ftem, as it were, of the feather.
$b b$ The fmaller lateral branches fpringing from the ftem.
c The hairy extremity of the ftem.
FIG. IX.

The lungs of the Bee.

a a The pulmonary veficles of a white colour.
$6 b$ Es. The little tubes branching from thefe veficles; they confift of firal rings, which in this place are always open.
$c \leftarrow \mathcal{E} c$. Other veficular dilatations of the pul-
monary
monary tubes, which again degenerate into the tubes $d d \mathcal{E}^{2} c$.
$e e$ Egc. Ramifications of the pulmonary tubes diftributed through the body.
$f f$ Two places, where the greater pulmonary veficles have a direct communication with each other.

F I G. X.

The pulmonary tube, which confifts of rings, and is bere reprefented as it appears when drawn out, the better to exbibit the spiral course of thefe rings.

T A B. XVIII.
FIG. I.
The internal parts of a Bee.
a The gullet.
b The ftomach, furnimed with flefhy fibres.
c The pylorus, confiting of nodules, and full of a fubftance of a yellowifh red colour.
$d d$ The finall gut, very facious or wide, full of mufcles, and furnifhed with valves.
eee. The vafa crocea, or yellow gut-veffels; being an infinite number of little inteftines moft intricately connected, and molt firmly united with the narroweft part of the fmall gut.
f The narrow part of the inteftine.
${ }_{g}$ The fudden dilatation of the inteftine, that fucceeds the conftruction of it juft now mentioned. In this place the inteftine looks like a membrane, and exhibits fix protuberant glandulous particles on its inner furface, as beft appears by the particular figure placed at one fide of that now under our confideration.
$b b$ The faid fix glandulous particles, as they appear more plainly on opening the inteftine that contains them.
i The place where the inteftine, after dilating itfelf, narrows a fecond time. I have given a particular figure to illuftrate this narrowing.

- k The place where this inteftine appears full of folds, like a rumpled piece of linnen.
l The ftraight gut, over which the fting lies.
$m \mathrm{~m}$ The hinder part of the laft abdominal ring, which is covered with hair, and gives a paffage to the ftraight gut.
m n Six particles or joints, of a fubftance between bone and horn, which are articulated with the Chanks of the fting.
00 Two appendages always found along with the fting, and placed on each fide of the fting and the ftraight gut.
p The bag containing the poifon, which the Bee injects into the wound made by the fting.
$q q$ The blind extremities of the tube that ferves to fecrete the poifon, and afterwards conveys it to the bag that is to contain it.

F I G. II.
Reprefenting the fing, and all its parts.
a The fting, compofed of a fheath or cafe, and

of the TABLES.

two fhanks, united to each other, and terminating in a fharp point, fo as to look like a fingle part.
b The poifonous bag.
c The tube that ferves to convey the poifon from its bag, to the thickeft part of the fting's Theath.
$d d$ The two fhanks of the fting, mutually conveying to each other.
i_{e} The fheath of the Ating.
$f f$ The thickeft end of the fheath, where the tube opens into it, by which it receives the infect's poion.
g. The extreme point of the fing, formed by the two fhanks of that organ, that are in this place clofely united.
$b b$ The beards with which the fhanks of the fting are armed at their extremities.
e The tube that ferves to fecrete the poifon, which it difcharges into the poifon-bag.
$k k$ The two blind extremities of faid tube.
llllll Three pair of cartilages, of different forms, which are for the moft part of a deep black, and articulated among themfelves, and with the fhanks of the fting.
$m m$ Two other cartilages lefs confpicuous than the former, with one pair of which they are articulated. Thefe two cartilages $m m$, are almoft entirely of a membranaceous fubftance.
nn $n n n n n n$ Eight places in which the fore= going cartilages are articulated among themfelves, and with the fhanks of the fting $d d$.
0000 Four mufcles ferving to move the fing different ways, by the affiftance of the fame cartilages.
$p p$ Two mufcles which draw the fhanks of the fting into its fheath.
$q q$ Two appendages of the fing which are moved along with it, and feem to anfwer no other purpofe but that of ornament.

F I G. III.

Which arain exbibits, but in a more difinct manner, the fing and other parts relating to it.
a The thick or blunt extremity of the fting's fheath, into which the infect fheds its poifon.
b The fharp extremity of the fting's fheath, to which the poifon runs, under the fhanks.
c c The place where the channel of the fheath grows narrower, the better to retain the fhanks that are within it, in their proper fituation. This particular may be ftill better difcerned under the letters $d d$.
$d d$ The fhanks of the fting laid up within the channel of the heath, and beautifully retained in their proper fituation by the two proceflus of the fheath, already taken notice of under the letters $c c$.
eee The borders or edges of the fting's fheath, which are turned in, and received by the channels of the fting's fhanks, and not only ferve to retain the fting in it's fheath, but likewife allow it leave to move freely.

A Short Explanation of the TABLES.

f One of the fting's fhanks put fomewhat more forward within the fheath than the other fhank; but after fuch a manner, however, that the fting's point ftill remains entirely within the fheath.
g The other fhank of the fting, lying higher within the fheath. We may here fee by what means the fing, left in the wounds made by it, penetrates deeper and deeper.
b The hollow, cavity or channel of the fting's theath, when wideft.
i The narroweft part of the faid hollow, cavity, or channel.
k One of the fing's Manks reprefented by itfelf, fo as to exhibit
il The cavity or channel within which the edge of the fheath is received, fo as to afford the fhank a free motion.
m A fegment of the fhank cut off tranfverfely, to give a better view of the fhank's cavity or channel.
n The fame channel or cavity, as it appears in the other branch.

- The extremity of the fhank's channel or cavity.
p Ten crooked heads or beards, with which each thank is generally furnifhed.
$q q q$ Other lefs confiderable hooks or beards.
${ }^{2} r r$ Certain proceffes of a fomewhat cartilaginous fubftance, and ferving, inftead of mufcles, to move the fhanks.
sss The fmooth unbearded fides of the fhanks, by which they join each other.
tt t The hinder parts of the Chanks, or the ligaments by which they are thruft out.
$v v$ Two places in which the fting appears as if there was a joint in it. But this appearance is entirely owing to the air, which makes it appear uneven: the poifon fticking to the fheath.
x The poifon bag.
y The tube which conveys the poifon of the bag.
z The tube by which it difcharges its poifon.

> F I G. IV.

The poifon bag of the Wafp, and the Hornet, with the otber parts belonging to it.
a The poifon bag
b The tube by which the faid bag fheds its poifon.
cc The two tubes inferted into the hinder part of the poifon bag, into which they difcharge the poifon. In the Bee there is but one tube to anfwer this purpofe.
$d d d$ Swellings here and there in the laft mentioned tubes.
$c e$ The ends of the tubes fomewhat thicker than any other part.

F I G. V.

Reprefenting the manner, in wobich the Bee's poifon may be extracted or gatbered.
a A flender glafs tube ferving to receive the poifon.
b The point of the fting placed within the tube, and pouring into it the poifon fqueezed by the fingers out of the poifon-bag.

T A B. XIX.

F I G. I.

The Bee's heart, with the parts belonging to it.
a a Part of the heart feated in the upper region of the abdomen.
bb b Pulmonary tubes running towards each fide of the heart, in which they at laft terminate.
cccccc Certain thin membranes, that ferve to keep the fat in its proper place.
d d The fat as it appears through the faid membranes, which are tranfparent.
eee The ovary, as it likewife appears through the faid membranes.
$f f f f f$ The mulcular fibres broken off from the abdominal rings, which they ferve to govern.
123456 The fix abdominal rings under which the heart is placed, as it were in the infect's back.

> F I G. II.

The ovary of the Bee, of the fize and form it ap. pears to the naked eye.

F I G. III.

The fame ovary, reprefented as it appears through the microf cope.
N.B. This double ovary is compored of parts extracted from two different female Bees, viz. The part a from a full-grown impregnated Bee; and the part c from another Bee lefs perfect, and not as yet impregnated. This I did to avoid the neceflity of two figures, where I thought one might be made to anfwer.
a Part of an ovary extracted from an impregnated Bee, furnifhed with an infinite number of ducts, that contain eggs of different fizes.
$b b$ The coalition of the oviducts of each fide, where they difcharge their eggs into a common channel or duct for all the eggs of that fide.
c Part of an ovary extracted from a female unimpregnated Bee. The eggs of this part differ greatly from thofe of the other part a.
d A dilatation of the pulmonary veficle, which diftributes its ramifications, and an infinite number of air-tubes through every part of the ovary, its ducts, and even the eggs themfelves.
ee The upper parts of the oviducts of an impregnated Bee, where they unite, and the two parts of the ovary bend towards each other.

xxii

$f f$ The upper parts of the oviducts of an unimpregnated Bee, in which they are hereabouts very flender, contain but very minute eggs, but which bend in the fame manner mentioned in the preceding article.
$g g$ The eggs of the ovary of an impregnated Bee, which are fenfibly bigger and bigger, the nearer they approach the common oviduct of the fide, to which they belong.
$b b b$ The eggs of an impregnated Bee, which are in every oviduct almoft of the fame fize, at the fame diftance from the common oviduct.
ii i The eggs in the extremities of the oviducts of an unimpregnated Bee's ovary. Thefe eggs are not only very fmall in themfelves, but fmaller, paler, fhorter, and more delicate than thole in the extremities of the impregnated Bee's ovary.
$k k k k k k$ The eggs in both parts of the ovary, ready to fall into the greater common duct.
$11 l l$ The eggs of an unimpregnated Bee, differing in fize, but very irrregulary, fome of thofe furtheft from the common duct being bigger than the others that are much nearer, contrary to what appears in the impregnated Bee, as has been already obferved under the letters $g g b b$.
$m m$ The eggs in the extremity of an impregnated Bee's ovary, which are bigger, and of an oblong, and more regular form.
$n n$ Two common ducts, or, as it were, the horns of the uterus, in which all the particular oviducts terminate, and pour their eggs.
N. B. Both thefe ducts are extracted from an impregnated Bee, though one of them fupports the ovary of an unimpregnated one.

00 The place through which the fpinal marrow takes its courfe.
$p p$ Part of the common duct, more fpacious than the reft, furnifhed with mufcles, or of a mufcular conftruction, and within which are placed
$q q q q q q$ A great number of eggs ready to come away; thefe eggs appear a little through the duct, which is tranfparent.
rrrrr Air-tubes, running through the horns and the common duct of the ovary.
s The coalition of the two common ducts or horns into one narrower channel, which is likewife mufcular, and the excretory duct of the Bees eggs.
t A globular or little round part or organ, containing a glutinous matter, with which the eggs are fmeared over before the Bee lays them. The interior coat of this bag is curioufly interwoven with an infinite number of air-tubes.
$u u$ Two blind veffels, that, after making a
great many turnings, meet, and form a fingle tube. This tube terminates in the uterus, or excretory duct of the eggs, and ferves perhaps to fecrete the glutinous matter juft now taken notice of, and to convey it to the bag deftined to receive it.
x The exitus, or end of the uterus, or of the excretory duct of the eggs, as yet not fufficiently examined.
$y y$ The external mufcular parts of the fling, broken off.
z The poifon-bag, with
${ }_{\alpha}$ Its fingle fecreting tube, and
βB The blind appendages of the faid tube.
γ The tube by which the poifon is difcharged.
¿ The fting of a female bee, naturally crooked.
$\varepsilon \varepsilon$ Two little parts placed by the fides of the fting, and already taken notice of in the anatomy of the working Bee.
ζ The ftraight gut.

F I G. IV.

The ovary of a Wa/p.

a a The oviducts of this ovary reprefented by themfelves, being feven of a fide.
$b b b$ The upper part of the ovary, extending to a very great length.
c The bag containing a glutinous matter, with its fecretory veffels. This bag is fhaped like a pear.
d d Some minute eggs, of the common oval form.
e The meeting of the particular oviducts in one common oviduct.

F I G. V.
The egg of a Bee, reprefented by itfelf.
a The egg, of its namnal fize.
6 The fame egg feen with the microfcope, which hews an infinite number of air-veffels, diftributed all over the egg's furface.
c c The oviduct cut off at each end of the egg.

> F I G. VI.

The poijon-bag of the Bee, of its natural fize.
b The poifon-bag reprefented under the leter z of Fig. III. as it appears through the microfcope.
cc Two blind appendages which ferve to fecrete the poifon, and afterwards meet fo as to form
e A fingle tube, terminating in the body of the bag.

T A B. XX.

F I G. I.

The bead of the Male Bee, with the parts belonging to it, effecially the eyes, which are bere reprefented much bigger than in nature.
a Three fingular, or particular unequal
eyes, which in the male Bee are placed in the form of a triangle between, but lower than the greater eyes; but in the female and working bees, thefe unequal eyes appear in the upper part of the head.
$b b$ One of the greater eyes, efpecially the fuperior external face of it, which is by no means pointed, but of a roundifh form.
c. The internal inferior edge of the greater eye, which is fomewhat pointed, fo as to leave an intermediate face for the reception of the fmaller eyes, and other parts.
d Feathered hairs, or hairs in form of feathers, growing in the face between the greater eyes.
eee Hairs with which both eyes are well fupplied, and which too anfwer the purpofe of eye-brows or eye-lids.
$f f$ The Antennæ or little horns.
$g g$ Fibres of an inverted pyramidal and hexagonal form; which immediately appear on remoring the cornea, and uvea of the eye.
$b b$ The upper part of the faid pyramidal fibres of a pretty confiderable breadth.
i The lower part of the faid fibres, where they terminate in a point; likewife the internal coat of the eye, upon which thefe fibres ftand.

F I G. II.
The difpofition or fituation of the bexagonal divifions of the cornea.
$k k$ A hexagonal divifion enclofed by fix other fimilar divifions; and this order, or difpofition, or arrangement, obtains all over the cornea, and all its divifions.

F I G. III.

A fmall portion of the Cornea, along with its bairs, as feen through the microfcope.
$l l l$ The thicknefs of the cornea, which is pretty confiderable.
$m m m$ Hairs like briftles, growing out of the Cornea, which they even perforate with their roots. There hairs project a confiderable way beyond the furface of the cornea, and anfwer the purpofes of eye-brows and eyelids.

F I G. IV.

The cortical lower fibres of the eye.

$n n n$ The cortical fibres of the eye, which lie like beams or joints on the membranes that fupport the upper pyramidal fibres.

- The manner in which thefe fibres are placed one over another, like beams intended to form a raft.
p The brain, fituated under thefe fibres, and communicating with them.

F I G. V.
The eyes and brain, as tbey appear on beginning the diffection of them on the loweer fide.
$q q$ The cortical fibres of the eye, fhewing in what manner they lie tranfverfely or acrofs, under the membranes, that fupport the pyramidal fibres, and are diftributed like the mufcular fibres in the papillæ of the kidneys.
r The origin of the final marrow.
s s The cortical fubftance of the brain divided in the middle, and covering in part the cortical fibres of the eye.
$t t$ The manner in which the cortical fubftance of the brain, communicates at each fide with the fpinal marrow.
u u The thickeft part of the cortical fibres, and the place where they have the moft apparent colour.
x The internal coat of the eye, fupporting the inverted pyramidal fibres.
y The firft nodule or fwelling, formed by the fininal marrow, after its leaving the fkull.
$z z$ The pyramidal fibres of the eye, as they appear on each fide, when juft divefted of the cornea.

F I G. VI.

The brain more accurately difplayed.

a a The cortical fubftance of the brain, fhewing, not only in what manner it communicates with, but likewife fprings from the brain.
b The fecond pair of the particles of the brain, from which the cortical fubftance derives its origin.
c The firft pair of the brain's particles, from which iffue $d d$ Bipartite nerves.
ce The fourth pair of the brain's particles, thewing likewife in what manner the particles of every pair communicate with each other.

T A B. XXI.

F I G. I.

The genital parts of the male Bee, as they appear through the microfope,
a a The two tefticles.
$b b$ The vafa deferentia, twining or curling like the tendrils of a vine.
c c The fame veffels confiderably dilated, fo as to appear like a fecond pair of tefticles. There veffels are hollow.
$d d$ The feminal or feed bags, into which the vafa deferentia, after growing narrower again, are inferted on each fide.
$e e$ The nervous root of the penis.

xxiv A Short Explanation of the T A B L E S.

f A little part or particle of a fubftance between bone and horn, of a deep brown, fomewhat inclining to red, placed within the oval tube, wart or tubercie of the penis.
g The penis, or part like a penis, but without any perforation.
b A fmall part divided into five divifions.
i Another particle, feated, as it were, oppofite to the former b but without any divifions. This particle is fhaggy on its infide, rugged, and full of wrinckles.
$k k$ Hollow, pointed appendages.
$l l$ Ligaments, ferving to faften the genital parts in the abdomen,
m A portion of the fpinal marrow, from which proceed
$n n$ The nerves, that are diftributed over the genital parts, and ferve to move them, as likewife the purpofes of fecretion and pleafure.

F I G. II

- The genital parts of the male Bee, of their natural fize.

F I G. III.

The genital parts of the male Bee, beginning to unfold themfelves.
cc The vafa diferentia cut afunder in their thickeft part, to fhew their thicknefs and cavity.
$d d$ The feminal bags cut afunder for the fame purpofe.
e e The nervous root of the penis.
$f f$ A little horny bone, fituated in the bulbous portion of the root of the penis.
b The five-fold little particle, beginning to unfold itfelf.
i The other particle, without any divifion, beginning likewife to unfold itfelf.
$k k$ The fharp, hollow appendages coming out of the body
$q q$ The horny bone, conftituting the extremity of the pudendum,
s s Certain particles ferving as ornaments to the faid bone.

F I G. VI.

The genital parts of the male Bee, a little more unfolded.
c The nervous root of the penis.
f The little horny bone placed within the tubercle of the root, further thruft out.
6 The quinque fida, or five-fold particle further thruft out.
i The other particles without divifions, alfo more thruft out.
$k k$ The fharp, hollow appendages quite unfolded from their roots, but
ll Their points fill continue out of fight.
$q q$
Denote the fame parts, as in the laft figure, SS

T A B. XXII.

F I G. I.

The genital parts of the male Bee, fitl furtber thruft out.
e The nervous root of the penis.
f The little horny bone lying within the tubercle of the root
b The five-fold particle ftill more unfolded.
i The other particle, that has got no divifions, further thruft out.
$k k$ The hollow appendages quite inverted, or turned infide out.
${ }_{r}^{q} q$ Denote the fame parts, as in the figure of $\left.\begin{array}{l}r \\ s\end{array}\right\}$ the laft plate.

F I G. II.

The fame parts yet more unfolded.

ε The root of the penis beginning to grow ftraighter.
$b b$ The five-fold particle quite unfolded, and exhibiting its five divifions.
i The other undivided particle entirely difplayed in like manner.
$k k$ The appendages perfectly inverted, or turned infide out, and fiffened.
$q q 7$
$\left.{ }_{r}^{q}\right\}$ Denote the fame as before.
ss

F I G. III.

The genital parts of the male Bee unfolded to their. utmoft extent.
e The root of the penis extended, for the moft part within the pudendum.
f The little horny bone feated in the tubercle of the root, now entirely thruft out of the body, and appearing through the tranfparent parts which enclofe it. The five-fold particle, is now fo much dilated, as to be almoft out of fight, by lying backwards upon the hairy part of the pudendum.
g The penis, or particle refembling one, now perfectly inverted, or turned infide out.
The undivided pyramidal particle in like manner unfolded and difplayed.
$k k k$ The appendages as before, perfectly unfolded, and turgid withall.
$\left.\begin{array}{c}q q \\ r\end{array}\right\}$ The fame parts as before.
t The head of the peniform particle beautifully plaited.

A Short Explanation of the TABLES

u A confiderable opening, or perforation under the penis, and at the bottom of, and between the divifions of, the little horny bone. already fo often taken notice of. The Bee's feed iffues copicully at this opening.

F I G. IV.

x The head of the peniform particle, which, however, has no opening, and affords no paffage to the feed.

FI-G. V.

The genital parts of the greater Hydrocantbarus, or Water Bectle.
a The penis.
66 The horny part of the penis, ferving to faften it on each fide.
cc The root of the penis,
d The other tefticle in its natural fituation.
e The tefticle fripped of its air tubes, fo as to exhibit its internal flructure.
ff The vafa diferentia.
${ }_{g} g$ The thickeft part of the faid veffes.
bbbbbb Seven blind veffels rooted in the penis, and anfwering perhaps the purpofe of proftata.
$i{ }^{2}$ The feed bags neatly curled at their extremities.

FIG. VI.

The Spinal marrow of a male Bee, feen through the microfocope
a The origin of the final marrow.
661234567 Seven nodules, formed by the faid organ in its progrefs, and the nerves iffuing from the faid nodules.
$c c c c$ Some nerves which fpring not from the nodules, but from the branches themfelves of the fpinal marrow.
$d a d d$, $\mathcal{B}^{c} c$. Clefts, or longitudinal perforations in the fpinal marrow.
e That part of the fininal marrow, which lies in the head and neck.
f That part which lies in the thorax.
${ }_{g}$ That part which lies in the particle joining the thorax and abdomen.
b The abdominal part of the marrow.
ii Two confiderable nerves diftrubuted to the jaw bones, and other parts.
$k k$ Two nerves running to the probofcis. Thefe are perhaps the infect's guftalory nerves.
$l l$ Two other nerves, adminiftering to the guftatory nerves of the probofcis.
$m m$ Two nerves, perhaps the optic ones; but I advance this with diffidence.
00 Two ftrong nerves, diftributed to the genital parts.

F I G. VII.

Part of the Spinal marrow, as it appears under a greater magnifer.
$p p p p p p$ The branches, or ramifications of the fpinal marrow, and the nerves cut away
from about the nodules.
$q q q q$ The external fubftance of the marrow, refembling as it were a cleft or divided nerve.
r Another part of the marrow lying between the medullary fubftance, and forming the nodules.

T A B. XXIII.

FIG. I.

The ichnograply of a regular boney-comb of the working Bees, as it appears, when in/pected from above, divided into its regular bexagonal fections. This defcription could not be accurazely Jeetched out, witbout the affilance of Some artificial lines.
a A regular hexagonal cell, formed by artificial lines.
66 Double tranfverfe lines, ferving to determine the angles of the cells.
cc Longitudinal lines croffing the former.
$d d$ Conftitute the fides and diameters of the cells.

F I G. II.
Four cells of the working Bees, Separated from the other cells.
a Three cells joined fide by fide to each other; and forming by the union, or meeting of their bafes, a cavity exactly fitted to receive.
b The bottom of a fourth cell, in cafe the Bees fhould build one. Thus it may be feen, in what manner three cells, built one clofe to another, form by the fides of their bottoms a foundation for fupporting the bottom of another cell, to be built a contrary way.
c Part of a triangular foundation floping downwards, and of the cell built upon the faid foundation. This is formed by the meeting of the fides of two cells.
$d d$ Two pretty long, or longer and unequal angles, or corners, formed by the hexagonal fides of the fame cell, and uniting with the former part c, fo as to form the foundation of another cell.

$$
\text { FIG. } 111
$$

A fingle, regular, bexagonal cell cut lengtbrive tbrough its centre.
a One entire third of the foundation, that is cut into two by this fection.
66 The third part of a foundation, which foundation is cut away. One fegment of this foundation remains united at one fide with the third part laft mentioned, and the other fegment with the third part mentioned of the divided cell.
c The entire remaing third part of the divided foundation, fticking to part of another cell.
I 23456 The fix fides and angles or corners of the cell, as they mutually anfwered one to another.

F I G. IV.
Fifteen regular bexagonal cells, cut lengtbwife on each fode.
$a b$ The upper cells. $\quad c$ The lower cells.
d The common foundation of the upper and lower cells, cut off.
eeee The thorter fides of the cells.
$f f f f$ The longer fides of the cells.
g The third part of a triangular foundation nloping inwards, in its natural fituation.

F I G. V.

A building, confifing of a great many cells for the reception of males and females, in order to Joew in what particulars the faid cells differ one from anotber, and from the cells of the working Bees.
a The cell, or little houfe, of a female Bee, fallly called a king-Bee. This cell refembles a pear, is irregularly built, with hollows here and there on its external furface, and is placed above the other cells.
c Cells of male Bees, one third bigger than thofe of the working Bees. They are here reprefented fomewhat bigger than nature, the better to fhew the difference.
d The triangular foundation of the faid cells, which appear the better by removing the cells themfelves.
e Triangular cavities, formed each by three fimilar cells of an oppofite fide or row, that are built one againft another. Thefe cavities receive the bottoms of the cells of the faid fide or row, in the fame manner with the cavities in the conftructions of the working Bee, already taken notice of.
f Two cells, whofe fore edges are fo covered and faftened with wax, that their hexagonal form cannot be feen.
g Four very irregular cells, forming a foundation for the king's cell. Thefe four cells ferve, perhaps, no other purpofe but that of keeping honey.

> F I G. VI.

Four regular cells of the working Bees, built one clofe to anotber, after fuch a manner, that they all fick to one common or intermediate foundation, at the fame time that five of them lie to the rigbt, and the other five to the left.
a Five cells belonging to one fide. Thefe cells taken together are an inch long, are joined to each other by their fides; and their bottoms lie contiguous to, and fupport, the
cells of the oppofite fide.
b Five cells of the oppofite fide, of the fame length with the former, and united to, and fupporting them in the fame manner.
cc The intermediate foundation, that ferves as a common bottom to the cells on each fide.

F I G. VII.

A fingle, regular, bexagonal cell of a working Bee, divided into three parts; the better to Sew in what form they are conftructed.
a a a Three longitudinal fegments of a cell, each of which contains two fides and one angle.
I 23 The three undivided corners formed by the fides of the cell.
44, 55, 66 The three divided angles that were formed by the feparated fides.
b The bottom of the cell, divided in like manner into three parts; thefe parts united form a hollow triangular floping foundation. We may here fee, how every two fides of a cell form one part of a triangular bottom.

F I G. VIII.

Nineteen regular bexagonal cells built clofe to one anotber, as they appear on their back parts.
$a b$ The manner in which the cells of one fide are laid out, fo as to form every three of them, by the union of their three bafes, 12 3, a hollow, which ferves as a foundation for a cell on the oppofite fide. For this reafon, if you run pins through the three parts of 123 of the bottom of one cell, one pin through each part, every pin will penetrate into a different cell of the oppofite fide. And on the other hand, on running pins through the bottoms of three contiguous cells of the oppofite fide, in that part where the faid bottoms lie neareft to each other, thefe pins will all meet in one cell.

F I G. IX. Letter b

The cell of a female Bee reprefented by itfelf, to exbibit the more diffinctly its pear-fhape form, narrow mouth, fpacious bottom, its length, and the unevennefs of its external furface.

F I G. X.

A building, confifing of nineteen cells, eighteen of which contain the rudiments of Bees. Nine of thefe eighteen cells bave got in them eggs, placed on their ends, and four others contain young worms, that bave but lately Joed their Jkins; the five remaining cells contain Worms a little bigger, and better grown. Of thefe laft, that marked with letter a is the largeft,

FIG.

A Short Explanation of

FIG. XI. Letter a.

Six eggs drawen after nature, and placed on their ends. Thefe eggs are oblong, very flender, but fomewhat thicker on their upper parts.

F I G. XII. Letter b.
Another Bee's egg viewed with a microfoppe. It refembles the kin of a ffh, divefted of its fales, but fill retaining the marks of their infertions.

F I G. XIII.
Worms of Bees of different fizes, drawon after nature.
a A Worm newly hatched.
$b c d e$ Four worms that received more nourih ment, and are more grown.
$f g$ Two worms ftill bigger than the former, having had more time to make ufe of the nourifhment provided for them. They are here reprefented, as they lie doubled in their cells.
b A Worm placed on its belly, fo as to fhew on its back a black line, inclining to a light blue or gray. This line denotes the flomach, which appears in this place through the tranfparent parts that lie over it.
i A Worm lying on its back, and beginning to draw in the hinder part of its body, and move its head.

F I G. XIV.
The full grown Worm of the Bee, viewed with the microfopope.
a a a Its fourteen annular incifions or divifions. b The head. $c c$ The eyes. d The lip.
$e e$ Two fmall parts, which afterwards form the antenne or horns.
ff Two other fmall, and as it were, articulated parts, which form the teeth.
\& The rudiment of the tongue or probofis.
${ }_{b} b b$ Ten breathing holes.
i The ftomach appearing on the back through the parts enclofing it.

FIG. XV. Letter a.
The little bouse or neft of a Hornet, compofed of bits of barks.

F I G. XVI.
A Bees cell full of Bees bread, placed in layers.
b Little grains, of which the faid fubftance, viewed with the microfoope, appears to confift.
the TABLES.
xxvii
T A B. XXIV.

FI G. I. II. and III.

Exbibiting the manner in which the pulnonary tubes, and breatbing-boles of a Bee's zoorm, are confructed.
aaa12345678910 Ten pulmonary tubes, open on each fide.
$b b$ Tubes which reach in circumference from one breathing-hole to another, by which means there is a communication between all the holes.
c c The anaftomofis, or inofculation of the pulmonary tubes belonging to the oppofite fides of the body.
$d d d$ The breathing-holes, or orifices of the pulmonary tubes. Thefe holes lie naturally under the fkin, though they are here repreprefented, as if they projected beyond it.
$e f$ Rings compofing the pulmonary tubes: Some of thefe ringse are longer than others f. $g \mathrm{~g}$ The fkin cut off.

> F I G. IV:

The manner of finding out the blood-veffels of Injects.
a A glafs tube, part of which bellies out in the middle.
b One of its ends drawn out to a very fharp point.
c The other end, which is more open and wide than the former. It is at this end that the air is blown in.

FIG. V.

The tubes that prepare both the matter of which the Worm forms its thread, and help it to form them.
a The tubes themfelves in which the faid matter is prepared.
b The place where thefe tubes meet, and form one trunk.
c c The divifions of the tubes.
$d d d d$ The ends of the tubes, broken off.

F I G. VI.

Some of the vilcera of the Worm of \bar{a} Bee:
a a The ftomach.
b The oefephagus or gullet.
c Glands appearing through the coats of the ftomach.
$d d$ Pulmonary tubes cut off from each fide of the flomach, over which they fpread an infisite number of ramifications.
e The tranfparent mufcles of the fomach.
f The pylorus.
$g g g g$ Four blind veffels or guts.

xxviii A Short Explanation

$b b$ The infertion of thefe veffels under the pylorus.
i The other guts, or inteftines, the thick and the ftraight.
k The extremity of the ftraight gut, with the fkin fill adhering to it.
l The internal coat of the ftomach, full of a cogulated mattter.

FIG. VII.
The web which the Worm of the Bee forms, and in wobich it afterwards enclofes itfelf.
a The lower part of this web. This part is of a membranaceous fubftance, pretty thick, and ends in a triangular point.
b The enclofed Nymph of the Bee, tranfparent in the middle.
c The upper part of the web. This part is convex, and the threads compofing it are very difcernible.

T A B. XXV.

F I G. I.

The Worm of the Bee, forming its web.
a a The fides of the cell that contain it.
b The bottom of the cell.
c The entrance or door of the cell. The Worm is here reprefented as making its web in the propereft manner to fhut up this entrance.
F I G. II.

The Worm of the Bee taken out of the web, in which it bad enclofed itfelf, and juft ready to caft its /kin.
a The Worm of the Bee quite dentitute of motion, after it has finifhed its web, with which it is entirely furrounded.
I 23 The three annular incifions, or divifions next its head ; the fecond and third of which begin to be confiderably diftended, by the limbs growing under them.

F I G. III.

'A cell, containing the Worm of the Bee changed into a Nymph, and perfectly lined with the faid Worm's web. Likewife the faid web entire, with the Nympb contained in it; as they afpear on opening the cell.
a a The fides of the cell, lined with theWorm's web.
b The mouth of the cell, perfectly clofed by the web.
c The bottom of the cell.
d The web. entire, as it appears on opening the cell, which it greatly refembles in form.
e The upper part of the web, of a convex

of the TABLES.

form. This part fhews its filaments pretty diftinctly.
f The enclofed Nymph appearing through the tranfparent fides of the web.
g The bottom of the web, anfwering to that of the wax-cell.

F I G. IV.

The Worm of the Bee, on the point of changing to to a Nymph, and fripped of its Rin, the better to Jhere the infant parts of the future Bee, which are bere reprefented as they appear through the microfcope, after extending them a little.
a a The antennæ, or horns.
b The probofcis, with its parts.
$c c$ The fecond pair of joints belonging to, or forming, the probofcis.
$d d$ The firft pair.
$e e$ The firft pair of legs, lying againft the breaft.
$f f$ The fecond pair of legs.
$g g$ The third pair.
$b b$ The greater wings.
$i i$ The fmaller wings.
k The abdominal wings.

F I G. V. and VI.

The Worm of the working Bee, changed to a Nymph, of its natural fize and form, yet fo as to exbibit its limbs, which are folded up in a mof wonderful manner.
a a The head.
$b b$ The greater eyes, one at each fide of the head. $c c$ The antenna, or horns. d The probofcis. $e e$ The wings. f The three pair of legs. g. The abdominal wings.

F I G. VII.

The Worm of a Female Bee, cbanged into, a Nymph, Jherwing its parts difpofed in the fame manner with the former.

F I G. VIII.

The Worm of a Male Bee, changed into a Nymph, differing externally from the two former Nymplss no otberwife than as the Male Bee itSelf differs from the Female Bee, and the work:ing Bee.

F I G. IX.

The Nymph of the Bee viewed with the microfcope, difplaying in a difinct manner all the parts of the enclofed infect, and the beautiful manner in which they are laid up.
a The head, bloated with humours.
$b b$ The eyes, projecting confiderably.
$c c$ The horns, or antennæ.
d The lip. $e e$ The teeth, or jaw-bones:
$f f$ The firtt pair of joints belonging to the probofcis.
$g g$ The

A Short Explanation of the T A B LES.

g g The next pair; b The probofcis itfelf.
$i{ }_{i}$ The firft pair of legs.
$k k$ Two tranfparent, fliff little parts, lying againft the loweft joints of the firft pair of legs. Thefe little parts are not to be found as they remain in the fkin it fheds on quitting the Nymph ftate.
ll The fecond pair of legs.
$m m$ The wings. $n n$ The blade bones.
00 The laft pair of legs.
$p p$ The abdominal rings.
q The hinder parts of the body. The fting projects a little in this place.
r Two little parts accompanying the fting.
s The anus.

F I G. X.

The diftribution of the pulmonary tubes through the wings, as they appear through the microfcope.
a The origin of the wings, where the pulmonary tubes are biggèf.
6 Ramifications and mutual anaftomofes or inofculations of the faid tubes through the wing.
c The extremities of the faid tubes.
T A B. XXVI.
F I G. I.
The nefts or babitation of the Humble Bees.
a One part of the neft; containing eighteen cells. b Another part, containing eight cells.
c A cell quite empty, and open.
d An irregular bit of wax placed againft one of the cells, in which I found fix eggs.
e An irregular bit of wax placed againft one of the cells, in which I found twenty-three eggs.
g A part of the little cells that contained worms.
b A little Worm extracted from its cell, juft as it was on the point of becoming a nymph.
i A large Worm of that kind, of which I found two in a cell that was fhut up.
k A larger Worm, found by itfelf in one of the cells.
l A cell divided into two parts, in one of which I found two fmaller Worms, and in the other two, a little bigger.
m A little worm of that kind, of which I found three in one cell.
n A little Worm of that kind, of which I found four in one cell.

- The eggs of thefe infects faftened or glewed by one of their ends, to the furface againft which the parent lays them.

> F I G. II.

Exbibiting the Lupus Alvearius, or Beebive Wolf, and the particulars of its biftory.
a The Vermicle, or Worm called the Beehive Wolf, by thofe who feed them.
b A Butterfly of a pale gray, refembling a moth, from which the Beehive Worm iffues; after which it lays amongft the ho-ney-combs.
c c A hollow tubulated web, which the Worm Lupus, or Beehive Wolf, forms, and in which it runs about here and there, as in fo many burrows.
d A fmaller Butterfly, producing a fmaller kind of Beehive Wolf.
e The web, which on the outfide appears rough and uneven with the Infect's or Worm's excrements, and contains the Beehive Wolf-Worm, now full grown, and on the point of performing its mutation.
f The Chryfalis or Aurelia, into which the Beehive Wolf Worm is changed.

F I G. III.

The little Worm found in the Nefts of Wild Bees, and its mutations.
a The Worm itfelf. with fix feet, and of a reddifh colour.
b The Nymph, into which the faid Worm afterwards changes.
c A beautiful Beetle, which, within the fpace of a year, iffues from the faid Nymph , fo as to make it plainly appear that neither the Nymph nor the Worm belonged to the tribe of Bees.

FIG. IV.

Another Species of Wild Bees, reprefented a little bigger than nature.

F I G. V.

A tbird Species of Wild Bee.

FIG. VI.

- A fourth Species of Wild Bee, baving very long and very tbick antennee or borns.

F I G. VII.
A fifth Jpecies of Wild. Bee.
F I G. VIII.
A fixth Jpecies of Wild Bee.
F I G. IX.
A Hornet.
a a The Infect's four wings.
$b b$ The two fharp nails with which the extremity of each leg is armed.
c The head, with its eyes in the form of 2 crefcent, horns, probofcis, and teeth.
d Its formidable fing.

F 1 G. X.

A Wafp of a middling fize.
FIG。

F I G. XI.

A Wafp of an unufual form.
F I G. XII.
An Humble Bee of a middle fize, baving its belly furrounded with bairs of different colours.

F I G. XIII.
A tripilis Mufca, or three-baired Fly, being a kind of PSeudopbica.
F I G. XIV.
Thbe Neft of the finalleft fpecies of Wafps.
ccc Three integuments, or coats of the neft.
d The body of the neft, of which a piece is broken off, to fhew the
e The hexogonal cells in which the eggs are hatched.

F I G. XV.

A Wafp's neft, that I found fticking to a nettle, compofed of notbing but cells, built clofe one againft another, without any integument, or common covering.

' Γ A B. XXVII

Reprefenting the hiftory of the Naficornis, or horned Beetle
FIG. I.
The Male.
a Its horn, which, properly fpeaking, grows rather from the head than the nofe.
6 Its mouth, feated in the breaft, furnifhed on the upper part with three little teeth, of a fubftance between bone and horn, and

- without any periofteum; thefe creatures differ from men and quadrupedes in this, that their bones do not lie hid within their bodies, but appear naked on the outfide of their flefh, to which they ferve as a defence and covering.
c The fhells or fheaths of the wings.
d A little triangular, horny bone, placed between the faid fheaths, which it ferves to keep clofe to the body, and in the proper fituation: this bone lies on the firft ring of the abdomen.
e The edge or border of the fheath, forming a kind of ornament.
f One of this Hornet's eyes.
gg Two antennx or horns: thofe of the male are bigger than thofe of the female.
b A little horny bone, forming the third joint of one of the Hornet's fix legs, which are all of them covered with coarfe hairs.
i The foot itfelf, confifting of five joints, the laft of which is, armed with two crooked nails.

FIG. II.
Tbe female, farce differing from the male in any thing but fize, and ber not having a born.
a A fmall prickle growing on the female's head, to fupply as it were the want of a horn.
b The wings expanded under the fheaths, and the fheaths themfelves a little drawn in, by which means a better view is obtained of the little triangular bone, which ferves to retain the fleaths in their proper fituation. Between thefe fheaths there appear on the upper part of the fore or firft rings of the abdomen, which in the male can only be feen in the lower part under the fheaths.
cc Two joints in the rings themfelves, which they ferve to fold, fo as to make them fit under their fheaths, that they may receive no harm, while the Hornet creeps under ground.

F I G. III.

The Eggs.

a Two larger eggs.
6 Two fmaller eggs, but of different fizes.

> F I G. IV.

The Worn.

a The Worm of the horned Beetle, called Coffus, newly hatched. It here exhibite its very large head, two teeth, and three legs belonging to one fide of the body.

FIG. V.

> The Coffus full groren,
a Beautiful wrinkles and folds, with which the fkin is adorned.
b Nine reddifh fpots on one fide of the body, having each of them a hole through which the Worm breathes, and fupplies with air its pulmonary tubes.
c A fpot like the former, belonging to the other fide of the body, and placed on the firt or fecond ring of it
d One of the horns, which confift each of five joints.
ee The teeth, or jaw bones.
f Two articulated briftes, above which the lip appear feated between the teeth.
g Three of the infect's fix legs, each of which is compofed of five joints, formed of a fubftance between bone and horn, befides a fingle nail ; and which are moreover covered with hair.
b Some pulmonary tubes which appear through the extended out-fkin of the thirteenth and fourteenth rings of the infect's body.
i The extremity of the ftraight gut forming the anus.
$k k$ Hairs

A Short Explanation of the TABLES. xxix

$k k$ Hairs covering the body. I here reprefent but thofe that grow on the back and abdomen, to avoid the neceffity of making the figure bigger than nature.

F I G. VI.

The exuvia, or caft kins, and pulmonary tubes caft off by the Coofis.
a a a Nine twifted little threads of the pulmonary tubes, appearing in one fide of the caft fkin, rolled off from the body through the breathing holes, at the time the Worm undergoes this mutation ; accordingly all their extremities lie in a direction towards the fore end of the body, as the fkin at this time falls off in a contrary direction from the hinder end.
66 Two finaller branches of the pulmonary tubes, one at cach fide of the body. Tho' thefe branches do not perforate or pafs thro' the fkin, neverthelefs as they are faftened to it, they come away at the fame time. One of thefe branches is divided into fome fill fmaller ramifications; the other appears exactly in the condition, in which with the other nine it fell naturally from the body.
$c c c c$ Some branches and fmaller ramifications of the nine pulmonary tubes of the other fide, a little folded out.
123 The fkull, which at this time divides into three parts.
$d d$ The caft teeth, which are hollow.
e The caft lip.
ff The horns, which are likewife renewed.
g g The two other remaining parts of the parted fkull. They are hollow, and of a fomewhat fpherical form.
b Six openings in the fkin, that formerly contained the new legs.
i The hinder part of the fkin folded up.

FI G. VII.
The fibres ferving to move the rings.
F I G. VIII.
The beart of the Coffus.
a The heart refembling a membranaceous tube.
b The narroweft part of the heart, feated near the head.
c Two dilatations of the heart.
d That part of the heart, which lies within the laft rings of the body, and is very flender.

F I G. IX.

The fat, compofed of globules, like the grains of find.

F I G. X.

The fat examined by the Microfocope,

a a The tranfparent membranaceous foundation of the fat cell.
66 Some pulmonary tubes diftributed through the fat.
cc Globular and oily particles of fat, which float, as it were, in other membranaceous, globular, and irregular particles, fo as to make it probable that this fat confifts of bladders.

F I G. XI. and XII.

The foomach, and adjacent parts.

a a a a The diffected fkin of the Coffus.
b The gullet. c The upper part of the ftomach: $d d$ Appendages of the ftomach, in the fhape of teeth, feated about the upper end of the ftomach, and divided both above and below, into rows.
12 The two upper rows in their natural fituation. Fig. XII.e. All the fix upper rows of the appendages, as well thofe belonging to the upper, as thofe belonging to the lower region are here exhibited, but as they appear when taken out of the body.
I 2 Two of the rows already exhibited, in an inverted fituation, as they naturally lie with their points directed towards the infect's head.
34 Two lower rows in the fame direction.
56 The two laft rows of the appendages, adhering to the lower region of the ftomach, with their points directed backwards.
f A future on the lower furface of the ftomach, in fome meafure refembling that of the peritonæum.
g Some other appendages of the ftomach, lying lower down than thofe already taken notice of, with their points directed backwards.
b The hinder part of the fomach.
ii The loweft appendages, which appear as it were in the bottom of the ftomach. Thefe appendages are directed towards the head.
$k k k k$ The vafa varicofa, or the fwollen guts of the ftomach, placed on the upper and lower parts of it, and on each fide, and forming a moft beautiful appearance.
l The pylorus with the flender gut, which fprings from the ftomach. This part the antients call Ecphyfis.
m The colon.
$n n$ Pulmonary tubes running from the laft pair of breathing holes towards the ftomach, and branching into a great many ramifications, that are diftributed over the ftomach, the colon, and the ftraight gut.
0000 The other fixteen breathing holes, in their natural fituation, as they appear thro' the fkin.
p The ftraight gut, difplaced.
q A rough draught of the parts of the head.
T A B. XXVIII.

A Short Explanation of the TABLES.

T A B. XXVIII.
FIG. I.
The brain and Jinal marrow of the Coflus.
a The brain, with the four nerves that it produces.
b Two origins of the fpinal marrow at fome diftance afunder, but meeting lower to form one trunk.
$d d d$ Nerves iffuing from the final marrow.

> F I G. II.

A recurrent nerve, as is appears through the microfoope.
a a The origins of the recurrent nerves, cut off in that place where they iffue from the brain.
$6 b$ Recurring nerves, tending upwards; their afcent may be feen on each fide of the infect's gullet.
cc Elegant inflections of the recurrent nerves.
d The firft nodule formed by the recurrent nerves after their union.
e A recurrent nerve again changed to a fingle one.
f The fecond nodule of a a recurrent nerve.
g Small nerves branching from a recurrent nerve.

> F I G. III.

The Spinal marrow of a Silk-Worm when about to enter the Nymph Aate, the better to Jhew the difference between its Spinal marrow and that of the Coffus. As likerwife wobat little reafon fome people bave to confider every dilatation of the marrow as a difininct brain.
a The brain.
$6 b b 123, E^{3} c$. The fpinal marrow, confirting of twelve globules or nodules, which are formed as it were by the union of twelve pair of nerves iffuing from the brain.
cc A pair of nerves running to the eyes.
$d d$ A confiderable part of nerves iffuing from the firft nodule of the marrow, and tending towards the mufcles of the head, teeth, and other parts. Every one of thefe nerves form by itfelf a beautiful nodule.
εe Two of there nodules.
f A pair of very fine nerves iffuing from the brain, or origin of the fpinal marrow.
g The recurrent nerves in their natural fituation, with the two nodules belonging to them, and the nerves arifing from the faid nodules.
b A pair of nerves arifing from the firft nodule of the marrow, and running towards the little bags that contain the juice of which the filk is compofed, like a glutinous liquid. This pair of nerves ferves perhaps to animate the moving and extruding fibres of the faid filk bags.
ii Two pair of elegant nodules, formed by nerves that proceed from the brain, and firft nodule of the fpinal marrow, and are diftributed chiefly towards the mufcle of the head.
$k k k k$ Four pair of nerves which iffue from the very origins of the marrow, and by no means from its nodules. In my opinion the origin of all the other neives is like this, as more particularly appears in the nerves of the Silk-Worm Butterfly, in which the fubftance forming the nodule is of a different nature from that of the fpinal marrow, fo that the whole is enclofed in the latter merely for the fake of procuring it greater firmnefs.
In man, the origin of whofe marrow confifts likewife of two parts, the nerves arife in like manner from the nervous part of the marrow, which is full of fibres, and after proceeding a little way beyond the faid nervous part, and growing fomewhat longer, they every one of them unite to form fuch nodules at difierent diftances from their origin. The fame difpofition is obfervable even in quadrupedes. On placing the warm marrow of thefe infects on cold fpring water, it hardens to a confiderable degree, and very plainly exhibits its fibres, and the heterogeneous matter, of which it is formed. This circumftance I have reprefented by a great many curious drawings, done after nature, in Dr. Slade's houfe, from a fpinal marrow, publifhed by Dr. Blafius with his book of Commelyn. But this laft gentleman added the defrription. My name was not mentioned on this occafion, becaufe fome other Gentlemen, who affifted me in the diffection, not choofing to have their names made publick, I thought it improper that mine fhould. It is likewife very remarkable, that in men and brutes, the pia mater, enclofing the medullary fubftance that iffues like a fine filament from the marrow, in order to form a nerve, lies fo clofe and firm about the nerves, that it is fcarce, if at all poffible, to penetrate into its ramifications with the fineft threads that glafs can be drawn into. And as this narownefs is fill increafed by the medullary fubfance, it is eafy to guefs how fubtile that matter mult be, which flows through there and other nerves, and is only reftrained by that very fine membrane called the pia mater, I therefore firmly believe, that this matter, called the animal fpirits, is not to be gathered or contained by any veffels, and is, for that reafon, altogether invifible.
But that thefe little nerves fhould be in no danger of entangling one with another, or difplaced, the Author of Nature has contrived that they fhould form various nodules; and that each of them, at its origin, fhould, in men, as well as beafts, be connected by that delicate membrane, which forms the third coat of the brain, and is called, by us,

A Short Explanation of

Arachnorides, on account of its extreme finenefs. The cavities of the ventricles of the brain are united together merely by means of the faid coat, which likewife ferves to keep firm in their proper fituation the arteries adhering to the bottom of the brain. As therefore the ventricles of the brain have no other coat to enclofe and connect them, but this very delicate one, which gives way to the flighteft impreffions, we may eafily fee, that the faid ventricles are by no means fuited to contain the animal fpirits, which no doubt are continually paffing and repaffing through the whole fubftance of the brain, marrow, and nerves, in order to contract the mufcles. It is therefore the pia mater alone that can be fuppofed to contain the animal £pirits. But I abfolutely deny, that, as fome people think, thefe fpirits pafs in great quantities through the faid coat, as there are not to be found in the brain or origin of the marrow any ventricles; or any great quantity of fpirits, that we may fuppofe to be driven backwards and forwards in fuch a manner. Befides what power fhould drive them. There are no mufcles at hand for that purpofe; and as to the opinion of fome, who attribute fuch a motion to the heart, experi-ence-fufficiently proves, that the juices fecreted from the blood move flower than the blood itfelf. It would be more agreeable to experience to fuppofe, that fome juices are fecreted from the blood into the nerves, in order to move the mufcles; nor would a great quantity of fuch juices be neceffary, as appears plainly in the cafe of the fmalleft tumours.
In Frogs, the Wray-fifh, and other animals, after the nerves have been feparated fome hours from the pinal marrow, and all motion has ceafed in the mufcles, I can notwithftanding refore the faid motion, by only any how irritating the nerves fo cut off. And this makes me believe, that the blood, that continually flows through the arteries into the marrow and nerves, produces in the mufcles, by means of the nerves, fuch a conflant irritation, as muft keep the mufcles in a flate of perpetual contraction. To explain the mechanifm of this motion; The food we take in, after paffing through the heart, increafes our blood: the blood drives to the brain, irritates the mufcles to contraction, by fecreting fome few fubtile particles, which are moved towards the nerves, and penetrate them. The mufcles will, in their turn, put their contents in motion, and thus a perpetual and uninterrupted motion muft of courfe be produced in all the parts of the animal machine. It would certainly be worth while to demonfrate, by a due courfe of experiments, thefe operations of the blood, fpirits, nerves, and mufcles. What I have here faid of them is only by way of paren-
thefis, and therefore I think I have faid enough.
1111 Some very beautiful inofculations of the nerves.
$m m m$ The reft of the nerves iffuing from the lower part of the medullary nodules.
$n n n \mathcal{G} c$. Some parts of the final marrow, where its divifions are not fo confpicious, as more particularly appears in three places near the breathing-hole, or refpiratory points.
I 23 , E̛c. Nine breathing-holes, which I here reprefented, to fhew the fituation of the fpinal marrow, with refpect to the annular incifures of the body.

- In this place I have reprefented the fpinal marrow with a greater cleft, than it really has, the better to fhew the nerves $l /$.

The remaining part of this figure reprefents the genital parts of the Male Silk-Worm Butterfly.
$p p$ Two branches of the laft and greateft pair of nerves, which branches, proceeding from the loweft part of the marrow, are cleft near their extremities, and form a flit for the paffage of the vafa differentia r.
$q q$ The tefticles of the Silk-Worm Butterfly, already difcernible in the Silk-Worm itfelf.
$r r$ The vafa differentia.
ss Places at which the faid veffels run in a furprifing manner through the nerves of the marrow. I leave others to judge whether or no this difpofition contributes to increafe the titallation.
t A proftata, or fomething analagus to that glandule.
u u The faid bags, fupplied with their feminal matter from two diftinct tubes. Thefe bags are not only feparated from the vafa differentia, but have not the leaft communication with them.
$x x$ The body of the penis, with a perforation from end to end for the paflage of the feed.
y y Two nails or hooks growing near that part of the penis, which is of a fubftance between bone and horn. It is by means of thefe nails or hooks that the male fixes itfelf againft the vulva of the female, and draws her towards him, the furer to penetrate her with his penis. The fame contrivance appears in the horned Beetle, and other infects.
z Part of the penis, confifting of a horny bone. The bone ferves as a preputium or fheath, from whofe fore end the penis projects.

F I G. IV.

An oval neff, bollowed out under ground by the Cofus, in which it cbanges to a Nymph.
a a The earth in which the Coffus had formed its oval neft.
b The neft itfelf.
c The Coffus, changed into a Nymph.

> F I G. V.

The changes vifible in the internal parts of the Coflus, a little before its entering the nymph fate.
a The gullet as not yet altered, and paffing through a cleft in the marrow, while the Coffus continues in the Worm ftate.
$b b$ The ftomach, with its appendages confiderably contracted.
$d d d$ The vafa varicofa feparated from the upper and lower parts of the flomach, and out of their natural fituation.
e The infertion of thefe veffels; for behind the pylorus they open by four tubes into an ecphyfis.
$f f$ The colon, almof of its former fize, owing to the contents of the ftomach and fmall gut being fallen into it.
g Cells of the colon, with its ligament in the middle.
b The ftraight gut.
ii The vafa varicofa folded and coiled in a moft furprifing and beautiful manner againft each fide of the ftraight gut.
k A rough draft of the Worm's head.

FI G. VI. VII. and VIII.

A front view of the Nymph of the Coffus, and all its parts, Jigbtly expreffed by the graver, and defcribed by lines only, the better to Jbew its parts. The eigbth figure reprefents the lower parts of the Coffus's bead, that the changes it undergoes may be the better comprebended.
a The horn growing on the nofe.
b The root of the faid horn; which in the Beetle is covered on its lower part with fome ftiff red hairs. This part grows in the nofe of the Coffus.
cc Two fpherical tubercles, being the remains of the Coffus's teeth $d d$. Fig. VIII. And therefore thefe teeth are four times fmaller in the Beetle, than they were in the Coffus.
$d d$ The teeth of the Coffus.
ee Two pair of tubercles like the former, being the remains of the Coffus's horns $f f$ Thefe tubercles are of quite another form in the Beetle.
ff The Coffus's two horns.
gg Two tubercles of a more oval form, grown from the articulated briftles of the Coffus $b b$, and afterwards vifible in the Beetle itfelf.
$b b$ The articulated briftes of the Coffus.
i Three beautiful globules placed in the middle, and growing from the particles of the Coffus marked k. Thefe globules are likewife of another figure in the Beetle.
k The four briftes of the Coffus, already taken notice of.
l The greateft fpherical divifion of the Nymph , which in the Beetle confifts of a horny bone, and is covered with hair on each fide.
$m m$ The breaft bone.
I I The firft pair of legs.
22 The fecond pair.
33 The third pair, with its joints
$n n$ The fheaths of the wings.
00 A fmall portion of the wings themfelves,
$p p$ The abdominal rings.
q The two fhield-like parts of the anus.

F I G. IX.

A back vierw of the Coflus, Berwing the fourteen annular incifions of its body, and the tranfpofition of its breathing-boles.
I The firft ring of the body, now armed with a horn on the head.
21 The fecond ring, in which the firft pair of breathing-holes is feated under the fore legs, one at each fide of the thorax.
34 The third and fourth ring, which form but one ring, and may be faid to conflitute the hinder part of the thorax.
52 The fifth ring, in which the fecond pair of breathing-holes is feated under the wings, one at each fide.
63 The fixth ring, in which the third pair of breathing-holes externally appears, one at a fide, on the borders of the belly.
74 The feventh ring, and fourth breathinghole.
85 The eighth ring, and fifth breathing-hole。 96 The ninth and tenth ring, and fixth and $\}$ and feventh breathing-holes, all very 107 diftinct in the Coffus, but in the Beetle pretty clofely united.
IO 8 The eleventh, twelfth, and thirteenth 129 rings, which now in a manner form
I3 but one ring. The eighth pair of breathing-holes, placed on the eleventh ring, is almoft clofed up in the Nymph. And the ninth pair, which in the Coffus appeared in the twelfth ring, is no-longer to be feen in its Nymph.
14 The fourteenth ring, vifible only in the belly, between the two fhield-like parts. I here only mark its fituation.

T A B. XXIX.

FIG. I.

The Caterpillar of the fwift Butterfy.

a Its head, and fome of the hairs growing on its forehead or forepart; likewife its two teeth.
b Its breaft. c Its belly.
d Its tail, in which are feen its two hinder legs:
e The extremity of the tail, ending in a point. Neither the breathing-holes, the fore, or middle part, are to be feen in this Cater-
pillar, as I have reprefented it lying on its belly.

F I G. II.

The Chryfalis or Aurelia of the fwift Butterfy, belonging to the fecond mode of the third order or clafs.
a The eye.
b The probofcis, beautifully bent back towards the belly.
c The horns and legs, ftretched over the body. d The wing belonging to one fide.
$e e$ The rings of the breaft, and of the abdomen.

F I G. III.

The fwift Butterfy.
a a The eyes.
$b b$ The antennæ or horns, growing above the eyes.
c The probofcis, confifting of a double tube, by means of which this infect conftantly fips up its food, while flying. It is to be noted that the great length of this curious organ is contrived by Nature, that the infeet fhould take its food without being obliged to fly too near the flowers, which might injure its wings.
d The extremity of the probofcis, coiled up by means of fome minute mufcles. Thus the Butterfly can gather up this part into a little compafs, and hide it between the forks.
e A fide view of part of the forks. The forks are two particles covered with hairs, formed like a feather.
f 'The tail, by means of which the infect, when on the wing, fhapes its courfe; fo that its flight is fteddier than that of other Butterflies. The reft appears behind the head and breaft, and the abdomen, which is beautifully adorned with hairs, made in form of feathers, and of changeable colours.
g g The upper wings, which are the largeft.
b b The lower wings. All the four wings are curioufly ornamented with hairs and fcales. And thefe ornaments, by containing a great deal of air, make the Butterfly lighter than it otherwife would be, and confequently the fitter for flying.

F I G. IV.

The Sicarius, or Affafin Worm, an aquatic infect.

a a Its fix hairy feet.

b. Its hairy tail, furnifhed, as it were with two oars, by means of which the Worm can float on the furface of the water.
cc Sharp and crooked teeth with which this infect kills other infects for its food, and iucks up their blood.
$d d$ Eight of the infects twelve eyes, of which fix are at one fide of the head, and fix at the other.
eee Four ariculated briftles growing under, and between the teeth.
ff Two longer briftles, which may be confidered as the infects horns.
g Six breathing holes. This Worm has fixteen.

FIG. V.

A tooth of the Sicarius, or Afafin Worm, viewed roith the microfcope.
a The point of the tooth, fharp, and crooked,
b A fharp ridge on the internal furface of the the tooth.
c The convexity of the external furface.
d An oblong aperture, or flit, through which that infect fucks its food.

F I G. VI.

The breathing boles of the Beetle, in their natural fituation; as likervife the rings of the body, wobich may be taken from the figure of the Nymph already exbibited.
a I The firft breathing hole placed obliquely backwards in the breaft bone, upon the fecond ring.
$b 2$ The fecond breathing hole, fituated higher under the wings in the fifth ring, and in an oblique direction to the firft breathing hole.
c 3 The third hole, fituated a little higher up on the edge of the abdomen, and in the fixth ring,
d 4 The fourth fill a little higher up on the feventh ring.
e 5 The fifth higher up again in the eighth ring.
$f 6 g 7 b 8$ The fixth, feventh, and eighth holes, confiderably fmaller than the preceeding ones. They lie on the ninth, tenth, and eleventh rings.
i 9 The ninth hole, that appeared in the twelfth ring, now quite clofed up.

FIG. VII. and VIII.
The eyes, optic nerves, and brain of the Beetle.
a The eye juft divefted of the cornea, and the uvea, fo as to fhew its invefted pyramidal fibres.
6 A fnow white fibrous coat of the eye, in which all the pyramidal fibres terminate.
c The optic nerve feparated from the infide of the faid coat's cavity.
d The dark colour of the faid coat. There are in this place a great many ramifications of the pulmonary tubes, of which I have reprefented three branches.
e The manner in which the pulmonary tubes run along the inverted pyramidal fibres in a a ferpentine courfe towards the cornea, in the eye of a live Beetle. I have reprefented thefe pulmonary piftules, fomewhat thicker
than they really are, that they may appear the more diftinct.
ff Two horny bones growing on the fkull, over the eye, which they in a manner divide.
g An expanfion of the fkull, of a fubftance between bone and horn, commonly called the nofe-horn, with its rugged furface.
b A fuperficial divifion of that part of the eye, which lies within the fkull ; this divifion is formed by the upper projections of the fkull.
i The brain, confifting, as it were, of two united globules.
k Pulmonary tubes of the dura mater, and optic nerves.
ll The fineft parts of the optic nerves, juft at their iffuing from the brain.
$m m$ The fame nerres grown bigger.
$n n$ The fame grown fmaller.
00 The fame again increafed, on their approaching the eyes.
$p p$ The origin of the fpinal marrow, cut off in that part where it forms a flit for the paffage of the gullet.

F I G. IX.
The Pulmonary tubes, with their vefocles in the borned Beetle.
a a Diftended veficles of the pulmonary tubes, of which I here give an entire branch bigger than nature.
$b b$ Tubes and their literal branches, fpringing from the upper part of the veficles.
c c Some tubes iffuing from the fides of the faid veficles.

F I G. X.
A pulmonary branch and its veficle, viewed with the microfcope.
a a Rings that compofe the tube, of a fubftance between bone and horn.
b The ftructure of thefe rings, which is fuch as to make it probable they are formed by a concretion of fpherical particles.
c c Some places, in which the convolutions, compofing the rings are terminated, and fucceeded by new ones.
$d d$ Membranes binding the rings together; in thefe membranes there appear fpherical particles, of which they are in a manner compofed.
e e Some fmaller rings at the top and bottom, of the pulmonary veficle.
$f f$ The fructure of the pulmonary veficle itfelf. It is of a white membranaceous fubftance, compofed of an infinite number of minute globules, which on account of their convex furfaces give this part, as often as the light fhines on it, a white colour, though without any refplendency.

T A B. XXX.

F I G. I.
Vificulce pneumatica, or breatbing, or pulmonary veficles, that appear between the two plates of the flucath covering the wings.
a a The two largeft branches of the trachea, which appear through the faid plates, on holding them to the light, and examining them with the microfcope in that fituation.
$b 6 b$ Pulmonary tubes iffuing from the branches $a a$, with their veficles.
$c c c$ Pulmonary tubes iffuing from the faid veficles, and again forming other veficles and tubes, E_{2}^{2}.

> F I G. II.

The firl Species of an Exotick, Rbinoceros, or borned Beetle.
a Its eye, from which iffue the projecting part of the fkull.
b An excrefcence of the fkull, forming a kind of horn, in the middle of which there appears a tubercle with a fharp point, and a fingle cleft at its end.
c The breaft bone projecting on the fore part in a fingle tube, which terminates in two teeth.
$d d$ The two lids or covers of the wings, between which there lies on the infect's back about its breaft a triangular horny bone. This bone keeps the lids or covers when thut from running one over the other.
e The abdominal rings, in which are the two breathing holes of the Beetle, that are almoft clofed up; I have left them unhaded, that they may appear the plainer.
fff The three legs belonging to one fide, with their joints, nails, and hair. The breaft-bone of this infect, and likewife the projecting part of the faid bone, and the nofe-horn, are all of a deep brown inclining to black ; but the Cheaths of the wings are fomewhat paler, and near to a light red. The legs are black.

F I G. III.
A Second Species of the borned Beetle, which may be very properly called the flying Elepbant.
a The eye belonging to one fide of its head, in regard to which it plainly appears, that it is covered like that of the Dutch horned Beetle, by a projecting proceffus of the fkull, of a fubftance between bone and horn, and that it is likewife united with the faid procefs.
b Another projection of the breaft bone, of the fame fubftance with that of the fkull. This projection covers the eye too, but is by no means united with it ; for the eye is only

A Short Explanation of the T A B LES. xxxvii:

hid by the faid projection, which ferves as an eyelid, and moves backwards and forforwards over the eye, as the Beetle moves its head.
c Some ornaments of the fkull.
d The nofe-horn of the fkull, refembling the probofcis of an Elephant.
e A tubercle, in form of a tooth, growing near the end of the nofe-horn, which is moreover cleft in the middle; but as this is a fide view of the infect, the faid cleft cannot be feen.
f. The breaft bone.
$g g$ Two Tharp prominent forks, or teeth of the breat-bone, in regard to which I confider this infect as having fome refemblance to 'an Elephant.
b The lids that cover the wings.
i The fecond joint of the legs.
k The third joint.
l The fourth joint, or the foot, with its joints, hairs and nails.
As all thefe parts are compofed of a folid horny bone, the mufcles are enclofed by them, whereas on the contrary in men and quadrupedes, the bones lie within the flefh. This Beetle is very black, but fhining withall, like polifhed ebony, fo as to afford a very pleafing fpectacle, efpecially as its colour has a reddifh caft.

FIG. IV.

A third Species of the borned Beetle.

a One of its eyes. b One of its horns. c Its nofe-horn.
$d d$ The breaft-bone, and its projections.
$e e$ The fheaths of the wings. All the pasts are gray, owing to an infinite number of fmall hairs, that grow on them, the nofehorn, and projections of the breaft-bone excepted: But the ground of the horny bone, on which thefe hairs grow, is black, as is likewife the horny bone of the foot, whofe hairs do not grow fo clofe, as thofe covering the other parts.

FIG. V.
The breaft-bone of a fourth Species of Beetles.
a Some ornaments of this part, which is compofed of a fubftance between horn and bone.
b A thick expanfion of the breaft-bone.
c Its two blunt ends.
d Some hairs growing on the part that unites the head and thorax. Thefe hairs facilitate the motion of the head.
e Some projections of the 1 kull.
f The nofe-horn, with its teeth.
g The horn, and one of the eyes.

F I G. VI.

A fifth Ipecies of a borned Beetle.
a Its eye.
b The nofe-horn, growing out of the Rkull, crooked and blunt.
c The firft proceffus of the breaft-bone.
d The fecond.
e The third. All thefe are only the limbs be= longing to one fide.
f A little prominent border, which is turned in, and entirely furrounds the breaft-bone; it is found in every fpecies of horned Beetles. Lower down, and more forward than the faid border, are to be feen thofe ornaments of a horny bone, which are covered with loofe hairs.
$g g$ A fingle joint of the legs; the remaining parts may be conceived from the other figures.

FIG. VII.

Part of the beart of the Dutch borned Beetie.

a a Some broader parts of it.
$b b$ Some narrower parts.

F I G. VIII. and IX.

The genital parts of the male borned Beetle.
a The part forming, as it were, the fheath or forefkin of the penis; this part is a horny bone.
b Two horny bones, or nails of the penis, by means of which the male, in copulation, fixes its penis into the vulva of the Female.
c The thick nervous part of the penis.
d The body or root of the penis.
$e e$ The vafa differentia, bigger in the middle than at the extremities.
f One of the telticles quite unfolded, or laid open, in order to fhew thoroughly the tefticulary veffels.
g The extremity of the faid tefticulary veffel. This veffel is clofed.
b The other tefticle, almof in its natural fituation.
i The blind extremity of the tefticulary veffel laid bare.
$k k$ Seminal bags.
Il Two flender curled tubes, in which the faid bags terminate; and which terminate themfelves at each fide into fix other tubes.
$m m$ Twelve moft beautiful glands, fix at a fide, which are united with the faid twelve tubes, and fend their feed to the penis by the feminal bags.
n The upper part of thefe glands, which is flattifh.

- The lower part, which is globular.
p The lower fide of the faid globular part, fomewhat magnified, fo as to fhew in what what manner it is united with the tube of K

A Short Explanation

the feed-bag. This part contains a limpid feminal matter.
q A fubftance furrounding the feminal matter, which refembles the white of an egg.

F I G. X.

The ovary of a Female, and its parts.

a The head of the female, feparated from the body.
b The gullet and ftomach.
c The inteftines.
d The exitus, or extremity of the inteftines.
ce The ovary, confifting of twelve oviducts, fix at a fide, and ftill containing eggs of different fizes, or in which there moreover appear eggs of different fizes.
f The vulva.
g A bag, fhaped like a pear, opening into the vagina of the uterus.
b A blind veffel, which in the infect appeared like a tranfparent lymphatic veffel.
i Another particle, communicating with that laft mentioned, and containing a hard white fubftance.
$k k k k$ Pulmonary tubes, and veficles, diftributed in great numbers amongft the foregoing parts.
l A confiderable branch of thefe tubes and veficles, running at one end of the common ovary duct.
m Some other fmaller branches belonging to the fomach and inteftines.

T A B. XXXI

The Hiftory of the Arborefcent Flea.
F I G. I.

The arborefcent Flea.

a The aquatic aborefcent Flea, a little bigger than nature.

F I G. II.

A fide viers of the faid Infect, taken woith a microfcope.
a One of the eyes, fituated at one fide of the fnout.
$b b$ Its branching arms, iffuing from a fingle trunk. Each of thefe branches terminates in two branches, which are again divided into joints and lateral hairs.
c The infect's fharp fnout, with which it fucks its prey.
d Its fcaly fkin, with an opening in it, through which it can thruft out its body and tail.
e The tail, or extremity of the body, in which there appears an inteftine through the tranfparent furrounding parts; the feet are to be feen in the fame manner on the fore part of the body, near the opening in the fkin juft now mentioned.
f The extreme point of the rhomboibal fhell, that covers the body.
b Tranfparent eggs, which lie on the fore part of the infect, upon its pellucid body, with which they move backwards and forwards.

> F I G. III.

A more front view of the arborefcent Flea, with the opening in its. /kin.
a An eye. $b b$ The branching arms.
c The fnout.
d The flit, or opening in the fkin, reprefented in its natural condition, but fomewhat on the fore part, in order to exhibit the legs now projecting beyond it.
ef The tail, and its hairs, a little more thruft out from under the faid opening.
g The fharp point, or extremity of the infect's fcaly fkin.
b That part of the body, in which the eggs lie.

> A fhort Hiftory of the Gnat.

> F I G. IV.

The Worm, wobich turns to a Gnat, of its natural Jize, viewed in different jituations.
F I G. V.

The fame Worm viewed with the microfcope, fo as as to herw its thorax and belly, and in webat manner it can fuppend itfelf on the furface of the water, by means of the appendages of its tail.
a a The eye. $\quad b b$ The antennæ, or horns.
c The mouth, with its hairy parts, and articulated briftes.
$d d$ The thorax, with its hairs and divifions. On diffecting this Worm, feet are found laid up under the faid regular divifions.
ee Eight divifions of the belly, with its briftly hairs.
f The tail.
g An appendix to the tail, through which appendix there appear two pulmonary tubes, through which the infect breathes.
b Black fpots, hairs, and little hollows on the extremity of the faid appendage. It is by means of thefe the Worm furpends itfelf on the furface of the water
i Bubbles of air, difcharged by the Worm from the appendage of its tail.
$k k$ The

A Short Explanation of the TABLES. xxxix

$k k$ The two main trunks of the pulmonary tubes, fhewing themfelves through the belly. Thefe trunks have their mouths in the appendage of the Worm's tail.
l The anus difcharging fome excrements.
m Excrements diffolving in the water.
n A little tranfparent inteftine, fhewing in what manner the excrements are extruded.

F I G. VI.

Tbe great Worm changed to a Nympb, of its natural fize, in two different fituations.

F I G. VII. and VIII.
Two reprefentations of the faid Nymph fomerwhat magnified, One of the fe reprefentations confilts of notbing. but outlines, the better to exbibit the parts of the infect, wbich it is intended to reprefent.
a One of the eyes on the fide of the head. The head itfelf at this time lies higher up.
b One of the two antennæ. divided into black joints.
c A fing, or prickle, with its fharp point lying between the wings*
$d d d d$ The legs; the hinder ones coiled up in a very furprifing manner, and lying for the moft part under the wings, through which however, thofe belonging to one fide fhew themfelves in this figure.
$e e$ One of the wings.
fff Eight rings of the body.
gg A beautiful edging belonging to the belly.
b The tail, now hanging down, with its rowing fins.
$i i$ The antennæ of the Worm, altered by cafting a fkin. It is by means of thefe antennæ, that the Nymph now hangs by its head on the furface of the water, and in this fituation breathes, and is enabled to perform its mutation with the greater facility.

T A B. XXXII.

F I G. I.

The male Gnat, of its natural fize.

FIG. II.

The male Gnat vieqved by the microfcope.

a a The eyes, refembling a net.
$b b$ The antennæ, much more beautiful than thofe of the female.
c c One pair of the antennæ, or articulated briftles. each of which confifts of three joints.
d The external fheaths of the fting.
e The fting itfelf, or one of the five ftings projecting beyond the fheath.
$f f f f$ The Gnat's fix legs, confiting each of feven joints.
$g g g g$ Sharp, fcaly, feathers growing on the - two wings.
$b b$ Two little hammers, againft which the Gnat ftrikes its wings, and fo makes a buzzing noife
i i The thorax, covered with ftiff hairs.
$k k$ The belly, confifting of eight rings, as in the Worm.

F I G. III.

The ftings of the Gnat, and their internal Beath, or borny cbannel.
a The external fheath of the fting, cut off near the head, and feparated from the ftings, and their channcl.
b The internal tubulated fheath, or channel, containing five ftings. The blood flows in this channel along or amongft the ftings. There are befides in here two drops of a tranfparent liquor or humour, which perhaps is the poifon faliva that produces the the tumour, in the wounded fkin.
c c The very flender ftings, extracted from the faid channel.
$d d d$ Three thicker Atings, pulled likewife out of the faid channel.
e The neck of the Gnat feparated from its body.
f The head.
$g \mathrm{~g}$ The eyes of a reticulated form.
ob The horns cut off.
ii A pair of articulated briftles cut off likewife.

> F I G. IV.

The bead, and Jing of the female Gnat.

a a The antennæ, or horns, which differ confiderably from thofe of the male.
$b b$ The fhorter articulated briftles.
c The external heath of the fting.

F I G. V.

The female Gnat of its natural fize.

T A B. XXXIII.

Which exbibits the nocturnal Butterfly or Moth.
No. I. The Worm or Caterpillar of the nocturnal Butterfly, fticking in its firft coat or fkin, and of its natural fize.
II. The hardened fhell of the egg, divided into two parts, as quitted by the Worm.
III. The Caterpillar itfelf, having attained its full fize, remarkable on account of its wonderful form.
a Four little bundles of hair, behind the head, like fo many cloaths brufhes, clipt even at the tops; they are of a white colour, inclining to yellow, and fet along the back.
$b b$ Two other bundles of black hairs of unequal lengths, placed about the fore part of the head, and which appear like horns.

A Short Explanation

c c Two other feathers, like bundles of hairs, placed on each fide of the breaft like oars.
$d d$ Two more, like the firft, but not fo beautiful; of a yellowifh white.
ee Shorter feathers like hairs, placed all over the fkin, and interfperfed with other longer ones.
f The feather-like ornamented tail.
IV. The fame Caterpillar wound up in its web, fhortly to undergo its change.
a a a The web, in which the Caterpillar has fettled itfelf.
b The third and fourth ring fwelled by the increafe of the limbs within the Butterfly.
V. The fame Caterpillar changed into a Chryfalis, or Aurelia, which in a little time is to become a male Butterfly, the limbs of the Butterfly that is by and by to be produced, are now vifible, tho' obfcurely.
VI. The male Butterfly produced from the former Chryfalis, in which may be feen
$a \quad$ Its elegant horns. b Its fmall body.
$c c$ Its large wings, which are wanting in the female.

F I G. I.

The "egg of the nocturnal Butterfly, fheren in No. I. in its natural fize, is bere reprefented as magnified.

F I G. II.

The egg, broken open by the infect that fuck in it, reprefented as magnified; which was Jbewn of its natural fize, No. II.

F I G. III.
The web quitted by the Catepillar, with the perforation it makes when about to be changed into a Butterfy; Joewing bow the eggs are glued in it, which are laid by the female Butterfly, which in like manner are afterwards to produce Caterpillars,

> F I G. IV.

The Cbryfalis of No. V. reprefented, exbibiting all the external parts of the future male ButterAy: namely,
a The two eyes in the head, under which ftretched againft the thorax is difcerned the probofcis or trunk.
6 The antennæ, or horns, removed from their natural fituation.
cc The fix legs, alfo removed out of their proper place, that they may be the more eafily viewed.
d d Two pair of wings.
e The wings of the abdomen.

F I G. V.

The Cbryfalis of the female Butterfly, exbibiting again all its limbs and parts; as conftructed in their natural fituation.

F I G. VI.

The female nocturnal Butterfy, reprefented No. IV. but far more imperfect in its limbs and parts than the male.

a a Its two lefs elegant horns.

b The thick and diftended body.
$c c$ The four hort wings, or which may be rather called imperfect rudiments of wings.

F I G. VII.

The female, with ber belly difended with eggs.
a The fkin upon the back cut open and turned backwards, to fhew the great number of eggs with which the belly is filled.

T A B. XXXIV.

The Hiftory of Day-Butterflies.

FIG. I.

The Caterpillar from which the common Dutch day Butterfly is produced.
a Its external form, which is as it were fet thick with prickles.
b Three of the foremof of its fix legs.
c Four of the middlemoft hinder legs.
d The two hinder legs.

F I G. II.

The Caterpillar magnified, exbibiting its tbirteen annular divifions.
I. The firft annular divifion or ring, conftituting the head, in which
a a On each fide are fix eyes.
$b b$ The antennæ or horns.
$c c$ The teeth, placed under and near the lip.
d The little prominent particles, the middle moft of which is formed like a papilla or nipple.
2. Another annular divifion, with its briftly hairs, which is called the firft point of refpiration, or breathing hole.
e Another of the firft pair of legs, with its joints, having a crooked claw at the extremity.
34 The third and fourth ring, which have no breathing holes. The third ring, with the two larger ones alfo is befet with fmall prickles, of which only thofe in the fourth are reprefented.
f Another of the fecond pair of legs joined under the third ring.
g Another
g Another of the third pair of legs, joined under the fourth ring.
5: The fifth ring, on the other fide of which there appear three prickly hairs.
is A prickly hair placed in the middle of the Caterpillar's body, like that which is placed on each of the twelve rings.
i The firft and largeft prickly hair, placed on the other fide of the body; under and near which is feen a fecond, and under it another breathing hole.
k A third prickly hair under the belly.
6 The fixth ring, formed like the fifth, containing the third breathing hole.
789 1o Thefe rings are conftructed in the fame manner with the two former, in which appear the fourth, fifth, fixth, and feventh breathing holes.
llll Four of the middlemoft legs, together with their flefhy articulations and crooked claws; joined in the bending part of the body, each with its ring.
I The eleventh ring, formed like the former, in which is placed another of the eighth pair of breathing holes.
12 The twelfth ring, differing from the reft in the number of its prickly hairs. The reft of the nine breathing holes above it, are feen placed in this fide of the body.
13 The thirteenth ring, adorned at leaft with two prickly hairs.
$m i n$ The tail and the laft pair of legs, placed in the extremity of it.

F I G. III.

The kidney-like little parts.
a a The divifions which appear on the furface of thefe kidney-like parts.
F I G. IV.

The Romach, and its parts.
a The gullet, which runs naturally through a flit in the fpinal marrow.
$66 b b$ Some pulmonary tubes difperfed over the ftomach.
cc A tendinous ligament of the ftomach.
$d d d$ Mufcular tranfarent fibres of the fomach.
ee The vafa varicofa, or fwollen veffels, which are the clofed inteftines, conftituting, as it were, twelve little inteftines.
$f f$ The place, in which thefe inteftines, below the pylorus, are produced from the inteftine next the flomach.
$g g$ The manner in which the fame is bent into fix little tubes, and turned back towards the ftraight gut, againft which they are folded and curled.
bb Their windings and foldings,
i One of the thick inteftines, in which the excrements receive their form; fo that it is not unlike the colori.
k The ftraight gut.

FIG. V.

Two veffels bitberto unknow, wablich lie in folds near the fomach
a a Two tubes, which might very well pars for filk bags.
66 The origin of thefe tubes, afcending towards the brain; they are very narrow i:1 this place.

- Swellings in thefe tubes.
d Their harre extremities, inferted lower down near the blind guts.

FIG. VI.
The beart.
a a The hollow chamel of the heart.
$b b b, \mho^{c}$. Mufcles fituated on each fide of the heart, which they ferve to dilate.

FI G. VII.

The brain and Jpinal inarrow.

a The brain. 66 Origin of the fpinal marrow,
c The firt nodule of the fpinal marrow.
$d d$ Two pair of nerves, arifing immediately from the fpinal marrow, which produces three pair more in the fame manner.
e The fecond nodule of the fpinal marrow.
f The fourth and greateft cleft or flit of the fpinal marrow, beiow the third nodule.
$g b$ The fourth and fifth nodules, with the fingle nerves fpringing from them.
iklmn The fixth, feventh, eighth, ninth, and tenth nodules of the fpinal marrow, with the four nerves iffuing from each nodule.
e The eleventh and laft nodule of the fpinal marrow, with the nerves that it produces,

T A B. XXXV.

F I G. I.

The web formed by the Caterpillar, when about to enter the Nyyptb fate.
a The Caterpillar's web, in which it fixes the nails of its hinder feet, and fo remains fufpended head downwards.
b The third and fourth rings of the thorax, confiderably diftended by the blood and air, that dilate the latent wings and legs.
c Eight intermediate legs, which lofe their fkins by degrees, and are at length flipt off towards the tail.
d The firft order of legs, which are likewife about to fhed their fkins, and roll off one over another.

FIG. II.

Ixii

 A Short ExplanationFIG. II.

The limbs of the future Butterfy, that grew out of fight under the prefent infect's fin.
a a Its two antennx or horns.
${ }_{6} 6$ The two fhanks of the probofcis.
c c Parts like forks.
dd The eyes.
ee The upper and lower pair of wings, between which are to be feen the legs growing from the thorax.
$f f$ The rings of the body. $\quad g$ The tail.

> F I G. III.

The natural dippoition of fome of the latent limbs reprefented by the laft figure, as appears through the microfoppe.
a a The place where the horns or antennæ are jointed with the head, and from thence are regularly turned back, and folded in a ferpentine manner.
$6 b$ The two fhanks of the probofcis, difplaced a litle from their natural fituation.
c c The forky particles in their natural fituation.
$d d$ The eyes in their natural fituation.
e A portion of the fkin, that lay over the middle of the fkull, which is in this place removed.
$f f$ The root of the probofcis.
g The forks, between which the infect, when become a Butterfly, curls up its probofcis.

> F I G. IV.

The Caterpillar beginning to Jleed its Jiin.

a a The eight intermediate legs rolled off towards the tail, and fhedding their Ikins.
b The fix fore feet, feparating from each other, and flipping forwards.
c The fkull divided into 'three parts, the middlemoft of which is here reprefented.
d Another portion of the divided fkull.
e The third portion.
ff The forky particles, which are the parts of the future Butterfly, that appear firft.

> FIG. V.

The Caterpillar in greater forwardnefs towards the Chrygalis flate.
a a The eight intermediate legs now driven higher towards the tail.
b Four of the fore pair of legs rolled off as far as the middle of the body.
c d The forky particles entirely divefted of their fkin; and the divided fkull; and the firt pair of the fix fore legs rolled off higher upon the body.

of the TABLES,

F I G. VI.
The Caterpillar after it bas quite tbrown off iss אin; Jo as to acquire the name of Chryaflis.
a The wings, horns, probofcis, and legs, all of them extended, and of another form.
b The rings of the abdomen ftripped of its fkin: Thefe are now more icomprefied towards each other than heretofore. It here appears in what manner the Chryfalis, by means of the nails in its tail, continues furpended by its web.

F I G. VII.

All the parts or limbs juft now mentioned, as they appear through the microfoope.
a a The forky particles, which are no longer to be feen in the Butterfly. The third figure exhibits them under the letters $c c$, in their natural fituation.
b The middlc portion of the head, which heretofore lay under the fkull, and is reprefented in the laft mentioned third figure, under the letter e.
c c The root of the probofcis reprefented in the fane place under the letters $f f$.
$d d$ The proborcis itfelf denoted by the letters 66 .
e The extremity of the probofcis fo much extended, as to reach the rings of the abdomen, and placed between the antenna.
ff The firt pair of legs.
$g g$ The fecond pair.
ib The antenne or horns, whofe origins or rudiments are exhibited by the third figure under the letters $a a$.
i i Their extreme ends, which are very thick:
$k k$ The eyes, under which the horns lie bent. Thefe eyes are reprefented by the letters $d d$ of the third figure.
$111 l$ The wings placed in each fide of the body.
$m m$ The nervous divifions of the wings. Thefe divifions are in reality no more than pulmonary, tubes.
$n n$ The rings of the abdomen clofed and folded one over another.
00 Some prickly hairs like papillx, divefted likewife of their fkins and feated on the infect's back, from which they project a little. More forwards may likewife be feen four breathing holes.
p The tail freed from its fkin, as likewife the anus.
q The nails of the tail, and the manner in the infect ufes them to faften itfelf to the web.

F I G. VIII.

The Cbryalis lying on its back.
FIG. IX,

A Short Explanation of
F I G. IX.
The colour of the upper and largelt pair of the
future Butterfy's wings, as they very plainly appear tbrough the tran/parent Jkin of the Cbryfalis.

F. I G. X.

The caft fin of the Cbryfalis, dividing into four fegments.
a The firf part of the divided. fkin. This part contained the Butterfly's two fore-pair of legs, and its probofcis.
66 The fkin of the back, and abdomen, divided into two parts, that ferved to enclofe the thorax, head, and four wings.
c The fkin tore off near the origin of the abdomen, whofe rings it heretofore contained.
d Some of the internal membranaceous cafes, or integuments of the horns, legs, and probofcis. Thefe membranes are always broken on the Chryalis's firtt appearing in the Butterfly form.
ee Some pulmonary tubes, divefted of their integuments, and appearing in the fkin itfelf.
F G. XI.

The Butterffy, lately Aript of its /kins.
a Part of the budy, which the wings do not as yet cover.
$b b$ The frall fpots and colour of the wings. $c c c c$ Four legs of the infect.
dd The antennæ, or horns, growing over the the eyes, which are furrounded with hair. Between the horns are two fhaggy forks, which hide the probofcis.
e The two fhanks of the probofcis, hid between the faid forks.

F I G. XII.
A Butterfy, which in little more than a quarter of an bour after its fryt appearing as juch, bas acquired its full growotb and perfection, S_{0} as already to knowe what it ought to feek after, and wobat avoid; wobat may be ufeful to it, and wwhat prejudicial. In this refpect then, the Butterfly infinitely furpafes all other creatures, even man limfelf; ; and with a mof audible voice, as it were, publifles to all mankind, the praijes of their common Creator.

T A B. XXXVI.

F I G. I.

The fomach, and contiguous parts, with the vafa incognita, or unknown veffels, beretofore deforibed; all wbich parts are now altered in a mol furprifing manner.
a a Folds and turnings of the vafa incognita, exhibited already, Tab. XXXIV. Fig. V.

6 Their origin, confifting of a flender tube. cc Their divifions and dilatations.
d The end of them, near the origin of the ftomach.
e e The two curled-up or coiled Manks of the probofcis.
f The origin of the gullet, near the root of the proboícis.
g The channel of the pulmonary veficle or bladder, arifing from the gullet.
b The pulmonary bladder, or veficle itfelf.
ii The ftomach, confifting of many beautiful curled prominences.
k The hinder part of the fomach, like a wrinkled inteftine.
lllll Six vafa varicofa, or fwollen guts, fpringing by two origins from the little inteftine below the pylorus.
$m m$ The ftraight guts, with their twifts, and globular contents appearing through them.
n The inteftine confiderably dilated, fo as to form the cloaca.

- Another dilatation of the inteftine.
p The ftraight gut. q The anus.
$r r$ The two mufcles of the anus, furnifhed each with a tendon of a fubftance between bene and horn.

> F I G. II.

The genitals of the Male.

a The penis, confilting partly of a horny bone, and partly of a nervous texture.
66 Two horry bunes, fituated one at each fide of the penis.
c The articulation of thefe bones, with a border of the fame fubftance, that goes round the penis in the form of a belt.
$d d$ Another horny bone, belonging to the penis, divided in the middle.
e A back view of the divifion of the faid part.
f The nervous root of the penis.
$g g$ The body or root of the penis, beautifully curled or coiled.
b A granulated matter, like filver fand, that flowed from a puncture made in the penis.
i The opening of the root of the penis.
k The divifion of the nervous part of the penis.
lll Two beautifully curled feminal veffels, iffuing from the divifion of the penis.
$m m$ Two other flraighter veffels, fpringing from the fame divifion.
n A globular dilatation of the faid veffels.

F I G. III.

The ovary, and its parts.

a a a a a The oviduct, divided at each fide into three ducts, which afterwards terminate in very fharp points.
66 The common ducts of thofe already mentioned, ending in a fingle trunk.
$c c c c c$ Five veffels, containing a glutinous
fubftance,
fubftance, with which the Butterfly faftens its eggs.
d The ovary, contracted into a narrower tube.
e An oblong bag, in the fame place.
f Part of the laid bag, full of a yellowifh matter.
g The lower part of it, full of a limpid bumour.
b A little tranfparent part, like a fheath or cafe, that contained a little horny bone.
i The aperture of the faid little horny bone.
F I G. IV.
The fat.
a a Some pulmonary fiftules, ferving to bind up the fat.
$b b b$ The figure of the fat itfelf, very different from what it had in the Worm.

T A B. XXXVII.

The Butter fly enclofed in the Caterpillar.
No. I. The Butterfly, under the Caterpillar form, covered with its firft $1 k i n$, in which it is called an egg, and lies in the fame manner that the Butterfly lies within the fkin of the Chryfalis.
II. The faid fult fkin, or membrane, after it has been caft off.
III. The Butterfly-Caterpillar, or the Butterfly in the form of a Caterpillar.
IV. The faid Caterpillar drawing near its change, and containing, within its fkin, the Butterfly, expreffed by the I. II. III. and IV. Figures.

Its protuberant limbs and winss, which are not difcernible about the fecond annular fection of the body.
b The fame limbs, fprouting out under the third ring.
c The hinder part of the body, growing fmaller by degrees.
$d d$ The beam to which this Caterpillar had faftened its flight web.
e That part of the web, in which it had fixed the nails of its hinder feet.
If A ligament compofed of threads, with which the Caterpillar had girt itfelf about the middle of its body.
V. The Butterfly-Caterpillar, after it had fhed its fkin , in the Chryfalis form. This number fhews all the limbs of the Butterfly already exhibited by the fourth, but mere obfcurely, and difpofed in a different manner.
VI. The Butterfly itfelf, or Caterpillar-Butterfly, with its wings extended, and arrived at its full growth.

F I G. I.
The egg of a Caterpillar, which is a Butterfly, reprefented bigger than nature.

F I G. II. III. and IV.
The Bututerfy, extraEted from under the fkin of the Caterpillar, exbibited by No. IV.
$a \quad$ Its antennx, or horns. b Its probofcis. c c Its four wings, placed between its fix legs. $d d$ Annular fections of its belly.
, F I G. V.
All the faid parts of the Butterfly, as concealed in the Cbryfalis.
a a a a The antennæ. b The brobofcis. $c c$ Four legs lying on the upper wings.
$d d$ The upper wings, and part of the lower wings.
e The head and eyes.
f The belly and tail, with their fections.
F I G. VI.
The parts, juf now exbibited, divelted of all their coats, reprefented more difinetly, and in their natural fituation, fo as to give an opportunity of even diflingriifling the Buitterfly's colours.

FIG. VII.

Exbibiting a black fot, appearing tbrough the external skin of the Cbryjalis, in one of the Butterfly's tranfparent wings. It may be certainly known, by the appearance of this Spot, whether the Cbryblis is fbortly to cafls its JRin.

FIG. VIII.

The caft kin of the Butterfy-Cbryfalis, which almof always divides regularly into four parts.

F I G. IX.

Sherving the manner in which the Butterfly, with its ruings as yet very fort and little, creeps out of its laft fkin, under which it was called a Cbryalis,

F I G. X.
The manner in which the wings of the Butterfly, exbibited by the IXth Figure, expand by degrees, and acquire their fiull growth.

F I G. XI.

All the limis of this Butterfly, with its wings, in a growing flate.
a a The two antennæ, or horns.
b The curled probofcis. $c c$ The upper wings. $d d$ The lower wings. $e e$ The fix feet.
f The belly, its hairs, rings, and little feathers.

T A B. XXXVIII.

The mutations of the common Bog-houfe Fly.
No. I. The egg of the boghoufe Fly, of its na-

A Short Explanation of the TABLES.

tural fize. The figure underneath reprefents it bigger than nature.
II. The double coat or fkin of the faid egg, left by the Bog-houfe Worm, which at laft changes to the Bog-houfe Fly.
III. The faid Worm newly hatched, a little bigger than nature.
IV. The faid Worm full-grown.
V. The faid Worm grown immovable, by degrees, under its fkin, and changed to what I call a Vermiform-Nymph.
VI. The Bog-houfe Fly itfelf, proceeding from the Bog-houfe Worm, after the latter has changed into a Vermiform-Nymph, and and caft off two fkins.

FIG. I.

The egg of the Bog-houfe Fy, as it appears tbrough the microficope. It is oblong, full of angles, beautifully coloured, and teffellated like the Dutch cakes, called Woffels.

F I G. II.

The double coat of the egg, broken by the Worm it contains. The external coat is of a fubfance like plaifer; the internal coat, wobich is thinner, refembles a mcmbrane.

> F I G. III.

The Bog-boufe Worm, as it appears through the microfoope, divided into annular Jections, and its body beautifully furrounded, as it were, with little tufts of featbers.

FIG. IV.

The fame Worm changed into a Nymph, of a fize bigger than nature, in order to flew that the little difference, as to external form, between this Nymph and the preceding Worm, (Fig. III.) conffits of no more than this, that in the Nymph fate the infect's frout is drawn in wwitbin the bead, and all the annular incifons of the body are become flooter than they weere in the Worm ftate. Add that the infect, in the Nymph fate, is defitute of motion, wobereas in the Worm ftate, it was very active and lively.

F I G. V.

The true or real Nymph, concealed rvithin the Vermiform-Nymph, (No. V. and Fig. IV.) and thence extracted tbrougb incifons made in the Jkin. This figure is a little bigger than nature.

F I G. VI. and VII.

The Same Nymph (Fig.V.) viewed with a very great magniffer, the better to difinguifh one from anotber; it's limbs, which are chiefly
exbibited by the feventb Figure, and denoted by letters, as follows.
a a Are the reticulated eyes, between which, at the fame time, may be feen the probofcis, placed towards the thorax.
b The two antennæ, or horns.
cc The fix legs, folded up on each fide, againft the thorax.
$d d$ The folded wings.
e The abdominal rings, with the tubercles growing on the edge of the abdomen.

F I G. VIII.

The Bog-boufe Fly, (No.VI.) bigger than nature, with its external parts.
a a Two reticulated cyes, of a purplifh colour, and parted by two filver belts or borders.
b Two antennæ on the forehead.
c c A pair of wings of a membranaceous fubftance.
$d d d d$ Six hairy legs, the extremities of every one armed with nails.
e The abdomen, its rings, colour, and hairs.

F I G. IX.

A Another kind of Bog-houfe Worm, belonging to the fecond mode of the third order or clafs. This worm is very remarkable on account of its legs and horns.
B The Vermiform Nymph of the Worm, from which it differs externally more than the Nymph heretofore exhibited, No. V. and Fig. IV.
C The Fly produced by the Nymph, elegantly covered, by fome prepofteroully ranked amongt Bees.

F 1 G. X.

D A white Worm, that grew within the Caterpillar of Tab. XXXVII. No. III. and aftewards, when near its time of mutation, opened itfelf a paffage through the Chryfalis of the faid Caterpillar, reprefented by No. V. of the fame Table.
E The fame white Worm changed after its iffuing from the faid Chryfalis, into a Ver-miform-Nymph, that being opened is found to contain a real Nymph.
F The Fly at length produced by the faid Vermiform Nymph, after it has caft its fkins.

T A B. XXXXI.

The Hiftory of the Afilus, or Gadfly.
F I G. I.
The Worn from webich the Gadfy ifues, banging over the furface of the water.
a Twelve annular divifions of the Worm, by M
which
which it is divided, as it were, into head, thorax, and belly.
6 Hairs growing round the tail, in a circular form, by means of which this part floats on the furface of the water, while the reft of the body remains under water, with its downwards.
c The head, whofe mouth is divided into three parts. The two lateral parts, which are, properly fpeaking, the infect's feet, vibrate, while it remains alive, like the tongues of ferpents.

> F I G. II.

Another kind of thefe Worms, in its defcent to the bottom.
a The hairs of the tail, difpofed in an oval form, and containing a bubble of air within their cavity.
b Two bubbles of air, difcharged by the Worm at its breathing-holes, tending to the furface of the water.
F I G. III.

A microfoopical view of the firt Worm.
I $23, \mathcal{E}^{\circ}$. Twelve rings, by which it is divided into head, thorax, belly, and tail. This figure likewife fhews in what manner the fkin is beautifully covered with minute grains and fpots. On one fide too there appear nine breathing-holes.
a The tail, refembling a ftar, compofed of beautiful hairs.
bb Delicate hairs, which in this figure appear only about the fides of the body, as I have omitted reprefenting them on its upper part, or on the infect's back.
cc. Two larger hairs, growing on each fide of the body.
d The head. ee The eyes.
f The crooked fnout.
$g g$ The legs, fituated near the fnout.
bb Two blackifh horny bones, which are, as it were, the thumbs of the feet.
ii The horns, or artennx.

FIG. IV.

The grains of the Jkin, viewed with a great magnifier, So as to Serw their confruction.
a The fkin appearing between the grains.
6 The prominent part of the faid grains, exexactly in the middle.
c The irregular rings of the faid grains.
d Sharp prickles growing on the edges of the grains, to whofe firmnefs they contribute.

FIG. V.

> A leg, magnifed.
a Three mufcles, furnifhed with a tendon,
of a fubftance between bone and horn, and placed on one fide of the firft joint of the leg.
b The faid joint, which is black, and likewife of a fubftance between bone and horn.
c Two fmaller mufcles, with their tendons.
d Another joint, of a fubftance between bone and horn.
\dot{e} The extreme joint of the leg, with its briftly hairs.
f The thumb of the foot.

> F I G. VI.

The frout inverted, and bigger than nature.
a The fnout, and all its parts.
b The fharpand crooked extremity of the fnout.
c The internal opening of the mouth, through which the infect's food paffes to the gullet.
$d d$ The membranaceous divifions of the mouth, by which the palate can be bent, and made to give way.
e Part of the mouth, entirely confifting of a black horny bone.

F I G. VII.

The falival velfels, or at leaft two parts analogous to fuch vejels.
a Two falival veffels curled, and ending in blind extremities.
6 A fingle channel, in which they terminate. cc Two particles, as it were, refembling mufcles.
d The upper part of the mouth, from which the eyes, and two parts of the head, fupporting the eyes, have been feperated.

T A B. XL.
 FIG. I.

The Worms pulmonary tubes.
a a Two very confiderable branches of the pulmonary tubes.
b Pulmonary tubes in that part where the optic nerves, and the membranes of the growing eyes, are fituated.
$c c c$ Some pulmonary tubes, which run into each other from each fide of the body.
$d d d d d d$ A mutual communication of the pulmonary tubes, at each fide of the body, under the flin.
e ece The circumference of the fkin, denoted by dots.
f The tail, in which the two main trunks of the pulmonary tubes are opened by two channels.

F I G. II.

Curls or folds of the pulmonary tubes.
a a Two portions of the pulmonary tubes drawn afunder.

A Short Explanation of

6 Their curly foldings, which reprefent a filver wire wound up in a fpiral form, and then extended.

F I G. III.

The fat.
a Irregular figures of the fat.
b Jts round particles. c Its oblong particles.
d Its broad, jagged, or indented particles.
e Its angular particles.
f Particles in form of a pear.
g Pulmonary tubes diftributed through the fat.
FI G. IV.
The beart.
a a The lower part of the heart, in fome places a little dilated.
$b b$ Part of the heart, reprefented bigger in the abdomen and thorax.
c Part of the heart, feated about the head, and again contracted.

F I G. V.

The brain.

a a The brain.

b A cleft or opening in the fpinal marrow, to give a paffage to the gullet.
c c Part of the eyes of a future Nymph, and Fly growing by degrees.
$d d$ Eleven prominentnodules of the fpinal marrow
$e e$ Nerves fringing from the origin of the fpinal marrow.
f Nerves iffuing from the origen of the fpinal marrow towards the fides of the body.
$g g$ Nerves fent from the eleven nodules of the fpinal marrow to the vifcera, and other parts.

T A B. XLI.

F I G. I.
The Worm cbanged within its gkin into a Nymph.
a a a The external fkin hardened, and contracted into three bendings.
$b c d e$ The four laft rings of the abdomen, which, on account of the contraction of the body, contain nothing but air.
f A hollow or empty face in the external flin, between the head of the Worm and the enclofed Nymph. This hollow appears more obfcurely than that under the four laft rings of the abdomen.
I The enclofed Nymph, known by a black fpot appearing externally on the fkin's furface.

F I G. II.

The Jkinopened, fo as to give a fight of the enclofed Nymph.
a The Nymph ftill wrapped up in its thin and delicate fkin.
the TABLES.
$6 b$ Its unfolded pulmonary tubes, of which there are four reprefented in this figure.
c The fkull caft off, with the other parts of the horny head, and the fnout.

F I G. III.

Parts of the future Nymph, difcerned in the Worm when Jripped of its Jkin.
a a The antennæ, or horns.
b The head and probofcis.
$c c$ The firt pair of legs. $\quad d d$ A pair of wings.
$e e$ Another pair of legs. ff A third pair.
g The abdomen, and its rings. b The tail.
i i Pulmonary tubes, which have in part fhed their coats.
k Inteftines likewife, which have partly caft their coats.
l The anus cut off, but ftill hanging to the inteftines.

> F I G. IV.

The Nymph, or parts juft now taken notice of in the Worm, difpofed in a beautiful manner, and much bigger than nature.
a a The antennæ, or horns.
$b b$ The eyes, in which the hexagonal divifions do not as yet appear.
c The probofcis under the head.
$d d$. The firtt pair of legs.
e_{e} The fecond pair.
$f f$ Two wings, elegantly folded.
g Annular divifions of the thorax.
b The third pair of legs.
i i Some black fpots on the infect's body,
$k k k k$ Four openings of the lungs.

F I G.

The fat of the Nymph.
a Changes or alterations in the configurations of its parts.
$b b$-Some ramifications of the afpera arteria diftributed through the fat.

FIG. VI.

The ftomach and inteftines of the Nymph, to which are added the head and tail of the Worm.
a The origin of the gullet.
b The horny bone of the head; the fnout, and the legs drawn in towards the body.
c The gullet running towards the ftomach, through a flit or cleft in the fpinal marrow, under the brain. Thefe particulars have been reprefented in this manner, to make them the more intelligible.
d The ftomach, with its wrinkled foldings, and pulmonary tubes.
e Oblong furrows in the ftomach.
f An open tube, appearing through the tranfparent coats of the ftomach, within which it is fattened.

xlviii
 A Short Explanation of the TABLES.

g The fmall gut, forming fix foldings.
of A little gut, within the former, where it likewife makes a variety of folds.
$i i$ The curled windings of the faid little inteftine.
k The dilatation of the fmall guts, and places where it produces four blind guts, that fpring from a common trunk.
l Places where the thick guts unite with the fmall guts.
$m \mathrm{~m}$ Some globular dilatations in one of the blind guts, and the wonderful divifions of its contents.
$n n$ Surprifing windings and folds of the blind guts.

- The place where two of the upper blind guts unite into one.
$p p$ Windings of another, or the other upper blind gut.
$q q$ Windings of the third.
r The blind extremity of this laft.
ss Windings of the fourth blind gut.
t The blind annular extremity of this laft.
u Dilatations of the colon, in form of nodules.
x The larger dilatation of the colon.
y The two fmalleft dilatations of the colon.
₹ The anus, below the ftraight gut.
F I G. VII.
The final marrow in the Nymph and Fly.
I $23,8_{2} c$. Eleven nodules of the final marrow, now extended at full length, and drawn out one from another.
a The brain; and above it a rough draught of the tunicx cornex of the eyes, and their hexagonal divifions.
b The firft nodule of the fpinal marrow, retaining its primitive fituation.
c The four following nodules, which now form a confiderable knot or fwelling, at the fame time that the fixth, feventh, and eighth are are feparated one from another, and the fpinal marrow between them is drawn out.
d The three laft nodules, continuing in their former fituation.

T A B. XLII.

$$
\text { F I G. } \mathrm{I} .
$$

The external Jinin Soed by the Gadfly, with the manner of its Jbedding it.

I $23, E^{2} c$. Thefe numbers, placed in oppofite ranks, fhew the twelve rings of the Fly, or Worm's fkin.
a The third and fourth rings: it is in this place that motion is firft perceived in the Worm's fkir, when the Fly is about to break forth. And for this reafon thefe rings burft open in a longitudinal direction.
b The third fore ring, or, counting from the tail, the tenth, which burfts open in a contrary direction into two parts, one of which
continues faftened to the fecond, and the other to the fourth ring.
c The fourth ring opens almoft in the fame manner, only that it cleaves more in the middle.

F I G. II.

A general viewo of the external limbs and parts of the Gadfly.
a Its two antennæ, or horns.
$b b b b$ The fix feet, and their joints.
$c c$ The wings. d The abdomen.

> F I G. III.

A diffection of the Gadfly. The external fkin and internal coat Jied by the Gadfly.

I $23,8^{\circ} \mathrm{c}$. Rings of the external fkin .
a a Pulmonary tubes, rolled off, in the fecond, third, and fourth rings.
$b b$ The curled extremities of the tubes.
c An inteftine, fhed likewife by this infect, containing fome tranfarent particles like fand, which ferment with acids.
d The caft legs, fnout, and eyes.
e The caft fkull.
f Coats or fkins, fhed by the gullet and the ftomach.
$g g$ The caft internal coat, which immediately enclofed all the limbs of the Nymph.
b The place where the coat contained the Fly's tail.
i i Pulmonary tubes caft off within the delicate little fkin.
k The largeft of thefe tubes, with its ramifications.

FIG. IV.

A rough draft of the manner in which the Intefiine Jbeds its Jkin.
a The internal coat of the inteftine b. This inteftine comes away full of grains of fand.
b The inteftine itfelf, remaining in the body.
c The anus, with the internal coat of the inteftine b, fhed by the infect, ftill faftened to it.

F I G. V.

The probofcis magnified.

a The two fore parts of the probofcis, of an oval form.
b Hairs growing from the fkin of the probofcis.
c c Two articulated briftles, or appendages of the probofcis, fpringing from within its root.
d A triangular horny bone, furrounding the root of the probofcis.
e Another little bone like the laft in fubftance, but of a different form.

FIG.

A Short Explanation
 F I G. Vi.
 Some of the pulmonary veficles.

a Its membranaceous part, which was full of air.
6 The pulmonary tube, through which the air paffes to the veficle.
c. Two lateral pulmonary tubes.

F I G. VII.

The genital parts of the male.

a The penis and its two appendages.
66 Two twifted horny bones belonging to the penis; and articulated with the fheath, through which the penis erects itfelf.
c The flexible part of the penis.
$d d$ Two little black horny bones, forming a border round the extreme ring of the abdomen; and articulated with the former bones.
ee Places where the articulations appear.
f The nervous body of the penis.
g A dilatation of the root of the penis, with which the vafa deferentia, and feminal veffels empiy themfelves.
$b b$ The teiticles. ii The feminal veffels.
$k k$ Short tubulated feminal veffels, laid bare in one of the tulticles.
l Veffels for the conveyance of the feed.
$m m$ Windings of the feminal veficles, the extreme ends of which are dilated.

FI G. VIII.

The ovary of the female.
a a The ovary confifting of two parts.
b The laft rings of the abdomen.
$c c c$ Some protuberances of a fubstance between bone and horn, appearing like fpots on the laft abdominal ring.
d Hairs growing in the fame place.
$e \varepsilon e$ Eggs belonging to one fide of the ovary, as yet in their natural fituation.
f The fame eggs a little more magnified, and removed out of their natural fituation. The remaining. part of this ovary is marked by dots.
g Pulmonary tubes interwoven with the ovary.
b Some branclies of the faid tubes difperfed both within and without the coats of the eggs:
ï i The greateft extreme branches of the faid tubes.
k Two ducts of the oviary, by which the eggs are let out of the body.
l Three beantiful unknown particles, each fupported by its ftalk,
n The point of the inflexion of thefe tubulated particles.
n Their tubes and windings.

- That end of the tubes which lies neareft to the duct of the ovary.

the TABLES.

T A B. XLIII.
The Hiftory of the Acarus, or Mite.

FIG. I.

The Acarus or Mite, of its natural fize.
FIG. II.
A microfocopical view of the Acarus.
123456789101112 The twelve rings of the body.
a The head, in which are feen two nails belonging to the infect's legs, with which, when about to fpring or leap up, it compreffes its anus.
b The larynges or tops of the afpera arteria, projecting beyond the fkin.
cc The place where there iffue from the main tranfparent trunks of the afpera arteria, two branches, which unite by a mutual anaftomofis, or inofculation with the branches of the fourth ring.
$d d d d d d d$ The inofulation of the pulmonary tubes, which appear through the remaining rings of the body.
e A particle of the fat appearing through the fkin.
ff Some blind guts, appearing in the fame manner.
g A confiderable branch of the afpera arteria, which appears through the fkin under the tenth ring, between the two principal branches of the trachea.
b A beautiful particle of fat, appearing under the eleventl ring, and near which may be difcoverd the two extremities of the branches of the trachea.

F I G. III.

The manner in rolich the IWorm bends itfelf into a circh, in order to prefare for leaping.

F I G. IV.

The manner in wobich the circular form cbanges to an oblong one; juff as the Acarus is about to leap or Jpring.
FI G. V.

The feet, parts of the mouth, Romach, intefines, and lome other vifcera of the Acarus, as viewed with the microficope.
a a The feet or teeth, and nails.
$b b$ Origin of the horny bony parts of the mouth, and palate.
cc Four appendages of the faid parts.
d Horny bones, which ferve to keep all the parts in their proper fituation.
The dilatation of the gullet, which I call the ingluvies.
$f f$ Four blind appendages under the ingluvies.
$g g$ The
$g g$ The ftomach, of a confiderable length.
ibbRamifications of the afpera arteria, vifible in the ftomach.
i Contents of the afpera arteria, appearing through its tranfparent coats.
$k k$ The origin of the blind guts, of which this infect has four.
ll Two of the faid guts, containing a yellowifh green fubftance.
m The two others, whofe contents refembled a coagulated fubftance.
n Pulmonary tubes, belonging to a blind gut, of the fame kind.

- The pylorus. $p p$ The colon.
q The ftraight gut. r The anus.
s s Two particles of fat, and their divifions, with which one of the blind guts is interwoven.
$t t$ Two glandulous fwellings, and channels of the falival duct, which runs along the gullet to the jaws in form of a flender tube.
$v v$ Two other fwellings, with their channels and pulmonary tubes.
$x x$ Some particles of fat, and their divifions.
$y y$ Two other particles of the fame kind, which fhew themfelves in the fame place like appendages in the form of a chain.

F I G. VI.
Divijions of the particles of fat, magnified to a greater degree.
a a a Seven divifions of the particles of fat, in which it is laid up in the form of oily, fpherical particles.
b The manner in which the pulmonary fiftules pafs through the cells that contain the fat.

> F I G. VII.

The brain, final marrow, and nerves, bigger than nature.
$a \quad a$ The right and left lobes of the brain.
$b b$ The nerves, iffuing from the upper part of the brain.
c The nodules, formed by the faid nerves.
$d d$ Two fine nerves, iffuing from the faid nodules, and running to the mufcles of the head and legs.
$e e$ Two pair of mufcles fent by the fpinal marrow to the mufcles of the thorax.
$f f$ Two ftrong nerves, with their dilatations, adminiftering to the mufcles that ferve to move the wings.
$g g$ A great many fine nerves diftributed amongft the mufcles, and vifcera of the abdomen.
$b b b$ Ramifications of the faid nerves.

F I G. VIII.

A fide view of the jpinal marrow and brain.
a The brain.
b The finus of the fpinal marrow.
c A cleft in the fpinal marrow for the paffage of the gullet.

F I G. IX.

Some of the mufcles.
a a a The oblique defcending mufcles with two bellies, of each of which, one of the tendons is inferted into the mufcle itfelf.
$b b$ The broad tranfverfe mufcles.
$c c$ The The oblique afcending mufcles.
F I G. X.
The Acarus, or Mite, contracted, in which condition I call it a Vermiform-Nymph.

F I G. XI.
The fame, bigger than nature.
a The head and mouth.
b The tail and its tubercles.
F I G. XII.
The conccaled Nymph, extracted from the contracted or fbrivelled Jkin of the Acarus.

F I G. XIII.
The fame Nymph, bigger than nature.
a The two horns of the future fly.
$b b$ The eycs. . c The probofcis.
$d d$ The firft pair of legs. ee The fecond, $f f$ The folded wings.
$g g$ The third pair of wings.
b The rings of the body.
F I G. XIV.
Two flies iffuing from the Acari, or Mites, of their natural fize.
F I G. XV.
A microfcopical view of the male fly; produced by the Acarus or Mite.
a The antennæ or horns.
$b b$ The firft of legs, their joints, hair, and nails.
$c c$ The fecond pair. $d d$ The third.
$e e$ The wings and little hammers placed under them.
f The rings of the belly.

> F I G. XVI.

The Jins caft by the Acarus, bigger than nature:
a The upper part of the torn 1 kin, where the fly creeps out.
6 The lower part.
FIG.

A Short Explanation of the TABLES.

F I G. XVII.

The genital parts of the male.
a The horny part of the penis, curled in a furprifing manner.
6 The membranaceous part of the penis.
c The fore end of the penis, which is here reprefented as it receives the vulva of the feinale, inftead of being received by it.
d The nervous root of the penis.
e The place where the root of the penis is dilated.
ff The tefticles of a yellowifh red.
$g g$ The vafa differentia.
b. b Spherical appendages of the veffels.
$i i$ The feed bags. $k k$ The proftata.

F I G. XVIII.

The external parts of the uterus and vulva.
a a The two laft rings of the body.
66 The firt joint of the extremity of the uterus, covered with hair, and furnifhed with two little black horny bones.
cc The fecond joint enclofed in the firft. The extremity of this fecond joint is likewife of a fubftance between bone and horn.
d The third and laft joint, formed of the faid fubftance, and covered with hair. This joint is received by the penis.

> F I G. XIX.

Oine of the fixty-four voiducts.
a A perfect egg lying in the oviduct, of a white colour.
b Three imperfect eggs of a watery colour.

T A B. XLIV.

Obfervations on the Vermicles, or little Worms, found in the tubercles of the leaves of Willows.

FIG. I. II. and III.

Tubercles of Willow leaves, the eggs, and Worms reprefented by fix Jeveral figures.

> FIG. I.
a The external fide of the leaf.
$6 b$ The internal fide.
cc The warts or tubercles, of an oval round.
d Others of an oblong form.
e Others full of wrinkles.
f Very fmall warts, which look rotten, as it were.
g Warts, or tubercles, growing on the greater or main nerves.
b Another on the extremity of the leaf
i Another growing on the nerve itfelf.
k Others, which rife on each fide to an equal height, above the coats of the leaf.
l Some on the ftalk of the leaf.
m Seven rudiments of tubercles exhibited on each fide of the leaf.

F I G. II.

n The egg, that is found in the rudiments of the tubercles.

F I G. I.

- A tubercle with a cleft in it, through which the egg may be feen placed in the middle.

F I G. II.

p An egg magnified, fo as to thew the head and two eyes of the enclofed Worm, that appear through its tranfparent fkin.

FIG. I.

q The Bindweed Caterpillar, full grown.
r The fmall hole bored by it through the tubercle or wart.

> F I G. IIl.

A microfoopical viero of the fame Caterpillar.
s The eyes. tt The fix fore feet.
${ }^{u}$ Six of the twelve middle feet.
x The two hinder feet, next the tail.

FI G. I.

y The manner in which the Caterpillar thrufts its anus out of the hole, made by it in the tubercle, and thereby difcharges its excrements.
$z z$ Two rufty coloured fpots of the Willowleaf; one of them with a hole in it, within which may be feen the nerves of the leaf, and the excrements and head of another Worm, that lives in it. Fig. VIII. exhibits this Worm of natural fize.

> F I G. IV. V. and VI.

The Fly's web, and the Fly itfelf; likewije tbofe parts of the Fly, with wobich it bores itfelf a paflage through the tubercle or wart; in five figures.

> F I G. IV.
a The oval web of the Fly.
b The Fly itfelf.

F I G. V.
 The Fly feen through the microfcope.

c The antennæ or horns.
$d d$ The black fpots on the wings.
ee Six legs, their joints and two nails to each leg.

F I G. VI.

The parts with which the female bores the leaf,
ff The laft rings of the abdomen.
$g A_{n}$ inftrument like a faw.
bb Two pointed horny bones.
i A little lid or cover, which the Flies at their firt appearance thruf out of their web, as out of a little barrel.

> F I G. Vil.

A microfcopical view of a very frall infect, which refts on the external furface of the Willow tubercles or warts.

> F I G. VIll.

The little Worm found between the coats of IVillow leaves, of its natural fize. See Fig. I. let. zz.

$$
\begin{gathered}
\text { F I G. IX. } \\
\text { A microfoopical viero of the famc Worm. }
\end{gathered}
$$

a The head and two teeth.
$b b$ Its broad thorax, and tranfparent pulmonary fibres.
cc The other rings of the body, which is covered with hair, and ends in a pretty fharp point.

> F I G. X.

The Nymph, in which the Worm is afterward exbibited changed, a little magnified.
F I G. XI.

The fome Nymph more magnifed.
a Two crooked briftles on the head.
66 Its horns and antenne.
$c c$. The fecond and third pair of legs: The fecond is armed with two briftles.
$d d$ Two fheaths to cover the wings.
$e e$ The third pair of legs, and their briftes.
f The wings of the body, and the prickles and ftings of the tail.

> F I G. XII.

The Beetle produced by the faid Nymph.

> F I G. XIII.

> The fame Beetle magnifed.
a Its reticulated eyes.
b Its fnout or beak, of a fubftance between bone and horn.
$c c$ Its antennæ or horns.
$d d d$ Its fix Feet, upon the leaft pair of which this infect makes it fprings or leaps.
ee The fheaths of the wings.

$$
\begin{gathered}
\text { F I G. XIV. } \\
\text { Rudiments of Willow leaves juft beginning to hoot } \\
\text { or bud. }
\end{gathered}
$$

a Four of there young leaves, with their ftalks and rough furfaces.
b Red Worms, generally found within the leaves.
of the TABLES
FIG. XV.
A microfoppical viewo of a Fly produced by one of the Worms.

FIG. XVI.
A tubercle or wart growing in the Willore in form of a rafe.
a The tubercle and its falk.
6 A pyramidal clufter of leaves, within which the Worm lies.

F I G. XVII.

Reprefenting in five fygures all the changes of the Worm, and its tubercle.
c The manner in which the leaves of the tubercle may be feparated one by one.
d Part of the Worm's body, that lies in the middle of the clufter.
e A delicate membrane or web, more immediately enclofing the Worm.
f The Worm itfelf. g Its Nymph.
b The Fly to which the Nymph changes.

F I G. XVIII.

An Alder leaf woith various Worms between its two coats.
a The coat of an Alder leaf fivelled into a tubercie, on account of the Worm that had made its bed under it.
66 The upper coat or flkin removed, in order to thew on each fide, how the other coat is contracted underneath into a fmall fold.
c The web encloing a Chryfalis, diffected; and near it the excrements of the Worm formerly contained between the two coats of the leaf.
d Another Worm with fix feet, found likewife between the coats of the Alder.
e A third fpecies of Worms found in the fame place, with the fkin caft by it, and its excrements.
f Two oblong webs made in their cells by the faid Worms.
g Part of the leaf, where the fame Worm is found, when as yet very fmall.
b. The fame part, where the Worm has made itfelf more room.
i Another cell or neft like the former, but a great deal more fpacious.

> F I G. XIX.

A microfcopical view of a Chryfalis found in its wid weithin the coats of an Alder leaf.
a The fharp pointed head of this Chryfalis.
b The hinder part of its body, formed like a pear.
ci Fine

A Short Explanation of the TABLES.

cc Fine hairs growing on its body.
$d d$ Its cyes. $\quad e$ Its probofcis.
$f f$ Its firft and fecond pair of legs.
g g g Its anntenx or horns. $b b$ Its wings.
i The laft pair of legs lying between the antennæ.
$k k$ The rings of the body.

> F I G. XX.

The Butterfy produced from the forgoing CbryJalis, drawn after nature.

> F I G. XXI.

A micrcofopical Viewo of the fame Butterfly.
a a The antennæ. b The probofcis.
ic c The upper pair of wings, beautifully coloured.
$d d$ The lower pair of wings, for the moft part covered with feathers.
$e e$ Three white hairs, like thorns, growing on the hinder legs.
T A B. XLV.

A fhort explanation of the figures ferving to illuftrate fome of the foregoing hiftories.

F I G. I.

The manner in which the Fly lays its eggs, within the leaves of the common Tbifle; wbich eggs afterwards produce Worms.

$$
\text { F I G. II. III. IV. and } \dot{V}
$$

Tbe Tubercles or Warts of the Ainging Nettle, with the Worms and Nymplss found in them, and the Flies produced by the faid Nymphs, in four Figures.

F I G. II.

a Some excrefcencies growing on the falk.
b Some tubercles or warts of the fame kind, on the nerve of the leaf, and on the rudiments of the young leaves.
c Others growing irregularly on the leaf.

F I G. III.

d The Worm found in the tubercles of the Nettle, of its natural Size.
e A microfcopical View of the fame, fomewhat broader in the middle.
f A fine or flender frout projecting from its extremity.
g Fine hairs growing on its body.
F I G. IV.
b The Nymph magnified to a greater fize, with very large eyes in its head. Here are
likewife to be feen its horns, legs, wings and abdominal rings.
i Its little tail bent backwards.

> F I G. V.
k The Male Fly of its natural fize.

F I G. VI. VII. and VIII.

The downy excrefencies growing upon Oak trees, weith little bollow bags or tubes, and the Flies engendered and living in them.

F I G. VI.

a a a The circumference of the downy ball or globe, after its natural condition.
6 The ftalk fupporting it.
c An Oak leaf growing out of the middle of the ball.

F I G. VII.

d Bags or tubes, within which the Worms turn into Flies, and in whofe circumference the downy hairs of the ball are principally rooted.

F I G. VI:
ee Little holes, which the Flies gnaw in the downy fubftance in order to efcape out of their cells.

FIG. VIII.

f The Fly itfelf of its natural fize.

> F I G. IX. X. and XI.

The spongy tubercle of the woild Rofe: The fame laid open in the middle: Laftly, the Flies bred in it.

F I G. IX.

a a Knobs and inequalities of the tubercles:
b The ftalk fupporting it.
F I G. X.
c A fection thro the middle of the faid tubercle, fhewing the cells in which the Worms grow. to be Flies.

F I G. XI.

d The firft fpecies of Fly that iffued from the faid tubercles, with a pretty thick body.
e The other fpecies of the bifeta, or two haired kind.

> F I G. IX.
f Round holes knawed by the Flies in the fpungy tubercle, in order to get out of their cells.

0
FIG.

FI G. XII. XIII. XIV. XV. and XX.
The tubercles or warts growing on Oak leaves: One of them opened: The kidneybean-like fubfance found in them: A tubercle cut off from the leaf: A microfcopical view of the bean-like fubftance: The manner in woblich the tubercle dries up or withers.

F I G. XII.

a a Excrefcencies found on the fore end of the leaf, and likewife a little higher up, on the leaf's nerve or main rib.
6 Two tubercles; one of them a double one, growing fill a little higher up on the nerve or main rib; the other almoft on the edge of the leaf.
cc Some tubercles on the extremities of the leaf.

> F I G. XIII.
> Containing fve drawings.
d The upper part of one of the tubercles cut off.
e Three diftinct excrefcencies like kidney-beans, found in the hollow of the tubercle.
f Three excrefcencies like beans, taken out of the hollow cell or cavity.

> F I G. XIV.

A tubercle or wart of the fame kind cut open, and exbibiting two kidney-like beans lying in it, in the fame manner that a preferved almond lies zoithin its candied coverings, weitbout any intcrenediate vacancy. This is a microfcopical view, Jhewing the objects a little larger than nature.

> F I G. XV.
g The bean-like fubftance, with an uneven furface.
b That part of the bean, by which it principally adhered to its tubercle, and received its nourifhment.

FI G. XX.

${ }_{i} i$ The manner in which the tubercle begins to leffen, and wither up by degrees, fo, as to become fit for the imprefion of the Fly's teeth, and thereby afford it an opportunity of efcaping.

F I G. XII.

\& A fmall round hole, gnawed by the Worm in the withered part of the tubercle, and thro' which it iffues into the open air.
$l l$ Places where the tubercles dry up, and which may be feen without cutting it.'
: n The Worm cut out of its bean-like part, and reprefented of a fize bigger than nature, on an Oak leaf.

F I G. XVI.

The fane Worm fill more magnified, and of the form in wobich it appears, when about to enter the Nymph fate.

F I G. XVII.

The fame Worm clanged into a Nymph, and viewed with a greater magnifier in order to fee its limbs more conveniently.
a a Its eyes, refembling a net.
66 The antennæ lying between the legs and the wings.
c The abdominal wings.
F I G. XVIII.
The fame Nymph, changed to a Fly, of its natural fize.
F I G. XIX.
The fame magnifed.
a a The antennæ placed before the eyes.
66 The four wings.
cc The leaft pair of its fix legs, every one of which is armed with two nails.
d The fharp extremity of the abdomen, with which the Fly bores holes in the Oak leaf for the reception of its eggs.

F I G. XXI.

Reprefenting, in two drawings, the excrefcence growing on the leaves of the black Poplar, with the Worms and their food contained therein.
a A wrinkled excrefcence in the external coat of the leaf.
b The principal rib of the leaf.
c The internal fide of the leaf, where the wart or tubercle opens into a llit or opening.
$d d$ Windings of the principal nerve or rib, in the external coat of the leaf.

F I G. XXII.

A microfoopical vierv of one of thefe very minute Worms, that is furnifbed with two horns, two eyes, and Jix feet; and is moreover divided into bead, thorax, and abdomen.
e A woolly or downy fubftance, which thefe little infects very beautifully wear on the hinder part of their bodies.

F I G. XXIII.

f The infects glutinous food, contained within the woolly or downy fubftance, and refembling a veffel with a fpout ufed to feed infants.
g The manner in which the downy fubftance curls up, when its moifture is confumed.

FIG.

A Short Explanation of the TABLES.

F I G. XXIV.

bb Two pair of cups or membranaceous buds, in which the wings grow, and are enclofed as it were in little bags.

FI G. XXV.
A microfcopical viezo of the fame Worm changed into a Fly weith four wings.

FlG. XXVI.

The footlefs Worm, found on the leaves of the Cabbage, of its natural fize.

F I G. XXVII.
The fame Worm changed into a Nymph, reprefented lying on its belly, and of its natural jize.

F I G. XXVIII.

A microfcopical view of the fame Nympb, and in the fame pofure, with its limbs as appearing through their tranfparent integuments.
a a The eyes.
6 The thorax and fome of the hairs growing on it.
c cc The abdominal rings.
d One of the rings
e The curled, or folded, caft off fkins, of a pulmonary tube.
ff Part of the Cabbage leaf, to which the Nymph glues itfelf by this membrane.

F I G. XXIX.

A microfcopical view of the fame Nymph, divefed of its caft kins, and placed on its back.
a An eye, of one fide. b The two horns.
c The probofcis. $d d$ The folded wings.
e The hinder pair of legs.
$f f$ The extremities of the genitasl, which lie, as it were, out of the abdomen.

F I G. XXX.
The Fly of the faid Nymph, of its natural fize.

FI G. XXXI.

The cell, or neft of the Moth; the enclofed Worm of the Moth; the fame extraited; likervife its Cbryfalis and Butterfy; alfo the mamer by reblich the Rin of the Cbryjalis remains faftened to the fore end of the cell or neft: Lafly, the very fine tbreads or filaments, zuitb which the neft or cell is lined.
a The cell, fpacious in the middle, but narrower at each end.
b The thread formed by the Worm, and by means of which, to avoid falling, it hangs and faftens itfelf to the beams and walls of buildings.
c The manner in which the Worm of the Moth creeps out of its cafe or cell by the fore feet, and faftens itfelf with a thread of its own fpinning, in fome convenient fituation.
d The Worm itfelf of its natural fize, with fixteen feet.
e The fame changed into a Chryfalis.
f The Chryfalis changed into a winged Butters fly or infect, called a Moth.
g The caft flins of the Chryfalis, projecting a little beyond the cafe.
b The internal furface of the cafe, very event and fmooth.

F I G. XXXII.

A firall Worm found in mulk-bags, and its cbanges.
a The Worm. $\quad b$ Holes made by it in wood and paper.
c Its oval web. d Its Nymph.
e The Beetle produced by the faid Nymph.

> F I G. XXXIII.

A Worm found upon leaves, in very black cafes.
a The manner in which the Worm carries its cafe about with it.
b The Fly produced by the faid Worm。

F I G. XXXIV.

Another species of a Worm, that carries its cafe ort. cell about with it.
c The cell of a triangular form at its upper end,
d A nocturnal Butterfly or Moth, into which the faid Worm changes.
e A Fly, into which another fpecies of thefe Worms changes.
f A little Fly, into which the third part of the faid Worms was changed. I found fix or feven of thefe very minute Worms.

> F I G. XXXV.

A pyramidal cell, formed by a Caterpillar tbat inbabits it, and moves about with it. This cell or tube is compojed of bits of wood, So as th. refemble a piece of cheque or mofaic work.

F I G. XXXVI.

A tube or cell formed of fand by a Sea-Worm.

T A B. XLVI.

The flow growths or accretions of the Frog, and Garden Clove-July -Flower, in which they refemble the infects.

The figures on the left hand fade exbibited.

No. I. The Frog's egg, or the Worm of the
Frog, within its firft coat, or integument, refembling
refembling a little globe or fphere, enclofed by another greater globe.
a The enclofed globe forming, as it were, the yolk of this egg.
$b b$ The enclofing globe, refembling the white of the egg.
II. The Worm of the Frog divefted in a manner, of its firft coat.
c The coat removed to the hinder part of the Frog's Worm.
d The Frog's Worm rolled out from under the faid coat.
eee Its food, like the white of an egg furrounding it.
III. The Tadpole or Worm of the Frog grown bigger, and floating in the middle of its food.
fff The food fwimming, or floating in the water, like an expanded cloud.
ξ The head, breaft, and abdomen, made up as it were in one globe or fphere.
b The tail.
IV The fame Tadpole more grown, fhewing its fore legs, which encreafe by degrees as do likewife the hinder legs, but ftill under the fkin.
ii The fore legs growing out by degrees.
V. The Nymph of the Frog, or the Tadpole fufficiently grown, and in a condition to become a Frog, as all the limbs of the Frog have acquired in it their due perfection, fo that to appear in the form of a Frog, it need only caft its external 1 kin .
$k k$ The fore legs, which by degrees have acquired their perfection under the fkin.
Il The hinder legs, which are likewife perfect, and project beyond the fkin.
VI. The Frog itfelf, arrived at length at the ftate of a perfect animal, after paffing through the various forms, of egg, Worm, and Nymph. It is not however, like infects, immediately fit for generation, but muft wait fome years to attain that degree of perfection.
$m \mathrm{~m}$ Two veficles growing near the eyes of this Frog, which hew it to be a male one.

The figures on the right band reprefented.

No. The garden Clove-July-Flower in its firf coat, in which ftate it is called feed.
A. A microfcopical view of the feed itfelf, in which may be feen the cicatrix or fcar of the naval ftring, by which it was faftened to the ovary, and received its nourifhment.
II. The coat caft off by the faid feed.
B. The feed itfelf, that lay enclofed within the faid coat, of its natural fize.
C. The fame feed ftripped of its coat, and magnified, fo as to Thew its little points and bivalved partition cleft, which divides the reft of the body into two parts,
III. The young germe of theClove-July-Flower.
IV. The fame germe unfolded into leaves.
V. The cafe, or as it were the gem or bud of the Clove-July-Flower, which may be confidered as the real Nymph of the vegetable.
VI. The Clove-July-Flower itfelf broken from its gem or bud, and in a condition to produce feed.

T A B. XLVII.

FIG. I.
The genitals of the male Frog, viewed with the microfcope.
$a a$ The tefticles. $\quad b b b b$ The loins.
c Some of the appendages of the tefticles, confifting of oily or fatty bags.
d A fingle appendage of the fame kind.
e Others divided into two branches.
f Blood veffels on the furface of the tefticle.
$g g$ Globular heads or ends of the feminal tefticulary veffels
b Some tefticulary veffels, confifting of two parts.
i i Divided paraftatæ, or feminal veffels, by means of which the feed is forced from the tefticles into the common vafa deferentia.
$k k$ The manner in which thefe veffels run under the membrane that enclofes the kidneys, and unite with the vas deferentia.
$1 / l l$ Vafa deferentia lying round the loins.
$m m$ A rough draft of the arteries diftributed through the kidneys.
$n n$ Two fingular and ftrange bodies feated at the kidneys, under the 1 kin.
00 The place where the deferentia form on each fide a fingle trunk.
$p p$ Seminal veffels, or feed bags.
$q q$ The ftraight gut, into which the vafa deferentia and feminal veficles difcharge themfelves.
r The orifice, or end of the faid parts.
s s The urinary bladder divided into two parts.

F I G. II.

All the foregoing parts, of their natural fize.

F I G. . III.

One of the ovaries, of its natural fize.
a a Divifions, or natural ends of the ovary.
b A brals tube introduced into one of the little lobules of the ovary, in order to blow it up.
c c Eggs appearing through the membranes compofing the ovary.
d One of the lobules of the ovary laid open, fo as to afford a diftinct view of the enclofed eggs.
F I G. IV.

The beart, liver, lungs, tubes, uterus, \&c. in an impregnated female Frog.
a The fkin wiph the fternum and its cartilage drawn back over the head, and faftened with a needle in that fituation.
b The cavity, or hollow of the membranes, containing the heart, and formed under the

A Short Explanation of the TABLES. tviih

breaft bone by the concretion of the peritoneum, and the ligament by which the liver is fufpended.
rc Natural openings of the tubes, growing againft the membranes already taken notice of, which extend over the heart, and its pericardium.
$d d$ That part of the tube which makes a great many beautiful windings and foldings.
e The blood veffels of the tubes.
ff f The extremities of the tubes, near or about the fides of the uterus.
$g g$ The uterus, confifting of two parts.
b The ftraight gut in its natural fituation.
i The urinary bladder, confifting of two parts, in its natural fituation.
k The contracted ovary, in which there fill remains one perfect egg.
l Part of the left kindey, upon which the ovary lies, and at whofe fide lies the vein of the kidney.
Appendages of the ovary fupplying it with oil.
n Two eggs floating freely in the belly, near the tubes

- An egg in the tube itfelf.
p The ftomach contracted, in its natural fituation.
q One of the tubes of the liver.
r The gall bladder.
ss The lungs; the left one contracted.
$t t$ The auricle of the heart.
$u u u$ Parts of the thorax and abdomen cut off.

> F I G. V.

The manner of finding the egrs diperfed in the Frog's belly, when in their paflage through the tube into the uturus.
a Some little eggs in the ovary.
666 Some eggs, fcattered up and down the belly.
c Six eggs clofe to the tube's mouth.
$d d d$ Eggs in the tubes.
e An egg in the tube, near its mouth.
$f f$ Some eggs, preffing through the extremities of the tubes, into the utrus.
g The manner in which the eggs appear faintly through the uterus.
b The manner in which the eggs appear diftinctly through the uterus, after it has been for fome time expofed to the open air.
i The extremity of the double uterus, which opens into the ftraight gut, about an inch from the place where the tubes empty themfelves into the uterus.
k The origin or beginning of the great artery, with the auricle and heart.
Il Natural openings of the tubes.
$m \mathrm{~m}$ The lungs in their natural fituation, in part covering the tubes.

F I G. VI.

A microfcopical viere of the fore legs or arms of the male Frog.
a The thick thumb.
6 Black papillæ, with which it is covered;

T A B. XLVIII.

F I G. I. and II:
The manner in which the Frogs copulate.
a a The manner in which the male embraces the female, with his arms, and as it were folds his fingers between one another.
$6 b$ The manner in which the head of the male, lies over the head and between the eyes of the female.
$c c$ The drum of the ear, covered only with the external fkin.
d The manner in which the female ejects her eggs.
e The manner in which the male pours out its feed upon them.
f The manner in which the eggs flow togethes in a circular form.

F I G. III.

A microfopical view of the ovary and its "apperix. dages.
a a Some eggs, b Larger eggs.
c d Eggs becoming imperceptible by degrees.
e Blood veffels interwoven with the eggs
f A perfect egg, about to difappear in the fame manner

F I G. IV.

> A clufter of eggs magnifeed.
a a a Hollow membranes, or little membranes full of cavities, in which the eggs lie:
$b 6$ Blood veffels belonging to the faid clufter.
cc The main trunk of the blood veffels.
No. I. to 10.
The flow increafe or growth of the eggs.
I A Frog's egg newly depofited.
2 Another, a day old.
3 Another, two days old.
4 Another, three days old, as expreffed in four different drawings.
5 Another four days old.
6 The foetus of the Frog, as it appeared the next day.
10 The fame viewed on the tenth day from the laying of the egg.
'A microfcopical vierw of the fetus of the Frog in an egg newly depofited, and divefed of its wobite.
a a A furrow in the middle of the Frog's body.
$b b$ Remains, or rather rudiment, of a yellow fpot, which appears in the flkin of there creatures, even before they are hatched.

F I G. VI.

The fane fetus broken into two parts.
a A protuberance in form of a crefcent, vifible on the internal furface of one of the fides; in this place the furrow penetrates to a confiderable depth.
b. A little hole or cavity in form of a crefcent, ferving to receive the foregoing protuberance.
cc The place where the furrow is very fhallow.
$d d$ The furface of the fraction, fhewing the Frog's body to confift of globular, or fpherical grains or particles.

F I G. VII.

A microfcopical viere of the young Frog, witbin its chorion and amnion.
a A fide view of the Allantoies, with the chorion and amnion which entirely enclofe the foetus.
b The furrows already taken notice of.
c Superficial clefts of the yellow fpot, obfervable in the Frog's egg.

> F I G. VIII.

The fame parts, but in another fituation.
a The coat, called the allantoies dilated.

F I G. IX.

Another reprefentation of the fame parts.
a. The allantoies or coat, ftretched out into the fhape of a pear.

> F I G. X.

The fame parts again, with the foreroing coat extended to its greateft fize and bulk.

F I G. XI.

The fotus'of the Frog, as it appears fourteen days after the laying of the egg.

F I G. XII.

A microfcopical view of the fame fotus.
$a a$ The eyes. b Its wide mouth.
cc Fimbricated appendages, which in procefs of time are taken in by the body, where they conflitute the gills.

of the TABLES.

d The extremity of the extius of the inteftine, which forms fome windings and protuberances in the belly.
$e e$ The tail, of a flefhy fubftance in the middle, but membranaceous at the edges.
f The extremity of the mufcular and cartilaginous part of the tail.

F I G. XIII.
The fatus of a Frog, thirty-fix days after the laying of the egg, exbibing very difinainy its bead, two binder legs and tail.
a The aperture or opening of the mouth.
6 The hinder legs and tail.

T A B. XLIX.

FI G. I.

The fotus of the Frog reprefented by Fig. XIII. of the laft Table, diffected, and viewed with a microfcope.
a a The lower jaw-bone, of a black horny fubftance, and furnifhed with teeth.
6 The upper jaw-bone.
cc White papille furrounding the mouth.
$d d$ A portion of the protuberant eyes.
$e e$ Four rows of gills on each fide.
ff The lungs, one of which is inflated, the other collapfed.
g The heart. b Its auricle.
i The liver and vena cava.
k The gullet. l The gall bladder.
m The winding of the gullet about the liver. 7
n Part of the mefentery, with its blood veffels.

- The ftomach in the beginning of its growth.
p The pancreas in its natural fituation.
q The fmall gut.
${ }_{r} r$ Very beautiful double foldings of the inteftines.
s The ftraight gut. t The podex.
$u u$ The two hinder legs, - which grow beyond, or on the outfide of the body.
$x x$ The fore legs, which lay hid under the fkin. y y Mufcles of the tail.
$z z$ The membranaceous fkin of the tail.

F I G. II.

The manner in which the Tadpole cafts it Jkin.
a The fmall opening of the mouth, in the fkin caft by the Tadpole.
b The wide mouth of the Frog.
c c The two fore legs, which heretofore lay hid in the breaft, under the fkin, now divefted of it. See Tab. XLVI. No. V. letters $k k$.
$d d$ The two hinder legs on the point of dropping their fkins.
$e e$ Pulmonary veficles, which nature has beftowed on the male only.
ff Two
ff Two thick thumbs, proper likewife to the male.

F I G. III.
The Frog's arteries.
a The heart.
b The auricle, over which lies the origin of the great artery that iffues from the Frog's heart.
c One of the two main trunks of the great arteiy, which is like the fubclavian vein, and runs towards the right fide of the thorax.
d The other main afcending trunk, running to the left fide.
$e e$ Arteries of the lungs, which they only ferve to nourifh. I have here exhibited three branches of them, cut off.
if f Two minute arteries, iffuing from the lungs, and running towards the parts of the mouth.
$g g$ Two arteries, each of which fwells into two knots.
$b b$ Two very confiderable branches of the arteries, which arife from the afcending trunks of the great artery, then take a circular turn, and at length unite in the loins.
$i i$ The axillary arteries.
$k k$ The carotide arteries.
ll The arteries of the vertebrx.
m That of the mefentery.
$n n$ That of the loins.
00 Thofe of the tefticles, and ovary.
p Thofe of the kidneys.
$q q$ The iliac branches.

FIG. IV.

Veins of the Frog.

a a The upper trunks of the vena cava.
b The place where the arteries are cut away.
$c c$ The place where the pulmonary veins are likewife cut away.
d.d Veins running to the parts of the mouth.
$e e$ Others running to the head.
$f f$ Two veins, running to the mufcles of the fore legs.
gog Axillary veins.
ib Two confiderable branches, which run into the ilia under the fkin.
$i i$ The trunk of the vena cava, on the back.
$k k$ The vena cava in the liver.
l The vein of the mefentery.
m The emulgent or kidney veins.
$n n$ The iliac.
00 The epigaftric vein, running double at its. origin.

> F I G. V.

The motion of the mufcles in a Frog.
a a Two tendons of a mufcle, held by the fingers.
b The dependent nerve of it, irritated; by means of which the mufcle contracts itfelf,
and fo draws towards itfelf, the two hands holding the tendons.

> F I G. VI.

The manner in which the thicknefs of the mucle increafes, during the contraction of the mujcle.
a A glafs tube, through which the mufcle is paffed.
$b 6$ Two pins run through the tendons of the mufcles.
c The irritated nerve, by which it comes to pafs that the pins $b b$ are forced from their places towards $d d$, and that
e The mufcle, in confequence of its contraction; fills the middle of the tube.
F I G. VII.

The manner in wobich the beart, during its contractionss takes up lefs room, and leffens in bulk.
a The heart, contracting itfelf within a fyphon or glafs tube, upon whofe pifton it lies.
$b b$ A glafs tube.
c A drop of water, adhering to the infide of the tube, which drop defcends while the heart contracts itfelf.
d The part of the tube, fhewing how low the drop of water c falls at that time.

F I G. VIII.

The manner in which the mufcle, at the time of its contraction, comes to occupy a fmaller Jpace.
a The glafs tube, or fyphon
b The mufcle.
c A filver wire with a ring in it, through which the nerve pafies.
d A brafs wire, with a ring on the upper end of it, through which the filver wire paffes.
e A drop of water in the glafs tube.
f The hand that irritates the nerve, in confequence of which irritation the drop on the mufcle, contracting itfelf, deícends a little.

F I G. IX.
The fame experiment, Joewn after anotber manner.
a The glafs tube.
b A little hole bored in the tube.
c The nerve ftretched through the faid hole.

> T A B. L.

The hiftory of the Cuttle-Finh:

FIG. I.
The external parts or limbs of the Cuttle-Fiff; laid

A Short Explanation

laid flat on its belly, fomerwbat lefs tban nature.
a a The two thickert and broadert of the Cuttle-Fin's eight legs.
6 White furrows on the purple ground or fkin of the legs.
ccc The acetabula, or hollows like faucers, with their ftalks, pediments or mufcles, of which there is a furprifing number diftributed all over the eight legs.
$d d$ Origins of the arms of the creature, in their natural fituation.
$f f f$ The loofe membranaceous and mufcular fkin of the eight legs, with which fkin the acetabula are covered, when the Cuttle-Fifh faftens itfelf to any place.
gg Places of the legs where the acetabula are very fmail, but have notwithftanding the benefit of the fkin.
bb A more diftinct view of the faid mufcular flkin near the extremities of the arms; and likewife of the manner in which it ferves to cover the acetabula.
i The Fifh's fnout, or beak, formed like that of a Parrut.
k Flefh, which furrounds the fnout or beak, like lips or gums.
$1 l$ The eyes, of an extraordinary fize.
$m m$ The tranfparent cover of the eyes, or eye-lids.
n The prominent point of the back.
0000 The foft and mufcular part of the CuttleFinh, on each fide of its back.
p The place, lower down, where it is divided into a right and left fide.

> F I G. II.

The confruction of the acetabula, the mufcles and rings of their natural fize.
I A mufcle in the centre of the acetabulum, as likewife the manner in which this part is entirely compofed of mufcular fibres. On the upper part may be feen the black edge of of a horny bone, in form of a ring, of confiderable fervice in the conftruction of this organ.
2 The internal cavity of the acetabulum, its fibrous and mulcular fructure, as likewife the black edge of the ring, juft now mentioned. Lower down is to be feen that part of the mufcle, which ferves to dilate the acetabulum.
3 The ring, already exhibited by its felf, placed on its fide.
4 A front view of the faid ring.
5 Part of the faid ring cut off.
F I G. III.
The confruction of the frout or beak, of its natural fize.
a a The wings of a horny bone, compofing the lower part of the beak or fnout.

of the TABLES

$6 b$ The place where the beak or fnout is bent upon itfelf, fo as to acquire both firmnefs and thicknefs.
c The place where the faid bent back part of the fnout or beak turns, and runs forward again, and forms a hollow cavity.
d The upper part of the fnout or beak, which differs very little from the lower in point of conftruction or fhape.
ee Its internal hollow, containing the tongue.

> F I G. IV.

The tongue, and Salival ducts, of their natural fize.
a A natural bending, or inflection about the cartilaginous bones of the tongue.
b The mufcular flefh of the tongue, of a fpungy or fungous fubftance.
c The mouth of the falival duct, in the mufcular part of the tongue.
d The falival duct itfelf.
ee Two glands, from which the falival duct takes its origin.
$f f$ Some of the mufcles belonging to the tongue.

F I G. V.

The tongue by itfelf, of its natural fize.
a The unequal membrane of the tongue.
b Seven cartilaginous bones of the tongue, feparated from each other at their extremities.

> F I G. VI.

A microfopical view of part of the cartilaginows bones of the tongue.
a Cartilaginous papillæ, fituated on the faid bones.

> F I G. VII.

A microfocoical viero of the tongue, inverted.
a a Part of the root of the tongue, where its bones appear through the microfcope, in form of a regular piece of net-work.

T A B. LI.

F I G. I.
The internal parts of the Cuttle-Fijh, that may be feen, weithout any diffection, by juft removing the loofe mufcular covering of the belly.
a a The mufcular covering of the breaft and belly, cut off.
$b b$ The place on the declivity of the belly, where the faid mufcular flefh was cut off.
c The place near the tail, treated in the fame manner.
d The

A Short Explanation of the TABLES.

d The lower part of the common excretory bag like an inverted funnel.
e The upper part of the faid bag, narrower.
$f f$ Two oval hollow parts, united to the excretory bag.
g g Two confiderable prominencies or papillæ, adhering to the loofe mufcular part of the abdomen. Thefe prominences fill up, while the creature lives, the hollow parts juft now mentioned.
$b b$ Two oblong and Atraight mufcles, which ferve to move the acetabula, that are, as it were, fupported by them towards the papillæ, and draw them back again.
$i i$ The gills, and their blood-veffels, fituated at each fide of the abdomen, and at a great diftance afunder.
k Divifions of the blood-veffels in the lamellx, or plates of the gills, extended on the infide to their roots.
Il The place where the lamellæ of the gills terminate in a ligament, which ligament might very eafily be taken for a blood-veffel.
m The fame more diftinetly exhibited; as likewife a view of the divifions of the bloodveffels in the lamello of the gills.
n A tranfparent part, called mutis.
0 The extremity of the ftraight gut, which floats in the abdomen, like a hollow tube.
p The tranfparent ink--bag, which likewife difcharges itfelf into the abdomen.
q q Two tubular apertures, or openings, beneath the ftraight gut, and near it, by which the feminal matter is emitted.
r The place where there lie deeper, under the other parts, the veffels in which the feminal matter is prepared.
s The tranfparent ftomach.
t A tranfparent particle, in form of a heart, belonging to the feermatic parts.
u The extremity of the vafa differentia of the tefticle, floating likewife freely in the abdomen.
x The tranfparent tefticle.
y Some arteries, which run to the mufular parts of the fkin. Their fellows are to be feen on the other fide of the body.
z Tranfparent nerves, which appear in great numbers through the fkin , both there, and and at the other fide.
a The mufcular circle of the mouth.
β_{β} The arms, cut off.
$\gamma \gamma$ The order obferved by the acetabula during the contraction of the mufcles.
is The internal conftruction of the broadeft and largeft of the eight legs.
$\varepsilon \varepsilon$ The two eyes.
F I G. II.
A very diftinct view of the mufcles of the fmalleft acetabula, in their natural fituation and fize, as they appear on the extremity of one of the arms, feparated from the reft.
a The conftruction and fituation of the mufcles of the acetabula.
b The manner in which the acetabuid are united with their mufcles.
cd The place where the mufcles are fhortef and fmalleft, being where the rows of acetabula begin and terminate.
FIG. JII. and IV.

The body, called mutis, a little lefs than nature.
a a Its upper part, which is very thick, and may be divided on each fide into two lobes.
$b b$ Its obtufe appendages, in which the lower part of it terminates.
$c c$ Two arteries, iffuing from the great artery, and running to or fupplying the right and left fides of the mutis.
d A membrane feparated, and turned back from the mutis, in order to give a view of it internal veffels.
e The courfe of the veffels, exhibited apart.
$f f$ A granulated fubftance, of which the mutis is principally compofed.
F I G. V.

The gullet, Nomach, fraight gut, pancreas, and excretory duct of the Ink.
a The jaws.
$6 b$ Salival glands, in their natural fituation. The gullet runs lightly over thefe glands, in its way from the jaws to the fomach.
c The ftomach.
d The blood-veffels of the ftomach.
e The ftraight gut.
f The pancreas, beautifully wound into a fpiral form.
g. The bladder, ferving to force out the ink.
B The duct of the ink from the faid organ to the extremity of the ftraight gut.
i Th blood-veffels of the ink-bladder or bag.
$k k k$ A glandulous body, whofe ufe is not yet difcovered.

FIG. VI.

A piece of the Cuttle-Fifb's bone.

a A great number of little lamellæ or plates, compofing the bone. The uppermoft are the largeft, and lie clofeft to each other.
b The hard crufty covering of this bone. The lamellæ or plates that are neareft to this cruft are the fhorteft, and likewife at the greatent diftance afunder, fo as to afford a more fatisfactory view of the little columns that fupport them, one above another.

F I G. VII.

A microfcopical view of two of the lamelle, or
plates, and their interjacent columns.
c The beautiful order in which the columns

1xii A Short Explanation of the T A B L E S.

are placed between the teftaceous fhelly lamellæ or plates.
d The firt or upper lamella or plate, in which appear the marks of the columns, broken away from it.
e The lower or fecond plate.
f Some tranfverfal fibres of a fhelly fubftance, which bind the columns together, and thereby add confiderably to their firmnefs.

F I G. VIII.

Some of the plates, juft nowe exbibited, removed from the columns that fupported them.
g Their hollow tubular conftruction, in confequence of which they muft naturally contain a portion of air, and of courfe the bone can fwim on the furface of the water.

> F I G. IX.

The tail of the Cuttle-Fijb's bone, drawn after nature.
b A fharp point, thro' which the Cuttle-Fifh's bone grows out.
ii The membranaceous parts on each fide.
k The place where the piece of bone, under our confideration, was broken off from the reft of it , fhewing fome beautiful globular eminences, which firt hardened into a flony bone above the reft of the furface.

T A B. LII.

> F I G. I.

The beart and arteries of the Cuttle-Fibs, of their natural fize.
a The heart.
$b b$ The double auricle of the heart.
cc Part of the largeft blood-veffels belonging to the gills, from which the auricles are feparated. d The great artery.
ee Its two branches, running to the body of the mutis, while others proceed further.
f Arteries extended to the bafe, or root of the brain, where they are afterwards diftributed.
gg Two blood-veffels, iffuing from a lower part of the heart. They are full of veins.

> F I G. II. III. and IV.

The brain, nerves, and eyes, of their natural fize.
a The brain.
b Fat lying near the brain, reprefented by dots. c c The optic nerves, whofe origens are likewife invefted with fat.
dd Knotty dilatations of the optic nerves.
e eee Nerves fent in great numbers from the faid nodules or knots to the eyes.
f A blood-veffel, that interfects the nerves running to the eyes.
g A great many little nervous fibres in the choroides of the eye.
b The place where the faid coat converges a little more in form of a globe about the cryftalline lens, and thereby forms the iris of the eye.
i A portion of the cryftalline lens, projecting beyond the eye.

> F I G. III.
k The cover of the pupil, on that fide where I cut it off from the eye.
l That fide of the faid cover, which floats freely in the aqueous humour.
F I G. IV.
m The manner in which the cryftalline lens is divided to a great depth by the ciliary ligament.

F I G. II.

II 2223 Three pair of nerves iffuing from the brain, the middlemoft of which is beautifully dilated into a nodule.
n All thefe nerves are diftributed amongft the fore parts of the head.
$0 \circ$ Cartilages enclofing the brain.
$p p$ Cartaliginous expanfions, in which the mufcles of the legs are placed, and in the middle of which the head and fnout, or beak of the Cuttle-Fifh, is placed.
$q q$ Two ftrong nerves, which iffue from the bottom or root of the brain on its hinder part.
$r r$ Two nodules, which thefe nerves form in the breaft, and from which great numbers of nerves run to the lower parts of the Cuttle-Fifh's body.

> F I G. V. and VI.

The teficle and its parts, of their natural dimenfoons, viewed on each fide.
a Some little white bodies, which I found hanging in this creature on the outfide of the vas differens.
b The pointed extremity of the tefticle.
c The corpus variciforme of the tefticle.
d Its extremity, as far as I have as yet been able to trace it.
e The place where the paraftatæ are moft ample and fpacious, as may be feen in the tefticle, turned upon its other fide.

> F I G. VI.
f Some other minute extracted from the tefticles, which was full of them. Thefe parts are all loofe in the hinder part, without the leaft faftening.

A Short Explanation of the TABLES.

g Some fine filaments, in which the faid minute parts terminate on their fore ends, and by means of which they are there connected together.
b The manner in which a white fubftance, that curls itfelf in a ferpentine form, iffues from the faid minute parts.

F I G. V.

ii The manner in which thefe white minute parts appear thro' the tefticle, and wind themfelves in a ferpentine manner, while as yet enclofed in it.

F I G. VII.

A microfcopical view of one of thefe minute parts.
a Its hinder part, loofe and tranfparent.
b A white fubftance enclofed in the faid part, and which is forced out of it by the water that penetrates it.
c Places where it is tranfparent at each end.
d Beautiful windings of the fame on its fore extremity.
$e e$ Its fine, delicate, or flender filament, which hardens in the open air like the SilkWorm's thread.

FIG. VIII.

Two pair of glandular bodies, belonging to the Seminal vefels, of tbeir natural Size.
a a The firft pair of thefe white bodies, cut off from the gills.
$b b$ The fecond pair of gladular bodies of a gray colour, in other refpects like the firft pair, with which they are connected by means of two glandular tubes.
cc A glandular body fituated between the two pair juft defcribed.
$d d$ Some tender membranes, which bind together the faid body and its lobules.

FIG. 1X.

A third particle belonging to the feminal veffels, of its natural fize.
a Its figure on the upper part, where it is pretty flat.
b Its figure on the lower part, where it is fomewhat fharp, with a divifion in the middle, that gives it in fome meafure the refemblance of a heart.

FIG. X.
The genitals of the female of their natural fize:
a The ftraight gut.
6 The duct of the organ ferving to prefs out the ink.
c. The ink-bag itfelf.
$d d$ The ovary.
e The duct by which the eggs are difcharged.
f Three eggs. $g g$ Two glandular bodies.
b A peculiar part containing a reddifh humour? i i The gills in their natural fituation.

T A B. LIII.

The feeds of the Fern:
FIG. I.
Part of a Fern leaf, with its tubercles.
a a An indented or jagged leaf of the Male Fern of Dodoneus, refembling the feather of a bird.
bb Tubercles of a Fern leaf compofed of fome leaves, and a great many little pods which contain the real feed of the plant.

F I G. II.

Five of the fame kind of pods of their natural fize, and viewed different ways.
ccc Three pods with fingle ftalks.
d One with a double Staik.
eee The place where the ftalk furrounds or girds the pod, as it were like a twifted cord in form of a crown.
$f f$ The manner in which the pod fwells beyond the faid twifted cord on each fide of it.
g A pod placed in the center of the furrounding cord; as likewife the place where the pod firt begins to open.
$b b$ The cord reduced to a ftraight line by fome elaftic power.
iiii The pod burf in two, fo that the parts now confidered in themfelves form as it were four hollow cups.
l The membrane of the pod broke open, and turned back upon the coronal cord of the ftalk that furrounded the pod, fo as to afford a view of the enclofed feeds in their natural fituation. But it is by great chance that a pod opened in this regular manner can be met with.

F I G. III.
 The feed.

k Five out of forty-one feeds, that I found in one pod, magnified to a very great degree.

TAB. II.

[^95]Tab:v.

Fig.III.

1

$$
2
$$

\pm

TAB. XVIIL

'TAB:KXI.

FigitII.

TAB: XXIV

LAB: XXVI.

TAB: XXVIII
Fig.II.

Fig.VII.

Fig X.

Fig: XI.

Fig:XII.

Fig. III.

Fig:VI.

$$
00000
$$

Fig: X.

Fig:VIII.
J.C. $5 \cdot 3 \mathrm{~m}$

TAB: XXX.
Fig:I.

'Tab. xxatv.

Fig.VII.

Fig.IIT. a a

TAb. $x x x y$

$$
2
$$

$+3$

$$
\begin{aligned}
& \text { 軖 } \\
& \hline
\end{aligned}
$$

Tab:XLI

TAB: XLV.

Fig: II.

Figg.V.

Fig:XI.

Fig;XIII.
$\frac{b}{4}$
?

Thab: Ling

Tab:Lill.

J.C.GJTriesde.fer

$\begin{array}{lllll}\mathbf{I} & \mathbf{N} & \mathrm{D} & \mathrm{E} & \mathrm{X} .\end{array}$

P. II. fignifies Part the Second.

A.

A°CARI, or Mites, referred to the firft order. page 25. Caufe rottennefs in cheefe, and how? P. II.

68
With what force, and in what manner they leap up, and how they difpofe themfelves for that purpofe. P. II.

64,65
Their change to the Nymph-ftate haftened, by depriving them of their food. P. II. An anatomical defcription of their external and internal parts. P. II.

6365 to 68 Their changes conftant and not liable to chance. P. II. 75. of a ftrong conflitution. P. II. 64. The Flies which are producued from them. P. II. 72. They lay their eggs in cheefe. P. II. 74, 75. How they get into the cheefe. P. II. 68. What they do when firft produced. P. II.

7273
ibid.
In what manner their wings are expanded. ibid.
Of their fingular manner of copulating and other particulars. P. II.
culars. P. II.
The female. P. II. 73. Its vulva and other parts. P. II. 74.
The male, its external parts. P. II. 72, 73. Tefticles, femen. E̛c. P. II. 73, 74. The Verniform Nymph of the Acarus referred to the fourth order of changes, P. II. 35. Why fo called? P. II. 7I. Not an egg, ibid. In what time it arrives at its maturity. P. II. 72. how it is changed to a Fly. Part II. 73, 74. Its external parts examined. ib.
AIR, more neceflary to the fupport of infects than to large animals
137.

Air, the temperature of it, how much it contributes to the change of Worms and Butterflies into winged infects

I 73
ALDER-LEAVES, Worms found in them. A Chryfalis and Butterfly found in one of them. P. II. 87, 88
AN ANIMAL hid in animal, P. II. 24. The life of the one the death of the other.

18
Animals and vegetables changed in the fame manner. 9 Animals, the fkin and membranes of them nothing more than a complication of veffels of the fame kind. 145 The divifion of them into perfect and imperfect rafh. I Their generation does not arife from putrefaction, or chance, but from the conftant ordor of nature P. II. 69 Their dead bodies foon deftroyed by Flies. P. II. 227 Their eggs impregnated by the fubtile parts of the feed of the male.
P. II. 222

Their membranaceous parts feem to be nothing but blood veffels confolidated.
P. II. 7^{2}

The largeft, as well as the fmalleft, produced from very minute eggs.

23
The fmalleft excel the largeft, and why ?
I
Compared together.
The accretion of the limbs of fanguiferous animals the fame as in infects.
Their generation agrees with the four orders of changes 9 of infects.

19
ANTS belong to the third order.
I 22
Why it does not grow to the largeft bulk. I
The fmalleft excel the largeft animals, why?
Perfect and full grown
128
Their firft rudiments not lefs than thofe of the largeft animals.
${ }^{\text {r }}{ }^{\text {², }}$
Their flow increafe and change, exaally defrribed. i26,
\&c. Their various external changes.
Their wonderful induftry in bringing up their young.
129, 130

The female how it differs from the other Ants. 129, 130 The males how they differ from the other fpecies of Ants 122, 129 Subject to the fame fate with Bees. 19 I More mild than the female and working Ants 201 The office of the males. The labouring Ants of neither fex. 129 Their parts defcribed. 128
The Nymph, 126, exactly reprefents the future Ant, 3, 4. Why the Nymph of the Ant agrees better with the Ant than other Nymphs with their proper infects, 4 How it differs from the Ant itfelf, ib. Further particulars of the Nymoh.

126, 127
Various fpecies of Ants 130
One from the Eaft-Indies
,
A large one brought from the Cape of Good Hope 130
Common ones found in Holland. ib.
Five others.
ib.
A fixth.
131
AUTHOR, his Complaint againft Cafparus Bartholinus.
P. II. 54

ASELLUS, or WOOD-LOUSE, referred to the firft order of changes.

27

Their floughs produce a fermentation with acids, therefore contain an alkaline falt, and may be ufeful in phyfic. - Several fpecies of them preferved by the author.
One of them, from Iceland, defcribed.
27
AURELIA. See Chryfalis.

B

B^{A}ALSAMITA ALTERIA, of Fabius Columna, a a plant which, on being touched, contracts, and its pods burf.
P.II. 129

BLATTFA, byzantine, what? 43. Of Mouffet, 95. BEES, belong to the third order of changes, Iog. Make a noife with their wings when they fy, 167,217 Whether they can hear and finell, unknown, 214, 215. Their being produced from dead carcafes fabulous, 228. Outlive the winter, but become motionlefs, P. II. 183. Foreknow the inftant of the female or queens breaking through the cell to come forth, 187. Can fee in the dark, 171. Can difgorge their honey, 173. Which it feems they prepare, and do not collect it, i. From the hexogonal form of their eyes their cells are wrongly inferred to be the fame, 2II. They act not from judgment but impulfe, 170 . What time of the year they breed, 160 . Sometimes they bring perfect wax to their hives, but it is probably ftole, 162 . The wax is never found fticking to their legs, 208. In what part they carry it, 168. In what manner they fee, 171208. In what order they live in the winter, 160 . The manner of their fuction, 194. Compared to cruftaceous animals, 192. Their love to the males changed to hatred, 167 . Their eagernefs in collecting honey and wax, 16 I . The number found in one hive, 160,232 . Their care in defending the mouth of it, their habitation, 164. Other particulars, ${ }^{170,} 188,216$. Parts common to each fpecies, 168 . Peculiar parts, 169. Its appearance when opened on the back, 195. Of its fting, $184,185,199,200$. The fhanks and theath of the fting, $184,185,199,200$. Its crooked claws, 199. Its wings, of their hairs and nerves, and the mufcles moving them, 217. Of the brain, 214. The legs, 167. The gullet, ftomach, and other parts, 196 . The fpinal marrow, it. 214. Mufcles, 193. Of the fting, 198. Mufcles moving the wings and legs, 217. A

I N D E X.

Of the horns, and their ufe, 2r6. Their five eyes, two large and two lefs, 210 . Of the male and female, how they differ, 215 . The external figure of the larger eyes, 210. Their tranfverfe fibres, 213 . Pyramidal and inverted, 212, 213 . The tunica cornea, 210 Other particulars of it, 2II, 214. The uvea 212 . The lef's eyes 214 . Hairs like feathers 168,216 . Fat 195. The probofcis or trunk, its orifices not larger than thofe of meferaic veins or lacteals.
The lung 195.-The thorax and other parts - 163 $\quad 217$ Pulmonary tubes 204. A Bees-hive, their common habitation, properly fupplied, 160 . One that produced thirty fwarms in one year 191. One in which different kinds of cells were found 160 . Another with the number of its cells, \&c.

232
Cells, not always regular and equal. 164
Further particulars of them. ib. $180,18 \mathrm{r}$.
Thofe of the females moft irregular. 164 Of their conffruction. 165
Thofe of the males not always of the fame number. 165
Thofe of the working Bees, how conftructed.
Swarms of Bees, how to increafe them:
Bee bread, from which the wax is made.
Experiments on it.
Further particulars of it. $\quad 161,162,208$
Poifon of the Bee 166. Further particulars of it 200 , 201, 205, 208
Or the Female or queen Bee. 169, 201
Three hundred oviducts in the ovary of one Bee, containing 5100 eggs, probably ten or twelve thoufand eggs, in one female.

203, 205
Further particulars of the female and its eggs. 169 , $187,188,203,234$ A female diffected 201. The fting 175, 205, 207 Abdominal rings, and their mufcles 202
The heart, with its parts. 201, 202
Horns of the uterus 204. Pulmonary tubes 202
The ftraight gut 205, 207. Spinal marrow 204
Ovary, and its parts 202, 205, 207
Eggs viewed by the microfoope.
Other particulars of them. 172,204
Fat. 202.
Anus. 201
Bag, containing a glutinous matter.
204, 205
The fting and poifon of the female, how they differ from thofe of the working Bee.

205, 206
Further particulars of them. 205, 206, 208
Why two females cannot agree in one hive 188
Males have no fting.
$20 I$
Further particulars of them. $165,166,187,513$
Their fate. 19I. The length of their lives feems to be
about fix or eight weeks.
229
Contents of the abdomen.
217
Spinal marrow, \&c. 2.23
Genital organs.
218, 219, 22I
Penis.
$218,220,221$
Tefticles, and feminal veffels. 218
Common or working Bees. $169,188,191,228$

Their office

 P. II. 3Further particulars of them. $160,170,188,190$
Of their heads, teeth, eyes, probofcis. 192, 194, 195
The Nymph, what? 181
Further particulars of it. $\quad 8,180,184,185$
External parts of the Nymph. 183
Pulmonary pipes. 186
Nymphs, why reckoned amongft Chryfallides by Har-
The worm of a Bee changed into a Nymph, by the ${ }^{4}$ Author.
As magnified by the microfcope. 9
Further particulars of their Worms. 172, 173, 174
178, 179
The Worm defcribed before its change.
175 to 178
Its diffection.
179, 18 I
Other parts of it defcribed.
174
Amphibious Bees of Aldrovandus.
${ }^{96}$
Build their nefts with little ftones. 226
The Humble Bees build theirs in the fame manner. 230
Wild Bees, belong to the third order. 121
Humble Bees, referred to the third order of changes.

Live folitarily. 209. Defcribed. 63, 230, 23:
Further particulars of them.
203, 2c4.
Wild Bees, fo called by Johnfon.
00
Various fpecies of them.
$12 I$
The Bees called Drones, their genital parts diftinctly feen.

197
Apis Manfuctr, of Goedaert, belongs to the third order.

121
Is onlya dunghill Fly.
212
The Wood Bees, of Aldrovandus, belong to the third order.

I 21
The Sea Bee, of Pifo, what?
96
BEE'TLES, belong to the third order. I23
The manner of their making a noife. 125,217
The different kinds of Beetles may be diftinguifhed by
their horns. 123
Their Worms contain other Worms. P.II. $7 \mathbf{I}$
Various fpecies of them. 123
The ftinging Beetle. 125
Beetles produced from Worms that live in rotten Wood.
P. II. IOI

The Fullo Beetle.
P. II. 102

An Indian Beetle.
125
Some produced from Worms which feed upon Flefh. Some produced from a Worm that eats the roots of ginfeng.
From Worms of the Sallow tree.
125
Others produced from Worms found in the leaves of Willows.
P. II. 83,84

The Rhinoceros Bectle. 146, and following pages.
The fernale has no horn.
132
Its parts deferibed. I50, 151, 203
Its Nymph. See Coflus its Nymph.
Different fpecies of Beetles.
123
Five difierent exotic Rhinoccros Beetles. 152
'The common dunghill Beetle, referred to the third or-
der of changes.
125
Some that have horns with knobs at the top of them. 124
Some produced from Worms like Cochineal. 182
The Sonicephalus, or noify-head Beetle. 125
The Tortoife Beetle.
125
Beetles produced fromWorms found inThiftles. P. II. 96
Others produced from Worms found upon the leaves of Lilies.
Beetle, called the Flying Bull, or Stag. 124
Water Beetles. 126
Its general parts.
LOOD-VESSELS, manner of injecting them. 177
Blood, if it confifts of globules in the veffels. 3^{π} BONES, how difpofed in animals. 61, 62
BREEZE FLY, belongs to the fourth order of changes.
P. II. 34

Provided with a trunk and fting to fuck honey or blood.
$i b$.
Formerly miftaken by this Author for the Afilus, or Gadfly.
P. II. 43

BUGS, referred to the firt order of changes. 26
BUTTERFLY, how produced from the Chryfalis. 6
How it fucks with its trunk. 194
All its limbs fhewn in the Butterfly, by the Author.
9, 16
The manner of difcovering the limbs of the Butterfly in the Chryfalis.
The expanfion of its wings more wonderful than that of any other Nymph.
The colour of its wings. P.II. 5
Why produced deformed. P.II. 8
Various fpecies of them. P. II. 2
Day Butterflies belong to the fecond order of changes.
Further particulars of them. P. II. I9, 20, and following pages.
Thefemale, its oviduct, and other parts. P.II. 23, 24
The male, its genital parts. P. II. 22, 23
Of its Chryfalis. P.II. 15, 16, 17, 18, 19
Of its Caterpillar. P.II. 9, and following。
The diurnal or day Butterfly, breed on Cabbage-leaves. P. II. 25, 26, and following pages.

Its Chryfalis defcribed.
P. II. 26

Its Caterpillar.
P. II. 25, 26

Butterflies, nocturnal, or Moths belonging to the fecond mode of the third order of changes. P. II. 4

I N D E X.

Further particulars.
Of their eggs, and how they faften them to $1,7,8$ ches of trees. eggs.
Of their Worms.
A fecond fpecies.
P.II. 4

A third.
Of their generation, change, eggs, Caterpillar, web,
Chryfalis, difference between the male and female, oe-
conomy, and copulation.
P. II. 9

Different fpecies of them, 142.
P. II. 4, 5, 88

BUPRESTES, a fpecies of Beetle.
BYSSUS, what it is.

C

ABBAGE LEAVES, footlefs Worms found in them.
P. II. 98

CHAMELION, the manner of its extending its toncue
The fpleen, or organs of hearing, obferved is the Author.
The latter opens into its mouth.
CALVES lick themfelves in the uterus
IV.

140
The contents of their inteftines mixed with hairs. 186
CANCELLUS MARINUS, or Hermit fifh, briefly dedefcribed.
Its external parts, 86, and following pages.
Its internal parts, 89, and following pages.
Various fpecies of it.
CANTHARIS, or the golden Beetle, itsWorm. P. II. 8_{2}
Various fpecies of it.
CIVET, how to know if it is good.
125
CATERPILLARS, are not changed into Nymphs, but become fuch by on accretion of their limbs.
Cannot be clanged before they have arrived at their full growth.
Further particulars concerning them. 16, 17, P. II 1, 8, 9, 70 P. II. 3

A variety of Caterpiliars
P. II. 3

Difference between them and Chryfallides. P. II. 14 Other obfervations upon them. P. II. 8, 35, 56 Of the Caterpillar that feeds upon Cabbage-leaves,
P. II. 25

A Caterpillar of the Bindweed kind. P. II. 77, 78 Belongs to the third order of changes. -the Fly produced from it.
P. II. 78

The Brazil wood-eating Caterpillar, whofe female has no wings. P. II. 5. Its wonderful neft. P. II. 9 The Caterpillars of Butterflies often contain in them Worms, which change to common Flies. P. II. 7I Many that feed on Nettles, afterwards become diurnal Butterflies.
P. II. II

CHANGES, four orders of them, which agree with the accretion or increafe of fanguiferous animals, and of plants.
Compared together.
P. I. 3^{1}

See Order.
CHRYSALIS, why fo called. P. II. 16. It neither is an egg, nor generates like an egg. II. Exhibits all the parts of the future infect as plain as the infect itfelf. 3 . Signifies only a particular quality of the Nymph 3. Is no more than a gold-coloured Nymph. 4. The difference between it and the Nymph merely accidental. $3,7,8$. This difference confifts only in its having a thicker and harder fkin than the Nymph, and in its not Thewing externally fo diftinctly the limbs of the future Infect. 8. The reafon of this want of diftinctnefs. 6. There is no internal difference between the Chryfalis and the Nymph, and why? 6. Internally it exhibits like the Nymph all the parts of the future infect. 4, 5 and is in reality the future infect itfelf. 4. How it changes to a Butterfly.
P. II. 8

The words Chryfalis and Nymph fignify, and are are in reality, the fame thing.
The Chryfalis and Nymph compared. P. II. 7. The difference between them. $i b$. Hard to be accounted for 7. In what manner its limbs are difpofed. P. II. $7 \cdot$ Why its limbs cannot be fo eafily diftinguifhed. 5 . Its coat or fkin of an unequal thicknefs. 5, 8. From whence proceeds its gold colour. 6. Its dize, naked-
harder than the Nymph's. 7. The hardnefs of the fkin not accidental.

8 An account of what happens the Chryfalis on its befound, all ferve to account for its fin being firmer and nefs, and the fituation of the places where they are coming a Butterfly. 6. Quite abfurd to attribute a human face to it. ib. The Author can at any time demonftrate in it all the parts of the Infect that is to iffue from it.
Chryfalis, found within the leaves of the Alder, and its Butterfly.
P. II. 87,88

CLOVE-JULY-FLOWER, its changes compared with thofe of Infects.
P. II. 132

A defcription of it. P. II. 132, 133
COMBS, or the cells of Bees, are made of wax, and filled with honey.

163
CORMORANTS, how made ufe of in catching of fifh.

193
CORALS, how they grow.
65
COCHINEAL, obfervations on it. 182
CONU AMONIS, defcribed.
67
COSSUS, the Worm from which the Beetle is produced, defcribed. I33, and following pages.
Its Nymph, defcribed.
140, 141
Further defcribed.
$142,144,145$
COCK, how he makes the Hen prolific.
COLD protracts, and heat haftens, the changes of In-
COLD protracts, and heat haftens, the changes of Infects.
CROCODILE, has a Cat's eye. 173
CRICKETS, and Mole Crickets, how they make a
noife.
217
Referred to the fecond order. ib. and 95
CUTTLE-FISH, fmall parts found in them. 58
Defcribed at large. P. II. I 39, and following pages.

D

DAY-FLY. See Ephemerus. DEVORATUR of Goedaert, what?
DIAPHRAGM, an experiment on it. 122 DIARIA. Sce Ephemerus.
DOG-ROSE, Worms found in its excrefcences. P. II. 95 DRONE, the Bee called fo, what?

166
DRAGON-FLY, called by different Authors Orfodæna, Libella, Mordella, Perla, which fee.
DUCK-WEED, its root contains air, and it receives its nourifhment through the pores of its root. P.II, 118 DRAKE, the particular conftruction of its penis. P. II. 73

E

EAR-WIG, belongs to the fecond order of changes. 97 Can hide very large wings in a fmall theath. 114 EARTH-WORMS, have one inteftine in another. P. II. 4

The Egg is the real infec, but furrounded with a $\mathbb{k i n}$. Covered with a hard fhell.
EGGS fupplied with an extraneous nourifonent 133
This illuftrated by the motion of eggs in women. P. II.
109
Not broken in the fame manner in all infects. P. II. 6
Their various conftruction in different creatures. 202
EMBRYO, very little difference between the fmall guts,
colon, and ftraight gut of the human embryo. P. II.
118
EPHEMERUS, belongs to the fecond order of changes.

96
Called Mut by the Dutch. $i b_{\text {. }}$
By no means produced by a Chryfalis, as Clutius affirms.
By what Authors defcribed. 103, 104
At what time of the year, day, and hour, it begins to Ay.
Where, and how long, it flies, and how foon it dies.
Obferved to continue flying for the face of three, and fometimes four, and even five days. 1 I7 In what manner it is fupported in its fight on the furface of the water. 116 Does not eat during its appearance in the Fly form. II'7 A 2

How

How long it lives.
Naturally never dies afhore.
Its life is very fhort, but full of mifery and diftrefs, and why. ib. and following.
Does not engender either in the bofom of the water, afhore, or in the air.

116, 117
Where, and in what manner, it generates. 103 ,
Ephemeri, male and female, their external 116,117 ence.

II 6 ence.
The male changes its fkin twice, the female but once. ib.
The female ejaculates its eggs on the furface of the
water. 103, II6
Thefe eggs, when impregnated, fall to the bottom, and in what manner.

104
They afterwards produce fix-legged Worms.
The male impregnates the eggs fhed by the female on the furface of the water, by pouring its feed upon them.

117,221
Various fpecies of this infect.
I18
The Author has fome of them in his collection.
96
Ephemerus, of Hoefnagel.
18,119
The fmaller.
118, 119
Ephemeruś has no Nymph.
II3
Its Worms, what places they haunt. 104,105
To what order of neutral changes they belong. II 3
Why called Bank bait and Flying bait.
Follow the increafe aud decreafe ofrivers, and why. 105
The tameft of all infects.
108
Of a very flow growth.
IO4
Grow for three years before they change, and acquire a
form that is not to laft above five hours. 106, 134
Are very vigorous.
106
How they may be kept alive, and fent abroad. ib.
In what manner they fhed their floughs. 96
Colour of the Worms, and its flow change. 107, 109
Their manner of fwimming. 104
Feed upon mud.
105, 106, 109
Their tubes, and in what manner they form them. 105
Directions for diffecting them.
Their internal parts.
109
Rings.
108
Gills. 10\%. Their wonderful motion. 108
The head, with its parts; the eyes, horns, pincers, or jaw-bones; thorax, and its parts; legs. 106, 107
Its little tails.
Folliculi, or little fheaths, of the firft pair of wings, and the fecond pair.
Its rowing fins.
III
Its internal parts, defrribed. 108, and following.
Its heart. $I I$
Its pulmonary tubes; their main trunks; their diftribution, conftruction, colour, change of 1 kin, external orifices.
log, III
The manner of examining them.
IIO, III
The Worms of the Ephemerus, their inteftines, fmall gut, colon, and ftraight gut ; the valves, fituation, and pulmonary tubes, belonging to there parts. 109
The fpinal marrow. III. Its air ducts. II2
The inanner of finding it out.
ib.
The membrana adipofa, and fat. 109
Mufcles of the abdomen, and of the ftraight gut, ib.
Optic, and other nerves.
111
Eyes, their conftruction with the nature of the infect's vifion.

II 5
Oefophagus or gullet. \quad IO9
Peritoneum.
ib.
Blood watry.
ib.
Stomach, and its fituation, and pulmonary tubes. ib.
Their change very fudden. 114
General and particular figns of their near mutation.
112, 113
They become tranfparent when about to change, and

why?

109
How employed at that period. II3, II4
Obftacles to their change, life and growth. II 3
How their mutation may be kept back, at the time they are juft aboutt to perform it.

II4
The change of their wings, and how thefe parts can expand themfelves fo fuddenly.
ib.
Of their tails, horns, eyes, and feet.
II 5
In what the other changes differ.

The manner of obtaining a fight of them. 115
Their employment after their firft mutatlon. II4, II5 In what places they caft their fecond fkin , and what parts they lofe on that occafion.
Their employment after their fecond mutation. 116
-The external difference between themale and female. 107
The internal parts of the female. 107
108
Its ovary. 112 . It eggs. ib.
The male diftinguilhable by the largenefs of his eyes. Iog His internal parts. 108
Organs of generation. IIz. Seed $i b$.
Worms of the Ephemerus, of various kinds, differing
in fize according to their different ages. 104
ESCA, or bait, what it is. 106
EYES, of infects, do not confift of a congeries of little eyes, each of which like ours.
$2 I I$
The eyes of many infects are befet with hairs. 212 The colour of them is various in different creatures, and why ?

173

F

FAT, of large animals, when viewed by the microfcope, how it appears.
Of a man and beaft confifts of fmall grains. 162
The manner of examining it. ib.
FEMALES, of infects, their bodies larger than thofe of the males, and why?
FERN, the male, defribed. P. II. 118, 151, 152, 153
FISHES, hear, and have the labyrinth of their ear wonderfully formed for that purpofe.
Found on the tops of mountains, and other places 50
How they came there.
P. II. $\begin{array}{r}103 \\ 133\end{array}$

De not copulate. P. II. ${ }^{1} 33$
Are fecundated by being fprinkled with the fperm or the male.
P. II. 22 I

Their gills wonderfully conftructed, having red blood.
P. II. 143

FLYING HOGS, Beetles fo called.
125
FLEA, produced from a nit, in which it changes to a red colour.

26
A Flea found in cifterns of water, defcribed by Goedart, by the name of the water Loufe. ib.
Produced perfect from the egg.
40
In what places found $\quad i b$.
Enclofes a little bubble of water in its tail when it dives a
The water aborefcent Flea defcribed
126
840 and following
FLIES, belong to the third order of mutations. 122
Are not produced by putrified flefh, but by eggs and worms depofited in it. \quad P. II. 35 Many of them iffue from a fingle Chryfalis or Nymph.
Sometimes they iffue from the little nets in which Spi-
ders wrap up their eggs.
24
How they buzz in flying.
Some of them, on quitting the Nymph ftate, are much
Some of them, on quitting the Nymph ftate, are much
Some of them have four wings. 23 . which are produced from Nymphs formed within the Aurelia. P. II. 36 The manner in which they bury their eggs in the leaves of the Thiftle, feen by the Author. P. II. 89 The Author informed that Flies bury their eggs in the bodies of Caterpillars, whofe fkins they pierce for that purpofe.
P. II. 69

Flies, how they differ from Bees.
Their heads bruifed on paper leave a red ftain, produced
Their heads bruifed on paper leave a red ftain, produced by the uvea.

212
Their Nymphs plainly exhibit the future infect.
3 Why, and how far the Nymphs of Flies differ from the Nymphs themfelves, from other infects, and their Nymph.
FLY aquatic, belongs to the fecond order. 4,5
Carnivrous, called Cæfar. 122
Chryfopis. $i b$.
Horfe, belong to the fourth order of mutations. 628
Florilega, black. 122
Goedaert's, fprung from Worms that feed on the body of Cabbage-Caterpillars, belongs to the fourth order of mutations, and why.
P.II. 37,38

Sprung from the Worm without feet found on Cab-
bages.
P. II. 98,99

$1 \mathrm{~N} \quad \mathrm{D} \quad \mathrm{E}$ X.

Bog-houfe Fly, of Goedart, belongs to the fourth order of changes.
P. II. 34

Common, the fame with Goedart's Bee.
212
Newly born, and its parts.
P. II. $39,4 \mathrm{r}$

Common Bog-houfe Fly, its eye compared with that of the common Bee.

215
Covered with hair
212
Sprung from a Vermiform Nymph P. II. 41
Its eggs, the egg-fhell, conftruction, and perfractio. P. II. $38,39,40$

Its Vermiform Nymph, and the real Nymph therein contained, defcribed
Worm. See Bog-houfe Worm.
Another fpecies, its Worm and Vermiform Nymph,
P. II. 4I, by other Authors prepofteroufly claffed among

Bees
P. II. 4^{2}

Three haired Fly, a fpecies of baftard Wafp
Three briftled hair Fly, of Mouffet
231
One briftled, of Mouffet
A fpecies of baftard Wafp
$i b$.
Come firm ${ }^{231}$
falis.
P. II. 43

Common Flies, fpecies of them
Two fpecies, bred in the fpunge of the Dog-rofe
P. II. 52

Flies produced from Worms like Moths
P. II. 58

A great number of them fprung from the Chryfalis of a
Worm refembling a Moth
Iffuing from the tubercles of the Stinging-Nettle P. II. 90
Bred within the downy excrefcencies of Oaks. P. II. 91
Iffuing from the tubercles of Oak-leaves; the manner
in which they make their way out. P. II. 47,48
Iffuing from the tubes of the black Poplar. P. II. 54, 55
Produced from Worms that live between the frelh-budded leaves of the Willow
P. II. 43

Bred within the rofe of the Willow P. II. 44
Fly of the Willow-leaf, its tubercles defcribed. P. II. 3^{6} Male and female ; the latter's inftrument for boring the leaves; and her eggs-And the genitals of the former.
ib.
The female, how it buiies its eggs within the leaves.
P. II. 3^{8}

Web left by it; different feafons of hatching. P. II. 36
Flies, fimall uncommon ones I22
Great number of Flies iffuing from a fingle Nymph of the Cabbage-Worm.
Bog-houfe. See Bog-houfe Fly.
Wolf Fly.
12.2

Refembling, a Butterfy.
12.2

Scorpion. ferves it as food

140
Receives its nourifhment by the mouth
I86
FROG, has the fenfe of hearing
50
Is not after, its change from a Tadpole, fit for genera-
tion under two or three years.
p. II. 104

Its egg and generation like that of the Nymphs of infects

19
Compared with infects p. II. 119.
Further obfervations on it. p. II. II 9 , and following
Defrribed at large p. II. 105 to 132
Of the female
p. II. 106, 108

Of its ovary and eggs. $\quad 106,108$, III, III
Of the male p. II. IIO
Its Nymph
p. II. 103

A cloven-footed Indian Frog.

13 r
ymph

FORFICULA AQUATICA, of Johnfon, is the Nymph
of the Mordella, or Dragon Fly.
93

GADFLY, formerly defribed by the Author under the name of the Tabanus, or Breeze-fly. P. II. 43 Proceeds from a Worm, called by Aldrovandus the wa-ter-worm, or inteftine.
P. II. 34 The manner of killing it, in order for diffection.
Further defcribed. P. II. 44, and following pages. The female larger than the male
P. II. 61

Its internal parts.
P. m. 62

The male defrribed.
P.II. $59,60,61,62$ Its Vermiform Nymph belongs to the fourth order of changes. P. II. 34 Further defcribed.
P. II. $54,56,57$

The wonderful changes of its Nymph. P. II. 57
Its external parts. P. II. 52, and following pages.
The fpinal marrow, nerves, and other parts of a fullgrown one P. II. 52, 55, and following pages Other particulars P. II. 48,52 Its figure, and divifion of its body P. II. 44, and following.
GALLY-WORM, reckoned among the Scolopendra 28
GENERATION, not true, in the whole nature of things,
but only a continuance of it
16
GILLS, in fifhes, anfwer the purpofe of the lungs in other animals
Of the conftruction of them P. II. 165
GOD, his omnipotence difplayed in the human Loufe 30
GOEDAERT, fome of his errors refuted I4
GLOW-WORM, belongs to the third order of changes 123
GNAT, belongs to the third order of changes $\begin{aligned} & 123 \\ & 122\end{aligned}$
Defcribed 153
Of the female $\quad 158$
Of the male, and its parts 156, 157
The Nymph 154, 155
Its Worm, defcribed $\quad 153,154$
The large Gnat of Aldrovandus, what ? 123
GRASSHOPPER, belongs to the fecond order of chan-
ges 94
The males only make a finging noife, and how ? 95
Its Nymph
93
The Water Grafshopper, or Cicada aquatica, of Ron-
deletius, is the Nymph of the Dragon-Fly 93
GRUB, of Molucca
94

H

THE HAFT, of Rotterdam, what ? relia, refuted 6 , IO, II
HAZEL NUTS, Worms without feet found in them.
P. II. 87

HERMIT-FISH. See Cancellus
HONEY, not collected entirely fuch by the Bees, but prepared by them

165
The falival or difcharged Honsy, what?
173
Virgin-honey, what? 166
HORNETS, belong to third order of changes 122
Build their habitations in the bark of trees 201
Many females in their neft 190
Their fpecies defcribed 188
Further defcription of them, 195, and following pages
Their ftrength and fiercenefs 195, 20I, 205
The female only has a fting 201
Of the males
190, 20I, 22I
The Nymph 'I44. Its Worms 140
Of its excrements and aliment 410

I

NDIAN INK, feems to be a juice taken from the Cuttle-fifh. P. II.
INSECTS why called, tho' prepofteroufly, exanguinous animals by naturalifts. 50 Not produced by putrefaction, but rather producing it, $16,186,18 \%$ P.II. 68, 70, 71, 73 $71,79$.
All of them fpring originally from eggs.
Some come perfect from the egg, others imperfect. 17 Some pafs the winter in their eggs.
While in their eggs, may be confidered as Nymphs. ${ }^{1} 34$ Some of them leave their eggs in the fame manner, and by the fame power, that others quit the Nymph-itate ib. Almoft all of them faften their eggs in certain places. 170 Sometimes caft all their Rkins, before they arrive at maturity, and are fit for generation.

1718
And never grow after their laft mutation. 173
Are perfect in their kinds from the firt inftant of their appearance, P. II,

20

I N D E X.

Inmediately on quitting the Nymph-ftate, fhed fome drops of blood.

3940 As foon as they arrive at maturity, betake themfelves to the bufine fs of generation, and moft of them die as foon as it is finifhed.
Some of them fcarce outlive it a quarter of an hour. ib. Some of them do not copulate.
Some of them make themfelves nets of filaments that grow hard under water. 66. P. II

O
Many grow ftiff in winter time, and pafs that feafon without any nourifhment.

172
And lofe all motion by the cold condenfing their humours
P. II. $13{ }^{1}$

In how many different ways they furvive that feafon. I 33 Some that outlive it, become fliff, but recover their loft motion by being juft warmed.

133134
Some of them live the winter in a warm ftate, and in what manner.
Others in the Nymph-ftate, and in what manner.
On what account, and in what manner they are every where fo fpeedily engendered in water.
In what manner they prefently get iuto the fmalleft collections of that element.
Why thofe of the fame kind are found every where of the fiame fize.

128
Some of them may be killed for diffection, by the fumes of burning brimftone.
mes
Method of preferving them, without impairing their colours.

99
The author has three thoufand of them in his mufrum, of his own gathering. 229 All fipecies of infects in all their changes agree univerfally together, as to the Nymph-ftate. 17
Their different ways of feeding. 142
Of rearing their offspring. 122, 133, 134
Difference in their ftings and probofcis. 122,156
In their length of life, and the reafons of the faid difference. 229 P. II.
The numerous collection of them made by the author.
The males only are furnifhed with organs proper for making a noife. 217
And are always more beautiful than the female. P.II.
Privileges of fome of the males above the females. P. II. 4

Their generation no way different from that of blood animals. P. II.

104
It is even fo confpicuous, that it may ferve to illuftrate that of other animals.
The fortuitous generation of infects exploded.
Their generation from Nymphs, compared with the egg and generation of Frogs, and the encreafe of plants. Ig Their mutation refembles the budding of plants. 9, 10 Prepofteroufy called transformation, metamorphofis, death and refurrection.

9,13
Does not differ from the accretion of limbs in blood animals
How far it differs from the refurrection of the dead, and what it has in common with it.
ib.
The true foundation of the change. 2, 13
MUSCLES of infects, their fructure like that of blood animals.

123
Their condition, before they have exercifed any of their offices.

129
Their condition when firt they move. ib. 130
EGGS of infects; what a great variety of them. P. II. 39
All belong to the third order of mutations. P. II. 33,34 Ought rather to be called oviform Nymphs. \quad I8 Covered with a hard fhell.
Manner of procuring them.
ib.
BONES of infects, how much they differ from thofe of blood animals

123
How it appears that the parts of infects taken for their eyes, are really fuch.

216 Internal parts of infects changed, along with their external form. P. iI

22
Their vifion, how performed; differs from ours, and is performed by the touch.

216 Infeets of the firt order of natural changes, why called Nymphs by the author, while they remain in their eggs.

Some infects belonging to this order are viviparous. 28
Enumeration of thofe of the fecond order. 93 How far thofe of the fecond order differ from thofe of other orders.

49, 92 Enumeration of thofe of the third order. $\quad 49,920$
The infects of this order pafs twice through the Nymph-ftate.
ib.
Things peculiar to the fecond mode of this or der. P.. II.
Enumeration of thofe of the fourth order. P. II. 33, and following.
See Order.
Infects that pafs through the Nymph-fate may be divided into infects without legs, fix legged infects, and infects with many legs.

8
Infect without legs, how it becomes a Nymph by a kind of accretion.
Its Nymph and Chryfalis, what?
The thorax of thefe infects undergoes no change or tranfpofition.
Infect with fix legs, how it changes to a Nymph. ro
Infects with many legs, never fuffer any confiderable alteration in the fix fore legs.
Water infects, various methods of finding them out, and obferving them.
Their various tubes. P. II 40
Infects bred in or upon plants, are not generated by its vegetable foul or principle. P. II. 79,80 In what manner generated by eggs. P. II. 1988 Infects found in the tubercles of the black Poplar, belong to the fecond order of changes.
long to the fecond order of changes.
And thofe found in the tubercles of the Willow to the fecond. to
Enumeration of different kinds of them. P. II: 82, 83,
Infects called Vaginipennia, what they are. 740 to 743
INTESTINES, the water, of Aldrovandus are the
Woms of the Gad-Fly. P. II. 34,35
The earth inteftines belong to the firf order of mutations.

27
Have red blood.
53, 109
Their eggs fhew the circulation of the blood.
Their fituation in the egg.
Their fituation in the egg.
Variety, figure, colour, and hatching of the eggs,
and where found.
Inteftines thick and flender, differ but little in the
embryo fate. P. II.

K

K
AKKERLAK, an Indian infect, referred to the fecond order of changes

L

$\begin{array}{r}93 \\ 100 \\ \hline\end{array}$

94, 95
${ }^{26}$.
217 ges ges.

It refpires.
34, 35

Its fex.

,

$$
95
$$

LEACH, referred to the firf order of changes 28 LIBELLA, or DRAGON FLY, fpecies of it preferved by the Author
The river Libella of Rondeletius, what? $\quad 93$
LIVER, its office of fanguification, defended againft Bartholinus P. II. 54
The Author afferts that fanguificaton ought only to be arcribed to the liver.
P. II. $117,119,120$

LOCUSTS, belong to the fecond order of changes 94
Different fpecies of them defrribed
The wonderful fructure of the mufcles of their legs 123
Brifty hairs helpful in the changing of their fkins. 135
Manner of fupporting themfelves
The manner of their making a noife
Various fpecies of them.
LONG-LEGGS, $93,94,95$

LOUSE, COMMON, belongs to the firt order of chan-
Why fo fuddenly changed
How it appears viewed with the microfcope.
In what manner it fucks in the blood
Perhaps Hermaphrodites
Loufe, what its nit is, and how the nit is hatched.

ib.

35
25
The

 ,

[^96]

 --
 4

The particle within it, which appeàrs in conftant motion, is the ftomach

170
Its external parts; the head, fting, antennæ, eyes, neck, breaft, legs and their nails, abdomen, whitifh part in the middle of the abdomen, and 1 kin 30,31
Various Atructures of the external Ikin

Brain

37
36
Heart, not difcoverable by the Author
36
31
35
Gullet
33, 35
Small gut, blind guts, or vafa varicofa, colon, cloaca,
ftraight gut and anus, fæces of the inteftines 34,35 Spinal marrow, its origin and conftuction, ganglions, nerves, coat, pulmonary tubes, and conftruction of the nerves.
3^{6}
Mufcles compofed of globules
Abdominal mufcles defcribed
3 n

Eyes and optic nerves

36
Eggs, and number of them in the oviducts, uterus, vulva , cohefion of the eggs with the oviducts, conftruction, and pulmonary tubes
$36,37,204,205$
Pancreas, and its motion
33, 34
Fat 3I. Tendinous dorfal fpot 36
Blood, confints of tranfparent particles 31
Globules of blood are perhaps particles of the wounded fat or vifcera
Tracheæ, and their numerous ramifications 31, 3^{2} Are very difcernible
ib.
Uncertain if they caft any fkins, on the Loufe's cafting its external fkin
ib.
Breathing-holes of the tracheæ, their inofculations, and diftribution all over the body $i b$. and 32 Glue ducts, and bag 36, 37, 204, 205 Stomach defcribed

33
How it digefts the blood it has taken in
Its wonderful motions
35
Ufe of the nails at the point of the Ring's theath 34 Lice of blood animals, infects, and plants, the Author uncertain to what order they belong.

26
Almoft all animals have their peculiar lice. 210 Lice of trees, which belong to the fecond order 26 Of plant's, prepofteroufly fo called, belong to the fame order.

15
Loufe, Water, of Goedaert, very different from the common Loufe, belongs to the firft order of mutations, and is called by the Author the aborefcent WaterFlea. 26.
See Water-Flea.
Lice of the Humble Bee, called Excitatores, by Goedaert.

210
——O 23
LUNGS, the office of fanguification allowed them by the Author.

119, 120

M

M

AN, his generation like that of Frogs and Infects. MITES. See Acari.
MICROSCOPE, thofe beft which have but one lens. 41 MOULDINESS, in what it confifts.
MORDELLE; or DRAGON FLIES, belong to the
fecond order of changes
Defcribed, ib: and following pages
Catch their food flying in the air 98; 99
Of the manner of their copulation ——caft their eggs in the water.99

Their parts defcribed, 97, and following pages.
14000 divifions in the eye of a Dragon Fly.
Its Nymph not well deferibed by Authors
Species of them preferved by the Author

MORTEAU, of Rondelitius, what ?
99
MOUFFE Γ, his opinion of the Aurelia refuted. 10, 1 I
MOTH, what? P. II. 98. How, and with what matter it makes its houfe; for what reafons, and at what time it forms itfelf a new one.
Sometimes it makes a thread, and to what purpofe. 99
How it moves about with its houfe.

Moths, their external parts
Various kinds of food, $i 6$. Change into Cliryfallides, $i b$. How they differ from the Plalenæ

4 Many and various kinds of them, ib. 100
Moth, Bee-hive Moth, two kinds of them. 224, 225
Butterfly, improperly called Moth, how it proves hurtful.
$\mathrm{HI}_{2} 99$
See Butterfly nocturnal.
MOLES, their eyes have likewife three humours: 48
MUSK-BAGS, of Worms found in them, and their
Nymphs, from whence Beetles iffue. P. II. IOI
MUSCLES, their fhells have a periofteum 64
The filaments of their fhells defcribed
$i b$:
Thefe filaments, in other kinds of Mufcles, are called Byflus ; of which fine linen was made.
Frefh waterMufcles, found in Holland, defcribed. 84, 85 Mufcle, feparated from the thigh of a frog, how it may be difpofed for contraction. P. If. 123 Mufcles undergo, when their nerves ase irritated, a contraction, like the natural contracion in all animals.
P. II. 122,123

By no means grow thicker, but rather nenderer, at the time of contraction, their fibres, in the mean time, changing in their fituation; as is fhewn by variety of experiments. P. II. 124 , and following.
Are never found altogether deftitute of motion, whilft the animal lives. P. II. 125
Even to perform any voluntary motion in the living animals, fometimes requires at leaft a fimall degree of irritation. P. II. 125, 126 In contraction difcharge all their contents, which occafions their whitenefs.
P. II. 128

Occafions laffitude, by being too much diftended with blood. P. II. 128 Their condition, when firf about to move. 129, 130 Their tendons are not fixed in the bones, but themfelves become bony.
Enumeration of their three feveral parts. 62
Their contraction fuppoles a previous dilatation ; and this is of three kinds. 130 Requires no influx of the blood; nor can it be demonfrated by the confruction of the aorta. P. II. 127 Spontaneous and voluntary contractions differ only accidentally, both being natural.
P. II. 125

The fibres, at the time of contraction, grow confiderably thicker P. II. 128
Their motion in warm animals, in confequence of an irritation of the nerves, is not fo confiderable as that produced in cold animals, by the fame means. P. II. 123 Is excited in Frogs to a great degree, by the irritation of the nerves.
$i b$. Is conftant on the antagonif Mufcles, or the Mufcles anfwering thereto, ceafing to act. P. II. 125 There would be no voluntary motion, without antagonift Mufcles.
There is no motion, where the antagonift Mufcles are equal.
Why a frequent motion of the Mufcles excites heat in living animals. P. II. 128 Blood may be made to run freely from a vein by motion alone, without holding one's breath.
$i b$.
The ftate of Mufcles, that have not as yet performed any motion, efpecially in infects.

129

MUSCULAR MOTION, does not feem to require, in any animal, any other communication between the nerve and and the Mufcle, than a bare commotion of the nerve, by any caufe whatfoever. P. II. 123, 124 Does not feem to require any local influx of the' fpirits. ib. Seems to be effected by fomething like that, which propagates the found; from one end of a beam, to the other end when ftruck.
P. II. 124

Its caufe feems to confift in a perpetual irritation of the origin of the fpinal marrow, and the nerves thence arifing, occafioned by the impulfe of the arterious blood. iv.

125
Illuftrated by the impatient herb of Dodoneus, and the pods of one of the Balm plants of F. Columna. 129 Mufcular motion, the knowledge of it how difficult; and how many things it fuppofes the knowledge of
P. II. 121,122

Short explanation, according to the Author. 130
MUSCULAR FIBRES, their conftruction. 185

I $\quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{X}$.

Appear to move by irritation P. II. 122, 123, 124 NOTONECTE, infects fo called by Mouffet 96 NYMPH, the only foundation of all the changes in infects.
P. II. 39

Is but the infect itfelf about to caft its fkins, and affume another form

5
13
Why called the change of infects or 13 Is not produced from the Worm or Caterpillar in confequence of a change, but by an accretion of limbs. 3 Is not changed into a Butterfly, but becomes one, as a chicken becomes a Cock or Hen
Exhibits all the parts of the future infeet, as plain as the infect itfelf
ib.
The Nymph and the Chryfalis, are nothing more than the infect that is to be produced from them $i b$. No internal difference between them, and why? 6 The difference between the Nymph and the Chryfalis, and Necydalis merely accidental
The difference between the Nymph and Chryfalis confifts in the former's having a very thin external covering, and in its exhibiting diftinctly all the parts of the future infect
Very properly compared to the Dutch Brides
It is the very infect in a ftate of life and fenfation, tho ${ }^{\circ}$ without any motion, except in its tail
How formed from the Worm
A Nymph produced artificially by heat, even in the depth of winter, may be changed into an infect 12 The fame intrinfically in all fpecies of infects, and differs only externally according to the various forms of the different kinds.
Nymph. This word fignifies very well the nature of the thing it is intended to fignify
The words Nymph and Chryfalis fignify the fame thing and ought to be confidered as fuch
Their parts why moveable, flexible, and not united 5 and why they can be fo plainly diftinguifhed ib.
Their coat every where equally thin, and therefore lefs capable of refifting the injuries of the air
Their change to an infect confifts barely in an evaporation of the fuperfluous humours
Nymphs themfelves differ accidéntally
The Nymphs of the Ants, Flies, and Bees exhibit much plainer than other Nymphs, their future infects 3, 4 Not fo well compared with childrens fwathes, the human face, or other figures

13
Why they grow while after their change.
Have an infenfible perfpiration
By means of which they evaported all their fuperfuous humours, at the fame time that they evacuate nothing in any other way
P. II. I 34
How they outlive the winter
Which of them may be referred to the firf, fecond,

Which of them may be referred to the firt, fecond,
third, and likewife to the fourth order
P. II. 36 third, and likewife to the fourth order P. II. 36
All thofe of the fourth order may be referred to the third, and for what reafons P. II. 3^{8} True Nymphs which are bred within the bodies of Caterpillars, Worms, and Chryfallides, belong to the firft order of changes
P. II. 3^{6}

There are fome of them which are bred in the bodies of vermiform Nymphs, and belong to the fourth order of changes
P. II. 37 Thofe bred in the fubftance of fruits, warts, leaves, woods, $\xi^{\circ} c$. belong to the fourth order of changes $i b$. Nymphs their fmallnefs, conftitution, and the nature of the places where they are found, explain in forme meafure the reafon why their fkin fhould be thinner and fofter than that of a Chryfalis
Their retaining their moifture is not an accidental thing
Their limbs how difpofed P. II. In what they differ from the Chryfali. ib. and following pages.
Many fpecies of them bred from Worms within the bodies of Aurelize
P. II. 3^{6}

OLIGERUS Jacobeus, his error about the uterine tubes of Frogs
P. II. 107

ORDER, the firf, of changes

18

Exemplified in the Loure
The fecond, which 29 fore two modes of changes 200 The third, defcribed and compared with the firft and fecond

119
Infects belonging to it 121
Infects referred to the fecond mode or method of this order P.II. I
An example of this fecond fpecies or method P. II. 5
Why this order is called the Nymph
120 The fourth,
P. II. 30

Infects referred to it
P.II. 34

The firft fpecies or method of it
P. II. 3^{2} The fecond ib.
ORSODFINA. the Dragon-Fly, fo called by Junius 93
OAK, The Worms bred in its downy excrefeencies, their Nymphs and Flies. P. II.

91
One of its downy excrefencies defcribed. $i b_{0}$
Tubercles growing on its leaves, their fituation, fubftance, origin, fize, figure, internal cavity, fucceffive mutation; the bean-like parts they contain, the number, fituation and fubftance of thefe parts, with the Worms found in them, and the change of faid Worms into Nymphs and Flies.
P. II. 9 x

P

PENCILS defcribed.
PERLA or Dragon Fly has very large Eyes and a great number of them.

23 of Aldrovandus, fee Libella.
PHALEN \neq Dutch, very large, their eggs, and coffus from which they are produced. P. II. 8 I

PHALANGIUM, a very large poifonous Spider of Brazil.
downy, or Tarantula.
20
$i b_{0}$
PHILOSOPHIZING, the true method of Philofophizing perfected by experiments.
P. II. 134

PHYSALUS feems to deferve being claffed rather amongft fea hedge-hogs, than Catterpillars. P.II. 151 Its external parts: briftles; downy hairs; opening of the mouth; tubercles. P. II. I50 Dorfal perforations; gills; moveable parts of the mouth; heart ; blood veffels; ftomach; inteftines. P.II. 150,15I Infation and burfting, how performed, P. II. 151 PINNA, what it is.

Its name whence derived.
ib.
PINNOPHILAX of Ariftotie and Aelian, what. ib.
PLANTS, their budding, and the coming forth of their flowers, refembles the change of Infects.
Their growth agrees with the four orders of the changes of Infects.
Compared with the generation of Infects.
POPLAR, black, the internal form, fituation, origin, variety, internal cavity, and contents of their tubercles; their Worms, Nymphs, Flies, downy matter and its ufe.
P.II. 95
ule.
PURPLE FISH, the cenvolutions of its fhell inverted. 68
The part where it carries its purple dye.
58
PROSCARABEUS belongs to the third order of muta-
tions; different kinds.
125
PSEUDOSPHECÆ belong to the third order of mutations; their different kinds. 122
Some of them bred within Caterpillars or Chryfallides,
P. II. 70

PURGES, the Authors theory of their action. 51,52 There are no fpecific purges, and why. 52

R

RAY, a fifh, its uncommon nerve running from the brain to the mouth, which is perhaps fubfervient to the fenfe of hearing or that of fmelling.

214
The pupil of this finh is furnifhed with a lid. P. II. 141

RATS:

I N D E X.

RATS; a futty matter found in the appendages of their tefticles.
P. II. 105

RESURRECTION of the dead, how it differs from the changes of 1 nfects.
ple of the day Butterfly,
illuftrated by the Exam-
And the Frog.
P. II. Io

S
S ENSITIVE Plant, lefs fenfible in autumn than in winter
P. II. 129

SCOLOPENDRA referred to the firft order of changes 28 The great, oriental Srolopendra
SCORPION belongs to the firft order of changes 28,42 Proved to be viviparous by Redi's experiments 41, 42 Its head and breaft united $i b$. Its pincers, legs, flagella, rings of its belly; its tail ; the conftruction of its fing 42 Its eyes, their number and fituation ib. Another fpecies of it, with the flagella, and fix eyes of this fpecies ib. Scorpion of America ib. Water Scorpion is of the fecond order 95. How many fpecies of them in the author's cabinet ib. 73. Their way of living 103. The largeft fpecies ib. Flying Scorpions, fpecies of them; their anatomical divifion; external parts; head and its parts ; thorax and its parts; four wings ; abdomen and its parts; tail, legs and arms IOI. Internal parts 102. Stomach, inteftines, glands, vafa varicofa, fat, pulmonary tubes, air, veficles, fpinal marrow ib. The female, and her genital parts, ovary, oviducts and eggs 102, IO3 The male, and his genital parts; his penis; the root of the penis; vala differentia; feminal bags; tefticles ib. 102. Water Scorpion, of Redi, what? 93. Great Scorpion, its fourteen eyes, tail, colour 42 Sea Scorpion of Redi, what? 100. Scorpion of Molucca 43. Large oriental 42 . Scorpions found in Holland, defcription of them
rip
SCROPHULA belongs to the genus of the Afelli defcribed
Snel, Scrophula fo called, defcription of it How its able to kill Perches

27

SERPENTS when they change fkins, likewife draw a pellicle from of their eyes
P. II. $\begin{array}{r}1744 \\ 8 \mathrm{r}, 82\end{array}$ Have five different kinds of legs P. II. $8 \mathrm{r}, 82$ brain; is likewife found in the Ray's head P. II. 123 SPIRITS, their local influx does not feem requifite for mufcular motion ; it cannot be performed, nor be demonftrated
P. II. 123

SPONDYLA, rubra, of Mouffet P. II. 4
SNAILS, belong to the firft order of changes, are hermophradites

28
The opinion of their being produced from flime fabulous 44. A ftone found in them which anfwers the purpofe of an os fternum 28. Snails do not ufe their horns,' for the fame purpofe, that the blind do fticks 70 Drop their eggs at random on the ground, or faftened together in form of a chain 59. Snails, the ufe of their different parts 43. The verge promotes greatly the fhell's growth, and in what manner 65 . The tendons of the mufcles petrify at their infertions into the fhell 65. Sometimes fmall Crabs, and Sea-ftars have fhells, but not in the nature of a conftant habitation 66 The fhell, what in general we ought to think of its confruction 63, 68. It is not the Snail's houfe, but its real fifin or bone 44, 78 . Is formed even in the egg itfelf 63. Has its periofteum 64. Receives nourifhment as well as the fofter parts ib. How repaired by the Snail, when it has received any damage 65 Hardens to a ftone, tho' buried under frch or falt water ib. The firft matter of it a mucus 64, 65 Snail, that is called Aliekruyk, at what feafon made ufe of as food, and what parts of it 80 . Where to be found
Its external parts; its thell with the Worms that eat into and thro' the fhell $i b$. 8I. Of its head, horns, fkin, lid, figns of fight, verge, vigoroufnefs, and amphibioufnefs
Its internal parts 82. Its mouth, tongue, brain, falival ducts and glands, nerves, eyes, ftomach and intef-
tines, liver, heart, blood veffels, and purple bag 81, 8i The Water Snail moves itfelf in the egg for fome days, before it is hatched
The flatted Water Snail, its defcription; its internal parts; its fhell; purple juice; in what it agrees with the viviparous, and common water Snail; its live Worms; liver; particle in form of a chain; uterus and penis

83,84
The common Water Snail has fometimes two eyes at one fide 73. How it fwims, and can at pleafure by the means of air fink to the bottom, or rife to the furface 74 The manner of diffecting 75. Digefting it in the ftomach 74, 75. Its eggs Its manner of fwimming

The Snail's genitals and coition differ from thofe of the Vine Snail's; and in what manner the Garden Snails copulate 70. The fhell of the Garden Snail defcribed 70. Its head like a Cat's Snail whofe fhell is twifted inverfly, has likewife its genitals placed in a different manner 68 . Marble umbilicated Snail defribed 82, 83. Small flatted Snail, and its purple blood defrribed 84. Small flatted Snail defcribed 69 . Wonderful viviparous Snail ; its native place 75. Food; external parts; colour; lid; manner of fwimming 76. The difficulty and manner of diffecting it $i b$. Its verge; the conftruction of its parts with littie ftones altogether wonderful; its frraight gut 76, 77. Its ftomach, excrements, gills, uterus; foetufes found alive in the uterus; and Worms found in the fubftance of the uterus 77 . Various eggs found in the uterus; the live uterine fretus feen with the microfcope 78 . The tongue or probofcis, gullet, ftomach, ovary and its eggs ; liver confifting of very diftinct glands 79. Brain and nerves; eyes 79. The uterus always appears pregnant with eggs or Snails 79, 80 The live uterine fretus fwimming ib. The humour called amnion belonging to the eggs; time of bearing 80 . The variety and number of eggs found in the uterus 79. The fhell or houfe, and its periofteum; weight 80 . Naked does not at all exhibit the motion of any animal fpirits : Naturalifts being led aftray by air bubbles moving on its furface 5 r . The author has feen them naked even moving in the egg 63 Field or path-way Snail differs from the houfe Snail 72 Its velabrum; glands belonging to the skin; virge, colour, genitals, horns, ib. Brain, gullet, falival ducts and glands; inteftines, liver and gall duct; aperture of the genitals; penis; purple bag; uterus, glue-bag; tube in form of a chain; ovary and eggs; heart, alka-line-bag
Houfe Snail defrribed 70. Defrription of its external parts ; its horns; velabrum ; glands of the skin ; perforation of the genitals; heart, auricle, and pericardium; ftone, which they feem to change every year 70,71 . A1-kaline-bag; conftruction of the ftomach; falival veffels; inteftines; liver, tooth and other parts of the mouth 7 II Brain, fpinal marrow, nerves and mufcles ib. Genitals, penis, ligament of the uterus; the uterus itfelf; glue-bag, particle in form of a chain, ovary and eggs 72 Snail. The covered Snail, at once both male and female, great devourers of vegetables 48. Loves bread 75 Sickens in dry fituations 5 I . Has the fenfe of tafting, and that of finelling, in a pretty confiderable degree 49 Is a very timorous animal $i b$. Has no voice, nor makes any noife 50 . in what manner it repofes and fufpends itfelf 5 I. Loves company, and at what feafons chiefly $i b$. Very vigorous and robuft $i b$. Seems to be long lived, and why? ib. Not confumed by falt, but only killed by it, and in what manner ib. May be ferviceable in making experiments on purging medicines $i b$. The beft manner of killing it in order to diffect it 52 . Has no gall bladder 55 . Sometimes eats into and throws off the perioftium of its fhell
Dies three days after being ftripped of its fhell, and with what fymptoms

65
Changes obferved on opening it a little after copulation
The difpofition of its internal parts five weeks after copulation
ib.
The method of opening it t_{2} to obtain a view of its internal parts

I $\mathrm{N} \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{X}$.

The method of watering it, requifite to keep it in good health.
The method of extracting it from its fhell.
50
The method, and beft time, of fending it abroad.
The beft mcthod of diffecting it.
52
Covered Snails feem to have a very dull fight
53
48
Their food, and time of feeding.
49
In what manner they breathe, and the fervice breathing does them.
In what manner their progreffive motion is effected, and
the method of obtaining a fight of it. 50,51
Their feafon for copulation, how long it lafts, and how often it returns.

59
med.
Their mutual copulation, in what manner performed.
Thingsremarkablebefore and after their copulation. $5^{8}, 59$
What liquors may bemadeufe of to inject their veffels. 54
Their foft and hard parts, four horns, lips, and mouth, perforation of the genitals, limbs, and its perforations; verge or foot; blood; fhell, how to be broken off; the horns are adorned with glandulous grains. 44 to 45 Aorta.

46,60 Brairı, moveable backwards and forwards. 46,60
Its fituation, conftruction, and cleft for the paffage of Its fituation, conftruction, and cleft for the pallage of
the ftomach. 45,60 Heart, 50. Its fituation, parts, conftruction, valves, in form of a crefcent, 53. The manner of obtaining a good fight of the heart.

53
46
Horns very fenfible. 49. How rolled out. 46 How difpofed when drawn in. ib. What number ferve to draw them in ib. The mucous glands of the horns, and the mucus itfelf defcribed.

45 Upper ones have eyes at their ends, 45. Are hollow, and for what purpofe $i b$. Their cxtremities $i 6$. and fmaller nerves 42 . Lower ones, and their nerves $i b$. The nature of the fkin under the verge

53
The chyliferous Ducts
The two falival ducts, and faliva
55, 55
Gall no way bitter.
Fringes perform the office of feet 50. Their conftruction $i b$.

63
Excrements of what form, 50
Gentals male and female 56 . How difpofed after coi-
tion 59. Parts common to both malc and female genitals 56. The particle in form of a chain

58
The penis defcribed 56. Its mufcles and nerves $i 6.57$
Its tranfverfe mufcle 56. Vas differens 58
Spermatic veffels delightful eating
55.

The fituation and fize of the faid veffels
55
56
The manner of demonftrating them
ib.
The ftructure of the tefticles, and the feed 57 The uterus; its nerves and mufcles, conftruction, faftening, ligament 57. Difpofition of the ovary, $i b$. Blind appendage 57. Its alkaline bone defcribed, ib. A differtation on the ufe of faid bone
58

Situation, lobes, and veffels of the liver
55
Its glandulous texture, colour, hardnefs, pulps, juice, external coat or fkin, and agreeable flavour.
$i b$. The animal's external lips; the teeth, and their mufcles, with the expanfion of the teeth over the palate; the palate itfelf; mouths of the falival ducts ; and internal lips.

48
Verge, its cohefion, conftruction, figures, incifions, perforations, veins
The tongue, its ftructure; the cartilage, in form of a crefcent, that ferves to cover it; the mufcle ferving to draw in the tongue, palate, jaws, and brain; the indented extremity of the tongue
Spinal marrow, its fituation 62 . Conftruction; 48 glion, and mufcles ferving to move the faid ganglion backwards and forwards, with the nerves adminiftering to the faid mufcles.
Mufculous membrane found under the fkin
60 Covered Snils, 45 Covered Snails, the manner of feeing the mucus iffuing from the glands of their fkin

54 The mufcles are ftrong 55. How they are inferted into the ftone or fhell 62. Three mufcles, ferving to thruft out the mouth, and parts of the jaws, 48. Tranfverfe indented mufcles of the belly 53. Mufcles of the uterus and final marrow, 60, 61. Mufcles of the legs;
their conftruction and infertion 62. Of Mufcles of the lower horn 62. Mufcles of the upper horns, ferving to draw in the eyes $i b$. Mufcles ferving to draw in the jaws, and parts of the mouth, ib. Serving to move the verge, their infertion and courfe ib. Serving to move and raife the middle of the body ih. Difference between the flefhy and tendinous parts of the mufcles 60. Nerves ferving to move the mouth and guilet 47 Adminiftering to the parts of the jaws, mouth, and palate; optic nerves; nerves belonging to the lower horns; to the mufcles of the fkin of the head; nerves running under the parts of the mouth and palate, and fubfervient perhaps to the fenfe of tafte, nerves iffuing from the brain; from the final marrow; belonging to the mufcles of the neck; to the fpermatic veffels; to the mufcles that ferve to move the fides; to the uterus, to the verge.

61,60
Origin of the nerves from the brain, and their courfes 46. Their mufcular fheath and ligaments. ib,

The eyes where placed 45. By what contrivance the fight is performed 48. Optic nerve of the eye, and its mufcle, 45 . Its figure; coat called uvea; parts; three humours; what end anfwered by the fpreading of the mufcle over the coat ; the eyes, ciliary ducts; retina; its pupil, not feen by the Author. 47,48 Many Naturalifts have attributed eyes to the horns, and again denied their exiftence.
Lid, what it is? and its conftruction.
The falt bone, perhaps, ferves to fhake the feed into the uterus. 64 Egrs before copulation are very fmall. 57 Mufcles ferving to move the foot, their conftruction and infertion, 62.
Situacion of the lime-bag, its colour, connexion, texture, duct, ufe, and tafte.

54, 55
Its colour, nature, and fituation.
Difference between the blood and the mucus. 54
The fhell exhibits marks, which like thofe on the horns of black cattle ferve to fhew the Snail's age. 5 I The fhell is a truefkin, or ftony bonc. 64, 65 Swells, increafes, and hardens, like the thells of Crabs, and bones of men 64. In what manner it grows ib. Its conftruction 63. Its pillar, and the perforation of the pillar ib. It periofteum 64. Its various fizes.

Tube, common ro the kidneys and uterus.	58
8	

Vena cava, and its branches. 53
Stomach, its fituation, three coats, veffels, colour, the pylorus; fmall guts; in what part of thefe the gall flows into them ; exitus of the ftraight gut. 55 Snail, the oval one.
The pyramidal and cylindrical ones.
The pyramidal and cylindrical ones. 66
The tubular one.
The vine one. See covered Snail.
SPIDERS, belong to the firft order of changes
20
Have no antennæ or horns, nor Scorpions neither 21
See better than other infects, except the Dragon Fly 23
See further particulars, 23. P. II. 54
The Author never obferved that Spiders, however irritated, difcharged any virulent matter. 22
Parts obferved by the Author.
See further particulars. 22, 23, 24, 25
Various fpecies
23
American Spider.
20
The Holland Spinning Spider.
One from the Cape of Good Hope.
The crimfon Spider of Lifter.
The long-footed one.
24
The Flea-Spider. 23. Defcribed. 21,2 II
Two fpecies of it. 23
The Hedge Spider, which carries its eggs about with it.
SPINAL MARROW, in large and fmall infects, comparcd 91. Its origin, and all the nerves derived from it, feem to be moved by the irritation of the nerves alone.
P. II. 124

SILK-WORM, falfely faid by Malpighius to have more hearts than one III. Has twenty breathing-holes 180 A defcription of its change, by Malpighius. P. II. 2, 3 Fat, and forme other parts $136,137,138,139$ Its fulk I38. The bag, containing a glutinous mat-

I N D E X.

ter 204. The manner of their copulating
${ }^{1} 32$ Die three days after they have laid their eggs. P. II. 229, 187. Of the male 132. P. II. 22 r. Its genital parts 139. Of the female's ovary and duct. P. II. 203

SKIN, the changc of it common to all infects. 174 STAPHILINUS, its defcription, and various fpecies : belongs to the third order of changes.

125
STAGS, if caftrated when young, their horns will never grow. 150 . Their horns enclofed by a periofteum 64 SWALLOWS, fly near the earth, and follow the courfe of the Sun, in order to catch infects, which are their food.
P. II. I33, 134

T

TADPOLE, belongs to the fecond order of changcs. The true Nymph of the Frog.
P. II. II7

In what manner and time it changes its fkin. ibid. II9 By what aliment nourifhed. ibid. 105
Its external parts. ibid. 115 , and following pages.
THISTLE, COMMON, how the Flies perforate, and lay their eggs in it. ibib. 89
TEETH, in a human abortion of fix months old, were vifible, but membranaceous.

185
In Men and Beafts, compofed of innumerable fmall filaments.

65
TOUCH-ME-NOT, an herb, in what manner the pores of it contract.

129
TICK or Ricinus of Aldrovandus ; the Author does not not know what order it belongs to.
TARANTULA belongs the firft order. 20 The power of Mufic in curing the effects of this Infect's bite, is looked upon as a mere fable in Italy itfelf, and is no better than an impofition ufed by beggars and vagabonds.

TEREDO loves bread

TORTOISE has two kinds of bones.
75
62
It is neceffary that when it lays its eggs, the futures of the fhell fhould open, ib. Sutures of its fhell very uncommon.
ib.
TETTIGOMETRA, what.
96
TUBES teftaceous defcribed, $68 . \quad$ Different kinds of them belonging to thofe of water Infects curioufly conftructed, P. II. 102. Thofe of Worms equally curious,
ib. 101,102
TURBO defcribed, 166 . Small water Turbo, 82 Small Turbo found in the bark of the Willow, with its fhell convoluted in manner defcribed, 168,169 TRANSFORMATION or Change, what the Author intends thereby.

W

WAX, confifts of globular particlcs, 162 . How made by Bees unknown, P.II. 208. True Virgin-wax what; that commonly fold in fhops is not fuch, 165,166 WATER Fowls devour fifh head foremoft, 196. How they prepare their wings that may refift the water, 154 WEARINESS, how occafioned,
P. II. 128

WORMS, how they move themfelves in little Cells made of dry wood.
P. II. 8 I

WASPS belong to the third order of changes, 121. Suffer a great number of females in their nefts, and why, P. II. 189, 190. Their ftings and poifon-bags, fome parts of them defrribed, ib. 197, 198. Spinal marrow runs thro' the common ducts of the ovary, ib. 204. Their eyes, ib. 215. Ovary and oviducts, ib. 203. Eggs, $i b, 205$. Probofcis how formed, ib. 196. Glue-bag, and its veffiels, ib. 204. Tafte and ftrength of their poifon, 205. Males feem to bufy themfelves about their offspring, P. II. 190. Species and defrription, 121, 230 Wafp called Ichneumon, 122. Solitary of Mouffet belongs to the third order of changes.

12I
WILLOW ferves to breed a great many Infects, P. II. 83 Its juice like honey, 173 . Its leaves defcribed, with their three coats and their veffel, P. II. 75, 88

Their tubercles or warts containing Infeats, ib. 8 3 The Worm of thefe warts without feet; its extcrnal parts, efpecially its teeth and their ufe; its very fmall egg ; Nymph belonging to the firft mode of the third order, and its confpicuous limbs; the Beetle produced from it, and its parts, ib. 83, 88. Another fpecies of Worms changing to a Fly, ib. 85. Tubercles how produced, ib. $80,8 \mathrm{I}$. Their fituation, conftruction, different forms, internal-conftruction, colour, fituation on different parts of the leaf, fize and contents, ib. 75 Alteration in them when the Caterpillars have iffued from them, ib. 78, 79. The egg contained in thefe tubercles; the different fizes of it; its figure, colour, variety of fituations, without any adhefion; manner of receiving nourifhment; its increafc; how buricd in the tubercle, $i 6.76,80$. The Caterpillar iffuing from the egg, ib. 77. See Caterpillar. The Fly, fee Fly.
Various other Worms and Animalcula. 82,83 Rofe, what and whence produced, P.II. 85 Worm bred in it, with the Nymph and Fly of faid Worm.
ib. 85
WOOD-LOUSE, fee Afellus.
WOLF-BEE defcribed, two fpecies.
P.II. 224,225

WORMS are not changed into Nymphs, but become
Nymphs by an accretion of their limbs.
Even in this fate exhibit the difpofition of parts obfervable in the future Nymphs and Flies, ib. and really contain in a growing fate all the limbs of their future Infects.

13
In what manner they are gradually changed into other Infects. ibid. Are never transformed into other animals, but contain limbs growing under their fkin, which afterwards fuddenly appear on their throwing it off.
Tho' diftinguifhed into males and females, never copujate as long as they remain in the Worm form. 27 How they outlive the winter. P. II. 134
Very often more vigorous than the Infects produced from then.
ibid.
A fingle one, or many of them fometimes live, and turn to Nymphs within the body of a Caterpillar, another Worm, or a Chryfalis.
P. II. 3^{6}

The Author can fhew the future infect in Worms, that have not as yet attained the Chryfalis fate.

7
Worms, their feet never turned to their back, at the time of their change.
The manner in which fome of thefe without feet live.
${ }^{11}$
Water-Worms, living in tubes, without legs. P. II.
101, 102
Feeding on Cabbages, without legs, belong to the fourth order of changes. P. II. 35 Their change into Nymphs and Flies. P. II. 97 Frequenting Thifles, making ufe of their excrements, and caft off fkins, worked up together, as a covering, and their Beetles. P. II. 96 Bred within tubercles that grow within the leaves of the faid plants; their Nymphs and Flies. P. II. 89 Carnivrous, belong to the fourth order of changes
Haften and increafe the putrefaction of the fiefh they feed on. P. II. 35 Another fpecies of thefe Worms, that gnaw dry flefh. P. II. IoI Called Earth Inteftines, belong to the firft order of changes.

27
Ridiculous to imagine that thofe found in human and other bodies are produced from eggs taken in at the mouth.
P. II. 69 Bred in wood, how they move themfelves in their cavities.
P. II. 8 I

Beautiful Beetles produced from Worms living upon rotten Wood.
P. II. 10 E Frequenting Lilies, covering themfelves with their excrements and their beetles. P. II. 9^{6} Worms, frequenting the leaves of this flower, like the Cochineal worm.

182
Found in Hazel-nuts; their origin and change. P. II. 87 Preying on the leaves of the Willow; their large teeth, egg, Nymph; the Beetle produced from it. P. II. 3^{8}

C 2
Worms;

Worms, living within the new-budded leaves of the Willow, at length affuming the form of Nymphs and Flies.
P. II. 85

Living within the rofe of the Willow; their Nyimphs and Flies.
P. II. 86

Affine Flies
142
Their food, and manner of feeding. 143
Tooth examined with the microfcope
143
Internal parts, and in what they differ from earthinfects.
ib.
Bog-houre Worms, belong to the fourth order of changes.
P. 11. 34

Newly hatched and full-grown, and in what manner
they move from place to place.
P. II. 3^{8}

Their external parts
P. II. 39,40

How they become Nymphs.
P. II. 40

Another Ipecies of them.
P. II. $4 I$

Moth-like, the firft fecies of thefe Worms ; its Nymph and Fly
P. II. 100

The fecond fpecies, andits three changes.
ib.
Living in tubes, earth, and their change. P. II. IOI In water, without legs.
P. II. 101, 102 Found in Alder-leaves; three fpecies of them; the Chryfalis of the firft fpecies, and the Butterfly produced from it P. II. 87 Having houres of their own, in which like Tortoifes they walk about, changing to Nymphs, belong to the fourth order of changes P. II. 38 Worms found, musk-bags, and their Nymphs and Beetles

IOI
Feed even upon the feathers of birds
IOI
Found within the bottom of the Oak, their Nymphs and Flies P. II. 90
Within the bean-like part of Oak tubercles; the manner in which they are nourifhed; Nymphs and Flies into which they are changed
P. II. 93, 94

Bred in the fporge of the Dog-rofe, their Nymphs and Flies
p. II. 94, 94

Affuming the Nymph form in very delicate webs, be-
long to the fourth order of changes, and lefs known than other Worms.
P. II. 37, 38

Inhabiting the tubercles of the black Poplar, their food, Nymphs of the fecond order; the change of their Nymphs into Flies. p. II. 95

Bred in ftinging Nettles; their eggs, Nymphs, Flies.

$$
\text { P. II. } 89
$$

Found in live animals, their origin as yet inexplicable Species of Worms bred within Chryfallides and Cater pillars. P P. II. 70, 99 Bred within the bodies of Chryfallides, and boring their $\begin{array}{ll}\text { their way through them } & \\ \text { Change into Vermiform Nymphs P. II. } & { }^{42} \\ \text { P. II. . }\end{array}$ $\begin{array}{ll}\text { Change into Vermiform Nymphs } & \text { P. II. } \\ \text { At length produced from them } & \text { P. II. } \\ \text { Sl }\end{array}$ Seldom turns to Nymphs in the bodies of Aurelix, and why? P. II. 3^{6} The Vermiform Nymphs of Worms, which are faid to fpring from putrified Aurelix, belong to the fourth order of changes P. II. 35 The Vermiform Nymphs, which become Nymplis within the bodies of Aurelix, belong to the fourth order of changes P. II. 35,36 The manner and feafon of finding them out P. II. 37 Worms bred within Caterpillars, uncertain how they get there
P. II 3^{6} Some Worms change to Nymphs within the skin of Caterpillars, whofe infide they have devoured, and afterwards iffue from it in the form of Flies
There are fome bred within Caterpillars, make their way out, and afterwards at length turn to real Nymphs
P. II. ib.

Thofe, which turn to Nymphs within their own and a borrowed web, after creeping out by the holes they have bored for themfelves in the Caterpillar, belong to the fourth order of changes
P. II. 3^{8}

The Vermiform Nymphs of Worms, which iffue from the bodies of Caterpiliars devoured by them, belong to the fourth order of changes
P. II. 35 Of Flies contained within the Caterpillars of Butterflies
P. II. 7. With two heads, fome of them both oviparous and viviparous, infefting the lungs of Frogs. P. II. IOI, IO9 Worms that become Beetles are contained in the Worms of the larger Beetles

71

X

X YLOPHTHORI of Aldrovandus, what kind of
P. II. 38

$$
\text { T H E } \quad \mathrm{E} N \mathrm{~N} .
$$

The Reader is defired to excufe and correct the following Errata:

The Copper Plates are to be placed between the Explanation of the Tables and the Index.

[^0]: * We are accuftomed to ufe the word animalcule, to exprefs thofe minute creatures in particular, which are only feen by the affiftance of microfcopes; this author applies it to fmall animals in general, which was its original, and is its more proper, meaning.

[^1]: * Inf. The. Lib. II. C. ı.

[^2]: + Inf. The. Lib. II. C. 36 .

[^3]: * Lib. de Gen. Anim. Exerc. II. \quad * Lib. de Gen. Anim. Exerc. LVII. \ddagger Lib. de Gen. Anim. Exerc. XVIII.
 § Exerc. LXXII. de Hum. Primig. \quad **.Lib. II. de Gen. Anim. C. 1. $\quad \dagger+$ Exerc. XIV. de Gen. Anim.
 § Exerc. LXXII. de Hum. Primig.
 $\dagger \dagger$ Exerc. XIV. de Gen. Anim.

[^4]: * The generical characters of the Spider kind, as eftablifhed by Linnaus, are, that they have eight legs, and the fame number of eyes, placed on the back part of the thorax. The common houfe Spider, the water Spider, Tarantula, and others, are of this genus; and thefe diftinctive marks exclude fome infects, called by others by the fame name, placing them under other heads. The long-legged Spider having but two eyes, is properly an Acarus.

[^5]: * There is a remarkable property in the Crab, in breaking off a wounded limb at a particular joint. This has been exemplified at large in the Philofophical Tranfactions. If the laft joint of a leg be wounded, the Crab, by a peculiar motion, breaks o:f the limb at a peculiar place above, and a new one grows in its place. The fame happens in fome fpecies of the Spider.

[^6]: * The Wolf Spider makes no web, but lives at large upon dry banks and heaths, perfuing his prey or feizing them by furprife; and is very nimble and very bold.

[^7]: * Bonone mentions a large Spider in Sardinia, whofe bite proves mortal in a few hours.
 \dagger The generical characters of the Acarus, are, that it has eight legs, and in each leg cight joints, and has only two eyes. According to this diffinction, eftablifhed by Linnæus, and now adopted by all naturalifts, the long-legged Spider, and many of the creatures infefting birds and beafts, and commonly called Lice and Fleas, are truly Acari.
 \ddagger The generical characters of the Loufe, according to the Limnean fyftem are thefe: it has fix legs, contrived for walking, not for leaping as in the Flea; the eyes are two, and they are of a fimple fltucture; and the body is divided by indentings intu feveral lobes.
 § Lewenhoeck, who put a male and fenale Loufe under a flocking which he wore night and day to favour their breeding. found that the female lays from fifty to a hundred eggs; and computing the natural increafe from what he had feen, fays, tha: in eight wecks, one Loufe may lee five thoufand of its defcendants.

[^8]: * Redi, who very accurately examined this fubject, found Lice upon the Lion and the Tiger. He calls all thofe on quadrupedes by this name ; and thofe on birds, Fleas; but he is in this miftaken, the diftinctive characters are to be found in the fructure of the parts, not on the creatures whereon they feed. The fame author obferves, that the Lice bear no proportion to the bignefs of the creature on which they live, the Starling having a Loufe as large as that of the Swan.
 \dagger The common Fly is fubject to a particular infect which lives upon his head; this is fo minute that few have obferved it ; its fize is calculated by La Hire of the French academy, to be not more than a four thoufandth part of that of the head of the Fly. This is of the Acarus kind, having eight legs.
 The Crab-Loufe upon the human body is of the fame genus with the common one of the head, but a different fpecies. It is deftroyed by mixtures with water, in which crude mercury is boiled.
 Even the Snail is fubject to be infetted with a kind of Loufe, but in a very fingular manner; for this creature, which has eight legs, and is of the Acaras kind, lives equally on the furface of the body, and within the inteftines, running in and ouk at its pleafure. It is ufually feen alive in the inteftines, when they are examined by the microfcope.
 I The common Flea is an extremely fingular infect, there bping no other fpecies properly of its kind : the generical characters are thefe; it has fix legs formed for leaping, the eyes are only two, the organ which ferves for a mouth is bent downwards, and the belly is roundith and comprefien. Only the Flea of the human body has thefe characters; what is called the Pulex Sturni is an Acarus, and the reft of the infects which have received this name from inaccurate obfervations, belong to other genera.
 \$ Though the Flea is peculiar in the human kind, it is not fo with the Loufe. Multitudes of animals, birds and beafts, are infelted with lice, and though of different fpecies upon moft kinds, they all have the characters here defcribed, and are properly of the Pediculus or Loufe kind. Infects have alfo leffer infects living upon them, particularly the Beetle ; but though thefe are called Lice, from their living on other animals, they are not of that kind. The Loufe of the Beetle, as it is commonly called, has eight legs, whereas the proper Loufe has but fix: this creature is properly an Acarus, and fo of the other.

[^9]: * Latter diftinctions do not permit us to give this fingular creature the name Pudex or Flea. It is of the monoculous kind, the charactersof which, according to Linnaus, are, that the fore feet are branched, and are found equal for fivimming or for leaping: that the eye is fingle, but compored of three, and that the head has a cruftaccous covering.
 t The characters of the Afellus are, that the body approaches to an oval form, and the tail is fimple, and not foliated. The number of legs is uncertain, ten, fourteen or fixteen. The genus is now called Onifcus. The plain tail diftinguifhes it from the Shrimp kind; and fome others which approach to it in many refpects, but by their leafy or foliated tails are referred, though fmall, to the Crab kind.

[^10]: * The generical characters of the Scorpion, as now eftablifhed by Linnxus, are, that it has eight legs, with claws on the forehead; eight eyes, two on the upper part of the thorax, and fix at the fides, with a tail armed with its fing.
 + The Leech, like the Earth Worm, conftitutes a particular genus of infects; the characters are few and plain; the body is fimple and is expanded into breadth at each end: we have two kinds common in fhallow waters, the Leech ufed for bleeding, and the cylindrick kind.
 \ddagger Morand, in the memoirs of the academy of fciences at Paris, has accurately defcribed the mouth of the Leech; it confifts of five parts, two lips, a hollow for receiving the blood, an inftrument to pierce the fkin, which is compofed of three fharp points, upon their dkins. The Leech, when taken out of oil and put again into water chits deftructive of moft other infects, if only rubbed

[^11]: * Perrault, after many obfervations, expreffed his doubts, whether Snails had really any cyes or not; and Dr. Brown has placed his opinion of their having any among vulgar errors: but this author's obfervations are confirmed by many fubfequent examinations ; and very lately, Dr. Peterficld has hewn, they are to be feen very diftinctly. His account is publifhed in the Elinburgh eflays.

[^12]: * All Nautali are of this ftrukture, as alfo the Arthoceratilx, as weil as Cornua Ammonis, which are found petrified, being inhabitants of deep feas; whence they are never got up living, nor the fhell feen recent. In the large thick Nautilus, thele partitions are forty or more in number, and there runs through them all a pipe; this is called the fiphuneulus; the animal within is of the Sepia or Cuttle-finh kind. In the Arthoceratile they are more numerous. We fee this hell-foffl in the red fones called Swedes paving, and ufed in court-yards, and for flat walks.

[^13]: *Thefe are called Tubuli Marini by authors : they are fimple and plainly hollow. Some are ftraited, and others fimooth on the furface; fome perfectly ftrait, others twitted at the end. They arc found loofe on the fhore, and lodged in folid fubtances. The animal within is a true Snail.

[^14]: * The fpecies here meant by the author, is the common fmall painted Snail, which we find in hedges. We ufually call the larger brown kind the garden Snail, becaufe it is more common with us in gardens; but this the autho: calls the common Snail. This lefs being more frequent in the gardens of Holland, is the garden Snail of that country.

[^15]: * The Eels in pafte are in this manner viviparous, and there does not appear to be any diftinction of fex in refpect of the produce, for all are bearers. The late Mr. Sherwood has given an account of this to the Royal Society, the truth of which I know, having made the experiments with him.

[^16]: * Our countryman Dr. Lifter has diftinguifhed himfelf on the fubject of this viviparous Snail. His obfervations in general agree with thofe of this author, for truth is the fame in whatever language it is written.

[^17]: * The folution of thefe problems remains for future obfervations. This author afferts, that the body of the Hermit grows to the fhell; others affirm, that the creatures will at any time crawl out of the fhell, on finoaking them with fulphur ; if fo, the fhell is no part of the creature.

[^18]: * This is a confruction very frequent in the inteftines of Fifhes.

[^19]: * The famous infect, the Formica Leo, is a Vermicle of one of the Flies of this kind. This creature naturally walks backward. There is another fpecies which moves forward; thefe are found on land. The more frequent kinds are thofe of the
 water, and they are common in our ditches.

[^20]: * This is a fpecies of the Cicada or Cigale. The characters of that genus are very obvious on it : they are, that the beak is under the breatt, and is bent downwards; the antennæ or horns very fhort; the wings four, and placed crofs-wife, the back concife, the breaft cylindrical, and the legs made for hopping. The Cicada of Italy, which the Roman poets mention, and which their tranflators render Grafshopper, is of this genus. We have alfo one on the rofe, and others on various bufhes.
 \dagger This fpume is not exfudated, as fome fuppofe, from the plant, but from the mouth of the animal; and if it be well wiped away, without injuring the creature, more will be immediately feen iffing out of its mouth, till there is as large a quantity of it as before.
 \ddagger Obf. aq. et terr.

[^21]: * Since the time of this writer, Reaumur has with great judgment and knowledge written of many of thefe creatures. They run about the branches of trees and fhrubs, while fmall, and when they have paffed part of their lives thus, they remain immoveable for the reft, and their bodies become only a kind of covering for numerous genus. That author calls them gall infeets, and progal infects. The Fermes and Cochineal are of the fame kinds.

[^22]: * The characters of the water Scorpion according to the latter fyitems are thefe: the trunk is turned in under the body, the antenne or horns form a kind of claws like thofe of cruftaceous animals; the wings are four, and they are placed crofs-wife; and the legs are four. Linnæus connects the Cimex Aquatilis with this, and gives to the genus he thus forms the name Hepa.
 + There is not perhaps in all the animal creation fo outrageous or fierce a creature againft thofe weaker than itfelf as the water Scorpion. It defloys, like the Wolf among Sheep, twenty times as many as its hunger requires. I have feen one of thefe when put into a bafon of water, in which were thirty or forty of the Worms of the middle Libella, which are at leaft as large as itfelf, deftroy them all in a few minutes: he gets on their backs, and pierces his trunk through their body.

[^23]: * The Ephemerus, for fo it is the eftablifhed cuftom now to write the word, conftitutes a diftinct genus among the four-winged Flies. The characters are, that there are two large prominences for the eyes on the upper part of the head; that the tail is furnifhed with fome brifly hairs, and the antennæ are fhort. There are feveral fpecies of this genus of different fizes.

[^24]: * The doctrine of thefe pulmonary tubes in infects has been confirmed by all fucceeding obfervations: the latter authors only have changed the names of thefe veffels, and their openings on the furface of the body. They call the tubes trachea, and the aperturcs on the furface of the body, which this author terms puncia refpiratoria, they call ftigmata. This laft term, though more modern, is exceptionable; for ftgmata is ufed in botany to exprefs the heads of the ftyles in flowers, and pure
 philofophy condemns this cquivocal ufe of terms.

[^25]: * This, though common with firh, is ftrange among the infect kind ; but in the whole compafs of natural hifory nothing is more variounly performed than the impregnation of the eggs, nor any thing fo little undertood; it feems, they may not only be impregnated by a male fperm caft upon them when laid by the femalc, but even by the fame fluid caft at random while they are yet penis, but difcharres his fuerm infeur Demours is particular in his obfervation of the water Newt, the male of which has no penis, but difcharges his fperm in the water ncar the female, whofe eggs, though none of the fperm abfolutely enters her body,
 are fo impregnated.

[^26]: * As all Butterfies are produced from Caterpillars, all Beetles are produced from Hexapode Worms, Some of thefe live on land, fome in water; but they are in general all longer lived creatures than Caterpillars.

[^27]: * Our author is not fingle in his opinion that Ants do not eat in winter; Leewenhoeck appears to be of the fame mind, and imagines that they fpend that feafor, like Dormice and many other forts of animals, in a flate of fleep; and this feems to be reafonable, as Ants are obferved to move more flowly as the cold weather advances. Mr. Gould alfo agrees with Swammerdam that the Ants do not make any provifion for winter. But though our author here did not obferve any fuch provifion to be made by thofe he examined, yet probably fome other fpecies may, and other naturalifts tells us very wonderful things on this fubject; Ind further, this opinion of their providing for winter feems to be countenanced by the royal and infpired naturalift, Prov. vi. 6, 7, 8. whom their affection is wonderfully remarkable.

[^28]: * To the Beetle kind we are to look for that deftructive infect mentioned in the fcripture by the name of Kankerworm, and coupled with the Locuft for its devouring nature. The common mealy Beetle which flies in the evenings about hedges, and which children play with, calling it the Miller Cockchaffer or Dor, is common to the Eaft as well as Europe, and is probably in its Worm flate the creature meant in thofe paflages. The Worm hatched from the egg of this Beetle lives under the furface of the earth, and feeds upon the roots of corm. A few years fince it almoft created a famine in fome parts of England.

[^29]: * We have an account of the ftrength of the principle of life in the beetle recorded in the Philofophical Tranfactions, whicls is altogether furprifing. Mr. Baker, a perfon of undoubted credit, kept one of thefe alive under a glafs, without any food, two years and a half, and it then efcaped by accident. He had firft attempted to deftroy it by drowning it in fpirit of wine, bit it revived after repeated trials of this Kind, though in one of them it was kept in the fpirit a whole night.

[^30]: * The Beetles are a genus of infects fcarce lefs numerous than the Butterflies. We owe the firft rational attempt towards arranging them, and difpofing them in method, to our countryman Dr. Martin Lifter: he divided them firf into the land and water kinds: the firt comprehend all thofe called by this author Scarabxi ; the latter Hydrocanthari, or water Beetles. Thefe laft are of two kinds, according to their place of living, fome delighting in freih, others in falt waters. There are vaft differences in their horns or antennx, of which we fhall fpeak prefently ; but thefe do not fo happily diftinguifh them as the two great divifions of the Butterflies.

[^31]: * In the outer cafes of the wings in Beetles there is a vaft diftinction, not only in colouring and ornament, but in fhape; fome cover the whole body, and are a defence to the inner wings, with little foldings of thofe more delicate parts: but in others thefe outer wings or cafes of wings are fhort, and only fall over the fhoulders. This is the cafe in that common and diftafteful black Beetle which crawls about damp hedges, with its body naked and annular ; the under wings ate beautifully folded up under their fmall safes.

[^32]: * The antennx of Beetles are of two kinds; thofe which are pointed at the end, and thofe which have that part fhaped in the manner of a comb.
 There is alfo a difference of a very particular kind in their infertion, the greater part have them fixed upon the fubftance of the head; but in fome they are carried upon a kind of trunk; the Beetles which have them in this Itrange fituation, are thofe the antients called Gurguliones.

 Tipon thefe forms and infertions of the antennx may be eftablifhed an exact claffical diftribution of them, a thing yet wanted
 matural hifory.

[^33]: * We have in England two fpecies of Beetles which are able to leap in a very furprifing manner. In other infects this miotion is performed by means of the legs, which are made of various lengths and forms adapted to that purpofe: but thefe creatures do it by means of their thorax, which is alfo formed in the under part in a peculiar manner rifing and elaftick for that purpofe: one of thefe is of a chefnut brown, the other of a greenifh black. They both have flatted bodies and flender legs.

[^34]: * There is not in all the infect world a creature more happily fuited to fhew the feveral operations of life than this. A mode rate microfcope difcovers to us very clearly what paffes within its tranfparent body. The creature is at firft greeninh and fomemotion of the flomach and inteftines are perfectly feen, and pale and greenifh. At that time the beating of the heart, and the very clearly.

[^35]: * We have in England three very diftinet kinds of Gnats: the largeft of thefe has brown eyes, and a black and white body; the middle kind is altogether brown: this has the mof mifchievous bite of any. The third or fmaller kind has a red breaft; this alfo bites feverely. The Worms of all thefe are alike in form, and, what is very remarkable, they differ little in fize. We have befide thefe a multitude of diftinct fpecies very fmall, which are, in the fen countries, very troublefome.

[^36]: * Among the wonders in the real œconomy of Bees, nothing more deferves our attention than the certain prefage they have of rain. It has been fuppofed they fee clouds gathering for it, and know where they will fall, but their eyes are not made for fo remote objects It is certain they have fame notice, and that it never deceives them. They haften to the hive and get in before the molt fudden howers. One never fees a Bee in the rain, unlefs it be a lame or difabled drone. In all probability defcribed by this author, there will appear no wonder ; and if we obferve the amazing fructure of their pulmonary tubes, as defcribed by this author, there will appear no wonder that they feel very fuddenly all changes in the atmofphere.

[^37]: * The French give with great propriety the name Becs-bread, Pain des Abeiles, to the farina or dufty fubftance lodged in the antherx of flowers. It is certain that they eat this, and that it is afterwards converted into wax in their ftomachs, for they collect vaft quantities of it when they have no combs to make, and ufe it merely as food.

[^38]: Befide wax and honey, the Bees collect a certain refinous fubflance, which authors call Propolis. It is of a brownifh red colour, very clammy, and a perfect vegetable refin. They ufe this to ftop up holes or cracks in the hive, and to ftrengthen weak places. It is not of the nature of wax, for it will diffolve in fpirit of wine; and we are not certain from what plants, or parts of plants they get it. The ancients were acquainted with this fubftance, but they fay it was of a difagreazble fmell; with us it is aromatick. Probably the fcent varies according to the plants whence it is obtained.

[^39]: * The beft way of viewing the fling of the Bee by the microfcope, is to hold the creature faft by the thorax with a pair of knippers, and it will thus thruft out the fting, often, in its fury. This fhould be cut off with a fine pair of fiffors, and it may thus be preferved entire between two lips of ifinglafs.

 Another way is, to make the Bee fling a thick leather glove. This will be eafily obtained, by catching one with fuch a glove upon the hand. The Bee will frike with its fting, and it muft be immediately frighted off. By this means it leaves its ling in the glove, which may be picked out and viewed.

[^40]: * It is but of late that the fubftances of which wax and honey confifts, have been diffintly known ; but it is now perfectly afcertained. They are both collected from flowers. The anthere or buttons placed on the filaments in flowers, contain a dufty fubfance, intended by nature for impregnating the feeds in the bottom of the fower, and of thefe the Dees make wax ; they feed upon this fubftance firf, and then difcharge the remains, which have not been taken into the veffels as nourifment at their mouths, and with a little moulding this becomes wax. The honcy they find perfeft in the flowers, either lodged loofe in the bottom, or in the glands called nectarix.

[^41]: fervice

[^42]: * Since this author wrote, the French naturalifs have made many nice inquiries into the fructure of this infect. They in general confirm the docirines he has eftablifhed, but in fome points they have improved on them. They have difcovered that befides the trunk, the Bee bas a real mouth. This is fituated in the fore part of the head, and may indeed be feen withour great difficulty. By means of this the Bees are able to feed upon the farina of flowers, from which afterwards is made wax. This author thought they could not feed on it, becaufe it could not pafs their trunk; but I have taken out of the ftomach of a Bee the farina of a bean flower in its proper form.

[^43]: * What is called rock honey in fome parts of America, is the produce of a peculiar kind of Bee, lodged in a very fingular manner. This Bee makes no regular comb, but notwithftanding that, it preferves its honey in waxen verfels: the honey is clear as water, and very thin. The Bees hang their clufters of cafes to a rock; one is firf made, and is very fecurely faftened; then others are hung to that, in the manner of grapes in a bunch. Thefe cells or cafes are larger than the biggelt grapes, and of an oval fhape; eacla has at firft an aperturc at the upper part, in which the Bee puts the honey; when it is full thoy clofe this aper. tare : forty of thefe cafes will fometimes hang together, and the honey is excellent, and in large quantity.

[^44]: * The poifon of the Bee feems to owe its mifchievous efficacy to certain pungent falts. It may be eafily feen to contain fuch. Let a Bee be provoked to ftrike its fing againf a plate of glafs, and there will be a drop of the poifon difcharged and left upon the glafs. This is to be placed under a double microfcope, and as the liquor evaporates the falts will concrete. They form oblong, pointed, clear cryftals, but the quantity of fluid is not enough to let them form diftinetly.

[^45]: * Nothing is lefs underfood in the hiftory of the Bees, than thofe battles we fee often about the entrances of their hives. From what I have obferved they appear to be of two kinds; fometimes between the Bees of the fame fiwarm; fometimes between them and ftrangers: any irregularity in their work may occafion their fcuffles with one another, and thefe terminate without mifchief. But in the other cafe, when frange Bees attempt to force their way into the hive, the conflict is fatal, and there are ufually many killed; but the fuperior number always gives the victory to the proper poffefors of the hive.

[^46]: * The Bee has been honoured with the notice of philofophers from the earlieft time. What Virgil has faid of this infect is principally from Ariftotle. Theophrattus has alfo wrote exprefsly on them, and we read of a greek naturalift who retired from human kind, and paffed a long time in the woods to obferve them. But the labours of all thefe anfiwered little purpofe: it is not till very lately that we have underfood their nature, and we owe more to Swammerdam than to any one author in this inquiry.

[^47]: * In fine weather the Bees conflantly go out in fearch of the matter of wax, which they collect from the anthere of fowers. They eat fome, and lay up the reft in certain cells of the comb where it is preffed down by other Bees, and this ferves them to eat in bad weather, when they cannot go out. After they have fwallowed this, and it has paffed the operations of their flomach, it is wax, which they complete by more working and moulding; but though the farina of fowers be the real fubfance of wax, human art can never make wax from it.

[^48]: * The Bees have probably all that delicacy of fmell, for which they are celebrated; but it is not true that they diftinguifh perfumes by their fondnefs, and flinks by their averfion: certain fmells excite and others offend them; but their notions of fweet and ftink are not the fame with ours. They are fond of places where urine ftands to putrefy, than which there is fcarce any fmell more offenfive. It had been faid they would fly in fondnefs to a man who had a nofegay of fiweets about him, and that they would fting any who carried flinks; but Mr. Reaumur made the experiment and found it falfe. There are wonders enough in the real hiftory of thefe animals; 'tis wrong to difgrace them with falfe and fictitious tales to make all fufpected.

[^49]: * This author died before the invention of glafs hives. Thefe have been carried to fuch perfection fince, that we can fee the whole courfe of operations of the Bees carried on in it. It is thus we have difcovered their true oeconomy.

[^50]: * Among the moral virtues attributed to Bees, none is more celebrated than that of their burying, as it is called, their dead. Thofe who firft eftablifhed this opinion, faw Bees carrying others which were dead to a diftance from the hive, but Reaumur has explained this, and robbed the creatures of the glory they had retained for their fuppofed charity through centuries. It appears from the moft frict examination, that this is done in care for themfelves, not in regard to the dead. They often murder thofe they thus carry out, and when the ftores are likely to fail, they will kill even the Worms and Nymphs, and throw them out of the hive. They carry, them to a diftance, becaufe they hate a fench.

[^51]: * In fwarming, one Bee with its fore legs lays hold of the hinder legs of the Bee next above it, and fometimes they ufe only one leg for this purpofe, laying hold only of one of the hinder legs of the Bee next above. In this manner they hang from the bough, or whatever other fubftance the firft has fixed upon; and this firf fupports the weight of all the reft. The whole clufter, though fingly they are light, is of confiderable weight, and by this we may form fome idea of theftrength of this infect.

[^52]: * The confluction of the cells of the Willow Bee is very extraordinary, nor are thefe found in combs: they are frequent in our fen countries. I have feen thoufands of them in Lincolnfhire; the Worms make themfelves cafes of the leaves, and bury themfelves in the rotten part of the wood. The Worm of the working or hive Bee is a very weak creature, but thefe are vigorous and active: they wrap feveral entire leaves round their bodies, and faften up the ends of this hollow cylinder with pieces of other leaves gnawed off for that purpofe, and fluck together with a kind of wax, made principally from the buttons of water nlowers. Thus they lie covered and buried till their change. This thews nature ufes various methods.

[^53]: * The Bee, which is to able to defend itfelf in the perfect ftate, is, while in the condition of the Worm and Nymph, liabla to deftruction by that moft contemptible creature the Mite. Millions of thefe get into the hive, whofe paffage would be defperately defended againft larger affailants; and they make their way into the cells and devour them. This was firft ubferved of a kind of Bee that breeds in rotton willows, and the account is given at large in the Philofophical Tranfactions. It has finc begen difcovered in the common kind; and the mifchief has been often done where it was not fufpected how.

[^54]: * Befides the addition carelefs authors have made to the Bee kind, by ranking two winged Filies among the number, we have eleven diftinct fpecies in England. Mr. Ray, who was indefatigable in thefe refearches, counts nine; and fince this two others have been found. They are very fimall, one is black entirely, the other black and red on the body: they make regular combe, and are found principally in the welt of England. They build in cracks of rocks, in walls, or in very dry banks of earth.

[^55]: * The danger of being ftung by Bees may be in a great meafure prevented by a quiet and compofed deportment; and even when they have given the wound, the fame fedatenefs is the beft conduct. A thoufand Bees will fly and buz about a perfon without hurting him, if he ftand perfectly ftill, and let them alone: but if he ftrike at them, probably he will be fung. If this happens, he thould fuffer the Bee to reft upon his fleh in quiet: if it be let alone it will draw out the fling, and the confequences will be lefs troublefome, but if difturbed, the fting is left in, and the wound is much the worfe.

[^56]: * The Flies produced from Caterpillars are of two kinds, diftinguifhed by the time of their flying abroad, and the form of their antennx, or horns. They are called diurnal and nocturnal Butterffies, or more diftinctly Butterfies and Moths. The Butterflies appear by day; and they have naked horns, terminated by knobs or buttons. The Moths fly only in the night, and their horns are feathery, and have no buttons at the end. The Fly reprefented Tab. XXXIII. Fig. vi. is a Muh, that Tab. XXXV. Fig. xir. is a Buttertly.

[^57]: * All that is required to produce the perfect Fly from the Chryfalis, is the evaporation of the abondant moilure; and this will happen in a frorter time in hotter weather, and will reguire longer in cold Hence, the period of the fame fpecies lying in this fate, is varied by accidents ; and that of different fpecies, is alfo in its nature extremely various. Reamur has found, that eight days is fuffient for fome, and that others lie as many months.

[^58]: * The progeny of the fame fpecies of Butterfly may, under favourable circumflances, be hatched at two feafons of the year; and confequently two generations, inftead of one, may be produced in one year. Reaumur has obferved, that the eggs of the Butterfly, which would be hatched in a few davs if laid in fummer, will, if depofited in autumn, lie till the winter; and, unlefs the cold have been fevere, hatch the foliowing fpring. The Butterflies produced in about fix weeks from the Caterpillars of thefe eggs, will lay their eggs in fo warm a feafon, that they will hatch, and pafs through all their changes into Butterflies the fame year.

[^59]: * The repeated experiments of fucceeding naturalifs have, in every inftance, confirmed the doetrine of this author on the prefent fubject. The indefatigabie Reaumer proved the truth of this evaporation of the abundant moifure from the Chryfalis, by different experiments. He enclofed the Chryfalis in a glafs tube, and he found the evaporated water collected in drops at the bottom of the tube: he covered the Chryfalis with varnifh; and this making the evaporation more difficult and flow, the Butterfy was two months longer than its natural time in coming out of the cafe. The fame author found alfo, that laying the Chryfalis in a warm room, hatened the diclofure of the infect ; and keeping it in an ice-houfe, in the fame manner, delayed it. Warnuth afts, in this cafe, in a double capacity, invigorating the animal, and evaporating the moifture.

[^60]: * Thefe appendages to the trunks of Butterflies have been fuppofed by fome to anfit in the procuring, difpofing, or forcing down the food: but the nature of the Butterfies food is a plain contradiction of that opinion; for it is only a liquid, and thin honey juice. Reaumer has therefore, with more juftice, alloted them the office of preferving the trunk fiom injuries, and fupporting it in its intended ufe. This is confirmed by the conftant obfervation, that thefe pieces or forks are aiways flonger in proportion, as the truink is more tender.

[^61]: * The trunk of the Butterfy is indeed an organ of mof wondcrful flucture. It fands in the part of the head where a nofe minht be expected, but it really is of the nature of a mouth; for all the food goes through it. The fubfance of the trunk is horny : the creature may be faid to unroll it, by fqueezing the head; or it may be drawn out with a pin. After this, if any violence be ufed to the creature, the trunk will crack lengthways in the middle, and the fiit will run prefently through its whole length, and divide it into two. Bonani hence fuppofed the trunk was really double in the Butcerty, or originally compofed of two. Riget thought he had fhewn, from unquefionable experiment, that the trunk of this infect was fingle, and that this flitting was the effect of the violence offered to it, and its own tender ftucture. He had his followers, till Reaumer verined the frlt dotrine of Bonani by more accurate trials; and eftablifhed the true frusure of this part, which is, that it is compofed of tivo delicate tubes, laid parallel by ose another.

[^62]: * The whole operation in the difclofure of the Butterfly from its Chryfalis, is full of wonder; but in no part fo much as in the expanfion of the wings. From the folded and complicated fate wherein they lay in the Chryfalis, they difplay themfelves fo fuddenly, that the firf obfervers thought they were fmall at that time, and grew thus fuddenly. The fubftance of thefe wings is membranaceous, and the duft which covers them is compofed of regular little parts, called by fome feathers, and by others fcales; but neither properly. They have footfalks, and they are of various figures, oval, round, oblong, and indented. On thefe depend the colours of the wings. The veffels which fupport the filmy fubftance of the wing, contract as foon as the wing is expanded ; for, till then, they are tubular. They are like the navel-ftring in the human body; at firt valcular, but afterwards folid. The edges of the wings are fupported by a fiong rib, and fringed with thefe feathery fubtances.

[^63]: * The origin of this Fly is, indeed, very ftrange. The parent lays its egg in the fundament of a horfe, watching the opportu* nity of the creature's voiding its excrements for this purpofe. From this egg are produced the Worms which farriers call Bots, in the inteftines of horfes. Having lived their time in the creature, they are voided with its dung, and take their chance for pafing the Nymph-fiate upon or juft under the furface of the ground; after which they appear Flies, like the parent.

[^64]: * Thefe all owe their origin to eggs of Flies, and principally to the feveral fpecies of Ichneumon-fly, which this author calls Pfeudofphecx. All infects are directed by inftinet to depofit their eggs where the young will find food. Butterflies do this on the furfaces of leaves. Thefe Flies lodge them in the fubftance. They have for this purpofe a hard and fharp inftrument at the hinder part of the body, and with this they bore a hole in the leaf or rind, and lay their eggs. The wound and juices thrown into it by the animal , alter the courfe of the fibres, and hence arife galls on the oak; in each of which, there always is a worm originally, the burrs upon the Dogrofe, and innumerable other vegetable excrefences.

[^65]: *We have in England three diftinct fecies of thefe Worms; the French alfo have them as common, they call them Vers a que de Rat. They are the offspring of three diftinct fpecies of Flies, all refembling Bees, but with only two wings. The fpecies here defcribed, is the largeft; and it changes into a large Fly, which our obfervers of Infests call the Drone Fly, fromits great refemblance of the male Eee, which is alfo called the Drone.

[^66]: * The common writers have been very confufed in their accounts of the two fpecies of infects known by the names of the Gadfly and the Breeze-fly, and have applied the names at random, to one or the other. The Latin denominations of the fame infects, Tabanus and Afilus, have been as ill defined. The creatures are perfectly diftinct, both in the Worm and Fly-ftate, and, 'tis to be hoped, that, for the future, they will be fo underlood and confidered, this author having perfectly diftinguined the words, and afcertained their meaning by his figures.

[^67]: * Thefe fingular and amazing Worms are very common with us in flallow ftanding waters. I found millions of them this year in a pond, in a field acrofs the road on the right hand of Liffon-Green, near Paddington. They will live many weeks in a glafs of water, and fhew all their amazing qualities; confirming, in every inflance, the accuracy and truth of this author's accounts. A microfcope fhews very beautifully the motion of their inteftines; and few infects afford a more beautiful object.

[^68]: * The number of thefe pulmonary veffels in the gencraitity of infeits is afonifhing, andit is fo alfo in plants. They not only appear confpicuous in all parts of them, but the greater part of the flalk in May is compofed of them; this is particularly obfervable in the fallis of buibous plants : and in the fame manner we fee it in the infect-tribe molt plain, and the tubes molt numerous, and divided in the foftell fipcies.

[^69]: * As important as the fpinal marrow is to the animal œconomy, we find that it does not obferve the fame courfe in all creatures. In the generality of animals it runs through the middle of the back-bone; but in fifhes in general, it is carried through certain peculiar apophyfes fituated on the upper part of the vertebre: we fee in how ftrange a manner it is difpofed in infects. There cannot be a better fubject of inquiry for the naturalifts, than into the reafons of this various caufe, and the purpofes it anfivers.

[^70]: *This double conftruction of the ovary is almoft univerfal in flying infects, and it is the fame in almoft all the kinds of fifhes; and the valt number of eggs bears likewife an analogy. In many finh the body of the female is filled with this ovary, as entirely as in infects. The intent of Nature feems to be the providing, from the abundant eggs and young of fome kinds, foot for the others; for it never could be the intent, that all the eggs contained in thefe ovaries fhould yield perfect infects.

[^71]: * It is univerfal among infects, that the creature which has put of its exuvix, or caft its $\mathbb{k i n}$, immediately appears much larger than it was before. This is indeed true in fact, as well as in appearance. The body has by degrees grown under the fkin, till it is too large for it; and this is the very reafon of the throwing it off. As the increafe has been gradual, and the parts are foft, the fk in has preffed them together, and they lie clofe; but as foon as this fkin is caft off, they diftend themfelves, fo as to appear int their proper form.

[^72]: * It has been a cuftom to call any fmall creature found in cheefe, in Latin, Acarns, and in Englifh, Mite. This author takes the the accuftomed liberty of fpeech, and gives, in the prefent account, the name Mite to the Maggot of a fmall Fly; but the creature we commonly call Mite in England, and which is moft univerfally called Acarus in Latin, is of a different kind; it is made fmaller than this Maggot, and appears like a moving particle of duff. This is the Acaris of the antients; which Ariftotle obferved in decayed Bees-wax, and was called the leaft object of the human fight. This Mite has fix legs, an oval or rounded body, with a hard frin, and very diflinguifhable eyes. The Maggot here treated of under the fame name, is a creature altogether diftinct.

[^73]: * We may admire in this inflance the powers nature has given to different creatures, and their limitations, to anfiver neceffary purpofes, and not for mifchief to mankind. If nature had given this power to the ferpent kind, how terrible would it have been! A Viper would have thrown itfelf from a concealed place, feventy-two foot at the traveller ; a Rattlefnake an hundred and fffy : this being the proportion to the length of their bodies.

[^74]: * This fpecies of Maggot, though altogether different from what we call the Mite, is not uncommon in large cheefes, particularly in fuch as have not been well made, and have fermented. In fuch cheefe, where it is moderately foft and damp near the furface, theie Maggots are frequent; and if they fall off, on being difturbed, they will leap about, upon a difh or table, in a furprifing manner.

[^75]: * The cafe in thofe Flies, which we fee hatched out of Chryfalis's, from which we expected Butterflies, is exaftly the fame with thofe produced from galls, and the other excrefcences of vegetables. The parent Fly is guided by inftinct to lodge her eggs in the body of the Caterpillar, piercing its $\mathbb{R} i n$, for that purpofe, with a fharp inftrument at its tail. I have feen the operation; and the mifery of the Caterpiliar, which can no way efcape from its winged enemy, is terrible. All the variation in number of the young, and other accidents, is owing to the different fpecies of the Flies.

[^76]: * Let the reader be cautious not to extend what is here faid of the Nymph of the Mite, and its change into a Fly, to the common little infect, ufually called a Mite by us; that is, an infect which is hatched perfect from the egg of its parent, and undergoes no change, but only grows larger. This ftate of change belongs to the offspring of all winged infects, and to no others. Therefore it is neceffary, according to the univerfal law of Nature, that this Maggot fhould undergo fuch a change, and that the Nite thould not.

[^77]: * The French call thefe two parts Balanciers, Balancers; and their fyftem is, that they affift in flying; and in fome meafure make amends for the want of another pair of wings. There is probability in this opinion, becaufe all two winged Flies have them; and none that have four wings. Thefe fyttems are not contradifory, for they may anfwer both thefe purpofes.

[^78]: * Thefe tubercles and warts, like galls, and the tufts on the dog-rofe, all arife from the punctures of infects; and as there are many kinds of thefe infects, it is not frange that the tubercles are of various forms. They are all produced by wounds, at which the eggs of the parent-animal are introduced; and the young Worm contantly appears within them. Thefe Worms are, in genesal, vely weak and defencelefs; and this feems a provifion of nature to hide them from their enemies.

[^79]: * Reaumer, indefatigable in his fearches into the infect-world, has given us an account of a peculiar race of creatures, which he calls Mineurs des Feuilles, miners of leaves. Thefe burrow between the outer rind and fubitance of the leaf, feeding as they go, and leave a tract of white behind them, fo that the leaf feems variegated.

[^80]: * This peculiar excrefeence of the Willow, we have very common in the fenny counties in England. I have feen them on the edge of Lincolnhire, as large as a common red rofe, and very double. In this ftate they make a very beautiful, as well as peculiar, appearance: and our old Englifh botanifts, who were not acquainted with this part of natural hiftory, fuppofed the tree a diftinct fpecies, and called it Salix Rofea, the Rofe-Willow.

[^81]: * The females have all of them this weapon at their tail; the males never. The reafon is very plain, for its ufe is to bore a hole in which to lodge the eggs; therefore only the female has occafion for it. This author has obferved the fame on other occafions, in various fpecies of Flies.

[^82]: * So far as I have obferved in thefe cafes, the Fly, when perfect, gets out of the tubercle two ways, but both are by violence, not by the natural opening of the tubercle. Sometimes the fubftance is fo hard, that the Fly is forced with great labour, to gnaw its way out: in other inftances, the covering is by this time become nothing more than a thin, dry, and brittle membrane; and the fucceffive fwellings of the Fly's head, which have been mentioned on a former occafion; burft the rind and let it out.

[^83]: * The Worms found in tubercles of leaves, and other parts of plants, are all owing to the eggs of winged infects. Their parents are of three kinds: 1. Butterlies. 2. Beetles. 3. Flies. We may know, at fight, to which of thefe kinds any Worm beionos by its form. If it have no feet or legs, it is the Maggot of a Fly. If it have fix legs, and no more, it is produced from a Beetle, and will be changed to one. If it have more legs than this number, it is a Caterpillar in miniature, and will change to a Butterfly or Moth.

[^84]: * Befide thofe Worms which proceed from eggs let into the fubftance of the leaf by the parent Fly, there are fome, both of the Fly and Butterfly kind, which only drop their eggs upon the furface of the leaf, and fallen it on by a glutinous matter. The Worms and Caterpillars hatched from thefe, the moment they burft from the egg, make their way through the outer coat of the leaf, and get into the fubftance. They thus live under cover till they change.

[^85]: * The modern term for all Worms bred from the eggs of winged infects in tubercles, or parts of vegetables, is Afcarides. Reaumer is the author who eftablifhed this. Some of them burrow deeper, others very flightly; all get under cover of the upper membrane. The manner of their getring through it, when their parent infeets have lodged them on the farface, is various; the Caterpillar kind eat their way; the Worms of Beetles get in by breaking the furface with blows of their head.

[^86]: * The name by which this kind of infect is generally called, at this time, is Tinea Campeftris, the Field Moth. Reaumer, who save them this name, obferves, that their origin and manner of life are the fame with thofe of the common Cloaths Moths; the only difference being, that theie feed upon moilt, the other upon dry food.

[^87]: * There is fearce any animal which has the principle of life fo flrong as the Frog. It will continue moving many hours after the guts are taken out. An Eel is celebrated for this frength of life; but the Frog exceeds it greatly. No creature is fo truly amphibious; for it will live for a length of time equally well on land without water, and abfolutely immerged in water. A Frog has been tied down under water many days, and received ro hurt, nor fuffered any feeming inconvenience.

[^88]: * The animalcules in femine, are feen more eafily and diftinctly in the fperm of the male Frog, than any other way. They who doubr the exiftence of fuch animalcules, (for it is at prefent a fafhion to doubt them) have not examined the male fperm of this creature. The proper feafon in England is the firf week in April. The veffels are then full of the fluid, and thefe animals are innumerable in ito

[^89]: Naturalifts have been perplexed extremely to account for the. Worms found in the inteftines ; but thefe are much more flrangely. fituated. They cannot have been fiwallowed in food by the Frog, for this would not be their place. The opinion of Vallifnieri is, that the Worms found in our inteftines, were created with the human frame; and that the bowels are their natural and proper place of living : it is much more ftrongly probable here.

[^90]: * It had been fuppofed that this method of impregnation was peculiar to Fifhes; but this is one inflance of the contrary. Something nearly analogous is the cafe with the Water-Newt, and probably future experiments will fhew it in other water animals.

[^91]: * No creature affords more entertainment or inftruction, by the microfcopr, than the Frog. The animalcules in the femen of the male we have already mentioned. The circulation of the blood is feen in the mefentery, by the help of the folar microfcope, more beautifully than in any other creature.

[^92]: * Every part of natural hiftory is greatly improved of late time. This author firt difcovercd the feeds of Fern, unknown to former writers; and we have fince difcovered thofe of Duckweed, which were unknown to him. This little plant is now known to produce its like in the manner of all others. Small as the whole plant is, it produces fowers of all kinds from the fame root. In tome of them are the filaments, two in number, and a fingle flyle rifing from a fmall oval rudiment of a fruit : in others, there are no filaments, but only the rudiment of a fruit with its fyyle. The cap which contains thefe, is alike in both kinds; it is rounded, and fplits on one fide : there are no petals in either flower. The rudiment of a fruit decays, and comes to nothing in thofe flowers which have the fllaments with it ; but in the others it becomes a globous feed veffel, terminated by a point, and contains feveral oblong feeds. This is eftablifhed on the opinions of Micheli, Dillenius and Buxbaum, and is confirmed by Linnens, and by experience.
 + The world owes rreat acknowledgments to this author for many difcoveries; and he with juftice claims that diftinction, in reczan to the feeds of Fern, of which he treats more largely hereafter. The fcience of Botany is fo far improved fince his time, that we have difcovered dillinctly the feeds, and their peculiar difribution on the leaves, in all the capillary plants. In Ofmund they are enclofed in diftinct globular capfules, which burf fideways; in the Louchilis they are laid in lines, like crefcents, under the hollows of the leaves; in Hartitongue and Trichomanes they are difpofed, in frairht lines, under the dilk of the leaf; in Polypody they are arranged in round dots; in the true Maidenlair in oval affemblages, at the t os of the leaves: the Horfetail has them in oval fpikes; and the Adderlongue in cells, placed in two rows along the fpike. Thefe plants are now found to belong difinctly to the fure kinds; and in the Ructa Muraria they cover the whole under-part of the leaf.

[^93]: * To the plants here mentioned by Swammerdan, may be added feveral others, in the feed-veffels of which there is this elaffick poiver, which he fuppofes in fome degree analagous to the mufcular motion in animals : in the multitude of examples, the truth will be bett difcovered.
 The Wood-forrel, wild Cucumber, and Lady-fmock, among the common kinds; and in the Momerdica, Phylanthus, Euphorbix, Juliciæ, Rucllix, Ditamnus, Ricinus, Tragica, Jatroplia, Cretan, Clulia, and Realypha, among the more rare; and molt of all in the Hura, or Sand Box-tree, which burfs with the report of a piftol, and fcatters its feparated parts throughout.
 Thefe are the fubjects in which the origin and caufes of this motion in vegetable parts may be traced, and the fubject is worthy a full difquifition.

 K k
 particularly

[^94]: * This fingular cre ature which former naturalifts have univerfally called Phyfalus, and have been perplexed in what clafs to arrange it, Linnzus refers to his clafs of Worms, Vermes, he arranges it under the fecond order ; the creatures of which he entitles Zoophyta, and to this genus he gives the name of Salacia; by this denomination the creature is known at prefent among naturalifts, and there is no other known fpecies of the fame genus.
 \dagger Thefe are not legs, nor intended for its office: they approach more to the nature of arms with hands or fingers; and are properly Tentacula of the creature: their ule is in finding and fecuring the creatures prey.

[^95]: $\%$
 $-\infty$

[^96]: -

