

-

THE BOTANY

 OF
THE ANTARCTIC VOYAGE

OF
HiM. DISCOVERY SHIPS EREBUS AND TERROR
IN THE YEARS 1839-1843,

UNDER THE COMMAND OF
CAPCAIN SIR JAMES CLARK ROSS, KT., R.N., F.R.s. ※ૅ.

BY
JOSEPH DALTON HOOKER, MAD., RAN., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND BOTANIST TO THE EXPEDITION.

LONDON:
REEVE, BROTHERS, KING WILLIAM STREET, STRAND

$$
18+4
$$

Ger finst Gracious atajestn,
QUEEN VICTORIA, CNDER WHOSE BENIGN AUSPICES THE ANTARCTIC CIRCUMPOLAR VOYAGE,

Lately made by HER M.IJESTY'S SHIPS 'EREBU'S ' AND 'TERROR,'

LNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, R.N.,

WAS AT ONCE SKILFULLY PLANNED AND SUCCESSFULLY ACCOMPLISIIED

THE PRESENT WORK,

ILLUSTRATIVE OF THE BOTANY OF THE VOYAGE,

1S, With permission

MOST HUMBLY DEDICATED

BY

HER MAJESTY'S DEVOTED IND DUTIFUL SERVINT,

THE AUTHOR.

SUMMARY OF THE VOYAGE.

IN the beginning of the year 1839, the British Government having determined on fitting out an Expedition, for the purpose of investigating the phrnomena of Terrestrial Magnetism in various remote countries, and for prosecuting Maritime Geographical Discovery in the high southern latitudes, H.M. Ships Erebus and Terror, commissioned by Captain Sir James Clark Ross, sailed from Chatham on the 29th of September 1839. In addition to carrying out the above-mentioned leading views, it was enjoined to the officers, that they should use every exertion to collect the various objects of Natural History which the many heretofore unexplored countries about to be visited would afford.

On the outward voyage we touched at most of the Atlantic Islands, making a longer stay at some of them than is usual, on account of the nature of the observations that were instituted. At Madeira, which was the first visited, we called in the middle of October, and remained eleven days; and then made Teneriffe and the Cape de Verds, whence we sailed for and landed upon St. Paul's Rocks*, under the Line, in long. $29^{\circ} \mathrm{W}$. St. Hclena was the next destination, and the course which it was found necessary to follow took us to the Island of Trinidad off the Brazilian coast, lat. $20^{\circ} \mathrm{S}$.

After spending a week at St. Helena, the vessels sailed for the Cape of Good Hope, arriving there on the 4 th of April 1840 . The Cape may be regarded as the starting-

[^0]point, whence the real object of the voyage, namely that which included South Polar Discovery, would commence. On the 6th of April 1840 we quitted Simon's Bay, and first entered a cold and inhospitable latitude ($42^{\circ} \mathrm{S}$.) on the 17 th of the same month; then, only four days after, holding a westward course, we passed to the south of Marion's Island, formed of flat terraces of black volcanic rock and cone-shaped mountains, often of a reddish tinge, and towering to a considerable height. Here occurred the first botanical phrnomenon, the Macrocystis pyrifera (a remarkable gigantic seaweed), being exceedingly abundant. The ships were hove to between Marion's and Prince Edward's Islands, with the view to going ashore the following day ; but during the night a heavy gale arose which drove them far to the westward, thus disappointing the hopes which had been formed of collecting objects of natural history on an island never previously explored by any scientific individual.

On the 28th, after a succession of storms, the Crozet Islands were gained: this group lies far to the westward of the position that had been assigned to it, namely in lat. $47 \frac{1}{2}^{\circ} \mathrm{S}$. and long. $46-48^{\circ}$ E.; and here the same disappointment awaited us, for after being blown off, and again on the lst of May beating up to Possession, the most eastern of the cluster, the threatening appearance of the weather forbade any attempt to land. The Crozet Islands are all volcanic, and of the wildest and most rocky aspect ; the harbours are very few, and some of the islands are entirely inaccessible. The mountains rise in peaks and cones to an elevation of $4000-5000$ feet, exhibiting patches of perpetual snow on the summits, while dense fogs frequently envelope their bases, borne from the sea, to such an elevation, that the highest points alone are visible. To all appearance the vegetation is equally scanty and stunted as that which Kerguelen's Island afterwards afforded, and the questions which were put to a party of miserable sealers who came off to the ship, elicited no satisfactory information as to whether the valuable "Cabbage" of the latter island also inhabits the Crozet group. Scudding before heavy westerly gales, on the 6th of May a remarkable conical rock, called Bligh's Cap, was descried; it lies off the north-west extremity of Kerguelen's Island; but thick weather prevented Sir James Ross from making the land, from which the ships were again driven to a distance of 150 miles and obliged to beat back, finally casting anchor in Christmas Harbour, on the 12th of May 1840.

At Kerguelen's Island, all the plants that had been originally detected by the illus-
trious Cook were gathered during the two and a half winter months that the "Erebus and Terror" staid there, together with many other species, a remarkable proof of the uniformity of the climate, and the comparative mildness of the winter season. The ships left Kerguelen's Island on the 20th of July, and arrived in the river Derwent, Van Diemen's Island, on the 16 th of August 1840.

On the 12th of November 1840, we quitted Hobarton for our first voyage to the South Pole, during which the only places visited which yielded many plants were Lord Auckland's Islands, lat. $50 \frac{1}{2}^{\circ}$ S., long. 166° E., where we arrived after a week's sail from the last-mentioned coast, and staid there during the spring months of that latitude, and Campbell's Island, in lat. $52 \frac{1}{2}^{\circ}$ S., long. 169° E. Quitting that island again on the 17 th of December, the ships finally sailed for an entirely unexplored region of discovery. The Macrocystis and D'Urvillaa were found in large vegetating floating patches, nearly as far south as any open water remained free of bergs, in lat. $61^{\circ} \mathrm{S}$. The vessels entered the pack-ice in lat. $68^{\circ} \mathrm{S}$., long. 175°.

During this voyage the vast extent of continent, since called "Victoria Land," was discovered*, together with the active volcano " Mount Erebus," the extinct one " Mount Terror," and that icy barrier, which, running east and west, in the parallel of $78^{\circ} \mathrm{S}$., prevents all farther progress towards the pole \dagger. Two small islets were landed upon : one in lat. $71^{\circ} 49^{\prime} \mathrm{S}$., long. $170^{\circ} 52^{\prime} \mathrm{E}$. ; the other, Franklin Island, in lat. $76^{\circ} \mathrm{S}$. and long. $168^{\circ} 59^{\prime}$ E.; but neither of these spots presented the slightest trace of vegetation. On the return voyage the Macrocystis again occurred, floating as usual in immense masses, in lat. $51^{\circ} 10^{\prime} \mathrm{S}$., and long. $137^{\circ} \mathrm{E}$.

The expedition returned to Hobarton, Van Diemen's Island, late in the autumn (of that latitude), April 7th, 1841; on the 7th of July again started from Van Diemen's Island, and after a short visit to Sydney, cast anchor in the Bay of Islands, New Zealand, August 18th, 1841, where we remained three months. This time was spent in collecting materials for a Flora of New Zealand, in which object we received great assistance from Mr. Colenso and many other gentlemen, by means of whose zealous cooperation our collections were rendered extremely valuable.

The second exploring voyage was commenced on the 15 th of November 1841. It had been Captain Ross's intention to land on Chatham Island, in lat. $44^{\circ} \mathrm{S}$. and 176°

[^1]W., but the prevalence for several days of the densest fogs frustrated all attempts to sight the land. This was much regretted, for few* of the plants of that interesting group are known to botanists. After tracing the Macrocystis into the 57 th parallel, the ships entered an ice-pack of immense magnitude on the 18 th of December, in lat. $62^{\circ} \mathrm{S}$. Here we were entangled till Feb. 2nd, 1842 (the midsummer of those cheerless regions), making no more progress during that time than from the latitude just mentioned to 68°, where we emerged into comparatively open water to the southward of a large body of the pack, which however trended to the westward. At this time the season was far advanced, and as, in the preceding year, the retreat had been commenced, through absolute necessity, on the 9 th of February, so Captain Ross did not think proper now to re-enter the pack-ice, but proceeded along its edge to the westward, advancing so far as $187^{\circ} \mathrm{W}$., and then to the southward and eastward. On the 20th of February a gale came on, which, though in open water, was sufficiently trying ; the wind was very high, and the spray which beat over the ships became frozen ere it reached the deck, forming every object into a mass of ice ; the coils of rope were covered by an icy incrustation several inches thick, and most of the running-gear about the bowsprits was carried away by the weight of ice formed on it.

On the 23 rd of February the expedition came in view of the grand Victoria Barrier : the day being fine, the voyagers approached within a mile and a half of the Barrier, finally reaching $78^{\circ} 10^{\prime} \mathrm{S}$. lat. in the long. $162^{\circ} \mathrm{W}$., having made six miles farther than in the preceding year, the highest latitude hitherto attained. Under all circumstances, this was more than had been expected ; for after the long detention, the rapidly closing season rendered any progress very difficult; but it was a great object to verify the magnetic and other observations, and to ascertain still more positively the position of the pole. Unable to proceed eastward, the retreat was commenced, tracing the pack edge. Seaweed was again met with on reaching the parallel of 64°, and occasionally seen when running down the parallel of 60°, from $170^{\circ} \mathrm{W}$. to $80^{\circ} \mathrm{W}$., and thence in great abundance to the Falkland Islands, where the ships anchored in Berkeley Sound on the 6 th of April 1842, not having seen land for 138 days, since leaving New Zealand.

A prolonged stay in the Falklands, though the season was winter (April to the beginning of September), afforded ample opportunities for thoroughly investigating the

[^2]Flora of that interesting and now highly important group, which, though it had been partially examined by Admiral D'Urville, and previously by the officers of that unfortunate ship, the "Uranie," under the command of Captain Freycinet, still afforded considerable novelty.

On the 6th of September, the early spring of the southern latitudes, the "Erebus and Terror," with a portion of the officers, sailed from Berkeley Sound for the neighbourhood of Cape Horn, and arrived there, after having been driven far out of their course by the equinoetial gales, on the 21 st, casting anchor in St. Martin's Cove, Hermit Island, lat. 56°, within a few miles of the far-famed Cape Horn, which is immediately opposite the mouth of the Cove. This is the most southerly spot on the globe winch possesses anything above a herbaceous vegetation. Here, in the sheltered bays, the two kinds of Antarctic Beech, the Evergreen and Deciduous, form a dense, though small forest, and ascend, in a stunted form, to an elevation of 1000 feet on the hills. Many of the plants gathered during Cook's first voyage, by Sir Joseph Banks and Solander, and by Forster during his second, as also those which Mr. Menzies had detected, when accompanying Vancouver's expedition, and which have not been hitherto published, were found again ; and when the ships returned to the Falklands in November, Captain Ross transported many hundreds of young Beech-trees and caused them to be planted there, in hopes that the productions of so near a country might be found to succeed on these treeless islands. Some were also sent home and have since been distributed in England, from the Royal Botanic Gardens of Kew.

The third cruise to the South Polar Regions was commenced on the morning of the 17 th of December 1842, when the expedition sailed from Berkeley Sound. An opportunity was afforded again of tracing the southern limit of Seaweeds. The Macrocystis was lost in lat. $55^{\circ} \mathrm{S}$., long. $57^{\circ} \mathrm{W}$.; but on attaining lat. 63°, long. 54°, another species appeared which had been originally discovered by Webster during the stay of Captain Forster"s ship, the "Chanticleer," in Deception Island, one of the South Shetland group, and again found by the expedition of Admiral D'Urville, and has since been published under the name of Scytothatia Jacquinotii. On the $28 t \mathrm{~h}$ land was made, a portion of Palmer's Land, to which the name of "Terre Louis Philippe" has since been given by D'Urville. The ships were already in the pack-ice, through which we penetrated, tracing the land to 64°, and seeing a small volcanic island, lying a few miles off
the coast (Cockburn's Island), we landed upon it. The vegetable productions only amounted to twenty Cryptogamic species, three of them Seaweeds. Unable, after a series of fruitless efforts, to penetrate farther than 65°, and after having been more or less entangled in the ice for thirty-seven days, Sir James Ross finally bore up, and when, with great difficulty, the ships had been extricated from the pack-ice, we commenced tracing its edge to the eastward. A succession of easterly gales rendered the progress in the advancing season tedious, most uncomfortable, and hazardous. At last however, on the 22 nd of February 1843, the pack was lost sight of, trending to the southwest. On the 28 th the Antarctic Circle was recrossed, and in spite of the rapidly shortening days, dark nights, and continual bad weather (for throughout the month of February, corresponding to an English August, only one day elapsed without snow), the Commander persevered in holding a southerly course. On Sunday the 5th of March, the weather being very thick, with snow-squalls, white petrels were seen, a bird whose appearance affords a sure indication of the proximity of pack-ice, and on the afternoon of the same day a heavy pack was descried, only a few yards ahead, with a terrific surf beating on it. The ice here was such as not to allow of being "taken" (or entered), even under the most favourable circumstances, and the ships were accordingly put about in lat. $71^{\circ} 30^{\prime} \mathrm{S}$., long. $15^{\circ} \mathrm{W}$.

The thickness of the weather made it impossible to ascertain the course and position of the pack, and the Northward Voyage was commenced under violent N.E. equinoctial gales. Beating to the northward, the ice occurred on both tacks, and the vessels were found to be in a bight of the pack, with the ocean loaded with bergs, and while the continued snow-squalls prevented the possibility of seeing any object ahead, the heavy seas and snow-laden state of the rigging rendered all human exertions ineffectual. From that date till the 11 th of March, matters remained much the same, the ships beating to the northward with as much press of sail as could be exposed, trusting to Providence alone for guidance among the bergs. On the 19th the position assigned to Bouvet's or Circumcision Island was gained, but the weather rendered all endeavours, for three days, to discover land in this place of no avail. Both ships had a narrow escape of running foul of an iceberg, over which the sea was breaking, eighty feet high. The "Erebus," passing to windward, struck one of the floating masses from it; and the "Terror," to windward of her consort, did not discover the danger till almost too late,
when bearing up, she ran along the edge of the berg in the wash of the surf. On the 24th D'Urvillea and Macrocystis were seen in lat. $51^{\circ} \mathrm{S}$., and the last berg on March 25th, in lat. 47° S., the ships finally gaining the Cape of Good Hope on the 4th of April 1843, within two days of three years after they had first quitted that port for the high southern latitudes.

Respecting the climate of the various regions visited by the expedition, and especially that which prevails within the Antarctic Circle, little need here be said; except that the vast proportion which water bears to land, tends to render the temperature uniform throughout the year, and the farther south is the position, the more equable does the climate seem to be. No analogy can prove more incorrect than that which compares the similar degrees of latitude in the north with those of the south. The most casual inspection of the map suffices to show the immense proportion of sea to land in the southern hemisphere, the mass of the continents terminating to the north of lat. $40^{\circ} \mathrm{S}$., America alone dwindling away to the fifty-sixth degree. The scattered islands discovered to the south of this are therefore removed from the influence of any tracts which enjoy a better or continental climate. The power of the sun is seldom felt, and unless in the immediate neighbourhood of land, and accompanied by a comparatively dry landwind, that luminary only draws up such mists and fogs as intercept its rays. After entering the pack-ice between 55° and 65°, the thermometer seldom, during any part of the summer day, rises above 32° or falls below 20°; and while the southerly winds bring snow, the northerly ones transport an atmosphere laden with moisture, which, becoming at once condensed, covers the face of the ocean with white fogs of the densest description.

All islands and lands to the southward of 45° partake more or less of this inhospitable climate, which, though eminently unfavourable to a varied growth of plants, still, from its equable nature, causes a degree of luxuriance to pervade all the vegetable kingdom, such as is never seen in climates where the vegetable functions are suspended for a large portion of the year. The remoteness of these islands from any continent, together with their inaccessibility, preclude the idea of their being tenanted, even in a single instance, by plants that have migrated from other countries, and still more distinctly do they forbid the possibility of man having been an active agent in the dissemination of them. On the contrary, the remarkable fact that some of the most
peculiar productions are confined to the narrowest limits, is a strong argument in favour of a general distribution of vegetable life over separate spots on the globe. Hence it will appear, that islands so situated furnish the best materials for a rigid comparison of the effects of geographical position and the various meteorological phrnomena on vegetation, and for acquiring a knowledge of the great laws according to which plants are distributed over the face of the globe. These subjects are however foreign to the present sketch, the author of which hopes, ere long, to have an opportunity of dwelling upon them at large and in a different form.

Those persons who have spent a series of years on the ocean, in pursuit of a favourite science, know how little can be effected by the unaided efforts of one individual, and where much is accomplished, how large is the debt of obligation incurred, not only to the facilities afforded by shipmates, but to the accommodating disposition of those with whom he comes in daily contact, and with whom he literally shares one cabin and one table. The author may here be allowed to say, that no man can be more deeply sensible than he is of the rare privilege he enjoyed, in having messmates who were ever ready to sacrifice their own convenience for his accommodation. Most especially does he feel it incumbent on him here to return his thanks to the commanding Officer of the expedition (as is his first duty) for the opportunity afforded of accompanying him, for the kindness always shown during this the most important and interesting scientific voyage that has bcen accomplished since the days of Cook, and for the generous manner in which that officer's private cabin and library were unreservedly placed at his disposal during the whole time the expedition was afloat. Attached as Sir James Clark Ross has ever been to the various branches of Natural History, he took a pleasure in promoting the interests of the collections at all times, and himself gathered many of the plants here described.

There were few of the officers of either ship who did not contribute something to the collection of plants ; but the botanist feels it peculiarly imperative on him here to enumerate and return his especial thanks to Mr. Lyall, Lieut. Smith, and Mr. Davis. Mr. Lyall indeed, as appointed to take charge of the botanical collections on board the "Terror," formed a most important herbarium, from which great assistance has been derived, amounting to no less than 1500 species.

I.

FLORA ANTARCTICA.

PART I.,

BOTANY OF LORD AUCKLAND'S GROUP AND CAMPBELL'S ISLAND.
-

BOTANY

THE ANTARCTIC VOYAGE.

FLORA ANTARCTICA.

I. LORD AUCKLAND'S GROUP AND CAMPBELL'S ISLAND.

Under this head will be considered the Botany of the few small islands which lie to the south of New Zealand, at least so far as have hitherto been examined. Of these, the two most important, Lord Auckland's group, in $50 \frac{1_{2}}{}{ }^{\circ} \mathrm{S}$. lat., $166^{\circ} \mathrm{E}$. long., and Campbell's Island, lat. $52 \frac{1}{2}^{\circ} \mathrm{S}$. and long. 169° E., were visited by the "Erebus and Terror," and the former also by the French and American Discovery Ships*.

Upon M'Quarrie's Island, lat. $55^{\circ} \mathrm{S}$., long. 159° E., a very few plants have been collected, which are deposited in the herbarium of Mr. Brown, and some in that of Sir William Hooker, at Kew. I am not aware that any account has been published of these islands, nor of Emerald Island (lat. $57^{\circ} \mathrm{S}$., long. $163^{\circ} \mathrm{E}$.), the botany of which is entirely unknown, but which probably in this meridian constitutes the southern extreme of terrestrial vegetation. Floating masses of Macrocyslis and D'Urvillca are found, however, living and growing on the limits of the pack-ice, as far as the parallel of $64^{\circ} \mathrm{S}$.

The Flora of these islands is closely related to that of New Zealand, and does not partake in any of those features which claracterize Australian vegetation. Most of the plants may indeed be presumed to exist on the unexplored mountains, especially those of the middle and southern islands, of New Zealand ; but others are doubtless peculiar to those higher southern latitudes which they inhabit, thus being analogous to

[^3]those few novel forms that appear only in the most arctic parts of America. Even between the floras of Lord Auckland's and Campbell's Islands a marked difference exists, several species growing most abundantly in the latter which are not found at all in the former, where also the proportion of species common to other. Antarctic countries is less, and the affinity is greater with the productions of New Zealand.

Lord Auckland's Group.-A view of this small and very limited group, of about twenty miles long and eleven in its greatest breadth, as it appears on approaching from the sea, presents an almost equal distribution of wood, shrubs, and pasture-land. The mountains are low and undulating, nowhere exceeding 1400 or 1500 feet, clothed for their greater part, but scarcely to the very summits, with long grass, and frequently covered during November and December, though not generally, with snow. The climate is rainy and very stormy, so that on the windward sides the plants are stunted and checked, and resemble those of a higher southern latitude, or of an elevation several hundred feet above that which the same species inhabit on the sheltered parts. The whole group of islands appears formed of volcanic rocks, mostly of black trap, whose decomposition, especially among the ranker vegetation of the lower grounds, produces a deep rich soil. A Myrtaceous tree (Metrosideros umbellata) forms the larger proportion of the wood near the sea, and intermixed with it grow an arborescent species of Dracophyllum, several Coprosmas, Veronicas (frutescent), and a Panax. Under these, and particularly close to the sea-beach, many Ferns abound ; conspicuous among them is a species with caulescent or subarborescent stems half a foot and upwards in diameter, crowned with handsome spreading tufts of fronds. Beyond the wooded region, some of the same plants, in a dwarf state, mingled with others, compose a shrubby broad belt, which ascends the hill to an elevation of 800 or 900 feet, gradually opening out into grassy slopes, and succeeded by the alpine vegetation. It is especially towards the summits of these hills that the most striking plants are found, vying in brightness of colour with the Arctic Flora, and unrivalled in beauty by those of any other Antarctic country. Such are the species of Gentian, and a Veromica with flowers of the intensest blue, several magnificent Composita, a Ranunculus, a Phyllachne, and a Liliaceous plant whose dense spikes of golden flowers are often so abundant as to attract the eye from a considerable distance. Here too the vegetable types of other Antarctic lands may be seen in the greatest number, and even such as are analogous to the Arctic productions, none of which can be more decided than a species of Hierochloe, Potentilla, Curdamine, Juncus, Drosera, Plantago, Epilobium, several Grasses, and Mosses belonging to the genera Andrea, Conostomum and Bartramia. Many of the plants in the lower grounds are no less striking and beautiful, as an arborescent Veronica bearing a profusion of white blossoms, a maritime Gention, a handsome large-flowered Myosotis, the magnificent Aralia polaris (Hombr. and Jacq.), two fine kinds of Auisotome, and several beautiful Ferns.

Campbell's Island, two degrees to the southward of Lord Auckland's group, is smaller, far more steep and rocky, with narrow sheltered valleys, and the broader faces of the hills much exposed, and hence bare of any but a grassy vegetation. Except in the bays, the coast is as iron-bound as that of St. Helena, the rocks assuming even a wilder and more fantastic form. Ever lashed by heavy swells, and exposed to a succession of westerly gales, this land affords no holding-place for such trees as skirt the beaches of Lord Auckland's Islands. In the narrow, sinuous bays, however, the scene is quite changed, for they are often margined by a slender belt of brushwood, with an abundant undergrowth of Ferns, stretching up the steep and confined guileys.

The geological features of the two islands are alike, and the only difference in climate consists in that of Campbell's Island being still more forbidding and dreary. Fogs, snow-squalls and mists are the prevailing meteorological phroomena of these regions, and though such a state of atmospbere has a tendency to check the general mass of vegetation, still the constant moisture and equable temperature thus afforded support a luxuriant herbage in the very sheltered valleys. In Campbell's Island, the mountains, which rise very abruptly to about 1300 feet, are almost bare of vegetation, their rocky sides presenting a larger proportion of Grasses, Mosses and Lichens than in Lord Auckland's group. Though all the handsomer plants are also found in the larger of the latter islands, yet, by growing here at a much lower elevation and in far greater abundance, they form a more striking feature in the landscape, the golden-flowered Liliaceous plant being conspicuous, from its profusion, at the distance of a mile from the shore.

I. RANUNCULACEE, Juss.

1. Ranunculus (Hecatonia) pinguis, Hook. fil.; acaulis, carnosus, pilosus, foliis omnibus radicalibus longe petiolatis reniformi-rotundatis crenato-lobatis, petiolis basi late vaginantibus, scapis crassis nudis \mathbf{v}. 1-2-bracteatis folia requantibus unifloris, sepalis 5-8 calyce brevioribus obovatocuneatis v . linearibus, nectariis 3 quandoque nullis v . obsoletis, carpellis numerosissimis in capitulum globosum arcte congestis vix compressis utrinque subalatis dorsoque carinatis stylo valido recto bialato apice sæpe uncinato terminatis. (Tab. I.)

Var. β. pilosus; minor, petiolis foliis scapis calycibusque magis pilosis, petalis linearibus sepalis $\frac{1}{3}$ brevioribus, nectariis 3 valde distinctis.

Var. γ. rhombifolius; minor, foliis subrotundo-rhombeis $3-5$-fidis segmentis subacutis crenato-dentatis v . integris.

Hab. Lord Auckland's group. a and β in boggy places on the hills, alt. 1000 feet; and from the sea to the mountain tops, alt. 1200 feet, in Campbell's Island. \quad. Rocky places in Lord Auckland's group, alt. 1200 feet, rare.

Radix perennis, crassa, subpræmorsa, magis minusve elongata, fibros pallidos carnosos simplices, superne præcipue, emittens. Folia 1-2 unc. longa, 2-3 lata, omnia radicalia, patentia v. erecto-patentia, carnosula, crassa, pilosa (pilis deciduis), longe petiolata, reniformi-rotundata, radiatim venosa, basi lata subincurva, vel subrhomboidea, omnia pluri-lobata, lobis rotundatis magis minusve obtusis integris v. crenatis. Petioli 1-3 unciales, folio longiores, semiteretes, pilosi, basi latissime vaginati, vaginis striatis nervosis extus sæpe rigide fibrosis e reliquiis persistentibus vaginarum vetustarum, margine membranaceis. Scapi solitarii v. bini, rarius plures, erecti, crassi, foliis vix longiores, teretes, pilosi, 1-v. rarissime 2 -flori, nudi v. 1-2-bracteati, bractea elongato-cuneata integra v . obtuse 1 -2-dentata. Flos majusculus, unciam latus. Calyx 5 -rarius 6 -sepalus, sepalis patentibus, ovalibus, submembranaceis, purpureo-tinctis. Petala flava, purpureo-venosa, numero varia, 5-8-10, obovato-cuneata, v. lineari-spathulata, inæqualia, calyce breviora, mcdio nectarifera, nectariis e glandulis 3 depressis marginatis, in totidem nervos sitis. Stamina plurima; filamentis latis; antheris ovalibus obtusis. Carpella numerosissima, in capitulum globosum magnitudine Coryli Avellance nucis, glaberrima, lævia, ovata, nec compressa, dorso carinatis, lateribus alato-marginatis, alis ad apicem styli stricti uncinati rective decurrentibus.

A very handsome species, and quite distinct from any with which I am acquainted. It possesses, however, several of the peculiarities of other Ranunculi from the mountains of South America and the high southern latitudes, particularly in the variable form and number of the petals. In its succulent habit and undivided leaves it has an affinity with R. Cymbalaria, but is perhaps most nearly allied to R. nivicola (Hook. Ic. PI. t. 571-2); especially as in one of our specimens the scape is bifid, 2 -flowered, and bearing a large cauline leaf, thus showing a disposition in the plaut to become caulescent. In the less divided foliage, shape of the petals, \&c., it widely differs from that species, and more particularly in the curious nectaries which are only observable in the var. β, becoming evanescent in the larger and common state of the plant. Here they are large, and situated each about the middle of one of the three principal nerves, which seems to branch into three, the middle branch being continued through the nectary, while the lateral ones are thickened and mn round its edge, all three uniting again at its summit. This circumstance may however be only caused by the thickened margin of the fovea, as the nerves do not appear branched in the petals of a, nor in those of intermediate states, where the nectaries are only perceptible as opake spots. These singular nectaries are also common to another scapigerous single-flowered species, the R. Gunnianus of Tasmania (Hook. Journ. Bot. vol. i. p. 244. t. 133), a plant which has also compressed or 2 -winged styles.

Plate I. Fig. 1, sepal; fig. $2 \& f i g .3$, petals; fig.4, petal of var. β; fig. 5 , stamen; fig. 6, ovarium; fig. 7, the same cut open :-all magnified.
2. Ranunculus (Hecatonia) acaulis, Banks et Sol.; pusillus, glaberrimus, sarmentosus, foliis omnibus radicalibus longe petiolatis cordatis ternatim sectis, lobis seu foliolis subpetiolulatis, obtusis, intermedio integro v. trifido, lateralibus integris v. inæqualiter bifidis, scapis solitariis petiolo brevioribus, sepalis 3-5 ovato-rotundatis, petalis 6-8 flavis late spathulatis obtusis calyce duplo longioribus medio squamuloso-nectariferis, capitulo globoso, carpellis paucis (5-7) ovatis gibbosis lævibus stylo recto brevi subulato terminatis. (Tab. II.)—Banks et Sol. MSS. in Herb. Mus. Brit. DeC. Prodr. vol. i. p. 34. A. Cann. Prodr. F7. Nov. Zeal. in Amn. Nut. Hist. vol. iv. p. 258.

Hab. Lord Auckland's group; moist places near the sea.
These specimens entirely agree with others gathered in the Bay of Islands, New Zealand: the plant apparently prefers, and is perhaps confined to, the immediate neighbourhood of the sea, and in this meridian has a range of 16 degrees of latitude at the level of the ocean. The only species to which it has any aftinity is the R.stenopetalus, Hook. (Ic. Plant.t.677), from Chili, to which it is very nearly allied; the difference in the comparative breadth of the petals being almost the only one 1 have been able to detect. The situation of the nectary on the petals near their middle is common to a large proportion of the species of this genus in the
southern hemisphere, but very rare in those of the northern; the R.parviforus being perhaps the only British one in which it is inserted at a considerable distance from their base. The foliage of this plant is sufficiently accurately described by DeCandolle from Sir Joseph Banks's New Zealand specimens, but the corolla requires some correction, and the fruit was unknown to that author. The calyx consists of from 3-5 membranous, very concave, deciduous sepals. Petals narrow, variable in number, about twice as long as the sepals, bright yellow, $1 \frac{1}{2}$ line long, spreading and horizontal in the expanded flower during the day, 3 -nerved ; nectary conspicuous, sunk, and covered with a closely appressed scale, forming together a deep fovea, opening upwards, placed on the middle of the petal and resembling the fructification of some Davallia. Filaments short, linearsubulate. Anthers broadly oblong. Ovaries about 15 , some abortive, gibbous at the base, with a curved falcate style. Carpels forming globose heads, few in number, 5-8 or 10, rather large, compressed, especially towards the axis of the receptacle; the style straight or curved, very short or longer and subulate.

Plate II. Fig. 1, bud; fig. 2, flower; fig. 3, sepal ; fig. 4, petals; fig. 5, stamen; fig. 6, ovarium; fig. 7, head of carpels; fig. 8, carpel removed; fig. 9, vertical section of the same; fig. 10, lateral; and fig. 11, front view of seed:-all more or less magnified.
3. Ranunculus (Hecatonia) subscaposus, Hook. fil. ; totus pilis subrigidis appressis fulvis hispido-pubescens, foliis plerisque radicalibus longissime petiolatis deltoideo-cordatis profunde tripartitis lobis late cuneatis inæqualiter 3-7-fidis segmentis acutis, scapis folio brevioribus unifloris 1-3-phyllis superne incrassatis et dense pilosis, petalis 5 calyce brevioribus obovato-oblongis infra medium squamuloso-nectariferis.-Hook. Ic. Plant. vol. viii. ined.

Hab. Campbell's Island; by the margins of rivulets in the woods, D. Lyall, Esq. $_{\text {. }}$
This plant I never saw growing; it was detected by my friend Mr. Lyall. In general appearance it very closely resembles the R. lappaceus, Sm., of Tasmania and the northern parts of New Zealand, a species which varies much in size, in the form of the leaves, and in the nature of the pubescence. The R. subscaposus is more slender in habit, with the hairs always closely appressed and of a tawny yellow colour ; but the most important distinction lies in the form and size of the petals, which in R. lappaceus are much larger than the calyx and very broadly oborato-cuneate, with a large triangular fleshy nectary at the very base; but in this plant they are smaller, of a very different shape, and the nectary consists of a minute flat round scale placed a little below the middle. The petioles are nearly a span long; the leaves about an inch in length and somewhat more in width.

II. CRUCIFERA, Juss.

1. Cardamine hirsuta, L.; var. subcarmosa; glabra, floribus majusculis, petalis albidis purpureisve, stylis brevibus latis, stigmatibus subsessilibus.

Hab. Campbell's Island; very common on grassy banks from the sea to an altitude of 500 feet.
Abundantly gathered and used as a salad by the officers of the ships, its succulent leaves being an excellent antiscorbutic. A very dwarf hairy state of this is common among the rocks close to the sea, having the flowers always purple. Except in the very fleshy leaves, and, occasionally, coloured petals, this is in no way to be distinguished from the ordinary states of C. hirsuta, and especially from Cape Horn and Falliland Island specimens, in which the style and stigmata are variable both in length and breadth; in the large size of the petals it agrees with Icelandic and other hyperborean specimens. My friend Mr. H. C. Watson agrees with me in considering that no specific difference exists between this plant and our English C. hirsuta, though they grow netrly at the antipodes of each other. Of the stigmas in the European form, he observes, "they are broader
than the pods when in an early stage, but as the latter approach maturity, the stigmas shrink and dry. This change is not uniform in all English specimens."
2. Cardamine corymbosa, Hook. fil.; hirsutula v. glabra, caulibus perbrevibus rigidis ad basin ramosis, ramis gracilibus flexuosis diffusis parce foliosis, foliis longe petiolatis pinnatisectis, foliolis $3-5$ subpetiolulatis rotundatis terminali majore, lateralibus remotis sæpe minutis, floribus corymbosofasciculatis axillaribus v. terminalibus, corymbis nunc proliferis, pedicellis breribus demum valde elongatis, siliquis anguste linearibus in stylum brevem attenuatis, replo angusto, valvis planis, stigmate minuto.-Hook. fl. in Icon. Planl. vol. vii. pt. உ. tab. 686.

Hab. Campbell's Island; on turfy ground near the sea, common.
Radix perennis, e fibris crassis, subfusiformibus, allidis, ramosis, descendentibus. Tota planta pilis sparsis patentibus hirsuta et ciliata, v. glabra. Caulis perbreris, crassiusculus, albidus, rigidus, fragilis, fere ad collum ramosus; ramis $2-4$ uncias longis, teretibus, gracilibus, patentibus, adscendentibus, subproliferim divisis. Folia perpauca, radicalia subnulla; ramea remota, longe petiolata, pinnatisecta; foliolis 3-5, rotundatis seu late ovatis obovatis cordatisve, integerrimis, petiolulatis, terminali majore 3-4 lin. longo, lateralibus remotis sæpe minutis. Petioli graciles, 1-2 unciales, basi dilatati. Flores parvi, corymboso-fasciculati, axillares et terminales, nunquam, etiam fructiferi, racemosi. Pedicelli quandoque in axillis solitarii, primum brevissimi, demum valde elongati, unciam sesquiunciam longi, patentes. Sepala elliptica, ovata, venosa, purpurascentia. Petala calycem duplo superantia, oborato-spathulata, venosa, alba. Siliqua erecta, gracilis, stricta v. paululum curvata, $\frac{1}{2}-\frac{2}{3}$ unciam longa, anguste linearis, compressa, apice in stylum brevem crassiusculum subulatum attenuata. Stigma obtusum, vix stylo latius. Semina uniseriata, fusca. Cotyledones obovatæ. Radicula clavata.

This is a small and very distinct species of Cardamine, wiry and fragile in every part. The stems are short, or rather, at once, after springing from the collum, divided into spreading, ascending, filiform branches, with few and small leaves; and with corymbs, or more correctly speaking, fascicles of flowers, which at no period seem to constitute a raceme. Sometimes even the flower is solitary and axillary; generally several spring together from the side or apex of a stem, subtended by a leaf; sometimes a pedicel appears proliferous, running out into a stem and bearing a fascicle or corymb and a leaf at its apex : so that the inflorescence has little the appearance of that of a cruciferous plant.
3. Cardamine depressa, Hook. fil.; glaberrima, subacaulis, foliis confertis plerisque radicalibus longe petiolatis undique patentibus obovato-spathulatis obtusis inferne sinuato-lobatis, racemis breviter pedunculatis corymbosis petiolo brevioribus, siliquis longe pedicellatis erectis linearibus compresso-tetragonis stylo brevi attenuato mucronato terminatis. (Tab. III.)

Var. β. acaulis; foliis flaccidis tenui-membranaceis longissime petiolatis integris v. inferne subdentatis.Tab. IV.B.

Hab. Lord Auckland's group ; in gravelly moist places near the sea amongst grass. β. In clefts of rocks, alt. 1200 feet.

Radix brevis, sulfusiformis, valida, fibrosa, superne multiceps. Caules brevissimi, ramis abbreviatis foliosis. Folia numerosa, conferta, undique patentia, v. superiora suberecta, petiolata, obovato-spathulata, glaberrima, subcarnosa, sinuata v. lobata lobis obtusis, rarius integra, una cum petiolo 1 unc. longa, 3-4 lin. lata. Flores parvi, subcorymboso-racemosi. Racemi abbreviati, plerumque e collo ipso orti, foliis $1-2$ subtensi, terminales, rarius, ob ramos subelongatos, axillares, petiolo multo breviores. Pedicelli floriferi brevissimi ; fructiferi elongati, graciles, adscendentes, 3 lin. ad $\frac{3}{4}$ unc. longi. Sepala concava, ovato-oblonga, obtuse trinervia. Petala anguste spathulata, albida, calycem plus duplo superantia. Filamenta compressa, inferne dilatata. Sili$q u a$ erecta, $\frac{1}{2}-1$-pollicaris, ${ }_{4}^{3}$ lin. lata, pedicello longior v. subæquilonga, linearis, compresso-tetragona, valvis pla-
nis v. subtorulosis medio uninerviis; replo latissimo ; stylo brevi angusto; stigmate parvo. Semina sub 20, testa rufo-fusca.

A very distinct species, which will come under the small section with undivided leaves, to which also the C. bellidifolia, L., of Northern Europe, belongs; a plant to which the present is unquestionably nearly allied. In both these species the leaves vary much, being sometimes, but rarely, almost entire in this, whilst in the C. bellidifolia they are mere seldom sinuate or lobed. The very great breadth of the septum, which is winged on both sides, and forms an acute angle with the valves, is a most remarkable character, peculiar, as far as I am aware, to this and the following species; at times it is almost as broad as the valves themselves. In South America this form is represented by C. chenopodiifolia, Pers., which is however a larger and caulescent plant, with very conspicuous showy flowers,-a similar species, or perhaps variety, inhahits the Andes of Chili, at an elevation of 10,000 feet. The var. β was gathered in a very imperfect state with young flowers only. ln general appearance it differs much from the normal form of the plant, and more especially in the flaccid membranous texture, long petioles, with shorter, rather broader, and nearly or quite entire leaves. It may prove distinct, but the specimens are not in a fit state for satisfactory determination.

Plate III. Fig. 1, flower ; fig. 2, sepal ; fig. 3, petal ; fig. 4, stamens and ovarium ; fig. 5, stamen; fig. 6, siliqua; fig. 7, side-view of same; fig. 8, siliqua, with valve removed; fig. 9, seed; fig. 10, embryo:-more or less magnified.-Plate IV. B. var. β.
4. Cardamine stellata, Hook. fil.; parva, acaulis, piloso-hispida, foliis confertis stellatim patentibus longe petiolatis elliptico-spathulatis integris v. inferne sinuato-pinnatifidis, floribus corymbosis, corymbis sessilibus, pedicellis gracilibus, siliquis abbreviatis linearibus compressotetragonis, replo latissimo, stylo brevi subulato. (TAB. IV. A.)

Hab. Campbell's Island; on the débris at the base of precipices in very exposed places.
Planta pusilla, depressa, plagæ inclementis typica, tota pilis albidis subhispida. Radix perenais, ad collum crassa, deinde fusiformis et fibrillosa. Caulis 0. Folia omnia radicalia, numerosa (circiter 15-20), horizontaliter et undique stellatim patentia, longe petiolata, una cum petiolo $\frac{1}{2}-1$ unc. longa, $2-3$ lin. lata, ciliata, subcarnosa, e petiolo sensim dilatato-spathulata, v. elliptico-oblonga, ubtusa, integra v. basi sinuato-lobata, seu pinnatifida, lobis obtusis. Flores corymbosi. Pedicelli elongati, e pedunculo brevissimo inter folia radicalia orti, hinc scapos sæpe simulantes, sub 3 lin. longi, erecti ; fructiferi magis elongati. Sepala lineari-oblonga, obtusa, 3 -nervia, extus pilosa. Petala $\frac{1}{2}-\frac{3}{4}$ lin. longa, obovato-spathulata, albida, calyce paulo longiora. Antherce dorso glandula parva. Siliqua parva, erecta, $\frac{1}{4}$ unc. longa, pedicellum subæquans, compresso-tetragona, recta v . paululum curvata, pilosa v. glabra, gradatim in stylum angustum acuminata; valvis planis medio uninerviis; replo latissimo ut in C. depressa. Semina quoque loculo 6-8, rufo-fusca.

The habitat of this plant is remarkable, as it grows only in the most exposed situations on the weather shores, about 100 feet above the sea. In the form of the leaves it resembles the C. pusilla, Hochst., an Abyssinian species, but these are here more crowded and spathulate, and the inflorescence is quite different. The siliqua, though shorter, has very much the same form as that of C. depressa.

Plate 1V. A. Fig. 1, flower; fig. 2, sepal; fig. 3, petal ; fig. 4, stamens; fig. 5, siliqua ; fig. 6, seed:-all magnified.

III. CARYOPHYLLE E, Juss.

1. Stellaria decipiens, Hook. fil. ; glabra, caule decumbente dichotome ramoso, foliis recurvis omnibus (etiam supremis) petiolatis obovato-rhombeis acutis apice callosis carnosulis siccitate punctis minutis elevatis asperis, petiolis subciliatis, pedunculis di-trichotomis (rarius unifloris) folia
plerumque superantibus ad furcaturam pedicelloque unico medium versus 2-bracteatis, bracteis ovatis acutis scariosis albidis, petalis 5 bipartitis calycem æquantibus interdum eo brevioribus v. nullis filamentisque ima basi dilatatis fere hypogynis, stylis 3.-Hook. fl. in Icon. Plant. vol. vii. t. 680.

Hab. Lord Auckland's and Campbell's Islands; common on the low grounds, especially in the woods, and near the sea.

Caules tetragoni, e basi valde ramosi, filiformes, 3-5 unc. longi. Folia carnosula, 3-5 lin. longa, obovata seu rhomboidea, hinc inde, siccitate, minute tuberculata. Petioli 1-3 lin. longi, latiusculi. Pedunculi folio plerumque longiores, solitarii, raro uniflori, bifidi seu trifidi; ramis inæqualibus. Petola sæpe 0.

In many respects this agrees with the S. uliginosa, Murr., and more particularly in the size and arrangement of the inflorescence, but the stems are always decumbent, the leaves all petiolate, very patent or recurved, and not at all broader or ovate at the base; their callous apices are common to both species. The peduncles generally bear two pedicels, which have a pair of bracts at the base, and a pair on one of the pedicels, whereas in S. uliginosa the peduncle is trichotomously divided, with the intermediate pedicel only destitute of bracts. The styles seem to be constantly three, and the stamens and petals are less decidedly perigynous than in the latter plant. In form the leaves resemble those of S. media, With., but the inflorescence is very different, and the stem wants the alternate line of hairs.
2. Stellaria media, With.-Engl. Bot. t. 537. DeC. Prodr. vol. i. p. 396. Alsine, L.

Hab. Lord Auckland's Islands; covering the tomb of a French sailor, and growing along with Poa annua, L.: undoubtedly introduced. A straggling, very common European form of the plant, still retaining all its characters.

IV. DROSERACEE, DeC.

1. Drosera (sp.)?

Hab. Lord Auckland's group; on the hills.-Of this I only once met with a solitary specimen, scarcely in flower, resembling a good deal the D. unifora, Willd., of Tierra del Fuego; but it was lost among the many botanical rarities brought down to the ship on that day, so that I am only able to record the fact of a species of the genus growing on the island.

V. GERANIACE $\nrightarrow, D e C$.

1. Geranium microphyllum, Hook. fil.; pusillum, adpresse pubescens, caulibus adscendentibus, foliis omnibus longe petiolatis orbiculari-reniformibus $5-7$-lobatis, lobis trifidis subtus discoloribus, pedunculis lateralibus solitariis v. binis elongatis unifloris supra medium bibracteolatis, petalis (albis) obovato-cuneatis integris v. retusis, glandulis ad basin staminum fere obsoletis, filamentis ciliatis, stylis brevibus, ovario piloso. (TAB. V.)

Hab. Lord Auckland's group; in boggy places, alt. 1000 feet.
Radix perennis, multiceps, ad collum squamosa; squamis vaginantibus, ovatis, membranaceis, fuscis, nitidis. Caules ex eadem radice $3-4,3-5$ unc. longi, nudiusculi, decumbentes, deinde adscendentes, parce pilosi, crassitie pennæ passerinæ, internodiis remotis. Folia radicalia longissime petiolata, $\frac{1}{3}$ unc. lata, supra, et subtus (præcipue ad nervos) adpresse pilosa; lobis lato-cuneatis, obtusis, 3 -fidis, segmentis latis acutis; late viridia, subtus fusco-purpurea. Petioli graciles, filiformes, 2 unc. longi, basi stipulis vaginati, inferne
glaberrimi, superne incano-pilosi. Stipule ovatæ, acuminatæ, rufo-fuscæ, scarioso-membranaceæ. Pedunculi uniflori, erecti, petiolo breviores, superne pilosi, supra medium bibracteolati ; bracteis parvis, oppositis, ovatis, acuminatis. Petala $1 \frac{1}{2}-2$ lin. longa, patentia, alba. Stamina 10, subrequalia; antheris oblongis.

In the single-flowered peduncles this is allied to the Tasmanian G. potentilloides of L'Héritier, but the plant is much more dwarfish, with short procumbent or ascending stems, less hairy, especially below, with the hairs appressed; the peduncles also are shorter than the leaves, which latter are less deeply cut.

Plate V. Fig. 1, flower; fig. 2, petal ; fig. 3, flower with the petals removed; fig. 4 , underside of the calyx ; fig. 5 , portion of the stamens; fig. 6, ovaria :-all more or less magnified.

VI. ROSACE \mathbb{E}, Juss.

I. Sieversia albiflota, Hook. fil. ; parvula, hirsuta, caulibus set scapis parce foliosis tri-quinquefloris, foliis radicalibus interrupte lyrato-pinnatis, foliolis lateralibus minutis grosse dentatis, terminali maximo orbieulari-cordato obscure lobato inæqualiter dentato, caulinis subsessilibus, pedicellis superne incrassatis unibracteatis, bractea sessili trifida, calycis segmentis patentibus ciliatis, petalis (albis) obovatis retusis extus pilosis, ovariis in stylum brevem rectum (nec geniculatum) attenuatis in stipitem articulatis, receptaculo elongato gracili. (Тав. VII.)

Hab. Lord Auckland's group; rocky places on the hills, alt. 1000 feet.

I regret that owing to the early season I only met with two or three flowers of this rare plant, and not one specimen with perfect fruit. It is the smallest species known to me, and has a creeping, woody, subfusiform, oblique root, throwing out coarse fibres; and from the summits of this spring most of the leares. The stems, or rather scapes (for they remain withered stalks after the fall of the fruit), arise also from the top of this root, and are branched, twice or thrice as long as the radical leaves: they bear a few flowers with white petals, which are succeeded by the narrow elongated receptacle, hispid as it were with the persistent stipites of the carpels. It is this character which it has in common with a very arctic species, the S. Rossii, Br., together with the very short styles, that induces me to place it in Sieversia; for the style seems too short ever to be geniculated. It further differs from all known species in having white petals.

Plate VII. Fig. 1, unexpanded flower; fig. 2, expanded flower; fig. 3, petal ; fig. 4 and fig. 5, stamens; fig. 6, young ovarium ; fig. 7 , receptacle after the carpels have fallen away :-all more or less magnified.

1. Acena (Ancistrum) Sanguisorbe, Vahl., Emem. vol. i. p. 294. DeC. Prodr. vol. ii. p. 592. A. Cunn. Prodr. Fl. Nov. Zeal. in Ann. Nat. Hist. vol. iii. p. 24. Ancistrum Sanguisorbæ, Limn. fil. A. anserinæfolium, Forst. Gen.t.2. A. diandrum, Forst. Prodr. n. 5@. A. decumbens, Gertn. Fruct. t. 32.

Var. ß. minor; depressa, ramis brevissimis, foliis valde sericeis. A. decumbens, Menzies in Herb. Hook.
Hab. Abundant in Lord Auckland's group and Camplocll's Island, especially on cliffs overhanging the sea. β. On the mountains in rocky places. M‘Quarrie’s Island, in Herb. Hook. ; also found in Dusky Bay by Mr. Menzies.

The ordinary states of this plant differ in no particular from other specimens gathered at the Bay of Islands. It is also a native of Tasmania, and probably of Southern Australia. Stems trailing, a span to two feet long. Branches erect or ascending. Leaves impari-pinnate, with 4-6 pairs of obovate or oblong, ccarsely serrated, sessile leaflets, smooth on the upper surface, silky beneath, and more especially in the young plants, and in var.
β. at the apices of the serratures, which are there terminated by pencils of white hairs. Flowers capitate upon long slender peduncles. Stigma plumose.
2. Acena (Ancistrum) adscendens, Vahl, Emum. vol. i. p. 297. DeC. Prodr. vol. ii. p. 593. Ancistrum humile, Pers. Ench. vol. i. p. 30.

Нав. M'Quarrie's Island. (Herb. Hook.)

This is perlaps the most common and widely diffused species of the genus, being found abundantly throughout Chili and Fuegia, as well as in the Falkland Islands and Kerguclen's Land. It may readily be distinguished by its large size, and by its smooth red-brown, often glaucous, decumbent stems. The leaflets are generally membranous, obovate or cuneate, $\frac{1}{3}-\frac{2}{3}$ inch long, coarsely inciso-serrate, glabrous on the upper surface, pubescent or almost silky beneath. The scapes or peduncles, bearing the globose capitula, are quite glabrous. The whole plant varics much in the size and toothing of its leaflets, whence I am inclined to think it may be the large and ordinary form of A.Magellanica, Lam.; although Vahl describes the peduncles of that plant as " superne subvillosi." 1 further doubt how far the A. ovalifolia, Ruiz, and Pav. (Fl. Per. t. 103. f. c.), will prove distinet ; it again is allied to the A. Sunguisorbe, Vahl. The present form was not found either in Tasmania, New Zealand, or in Lord Auckland's or Campbell's Islands. The fact of its reappearance in a higher snuthern latitude is an interesting one, and in accordance with the known laws affecting the distribution of plants.

VII. ONAGRARIæ, Juss.

1. Epilobiem linneoides, Hook. fil.; herbaceum glaberrimum caule repente vage ramoso, ramis divaricatis adscendentibus, foliis petiolatis cordato-rotundatis flaccidis argute dentatis, pedunculis solitariis axillaribus rarius terminalibus folio longioribus fructiferis sæpe valde elongatis, floribus erectis, sepalis apice glanduloso-apiculatis, petalis (roseis) calyce longioribus cuneatis profunde bifidis, stigmate indiviso clavato, fructibus glaberrimis ercetis pedunculo brevioribus. (Tab. VI.)

Hab. Lord Auckland's group and Campbell's Island; abundant. Also more rccently found amongst the mountains of New Zealand by Mr. Colenso.

A very pretty species, allied to the E. nummularifolium, R. Cunn., of New Zealand, but readily distinguished by its much larger size and thin, flaceid (not fleshy) leaves, which are strongly eroso-dentate. In Mr. Colenso's specimens the stems are longer, and the leares less rounded in form with longer petioles. Stems weak, terete, $3-6$ inches long. Leaves in rather remote pairs, bright green and shining above, often discoloured and purplish beneath, $\frac{1}{3}-\frac{1}{2}$ inch long, sometimes broader than long. Petioles $1-3$ lines. Peduncles, even when flowering, very variable in length, from $\frac{1}{2}-3$ inches long, generally erect. Sepals concave, especially towards the apex, which is produced into a thickened, short, club-shaped apiculus or gland. Peials about half as long again as the sepals, $1 \frac{1}{2}$ lin. long, of a pale rose-colour, bifid nearly half-way down. Filameuts thickened at the connectivum. Style gradually swelling upwards into a club-shaped obtuse stigma. Capsule (which I have seen ripe only in the New Zealand specimens) narrow, erect, quite glabrous, about an inch long.

Plate VI. Fig. 1, flower spread open; fig. 2, petal; fig. 3, flower with the petals removed; fig. 4, front, and fig. 5 , back view of a stamen :-all magnified.
2. Epilobium conferlifolium, Hook. fil.; herbaccum, glabrum, caule repente radicante ramoso, ramis divaricatis decumbentibus teretibus cum lineis duabus oppositis incanis, foliis oppositis valde approximatis subimbricatis breviter petiolatis oblongo-obovatis obtusis subcarnosis glaberrimis remote
et obscure dentatis, petiolis margine incanis basi connatis subvaginantibus, pedunculis sessilibus solitariis axillaribus, floribus erectis, petalis rubris subpurpureisve ad medium bifidis, ovario glaberrimo, stylo oblique clavato, capsula lineari clongata glaberrima.-Hook. fil. in Icon. Plant. t. 685.

Hab. Lord Auckland's group and Campbell's Island; on grassy banks and in moist places, abundant.

This little plant in every respect occupies the place in these islands, that the E. alpinum, L., does on the European mountains. The two species are indeed so very closely allied, that I look in vain for further constant characters than the creeping and rooting much-branched stem, the densely crowded, broader, and more obovate leaves with almost sheathing petioles, and the deeply bifid petals of the present one. The more remarkable points of similarity, besides the general appearance, are the lines of pubescence on the stem, the sessile or shortly pedunculated ovaria (which in E. alpinum are however often lengthened), the deep colour of the petals, and the simple clavate stigma, which is here decidedly oblique and gibbous at the base. A very similar species is found on the Andes of Peru and in Chili.
3. Epilobium nerterioides, A. Cunn.; glaberrimum, caule repente radicante, foliis oppositis breviter petiolatis ellipticis rotundatisve subcoriaceis et carnosis marginibus integris recurvis, fructibus glaberrimis pedunculatis inclinatis pendulisve.-E. nerterioides, A. Cunn. Prodr. Flor. Nov. Zeal. in Amn. Nat. Hist. vol. iii. p. 32.

Hab. Lord Auckland's group; in moist rocky places, alt. 1200 feet, rare, not found in flower or fruit.

In these very imperfect specimens the leaves are much more fleshy, and their margins more strongly recurved, than in others gathered by Mr. Menzies in Dusky Bay, or by myself in the Bay of Islands. Like other species however of the same genus, the plant is probably a very variable one. Mr. Cunningham quotes the E. pendulum, Sol., as a synouym of E. nummularifolium, R. Cunn., a species very nearly allied to the present, but larger, with distinctly crenate leaves, and having the capsules hoary with a white down. In habit and foliage this plant resembles the Anagallis tenella, L., and as well as many of the New Zealand species, it has a peculiarly creeping mode of growth, which none of those of the northern hemisphere possess.

VIII. HALORAGEE, Br.

1. Callitriche verna, L. DeC. Prodr. vol. iii. p. 70. D'Urv. Fl. Ins. Mal. in Mém. Soc. Limu. Par. vol. iv. p. 620. Gaud. in Freyc. Voy. Bot. p. 13ヶ.

Var. β. terrestris; caulibus brevissimis repentibns, foliis approximatis carnosis.
Hab. Lord Auckland's group and Campbell's Island; common on the ground and on wet rocks near the sea. β. On the ground by the margins of pools, Campbell's Island.

A very general plant throughout the Antarctic Islands visited by the "Erebus and Terror." First noticed as a native of the Falkland Islands by Admiral D'Urville, who, in his description of the plant, which is not uncommon there, and is identical with the var. β. of Camphell's Island, alludes to the filament and ovarium as each arising from a minute bipartite calyx. Neither in my dried specimens, nor when in a fresh state, could I detect organs answering to this description. The bractex, which are extremely caducous, and only exist in the very youngest state of the flower, are singularly falcate, linear-subulate and membranaceous, similar to those of C. platycarpa, Kützing. The leaves vary much in shape, and the whole plant in size, as in Europe. The anthers,
(though described as one-celled) are in reality didymous and 2 -celled; they first open down each side and then across the connectivum at the top, always remaining partially 2 -celled. Filaments often very long, half an inch and upwards. The styles are also slender, and when highly magnified exhibit throughout their length minute papillæ. Ovary (or female flower) $2-4$-celled, pedicellate. The flowers are generally solitary; the males in the axils of the upper, and the females in those of the lower leaves, with a small abortive leaf-bud in the opposite axil.

IX. MYRTACEE, $B r$.

1. Metrosideros (Agalmanthus) lucida; arborea, foliis oppositis petiolatis ellipticis utrinque acuminatis integcrrimis glaberrimis coriaceis rigidis enerviis inferne glanduloso-punctatis (glandulis luteis) marginibus revolutis, floribus 3-5 ad apices ramulorum brcviter pedunculatis umbellatis, calyce turbinato sericeo, lobis latc ovatis subacutis, petalis obovato-oblongis spathulatisve calycis limbo duplo longioribus apice ciliatis, filamentis petalo subtriplo longioribus.-Menz. MSS. in Herb. Hook. A. Rich. Fl. Nov. Zeal. p. 333. A. Cunn. Prodr. Fl. Nov. Zeal. l. c. vol. iii. 1. 114. M. umbellata, Cav. Ic. vol. iv. tab.337. Smith in Rees's Cycl. vol. xxiii. DeC. Prodr. vol. iii. p. 225. Agalmanthus umbellatus, Hombr. et Jacq. Voy. au Pol. Sud, Bot. tab. 1. sine descript. Melaleuca lucida, Forst. Prodr. n. 216.

Hab. Lord Auckland's group; from the sea to an altitude of 500 feet. Abundant. (Not seen in Campbell's Island.)

Originally discovered by Sir J. Banks and Dr. Solander at Totarra nui in the North Island of New Zealand, and a very fine drawing of it, made during Captain Cook's first voyage, is preserved in the British Museum. It was again found by Forster during Cook's second voyage, in Dusky Bay, and by him first published. Mr. Menzies also gathered it at the latter locality. I am at a loss to conceive low the specimens came into the possession of Felix Neè, from whose collection Cavanilles figured and described the plant under the name of Metros. umbellata, as a native of Port Jackson. The figure given by the latter author is very characteristic, except that the peduncles are represented as too long and slender. In the plate accompanying the late French expedition of Admiral D'Urville, the sketch of the entire plant does not do justice to that which constitutes the largest tree on Lord Auckland's group, and the most abundant, skirting the whole line of sea-coast with a broad helt of evergreen flat-topped forest wood. The single trees are from $20-40$ feet ligh, inclined, with trunks $\because-3$ feet in diameter, often flattened, seldom crect, covered with a pale reddish bark, which flakes off like that of the birch. From the trunks and lower branches there are often sent out large tufts of dry root-like processes, which run along the surface, and are covered with a loose thick and spongy light brown cuticle. The branches are spreading and ascending, from the inclemency of the climate and violence of the winds forming stag-headed trees, whose tops are perfectly flat, as if cut with a scythe. The ultimate branches, which bear a few leaves, are angular and covered with a loose white papery cuticle, which turns yellow in drying. The leaves are of a lurid but shining green, more yellow on the under surface, and there covered with large yellow glands. Petals when young white with red tips, in the more expanded state crimson, as are the stamens. The inflorescence in this, as in all other New Zealand species, is in umbels or corymbs. The Myrtacece, which in North America do not attain a higher latitude than 26°, and in Europe only one reaches the 46 th degree, in the southern regions are amongst the most Antarctic plants, being most abundant in Tasmania, lat. $42-44^{\circ} \mathrm{S}$. ; in New Zealand, throughout the islands as far as $50 \frac{1}{2}^{\circ} \mathrm{S}$., and in South America accompanying other plants as far as 56° S., where that continent terminates in the South Polar Ocean.

X. PORTULACEE, Juss.

1. Montia fontana, L. DeC. Prodr. vol. iii. p. 362. M. linearifolia, D'Urv. Fl. Ins. Mal. l. c. vol. iv. p. 619. M. lamprosperma, Chamisso in Linnea, vol. vi. p. 565.t. 7.

Hab. Lord Auckland's group and Campbell's Islands; in moist places near the sea, abundant.
This is a very variable plant and an exceedingly common one in the southern regions. The specimens from the various Antarctic islands vary much in size, in the form of the leaf, in the number of the stamens, and in the number and nature of the surface of the seeds. Those of the Auckland and Campbell's 1sland specimens agree with the figure quoted of Chamisso's M. lamprosperma, but they are not larger than the seeds of European specimens. The Falkland Islands, form again has the seeds very large with a black tuberculated shining testa, agreeing in the latter character with those of Kerguelen's Land, which are however smaller. In the Peruvian plant the seeds are very small, but covered and almost echinate with crowded elevated linear tubereles. Those of the English plant are not constant in size, but the testa is generally more opake and not remarkably tuberculated. It is difficult to find a more widely distributed phænogamic plant than this, especially in the southern hemisphere, where it generally accompanies the Callitriche verna. In New Zealand and in Peru it inhabits a more elevated region. According to Boissier, it attains in Spain an altitude of $5000-7000$ feet. In the Highlands of Scotland it ascends to 3000 feet, and reaches as far north as Iceland and Siberia in Europe and Asia. Though universally distributed over all the temperate parts of these two continents, and in the south, it appears to be singularly rare in North America, being hitherto detected only in Labrador, Greenland (whose Flora presents more European peculiarities than any other part of America east of the Rocky Mountains), Sitka and the Oregon.

1. Colobanthus subulatus; dense pulvinatus nitidus, caulibus ramosis foliosis, foliis arcte imbricatis strictis rigidis subulatis coriaceis supra canaliculatis basi scarioso-membranaceis vaginantibus apicibus subpiliferis, floribus terminalibus solitariis, pedunculis folio brevioribus, sepalis 4-5 erectis inæqualibus lanceolatis striatis pungentibus, staminibus $4-5$ filamentis basi in annulum perigynum coalitis, capsula 4-5-fida.-Sagina subulata, D'Urv. Fl. Ins. Mal.l.c.p.618. S. muscosa, β. squarrosa et γ. laricifolia, Sol. MSS. in Herb. Mus. Brit. Colob. Benthamianus, Fenal, MSS. in Endl. Atakt.t. 49. Ann. Wien. Mus. $\dagger 49$.

Hab. Campbell's Island; in rounded tufts on rocks near the summits of the hills, alt. 1000 feet.
Caules $1-1 \frac{1}{2}$ pollicares, ramosi, fastigiati, glaberrimi. Folia $1 \frac{1}{2}-2$ lin. longa, pallide viridi-straminea, erectopatentia, basi connata. Pedunculi $\frac{3}{4}$ lin. longi, subangulati, validi. Perianthium folia vix superans et is immersum, basi truncatum ; sepalis basi incrassatis, in nostris exemplaribus 5, quorum 2 exterioribus paulo majoribus, 3 interioribus imbricatis. Stamina 5 , rarius 4 , manifeste perigyna, perianthii foliolis alterna ; flamentis compressis, subulatis; antheris ovalilus. Ovarium oratum, disco perigyno insertum, 1-loculare, sub 5 -ovulatum. Styli 4-5. Stigmata lineari-clavata, intus glandulosa. Capsula ad medium 5-fida v. 4-5-partita, chartacea; segmentis obtusis, perianthio persistente inclusa. Semina 3-4, angulata, subreniformia, compressa; testa pallide brunnea, subtilissime granulata.

Of rare occurrence, and confined to the tops of the hills in Campbell's Island; nowhere seen in Lord Auckland's group. In the Falklands, and in Fuegia, where it was discovered by Banks and Solander, it is very common, both on the low grounds and on the mountains. I have followed Fenzl and Endlicher in placing this genus in Portulacee, though I must confess that to me it appears too closely allied to Caryophyllece, and especially
to Sagina, to be far removed from that genus, while the habit is not that of any of this Order. The present plant differs from its congeners in being rigid and somewhat pungent; the structure of the flower however entirely agrees with that of the previously described species. All the specimens I have examined from this locality have a 5 -sepalous perianth, which in the South American state of the plant is as invariably 4 -sepalous. it is also apt to assume here a monstrous state, the central axis of the capsule becoming proliferous and sending ont from the position of the placentæ (in the natural state) two foliaceous shoots, cach with two pairs of leaves, projecting beyond the perianth, and the ovules (abortive) arranged round the bases of these shoots.
2. Colobanthus muscoides, Hook. fil.; densissime compactus carnosus, ramis confertis foliosis, foliis arcte imbricatis patentim recurvis lineari-subulatis obtusis supra planis basi lata counatis, pedunculis brevissimis solitariis terminalibus superne incrassatis, perianthio herbaceo parvo compresso, sepalis 4 crectis lanceolatis obtusis concavis exterioribus majoribus dorso obscure carinatis, staminibus 4 per paria approximatis ex annulo perigyno incrassato ortis.

Нab. Lord Auckland's group and Campbell's Island; on wet rocks especially near the sea, and immediately above high-water mark.

The smallest species in regard to size of leaves and flower with which I am acquainted, and yet perhaps most nearly allied to the finest of the genus, a Kerguelen's Land species. The whole plant is densely matted and fleshy, forming compact tufts. Stems $3-4$ inches long. Leaves 2 lines. The flowers are much compressed, very minute and inconspicuous, 1 line long, sunk among the leaves. Perianth of fonr erect sepals, of which the lateral are larger, more concave, and keeled at the back. Perigynous ring very conspicuous, and swollen into two large yellow fleshy glands between the bases of the stamens.
3. Colobanthus Billardieri, Fenzl, Ann. Wien. Mus. I. 48, in not. Spergula apetala, Lab. Fl. Nov. Holl. vol. i. p. 112. t. 182. DeC. Prodr. vol. i. p. 395. Hook. fil. in Bot. Journ. vol. ii. p. 410. Stellaria uniflora, Banks and Sol. MSS. in Mus. Benks.

Hab. Campbell's Island; on banks near the sea, scarce.
This species was originally discovered by Banks and Solander at Totarra nui, in the Northern Island of New Zealand, during Captain Cook's first royage, and an excellent drawing of it, by Parkinson, is preserved in the Banksian collection. Labillardière afterwards detected it in Tasmania, whence Mr. Gunn sent beautiful specimens, in describing which I had occasion to notice its near affinity with the genus Sagina. Fenzl (l.c. according to Walper's Repert. vol. ii. p. 249) quotes the Sagina crassifolia, D'Urv., as a synonym of his C. Billardieri, and reduces the original plant of Labillardière to a variety, under the name of β. procerior. What I take for the plant of Admiral D'Urville, whose description (Mém. Soc. Linn. Paris, vol. iv. p. 617) is very characteristic, is much larger, of a different habit, and with truly linear very fleshy leaves, and is common in the Falklands, as well as the C. Quitensis, Bartl., which is closely allied to the C. affinis (Spergula affinis, Hook. Icon. Plant. vol. iii. t. 266). Labillardière says of the stamens of C. Billardieri, "sub pistillo inserta," but this is not the case with the specimens I have examined. They are clearly placed at the exterior of a membranous disc which surrounds the perianth, remote from the base of the ovary. The Campbell's Island specimens are very small, scarcely an inch high, whereas the Tasmanian are twice or thrice that size.

XI. CRASSULACE E, $D e C$.

1. Bulliarda moschata, D’Urv., F\%. Ins. Mal. l.c. p. 6I8. Gaud. in Freyc. Voy. Bot. p. 138. B. Magellanica, DeC. Bull. Philom. n. 49. Tillæa moschata, DeC. Prodr. vol.iii. p. 382. Hook. Icon. Plant. t. 535. Crassula moschata, Forst. Act. Goelt. ix. p. 26.

Hab. Lord Auckland's group and Campbell's Island; abundant on wet rocks immediately above high-water mark.

Petala patentia, obovato-cuneata, concava, albida, sæpe rubro-striata. Filamentu subulata, carnosa, siccitate compressa et ut videtur dilatata. Squame hypogynce 4 , carpellis oppositis et iis paulo breviores, cuneatæ. Carpella trigona, obovata, superne oblique truncata, dorso canaliculata: stylis brevibus, recurvis.

The geographical range of this species is wide, being found along the west coast of South America, from lat. 46° S. to Cape Horn, and also in the Falklands and Kerguelen's Land, but nowhere so abundantly as in this group. Notwithstanding the name given it by its discoverer, I was unable to detect any odour of musk or smell of any kind in the fresh plant.

XII. UMBELLIFERÆ, Juss.

1. POZOA, Lag.

Subgen. Schizellema, Hook. fil. (Invoiucrum 亏̄-6-phyllum. Flores hermuphroditi-Herbaceocarnosa. Caulis repens nodosus.)

1. Pozoa reniformis, Hook. fil.; foliis longe petiolatis reniformibus multilobatis lobis latis retusis, petiolis basi vaginantibus, pedunculis petiolo brevioribus, involucri foliolis 3-4 linearibus, pedicellis $5-7$ brevibus, calycis lobis late ovatis obtusis. (Tab. XI.)

Нав. Lord Auckland's group; clefts of rocks and amongst stones on the hills, alt. 1400 feet.
Herba pusilla, glaberrima, carnosa, facie Hydrocotylis, graveolens. Cuulis crassitie pennæ passerinæ, longe repens, articulatus, nodosus, ad nodos cicatricatus, apice foliosus. Folia $\frac{1}{2}-\frac{3}{4}$ unc. lata, exacte reniformia, luride viridia, nitentia, radiatim venosa, lobis late rotundatis. Petioli $2-3$ unciales; raginis basi magnis latis, superne acutis. Pedunculi ex axillis foliorum, breves, semipollicares. Pedicelli vix 2 lin. longi. Petala parva, obovata, subacuta, medio late uninervia. Stylopodia superne truncata. Fructus oblongus, tetragonus; mericarpiis demum dorso canaliculatis.

A decidedly extra-tropical South American form, belonging to a section of the Nat. Ord. hitherto unknown to the Floras both of New Zealand and Australia. The remarkable similarity of the flower and fruit to those of the P. coriacea, Lag. (Hook. Bot. Misc. vol. i. p. 331. t. 66), together with the uniformity in the structure of its calyx and petals with that plant, have induced me to refer it to the same genus; but, from the difference in habit and the structure of the involucre of the species thus brought together, I have ventured to place this in a separate subgenus. The original species (P. coriacea), and the P. bydrocotylifolia, Bridges and Fielding (Sertum Plant. t. 40), have the flowers monccious, a claracter I do not observe in this. The similarity which the present plant bears to the genus Azorella, Gaud., is in many respccts close; the mericarps of this are hardly "parallelim biscutata," whilst those of Azorelle are scarcely didymous. Though a very remarkable habit runs through most of the species of the latter genus, one of them, the A. Ranunculus, D'Urv., not only differs from its congeners in form and mode of growth, but in these respects much resembles this plant. In the
structure of the flower and fruit they totally differ, the former being truly an Azorella, and having the ciliated involucral leaves common to other species of that genus. The Az. doucoides, D'Urv. Fl. Ins. Mal. 1. c. p. 613, is probably a true Caldasia, Lag.

Plate X1. Fig. 1, flower; fig. 2, flower with the petals removed; fig. 3, petal ; fig. 4, ripe fruit; fig. on, transverse section of the same; fig. 6, front, and fig. 7, back view of seed; fig. 8, vertical section of the same showing the embryo ; fig. 9, enbryo removed:-all more or less magnified.

2. ANISOTOME, Hook. fil.

Flores dioici (seu polygami). Calycis margo 5 -lobus; lobis (in flore steril.) patentibus, (in flore fert.) erectis, inæqualibus, persistentibus, 1-2 rarius 3 duplo longioribus lanceolatis, reliquis ovatis acutis. Petala obovata, acuta, v. acuminata, uninervia, brevissime nnguicnlata, patentia (lacinula inflexa nulla). Masc. Stamina æqnalia. Ovarium nullum. Stylopodia magna, depressa. Styli deficientes. Fgem. Fructus ovali-oblongus, lobis calycinis erectis coronatus. Mericarpia subteretia, inæqualia, quinquejuga; jugis alte carinatis alatis lateralibus marginantibus; unico (seminifero) jugis lateralibus dorsalique majoribus, altero (abortivo) jugis lateralibus dorsalique minoribus. Valleculce univittatæ, vittæ crassiusculæ. Scmen sulcatum, testa atro-fusca.-Herbæ subsucculentre, elatre, altitudinis humana, in insulis Auckland et Campbell provenientes. Caulis erectus, crassus, fistulosus, sulcatus. Folia maxima, longissime pctiolata, bi-tripimatisecta; segmentis lutis vel angustis, mucronatocuspidatis, marginatis. Petioli basi ventricoso-vaginantes. Umbellæ ample, pluries compositce; vaginis maximis vix foliiferis bracteatis. Umbellula globosce. Flores numerosissimi, rosei r. pallide purpurei. Involucra et involucella polyphylla, foliolis lanceolatis aqualibus.

1. Anisotome lalifolia, Mook. fil.; foliis oblongis bipinnatisectis, segmentis obliquis ovatooblongis imbricatis basi decurrentibus inæqualiter 3-5-fidis lobis acutis mucronato-aristatis pungentibus reticulatim venosis venis depressis, superioribus confluentibus. (Tab.VILI., and TAb. IX. \& X. B.)

Hab. Lord Auckland's group and Campbell's Island; in moist places from the sea to the tops of the mountains, abundant.

This is certainly one of the noblest plants of the natural order to which it belongs, often attaining a height of six feet, and bearing several umbels of rose-colonred or purplish flowers, each compound umbel as large as the human head. The foliage is of a deep shining green, and the whole plant emits, when bruised, an aromatic smell. The female flowers I have only seen in a specinen gathered by Mr. Lyall in Campbell's Island. They are of a peculiar structure, and show a striking affinity between this plant and the Aciphylla squarrasa, Forst. (Hook. lcon. Pl. vol, vii.t. 607, 608), especially in the unequal mericarps. Both the male and female flowers vary in the size of the calycine segments, which are however constantly unequal, one or more being much the largest and longest. In the male the styles are reduced to mere points on the inner margin of the depressed purple stylopodia; in the female the latter organs are conical, and terminate in long stout recurved styles, capitate at the extremity: this structure is common to Aciphylla, according to Forster's figure (Genera, t. 68). In the description of the genus I have described what may be considered the normal form of the fruit, but it is liable to much variation, and the five ridges are seldom fully developed in both mericarps. The five lobes of the calyx always give origin to as many larger ridges, and these again vary in size according to the number of large lohes : the most fully developed segment of the calyx, whether lateral or dorsal on the mericarp, always being opposite to the larger ridge. Very generally there are three large lobes to the calyx (of the female flower), one near the back of one mericarp, and two lateral on the other ; that with three has then five ridges, two large lateral, one (also large dorsal), and two intermediate smaller: the mericarp with only one large lobe has only four ridges ; two lateral (one of which is from the small lobe and largest of these two), the other very large, from the larger tooth. These mericarps are about two lines long, of a fuscous yellow colour, are obscurely glandular, and the
vittæ extend through their whole length. The seed hangs loose in the cell, is small, and covered with a rather thick blackish testa; its sides have furrows corresponding to the valleculæ.

Plate VIII. A small flowering portion of the plant, with the limb of the leaf; Fig. 1, unexpanded mate flower; fig. 2, the same expanded; fig. 3, calyx and stylopodia:-the dissections magrified.

Plate IX. \& X. B. Fig. 1, partial umbel of ripe fruit of natural size; fig. 2, a single fruit removed from the umbel ; fig. 3, transverse section of the same, showing the inequality of the mericarps, one of which is empty with five ridges, the other fertile with four ridges :-all the dissections magnificd.
2. Anisotome antipoda; foliis lineari-oblongis tripinnatisectis segmentis teretibus divaricatis lineari-subulatis rigidis pungentibus striatis intus presertim ad furcaturas transversim articulatis, rachibus superne canaliculatis. (Тав. IX. \& X.)-Ligusticum antipodum, Hombr. et Jacq. Voy. au Pol Sud, Bot. Phaner. tab. 3. sine descript.

Hab. Lord Auckland's group and Campbell's Island; in moist places especially near the sea, and in the former islands ascending to the mountain tops in a more stunted form.

A scarcely less handsome plant than the former, with which it agrees eatirely in habit, and more particularly in the structure of the male flowers. The umbels are however less densely crowded, borne on longer peduncles, and produce fewer partial umbels and flowers. I was unfortunate in not being able to detect female flowers, nor have I seen any nearer approach to that state of the plant than the occasional presence, amongst the flowers of the ray, of stylopodia aud styles analogous to those of the femate of the former species. The fruit of this plant is represented in the 'Botany' of the French Voyage of Discovery quoted above, but in it the mericarps are figured as equal, and the vitte are probably accidentally omitted; so very singular a character as the former may have been overlooked in the dry state of the plant; the glands, which are very obscure in the former species, are in this very large and apparently confined to one side of each mericarp : a remarkable similarity, however, exists in the furrowed seeds and in the stylopodia of the two species. The lamellæ in the fistular portion of the stem are not represented, and the sketch of the entire plant bears but a slight resemblance to the state in which we drew it.

In structure, the fructification of this genus is more closely allied to Aciphylla, Forst., than its general appearance would lead one to suppose. The figure of that plant (in the Icones Plant.) was taken from a specimen in fruit, the only state in which we possessed it previous to the arrival of Mr. Stephenson's New Zealand collection (vide Lond. Journ. of Bot. for September 1844), which contains small portions of apparently this plant (n. 81) in flower. In it the partial umbels are few-flowered, with the peduncles divaricating ; they are borne on axillary branches, subtended by a sheathing, lanceolate, acuminated, pungent involncral leaf; towards the apex of the stem these branches are more crowded, and the involucral leaves are lengthened and become bifid or even trifid. The calycine segments are very small, broad, obtuse, and nearly equal in size. The petals (apparently pale yellow), though more incurved than in Anisotome, are scarcely furnished with an "inflexed lacinula"; the stamens, stylopodia and styles are very similar in the two genera. The female flowers are probably more densely aggregated than the male, and in the inflorescence of the furmer the involucral leaves may rapidly assume the curious form represented in the 'Icones,' or Mr. Stephenson's specimens may belong to a different species, for certainly their mode of inflorescence bears little resemblance to the dense cylindrical female spike of the A. squarrosa. Both these genera will naturally rank near Ligusticum, from which they are however very distinct, and may be considered as forming a small natural group. What I am inclined to consider as a third species of Anisotome is the Ligusticum anisatum, Banks and Sol. MSS. in Mus. Brit.; a plant discovered by Sir J. Banks and Dr. Solauder in Queen Charlotte's Sound, and a fourth has been since gathered in Cook's Straits by Dr. Dieffenbach, and on the high mountain of Tongariro by Mr. Bidwill; both these gentlemen's specimens are male. The $A n$ vOL. I.
gelica ? rosafolia, Hook. Ic. Plant. t. 581 (Ligusticum aromaticum, Banks and Sol. Ic. in Mus. Brit.), is also in some measure allied to these, though a plant of a very different habit ; its calycine segments are decidedly unequal in size, and one of the two mericarps is often abortive.

In the three known species of Anisotome, all the parts connected with the inflorescence are subject to much irregular metamorphosis and monstrous development, the more important of which, as observed in the living plants of A. latifolia and A. antipoda, are the following:-1st, the segments of the partial involucra become shrivelled, assuming the forms of peduncles, and bear at their apices stylopodia with distorted calycine segments, or more perfect flowers with a reduced number of parts; or, in one case, a solitary one-celled anther, full of pollen, adnate on the face of the leaf, a little below its apex: 2nd, the peduncles themselves of the outer flowers become foliaceous, or by dividing show a tendency to a further compound state of the umbel ; it also sometimes bears a single stamen at its apex, subtended by one large calycine segment: 3rd, the calycine segments vary from 2-6, but one or more are always so much larger than the others, as often to resemble involucral leaves: 4th, the petals are wanting, or vary from 1-6; sometimes two are combined into one; at others they assume various shapes: 5 th, the stamens are equally variable in number; the filament is at times petaloid, or becomes forked and bears a second anther ; these are constantly perfect and full of pollen: 6 th, the stylopodia are always 2 or more, often 3 , generally of the plane depressed form common to the male flowers; but the flowers of the ray sometimes bear ϱ_{-4} of entirely a different form, and similar to those of the fertile umbels; these are sometimes accompanied with stamens :-generally no numerical relation can be traced between the parts of these irregularly developed flowers. That such a relation however exists is demonstrable in a very distorted example, where a flower was furnished with 6 calycine segments, 3 very large and the others very small, 2 petals, 6 stamens, one of which bore two perfect anthers, and 2 stylopodia, in all 17 parts, the normal number in the ordinary state of the plant. Perhaps the most complex example was exhibited in one of the outer pedicels of a partial umbel, which was terminated by 4 stylopodia surrounded by a 5 -toothed calyx, the latter subtended on one side by 4 linear, foliaceous, very imperfectly developed organs, each of them furnished at its apex with an obscure depression filled with yellow powder. It here appears to me that the apparent pedicel is the peduncle of a partial umbel bearing one sessile female flower, and that the three superadded foliaceous organs represent the pedicels of male flowers, which are reduced to as many fover containing pollen, a most rudimentary state of the male flower. I did not observe whether the stylopodia were internal or external in relation to the axis of the plant and the three supposed male pedicels; probably lowever the latter, as it is the flowers of the ray which generally bear female stylopodia.

Plate IX. \& X. Fig. 1, flower ; fig. 2, calyx with the petals removed; fig. 3, a petal; fig.4. front, and 5, back view of stamens; figs. 6, 7,8 and 9, portions of umbel and flowers distorted by monstrous development :all magnified.

XIII. ARALIACEE, Juss.

1. Panax simplex, Forst. ; arborea, inermis, foliis elliptico-lanceolatis subacutis obtusisve grosse serratis longe petiolatis cum petiolo articulatis (junioribus trifoliolatis), umbellis floralibus subracemosis fructiferis parce ramosis rarius simplicibus, umbellulis $6-10$-floris. (TAB. XII.)-P. simplex, Forst. Prodr. n. 399. DeC'. Prodr. vol. iv. p. 253. A. Rich. F7. Nor. Zeland. p. 281. t. 31. A. Cunn. Prodr. Fl. Nov. Zel. in Ann. Nat. Hist. vol. ii. p. 213.

Hab. Lord Auckland's group; from the sea to alt. 500 feet, abundant.
A very scarce plant, and hitherto only found in the southern extremity of New Zealand and the Antarctic
islands beyond it. As far as I am aware, it had been previously gathered by Forster alone. In this group it attains a height of 30 feet, amongst other trees near the sea. Its trunks are sometimes 2-3 feet in diameter, covered with a smooth brown bark; the wood is white and close-grained. Branches much scarred, and clothed with a pale bark, very brittle. The distinct joint at the apex of the petiole indicates the truly compound nature of the leaves; they are nowhere described as ternate; a character which all young trees of this species exhibit. The whole plant has a faint but rank smell, like that of lvy, which the copious lurid green but shining coriaceous leaves much resemble, both in hue and texture. The involucral leaves are very small and subulate.

Plate XII. Fig. 1, unexpanded flower; fig.2, flower more expanded; fig. 3, petal from the same; fig. 4 and fig. 5, immature stamens; fig. 6, germen after the petals have fallen away; fig. 7, immature fruit; fig. 8, rertical, and fig. 9, horizontal section of the same ; fig.10, ovule:-all magnified.

1. Aralia polaris, Hombr. et Jacq.; polygama, herbacea, inermis, tota setis mollibus laxis obsita, foliis (maximis) longe petiolatis orbiculari-reniformibus basi profunde cordatis marginibus multilobatis lobis 3-5-dentatis dentibus subacutis, umbellis copiosis compositis partialibus multiradiatis globosis, involucris foliaceis, floribus densis, fructibus depresso-sphæricis exsuccis suberosis atris nitidis.-A. polaris, Hombr. et Jacq. in Voy. au Pol S'ud, Bot. Phaner. t. 2. sine descript.

Hab. Lord Auckland's group and Campbell's Island; in the woods and on banks, generally near the sea, but often attaining an altitude of $600-700$ feet, covering large tracts of grouud with its bright and shining green foliage.

Radix ; rbizoma cylindraceum, elongatum, 2-3-pedale, ad terræ superficiem procumbens, transversim striatum seu annulatum, solidum, ochraceum, subtus fibras copiosas breves emittens. Tota planta setis mollibus patentibus simplicibus subcarnosis vestita. Caules herbacei, validi, $2-4$-pedales, e collo ipso valde ramosi, sæpius prostrati vel adscendentes, teretes, striati, fistulosi, diametro $1-1 \frac{1}{2}$ unciam, pallide flavido-virides. Folia pleraque ad furcaturas ramorum, inferiora majora longius petiolata, horizontaliter explanata, $1-1 \frac{1}{2}$ ped. lata, crassa, carnosa, orbiculari-reniformia, flabellatim nervosa atque reticulatim venosa, utrinque, precipue subtus et ob nervos prominentes setosos rugosa, late viridia, nitida. Petioli erecti, semiteretes, bipedales et ultra, basi membranaceo-vaginati; vagince semi-amplexicaules, superne (ut in plantis gramineis) in ligulam maximam membranaceam obovato-cuneatam expansæ; ligula superne truncata, bifida seu bipartita, laciniata, 2-3 unc. lata, pulcherrime radiatim et reticulatim venosa. Umbellce terminales et axillares, compositæ, maximæ, diametro capitis humani, ter quaterque divisæ. Umbella partiales numerosæ, globosæ, multifloræ, diametro $1-2$ unc. Involucra polyphylla : involucella oligophylla; ultima monophylla, gradatim minora, omnia longe petiolata, radiis umbellæ multoties longiora, folia caulina juniora simulantia, sed pluries minora, angustiora, sape cuneata, altiusque lobata; umbellulorum ultimorum sxpius ad squamas ciliato-fimbriatas redacta. Pedicelli florum breves, clavati, $\frac{1}{3}-\frac{1}{2}$ unc. longi, sulcis tot quot ovarii exarati, florum masculorum graciliores. Flores copiosissimi, polygami, in capitulum globosum arcte congesti, pallide flavidi, cereacei, subtranslucentes, nitentes, disco purpureo. Calycis tubus cum ovario adnatus, 3-4-sulcatus, margine integerrimo. Petalu 5, ante expansionem late ovata, obtusa, deltoideo-reniformia, subunguiculata, demum patentia, oblongo-obovata, carnosa, cellulosa, enervia, $1-1 \frac{1}{2}$ lin. longa. Fl. Masc. Stamina 5 ; filamenta brevia subulata, pauinlum incurva; anthera majuscule, didyma, purpureæ : pollen elliptico-oblongum, utrinque obtusum, sulv lente lineis 1-2 longitudinalibus opacis notatum, byalinum, in cumulo stramineum. Stylopodia plana, depressa; styli nulli. Fl. Fert. Stamina ut in fl. masc., aut nulla. Stylopodia $3-4$, subrenifurmia, elevata, sursum plana, luride purpurea, granulata, cavitatem in axin ovarii cingens. Styli 3-4, breves, subulati, lineares, subacuti, recurvi. Ovarium carnosum, 3-4-sulcatum, late turbinatum, $3-4$-loculare, loculis circa axin cavum dispositis, 1 -ovulatis; cvulu ex apice loculi anguli interioris pendula, pyriformia, anatropa, funiculo brevissimo. Fructus subbaccatus, suberosus, aterrimus, depresso-globosus, recens 3 rarius 4 -sulcatus, in caulibus emortuis fibrosis dealbatis anni preteriti persistens, disco vacuo
superne concavo; epicarpium crustaceum ; endocarpium corneum v. osseum; sarcocarpium suberosum. Loculi $3-4$, valde compressi, axi contrarii. Semen parvum, late ovato-ellipticum, plano-compressum, versus axin obtuse angulatum, loculum totum implens. Testa membranacca, pallide fusca. Albumen copiosum, farinaceo-corneum, albidum. Embryo minutissimus, pyriformis; radicula supera, hilo proxima; cotyledones breves, divaricatæ, obtusæ.

One of the most handsome and singular of the vegetable productions in the group of islands it inhabits, which certainly contains a greater proportion of large and beautiful plants, relatively to the whole vegetation, than any country with which I am acquainted. Growing in large orbicular masses, on rocks and banks near the sea, or amongst the dense and gloomy vegetation of the woods, its copious bright green foliage and large umbels of waxy flowers, often nearly a foot in diameter, have a most striking appearance. The pretty black berries on the white and withered stalks of the former year's umbels form a curious contrast to the shining waxy appearance of the rest of the inflorescence. The whole plant has a heavy and rather disagreeable rank smell, common to many of its Nat. Order, but is nevertheless greedily eaten by goats, pigs and rabbits.

Beautiful as is the plate of Aralia polaris in the French South Polar Voyage above quoted, and faithfully as it represents the leaf and umbel, the insertion of both immediately upon the rooting stem, without the intervention of branches, and the absence of the great ligules, are quite unlike what is exhibited by my specimens. It is possible that the letter-press may account for this and some other apparent inaccuracies; but although the plates have been in our possession for nearly a twelvemonth, I cannot learn that any descriptive matter has hitherto appeared.-The above particulars of the plant, and the analysis, were drawn up from living specimens; and although the drawings, made at the same time from the recent plant, are not of sufficient novelty to justify their introduction amongst the plates of the present work, I have deemed it desirable to give them in the 'Icones Plantarum' (vol, viii. tab. 701. ined.).

XIV. RUBIACEE, Juss.

1. Coprosma foetidissimu, Forst.; arborea, glaberrima, foliis petiolatis exacte elliptico-oblongis obtusis apicibus vix mucronatis, floribus terminalibus solitariis, baccis subrotundis sessilibus.(Tab. XIII.) C. fœetidissima, Forst. Prodr. n. 138. DeC. Prodr. vol. iv. p. 578. A. Rich. Flor. Nor. Zel. p. 261. A. Cunn. Prodr. Flor. Nov. Zel. 1. c. vol. ii. p. 206.

Hab. Lord Auckland's group ; in the woods near the sea, also ascending in the valleys to 900 feet.

This is a perfectly distinct plant, though confounded by Cunningham (as his specimens in Herb. Heward prove) with the C. lucida, Forst. It is probably a very abundant species in the middle and southern islands of New Zealand, where, however, it bad until quite lately been gathered by Forster alone, in Queen Charlotte's Sound. It has been more recently detected on the mountainous interior of the Northern Island by Mr. Colenso, whose specimens (n .117) are rather less robust, with the leaves narrower and more membranaceous. It is one of the few large-leaved species with truly solitary and sessile flowers and berries. In this group of islands it often attaius a height of 20 feet, with a trunk $1 \frac{1}{2}$ foot in diameter. The whole plaut, especially when bruised or when drying, exhales an exceedingly fetid odour, much resembling that of the flowers of Hibbertia volubilis. I brought on board the "Erebus" specimens of this with other plants, late one evening, and finding that there were more tender species, which took a considerable time to lay in paper, than I could well get through that night, 1 locked this Coprosma in a small close cabin until I should have leisure to press it, but before half an hour had elapsed the smell was intolerable, and had pervaded the whole of the lower deck. The leaves, though very constant in form, vary much in size, and in the alpine specimens are searcely more than $\frac{1}{2}-\frac{1}{3}$ iuch long.

Plate XIII. Fig. 1, longitudinal section of a ripe berry showing the nucules; fig. 2, lateral, and fig. 3, back view of a nucule removed; fig. 4, longitudinal section of do. ; fig. 5, front, and fig. 6 , lateral view of the seed removed from the nucule; fig. 7 , longitudinal section of seed, showing the embryo; fig. 8 , cotyledons:-all magnified.
2. Coprosma affinis, Hook. fil.; arborea, glaberrima, foliis petiolatis elliptico-lanceolatis acutis, floribus terminalibus solitariis sessilibus. (Tab. XIV.)

Hab. Lord Auckland's group; in low woods uear the sea.
This plant, which I found only in the state of young fruit, is so nearly allied to the preceding, that it is not without much hesitation I retain it as a distinct species, which I do on the ground of there being, in a large suite of specimens of C. fxtidissima, none with the leaves intermediate in form between that species and the present. It may he readily recognised by the larger and longer leaves, which are decidedly acuminated at the apex : its season of flowering too seems to be different.

Plate XIV. Fig. 1, an immature berry :-magnified.
3. Coprosma cuneata, Hook. fil.; fruticosa, glabra, ramis attenuatis rigidis, ramulis pubescentibus, foliis fasciculatis parvis rigidis coriaceis anguste cuncatis apice emarginato-truncatis sessilibus enerviis subtus pallidioribus, stipulis apice barbatis, floribus solitariis, fructibus in ramulis ultimis terminalibus solitariis globosis. (Tab. XV.)
β. foliis longioribus, apice rotundatis.
Hab. Lord Auckland's group and Campbell's Island ; in woods near the sea. β. In ravines at an altitude of 900 feet on the former, and near the sea in Campbell's Islaud.

The investigation of the genus Coprosma, and especially of the small-leaved species, is attended with very great difficulty. Those of the extreme southern parts of the New Zealand group seem different from sucl as inhabit the northern islands, and these again from the Australian and Tasmanian kinds. In each locality, however, the forms seem so protean, that more than words is required to assist in their determination, whilst the paucity of specimens hitherto received has olliged botanists to separate dissimilar specimens of what a more copious supply might prove to belong to the same plant. It is to aroid any further confusion that I have ventured to figure three species, of which I have no materials for such an analysis of the flower and fruit as a good botanical drawing should possess. The C. cuneata, in its ordinary form especially, appears one of the most distinct of these, and has the leaves invariably very blunt, larger at the upper extremity, and then retuse or decidedly notched : they are rigid and coriaceous in texture, ard very uniform in size. In the woods near the sea it forms a remarkably harsh, woody, and repeatedly branched shrub, whose stems are often 2 inches in diameter at the base, and covered with a rough black bark. The pale, but bright, red of the berries, which are abundantly produced, forms a very pretty contrast amongst the deep shining foliage.

Plate XV. Fig. 1, ripe berries; fig. 2, longitudinal transverse section of do.; fig. 3, nucules removed from the berry; fig. 4, transverse section of a nucule; fig. 5, front; and fig. 6 , side view of seed; fig. 7 , longitudinal section of do. showing the embryo:-all magnified.
4. Coprosma myrtillifolia, Hook. fil.; fruticosa, ramulis pubescenti-cinereis, foliis subfasciculatis parvis lato-lanceolatis subcarnosis brevissime petiolatis acutinsculis glabris subtus obscure nervosis, baccis solitariis.

Hab. Lord Auckland's group; in ravines about 600 feet above the sea.
A small and almost leafless bush, which, like its congeners, is very apt to vary in its mode of growth. l_{n} the ordinary state it grows $3-4$ feet high, and from the lower parts of the stems and branches being bare of
leaves, it assumes a spiny appearance. The leaves are patent, $\frac{1}{3}-\frac{1}{2}$ inch long, scarcely coriaceous; the stipules hairy and ciliated at the margins.
5. Coprosma ciliata, Hook. fil.; fruticosa, ramis pilosis, foliis oppositis solitariis vel fasciculatis submembranaceis elliptico-lanceolatis obtusis v. subacutis basi in petiolum perbrevem attenuatis ciliatis, petiolo costaque subtus precipue hirsutis, stipulis apice barbatis.
β. virgata, laxe foliosa, ramis virgatis temuibus.
Hab. Lord Auckland's group; in ravines, alt. 500-1000 feet. β. In Campbell's Island, in shady situations near the sea.

A common shrub, especially in Lord Auckland's group, where it forms a densely branched bush, growing from $8-10$ feet ligh. The Campbell's Island specimens again are very lax, twiggy, and sparingly leafy; and the leaves, which in a. are $\frac{1}{2}-\frac{2}{3}$ inch long, are in β. generally under that size. I have seen neither flower nor fruit. The bushes of the various species of Coprosma compose a dense and impenetrable thicket, on the margins of the narrow gulleys formed by water-courses on the faces of the hills. Becoming stunted and much branched from the violence of the perennial gales, they offer as powerful an obstacle to the traveller here as the beeches do in Tierra del Fuego. In both cases it is almost equally impossible to penetrate them ; but, extraordinary as it may appear, their branches are so gnarled and densely matted, that their flat summits will often bear the human weight, and almost admit of walking upon them.
6. Coprosma repens, Hook. fil.; fruticulosa longe repens ramosissima glaberrima, ramis ramulisque brevibus, foliis parvis coriaceo-carnosis rigidis ovatis in petiolum brevem latiusculum attenuatis supra planis v. concavis subtus convexis, stipulis brevibus obtusis carnosis una cum petiolis comato-vaginatis, floribus solitariis terminalibus baccis 2-4 pyrenis. (Tab. XVI.)

Hab. Lord Auckland's and Campbell's Island ; common from the sea to the tops of the hills.
Caules pedales et ultra, vage repentes, fibras tenues ramosas ad axillas foliorum emittentes, cortice cinereo spongioso sæpe oltecti, crassitie pennæ passerinæ. Folia breviter petiolata, horizontaliter patentia, conferta, crassinscula, ovata v. elliptica, obtusa, concava, nitida, enerria, sub. 3 lin. longa. Stipulee late ovatæ, obtusæ, glaberrimæ. Flores ad apices ramorum solitarii, sessiles, verosimiliter dioici. Calycis limbus profunde 4-partitus; segmentis lineari-ovatis obtusis. Corolla (in exemplaribus Tasmanicis solummodo mihi visa) tubulosa, subcampanulata, paululum curvata; tubo elongato, ore quadrifido; segmentis ovatis, subacutis. Stamina 4 ; filamentis longissimis, exsertis; antheris majusculis, pendulis, linearibus, ungue uncinato terminatis. Styli 2 , longe exserti, pubescentes. Bacca (in exempl. Aucklandicis) subglobosa, omnino sessilis, diametro 3 lin., pallide vel intensius rubra, carnosa et aquosa, intus 2-4-pyrena. Nucula crustaceæ, 1-loculares, 1-sperma, unica v. duobus $\frac{1}{3}$. majoribus. Semen erectum; testa fusca, membranacea; albumine carnoso. Embryo majusculus; radicula bilo proxima, elongata, terete; cotyledonibus latis.

This plant is apparently identical with a species collected on Middlesex Plains, Tasmania, by R. C. Gunn, Esq. ; a remarkable circumstance, as its low, procumbent mode of growth gives it the appearance of being an Antarctic form of the genus. The Auckland Island specimens 1 gathered with young and ripe fruit only, the corolla and styles having invariably fallen away. These latter, as well as the stamens, I have drawn and described from Mr. Gunn's specimens, fully believing the two plants to be the same. I must however here re. mark, that other states from either locality may be found to possess unexpected characters of sufficient importance to keep them distinct. I am not aware of any other species exhibiting 4 nucules.

The prevalence of Rubiacee in these islands is a very singular fact in botanical geography; ranking as they do in number of species next only to Composite among Dicotyledonous plants, and almost equalling
them both numerically and in the amount of space they occupy. In Antarctic America they are represented by a very few Stellate, which group is here entirely absent. As no other order exhibits so remarkable an excess, they probably balance the strangely disproportionate want of Composita, which appear to have almost as few representatives in proportion to the mass of exogenous vegetation as any other island. Comparing the dicotyledonous vegetation of the Falkland Islands with that of Lord Auckland's, it will be seen, that in the former the Composite are to the other Dicot. as $1: 2 \cdot 8$, and that Rubiaceece (Galium) are to Compos. as 1:21: but in the latter group, Compos. are to the other Dicot. only as $1: 4 \cdot 5$, and Rubiacece to Composita as $1: 1 \cdot 6!$ If in each we add these two Nat. Orders together, it will be found, that in the Falklands the proportion which the sum of Rubiacere and Composite bear to other Dicotyledonous plants, is as $1: 2 \cdot 7$, and in Lord Auckland's group as $1: 2.3$: proving, that as far as these two remote localities are comparable, Rubiacere only balance in the latter the want of what is generally, in all climates, the preponderating natural order. This is one only of many equally singular proofs, which a little patient investigation may deduce, that a harmony exists and may be traced in the vegetation of remote climates, whose Floras are otherwise totally dissimilar.

Plate XVI. Fig. 1, a ripe berry, nat. size; fig. 2, transverse section of do., showing the nucules; fig. 3, nucules removed; fig. 4 , transverse section of the latter, showing the seed; fig. 5, lateral, and fig. 6, front view of a seed; fig. 7, vertical section of do. :-all magnified.
B. Flowering portion from Tasmanian specimens, nut. size; fig. 1, a male flower; fig. 2, a femaie flower:both magnified.

1. Nertera depressa, Banks in Gertn. i. t. 26. et Icon. ined. Plant. Nov. Zel. in Mus. Brit. t. 22. Forst. Prodr. n.501. Smith, Icon. ined. t. 28. Carmichael in Linn. Trans. vol. xii. p. 505. Gaudich. Flor. des Iles Malouines in Anu. Sc. Net. vol. v. p. 104. Gaud. in Freycinet, Voy. p. 135. D'Urville, Flor. Ins. Mal. in Annal. Soc. Linn. Paris, vol. iv. p. 6ig. Pet. Thouars, Flor. Trist. d'Acun. p. 42. t. 10. DeC. Prodr. vol. iv. p. 451. A. Cunn. Flor. Nov. Zel. 1. c. p. 208.

Hab. Lord Auckland's group; creeping amongst moss in the woods, where its bright red berries give it a pretty appearance.

My specimens are unfortunately not in flower ; they however entircly resemble the figures of N. depressu above quoted, and agree with numerous Falkland Island and other southern specimens of that plant with which 1 have compared it. In Mr. Cunningham's 'Flora of New Zealand,' its precise habitat is omitted; but it is inserted in a MS. copy of that 'Flora' which formed part of my library at sea. There he mentions the "Falls of the Keri-Keri river" as the only locality in which he gathered it. In botanizing over that spot repeatedly in September and October 1841, in company with Mr. Colenso, we often met with Cunningham's plant, both there and afterwards in other moist places near cataracts ; it is however entirely different from the true N. depressa, being much smaller in all its parts, with narrower and more acuminated leaves. The berries of the Auckland Island specimens are very much vertically depressed, and their structure is entirely that of the genus Coprosma.
XV. COMPOSITE, Vaill.

Tribe SENECIONIDEIE, Less.

1. TRINEURON, Hook. fil.

Capitulum sub-12-forum ; floribus exterioribus $8-10$, fœmineis, 2 serialibus; interioribus abortu masculis; omnibus ut videtur tubulosis. Involucrum octophyllum, subbiseriale, squamis inter se subæqualibus oblongolanceolatis obtusis trinerviis, nervis latiusculis pellucidis transversim septatis. Receptaculum nudum, minutum, convexiusculum. Fu. Fasm. Corolla tubulosa, basi globosa, medio cylindracea et constricta, ore obliquo 4-den-
tato, sub-bilabiato, dentibus obtusis, 1 reliquis sub-duplo longioribus. Stylus incrassatus, cylindraceus, exsertus, basi bulbosus, bifidus, ramis ovato-oblongis obtusis marginibus apiceque stigmatiferis. Achđnium calvum, late obovatum, apice retusum, extus planiusculum, intus carinatum, carina marginibusque celluloso-incrassatis.Fl. Masc. Corolla tubulosa, clavata, subtetragona, angulis incrassatis linea elevata cellulosis, 4-dentata, dentibus acutis erectis æqualibus. Stamina 4 ; filamentis ima basi corollæ insertis, angulis incrassatis alternantibus; antheris vix ac ne vix liberis, basi breviter productis. Stylus exsertus, basi (ut in fl. fæm.) bulboso-incrassatus, apice capitato truncato obscure bilobo. Achenium parvum, vacuum.-Herba repens laxe cespitosa, ramosa, glaberrima, ad terram montibus insularum Auckland et Campbell obvia. Folia alterna. Capitula inconspicua in ramis ultimis, primum inter folia sessilia, demum pedunculis propriis ultra folia productis apice foliiferis elevata. Flores fusco-purpurascentes. Folia spathulata v. lineari-spathulata elongata.

1. Trineuron spathulalum, Hook. fil. (Tab. XVII.)

Hab. Lord Auckland's group and Campbell's Island; on peaty soil, near the summits of the mountains, alt. 1200-1400 feet.

Caulis breviusculus, 1-2 unc. longus, sublignosus, repens, fibras copiosas validas elongatas per totam longitudinem emittens, et reliquiis foliorum vetustorum undique tectus, superne parce ramosus; ramis brevibus ascendentibus erectisve foliosis ultra folia in pedunculum nudum apice floriferum productis. Folia basi imbricata, undique patentia, lineari-spathulata, glaberrima, integerrima, plus minusve elongata, $\frac{1}{4}-1$ unc. longa, obtusa, 3-5-nervia, plana, subcarnosa, læte viridia. Capitula parva, subsolitaria, vel 3-4 aggregata, juniora valde inconspicua, inter folia occulta, demum pedunculata; peduuculo $\frac{1}{4}-1$ unc. longo, apice folioso, foliis $2-3$ reliquis longioribus. Flores minimi, vix $\frac{1}{2}$ lin. longi, sub lente pulchre rubro-purpurei.

A very remarkable genus, most nearly allied to Abrotanella, Cass. (Oligosporus emarginatus, Gaud. in Ann. Sc. Nat. vol. v. p. 104. t. 3. fig. 4), but of a very different labit, and in many other particulars quite distinct, especially in the more numerous scales of the involucre, inserted in two series, in the many-flowered capitula, the quadrifid corollas of the ray, the curious tetragonous corollas of the disc, and the thickened cellular structure which exists in several parts of this plant. Besides the achænia baving a thickened border and keel in front, formed of large lax transparent cells, the incrassated angles of the male flowers and the three nerves of the involucral leaves, exhibit the same singular character. In both the latter cases, the substance of the organs themselves, which are opake and fleshy, seems to be divided by broad lines of a transparent substance, marked with transverse septa.

Many of the discoid Senecionidec, and especially in the tribe Hippia of Lessing, are remarkable for the curious and anomalous structure of their inflorescence. In several instances, as in the present, it may be doubted whether the flowers of the ray are really tubular, the general unequal division and oblique aperture of the mouth appearing to indicate their true structure as either ligulate or 2 -lipped; 2-lipped perhaps in the present and the following genus, and assuredly 1 -lipped or ligulate in Abrotanella, where I observe the three teeth all to point towards one side of the tube, with the middle one the longest. The teeth in this species have the margins thickened, and apparently revolute. The base of the style is peculiarly incrassated, especially in the female flower, having the base of the corolla swollen around it, and the thickened portion often forms a depressed sphere, in which the style seems to be inserted, and it sometimes assumes the appearance of a fleshy ring or corona, surmounting the top of the ovary.

The name is adopted in allusion to the three cellular nerves or lines of the ovary and involucral scales.
Plate XVII. Fig. 1, capitulum ; fig. 2, scale of the involucrum ; fig. 3, side view, and fig. 4, front view of flowers of the ray ; fig. 5, back, and fig. 6, front view of ripe achroinm; fig. 7, style of a flower of the ray, with its bulbous base ; fig. S, flower of the disc ; fig. 9, stamen, and fig. 10, style from the same :-all magnified.

2. CERATELLA, Hook. fil.

Capitula aggregata, singulo S-10-floro; floribus exterioribus sub 8 , femineis, 1 -serialibus; interioribus abortu masculis, omnibus, ut videtnr, tubulosis. Involucrum $8-10-\mathrm{phyllum}$, squamis biserialibus coriaceis subacutis valde inæqualibus, interioribus linearibus $1-3$-nerviis angustatis, exterioribus foliaceis latioribus plurinerviis, nervis omnibus cellulosis pellucidis transverse septatis. Receptaculum nudum, angustum, minutum, planiusculum vel subconicurn, foveolatum. Fl. Fєm. Corolla tubulosa, elongata, basi giobosa, ore profunde 4-dentato, dentibus majuscnlis subinæqualibus oblongis obtusis concavis medio macula oblonga pallida cellulosa pellucida deorsum in lineam extensa. Stylus validus, exsertus, basi bulbosus, apice breviter bifidus. Achenium compressum, tetragonum, anguste tetrapternm, alis membranaceis, oblongo-obovatum, 4-cornutum, comubus brevibus divaricatis, 2 exterioribus sublongioribus. Fl. Masc. Corolla tubulosa, lineari-clavata, 3-4-dentata, sub 3-4-angulata, angulis pellucidis, dentibus concavis, dorso macula pellucida et linea extensa, ut in fl. fæm. Anthere latiusculæ, inclusæ, basi breviter biaristatæ, apice apiculatæ, flavæ. Stylus validus, cylindraceus, corolla $\frac{1}{3}$ brevior, apice sensim latiore abrupte truncato margine crenato. Achanium obscure 4 -gonum, parvum, vacuum omnino calvun.-Herba pusilla, dense cespitosa, Androsacis facie, rupibus preruptis ad cacumina montium insula Campbell proveniens. Folia alterna, densissime imbricata, stcllatim patentia. Capitula aggregata, inter folia summa sessilia. Flores purpurascentes, parvi, inconspicui.

1. Ceratella rosulata, Hook. fil. (Tab. XVIII.)

Hab. Campbell's Island; in crevices of rocks at the tops of the mountains, at an elevation of 1400 feet; very sparingly.

Caules dense pulvinati, ramosi, duri, rigidi, $1-1 \frac{1}{2}$ unc. longi, validi, inferne foliis vetustioribus dense obsiti, fusco-nigrescentes. Folia arcte imbricata, stellatim patentia, coriacea vel subcornea, superiora rosulata, basi latiore vaginante scariosa, medio contracta, deinde ovata, acuta, plus minusve concava, subtus striato-nervosa, marginibus acuentibus, superiora gradatim minora, 2-3 lin. longa, intense viridia, ratate fusco-tincta. Capitulu in summos ramos $8-10$, congesta, brevissime pedunculata, inconspicua, foliis subtensa, 2 lin. longa. Involucri squame irregulariter insertæ, ovato-oblongæ, subacutæ, concavæ, nervosæ, nervis (ut in Trineuro) celluloso-incrassatis transversim septatis pellucidis, interiores angustiores. Flores parvi, purpurei.

This plant is perhaps more closely allied to the last genus (Trineuron) than to any other, and exhibits mauy remarkable points of affinity with it, especially in the pellucid thickened parts of the flower and nerves of the involucral leaves; likewise the general structure of the capitula, corollas, stamens and styles is much alike in both. But while so many instances of resemblance exist, the totally different nature of the achenium becomes the more striking. In the tufted habit, harsh, coriaceous, even horny texture, the plant is more allied to Abrotanella emarginata.

These three genera form together a small group, allied in several respects to Hippia, Lessing, but natnrally distinct, all the species of that division being herbaceous, more or less odorous, and often even furnished with pellucid glands.

The name is derived from the little horn-like processes of the achænium.
Plate XV1ll. Fig. 1, a head of capitula; fig. 2, single capitulum, removed; fig. 3, receptacle and involucral scales; fig. 4, a flower of the ray; fig. 5, the same cut open; fig. 6. achænium ; fig. 7, a 3-toothed flower of the disc ; fig. 8, the same, with four teeth; fig.9, the same cut open, and fig. 10, a stamen from do. :-all magnified.

3. LEPTINELLA, Cass.

Capitulum ∞ florum, heterogamum; floribus exterioribus fæmineis bi-triserialibus, disci abortu masculis tuvol. I.
bulosis. Involucrum hemisphæricum, 1-4-seriale, S-20-phyllum, squamis oblongo-obovatis vel suborbiculatis adpressis. Receptaculum conicum, nudum, papillosum. Flor. Radri. Corolla compressa, tubulosa, basi latiore, ore obliquo 3-4-dentato, quasi e duplice membrana formata. Stylus exsertus, inclinatus, basi bulbosus, apice bifidus, ramis divaricatis oblongis versus apicem barbatis. Achenium calvum, valde obcompressum, elongato-obovatum, marginibus incrassatis. Flor. Discr. Corolla tubulosa, infundibuliformis, 5 -deutata, dentium marginibus incrassatis. Anthere ecaudatæ, cohærentes, exsertie. Stylus exsertus, apice abrupte incrassato, cyathiformi, basi bulboso. Achenium parvum, vacuum.-Herbæ antarctice et hemispharii australis incola, odore Fœniculi vel Tanaceti, plus minusve pilose seu lanata. Caules prostrati, radicantes, ramis brevissimis foliosis adscendentibus. Folia alterna, petiolata, basi scarioso-vaginantia, pinnatisecta. Capitula parva, solitaria, longe pedunculata, pedunculis terminalibus. Flores lutei. Cass. in DeC. Prodr. (paucis verbis mutatis).
I. Leptinella lanala, Hook. fil.; caule prostrato, petiolis foliis superne pedunculisque lana longa densa molli albida vestitis, foliis petiolatis oblongis obtusis pinnatifidis segmentis acutis margine superiore pinnatifido-serratis basi vaginantibus, involucris carnosis floribusque totis glandulis obsitis, pedunculis foliis brevioribus in ramis brevibus terminalibus, involucris 3-4 serialibus glabris.

Hab. Lord Auckland's group; hanging abundantly over rocks and cliffs near the sea.
Caules herbacei, prostrati, decumbentes et adscendentes, vage ramosi, hic illic radices fibrosas emittentes; vetustiores nudi, pallide brunnei, remote cicatricosi; juniores foliosi, lanati, vaginis scariosis foliorum obsiti, $\frac{3}{4}-2$ ped. longi, pennæ gallinæ crassitie, lana copiosa laxa, gossypio simillima, e fibris intertextis tenuissimis simplicibus albidis formata. Folia petiolata, alterna, patentia, ovato-oblonga, obtusa, sub 1 unc. longa, flavo-viridia, plana, pinnatifida, supra juniora præsertim lanata, crassa, carnosa, segmentis ovatis obliquis 1-2 lin. longis, margine inferiore integra recta, superiore pinnatifido-serrata, segmentis acutis. Petioli folio æquilongi, lati, plani, basi vaginantes, scarioso-nervosi, nudi. Pedunculi e summis ramulis orti, solitarii, subunciales, recti, densissime lanati, foliis breviores. Capitulum diametro $\frac{1}{4}$ unc. Involucrum $4-5$-seriale, squamis exterioribus valde carnosis, glandulosis, elliptico-rotundatis, viridibus, $1-1 \frac{1}{2}$ lin. longis, interioribus angustioribus, submembranaceis. Receptaculum nudum, conicum, latiusculum, papillosum, papillis elevatis ad apices foveolatis flores gerentibus. Flores radii fœminei, 3-4-seriales, densissime imbricati numerosi, glandulis conglobatis prominentibus obsiti. Corolla ovato-oblonga, compressa, e membrana duplici formata, 4 -crenata, lobo unico longiore alio sæpe obliterato. Stylus breviter exsertus, basi bulbosus, quasi annulo carnoso epigyno valde depresso cinctus, apice breviter lifidus, ramis divaricatis obovato-oblongis obtusis extus dorso penicillatis. Achacnium obovatum, compressum, margine subincrassato. Flores disci numerosi, abortu masculi, glandulosi ut in fl. radii. Corolla tubuloso-infundibuliformis, 4 -dentata, dentium marginibus incrassatis. Antherce cohærentes, incluse. Stylus validus, superne exsertus, inclinatus, apice cyathiformi. Achenium vix ullum abortivum.

This plant resembles, in some respects, the L. scariosa, Cass., but is very much larger, densely woolly in many parts, with its leaves shorter and less regularly divided; it also wants the pellucid glands which beset the leaves of that species and contain a powerful essential oil.

Plate XIX. Fig. 1, receptacle and involucrum; fig. 2, a flower of the ray; fig. 3, side view of the same; fig.4, transverse section of the same; fig.5, style from the same; fiy. 6 , lifid apex of do.; fig. 7 , flower of the dise; fig. 8, style of the same; fig.9, stamen; fig. 10, glands from the corolla :-all magnified.
2. Leptinella phomost, Hook. fil.; tota pilis longis laxis molliter hirsuta, foliis longe petiolatis lineari-oblongis obtusis tripimnatifidis segmentis ultimis subulatis, pedunculis terminalibus lateralibusque solitariis elongatis gracilibus petiolo requilongis, involucro 1 -seriali floribusque eglandulosis, corollis fœmineis cordato-ovatis. (Tab. XX.)

Hab. Lord Auckland's group and Campbell's Island ; amongst gravel and on grassy banks near the sea. McQuarric's Island, (Herb. Hook.)

Caulis herbaceus, repens, breviusculus, crassitie pennæ anserinæ et ultra, parce ad apicem precipue ramosus, ramis divaricatis brevibus foliosis 1 -uncialibus nodosis, ad nodos fibras crassas descendentes emittens, hic illic molliter sericeo-pilosus. Folia longe petiolata, una- cum petiolo 3-unc. ad pedalem, flaccida, molliter pilosa, multisecta, quasi pulcherrime plumosa, lato-oblonga, pinnata; pinnæ alternæ, patentes, divaricatæ, subfalcatæ, $\frac{1}{4}-1$ unc. longæ, lineari-oblongæ, superiores utrinque bipinnatifidæ, inferiores margine posteriore integro, superiore solummodo pinnatifido, segmentis linearibus acuminatis margine exteriore precipue profunde et acute inciso-serratis. Petioli folio æquilongi, graciles, antice plani vel concavi, marginibus submembranaceis, basi longe et latissime scarioso-membranacei, vaginantes, vaginis $\frac{1}{2}$ unc. longis integris striato-nervosis, ore nudo. Pedunculi gracillimi, axillares, in ramis brevissimis terminales, petiolo paulo longiores, plus minusre laxe albido sericei. Capitula solitaria, diametro circa $\frac{1}{4}$ unce, depresso-globosa. Involucrum cyathiforme ; squamæ 1 -seriales, æquales, basi subconnatæ, oblongæ, obtusæ, herbaceæ, floribus breviores, marginibus late scariosis denticulatis apice fusco-purpureis. Receptaculum nudum, elevatum, conicum, totum papillosum, papillis inferioribus gradatim longioribus, hinc flores radii manifeste stipitati. Flores radii fœminei, 2-3-seriales, numerosi, dense aggregati, imbricati, incurvati. Corolla structura insignis, cordato-ovata, compressa, dorso parum convexa, superne attenuata, ore obliquo 4 -dentato, dentibus brevissimis obtusis unico lougiore, e duplici membrana quasi formata, interiore cylindraceo gracili stylum amplectente et ejusdem formæ, apice ovarii inserta ; inter has duas membranas vacua. Stylus validus, basi globoso-incrassatus, exsertus, cylindraceus, tubo interno corollx arcte vaginatus, apice bifidus, ramis brevibus obtusis dorso ad apicem hirsutulis. Achđnium corolla angustius, obovatum, obcorapressum, crassum, calvum, marginibus incrassatis. Semen in loculo solutum. Embryo elon-gato-pyriformis. Flores disci abortu masculi, tubulosi. Corolla infundibuliformis, 5-dentatus, deatibus patentibus marginibus incrassatis. Antherce $\frac{1}{2}$-exsertæ, cohærentes, ecaudatæ, filamentis linearibus ad medium tubi insertis. Stylus validus, crassiusculus, exsertus, paulo inclinatus, apice dilatato cyathiformi marginibus membranaceis integris, basi bulbosa, bulba oblongo-cylindracea. Achenium minutum, abortivum.

This is by far the most beautiful species of the genus, apparently common to the islands of the high Southern Indian and Pacific Oceans, but hitherto unknown among the Antarctic American groups. It was first detected on M^{c} Quarrie's Island, whence specimens were received by Mr. Frazer in New Holland, and by him transmitted to England; but it is not ascertained who found them, though it is more than probable they were gathered by some person accompanying a sealer. It is the only Composite plant as yet known to inhabit Kerguelen's Island, where it covers very large tracts of ground with its silvery and beautifully feathery foliage, smelling strongly, but not unpleasantly, of parsley. The female corollas of both species are represented as they being of my original sketches: when dried they seem much more compressed, their membranous texture appear in such extreme tenuity, that it is probable they never recover their oliginal form after once being subjected to pressure.

Plate XX. Fig. 1, receptacle and part of involucrum ; fig. 2, scale of involucrum ; fig. 3, flower of ray in natural state; fig.4, anterior, and fig.5, lateral view of the same from dried specimens; fig. 6 , transverse, and fig. 7 , longitudinal section of the same; fig. 8, apes of style from do.; fig. 9, achænium cut open; fig. 10, flower of disc ; fig. 11, portion of corolla and stamen of do.; fig. 12, style of do. :—all magnified.
3. Leptinella propinqua, Hook. fil.; tota pilis sericeis patentibus mollibus hirsuta, caule repente, foliis petiolatis glandulis impressis pellucidis punctatis oblongis obtusis basi attenuatis pinnatisectis segmentis obovatis inciso-pimmatifidis laciniis acutis, pedunculis folio brevioribus solitariis axillaribus sublanatis, involucri squamis $1-1 \frac{1}{2}$ serialibus oblongis obtusis cxtus hirsutis marginibus ad apices late scariosis denticulatis fusco-purpureis, floribus glandulosis, floris fominei corollis ovatis achenio brevioribus, floris masculi corollis 4 -fidis dentium marginibus incrassatis fuscis.

Hab. Lord Auckland's group; on banks near the sea.
In many respects this species is intermediate between the two former, but is equally distinct from both, and so nearly allied to the L.scariosa, as to induce me to adopt the name of propinqua; it differs from that plant in its much larger size, more divided leaves and very woolly habit. The genus Leptinella appears to have been hitherto but little understood by botanists; it was founded by Cassini in 1822, upon (apparently very imperfect) specimens of two plants whose habitat was entirely unknown. In 1841 it was again taken up by the authors of 'Contributions to a Flora of South America, \&c.' (vide Hook. Journ. Bot. vol. iii. p. 325), where a supposed new species, L. acenoides, H. and Aru., is described. This latter is a very common plant in the extreme south of the American continent, and we have assumed it to be the L. scariosa of Cassini and DeCandolle, the leaves and peduncle being either smooth or hairy in that plant. There are still some characters described by the abore-mentioned anthors as belonging to that genus which my specimens do not exhibit. Thus all the flowers are stated in one species to be females: 1 do not find this to be the case; nor should much stress be laid upon a peculiarity of structure, drawn from a single capitulum "dont les fleurs sont extrèmement petites et défigurées ou altérées par la désiccation et la compression" (Cassini in Dict. Sc. Nat. vol. xxvi. p. 67). In all the plants of the genus which I have examined, the heads of flowers are monecious; but the flowers of the disc especially, being all males, are, after the performance of their functions, easily displaced by pressure. The "long, straight, linear, obtuse, bracteiform leaf" (Dict. Sc. Nat. l.c.) at the base of the peduncle is also not apparent; nor am I able to conceive to what organ of our plant this can apply, except a young cauline leaf, generally present near the peduncle, can have assumed such a form or suffered mutilation. On the other hand, the description of the involucral scales, covered, as are the flowers, with glands, and the characters drawn from those organs themselves, will, collectively, accord with no other plants that have ever fallen under my notice. The second described species, L. pinnata, seems hardly to differ from the L. scariosa, except indeed that the notice of the abore-mentioned glands is under it omitted; but Cassini further mentions the singular character of the female corolla being "enflée," an anomalous structure, upon which I shall here offer a few remarks.

In all the four species of the genus with which I am acquainted, the style of the flowers of the ray is invested, or sheathed lousely, by a very delicate hyaline tube, marked, in several instances, by distinct slender nerves, always five in number. This tube enlarges around the swollen bulb of the style and is inserted underneath it into the apex of the achænium : at its summit it meets the inflated corolla, and in the form of a membrane or tissue completely continuous with it, they together constitute the four obtuse, inconspicuous, rounded lobes of the corolla. The latter organ, thus viewed, consists of two distinct membranes, united above and perhaps below. On first observing this structure in L.plumosa, whose flowers are nut furnished with glands, and whose corolla is, so far as 1 can detect, entirely nerveless, 1 was inclined to consider the corolla as reflected upon itself, the reflected portion entirely investing and concealing the real tube: because I was unable to trace any intervening tissue connecting the two parietes or opposite coats, where an apparent complete vacuity exists; and especially because in some allied genera of Cotulece, and in other plants not far removed from the present genus, the corolia is reflected, and in a Tasmanian species as much as half-way down its whole length, its lower free margin being obscurely four-lobed; and in Otochlamys, DeC., its base is produced downwards so as to hide a great portion of the achenium. On the other hand, in the three species which are supplied with glands, it is only the outer surface of the exterior coat of the corolla which is furnished with these organs. Were this outer membrane the reflected limb of the corolla, the true situation of the glands would be on its inner surface; but though appendages of the cuticle are not uncommon on the surface of both ligulate and tubular Howers of Composite, 1 am not aware of their ever existing on that surface. The oblique mouth of these corollas and the constantly unequal divisions at its apex, of which one is always the largest, seem to point out the larger tooth as being analogous to the ligula of radiate capitula, especially as one of the four teeth is often suppressed. Lastly, the five nerves, which are most exident in L. lanata on the inner tube, are not visible on the outer ; it is very difficult to trace their termination, but they do unite at the summit of the tube, forming
as many arches as there are nerves, apparently without reference to the number of teeth of the corolla, in the thickened substance of which they are entirely lost. Amongst the discoid groups of Senecionidea, there are many anomalous structures of the female corollas. Thus, in Strongylosperma, Less., the limb of that organ is reduced apparently to a very short tube, completely continuous with the achænium ; and one of the principal characters of Soliva, R. and Par., consists " in the want of corolla or" (as Mr. Brown remarks) "perhaps its accretion with the persistent style" (vide Linn, Trans. vol. xii. p. 101). The original species, L. scariosa, Cass., was transmitted alive to England from Cape Horn, and is now cultivated in the Royal Botanic Gardens at Kew, where it blossoms copiously, and as it increases rapidly and has been widely distributed, I hope that the attention of microscopic observers will be directed to the singular structure of its flowers. Though possessed of no beauty, it derives an interest from being one of the most Antarctic flowering plants.

The glands, so conspicuous in this and some of the other species, appear to be conglobate and formed of about four very prominent papille, confluent at their margins; in this species and in L. scariosa they are transparent, but in L. lanata, after drying, they turn opake and whitish. I observed that in the fresh state they contained no evident secretion or essential oil, nor can they be connected in any way with the peculiar odour which several of the species possess, as this is inodorous or nearly so, and L. plumosa, which smells strongly, is unprovided with these organs.

4. OZOTHAMNUS.

1. Ozothamnus (Petalolepis) Vawilliersii, Hombr. et Jaeq. ; fruticosus, foliis patenti-recurvis oblongo-cuneatis supra canalieulatis glabris subtus ramulisque jonioribus adpresse fulvo-tomentosis marginibus revolutis, corymbis terminalibus capitatis polycephalis ramosis, involucris turbinatis subeylindraceis squamis exterioribus araneo-tomentosis intimis radiatis scariosis albidis.-O. Vauvilliersii, Hombron et Jacquinot in Voy. au Pol Sud, sc. Bot. Dicot. Phanerog. pl. 5. sine descript.

Hab. Lord Auckland's Islands; from the sea to an altitude of $300-400$ feet, very eommon. Also found on the high mountain of Tongariro, iu the Northern Island of New Zealand, by Mr. Bidwill.

Frutex elegans, 6-8-pcdalis. Caulis erectus, validus, 1-2-pedalis, e basi ramosus, cicatricibus dilatatis foliorum lapsorum notatus, cortice tenui griseo tectus; ligno albido tenaci. Rami fasciculati, stricti, erecti, virgati, 3-4 ped. longi, inferne cicatricosi, superne ad foliorum insertionem tuberculati, fusco-flavidi, hic illic pubescentes, cortice lamellato, ramulis subtomentosis. Folia undique inserta, subdecussata, patentit, recurra, brevissime petiolata, 4-6 lin. longa, elongato-cuneata, ad apices rotundata, coriacea, supra canaliculata, glaberrima, nitida, luride viridia, subtus nervo medio valido subcarinata, dense sed appresse fulvo-tomentosa, marginibus revolutis integerrimis. Corymbi terminales, capitati, compositi, pluries ramosi, polycephali, $1-1 \frac{1}{2}$ unc. lati, pedunculis pedicellisque brevibus divaricatis tomentosis. Involucrum sub $2-3$ lin. longum, $3-4$ seriale, squamis extimis brevibus subcoriaceis rubro tinctis, gradatim longioribus marginibus scariosis, intimis radiatis, ungue elongato erecto scarioso marginibus ciliato-serratis, lamina late ovata obtusa subpetaloidea albida margine undulata, omnia dorso plus minus̀ve araneo-tomentosa. Receptaculum angustum, planum, papillosum, sub 10-12florum. Flores involucro breviores, omnes tubulosi, hermapliroditi, tubo gracili elongato quinquefido, dentibus ovato-oblongis subacutis extus versus apices puberulis ciliatis. Antherce elongatæ, inclusæ, stramineæ, basi biaristata, filamentis supra medium dilatatis. Stylus basi subincrassatus, ramis elongatis linearibus semiteretibus intus canaliculatis, apicibus truncatis penicillatis. Pappus 1 -seriatis, setis scabris inferne nudis imo basi subconnatis. Achenium obconicum, sulcatum.

5. HELICHRYSUM, DeC.

Subgen. Coxoniscus, Hook. fil. (Capitulum homogamum, floribus omnibus hermaphroditis 5-dentatis. Involucri squamue interiores 2-3-scriales, radiantes. Receptaculum valde conicum, elongatum, nudum, papillosum. Pappus uniserialis, setis scabris basi subconcretis.-Caules herbacei, prostrati, basi radicantes, divaricalim ramosi, ramis ad apices capitula solitaria gerentibus.)-An genus proprium?
I. Helichrysum prostratum, Hook. fil.; caule decumbente ramoso, foliis (omnibus caulinis) obovatis v . obovato-spathulatis obtusis mucronatis supra arachnoideis subtus ramulisque dense et appresse argenteo-lanatis, involucri squamis interioribus radiantibus albidis scariosis lineari-ligulatis ad apices 2-4-dentatis. (Tab. NXI.)

Hab. Lord Auckland's group and Campbell's Island; confined to rocks at the tops of the hills in the former locality; abundant in the more southern islands, trailing over rocks and banks near the sea. Also found on Mount Egmont, in the Northern Island of New Zealand, at an altitude of 4000 feet, by Dr. Dieffenbach.

This is a graceful and very elegant plant, in many places, and especially on the low grounds of Campbell's lsland, covering the banks with its silvery foliage and abundance of flowers. It differs from all other species of the genus Helichrysum, DeC., in the prostrate straggling habit, and in the stems, which are scarcely thicker than a sparrow's quill, being leafy throughout their length, irregularly branched, with the branches divaricating, ascencling at their apices, and there bearing the solitary capitula; whereas the Australian species particularly are of an erect growth, those of a more herbaceous habit with larger, as it were radical leaves at the base of the stem. It is however the conical and elongated receptacle that remores this species so far from the 212 described in DeCandolle ; a character so evident, and of such importance, as almost to induce me to raise the present plant into a new genus. It is further to be remarked, that though the genus is extensively distributed throughout Australia and Tasmania, where it does not inhabit the mountains, in New Zealand it is represented by the present species alone, which is confined to the most elevated mountains of the Northern Island, and only descends to the lower grounds in a much higher southern and more rigorous latitude.

The leaves are rather scattered upon the stems, $\frac{1}{+}-\frac{1}{3}$ incl long, elliptical-obovate, produced into a short petiole, rather membranous in texture, silvery white from the dense appressed tomentum beneath, above pale green and opake, covered with scattered silky arachnoid hairs, the margins quite entire. The capitula are $\frac{1}{2}-\frac{3}{4}$ of an inch across the ray, pure white or faintly tinged with rose-colour, the outer scales shorter, subulate or lanceolate, cobwely with a loose tomentum. Flowers of the disc very small, almost concealed by the copious white or pale straw-coloured pappus. Tube of the corollas 4 -cleft, the segments puberulons externally towards the apex. Anthers biaristate at the base.

Plate XXI. Fig. 1, receptacle and scales of the involucre ; fig. 2, inner radiating scales from involucre ; fig. 3, a flower ; fig. 4, seta of the pappus ; fig. 5 , flower with the pappus remored; fig. 6, antlier; fig. 7 , strles : -all magnified.

ASTEROIDE \mathbb{E}, Less.

6. PLEUROPHYLLUM, Hook. fil.

Capitula multiflora, heterogama ; floribus radii 1-3-serialibus ligulatis fœemineis, disci hermaphroditis tubulosis 4-5-dentatis. Involuerum depresso-hemisphrricum, sub 3 -seriale, squamis imbricatis lineari-lanceolatis disco brevioribus. Receptaculum planum, nudum, alveolatum, dentatum. Flor. Radir. Corolla tubo terete
piloso, ligula brevissima v. elongata 3-dentata v. inæqualiter 2-3-fida v. tripartita, scgmentis linearibus obtusis. Stylus teres, gracilis, exsertus, ramis sæpe inæqualibus linearibus elongatis compressis marginibus incrassatis glaberrimis. Pappus rigidus, pallide stramineus, (siccitate fuscus,) 2-3-serialis, multisetus, setis subæquilongis subpaleaceis scabris. Achenium obconico-cylindraceum, compressum, totum setosum, setis erectis appressis, breviter stipitatum, stipite tenui gracili alveolo immerso. Fl. Discr numerosi. Corolla infundibuliformis, tubo terete piloso, limbo 4 - - -fido, segmentis elongato-ovatis obtusis revolutis marginibus incrassatis. Antheree 5, cohærentes, inclusæ, basi obtuse et brevissime appendiculatæ. Pollen echinulatum. Stylus cybindraceus, ramis exsertis linearibus divergentibus, marginibus incrassatis, apicibus latiusculis conicis acutis extus (dor:o convexo) marginibusque papillosis. Pappus ut in fl. radii. Achenium obconico-elongatum, subtetragonum, setosum et stipitatum ut in fl. radii.-Herbe elata, pulcherrime argenteo-sericee, fere ut in Argyroxyphio, hic illic lanata. Folia alterra, basi subvaginantia; radicalia maxima. Flores racemosi, purpurei. Pappus rigidus, copio-

§ I. Radiatum ; radii corollis elongatis minute tridentatis. (Pleurophyllum verum.)

1. Pleurophyllum speciosum, IIook. fil. ; foliis villoso-lanatis, caule superne præcipue pedunculisque dense albo-tomentosis, capitulis radiatis radiis elongatis, receptaculo convexiusculo marginibus alveolarum crassis carnosis. (Tab. XXII. \& XXIII.)

Hab. Lord Auckland's group and Campbell's Island ; chiefly found upon wet banks and in marshes near the sea, but also ascending to the tops of the mountains in a stunted form.

Radix fusiformis, crassa, carnosa. Caulis elongatus, 2-3-pedalis, erectus, simplex, teres, v. obscure angulatus inferne crassus, carnosus, solidus, dense albo-tomentosus, tomento e pilis simplicibus inarticulatis inferne demum deciduo. Folia omnia coriacea et subcarnosa, multinervia, nervis parallelis, integerrimis, villosis, subsericcis, et pilis fuscis brevibus rigidis moniliformibus subscabrida : radicalia approximata, ovalia, apice obtusa, patentia, subpedalia, 6-8 uncias lata, fusco-viridia, basi villosissima, margine obtusa subrevoluta, subtus pallidiora; superiora seu caulina gradatim minora; suprema lanceolata obtusi. Racemus terminalis, elongatus, foliosus; folia (seu bracteæ) inferiora flores superantia. Pedunculi crassi, densissime albo-lanati, inferiores interdum compositi 3-4 flores; superiores simplices, patentes, sub-unciam longi. Copitula majuscula, sub 2 unc. lata, speciosa, pulcherrime purpurea, disco intensiore. Involucrum plano hemisphericum, bi-triseriale; squamis lanceolatis obtusis imbricatis, exterioribus albo-lanatis, interioribus pilosis, 4-6 lin. longis discum subæquantibus. Rcceptuculuin paululum convexum, epaleaceum, alveolatum, alveolarum marginibus (seu parietibus) crassiusculis undulatis. Flores Radir elongati, uniseriales, ligulati, circiter 15 ; ligula lincari, $\frac{1}{2}$ unc. longa, patente, obscure 3 -dentata; tubo brevissimo patentim piloso, pilis mollibus laxis pellucidis articulatis. Stylus cylindraceus bifidus, ramis lineari-oblongis obtusis purpureis plauiusculis marginibus incrassatis. Achenium sub 2 lin. longum. Flores Disci circiter 60, intensius purpurei, tubulosi, infundibuliformes; tubo piloso, pilis ut in f. rad., 5 -fido et segmentis recurvis apicibus extus glabris. Antherce flavæ. Stylus ramis exsertis.

An extremely handsome and showy species with copious large purple flowers, stems 2-3 feet high, and ample radical leaves, resembling those of Plantago major, L., but very much larger, strongly ribbed with prominent stout parallel nerves.

Plates XXII. \& XXIll. Fig. 1, reccptacle; fig. 2, setæ of the pappus; fig. 3, a flower of the ray ; fig.4, tube and style of do., showing the hairs on the tube of the former; fig. 5 , front view, and fig. 6, lateral view of the achænium of a flower of the ray ; fig. 7 , a flower of the dise; fig. 8 , corolla from the same; fig. 9, a stamen from do. ; fig. 10, styles from the same:-all magnified.

§2. Discoideum; radii corollis abbreviatis, bifidis trifidis v. tripartitis. (Pachythrix, Hook.fi.)

2. Pleuropiyllum criniferum, Hook.fil.; caule toto dense albo-lanato, capitulis globosis, subdiscoideis ligulis brevissimis, receptaculo planiusculo alveolato, alveolarum marginibus submembranaceis dentatis. (Tab. XXIV. \& XXV.)

HAB. Lord Auckland's group and Campbell's Island ; generally in marshy places from the sea to an elevation of 1000 feet, abundant. McQuarrie's Island. (Herb. Hook.)

Radix crassa, carnosa, subfusiformis, descendens, nigro-fusca, collo fibris crassis elongatis rigidis crispatotortuosis fuscis sublignosis (reliqniis foliorum) coronata. Caulis elatus, erectus, crassus, simplex, v. rarius inferne parce ramosus, 4-6-pedalis, basi unciam diametro, carnosus. Folia inferiora approximata, multinervia, plicata, subtus præcipue valde sericea, basi longe sericeo-villosa, nervis crassis subtus prominentibus fuscis; marginibns minute spinuloso-serratis: radicalia maxima, concava, ovalia, obtusa, sæpe bipedalia, pedem fere lata, basi attenuata amplexicaulia; superiora sensim minora, angustiora, apice acuminata, basi magis attenuata: supremes fere subnlata, in bracteis transeuntia. Capitula in racemum spithameum et ultra disposita, nutantia, majuscula, subglobosa, unciam lata, pedicellata, pedicellis subuncialibus curvatis teretibus rachique dense sericeolanatis. Involucri squamæ lanceolatæ v. subulatæ longissime subaristato-acuminatæ, crassæ et coriaceæ, dorso pilosæ, medio uninerves, marginibns scariosis argute ciliato-serratis, apicibus fuscis. Pappus rigidns, subpale. aceus v. nitidus, recens flaridus, siccitate fuscus apicibns opacis. Fl. Ramı sub 3 -seriales, ligulati, tubo brevi terete curvato piloso pilis patentibus mollibus laxis moniliformibus; ligula late ovata, brevissima, tubo subæquilonga, 4-nervis, 3-dentata, v. inæqualiter 2-3-fida, v. tripartita, segmentis linearibus obtnsis, marginibus incrassatis, luride purpurascens.

A very common and striking plant, often covering a great extent of ground, and forming the larger proportion of the food of the hogs which now run wild upon the islands of Lord Auckland's group. It is indeed so abundant in the marshy spots on the latter islands that these animals frequently live entirely amongst it, especially when it grows near the margins of the woods, where they form broad tracks or runs through the patches, grubbing up the roots to a great extent, and by trampling down the soft stems and leaves use them as soft and warm forms to litter in. The leaves are exceedingly handsome, generally two feet long and one or a little more in breadth, from their concavity holding a considerable quantity of the rain-water or melted snow which so frequently falls in those latitudes; in substance they are coriaceous, but not nearly so much so as in the preceding species, and they are more copionsly silky. A full-grown leaf is generally traversed by $30-40$ parallel strong nerves, very prominent on the under surface and then dark-coloured and nearly glabrous, depressed on the upper with longer silky hairs. The intervening parenchymatons substance is traversed by numerons slender anastomosing veins, beneath densely clothed with a white appressed cottony wool, and above silky with scattered subarachnoid hairs. The hairs and woolly substance which clothe all the stems, leaves and pedicels of the capitula are formed of simple terete transparent matted filaments. I do not find amongst them any of the sloort rigid beaded setæ which are intermixed with the softer hairs of the P. speciosum. The capitula are $150-20$ in number ; the lower ones only bracteate with the uppermost leaves, the terminal generally having a smaller elongate subulate nearly glabrous green bract. The intermediate ones are the most densely silky on both sides, often so much so as entirely to hide the nerves; in these, too, the curions but minntely spinuloso-serrate character of the margin is most easily detected; the apices of the serratures are callons and glabrous, almost entirely bid amongst the silky tomentum.

Though this plant is nearly allied to the former species (P. speciosum), and agrees with it in all the most important characters, they materially differ in the more ontward points of resemblance. Indeed I only know one genns to which the present plant bears any marked similarity in general habit and appearance, and that is the Argyroxyphium, DeC. (Prodr. vol. v. p. 668; Hook. Ic. Plant. vol. i. p. 75). The mode of growth of these
two plants is the same, and both are natives of Pacific Islands, abounding in peculiarly inclement localities; the present being an inbabitant of the Antarctic regions, while the Argyroxyphium is found only on the summits of the highest mountains on the Sandwich Islands. Mr. Douglas brought it from the volcano of Mouna Kaah, which reaches an altitude of 18,400 feet, where it was one of the last plants he met with, and he used its dead stems for fuel. In the clothing and substance (as far as can be judged from dry specimens) of the stem, in the disposition of the inflorescence and form of the involucral scales, and in the short ligule of the flowers of the ray, these plants entirely accord : and the lower leaves of the latter, though uniform in size and shape with the upper, and having the margins quite entire, are always clothed with a similar but more beautiful and dense silky coat of lairs. On a further examination of the form of the corollas and achænia the analogy ceases. It must not however be overlooked, that the pappus of Pleurophyllum, though composed of setre (and not of short palexe), is of a peculiarly harsh and rigid texture, with each seta flattened and scabrid on the opposite margins, quite unlike the soft character that organ assumes in most Compositce, both showing its affinity to other Asteroidece, and some approach to the short rigid paleæ of the Sandwich Island plant. Although the Argyroxyphium is placed by DeCandolle in Senecionidece, its styles appear to me to differ in no important particular from those of the Pleurophyllum and of other large Asteroid genera. In both these, the styles of the flowers of the ray are always longer than those of the disc, with the arms also longer, linear, obtuse and flattened, erect or diverging in most of the tribe, divaricated and inclined to become revolute in Argyroxyphium; they are invariably quite smooth throughout, and surrounded with a thickened darker-coloured border (the stigmatic series), those of the corresponding side of each arm meeting at the base. In the flowers of the disc they are shorter, equally bordered with a thick conspicuous margin, abruptly ceasing at the commencement of a conical, acute, rather broader apex, which is plane and smooth, or most indistinctly glandular, on the inner surface, but with the margins and convex lack densely studded with elongated papillae or glands (the pollen collectors); these papillæ, except under a very high power, appear as hairs : the arms have further a strong opake central nerve in each, meeting and uniting at the base. In Argyroxyphium the conical apices are very short and studded with long papillæ, whence they appear abrupt, and each of the arms is split into two parallel laminæ, between which a knife is easily inserted, when the midrib is seen remaining on the inner of the two lamelle, and the stigmatic series on the outer. I do not think that in a natural system the two genera now under consideration should be far separated from one another, or from the following genus Celmisia, Cass.

Though generally so very bulky a plant, that an ordinary specimen of the Pl. criniferum weighs many pounds, I have seen it so dwarfish upon the mountains as barely to exceed a span in height, with all the leaves lanceolate, more densely silky, and thus even more nearly resembling Argyroxyphium than it does in its ordinary state. The masses of curly fibres, which may be taken up in handfulls from the summit of the roots of a common-sized plant, form a very remarkable character.

Plates XXIV. \& XXV. Fig. 1, receptacle and portion of involucre with flower of ray and disc in situ; fig. 2, single scale of the involucre; fig. 3, alveolæ of the receptacle; fiy. 4, setæ of the pappus; fig. 5 , a corolla with the ligula 3 -partite; fig. 6 , a flower of the ray with the ligula 3 -toothed; fig. 7 , style from the same; fig. 8, front, and fig. 9, lateral view of the achænium ; fig. 10, flower of the disc ; fig. 11, corolla of do.; fig. 12, stamen, and fig. 13, style from do. :-all magnified.

7. CELMISIA, Cass.

Capitulum multiflorum, heterogamum ; floribus radii 1 -serialibus, ligulatis, formineis ; disci numerosis, tubulosis, hermaphroditis, 5-dentatis. Involucrum campanulatum, v. depresso-hemisphæricum, pluriseriale, squamis elongatis inæqualibus disco paulo longioribus v. subequilongis. Receptaculum nudum aut alveolatum, epaleaceum, latiusculum, plus minusve convexum. Flor. Ranır. Corolla tubo clongato terete glaberrimo r. piloso pilis articulatis; ligula lineari, patente, interdum revoluta, apice subintegra v. 3 -dentata, albida, seppius roseo suffusa. Stylus teres, gracilis, exsertus, ramis linearibus plus minusve elongatis obtusis V . subacutis, marginibus valde
incrassatis lævibus glaberrimis. Pappus rigidus, multisetosus, sub-biserialis, rufus, v. pallide straminens, setis subpaleaceis inæqualibus scábris v . barbellatis. Achenium elongato-obconicum r . oblongo-cylindraceum, basi attenuatum, estipitatum, nudum, pilosum, v. setis appressis hispidum. Flor. Disci. Corolla tubulosa, plus minusve elongata et infundibuliformis, tubo terete glabro v. piloso ut in fl. radii, limbo $\overline{5}$-fido, segmentis patentirevolutis obtusis, marginibus incrassatis, apicibus extus glabris v . barbatis. Anthere cohærentes, basi integerrimæ, ecaudatæ, rarius breviter biaristatæ, v. in appendices abbreviatas productæ. Pollen globosum, echinulatum, luteum. Stylus teres, elougatus, ramis brevioribus quam in floribus radii, primum linearibus marginibus incrassatis glaberrimis, deinde sublatioribus in conum brevem v. elongatum intus planum nudum dorso convexo marginibusque papillosis productis, papillis interdum elongatis. Pappus tubo subæquilongus et achenium ut in floribus radii.-Herbæ speciosce Australasica, et insularum Tasmania, Nova Zelandia et Antarcticarum incole, albido-lanatce seu sericece, rarius glaberrima. Folia pleraque radicalia, lanceolata v. linearia, rarius oblonga. Caules seu Scapi erecti, foliosi, apice capitulum solitarium gerentes.

Subgen. Ionopsis, Hook. fil. (non H.B.K. nec DeCand.) Involucri squame lineares obtusce. Receptaculum convexum, subhemisphericum. Flores disci intense purpurei.-Herba tota glaberrima, nitens, quasi vernicose seu polila.
I. Celmisia vernicosa, Hook. fil.; acaulis, subsurculosa, foliis radicalibus numerosissimis stel-latim-patentibus lincaribus acutis mucronatis coriaceis remote subserratis rigidis glaberrimis vernicosis marginibus revolutis, costa subtus latissima, scapo foliaceo raginato, capituli disco purpureo, styli florum disci ramis acutis. (Tab. KXVI. \& XXVII.)

Hab. Lord Auckland's group; on banks and rocky places near the tops of the hills, alt. I 200 feet, and near the sea on the exposed islets. Campbell's Island; abundant in the immediate neighbourhood of the sea.

Radix subfusiformis, elongata, obliqua, bic illic fibrosa, superne punctis elevatis copiosis cicatricata; collo rigide setoso e reliquiis foliorum emortuorum, et non raro surculoso ; surculis (an scapis abortivis !) ramos simulantibus simplicibus 2 uncias ad spithamæum longis fibrosis foliis superioribus majoribus. Folia radicalia, numerosissima, læte viridia, imbricata, plerumque horizontaliter et stellatim patentia, unciam ad $3-4$ uncias longa, 1-3 lineas lata, linearia, seu lineari-subulata, coriacea, rigida, mucronato-acuta, integerrima v. remote et obscure serrata, glaberrima, nitida, quasi vernicosa, margine revoluta, basi dilatata membranacea, superne ad costam linea depressa, subtus costa latissima prominente. Scopi radicales, 1-10-13, adscendentes, demum erecti, spithamæi fere ad pedalem, foliosi, foliis (v. bracteis foliaceis) approximatis lineari-lanceolatis acutis basi vaginantibus subsucculentis apicibus rigidis vernicosis. Capitulum solitarium, erectum, majusculum, unciam ad sesqui-unciam latum, radiatum, roseo-album, disco intense purpureo. Involucrum plano-hemisphæricum, e squamis s. foliolis biserialibus linearibus obtusiusculis coriaceo-membranaceis rigidis nitidis linea dorşali notatis, marginibus subciliatis viridibus apice purpureis, $4-5$ lineas longis. Flores radii sub-20, fœminei; ligula lineari-oblonga, 4 -nervis, revoluta, apice obscure 2-3-dentata, tubo brevi hirsuto, pilis articulatis. Styli rami lineares, breviusculi, obtusi, albidi, eglandulosi. Achanium (vix maturum) obconicum, sericeo-setosum. Pappus e setis rigidis subpaleaceis pilosis uniserialibus. Flores disci numerosi, compacti, hermaphroditi. Achcenium et pappus ut in floribus radii. Corolla tubulosa, infundibuliformis, superne ventricosa, teres, 5 -fida, segmentis apice reflexis, tubo hirto, pilis ut in floribus radii. Anthere 5, in tubum connatæ, lineari-oblongæ, flavæ, basi breviter bisetosæ, inclusæ. Styli rami exserti, breviusculi, purpurei, dilatati, compressi, plano convexi, acuti, ad apicem dorso marginibusque glanduloso-stigmatosi, iutus nudi. Receptaculum parvum, nudum, convexum, depresso-punctatum, epaleaceum.

This is a very handsome plant, to which cren the beautiful drawing now prepared for publication hardly does justice, one of the specimens gathered on Campell's Island measuring nearly a span across the leaves.
from whose bases arose no fewer than thirteen flowering scapes, ten of them with the blossoms fully expanded. The delicacy of the rays, tipped with a faint rose-colour, forms a striking contrast with the dark purple eye and the glossy varnished deep green foliage. Like many other Antarctic plauts, it varies considerably in size, some of our specimens being scarcely an inch and a half across the leaves, which lie densely compacted and all horizontally patent, radiating from the summit of the root like the spokes of a wheel, of a rery coriaceous texture, singularly smooth and shining like the surface of a shell, or as if covered with a thick coat of copal varnish : their apices in the smaller specimens are incrassated or the leaves are clubbed at the apex, from the union of the thick costa with the equally incrassated margins. This thickening extends to the bracter or leaves on the scapes and even to the scales of the involucre; when dry they are of a rich but pale yellow-brown colour.

The genus Celmisia, as modified above, will contain several species very closely allied in habit, and all bearing a much greater similarity to the original Australian C. longifolia, A. C., than the C. vernicosa does. Upon the closest examination, I can detect no characters of sufficient importance to warrant any further subdivision of the following species, which I shall therefore include under the name of Eucelmisia, considering them as typical of the genus, near to which the above-described species should assuredly rank.

I shall here, in a note, subjoin the characters of the other species, and proceed with some remarks upon them *.

* Symopsis of the species of Celmisia known to the Author.

CELAIISIA, Cass.

§ I. Eucelmisia.

1. Species Australasica.

1. C. longifolia, Cass.; foliis linearibus utrinque argenteo-lanatis scapo lanuginoso subæquilongis, pappo rufo, achæniis glaberrimis, stylorum apicibus breviusculis obtusis.
a. foliis explanatis, scapo folioso.-НАв. Jamieson's Valley, Port Jackson; Gaudichaud.
β. foliorum marginibus revolutis, scapo nudiusculo.-НАв. Blue Mountains; Cunningham.
2. C. spathulata, A. C. ; " foliis elliptico-oblongis in petiolum longe attenuatis utrinque glabris."-DeC.
H_{ab}. Oyster Harbour, King George's Sound; A. Cunningham.
3. C. asteliafolia, MSS.; foliis elliptico- $\mathrm{\nabla}$. lineari-lanceolatis, supra argenteo-lanatis subtus dense sericeotomentosis marginibus revolutis, scapis folio subduplo longioribus parce foliosis, achæniis pilosis, antheris basi breviter biaristatis, stylorum apicibus ut in C. longifolia.

Hab. Mount Wellington and other lofty mountains of Tasmania; Frazer and Gunn.

2. Species Nove Zelandia.

4. C. gracilenta, Hook. fil Aster gracilentus, Banks and Sol. MSS.; foliis scapisque ut in C. asteliafolia, achæniis glaberrimis, styli ramis longe productis gradatim acuminatis, papillis filiformibus elongatis.

Нab. New Zealand, Northern Island; Banks and Solander. Great Barrière Island on the East coast; Dr. Sinclair. Lofty mountains of Waikato Lake; Colenso, Bidwill. Mount Egmont; Dr. Dieffenbach.
5. C. yraminifolia, Hook. fil.; foliis lanceolatis v. lineari-lanceolatis subflaccidis, supra glaberrimis, subtus appresse argenteo-lanatis, acuminatis, scapis $2-3$ foliis brevioribus, stylis ut in C. gracilenta.

Нав. Bay of Islands, New Zealand.
6. C. spectabilis, Hook. fil. ; foliis oblongo-lanceolatis integerrimis valde coriaceis basi raginantibus longis-
C. longifolia (1.). This is the original species, whereon the genus was founded by Cassini; the specimens having been brought home by Gaudichaud from the voyage of Admiral Freycinet, and described in ' Dict. Sc. Nat.' vol. xxxvii. p. 259. DeCandolle considers Cunningham's Blue Mountain species (Arctotis gnaphalodes, Cunn. MS. in Herb. Hook.) as identical with this. Our specimens differ from Gaudichaud's figure only by having the leaves much narrower, with their margins revolute and the scapes far less leafy upwards. The achroia are constantly glabrous, the pappus pale reddish, and the papillose part of the arms of the style is as long as the linear and glabrous portion. Of the C. spathulata (2.), A. C. MSS., we have no specimens; in its glabrous foliage it differs from all but C. vernicosa. A third species is founded on a Tasmanian plant not rare on the summit of Mount Wellington, where it forms large matted patcles. The first specimens I had seen were gathered there by Mr. Frazer, and more latterly by myself and Mr. Gunn, who detected it in other mountainous parts of the colony. I have called it C. asteliafolia (3.), from the great similarity it bears in foliage, general aspect and habitat to Astelia alpina, Br. The leaves are extremely variable in breadth and in the degree of re. curving in their margins; they are often very like those of C. longifolia, but never exceed a span in length. The scapes too arc longer, less leafy, and the flowers larger than in that species; the hairy achænia also afford a constant character. The flowers of the ray are pink, the pappus yellow. The above three species are Australian. Those found in New Zealand are C. gracilenta (4.), a plant so very near, even in the variable form of its leaves, to C. longifolia, that it was not till I had examined the styles that I could detect any difference; the conical papillose portion of these being much produced, gradually acuminated, and three times the length of the lower part of the arms, with the papille almost filiform. From C. asteliafolia it differs in having a glabrous achænium, which is much longer than in any of the former species. Ncarly allied to this is the C. graminifolia (5.), mainly distinguished from the former by its foliage. Decidedly the finest species are the three following, two of them originally discovered and described by Forster ; the first is C. spectabilis (6.), of which 1 possess a specimen from Mr. Bidwill. Thongh hardly exceeding a spau in length, iucluding the scape, the base of the stem, while covered with the sheathing leaves, is fully an inch in diameter, and densely clothed with long, beautifully silky wool. The leaves are broad and remarkably coriaceous, their upper surface, in the dried state, minutely striated with auastomosing lines, and the under densely clothed with buff-coloured appressed tomentum. The scape is stout, loosely covered with shaggy white wool, and producing a large, solitary, apparently white flower, an inch and a half broad. The achænia are elongated, all of them glabrous; the tubes of the corolla, especially of the ray, have long, straight, pellucid, scattered, distantly jointed, and very slender hairs. Pappus yellow, rigid ; the outer setæ, as in the other species of the genus, short, the rest gradually lengthening. Ligules of the flowers of the ray linear, abruptly truncated, with three large teeth and four nerves. Anthers shortly biaristate at the base; styles with the arms rather elongated, the conical papillose portion of those of the disc short and rather obtuse. Forster's first species, C. holoscricea (Aster, Forst.), has been found, I believe, by that botanist alone: his specimens exist in the British Museum, accompanied by his fine drawing of
sime sericeo-lanatis supra glabris subtus tomento fulvo appresso densissime obtectis, achæniis glaberrimis, tubo corollæ piloso, antheris breviter biaristatis.

Нав. Northern Island; Tongariro; Mr. Biduill.
7. C. holosericea, Hook. fil. (Aster holosericeus, Forst. Prodr, 1. 296) ; "herbaceus, foliis oblongo-lanceolatis serratis, subtus argenteo-sericeis, scapis unifloris foliosis." - Forst.l. c.
$\mathrm{H}_{\triangle \mathrm{B}}$. Dusky Bay ; G. Forster.
8. C. coriacea, Hook. fil. (Aster coriaceus, Forst. Prodr. n. 297) ; foliis oblongo-lanceolatis valde coriaceis supra medio sulcatis glabris subtus villosis, achæniis pilosis, pappo rufo.

НАв. Dusky Bay ; G. Forster.
both the present and the last species. Richard (Flora Nove Zelandiæ, p. 249) described it from other and less perfect individuals, aided by Forster's MS. in the Museum of the Jardin des Plantes at Paris. He however does not notice its affinity to Celmisia, and considers the C. coriacea as probably a variety of it, though Forster's figures essentially differ in gencral appearance, and other characters are found in the parts of the inforescence of no less importance, the achænia described by Richard being "silky and stipitate" (attenuated !) at the base. Mr. Cunningham, in his 'Prodr. Flor. Nov. Zeland.,' frst noticed the probable relation existing between these last two species and Celmisia (Cass.). The scales of the involucre in all the New Zealand species, except C. vernicosa, are narrow and almost subulate, becoming recurved and finally squarrose in the older capitula; this is, however, a variable character.

I may here mention another little-known New Zealand plant, originally discovered by Forster, and called by him Arnica oporina (Forst. Prodr. n. 299); it is nearly allied both to these and the former genus Pleurophyllum. I have carefully examined specimens from Dusky Bay, gathered by Mr. Menzies, and others from Chatham Island, received from Dr. Dieffenbach. The achenia are ribbed and hairy, the pappus rigid, rather scanty, pale-coloured, scabrous, and of very unequal setæ. The tubes of the corollas in the ray are glabrous, in those of the dise slightly hairy. In both flowers the arms of the style precisely resemble those of Celmisia and are very long, those of the disc with short papillose extremities. A comparison of this plant with the genus Chiliotrichum of Cassini, (published in DeCandolle's Prodromus, vol. vi. p. 216, and Hooker's Icones Plantarum, vol. v. t. 485) does not enable me to detect any generic distinction : the arms of the style in the flowers of the ray are indeed rather longer in the latter and slightly attenuated upwards, and the achrenia are glandular and not hairy. Both approach very closely the genus Eurybia, Cass., or Olearia, Mœnch.

Plate XXVI. \& XXVII. Fig. 1, involucre cut open, showing the hemispherical receptacle with a flower of the disc and of the ray; fig. 2, a flower of the ray; fig. 3, setre of the pappas; fig. 4, tube of the ligulate flower ; fig. 5, style from do.; fig. 6, flower of the disc ; fig. 7, corolla from do.; fig. 8, anther from the same; fig. 9, styles from the same:-all magnified.

Dubii generis.

Amongst the plants collected in Lord Auckland's group, are two apparently belonging to the natural order Composita, but which, in the absence of flower or fruit, I am unable to place under any genus. One of these may belong to Gnaphalium, but is quite different from any New Zealand or other spccies which has come under my notice. The only specimen of it which I possess was gathered by Mr. Lyall, and consists of apparently a few radical leaves, or probably of a young plant whose stems are not yet produced upwards.

1. Gnaphalium ? radice lignoso, caule breviusculo $2-3$ unc. longo adscendente e basi ramoso folioso, foliis confertis patulis obovato-lanceolatis subspathulatis obtusis integerrimis planis medio obscure uninerviis utrinque lana laxa molli albida vestitis $\frac{3}{4}-1$ unc. longis $4-5$ lin. latis.

Hab. Lord Auckland's group; on the sea-beach, D. Lyall, Esq.

The woolly substance which entirely clothes the leaves and stem of this plant is formed of simple, terete, transparent, matted filaments, similar to that of Gnaphalium luteo-album, L., to some states of which this bears a good deai of resemblance. It may with equal probability be referred to a species of Helichrysum, and except that the apices of the leaves are not apicalate or mucronate, it has much the appearance of young plants of H. apiculatum, Lab.

The other plant, if I am right in referring it, as I do with little hesitation, to Composita, forms one of the most handsome shrubs or low trees belonging to that natural order. It was also detected by Mr. Lyall, from whose specimens I shall here give a short description :-

Subarborea, ramis ultimis lignosis terctibus striatis v. canaliculatis validis, $\frac{1}{2}$ unc. diametro,
cortice tenaci e fibris crassis parallelis tomento denso albido adpresso vestito, foliis alternis petiolatis amplis 8 pollicares ad perlalem longis late elliptico-ovatis acutis v. acuminatis crenato-dentatis valde coriaceis supra (costa basi excepta) glaberrimis late viridibus nervis reticulatis subtus tomento appresso dense lanatis, venis prominulis, junioribus ad apices ramulorum convolutis lanatis basique dense argenteo-sericeis pilis longioribus, petiolo valido $\frac{1}{2}$ unc. longo basi dilatato scmiamplexicauli tomentoso $\frac{1}{2}$ unc. longo.-Catera ignota.

Hab. Lord Auckland's group ; Erring Island, a small islct at the mouth of Rendezvous Harbour, D. Lyall, Esq.

Of this plant Mr. Lyall remarks, " A short stout trunk rises a few inches above the ground, and then sends off horizontally patent branches, which radiate as from a common centre for 10 or 12 feet on all sides, a little above the surface of the earth. The leafy apices then ascend. The leaves are of a dark green colour, which they lose in drying." A piece of the wood which accompanied the specimen is about $1 \frac{1}{2}$ inch in diameter; the bark of a light grey colour, rather thin and soft, deeply grooved on the surface, the grooves corresponding to sinuous, anastomosing, longitudinal ridges, enclosing elongated, somewhat lozenge-shaped spaces; the wood is whitish or pale ycllow, hard, tough and close-grained, the layers indistinct, and the medullary rays numerous and very slender; it resembles the stem of some shrubby species of Ozothamnus. This fine plant is most remarkable for the size and thick coriaceous texture of the leavcs, which are in many respects similar to those of the genus Brachyglottis, Forst. I have seen nothing like it in the collections of Banks and Solander, Forster or Menzies. It is a rare plant in the islands now under consideration, and will probably be found to be a native of the southern extremity of New Zealand.

XVI. STYLIDIEÆ, $B r$.

1. FORSTERA, L.

Flores monoici v. dioici. Calyx basi bibracteolatus, limbo 3-6-partito, segmentis erectis. Corolla tubu-loso-campanulata, tubo brevi v. elongato, limbo 4-9-partito, segmentis inaqualibus, rstivatione imbricatis, 1-2 ext. majoribus, patulis concavis, fauce nuda v. glanduloso-incrassata. Clundulce epigynce 2, oppositæ, semilunares, staminibus alternæ. Anthere ad apicem columnæ oppositæ, divaricatæ, reniformes, spurie biloculares, rima transversali dehiscentes, valvula superiore majore fornicata. Pollen $3-5$-angulatum. Stylus intra columnam occlusus. Stigma (v. apex styli) minimum, 2-lobum (an 4-lohum ?), ramis floribus fertilibus perrectis, superne villosis v. subplumosis. Ovarium obovatum, carnosum, uniloculare, rarius biloculare, multiovulatum, ovulis columnæ centrali funiculis brevibus adnexis, ascendentibus. Capsula ovalis, unilocularis.-Herbæ porva, perennes, glabra, coriaceo-carnosa, antarctica seu montibus altissimis Novce Zelandice provenientes. Folia imbricata. Flores in summos ramos sessiles, v. pedunculos elongatos solitarii v. bini.-Endl.
§ Helophyllum, Hook. fil.; floribus sessilibus solitariis, calycis limbo 5-G-partito, lobis cequelibus, foliorum apicibus nodoso-incrassatis.

1. Forstera claviyera, Hook. fil. ; densissime et compacte cæspitosa, caulibus crectis parce ramosis, foliis arcte imbricatis scmiteretibus apicibus nodoso-incrassatis, floribus terminalibus sessilibus solitariis. (Tab. XXVIII.)

Hab. Lord Auckland's group and Campleell's Istand; on the mountains in turfy and boggy places, very common.

Caules erecti, stricti, parce ramosi, deusissime compacti, cæspites firmos fragiles formantes, per totam longitudinem foliosi, hinc illinc axillis foliorum radices fibrosas emittentes, fibris validis elongatis fuscis horizontaliter patentibus carnosis simpliciusculis, et deorsum in radices sulsimiles gradatim attenuata, $1 \frac{1}{2}-2$ polli-
cares, una cum foliis diametro $\frac{1}{4}$ pollicis. Folia undique inserta, creberrime imbricata, numerosissima, stricta, erecto-patentia, linearia, obtusa, glaberrima, hasi dilatata subvaginantia, marginibus tenuiter membranacea, medio subcontracta, dorso teretia, antice anguste plana vel canaliculata, ad apices globoso-incrassata, coriacca, crassa, dura, viridia, nitida, $2 \frac{1}{2}-3$ lin. longa; adulta inferne turgida, subampullacea, fusco-brunnea, suberosia, laxius imbricata. Flores ad apices ramulorum onnino sessiles, inter folia occlusi, limbe corolle solummodo exserto, verosimiliter monoici, v. potius hermáphroditi. Calycis tubus brevis, turbinatus, v. floribus masculis obconicus, basi libracteolatus; limbus $5-6$-partitus, lobis linearibus obtusis erectis carnosis semiteretilus medio uninerviis, dorso infra apices pilosis, tubo corollæ æquilongis; bracteolæ opposite, segmentis calycinis simillimæ, basi remote. Corolla campanulata, albida; tubus latus, brevis, teres; limbus sul-bilabiatus, nempe inæqualiter 5-9partitus, segmento unico v. duobus creteris majoribus, rarius 4 -partitus, segmento unico maximo 2 -nervi, omnibus obovatis obtusis concavis planis v . ad faucem biglandulosis sinubusque incrassatis. Glandula epigyne 2, oppositæ, semilunares, colummæ basin fcre cingentes, crassæ et carnosæ, virides, antheris alterne. Columna valida, erecta, ante anthesin protrusa, recta v. paululun inclinata, teres, superne incrassata. Antherce 2, ad apicem columar sessiles, transversx, majuscule, renifornes, v. potius hypocrepiformes, divaricate, 1-loculares, connectivo carnoso in loculum porrecto costam elevatam formante, hinc spurie biloculares, linea curvata homotropa horizontaliter dehiscentes, valvis subcarnosis cellulosis purpureis inequalibus, superiore majore fornicato suberecto post anthesin revoluto, inferiore horizontaliter porrecto marginibus lateralibus revolutis. Pollen opacum, 3-4-angulatum, flavo-viride, minutissime granulatum, angulis globoso-incrassatis, margine hyalino cinctum. Stylus floribus abortivis intra antheras occlusus, parvus, angustus, inconspicnus, convexus, v. brevissime bilobus; Hloribus fertilibus bilobus, lobis porrectis divaricatis antheris alternis uncinatis carnosis sursum glanduloso-plumosis. Ovarium flore masculo angulatum, pedicellum breve crassum simulans; flore fertili late oboratum, v . turbinatum, teres, carnosum, 1- rarius 2 -locnlare, ∞ ovulatum ; ovulis parvis ascendentibus. Capsulu immatura coriaceo-carnosa, 1-lccularis. Senina semi-matura 6-8, obovata, ascendentia; testa membranacea, pallide brunnea ; albumine carnoso. Embryo non visa.

Though abundant upon the hills of Lord Auckland and Campbell's Islands, this plant has not hitherto been brought from any part of New Zealand, neither from the mountains of the Northern Island, whence Mr. Bidwill and Mr . Colenso have sent home several of the more common Antarctic species, nor in the southern parts of that group, so well explored by Forster and Menzies. In general habit and appearance it bears a greater similarity to the Plyllachne uliginosa, Forst., than to its New Zealand congener, Forstera sedoides, L., although in the more essential characters it is mucl more nearly allied to the latter, the leaves being entire, the calycine segments equal and regular, and the epigynous glands much developed. In other respects, and especially in the mode of growth and form of the leaves, the present plant is so dissimilar from either, that I have ventured to place it under a separate sectional name, adopted in allusion to the incrassated apices of the leaves.

There are several points in the structurc of the three plants alove alluded to which seem to require some consideration ; and having the opportunity of examining the flowers of all the species, I shall bere offer a few remarks upon them, premising that, except in the case of F. clavigera, the specinens at my disposal were too few to allow of the full verification of the observations.

Linnæus first supposed Phyllachne to be monecious (Suppl. Plant. p. 62), and Swartz (Schrader, Journ. fur Botanik, vol. i. p. 273, translated in Kœnig's Annals, vol. i. p. 286) follows Forster (Charact. Gen. t. 58) in supposing both this and F. sedifolia to be dieccious. If, as I suspect, the only truly fertile flowers of F. clarigera are such as bear the uncinate phumose styles, that plant is certainly moncecious. Out of very many flowers examined, I only found such stigmata in two, both of which had abortive anthers, and they were moreover furnished with the only capsules in which I saw the immature seeds lorown, and apparently fertile. Though there is a marked difference in the devclopment of the apex of the style in the abortive flowers of this plant, it never, that I have seen, approaches the form it bears in the fertile flowers; at all other times it is exceedingly minute and probably variable in the lobes. Of the P. uliginosa I examined six flowers, only one of which
contained perfect stigmata; in it the style branched into two capitate arms, pubescent externally, and in all respects analogous to the stigmata of the former plant; the owary was however in so very young a state, that I could not detect any concomitant character in the ovules; the anthers were decidedly abortive. In F. sedifolia, L., I have secn no other stigmata than two small uncinate fleshy bodies, concealed between the two upper valves of the anthers, parallel with them, and alternating with two small glands? at the back of these organs. In form and situation they answer to the plumuse stigmas of the two former, but they are smooth throughout. In another Hower I find the apex of the style to be depressed and to appear minutely 4 -lobed, with the lobes unequal and rounded : in both these cases the anthers were full of pollen, and the ovules in a rudimentary state. In Swartz's description of this plant he notices a crest of projecting hairs, arising from a fleshy septum, obscurely lobed under the microscope, which connects the two anthers and separates the two lobes of the true apex of the style or stigmas. Swartz distinctly alludes to the two small glands or stigmata as being protected by the upper valves of the anthers, and they are hence probably analogous to two of the four lobes into which, in the flower I examined, the apex of the style appeared to be divided. Swartz's supposition, that the septum and crista of fine hairs form a connectivum between the anthers, separating the stigmata, appears to me to indicate a most anomalous condition of those parts; and as it is, from its position and structure, analogous to the arms of the style and stigmata in the two former species, I conclude that that author examined fertile flowers of F. selifolia. It is still more remarkable that so acute and very accurate an observer should have been unable to detect the glands at the base of the column, which in both my specimens are exceedingly large, and project upwards like two horns from the top of the ovarium for half the length and upwards of the tube of the corolla, and whose apices in the young state of the flower lie between the anthers. It is possible that they may be obscurely developed in fertile flowers of this species, which however is not the case in those of F. clarigera or of Phyllachne uliginosa.

In F. clavigera there are apparently two very different states of the corolla : in many of my specimens of this plant that organ is divided into $5-7$ lobes, all of them concave and even, of the same thickness throughout ; more rarely they are 4 or 9 ; but in other corollas taken from the same specimens the divisions are undulated, with the borders of the sinuses much thickened, and each of them furnished at the throat with two linear, elevated, divaricating ridges or glands, which branch off from the middle nerve in the upper part of the tube, and are abruptly clavate at the extremity, near the margin of the segment, with whose thickened margins they sometimes unite. In some respects they resemble the nectaries of Ramunculus pinguis (Tab. 1.), being only occasion. ally present; they however contain no secretion. Though I could trace no conncetion between this, the common form of the corolla, and the fertile or abortive state of the ovarium, I may remark, that where the segments are smooth and even, the apex of the style is hardly prominent or visible between the anthers, and also that in the most divided corollas the segments were most undulated and thickened; in F. sedifolio they are also very distinct, though nowhere described that 1 am aware of; and they are alsn evident, but not so fully developed, in the few flowers of Plyllarlme which I have examined. I have also described the corolla as somewhat two-lipped, a character not very evident in all instances, and depending upon the inequality and comparative size of the segments; one or two are almost invariably larger than the rest, and external in restivation; when there are two large lobes they are placed near one another; and when the corolla has more than five segments, these two are subdivided into four by short sinuses; where only four segments exist, it is caused by the union of two of the small lubes.

All the species have the anthers spuriously 2 -celled, by means of a thick fleshy ridge which runs at the base of the anther, between the valves, and projects half-way across the cavity. After the dehiscence of these organs, they together form a cross placed horizontaliy on the top of the column, from their unsymmetrical contraction ; of these, the lower one on each side projects horizontally and forms a right angle with the axis of the column, its two lower lobes approximating below; the upper becomes erect, and its upper margin being revolute, meets that of the opposite anther ; this appearance is represented at fig. 10. The ovary, which is generally

1-celled, I have rarely found divided into two cells by a more or less thickened septum. Two bandles of vessels, one from each of the arms of the style, meet in the column and traverse its length; at the summit of the ovarium they sometimes again divide, and as separate cords enter its cavity, meeting again in the central column which bears the placentre.

The last circumstance to which I shall here allude concerns the inflorescence of these species of Stylidiece. In one of Mr. Bidwill's specimens of F. sedifolia from the mountain of Tongariro, in the Northern Island of New Zealand, the pednncle is 2 -flowered, and the position of the bracts on the pedicels, and at the base of the ovaria, shows their true situation and the nature of the inflorescence to be the same in Forstera as in many Stylidia. This two-flowered specimen has six bracts, two of which are placed at the forking of the peduncle, one situated upon and belonging to each of the pedicels; but the other four form two pairs, each pair placed immediately at the base of the ovarium. In the solitary and sessile-flowered species it is sometimes difficult to distinguish the bracts from the upper leaves; in F. clavigera however they are sufficiently distinct, bnt never more than two, nor in P. utiginosa are there probably more, though they gradually pass into the ordinary forms of the leaf. In the latter plant some foliaceous expansions, which are generally considered as segments of the calyx, are often placed upon the germen; I have not remarked how they are disposed npon distinctly fertile ovaria of this species; where however that organ is imperfectly developed, it may be readily understood how a little irregularity in the insertion either of the calycine lobes or bracts might lead to the one being mistaken for the other.

Plate XXVIII. Fig. 1, branch of F. clavigera with an expanded plicate corolla, and the arms of the style developed; figs. 2 and 3, canline leaves from the same; fig. 4, flower with the segments of the corolla even and plane ; fig. 5, a portion of a corolla from fig. 1 ; fig. 6 , ovarinm and epigynons glands ; fig. 7, column with perfect anthers; fig. 8, longitudinal section of the same; fig. 9 , pollen from the same; fig. 10, anthers after the pollen has escaped; fig. 11, column with stigmata and imperfect anthers; fig. 12, transverse section of l-celled ovarium ; fig. 13, longitudinal section of 2 -celled do.; fig. 14, immature seeds:-all magnified.

XVII. LOBELIACEE, Juss.

1. PRATIA, Gaud.

Calycis tubus ovatus v. obovatus, rarius obconicus, lobis 5 ovatis acutis superioribus paulo longioribus. Corolla subcampanulata, longitudinaliter fissa, unilabiata, lobis subæqualibus elongato-ovatis. Anthere 2 , inferiores apice setis paucis terminatæ. Stigna bilobum, lobis extns puberulis. Fructus indehiscens, baccatns, bilocularis, carnosus, v. membranaceus, polyspermus.-Herbæ parva, glabra, repentes, Australes et Antarctice, succo aqueo; ramis radicantibus divaricatim ramosis. Folia alterna. Pedunculi solitarii, nudi, v. bracteolati.

1. Pratia arenaria, Hook. fil.; glaberrima, subcarnosa, foliis breviter petiolatis ovato- v. ob-ovato-rotundatis undulatis marginibus obtuse sinuato-dentatis, floribus immaturis in axillis foliorum sessilibus, fructibus brevissime pedunculatis globosis purpureis. (Tab. XXIX.)

II Ab. Lord Auckland's group ; creeping over the open sandy shores of Enderby's Islet, Rendezvous Harbour: Lieut. H. Oakeley.

Caules elongati, 4-7 nncias longi, crassi, carnosi, diametro pennæ gallinæ, teretes, divaricatim ramosi, ramis paucis patentibus repentibus ad axillas foliorum inferiorum fibras crassas emittentibns. Folia remota, subsemiunciam longa, distantia, horizontaliter patentia, v. ascendentia, circumscriptione plus minusve rotundata, plernmque concava, undulata, carnosa, in petiolum latum brevem 2 lin. longum contracta, $\frac{3}{4}$ unc. lata, paulo
longiora, marginibus sinuato-undulatis, vel subdentatis, nervis tenuibus reticulatis, in axillis gemmas floresve gerentia. Flores valde immaturi tantum mihi visi, parvi, brevissime pedunculati ; pedunculi basi v. supra basin bibracteolati, bracteolis parvis lanceolatis acutis. Calycis tubus oblongus; limbus inæqualiter 5 -lobus, tubo brevior, lobis ovato-subulatis acutis, superiore majore basi utrinque et duobus proximis basi extus auriculatis, 2 iuferioribus minoribus. Corolla profunde 5-loba, lobis æstivatione valvatis virido-purpureis. Stamina lobis corollæ alterna, filamentis crassis, antheris cohærentibus, 2 superioribus ad apicem 3-4 setosis, seta intermedia longiore. Ovarium biloculare, loculis multiovulatis; ovulis anatropis, funiculis brevibus. Stylus apice bifidus, lobis brevibus extus puberulis v. pilosis. Baccu subglobosa, obscure bisulcata, v. biloba, lobo superiore majore basi gibboso, segmentis calycinis coronata, sub 4 lin. longa, bilocularis, parietibus carnosis rubro-purpureis venosis, dissepimento carnoso ad medium incrassato placentifero. Semina numerosissima, funiculis brevibus dissepimento adnata, ascendentia, parva, ovalia, testa crustacea atra nitida, nunc brunnea, seu castanea, albumine carnoso. Embryo minimus, orthotropus, pyriformis, radicula tereti crassa obtusa hilo proxima, cotyledonibus brevibus.

A very distinct species, of which I much regret that I have not more satisfactory specimens which would allow of an examination of the expanded flowers. The peduncles of the bud and of the berry are so remarkably short, as at once to point out this as very distinct from any others of the genus; and it further differs from all the other round-leaved species in the size and obscure toothing of the leaves, their very sbort petioles, and in the red-purple colour of the berries. It is most nearly allied to the P. angulata (vide infra).

Having had the opportunity of examining some species of Pratia in Herb. Hooker, I shall here append the characters of all that are known to me as certainly belonging to this genus*; besides which, there are several

* PRATIA, Gaud.

§ I. Lobis calycinis $3 v$. pluribus basi auriculatis.

1. P. arenaria, Hook. fil. ; vide supra.
$\mathrm{H}_{\Delta \mathrm{B}}$. Auckland Islands.
2. P. Cunninghamii; ramis ascendentibus, foliis subdistichis sessilibus ovato-lanceolatis v. oblongo-ovatis obtusis obtuse repando-serratis coriaceo-carnosis, pedunculis folio $\frac{1}{2}-\frac{1}{4}$ brevioribus, bacca ovato-globosa submembranacea, seminibus testa coriacea pallide brunnea areolata v. granulata.-Isolobus? Cunninghamii, Alph. DeC. in Prodr. vol. vii. p. 354. Lobelia inundata, Curn. MSS. (non Br.) an Lob. concolor, Brown, Prodr. p. 563 ? Pratia erecta, Gaud. in Freycin. Voy. Bot. p. 456 ?

Var. β. longipes; pedunculis folio æquilongis longioribusve.
Hab. New Holland; morasses on the banks of the Mequarrie River: Frazer. Low lands about the Hunter River; A. Cunningham.
β. Inundated banks of the Lachlan River; A. Cunningham.

§ II. Lobis calycinis basi nudis, seu auriculis nullis.

3. P. repens, Gaud. ; ramis repentibus radicantibus, foliis erectis longe petiolatis carnosis subcordato-orbiculatis sinuato-dentatis, pedunculis crassis petiolo æquilongis bi- tri-bracteolatis, bacca globosa carnosa, seminibus pallide fuscis.-P. repens, Gaud. in Aun. Sc. Nat. vol. v. p. 103. Voy. Freyc. pp. 134 and 456. t. 79. D'Urr. Fl. Ins. Mal. ì Mém. Linn. Soc. Paris, vol. iv. p. 608. Alph. DeC. in Prodr. vol. vii. p. 340.

Hab. Falkland Islands, Tierra del Fuego, and S. Chili, on the east and west side of the Andes.
I have not retained the var. Urvilleana, Alph. DeC. l. c., because in my specimens the calycine segments are
other New Zealand and New Holland solitary-flowered creeping Lobeliacea with unilabiate corollas, but in the absence of any specimens with fruit I am unwilling to add them here.

The genus Pratia was established by M. Gaudichaud on a species detected by himself in the Falkland 1slauds, the P. repens, which was first described in Ann. Sc. Nat. vol. v. p. 103 (anno 1825) ; but the original discoverers of the genus were Banks and Solander, who, during Captain Cook's first voyage, gathered the P. angulata in New Zealand (in 1769) : to the species of M. Gaudichaud there was first added another from La Plata by M. Chamisso (Linnæa, vol. viii. p. 212), and more lately what appears to me a truly distinct species was published as a variety of this last, under the name of P. hederacea, β. elliptica(vide Hook. Bot. Journ. vol. i. p. 278). 1 have seen the fruit of all these except the P. hederacea, and they agree with the claracters of Pratia. In 1839 11. Alph. DeCandolle removed the Pratiu begonifolia, Wall., and erected it into a separate genus, Piddingtonia, mainly on account of the 2 -lipped corolla; besides this character of the corolla, which has the two outer lobes
very variable in length, as is the corolla itself and the tube of the calys in shape, the form of the latter depending upon the greater or less maturity of the seeds.
4. P. hederacea, Cham. ; ramis repentibus, foliis petiolatis membranaceis late ovatis rotundatisve crenatodentatis basi subcordatis, petiolis limbo longioribus, pedicellis folio longioribus, corolla filamentisque intus basi villosis.-Chamisso in Linnaa, vol. viii. p. 212. Alph. DeC. in Prodr. vol. vii. p. 340.

Hab. South Brazil and Uraguay ; Chamisso, Gaudichaud.
Having only seen a solitary but authentically-named specimen of this (communicated from Herb. reg. Berol.), I have no opportunity of dissecting the flowers: in the villous tube of the corolla it differs from all the other species I am acquainted with.
5. P. elliptica ; caule repente, ramis crectis prostratisve, foliis distichis brevissime petiolatis oblongis obtusis remote repando-dentatis dentibus obtusis, pedunculis folio longioribus fructiferis valde elongatis, capsula membranacea elongato-pyriformi, seminibus parvis, testa lævi pallide brunnea.-P. hederacea, β. elliptica, Alph. DeC. in Prodr. vol. vii. p. 340. Lob. hederacea, β. clliptica, Hook. \& Arn. Bot. Journ. vol. i. p. 277. L. odorata, B. Graham in Edinb. New Phil. Journ. for 1831.

Hab. Buenos Ayres and mouth of La Plata River, in marshy places; Tweedie.
The authors of 'Contributions to a Flora of South America' remark, that the fruit does not seem to differ from that of a true Lobelia; but the only seed-vessel I have examined seems truly indehiscent, and the corolla is most distinctly unilabiate. It is very different from the true P. hederacea, a plant those authors were not then acquainted with, and in many respects, especially in the distichous leaves, it resembles the P. Cunninghamii.
6. P. angulata; ramis prostratis elongatis basi radicantibus apicibus adscendentibus, foliis petiolatis ovatooblongis v . ovato-rotundatis obtusis repando-dentatis, pedunculis gracilibus folio multoties longioribus, seminibus testa pallide hrunnea minute punctata.-Lobelia angulata, Forst. Prodr. n. 309. A. Richard, Flor. Nov. Zel. p. 227. A. Cunn. Prodr. Flor. Nov. Zel. in Ann. Nat. Ilist. vol. ii. p. 50. L. littoralis, R. Cunn. in A. Cunn. Pradr. Flor. Nov.Zel.1. c.

Hab. New Zealand; Northern and Middle Islands in moist places.
This is a very rariable plant in the size of the leaves, corolla and berries.
7. P. ? Boliviensis, Alph. DeC. in Prodr. vol. vii. p. 340.

Hab. Bolivia.
Of this species I know nothing.
removed by a deeper division from the rest, the calycine segments are more membranous and foliaceous, and the whole plant more or less hairy ; its berry is very similar to that of P. arenaria, being large and apparently purple. Unless in specimens furnished with tolerably ripe fruit, it is difficult to recognise the genus l 'ratia, the character of the corolla being common to other true Lobeliacea, as is also that of the calyx, except that some of the species possess additional small lobes at the base of one or more of the segments. The bracts on the peduncles are also only occasionally present, and their situation is very variable.

Plate XXIX. Fig. 1, a young flower on a branch, of the natural size; fig. 2, the same removed; fig. 3, an anther aristate at its summit ; fig. 4, young stigmata; fig.5, ripe berry ; fig. 6, transverse, and fig. 7, longitudinal section of the same; fig. 8, ripe seed; fig. 9 , the same cut open, showing the embryo; fig. 10, embryo removed:-all magnified.

XVIII. EPACRIDE \mathbb{C}, Br.

Tribe STYPHELIEAE, $13 r$.

1. ANDROSTOMA, Hook. fil.

Calyx 5 -phyllus, basi bibracteolatus (pedunculis multi-bracteolatis). Corolla urceolata, limbo imberbi, segmentis 5 acutis. Stamina fauce corollæ sinubus inserta, filamentis breviusculis antherisque omnino exsertis. Discus hypogynus cyathiformis, profunde 5-lobus. Ovarium 2-4-loculare, loculis monospermis. Drupa baccata putamine osseo.-Fruticulus ex Insulis Auckland et montibus Nove Zelandice, prostratus, ranosus, ramorum apicibus ascendentibus. Folia parva, sparsa, linearia, patentia, integra, subtus striata. Flores parvi, inconspicui.

1. Androstoma empetrifolia, Hook. fil. (Tab. XXX.)

Hab. Lord Auckland's group ; in the upland regions, abundant.
Caules prostrati, graciles, filiformes, elongati, spithamæi ad bipedalem et ultra, diametro pennæ corvinæ, basi mudiusculi, fusco-brunnei, cicatricosi, ramosi, ramis elongatis, apicibus ascendentibus foliosis. Folia parva, $1 \frac{1}{2}$ lin. longa, undique inserta, nullibi conferta, inferioribus sparsis, horizontaliter patentia, breviter petiolata, linearia, subacuta, marginibus recurvis ; supra convexa, medio canaliculata, fusco-viridia; subtus glauca, striata, pubescentia, demum glabra, rigida ct coriacea; juniora imbricata, erecta; seniora caduca. Flores rari, sparsi, axillares, valde inconspicui, solitarii v. bini, pedunculati. Pedunculus $\frac{1}{2}$ lin. longus, 1 -rarius 2 -florus, arcuatus, villosus, multi-squamosus, squamis $10-12$ parvis imbricatis ovatis obtusis pergamentaceis medio incrassatis, marginibus subscariosis ciliatis, dorso sericeo-pubescentibus. Calyx 5 -phyllus, basi bibracteolatus, tubo corollæ æquilongus, foliolis erectis late ovatis subacutis $3-\boldsymbol{\jmath}$-nerviis ciliatis dorso pubescentilus; bracteæ \mathfrak{Q}, oppositæ, forma et textura inter foliola calycina et squamas pedunculi, sed manifeste calyci proprix. Corolla tubulosourceolata, minima, inconspicua, sub $\frac{1}{2}$ lin. longa, ad medium 5 -fida, segmentis suberectis ovato-lanceolatis acutis medio uninerviis nervisque duobus lateralibus inconspicuis, marginibus recurvis sub lente minutissime scabridis, æstivatione imbricatis. Stamina 5, tota exserta, filamentis lineari-subulatis fauce ipsa intra sinus corollæ insertis, erectis, segmento $\frac{1}{2}$ brevioribus superuc curvatis, antheris apice filamenti pendulis late oblongis. Discus hypogynus carnosulus, cyathiformis, profunde quinquelobus, lobis rotundatis integris. Ovarium ovatum, sessile, basi disco hypogyno cinctum, gradatim in stylo valido attenuatum, 2-4-loculare, loculis uniovulatis, ovulo funiculo brevi angulo superiore interno loculi pendulo, elongato. Drupa immatura, carnosa, late ovata, 1 lin. lata, corolla ventricosa calyceque persistente suffulta et semi-immersa stylo acuminata; putamine indurato 2-4-loculari.

As this plant has been found by Mr. Bidwill on ''ongariro, it is probably not uncommon in the alpine
regions of New Zealand, especially as it is particularly abundant in Lord Auckland's group, where it creeps over the ground and forms low wiry bushes, resembling the Crow-berry (Empetrum nigrum); the flowers are very inconspicuous, smaller than those of any other plant of the Nat. Ord. with which I am acquainted. The ripe fruit I have never seen; Mr. Bidwill describes the plant as bearing a white berry. The name, from árìp (stamen) and arofar (os, oris), is adopted in allusion to the position of the stamens, whercin the chief distinction lies between this genus and Lissanthe, Br .

Plate IXX. Fig. 1, flower and peduncle; fig. 2, a scale from the peduncle; fig. 3, a calycine leaflet; fig.4, corolla; fig. 5 , the same expanded; fig. 6 , the same cut open, showing the insertion and position of the stamens; fig. 7 , front, and fig. S, back view of a stamen ; fig. 9, ovarium ; fig. 10, unripe berry ; fig. 11, transverse section of do. ; fig. 12, unripe seed:-all magnified.

Tribe EPACREA, Br.

2. DRACOPHYLLUM, Lab.

Calyx 5 -phyllus, basi bracteatus, bracteis persistentibus vel caducis. Corolla tubuloso-infundibuliformis, limbo 5 -partito, lobis patentibus v. suberectis æstivatione imbricatis, apicibus inflexis cucullatisve imberbibus, tubo tereti subventricoso vel campanulato, fauce plus minusve contracta. Stamina 5 inclusa, corollæ adnata, v. rarius hypogyna. Squama hypogynce 5. Capsula 5-locularis, loculicide 5-valvis, placentis ab apice columnre centralis pendulis solntis. Semina pendula, angulata, testa reticulata. -Frutices vel arbores Australasicce et Nova Zelandia, unico Nova Caledonia, paucis ex insulis Antarcticis pervenientibus; ramis denudatis annulatis cicatricosis. Folia imbricata, basi vaginantia, graminea v. subulata. Flores racemosi, seu spicati, pedunculis lateralibus terminalibusve. Bracter a lobis calycinis plerumque vix distinguenda.-Character e Candollei Prodromo ad species omnes mihi cognitas includendas mutuatus.
I. Dracopuyllum longifolium, Br. ; arboreum, ramis atris exustis, ramulis castaneis, foliis ad apices ramulorum confertis e basi lata vaginante abrupte angustioribus longissime lineari-subulatis strictis rarius (plantis junioribus) recurvis concavis striatis pubescentibus vel glabris, floribus spicatis, spicis solitariis rarius binis aggregatisve lateralibus 7-9-floris, pedicellis articulatis, bracteis deciduis, corollw tubo campanulato calycem superante, limbi segmentis late oratis obtusis. (Tas. XXXI. \& XXXII.)-Brown, Prodr. p. 556 (in nota). A. Rich. Fl. Nor. Zel. p. 219. A. Cunn. Prodr. Flor. Nov. Zel. in Amn. Nal. Hisl. vol. ii. p. 48. DeC. Prodr. vol. vii. p. 7\%o. Epacris longifolia, Forst. Prodr. n. 68. Char. Gen. t. 10. n. 1. et MSS. in Mus. Par. a Cl. A. Richard, l. supra cil. evulyata.

Hab. Lord Auckland's group and Campbell's Island; in woods near the sea, abundant, never ascending more than 400 feet on the hills.

Caulis seu truncus arborèus, ascendens, $15-25$ ped. altitudine, diametro $1 \frac{1}{2}$ pedalis, et paulo ultra prope basin, ramosus, cortice fusco atro quasi usto sulcis longitudinalibus confluentibus exarato obtectus, ligno albido molli, laminibusinconspicuis, radiis medullaribus pancis latiusculis ; ramis brachiatis erecto-patentibus ; ramulis teretibus crassitie pennæ corvinæ longe denudatis et cicatricibus horizontalibus annulatis, cortice castaneo nitido, apicibus solummodo foliosis. Folia fasciculata, pleraque stricta, erecta, e basi vaginante longissime lineari-subnlata, supra pubescentia, v . subsericea, concava, subtus v . dorso glaberrima, convexit, subcarinata, margine integerrima sub lente per totam longitudinem ciliata, seusim acuminata apicibus pungentibns, coriacea, striata, late viridia, 8 unc. ad pedalem longa, $3-4$ lin. lata; plantis junioribus planiora, glabra, patentia, v. reflexa, graminea; vagina oblonga, basi amplexicaulis, striata, lamina duplo latior, $\frac{1}{2}-\frac{3}{4}$ unc. longa, margine scariosa, superne
ciliata, pallide brunnea, nitida; terra tota sub arboribus foliis emortuis delapsis sparsa. Pedunculi solitarii v. fasciculati, rarius plantis junioribus ad apices ramulorum terminales, plerique e ramis brevissimis laterales, $1_{2}^{1}-2$ unc. longi, stricti, erecti, inclinati, v. rarius nutantes, $7-10$ flores ; rachi terete glabra suflexuosa articulata ad nodos dilatata cyatbiformi. Pedicelli breves, l-2 lin. longi, cum rachi articulati. Flores subconferti, rarius secundi, erecti, demum nutantes, basi 2-4-bracteati. Bracter inferiores sulfoliaceæ, flore longiores, interdum elongati ; superiores ovatæ, obtusæ, striatæ, corollam subæquantes, marginibus scariosis ciliatis, demum decidur. Culyx 5 -phyllus, foliola tubo corollæ paulo breviora, bracteis omnino similia, sed minora, intimis angustioribus submembranaceis. Corolla tubuloso-campanulata, $\frac{1}{3}$ unc. longa, albida, tubo terete sub ore paulo constricto, limbo 5 -fido, segmentis patentibus basi imbricatis late ovatis obtusis marginibus subundulatis, medio incrassatis, a pice inflexo, prefloratione incurvo. Stamina 5, filamentis linearibus breviusculis infra faucem corollæ insertis ; antheris parvis oblongo-quadratis, apicibus exsertis. Pollen stramineum, hyalinum, e sphærulis $3-5$ conglobatis compositum. Glandula hypogynce 5, ovario breviores, loculis oppositæ, oblongo-cuneatæ, superne truncatæ, retusæ. Ovarium sessile, late obovatum, 5 -lobum, 5 -loculare, loculis dorso sulcatis; ovulis plurimis elongatopyriformibus, funiculis brevibus columnæ centrali affixis pendulis. Stylus validus, erectus, tubo $\frac{1}{3}$ brevior, apice truncatus, 3-4-crenatus. Capsula coriacea, foliolis 2-3 calycinis persistentibus inclusa, loculicide 5 -valvis. Semina immatura angulata; testa reticulata laxa.

A most abundant plant, forming a great portion of the woods which skirt the shores of these islands. The true Dracophyllum longifolium has hitherto been known to botanists only through the specimens collected by the Forsters during Cook's second voyage, and to some of the few who possess portions of the valuable collection formed by Mr. Menzies in Dusky Bay. Mr. Forster made full descriptions of his specimens, which have been published by M. Richard, and as a few discrepancies occur in comparing our own specimens with his, I shall here allude to them, premising that they only refer to such characters as depend much on the different localities the plant may inhabit. That the above-described plant is specifically the same as that gathered both by Forster and Menzies, is evident on the comparison of my specimens with the original drawing of that author. Thus, the leaves arc described as smooth and reflexed : they are only so in the younger and more luxuriant state of the trees in Lord Auckland's Islands; as they grow larger and more exposed to the violence of the climate they become strict, erect, rigid, coriaceous and pubescent above, all of which characters Mr. Menzies' specimens possess, except that they are also smooth. Again, the spikes are solitary in the young trees, but in the older most frequently from $2-5$ together ; I have however never scen them nearly a palm long, or indeed more than two inches; in the British Museum drawings they are about that length. The tube of the corolla is bardly if at all longer than the calyx, and not "duplo longior," and its segments can hardly be considered as acute. The present species is certainly most nearly allied to the D. squarrosum (vide in note, p. 48), but the leaves are broader and more rigid, and the corolla of quite a different shape.

Plate XXXI. \& XXXII. Fig. 1, flower with bractere; fig. 2, corolla removed; fig. 3, the same laid open; fig. 4 , a lyppogynous scale; fiy. 5 , ovarium aud hypogynous scales; fig. 6 , transverse section of the ovarium ; fig. 7 , longitudinal section of one cell of do.; fig. 8, unripe secd removed from do.:-all magnified.
2. Dracophyllum scoparium, Hook. fil.; arbuscula, ramis ramulisque fasciculatis strictis fusco-castaneis, foliis e basi vaginante gradatim angustatis lineari-subulatis strictis rigidis antice planis v. subcanaliculatis marginibusque pubescentibus dorso semiterctibus apicibus triquetris, floribus spicatis, spicis plurimis brevibus crectis sub 4-floris, bractcis foliolisque calycinis corollam superuntibus omnibus late ovatis acuminatis marginibus ciliatis extcrioribus foliaceis intus scriceis, corolla late campanulata tubo brevi, segmentis brerissimis late oratis obtusis. (Tab. XXXIII.)

Нав. Campbell's Island; near the sca, not common.
Arbor humilis. Caulis ascendens, 6-\$ pedalis, basi compressus ramosus, cortice et ligno ut in D. longi-
folio sed prioris colore pallidiore, ramis densis erectis, ramulis breviusculis fasciculatis gracilibus sub $\frac{3}{4}$ lin. diametro. Folia apicibus ramulorum conferta, omnia stricta, erecta, $1 \frac{1}{4}$ unc. longa, $\frac{3}{4}$ lin. lata, fusco-viridia, intus marginibusque pubescentia, subsericea, vagina latiuscula, brunnea, superne attenuata. Spice numerosæ, inter folia confertæ, breviusculæ, $\frac{1}{2}-\frac{3}{4}$ unc. longæ, axillares et terminales, stricta, erectæ, rarius nutantes, $3-4$ flores, rachi articulata glabra castanea. Flores breviter pedicellati, pedicellis cum rachi articulatis pubescentibus. Bractece 2-3, corollam superantes, exteriores basi late vaginantes, deinde lineari-subulatæ ut folia sed breviores, coriaceæ, spicis æquilongæ, marginibus dorsoque carinato-ciliatis, intus sericeo- pubescentes, interiores minores. Calycis foliola ovata, acuta, striata, marginibus scariosis ciliatis, tubo corolle breviora, persistentia. Corollu sub $1 \frac{1}{2}$ lin. longa, pro genere latissima, late campanulata, suburceolata, albida, inter bracteas occulta inconspicua, tubo brevi calycem vix superante, segmentis brevissimis late ovatis obtusis concavis, primum incurvis apice obtuso inflexo, demum patentibus subinvolutis. Stamina ad faucem inserta, parva, filamentis brevibus. Capsula late obovata, bracteis foliolisque calycinis persistentibus inclusa, valvis coriaceis obovatis apicibus incurvis medio scptiferis; columna centralis valida, sublignosa, angulata, superne in ramos 5 pendulos clavatos fissa semina gerentes.

A very peculiar species, most nearly allied to the D. Lessonianum, A. Rich., and D. Uritlionum, A. Rich., but very distinct from both. It has also been gathered upon the Chatham Islands by Dr. Dieffenbach, in whose specimens the leares are most beautifully margined, and the backs of the bracteæ covered with a silvery and velvety pubescence. I do not however place much reliance on the pubescence of any of the species of this genus, which appears a very variable character.

The genus Dracophyllum was established by Labillardière upon the D. verticillatum, a plant of New Caledonia (vide Voyage de Labill. vol. ii. p. 211. t. 40), and afterwards adopted by Mr. Brown, who added the D. secundum of Australia as a second species; both these have the flowers racemose or panicled, the bracteas caducous, aud the stamens either hypogynous or inserted at the very base of the corolla. In a subgenus or section called Sphenotoma, the latter botanist included some other New Hulland plants with spiked flowers, persistent bracteas, and stamens inserted upon the corolla; this has since been erected into a genus by Mr. Sweet (Fl. Austral. t. 44), and retained as such by all future authors. Mr. Brown having further remarked that some of Forster's New Zealand Epacridea, as E. longifolium and E. rosmarinifolizm, Forst., belonged to the genus Dracophyllum, as modified by him, they were forthwith published as such by I1. A. Richard, who added two more species to the genus, and also by Cunningham, who published a third (D. latifolium); but none of these authors proposed any sectional characters for these species, which differ most materially from those of Mr. Brown's first section of the genus, in many of them having epipetalous stamens, as also in the flowers being spiked and the bractere persistent, and which equally differ from Sphenotoma in labit and the form of the corolla. Lastly, M. DeCandolle, in 1839, remodelled the generic character of Dracophyllum, and, intending it to include only the plants of Mr. Brown's first section, described the calyx as "ebracteatus," and the stamens as "corollæ non adnata," both characters the opposite of what most of the New Zealand specics exhibit.

Having received several allied new species of this genus from New Zealand, I shall add their characters here and give a conspectus of the whole, both for the purpose of showing the position of D. longifolium and D. scoparium in the series, as also because I am anxious to seize the first opportunity afforded me of laying the new species before the public and remodelling this fine genus*. I may here remark, that as a genus it is an exceed-

* DRACOPHYLLUM, $B r$.

§ I. Staminibus hypogynis, v. basi corolla insertis.

1. D. secundum, Br. Brown, Prodr. p. 55G. DeC. Prodr. vol. vii. p. 769.

Hab. New Holland; in the neighbourhood of Port Jackson.
ingly natural one, Richea, Br., being its nearest ally and indeed its representative in Tasmania, whence Mr. Gunn has lately sent a splendid new species, probably the most magnificent plant in the whole Natural Order.

Plate XXXIII. Fig. 1, a flower surrounded by the bracteæ; fig. 2, the same removed from the bracteæ; fig. 3, calycine leaf; fig. 4, segments of the corolla and stamens; fig. 5, germen and liypogynous scales; fig. 6, ripe capsule enclosed in the persistent bracteæ; fig. 7 , the same with the bracter removed; fig. 8 , the same split open; fig.9, a valve of the capsule; fig. 10, a seed :—all magnified.
2. D. verticillatum, Lab. Labillardière, Voyage, vol. ii. p. 211. t. 40. DeC. l. c. p. 770.

Hab. New Caledonia; on the mountains.
§ II. Staminibus epipetalis, foribus paniculatis, bracteis caducis, foliolis calycinis tubo corolla multo brevioribus.
3. D. latifoliun ; arboreum, foliis $\frac{1}{2}-1 \frac{1}{2}$ pedalibus longissime lanceolatis subflexuosis (pro genere latis) margine obtuse scrrulatis, panicula effusa nutante pilosa demum glabra, bracteis deciduis, floribus parvis, foliolis calycinis requalibus pubescentibus late ovatis corolla multo brevioribus.-A. Cann. Prodr. Fr. Nov. Zel. in Ann. Nat. Hist. vol. ii. p.48. DeC. Prodr. vol. vii. p. 770. Elacris longifolia, Banks and Sol. MSS. in Mus. Brit.

Нав. New Zealand; common in the woods of the Northern Island.
The most handsome but smallest-fiowered species of the genus. Leares an inch broad at the basc. Panicle a foot long, very much branched.
4. D. strictum, n. sp.; arbuscula ?, foliis 2-3 uncialibus late-subulatis suberectis strictis e basi vaginante gradatim acuminatis concavis marginibus serrulatis, panicula 2 unciali recta subcoarctata pilosa ramis crassis, bracteis deciduis, foliolis calycinis ovatis acutis tubo corollæ $\frac{1}{2}$ brevioribus, corolla majuscula 5 lin. longa.

Hab. New Zealand; Mountain of Tongariro : Mr. Bidwill.

Much smaller than the D. latifolium, and remarkably different in the size of the fower.
5. D. affine, n. sp.; arbuscula, foliis 2-uncialibus late-subulatis patentibus e basi lata vaginante gradatim acuminatis planiusculis, marginibus serrulatis, panicula 2 -unciali nutante glabra effusa ramis tenuibus, bracteis deciduis, foliolis calycinis late-ovatis acutis tubo corollæ $\frac{1}{3}$ brevioribus, corolla $2 \frac{1}{2}$ lin. longa.

Нав. New Zealand; mountains of the interior: Dr. Dieffenbach.
At first sight this much resembles the last species, but it has much smaller flowers and is otherwise very distinct.
§ III. Staminibus epipetalis, floribus spicatis (unica specie solitariis), foliolis calycinis bracteis simillimis tubo corolla equilongis.
6. D. longlfolium, v. supra.

Hab. New Zealand; in Dusky Bay, and Lord Auckland and Campbell's Islands.
7. D. squarrosum, n. sp. ; arbuscula, foliis 3-4 uncialibus patentibus squarrosis sulgramineis (junioribus strictis) e basi subscariosa vaginante gradatim limeari-subulatis glaberrimis marginibus serrulatis concavis, spicis $1 \frac{1}{3}-2$ uncialibus lateralibus fasciculatis $5-6$-floris, bracteis foliolisque calycinis ovato-lanceolatis gradatim acuminatis florem superantibus, corolle tula gracili, limbi segmentis lanceolatis obtusis.

Hab. New Zealand; Northern Island, Manukau Bay: II. Colenso, Esq.
A small diffuse tree, 12-14 feet ligh, allied to D. longifolium, but the leaves are of a different babit and texture, and the corolla quite unlike that of the southern plant: both of these have large leaves, and more the

XIX. MYRSINEE, Br.

Tribe EMBELIE.E, $A . D e C$.

I. SUTTONIA, A. Rich.

Flores polygami, v. hermaphroditi. Calyx 2-5-partitus rarius obsoletus, lobis obtusis, eroso-dentatis, ciliatis, æstivatione imbricatis. Corolla petala $4-5$, distincta, v. rarius ima basi subconnata, obovata v. lineari-oblonga,
appearance of the species of the former sections. The following are more shrubby, and though of a different habit, I am unable to separate them by any decided character into a distinct section.
8. D. Lessonianum, A. Rich.; frutescens, ramis castaneis, folis fasciculatis $2 \frac{1}{2}-3$-uncialibus lineari-subulatis semiteretibus supra planis, vaginis elongatis abrupte truncatis marginibus ciliatis, spica $1 \frac{1}{2}-2$ unciali 5-8-flora, floribus remotis, bracteis foliisque calycinis persistentibus coriaceis flore longioribus gradatim acuminatis, corollæ segmentis ohlongo-lanceolatis tubo subgracili.-A. Rich. Flor. Nov. Zel. p. 233. A. Cunn. Prodr. Fl. Nov. Zel. l. c. DeC. Prodr. l.c. D. attenuatum, A. Cunn. MSS. in Herb. Hook. Ardisia frondosa, a. longifolia, Banks and Sol. MSS. in Mus. Brit.

Hab. New Zealand; a very common plant in the Northern Island, also found on the Middle Island.
9. D. Urvilleanum, A. Rich.; frutescens, ramis atris, foliis fasciculatis $2 \frac{1}{2}-3$-uncialibus strictis supra canaliculatis, vaginis brevibus subciliatis, spica $\frac{1}{2}$ unc. longa $3-4$-flora, floribus approximatis, bracteis persistentibus foliolisque calycinis ovatis breviter acuminatis, corollæ segmentis ovato-oblongis tubo subcampanulato.A. Richard, A. Cunningham et DeC. locis citatis. Ardisia frondosa, B. squarrosa, Banks and Sol. MSS. in Mus. Brit.

Hab. New Zealand; Northern Island, generally at a little distance from the sea; Tasman's Bay, Middle Island: D'Urville.

Stems always black and as if charred on the surface. This and the preceding are very closely allied, but assuredly quite distinct; the most prominent characters of the present are the shortly acuminated bracts, abbreviated spikes, and channeled leares; other distinctions are well pointed out by A. Richard, to which DeCandolle adds "foliis rigidis," though in our specimens they are less so, if anything, than in D. Lessonianum, but rather shorter. Cunningham appears to lave confounded the two, thongh he knew both plants, this being the common species on the banks of the Keri-Keri river. His MSS. name of D. attenuatum is also attached by himself to specimens (in Herb. Hook.) of Lessonianum and not of Urvilleanum, under which, in his 'Prodromus,' he quotes his own name as a synonym.
10. D. scoparium, Hook. fil. ; v. supra.

Hab. Chatham and Campbell's Islands.
11. D. robustum, n. sp. ; fruticosum, ramis fuscis, foliis fasciculatis $1 \frac{1}{9}-2$-uncialibus subcurvatis semiteretibus rigidis supra planis, vaginis basi abrupte truncatis ciliatis, spica $\frac{3}{4}-1$ unc. longa valida $3-4$-flora, floribus confertis, bracteis persistentibus foliolisque calycinis rigidis duris ovato-lanceolatis gradatim acuminatis, corollæ tubo subgracili segmentis ovali-oblongis.

Hab. New Zealand; Northern Island: Edgerley.
This is a very distinct species though similar to the three former, and having leaves, though shorter and more rigid, of the same character as those of D. Lessonianum, as are the calycine leaves, flowers and segments of the
primum erecta, concava, demum patentia et sepe revoluta, ciliata, æstivatione imbricata, quincuncialia. Siamina tot quot petala, prope basin corollæ inserta; filamentis breviusculis, linearibus; antheris ovato-lanceolatis,
corolla, in all which respects it differs from D. Urvilleanum, but agrees with that plant in the few-flowered spike.
12. D. subulatum, n. sp.; fruticosum, ramis fuscis parce foliosis gracilibus, folis fasciculatis e basi lata vaginante lineari-subulatis $\frac{1}{2}-\frac{3}{4}$-uncialibus strictis erectis rigidis subtriquetris, vaginis latiusculis sub lente ciliatis, spicis $\frac{1}{4}-\frac{1}{3}$-uncialibus lateralibus ramulisque brevissimis terminalibus 2 -floris, floribus parvis approximatis, bracteis persistentibus florem superantibus foliolisque calycinis late ovatis acutis v . acuminatis, corollæ tubo campanulato, segmentis latis.

Hab. New Zealand; mountainous interior of Northern Island: J.T. Bidwill, Esq., and W. Colenso, Esq.
A very distinct plant, readily recognised by the small size of all its parts.
13. D. rosmarinifolium, Br.; fruticosum, ramis apice foliosis, folis $1 \frac{1}{2}$-uncialibus erectis rigidis coriaceis apice obtusis dorso convexis subcarinatis striatis antice canaliculatis basi modice dilatatis vaginantibus, floribus sessilibus solitariis, bracteis lanceolatis acutis, corollæ segmentis ovatis obtusis.-Forst. MSS. in A. Rich. Fl. Nov. Zel. p. 220. Brown. Prodr. p. 556. A. Rich. A. C. Prodr. et DeC. locis citutis. Epacris rosmarini. folia, Forst. Prodr.n. 69.

Hab. "Summis Alpibus Novæ Zelandiæ;" G. Forster.
" Hæc forte species ex E. longifolia enata, solo ingratiore et frigidiore pumila evasit, foliaque longa floresque racemosos amisit."-Forst. MSS. l.c.

In Lord Auckland's group the D. longifolium assumes no such form, and from the British Museum specimens this appears to be an entirely different species from any other.
14. D. recurvum, n. sp. ; suffruticosum, ramis ad apices tantum foliosis, foliis uncialibus e basi vaginante linearibus gradatim attenuatis obtusis recurvis supra canaliculatis subtus convexis.

Hab. New Zealand; Tongariro: Mr. Bidwill.
Apparently a very small plant, $4-5$ inches high, the branches terete, fuscous-black, above transversely scarred. In consequence of the blunt apices of the leaves I have placed this near D. rosmarinifolium, but I much regret having neither flowers nor fruit.

RICLIEA, Br. Prodr. p. 555.

1. Rıchea dracophylla, Br. Prodr. l.c. DeC. Prodr. vol. vii. p. 769.

Hab. 'Tasmania; on the high mountains, especially in the southern and western parts of the island.
2. Richea pandanifolia, n. sp. ; caule erecto simplici $15-25$-pedali apice tantum folioso, foliis crassis valde coriaceis $3-4$-pedalibus squarroso-recurvis e basi vaginante lanceolata longissime lineari-subulatis superne planis marginibus argute serratis cartilagineis, paniculis axillaribus ovatis effusis basi spathaceo-bracteatis, floribus parvis breviter pedicellatis, pedicellis bracteolatis, bracteolis 1 v .2 lineari-subulatis fugacibus, corolla clausa calyptræformi, filamentis ovario vix $\frac{1}{2}$ longioribus.

Hab. Tasmania; Port Davy, Peak of Teneriffe, Frenchman's Cap, and several other mountainous situations, especially in the southem parts of the island: Bachhouse MSS. (in Bibl. Hook.) and in Ross' Hobartown Almanack, R. C. Gumn, Esq.

1 am indebted to Mr. Backhouse's valuable ' MSS. Notes on Australian Botany' for information concerning
basi cordatis, bilocularibus. Pollen sphrericum. Ovarium oratum, in stylum brevem attenuatum, 1-loculare, 1- rarius 2 -ovulatum, ovulis latere placentæ globosæ carnosæ immersis. Stigma capitatum, cyathiforme, rarius infundibuliforme, varie divisum, crenatum v. lobatum, interdum fimbriatum. Fructus baccatus, putamine crustaceo, 1-loculari. Semina 1 v. 2, reliquiis membranaceis placentæ indusiata, subglobosa, interdum latere transversim constricta; testa membranacea; albumine corneo, albido. Embryo filiformis, cylindraceus, oblique transversus, paulo arcuatus v. sigmoideus.-Frutices vel arbusculæ Nove Zelandire et insularum Norfolcia Auckland et Campbell, glabree, glanduloso-punctata. Folia varia, plerumque subcoriacea, integra, venosa. Pedunculi laterales, fasciculati, bracteati. Flores parvi.-Character genericus a Flora Novæ Zelandiæ Acl. Richardi (p. 349) emendatus.

1. Suttonia divaricata, Hook. fil.; fruticosa, ramis divaricatis arcuatis tortuosis parce foliosis, foliis ad apices ramulorum lateralium 2-4 brcviter petiolatis late-obovatis retusis v . obcordatis coriaceis, pedunculis brevibus curvatis lateralibus basi squamosis, calycis 4 - 5 -fidi lobis obtusis, petalis obovatis. (Tab. XXXIV.)-Myrsine? divaricata, A. Cunn. Flor. Nov. Zel. in Ann. Nat. Hist. vol. ii. p. 47. Alph. DeC. in Prodr. vol. viii. p. 95.

Hab. Lord Auckland's group and Campbell's Island; abundant in woods near the sea, never ascending the hills.

Frutex, rarius arbuscula, erectus, ramosus, parce foliosus, rigidus, primo intuitu spinescens, facie Coprosma, 4-8-pedalis. Radix lignosa, diffusa. Truncus brevis, subpedalis, cylindraceus, prope basin diametro 10-12 uncias; cortice atro, transversim rugoso, subannulato; ligno duro, albo. Rami divaricati, horizontaliter patentes, apicibus plerumque deflexis, lignosi, tenaces, gemmis basibusque ramulorum delapsorum tuberculati, cortice fuligineo v . atro-fusco obtecti ; ramulis brevibus, subdistiche divaricatis, interdum pubescentibus, apicibus tantum foliosis. Foliu parva, $\frac{1}{3}$ unc. longa, ramulis ultimis alterna, vel plerumque $2-3$ ad apices fasciculata, rarius solitaria, horizontaliter patentia, late obovata et retusa, v. obcordata, basi in petiolum brevem attenuata, iutcgerrima, glaberrima, planiuscula v. concava, subcoriacea, nervis prominulis utrinque reticulata, glandulis sparsis, majusculis, elevatis, aurantiacis, pellucidis punctata, et serie intramarginali circumdata, supra lete viridia, nitida, subtus pallidiora; petiolo brevi, glabrov. pubescente, supra canaliculato, $\frac{3}{4}$ lin. longo. Flores parvi, inconspicui, breviter pedunculati, ramis ramulisque lateralibus 2-4 glomerulati. Pedunculi arcuati, $1-1 \frac{1}{2}$ lin. longi, basi pluribracteolati, e gemmulis squamosis orti; bracteolis minimis, ovato-rotundatis, brunnei marginibus scarioso-membranaceis. Calyx parvus, obovatus, carnosus, 4-rarius 5 -fidus; lobis suberectis v . patulis, late ovatis, obtusis, glanduloso-punctatis, marginibus erosis, ciliatis. Petala 4-5, basi remota, infra faucem calycis inserta, patentia, persistentia, demum basi ovarii crescentis appressa, obovato-oblonga, apice rotundata, $\frac{1}{4}$ lin. longa, subchartacea, rufo-brunnea, glanduloso-punctata, margine membranaceo, pellucido, eroso, cilato v. subfimbriato, pilis breviusculis, articulatis, flexuosis, medio uninervia, nervo obscure ramoso. Stamina 5 , petalis $\frac{1}{2}$ breviora; filamenta brevia, linearia, compressa, crassa, supra basin petalorum affixa ; anthere coriaceæ, filamento longiores, oblongo-lanceolate, subacutæ, basi cordatæ, valde compresse, per totam longitudinem rimis lateralibus debiscentes. Ovarium ovato-ampullaceum, teres, in stylum validum brevem attenuatum, 1-loculare, l-ovulatùm ; placenta carnosa et subaquosa, globosa, ovarii loculum implens, basifixa, latere unico excavata; ovulum solitarium, conico-pyriforme, horizontale, funiculo brevi, fundo cavitatis placentæ affixum. Stigme capitatum, forma varians, sæpe lobatum v. crenatum, nunc excavatum, cyathiforme, mar-
this splendid plant, and to Mr. Gunn for magnificent specimens. It is known to very few of the inhabitants of the colony, in consequence of the remoteness and inaccessible nature of the localities it inhabits. Amongst the bushrangers it is called "cabbage-tree," and was always described by them as resembling an American aloe placed on the top of a long pole. I shall have a further opportunity of making some remarks upon it in the Flora of Tasmania.
ginibus integris, varie lobatis vel fimbriatis, raro in acetabulum dilatatum. Bacca sphærica, valde depressa, pallide cærulea, $2-3$ lin. diametro, breviter pedunculata; epicarpio tenui, membranaceo; sarcocarpio spongioso, insipido, albido; putamine ovato-globoso, crustaceo, extus venoso, venis basi ad apicem radiantibus. Semen unicum, majusculum, reliquiis exsiccatis tenuiter membranaceis brunneis placentæ circumdatum, sphæricum, latere unico medio valde constrictum; testa membranacea, tenui, prope hilum subplicata, pallide fusca; albumine duro, corneo, albido. Embryo teres, filiformis, axi seminis contrarius, oblique transversus; radicula elongata; cotyledonibus parvis, semiteretibus.

This is not an uncommon plant in the woods at the sources of rivers which fall into the Bay of Islands, New Zealand, and it has also been gathered in other parts of the Northern Island of New Zealand, where it assumes a more straggling and less woody appearance than the Auckland Island specimens present. It is the only shrub which in this longitude iuhabits a level so nearly that of the ocean in the respective latitudes of 35° and $52 \frac{1}{2}^{\circ} \mathrm{S}$. Mr. Cunningham, who first detected this species, describes the berries as spotted with black; in the southern specimens, which may in this respect be a variety, they are of a uniform pale blue, and quite unmarked.

I have ventured to retain M. A. Richard's generic name of Suttonia for this and several other Myrsinea of New Zealand, and though that author gives no etymology of the name, I cannot but suppose it was adopted as a well-merited compliment to the Rev. Dr. Sutton of Norwich, one of the original members of the Linnæan Suciety of London, and author of an excellent paper on the British species of Orobanche, read before that Society in 1797 (vide Linn. Soc. Trans. vol. iv. p. 193).

The other species which will be included under Suttonia, as above characterized, are (1.) S. australis, A. Rich. (Myrsine Urvillei, Alph. DeC.; Myrsine undulata, A. Cunn.; Merista larigata, Banks and Sol. MSS.); (2.) S. tenuifolia*, n. sp.; (3.) S. salicina (Myrsine salicina, Hew. MSS.). All these have the petals free, except the last, in which they are slightly adherent at the base, and they further differ from Myrsine in having solitary or rarely (in M. salicina alone) two ovules aud seeds. The original discoverers of the genus were Sir J. Banks and Dr. Solander, who, accompanying Captain Cook during a five-months' investigation of various parts of the shores of New Zealand, were the first Europeans that ever landed there, and the indefatigable collectors of most of the singular and new forms of plants with which those islands abound. The name Merista, given by them to one of the species, was probably adopted in allusion to the division of the corolla. The drawing and description of M. Pichard were made from very imperfcct specimens, and the genus incorrectly referred to Terebinthace e.

The Myrsinece are for the most part inhabitants of climates whose temperature is equable, and they particularly abound in insular localities, as the islands of the Indian Ocean, Mauritius, Bourbon, and Madagascar. Their utmost northern limit in the old world seems to be the Azores, lat. $39^{\circ} \mathrm{N}$., Madeira, lat. 32°, and Teneriffe; but in no part of the adjacent continent of Africa do they cross the northern tropic ; in Europe they are entirely wanting, and in Asia extend only to Japan, in north latitude 40°. The order is very rare in North America, and especially to the northward of Mexico, only one species inhabiting the United States, the M. Floridana, A. DeC., and that is confined to the sonthern state whose name it bears, lat. $30^{\circ} \mathrm{N} . \ln$ the southern hemisphere they nowhere (except in New Zealand) are found to the southward of the 36 th parallel, and there in S. Brazil only. In Africa they reach the 33 rd, and the 34 th in Australia. Their extension into the 53 rd degree in the

[^4] latis.

Hab. Norfolk Island, on the skirts of woods: A. Cunningham (in Herb. Hook.).
A larger and more membranous-leaved species than the S. australis, to which it is nearly allied.

South Pacific Ocean is hence a remarkable circumstance, and probably in some measure to be accounted for by the uniform temperature which the New Zealand Islands possess; they further there bear a larger proportion to the other dicotyledonous vegetation than they do in any other part of the globe. I have alluded to the S. divaricata having a considerable range in latitude, a circumstance not without parallel in the order to which it belongs. Of this M. Africana, L. is an extreme instance, that plant being found both at the Cape of Good Hope, in Abyssinia, and in the Azores Islands. The species of the Natural Order are however, as M. A. DeCandolle well remarks (Linn. Trans. vol. xvii. p. 99), very confined as regards their geographical limits. Melastomacee and Myrtacere being two of the very few groups containing about the same or a greater number of species which are more so.

Plate XXXIV. Fig. 1, a flower; fig. 2, the same laid open; fig. 3, a petal and stamen; fig. 4, a flower with the germen more advanced; figs. 5, 6 and 7 , various forms of stigmata; fig. 8 , half-ripe berry ; fig. 9, longitudinal section of the same; fig. 10, placenta and young seed; fig. 11, the same cut open longitudinally; fig. 12, young seed; fig. 13, ripe berry; fig. 14, longitudinal section of the same; fig. 15, seed covered with the shrivelled remains of the placenta; fig. 16, seed removed from do. ; fig. 17, longitudinal section of seed showing the embryo; fig.18, embryo removed :-all magnified.

XX. GENTIANE®, Juss.

1. Gentiana (Antarctophila, Griseb.) concinna, Hook. fil.; annua, caule breviusculo ramoso, ramis teretibus suberectis v . patulis foliosis, foliis coriaceis elongato-spathulatis obtusis marginibus minutissime serrulatis, floribus confertis paniculatis inter folia sessilibus v . brevissime pedunculatis, segmentis calycinis linearibus corolla $\frac{1}{2}$ brevioribus, corolla campanulata limbi lobis obovato-oblongis obtusis albidis rubro pictis, glandulis fauce corollæ 5 orbiculatis subdepressis, antheris post anthesin extrorsis. (Tab. XXXV.)

Var. 3 . elonguta ; caule ascendente spithameo vage ramoso, foliis majoribus subtus 3-costatis, floribus albidis rubro-purpureo pictis.

Var. γ. robusta; caule erecto crasso simplici v. ramoso, foliis lanceolatis obtusis subtus 3-5-costatis.
Hab. Lord Auckland's group; on the bleak and exposed faces of the mountains. β. amongst rocks and in sheltered situations on the tops of the hills. γ. Campbell's Island; on the hills, abundant.

Radix simplex, elongato-fusiformis, 1-2 unc. longa, descendens, hinc illinc fibrosa, sæpe multiceps, intus lutea, sapore amaro. Cuules solitarii v. plures, perbreves, erecti, $1 \frac{1}{2}-3$ uncias longi, nunc ex ima basi dichotome ramosi, rarius solitarii, inferne simplices, elongati, superne fastigiatim ramosi. Rami abbreviati, rarius 1-2 uncias longi v. ultra, erecti, teretes, foliosi, crassitic pennæ passerinæ, superne et ramuli laterales floriferi. Folia inferiora seu radicalia conferta, plerumque stellatim patentia, rarius laxa et suberecta v. stricta, sæpius plus minusve recurva, elongato-spathulata, in petiolum gradatim attenuata, latitudine varia, $\frac{3}{4}-1$ unc. longa, supra medium 4 lin. lata, coriacea, marginibus recurvis, sub lente minutissime cartilagineo-serrulatis, medio uninervia, et nervis duobus lateralibus interdum obsoletis, superne convexiuscula, canaliculata, subtus costa elevata, læte flavo-viridia, fusco purpureove picta, siccitate corrugata; folia caulina breviora; pctiolus latiusculus, marginibus basi membranaceis. Inflorescentia paniculata, sed ramis valde abbreviatis, foliosis, foliis superioribus multoties brevioribus, ita ut flores videantur glomerati, paucique inter folia summa sunt solitarii. Calys 5 -fidus, tubo brevi, obconico, segmentis lineari-oblongis, obtusis, coriaceis, dorso subacutis, corolla $\frac{1}{2}$ brevioribus, viridibus,
versus apices purpurascentibus. Corolla campanulata, 5 -fida, subrotata, 4-5 lin. longa; tubo brevi, urceolato, pallide flavo, supra medium glanduloso, glandulis 5 majusculis, orbiculatis, depressis, pallide viridibus; lobis obovato-oblongis, obtusis, concavis, integerrimis, æstivatione dextrorsum contortis, tubo duplo longioribus, albidis, basi macula nervisque latis pulcherrime rubris, siccitate pallide flavis. Stamina tubo corollæ infra faucem inserta, lobis glandulisque alterna, inclusa ; flamentis validis, lineari-subulatis, elongatis, erectis, purpureis, apicibus arcuatis, primum incurvis, demum recurvis; antheris versatilibus, oblongo-quadratis, violaceis, loculis lineari-oblongis, rimis longitudinalibus antice dehiscentibus, post anthesin (ob apicem filamenti reflexum) posticis. Pollen stramineum, ellipticum, læve, 3 -lobatum, utrinque subacutum. Ovarium lineari-lanceolatum, basi in pedicellum breve contractum, superne in stylum validum, gradatim attenuatum, compressum, 1-loculare, pluriovulatum; orula biserialia, placentis suturalibus funiculis brevissimis adnexis, anatropis; stigmata 2, patentia, carpophyllis contraria, subcapitata. Capsula lineari-oblonga, v. lanceolata, $\frac{1}{4}$ unc. longa, submembranaceocoriacea, valvis planiusculis, dorso medio sulcatis. Semina numerosa, minuta, biserialia, globosa, subangulata; testa membranacea, pallide fusca, albumini carnoso appressa.

This elegant little species is one of the most attractive plants on the exposed hills, flowering copiously in November and December. The variety β. is rather uncommon and seldom flowers; its appearance is more that of a large leafy state than of perfect or characteristic specimens. The $\boldsymbol{\gamma}$. I have never found in flower, and it may prove a distinct species, though the roots are annual and its leaves of the same nature as some of the larger specimens of G. concinna. The former of these varieties approaches the G. montana, Forst., of New Zealand, Tasmania and Australia, itself a very variable plant, according to our own and Forster's original specimens in the British Museum, and to the description of Forster quoted by Richard (Fl. Nov. Zel. p. 203), and the works of Brown and Grisebach (Gen. et Sp. Gentian. p. 235). All the states of the latter however differ from this in the much larger flowers, acute lobes of the corolla, and long peduncles of the flowers. The present plant affords further a proof of a certain similarity in the whole Flora of the south circumpolar regions, a peculiarity more strongly marked in the analogous latitudes of the Northern hemisphere, where large tracts of land with a concomitant vegetation are situated nearer the pole. I must confess that I have much difficulty in recognising more than one species in Tasmania, which is itself closely allied to several South Chilian and Patagonian plants, as G. Patagonica, Griseb., G. multicaulis, Gill. and G. diffusa, H. B. K.

I am here anxious to correct an error 1 have fallen into, in considering the G. Grisebachii (Hook. fil. in Ic. Pl. t. 636) as distinct from G. montana, Forst. ; I have lately had the opportunity of examining large suites of specimens of the true plant, of which the G. Grisebachii is decidedly a small state. And so also with regard to the G. bellidifolia (Ic. Pl. t. 635) ; though different from the ordinary states of Forster's G. saxosa, and especially from the specimens from which he made his drawings, it is not specifically distinct from other states which have been gathered by Forster, but which, when the G. bellidifolia was published, I had not the opportunity of examining.

Plate XXXV. Fig. 1, a flower; fig. 2, corolla removed from the same; fig. 3, corolla laid open; figs. 4, 5 and 6 , stamens and anther; fig. 7, pollen ; fig. 8, ovarium ; fig. 9, one valve of do. and ovules; fig. 10, capsule ; fig. 11, seeds:-all magnified.
2. Gentiana (Andicola, Griseb.) cerina, Hook. fil.; perennis, caule prostrato vage ramoso, ramis ad apices adscendentibus, foliis cartilaginco-carnosis obovato-spathulatis obtusis vel retusis 3 -nerviis in petiolum latum attenuatis, floribus inter folia summa confertis sessilibus, corolla late campanulata subrotata lobis oblongo-lanceolatis obtusis albidis purpureo-venosis, tubo glandulis depressis 5 , antheris post anthesin extrorsis. (TAB. XXXVI.)

Hab. Lord Auckland's group; near the sea on rocky islets in Rendezvous Harbour.
Radix fusiformis, elongata, 3-4 unc. longa, cortice crasso, fusco, transversim rugoso tecta, inferne divisa,
superne plantis junioribus mulliceps, ad collum foliosa, vetustioribus caules plurimos vel solitarios emittens. Caules prostrati, elongati, 4 unc. ad pedem longi, $2-3$ lin. diametro, crassi, subsucculenti, teretes, siccitate subangulati, e basi ramosi, per totam longitudinem foliosi v. inferne nudi, e foliis inferioribus deciduis annulati, internodiis $\frac{1}{2}-\frac{3}{4}$ uncialibus, superne incrassati, apicibus ascendentibus, ramis abbreviatis sæpius floriferis. Folia numerosa, inferiora, præsertim exemplaribus ramosis junioribusque, latiora, rosulata, circa collum stellatim patentia, omnia plus minusve recurva, late spathulata, obtusa, retusa, v. emarginata, marginibus integerrimis, interdum recurvis, $1-1 \frac{1}{2}$ unc. longa, $\frac{1}{4}-\frac{1}{2}$ unc. lata, 3 -nervia et reticulatim venosa, nervis subtus prominulis, late sed pallide viridia, nitida, purpureo picta, siccitate fusca et nigrescentia, interdum membranacea; petiolo lato, superne plano, subtus convexo, deorsum dilatato, semiamplexicauli, cum caule articulato. Inflorescentia verosimiliter paniculata, sed ramis obsoletis et pedunculis abbreviatis, hinc flores ut videtur solitarii v. bini, et inter folia subsessiles. Flores, solummodo plantis junioribus visi, iisque ramis caulibusque abbreviatis. Calyx campanulatus, 5 -fidus, segmentis late linearibus, obtusis, corolla $\frac{1}{3}$ brevioribus, 3 -nerviis, apicibus recurvis. Corolla late campanulata, subrotata, 4-5 lin. longa, alhida, 5 -fida, lobis late obovato-oblongis, obtusis, concavis, 5-6 nerviis, nervis rubro-purpureis;-glandulis, staminibus, ovarioque ut in G. concinna.

During our stay in Lord Auckland's group I much regretted being unable in my drawings, to imitate the pellucid and waxy appearance, especially of the flowers and leaves of this most beautiful plant, to which in other respects the artist has done ample justice. It bears nearly the same relation to the G. saxosa, Forst., as the formerdescrihed species does to G. montana. Though placed by Dr. Grisebach (in his excellent Essay on Gentianece) in separate sections of that genus, there appears to me to be but little to remove these two species far from one another, except the annual root of one. As is the case with G. saxosa, the leaves of this are variable in breadth, but not to the same extent, and it entirely differs from that plant in the prostrate habit of growth, very short peduncles of the flowers, and in the broader and shorter corollas, which are not much longer than the lobes of the calyx. The anthers in all the New Zealand as in the Tasmanian species are versatile on the apex of the filament, which is curved and at first projects forward ; after the discharge of the pollen, or rather the first deliscence of the anthers, the apex of the filaments immediately becomes erect and then reflexed, whence in the expanded flowers the anthers are almost invariably found to be extrorse. Although Gentians are seldom white-flowered as species, this and the former are decidedly so, with red or red-purple at the base of the segments, and the veins of the same colour; the pure blue of the European species is unknown amongst those of these regions, or of the higher latitudes of South America. Indeed I think that few genera display so full a series of colours in the flowers as this does; red, blue, yellow and white are all exlitited in it, with many of the intermediate compound tints. Yellow and white are rare in the regions of the Gentians, but almost invariably present; the red species are nearly confined to the Andes of South America and New Zealand. Amongst Dr. Jameson's ' Botanical Notes on the Flora of the Andes of Peru and Colombia' I find the following interesting remark: "Of sisteen species of Gentian with which I am acquainted, one-half are red, four purple, two blue, one yellow, and one white." (Bot. Journ. vol. ii. p. 649.) Their inferior limit under the line we find from the same source to be 7852 feet, and they ascend from thence nearly to the limits of perpetual snow on Cotopaxi*; they do not in South America descend to the level of the sea in a lower latitude than 54° or thereabouts, where however there are no alpine species, though the snow-line does not despend below 4000-3500 feet \dagger. In the Himalayah, where the species are all blue-flowered, one species has been gathered by my friend Mr. Edgeworth near Ratha Kona, on the Mána Pass, at an elevation of 16,000 feet, near the limit of perpetual snow ; and another reaches in lat. $31^{\circ} \mathrm{N}$. the altitude of

* 15,646 feet, Jameson, l. c. p. 657. The mean lower limit of perpetual snow on the Andes under the equator is at an altitude of 15,748 feet, according to Humboldt; and 15,496 from the mean on six mountains measured by Dr. Jameson.
† King, in Journ. Roy. Geog. Soc. vel. i. p. 165. Darwin, Journ. p. 277.

12,689 feet, according to Dr. Royle (Illust. Plant. Himmal. vol. i. pp. 22 and 278). In Ceylon a species has been gathered at between 6000 and 8000 feet of elevation. One species, G. prostrata, H. B. K., has a most extraordinary range, both in longitude and latitude : in southern Europe it inhabits the Carinthian Alps, between 6000 and 9000 feet high ; in Asia it has been found on the Altai mountains about lat. N. 52°. Its American range is much more remarkable, it having been gathered on the tops of the Rocky Mountains in lat. $52^{\circ} \mathrm{N}$., where they attain an elevation of $15,000-16,000$ feet, and on the east side of the Andes of South America in 35° S.: it descends to the level of the sea at Cape Negro ; in the Straits of Magalhaens in lat $53^{\circ} \mathrm{S}$.; and at Cape Good Hope in Behring's Straits, lat $68 \frac{1}{2}^{\circ} \mathrm{N}$.

The fact of the occurrence, and the great number, of species of Gentiana inhabiting only the more elevated regions of the temperate and tropical zones, and there reaching the snow limit, renders it very remarkable that they should be so proportionally scarce in the higher latitudes both of the northern and southern hemispheres. Generally speaking, the inlabitants of these elevated and cold regions are species of such Natural Orders and genera as compose the mass of the Polar vegetation. It is so to a great extent with certain groups of Ranunculacere, of Graminea, Caryophylleer, Crucifera, Ericea, \&c. \&c., but not with Gentianer; ; the proportion which the species of the transition temperate zones bear to the other plants of those regions on the one hand, and to the tropical species of the same genus on the other, is in both cases remarkably small. They are entirely unknown to the Floras of the Polar American Islands; very few inlabit Greenland, lceland, or the Arctic seashores in the North, or Tasmania, New Zealand, Fuegia, or the Antarctic lslands in the South; and again in other parts of N. Europe and America, or of Chili and Patagonia, they are infinitely less numerous than in the Alps of Middle and Snuth Europe, or the Andes of the equator.

Plate XXXVI. Fig. 1, flower; fig. 2, corolla; fig. 3, stamens; fig.4, ovarium :-all magnified.

XXI. BORAGINE®, Juss.

1. Myosotis capitala, Hook. fil.; radice perenni multicauli, caulibus validis ascendentibus foliosis pilosis pilis patentibus, foliis lineari-oblongis v. subspathulatis obtusis supra sericeo-pilosis rarius subhispidis subtus pilis laxioribus glabriusculisve, racemis capitatis densifloris simplicibus v. conjugatis foliis supremis brevioribus, calyce cylindraceo, corolle tubo terete calycem $\frac{1}{2}$ superante limbi lobis planiusculis rotundatis. (Tab. XXXVII.)

Hab. Lord Auckland's group; on gravelly banks near the margins of the woods, close to highwater mark.

Radix crassa, elongata, 2-3-pollicaris, diametro pennæ anatinæ, horizontalis et descendens, per totam longitudinem fibras crassas, simplices vel fibrillosas emittens, fusco-nigra, ad apicem bi-tri-multiceps, reliquiis foliorum vetustorum subsquamosa. Caules simplices, ascendentes, rarius lateralibus prostratis, apicibus tantum erectis, crassi, 4 unc. ad spithamæam longi, $\frac{1}{4}$ unc. lati, teretes, pilosi, pilis mollibus, patentibus, hic illic densis, foliosi. Folia plurima, radicalia, seu caulibus abbreviatis fasciculata, patentia, lineari-oblonga, obtusa rarius basi attenuata et spathulata, $1 \frac{1}{2}-2$ unc. longa, $4-6$ lin. lata, plana, medio uninervia, venis lateralibus reticulatis, obscuris, supra pilosa, pilis appressis, subsericeis, simplicibus, albidis, vetustiora scabriuscula pilis basi glo-boso-incrassatis, subtus glabra vel parce pilcea, pilis laxis, mollibus, undique patentibus, basi glabra, lata, semiamplexicaulia, marginibus ciliatis, caulina minora, suberecta v. recurva, basi marginibus membranaceis, suprema plerumque racemum superantia. Racemus terminalis, breviter pedunculatus, solitarius, simplex vel furcatus, interdum conjugatus, in capitulum circinatum volutus, pluriforus, ebracteatus. Flores conferti, erecti, breviter pedicellati, pedicellis hirsutis sub lineam longis. Calyx elongatus, cylindraceus, $1 \frac{1}{2}$ lin. longus, hirtus, lobis elongatis, lineari-oblongis, obtusis, obscure 3-nerviis. Corolla hypocrateriformis; tubus elongatus, teres,
rectus, calyce sub $\frac{1}{2}$ longior; limbus explanatus, lobis rotundatis, venosis, intense cyaneis, alabastris rubris ; faux glandulis fornicatis, medio superne emarginatis fere clausa. Stamina 5, inclusa, apicibus solummodo antherarum exsertis, filamentis brevibus. Nuculce 4 , basifixæ, immaturæ late ovatæ, acutæ, plano compresse, dorso convexiusculæ, intus medio obscure carinatæ, marginibus acutis, sub-ancipitibus; pericarpium subcrustaceum, tenue, fuscum. Stylus elongatus, gracilis, stigmate clarato, obtuso, exserto terminatus.

This is a very pretty species, though not quite so handsome as its near congener, M. alpestris, Schm., from which it differs at first sight in the smaller corollas, which are of a deep violet-blue, as in M. Azorica, H. Wats. It may I think be distinguished from any of the species of this difficult genus lyy the dense capitate racemes, together with the narrow calyces and calycine segments and the long tube of the corolla. Another allied species, the M. fulva, Hook. and Arn., which inbabits the west coasts both of extratropical North and South America, chiefly differs from this in the shorter tube of the white corolla, and in the calyces being densely covered with silky fulvous or pale brown hairs.

Plate XXXVII. Fig. 1, a flower ; fig. 2, corolla laid open ; fig. 3, young achænia and style ; fig.4, dorsal, and fig. 5 , anterior view of achænia nearly mature :-all magnified.
2. Myosotis antarclica, Hook. fil. ; parvula, cæspitosa, caulibus plurimis confertis prostratis v. ascendentibus foliosis, foliis obovato-oblongis subhispido-pilosis basi latis, floribus raris in axillis foliorum superiorum solitariis lreviter pedicellatis, calycis segmentis lineari-subulatis obtusis, corollæ tubo calyce bis longiore limbo patente. (Tab. XXXVIII.)

Hab. Campbell's Island; on the débris at the base of precipices in the most exposed places along with Cardamine slellala, and in clefts of rock on the very summits of the mountains.

Radix perennis, brevis, subfusiformis, descendens, aterrima, multiceps, copiosissime fibrosa, fibris ramosis fasciculatis. Caules plurimi, abbreviati, 1 unc. longi vel breviores, undique patentes, subrigidi, parce ramosi, foliosi, interiores ascendentes, vetustiores prostrati, emortui anni præteriti longiores. Folia conferta, basi interdum imbricata, horizontaliter patentia, subcoriacea, obovato-oblonga, obtusa, inferiora et radicalia majora, vix $\frac{3}{4}$ unc. longa, 2-4 lin. lata, supra medium uninervia, subhispido-pilosa, pilis albidis appressis, subtus glabriuscula, pilis paucis, laxis, patentibus, versus basim latam glabra, marginibus ciliatis, vetustiora pilis sparsis, rigidis, basi globoso-incrassatis, demum deciduis obsita. Flores $4-6$, parvi, inconspicui, vix racemosi, terminales solummodo in spicam nudam dispositi, $3-4$ inferiores in axillis foliorum supremorum solitarii, subsessiles v . breviter pedicellati, plerumque inter folia occlusi. Calyx cylindraceus, segmentis corolla $\frac{1}{2}$ brevioribus, $\frac{1}{2}$ lin. longis, pilosis, pilis elongatis, fructiferis subfoliaceis. Corollce tubus cylindraceus, elongatus, limbo explanato, lobis concaris, oborato-rotundatis, azureis, venosis. Stumina 5; filamentis brevibus, incurvis, subulatis; antheris majusculis. Ovaria 4, parva, sessilia. Stylus filiformis, stigmate simplice clavato terminatus. Nuculce 4, unico v. pluribus abortivis, valde compressæ, ancipites v. subbialatæ, ovatæ, acutæ, dorso convexiusculæ, intus planiores, medio subcarinatæ. Pericurpium tenue, crustaceum, atrum, nitidum, læve. Testa membranacea. Embryo majusculus, compressus; radicula parva, supera; cotyledonibus majusculis, plano-convexis.

This is a very small species, typical of a high latitude and rigorous climate, preferring also those localities where few other plants but lichens and mosses can exist. It is remarkable as belonging to a small section of the genus, apparently confined to the islands of New Zealand, of which the M. spathulata, Forst., is the type. These have many of the lower flowers solitary in the axils of the uppermost leaves, and the true ebracteate raceme reduced to a very short and few-flowered spike.

The leaves of several of the New Zealand species of Boraginec so closely resemble one another in form, that unless good flomering specimens are examined, two genera may easily be considered as belonging to one and the same plant. Such are a species of Exarrhena, Br., and the M. spathulata of A. Ricbard. The latter is a very distinct plant from either M. capitata or M. antarctica, as also from the true spathulata of Forster,

VOL. I.
and has been described and figured (in Mus. Banks) as M. rigida, Banks and Sol. MSS. Forster accurately describes the flowers of his plant as solitary, most of them being truly so; but, from its being similar in all otber respects to a plant brought home from New Zealand by Admiral D'Urville, except in the latter having the flowers in a raceme, M. Richard altered (in his Flora Nove Zelandiæ, p. 198) the character of Forster. His species is probably the M. rigida, Banks and Solander, or another nearly allied plant which we possess from New Zealand.

The M. antaretica is certainly an extreme instance of any of the species having a leafy inflorescence ; although the genus is generally described as having "racemus ebracteatus," there are some European and even British species, which, in having the lower flowers solitary in the axils of the uppermost leaves removed from the hase of the raceme, show an evident analogy to the southern ones.

Scveral of the species of the northern hemisphere, though nearly identical with others of the southern, are not known to grow within 80 or 90 degrees of latitude of one another. This is the case both in the eastern and western hemispheres. A very few are inhabitants of the elevated and cold regions of the tropics, under the equator, where they attain, on the Andes of South America, an altitude of 12,000 feet. In the old world the present species represents the southern limit of the genus; especially as, from the elevation it attains in Campbell's Island, it may be supposed capable of existing at the level of the sea in a much higher southern latitude.

Plate XXXVIIl. Fig. 1, flower; fig. 2, corolla laid open; fig. 3, ovaria; fig. 4, stamen ; fig. 5, calyx with ripe fruit ; fig. 6 , back, and fig. 7 , front view of an achænium; fig. 8 , transverse section of an achænium; fig. 9 , embryo removcd :-all magnified.

XXII SCROPHULARINE \mathbb{E}, Juss.

1. VERONICA, L.

1. Veronica elliptica, Forst.; fruticosa v. arbuscula, ramulis obscure bifariam albo-puberulis, foliis decussatis horizontaliter patentibus ellipticis oblongis oblongo-lanceolatis v. obovato-oblongis acutis v. mucronatis rarius obtusis coriaceis glabris aveniis marginibus interdum ciliatis costa subtus prominula ultra apicem producta junioribus remote crenato-serratis, racemis axillaribus brevibus rarius corymboso-ramosis pauci-(4-10)-floris, calycis laciniis ovatis acutis v. acuminatis tubo corolle paulo brevioribus, corolla majuscula alba v. carnea, capsulis late ovatis.-Forst. Prodr. n. 10. et in A. Richard, Flor. Nov. Zel. p. 189. A. Cunn. Prodr. in Ann. Nat. Hist. vol. i. p.458. V. decussata, Ait. Hort. Kew. vol. i. p. 31. Sims, Bot. Mag. t. 242, et anctorum. V. decussata, β, Banks and Sol. MSS.

Нав. Lord Auckland's group and Campbell's Island; margins of woods near the sea, abundant.
This is a very well-known plant in our gardens, introduced from the Falkland Islands, and is one of the most antarctic trees, both in this longitude and in that of extreme Southern America, there reaching the 57th parallel of latitude. It was first collected in New Zealand by Forster, its original discoverer, in Dusky Bay, where it has since been found by Anderson and Menzies. I believe it however to have been noticed before as a native of the Straits of Magalhaens, by the older navigators.

In combining the V. decussata Ait. with V. elliptica, I have followed the unpublished opinion of Dr. Solander. In the British Museum there are drawings of the latter plant by Forster, New Zealand specimens collected probably by that author, and notes by Dr. Solander. The specimens alluded to are in fruit only, and agree in the foliage with the figures, which represent it in its flowering state. Dr. Forster's own handwriting
(of V. elliptica) is on the same sheet with it ; but another plant, J. Menziesii, Benth. MSS., has been fastened down on the paper at a future period, and the habitat "New Zealand, Dusky Bay, Gul. Anderson," is written on the back, a station probably applying to the latter specimen alone. Solander's handwriting, of V. decussata, 13, at the bottom of the sheet, applies to both, as in his manuscript he quotes both Forster and Anderson for the species. I am thus particular in alluding to the British Museum specimens, because there is a discrepancy between the plant of Forster as described by him, and our own, according to his MS. description, published by M.A. Richard, $l . c$., where the tube of the corolla is described as being twice the length of the calycine segments, and the latter as subulate. In all our specimens, both from Lord Auckland and Campbell's Islands, as also in those of Antarctic America, the tube of the corolla is a little longer than the calyx, sometimes as much as onethird, but it appears even more so before the expansion of the corolla; and by subulate that author might have alluded to the acuminated apex which the segments sometimes have. Though Forster's drawing does not exhibit the calyx, it coincides too closely with the preserved specimen, and both with our plant, to leave any doubt in my mind that we have here another instance of the similarity of the vegetation of the higher latitudes. Dr. Solander indeed considers the New Zealand plant as a different variety from the Southern American, and in his MSS. description of the southern species, to which I have access through the kindness of Mr. Brown, he separates the former as " β. floribus carneis (Forster), ramis glabriusculis. Frutex sesquipedalis." In Forster's drawing the mineral white used to colour the flowers has hecome discoloured, and the pink alluded to by Dr. Solander almost obscured; in our specimens they are of a pure milk-white when fresh. The want of down on the branches arises from age.

In Lord Auckland's group this species attains a much larger size than it does in America, there seldom exceeding four feet in height, whilst Forster describes the Dusky Bay tree as twelve feet, and I have seen it as much as thirty on the margins of the woods close to the sea, where it may be readily distinguished by its pale green foliage and erect branches. I saw but one specimen in full flower, growing on an inaccessible rock overlooking Rendezrous Harbour; from a distance it seemed powdered with white flowers.

In New Zealand this genus is one of the most extensive of flowering plants, containing no less than twenty-five species, of which four-fifths are shrubby or arborescent. Of these, ten were originally discovered by Sir J. Banks and Dr. Solander during their visit to these islands, and are described in the MSS. above alluded to. Under one of them, the V. macrocarpa, Dr. Solander dwells upon that peculiarity in the structure of the fruit which separates many of them from the European forms of the genus: he writes, "Hæc, et quinque sequentes, (V. sulicifolia, myrtifolia, stricta, pubescens, parvifora,) a reliquis Veronicis differunt, corolla subringente et capsula apice integra acutiuscula, ut fere proprium constituant genus." Mr. Brown (Prodr. p. 434) dwells more at length on this peculiarity, explaining the structure and its modifications, and further using it as a sectional character.

The extreme difficulty of determining the species of this section was also alluded to by Dr. Solander, who continues in the MSS. above quoted, "valde affines sunt, ut differentia specifica difficillime eruatur, precipue si specimina sicca consulantur; nec illa sine capsulis distinguere possibile est. Plantæ autem vive habitu discrepant, facillimeque tunc dignoscuntur, ut alias species esse distinctas credam." This difficulty has not been in little increased by the accession of new species, similar to the above in form ; and the whole genus is now so large as to require a complete remodelling ; this is expected from the pen of Mr. Bentham, to whom I am indebted for the discrimination of my species. As his remarks bear reference to all the Auckland and Campbell's Island species, I shall avail myself of his kind permission to give the definition of the sections under which they will be arranged. "For this section," Mr. Bentham says, "I adopt as sectional Jussieu's name of Hebe, with the character: capsula septicido-bipartibilis, carpeliis dorso breviter intus profunde hifidis. Placente stipitatæ. Folia crassiuscula, nitida, glaberrima, omnia opposita. Racemi axillares, v. ad apices ramorum corymbosi, v. paniculati. Corolla tubus latitudine vix longior v. rarius brevissimus." Of this section there are five subsections, almost wholly composed of New Zealand species; under the second of these, this and the two follow-
ing will rank, thus characterized : "§2. Decussata. Frutices Antarcticæv. Australasicæ. Folia crassiuscula, nitida, glaberrima, decussatim opposita, integerrima v. rarius subserrata, costa valida, venis inconspicuis. Racemi ad apices ramorum corymboso-congesti, v. rarius in axillis abbreviati, pauciflori. Capsula acuta v. obtusiuscula, turgida v. parallele compressa."-Benth. MSS.
2. Veronica Benthami, Hook. fil.; fruticosa, ramulis junioribus bifariam puberulis demum glabris, foliis decussatis oblongis v. oblongo-obovatis v. lineari-oblongis obtusis basi angustatis sessilibus planis coriaceis uninerviis linea puberula alba marginatis integerrimis v. ultra medium remote serratis, racemis terminalibus, floribus inter bracteas foliaceas breviter pedicellatis, calycis laciniis 5 valde inæqualibus obtusis corollæ tubo multo longioribus, corolla 5-partita, capsula majuscula late ovata acuta. (TAB. XXXIX. \& XL.)

Hab. Lord Auckland's group and Campbell's Island; on rocky places on the hills, abundant.
Frutex erectus, 2-4 pedalis, ramosus. Caulis brevis, validus, fuscus. Rami patentes, demum ascendentes, annulati, nudi, cortice fusco, opaco, longitudinaliter corrugato tecti. Ramuli erecti, validi, crassi, interdum crassitudine pennæ anserinæ, $5-7$ unc. longi, obscure tetragoni, angulis obtusis, creberrime annulati v. potius transversim cicatricosi, hasi nudi, sursum versus apices tantum foliosi, cortice pallide testaceo. Folia decussata, imbricata, horizontaliter patentia, inferiora majora, $1-1 \frac{1}{2}$ unc. longa, $\frac{1}{4}-\frac{1}{2}$ unc. lata, gradatim minora, sessilia v. in petiolum brevissimum attenuata, ima basi intcrdum connata, plana, forma varia, sæpius obovato-oblonga, nunc elliptica v. oblonga, rarius lineari-oblonga v. angustiora, obtusa, subacuta v. mucrone obtuso, basi semper attenuata, coriacea, integra v. supra medium remote crenato-serrata; margine tenuiter recurvo, linea latiuscula, alba, puberula, subargentea circumdato, versus apicem latiore et interdum plus minusve super paginam superiorem folii extensa, et tomento molli breve ciliata ; supra intense viridia, subnitida, medio canaliculata, avenia ; subtus pallidiora, subglaucescentia, costa medio prominula, valida; siccitate atro-fusca v. testacea, supra seppius transversim corrugata. Racemi elongati, $1 \frac{1}{2}-2 \frac{1}{2}$ unc. longi, terminales, erecti, validi, bracteis foliaceis tecti, sæpius simplices, interdum basin versus ramosi, ramis abbreviatis. Rachis tota albido-pubescens v. subtomentosa, teres, stricta; fructifera, demum elongata, basi nuda; anni preteriti persistens, lignosa, ramulo lateralis. Bractece foliacer, folia summa omnino simulantes, sed minores, inferiores $\frac{3}{4}$, supremæ $\frac{1}{4}$ unc. longæ, albido-marginatæ ut folia caulina, brevissime petiolatæ, petiolis basi distantibus, omncs floriferæ. Flores racemo singulo circiter 20-30, quorum 6-8 tantum simul explicant, in axillis bractearum solitarii, pedicellati, limbo corollæ exserto, conspicuo. Pedicelli $\frac{1}{2}-1$ unc. longi, erecti, pubescentes; fructiferi elongati, validi, lignosi. Calyx profunde quinquepartitus, majusculus, campanulatus v. infundibuliformis, corollæ tubo multo longior, interdum limbum ejus requans; laciniæ 2 exteriores laterales, cæteræ $\frac{1}{2}$ longiores et bis latiores, obovato-spathulatæ, obtusæ, foliaccæ, sub 2 lin. longæ, albo marginatæ; cæteræ subæquales, lineari-spathulatæ, apicibus rotundatis paululum recurvis. Corolla hypocrateriformis, ampla, ringens v. patens, diametro $5-6$ lin., intense azurea, venis violaceis; tubus limbo $\frac{1}{3}$ brevior; laciniæ inter se requales v. inæquales, plerumque 5 , rarius 3 v .6 , nunquam 4 (mihi visæ), obovato-spathulatæ v. late obovatæ, forma variæ, nunc angustiores, nunc latiores. Stamina 2 , rarius 3 , fauce corollæ inserta; filamenta brevia, valida, subulata, laciniis sub $\frac{1}{2}$ breviora; antheris majusculis, purpureis, loculis divaricatis. Ovarium late ovatum, subacutum, compressum, 2-sulcatum, 2-loculare, loculis pluriovulatis; orulis marginibus inflexis dissepimentorum adnexis. Stylus validus, breviusculus, paulo curratus. Stigma capitatum. Capsula in spicam v. racemum elongatum, erectum, nudum dispositæ, breviter v. longius pedicellatæ, pedicellis nunc $3-5$ lin. longis, majusculæ, erectæ, paulo longiores quam latæ, 3-4 lin. longax, coriaceæ, late ovatæ, acutæ, turgidæ, bi- tripatibiles, bi- triloculares, septicide v. rarius loculicide bi- trivalves; valvulæ ovatæ, acutæ, pallide flavæ v. atræ, dorso ab apice ad medium et antice ad basim fissæ; placentre pedicellatæ, ab utraque valvula discedentes, pedicellis gracilibus; rarius, et solummodo ubi capsula trilocularis sit, semina marginibus connatis dissepimentorum aftixa sunt. Semina parva, imbricata, brunnea, compressa, ala lata,
coriacea, olivaceo-fusca, basi profunde emarginata circumdata. Testa membranacea. Embryo clavæformis, orthotropus.

This is not only a beautiful, but a very remarkable plant, and one of the greatest ornaments to the barren hills it inhabits, the flowers being nearly as large as those of V. elliptica, Forst., and of a most beautiful blue colour. In the pedicellate flowers, crowded upon an erect, leafy, terminal raceme, a few of which only expand at one time, it is more nearly allied to some of the British herbaceous species than to the shrubby group of New Zealand. It may also be remarked, that two of the largest-flowered species, whose corollas are of the finest blue, are more alpine in their habitats than most of their congeners, as is the case with this plant and with the V. saxatilis of the European Alps.

In garden specimens of the V. speciosa, R. Cunn. (Bot. Mag. t. 4057), I have observed the calyx and corolla to vary in the number of parts, from three to four, but I am not aware that the stamens in any species except the present ever exceed two, or that the corolla is constantly pentamerous. The V. decussata, Ait. (elliptica, Forst.) is figured and described in the 'Botanical Magazine' by Mr. Curtis (t. 242) as sometimes having five parts to the corolla, which is the nearest approach I know of to the present case. I shall however first point out the remarkable structure of the calyx, before more fully describing the corolla.

The calyx is constantly 5 -cleft; the segments very large and singularly unequal in size, two being much larger than the rest, always external and of the form of cauline leaves; the other three are nearly equal, so that at first sight the calyx appears 3 -cleft, with two lateral bracts on its base; the large segments are however remote from the true bract on the base of the pedicel. Neither of these is the posticous lobe, nor is the solitary smaller one placed between them, which is the lowest; but the two others, one of which is a little larger than the other, are nearly opposite the back lobe of the corolla.

The corolla is rather variable in form ; when regularly developed it is 5 -cleft, with rather broad, nearly equal, patent segments, the two lowest being the smaliest, the upper the posticous. The segments are however often so very equal in size, that, from their appearance alone, it is not possible to judge which is the upper one. The increased number of parts might be supposed to arise from the division of the back lobe, which is in so many Veronicas the larger, and the stamens would thus be placed one at the outer base of two contiguous segments. This however is not the case in any 5 -cleft flowers; when diandrous, only one segment separatcs them, which I have seen to be the upper when they are equal in size, and it is more evidently so when two of the lobes are smaller than the rest, which are then placed opposite the two stamens and are the lower. The additional lobe is formed thus from the division of the lower, or what is generally the smaller, lobe in others of the genus. Some analogy to this structure may be found in the case of V. nivea, nob. (Icon. Plant. t. 640), which has the lower lobe truly bifid, as I have proved by an examination of other specimens, and not accidentally, as suggested in the description of that plant on its first publication. In some spikes all the flowers are ringent, the tubes of the corollas longer, and the segments narrower than in the normal state of the plant. Of these some are 6-cleft, of which I found troo instances, one diandrous and the other triandrous. In the diandrous flower the sixth lobe was formed from the division of the upper or posticous lobe into two unequal segments, and one of the stamens was abortive and inserted lower in the tube of the corolla than the other. In the triandrous specimen the sixth lobe was due to the splitting of the lower into three. We have here instances of both the upper and lower segment in this species becoming divided. I never saw any tendency in either of the lateral ones to divide, further, than that, in one instance of a 5 -lobed corolla, one of these had a large tooth on its lower margin. Three-lobed corollas are rare; the two I examined were regular, with the segments nearly equal and very broad. The genus Veronica is generally described as having the upper or back lobe the largest; this is not constantly, though often the case, but the lower lobe is generally the smallest, sometimes remarkably so. In $V_{\text {. nivea, mentioned above, the lateral divisions are much the largest, as is the case with }}$ V. Cataracta, Forst., and its ally V.diffusa, nob., very distinctly. The V. tetragonu, Hook. (Icon. Plant. t. 580) is figured with the upper lobe bifid; it is probably rarely so, as in all the specimens I examined it was quite entire.

In the several instances of the flowers being triandrous, the stamens were all perfect; two in the usual position of those organs in Veronica, and the third opposite the upper segment, and hence in a position analogous to the centre of the lower lobe. I found no trace of abortive stamina in other parts of the corolla, or in the position of the third stamen in diandrous flowers.

The capsules vary much in size, from 2 lines to nearly $\frac{1}{3}$ rd of an inch in length. Those with three valves were very large, and in one instance occupied the whole raceme; in other cases only a few of the capsules were 3 -celled. In most instances, and always in the 2 -valved, the valves separate from the central column which bears the placentæ and seeds, and the dehiscence is truly septicidal. In many of those with the additional valve, the capsule is only partially septicidal, one or more of the valves separating from the central column; whilst the inner margins of the dissepiments of the others are united from above the middle to the base, with the seeds attached to an inflexed portion and escaping at the top of the capsule, which is split no further down in front than at the back; in other cases all the contiguons dissepiments were thus united, and with the valves not separating at all, either from the axis or from one another, or with the axis itself dividing into three portions, which remain attached to the valves; in both the latter cases the capsnles are spuriously loculicidal. I am not aware of this dehiscence occurring in any other of the New Zealand shrubby species of Veronica, or that a 3 -valved capsule has been previously observed in the Natural Order Scrophularinece.

Plate XXXIX \& XL. Fig. 1, flower; fig. 2, calyx with an outer segment removed, showing the ovarium; fig. 3, a regular triandrous corolla; fig. 4 , the same laid open ; fig. 5 , a diandrous corolla; fig. 6, a similar one with a lateral segment toothed; fig. 7 , a 6 -cleft corolla, the upper segment split and one stamen abortive; fig. 8 , another 6 -cleft corolla, triandrous, the lower segment divided into three; fig. 9 , a 3 -cleft corolla; fig. 10, a stamen ; fig. 11, transverse section of an ovarium; fig. 12, back, and fig. 13, lateral view of a capsule; fig. 14, transverse section of do. ; fig. 15, column and seeds; fig. 16, a 3 -celled capsule; fig. 17, transverse section of do., with one valve free, the other partially united to the column ; fig. 18, transverse section of another 3-valved capsule, with the central column divided into three parts and adhering to the valves; fig. 19, back view of a ripe seed ; fig. 20, front view of another; fig. 21, lateral view of do.; fig. 22 , embryo:-all magnified.
3. Veroxica odora, Hook. fil.; fruticosa, glaberrima, ramis ramulisque erectis strictis rirgatis, foliis decussatis uniformibus breviter petiolatis elliptico-ovatis submucronatis v. obtusiusculis concavis crassis rigidis marginibus tenuiter cartilagineis minute crenulatis, racemis brevibus ad apices ramulorum corymboso-confertis, calycis laciniis 4 obtusiusculis corollæ tubum requantibus, corollæ laciniis majoribus oblongis tubo longioribus, staminibus corolla paulo brevioribus. (Tab. XLI.)

Hab. Lord Auckland's group ; in woods near the sea, not uncommon, forming scattered bushes.
Frutex elegans, gracilis, $2-4$ pedalis, parce fastigiatim ramosus. Caulis erectus, validus, nudus, semipedalis et ultra, planta juniore obscure tetragonus, cortice atro-fusco. Rami elongati, erecti, stricti, virgati, superne foliosi, hic illic divisi, $2-3$ pedes longi, cortice fusco, pallidiore obtecti. Ramuli graciles, crassitie fere pennæ anatinæ, snbangulati, angulis obtusis, creberrime annulati, utrinque decussatim sulcati, in sulcis puberuli, per totam longitudinem foliosi, simplices v. rarius divisi r . ad apices floriferos furcati, olivaceo-fusci, siccitate fragiles. Folia decussatim opposita, $\frac{1}{2}-\frac{2}{3}$ unc. longa, sub $\frac{1}{4}$ unc. lata, omnia magnitndine formaque conformia, horizontaliter patentia, inferiora subreflexa, caduca, brevissime petiolata, concava, interdum subeymbiformia, exacte elliptico-ovata, subacuta, basi vix truncata, avenia, glaberrima, valde coriacea, subcornea, dura, marginibns acuentibns, tenuiter cartilagineis, sub lente argute et creberrime crenulatis, supra luride viridia, subnitida, polita, medio canaliculata; subtus pallidiora, costa ralida, elerata, percursa, opaca, punctis minimis, albidiz notata, siccitate fusco-brunnea, supra obscure transrersim rugosa, rigida, subpungentia. Petioli breves, vis $\frac{1}{2}$ lin. longi, crassi, erecti, ramulo appressi, basi latissimi, cum ramulo incrassato articulati, facile soluti. Flores inter folia summa corymboso-racemosi, conferti, conspicui, odorem Jasmini officinalis spirantes. Racemi axil-
lares et terminales, aggregati, subcapitati, densiflori, $\frac{1}{2}$ unc. longi. Pedunculi (seu rachides) brevissimi, angulati, bifariam puberuli, articulati, siccitate fragiles, infra flores bracteolati. Bracteæ parvæ, sub $\frac{1}{2}$ lin. longæ, lasi subconnatæ, latissime ovatæ, concavæ, subcymbiformes, crassæ et coriaceæ, marginibus membranaceis, ciliatis. Pedicelli brevissimi, v. subnulli. Calyx profunde 4-partitus, v. subtetraphyllus, laciniæ inter se subæquales, bracteis æquilongæ, late ovato-oblongæ, obtusæ, tubum corollæ æquantes, medio et præcipue versus apices incrassatæ, 3 -nerves ; marginibus tenuioribus, sub lente ciliatis. Corolla alba, subrotata v. hypocrateriformis, tubo (pro genere) elongato, diametro $3-4$ lin. ; tubus paulo longior quam latus, rectus; limbus tubo longior, 4 -fidus ; laciniæ subæquales, patentes, subrecurvæ, oblongo-obovatæ, obtusæ, venosæ, superior paulo major, inferior angustior. Stamina 2 ; filamenta crassiuscula, subulata, laciniis corolle paulo breviora, versus apices attenuata ; antherce purpureæ, majusculæ, loculis paulo divaricatis, superne confluentibus; hinc anthera subunilocularis, rima hypocrepiformi dehiscentes. Pollen ellipticum, profunde 3 -sulcatum, luteum, siccitate castaneum, opacum. Ovarium ovatum, acutum, compressum, bisulcatum, biloculare. Stylus gracilis, paulo curvatus, exsertus. Stigma minutum, vix capitatum. Fructus non visus.

This species is more remarkable for the delicious fragrance of its flowers than for any beauty of appearance. From the uniform size of the leaves and their regularly patent disposition on the slender simple branches, it affords a more striking example of folia decussata than any of the genus. It is in this respect allied to the V. elliptica, Forst., as also in haring crowded, white, subcapitate flowers, and in their being sweet-scented. Most of these characters, and especially that of the corolla being white, seem more usual amongst the alpine species of this genus in New Zealand, than in those of the lower lands of this or of other countries.

There are three other species to which this is allied; V.diosmafolia, R. Cunn., V. buxifolia, Benth., and V^{\prime}., lavis, Benth. The first of these, which has also white flowers, may be recognized at once by these being in large lax panicles; they are small, on long, often slender peduncles, with acute calycine segments; the leaves also are longer and serrated. The V. buxifolia is a very fine alpine species, brought from the mountains of the interior by Dr. Dieffenbach, which differs from the V. odora in the leaves being more densely imbricated, sborter, shining on both sides, and remarkably truncate at the base above the petiole; it has also very short, often simple racemes, covered with large concave imbricating bracts, as in the V. Benthami, but closer; the tubes of the corolla are sometimes as long as the very broad segments,-that organ is thus truly hypocrateriform; the leaves are covered on both sides with more numerous minute white dots. V. lavis, Benth. is more nearly allied to our plant than any of the above in the form of the leaves, but they are more acute, more distantly placed, without any white dots; the panicles also are lax, minutely pubescent, the flowers smaller, and the branches singularly black and opake when dry, terete and wrinkled, with the transverse annuli or scars remote and inconspicuous, very unlike the generally crowded transverse contractions of its congeners, which often give the stem the appearance of being jointed.

The leaves are closely placed in V. odora, and each is jointed upon a thickening of the stem, which thickened portion appears like a broad petiole, united to the branch, and extending from the base of the true petiole to the leaf below, its edges almost meeting those of a similar thickening below the opposite leaf, but leaving a furrow between, which is covered with a fine pubescence. As this thickening occurs opposite and below each pair of leaves above it, and the furrow to the pair below, the stem is decussately furrowed throughout its length. In many, and in most species indeed, the stem is incrassated below the leaf, but the thickened portion has not, as here, the appearance of a distinct body.

Plate XLI. Fig. 1, portion of the stem and pair of leaves ; fig. 2, flower ; fig. 3, calyx ; fig. 4, corolla; fig. 5 , the same cut open; fig. 6, front, and fig. 7, back view of stamen; fig. 8, ovarium :-all magnified.

XXIII. PLANTAGINE Æ, Juss.

1. Plantago (Psyllium, Endl.) Aucklandicu, Hook. fil.; acaulis, collo crassissimo elongato, foliis vix petiolatis numerosis confertis obovato-lanceolatis obtusis glabris 7 -9-nerviis integerrimis v . obscure sinuato-dentatis, basi angustatis intus ferrugineo-tomentosis, scapis plurimis erectis v . ascendentibus parce hispido-pilosis, spicis lineari-elongatis densifloris, bracteis obtusis, segmentis calycinis late ovatis obtusis, capsulis calyce duplo longioribus 2 -spermis. (Tab. XLII.)

Hab. Lord Auckland's group; on the mountain ridges at an altitude of 1000-1200 feet, in a peaty soil.

Planta 4-10-pollicaris, magnitudine satis varia, habitu P. medire. Radix perennis, perpendicularis v. inclinata, tri- quadri-pollicaris, fusiformis, crassa, per totam longitudinem fibras crassas, succulentas, elongatas emittens, et inferne in fibras ramosas, subsimiles desinens; collum crassissimum, interdum $\frac{3}{4}$ pollicis diametro, tomento rufo reliquiisque paucis foliorum vetustorum cinctum, rarius elongatum et supra terram elatum, simplex v. rarissime biceps. Folia numerosissima, singula planta $15-30$, conferta, exteriora patentia, plurim suberecta, crassa et coriacea, exemplaribus plerisque $4-5$-pollicaria, $2 \frac{1}{2}$ unc. lata, inter se admodum conformia, obovato- v. elliptico-lanceolata, obtusa v. subacuta, in petiolum latum, ima basi dilatatum contracta, 7-10nervia, vix costata, utrinque glabcrima, v. rarius pilis conspersis, paucis, albis subhispida, precipue ad basim scaporum villoso-barbata, tomento molli, denso, ferrugineo, e pilis intertextis, simplicibus, remote articulatis formata; marginibus tenuiter subrecurvis v . planis, remote et obscure sinuato-dentatis; supra luride-viridia, opaca; subtus pallidiora ; siccitate fusca, v. atro-fusca; interiora et juniora angustiora, subspathulata, 3-5-nervia ; intimis lineari-lanceolatis. Scapi plurimi, $5-10$, elongati, una-cum spica 5 - 8 -pollicares, erecti v. ascendentes, curvati, graciles, teretes, pilis patentibus, albis, superne precipue subhispidi, basi ferrugineo-tomentosi, crassitie pennæ corvinæ, siccitate atri. Spicice 2-3 unc. longæ, $\frac{1}{3}$ unc. late, cylindricæ, obtusæ, superne precipue densiflore, floribus basi distantibus; rachi pilosa. Flores magnitudine P. majoris, omnino sessiles, unibracteati. Bracteca late ovatæ, obtusæ, concaræ, subcymbiformes, crassæ et carnosæ, calyce paulo breviores, basin ejus fere cingens. Calyx tetraphyllus, basi villosus, $\frac{3}{4}$ lin. longus; segmentis late ovato-oblongis, suborbicularibus, scaphiformibus, medio carnosis, marginibus membranaceis, siccitate scariosis. Corollce tubus calyce paulo longior ; limbi segmentis ovato-lanceolatis, acutis, patenti-reflexis, marginibus involutis, medio late uninerviis, tubo paulo brevioribus. Stamina filamentis planis, flexuosis, longe exsertis; antheris majusculis, late sagittatis. Pollen angulatum, flavum. Ovarium obovatum, compressum, utrinque sulcatum basi attenuatum, spurie biloculare ; columna centralis placentifera a dissepimentis retractis discedens, orula 2, peltata gerens. Capsula turgida, ovata, foliolis calycinis bis longior.

This species is very distinct from any with which I am acquainted, and is apparently most nearly allied to the P. luirtella, H.B.K. (Nor. Gen. et Sp. t. 127), but that plant has the bractea and calycine segments acute ; it grows nowhere on the low grounds of Lord Auckland's group, but appears confined to the summits of the hills, where it is not unfrequent. It is remarkable for its numerous leaves, which are generally quite smooth and very fleshy, often forming a dense head, not unlike that of a small cabbage. In the smoothness, thick and succulent habit and stout collum, it bears some affinity to the caulescent species of Juan Fernandez and other insular situations; in some of which the apparent stems are, as in P. Fernandeziana, Bert., in reality an elongation of the naked collum : indeed of the so-called shrubby or caulescent species, very few of this group or form are really so, except the P. princeps, Cham. and Schl. (Linmea, vol. i. p. 167). The stem of P. Queleniana, Gaud., is of the same nature as that of P. Fernandeziana, the two plants indeed are very closely allied, as are those of P. arborescens of Mladeira and the Canary Islands, and of P. robusta of St. Helena.

The uniform and equable climate of insular situations, especially in the southern hemisphere, would appear
peculiarly favourable to a vigorous development of the stem and leaves of plants; there being no winter's cold sufficient to destroy even the herbaceous vegetation, a constant accession of new matter ensues in the summer, which only decays with the death of the plant. The elongation of the collum is, under these circumstances, very frequent amougst many truly herbaceous, perennial-rooted plants, whose congeners in other climates are cut off during the winter's frosts, close to the ground, and where the summer scason is too dry to admit of much exposure of so large a portion of the root. In the group of islands now under consideration, I have remarked this peculiarity of structure in Ranunculus, Cardamine, Sieversia, Pozoa, both species of Pleurophyllum, Celmisia, Gentiana, and others. In Kerguelen's Land a remarkable instance occurs in the famous Cabbage of thatisland, a new genus and species of Crucifera, to which the generic name of Pringlea was given by its discoverer Mr. Auderson, and which I shall shortly have the opportunity of figuring as P. untiscorbutica. In the southern extreme of America the P.monanthos, D'Urv., assumes this spuriously caulescent form, as well as Statice and many other herbaceous genera, and in the various small oceanic islands the same character prevails. As a natural sequence, it is to be expected that plants generally represented by small suffruticose species, should under these circumstances become frutescent or arborescent, of which we have many instances. Veronicce, Composita, Araliacea, Myrtacea, Rubiacea, Campanulacea, Lobeliacea, and Ferns, are all more fully developed in the Pacific islands in proportion to the number of smaller species, and to the mass of the vegetation, than they are in other climates.

Plate XLII. Fig.1, flower and bractea; fig. 2, corolla ; fig. 3, the same cut open; fig.4, anther and upper part of filament ; fig. 5, orarium ; fig. 6, young capsule ; fig. 7, transverse section of the same; fig. 8, immature seeds on the column; fig. 9, capsule surrounded by remains of corolla, calyx and bractea; fig. 10, hair from the hases of the leaves:-all magnified.
2. Plavtago (Arnoglossum, Endl.) carnosa, Br. ; acaulis, collo crassissimo, foliis plurimis confertis stellatim patentibus crassis carnosis spathulatis lanceolatisve obtusis inciso-dentatis seu runcinatis glaberrimis aut rarius pilosis basi nudis, scapis plurimis foliis requilongis, floribus capitatis, capitulis compressis $1-4$-floris, bracteis foliolisque calycinis acutis, capsula calyce inclusa rotundata 4-8-sperma. (Tab. XLIII.)-P. carnosa, Br. Prodr. p. 425 (non Lam.). P.triantha, Spreng. Syst. Veg. vol. i. p. 439.

Var. β. foliis glaberrimis majoribus.
Var. γ. pumila, foliis plus minusve hispido-pilosis.
Hab. Lord Auckland's group; on rocks near the sea, generally immediately above high-water mark, all the states; abundant.

Planta maritima, depressa, succulenta, rupibus tenaciter affixa. Radix perennis, breviter fusiformis, copiosissime fibrosa ; fibris aterrimis, plerisque tenuibus, fastigiatis, aliis validis, crassis, subsucculentis. Collum crassissimum, breve, nigrum, simplex v. rarius biceps, nudum, fibrosum, nou raro surculos emittens. Folic petiolata, $\frac{1}{2}-3$ unc. longa, horizontaliter stellatim patentia, conferta, numerosissima, singula planta $40-60$, succulenta, lanceolata, spathulata, v. lineari-s̀pathulata, obtusa, basi attenuata, margine varie secta, sinuato-dentata, incisodentata r. sæpius runcinata, rarius utriaque uni-bidentata v. omnino integra; supra luride virescentia, opaca, medio sulcata, avenia ; subtus pallidiora, costa medio prominula, nervisque 2 per totam longitudinem percursa; glaberrima v. in var. β. pilis patentibus v . appressis, sparsis, rigidis, albis subhispida; intima breviora, dense compacta, rosulata, obovata, margine sinuata. Scapi valde numerosi, 15-20, horizontaliter patentes, apicibus ascendentibus, ex axillis foliorum orti, longitudine foliorum v. is breviores, interdum brevissimi, glabri v. plerumquc pilosi, pilis patentibus ut in foliis. Spica ad capitulam late ovatam, superne truncatam redacta, valde compressa, $\frac{1}{4}$ unc. lata, latior quam longa, pauci-2-4-flora. Bractece majusculæ, ovatæ, cymbiformes, subacutæ r. acuminatæ, carnosæ, marginibus membranaceis, basin calycis fere cingentes. Calyx tetraphyllus, foliolis late
oblongo-ovatis, valde concavis, acntis v. subito acuminatis, medio carnosis, marginibus late subscarioso-membranaceis. Corolla tubus latiusculus; limbus quadrifidus, segmentis ovatis, acutis, marginibus involutis, medio late uninerviis. Stamimum filamenta basi lata; autherce oblongo-sagittatæ. Pollen globosum, flavum. Ovarium parvum, elliptico-ovatum, compressum, utrinque sulcatum, spurie biloculare; ovulis 6-8, peltatis, placentæ columnari affixis. Stylus simplex, erectus, filiformis, per totam longitudinem glanduloso-pilosus, apice simplex. Cupsula chartacea, brunnea, late obovata, turgida, paulo compressa, basi stylo apiculata, infra medium circumscissa. Colemna centralis libera, erecta, clavata, bialata, alis ultra columnam in cornubus 2 productis. Seminat valde depressa, $6-8$, etsi compressione mutua angulata, pleraque triangularia, pallide testacea, translucida; testa mucilaginosa, membranacea; albumen inter corncum et carnosum, semini conforme ; embryo compressus, ut mihi videtur oblique transversus; radicula obtusa, ad hilum paulo versa; cotyledones majusculæ, plano-conуехæ.

This plant was first detected by Mr. Brown in 'Tasmania, in the southern parts of which island it is not uncommon, growing, as in Lord Auckland's group, on maritime rocks, and from whence we hare specimens of both varieties from Mr. Gunn. In habit and foliage it most resembles the P. Coronopus of any European species, but it differs totally from that plant in the structure of the capsule, as also in the inflorescence. It belongs to a small group of the genus, not hitherto recognised, but which are remarkable for having the flowers solitary or truly capitate and not spiked, never more than from three to five in number. This inflorescence differs very much from that of several species in which the spike is abbreviated, either naturally or by accident, to a few flowers.

The species naturally allied to P. carnosa are the P. rigida and nubigena, H. B. K., P. monanthos, D'Urr., P. andicola, Gill., P. pauciflora, Lam., and P.barbata, Forst., all natives of the southern regions of the globe and of the western hemisphere, whose only representative in the old world is the present plant. If however the sections proposed by Endlicher are adopted, these species will be found to be in several cases widely separated from one another. P. nubigena, a very beautiful species, has only two-seeded capsules; the seeds are quite unlike those of carnosa, being large, elliptical-oblong, black and punctated, with a broad hollow on the face. Of P. rigida we have specimens gathered by Mr. Mathews on the Pampas of the Cordillera in Pcru; it is perhaps the most singular species of the genus in the structure of its flowers, which are solitary, almost sessile, on very short peduncles, surrounded by a very broad sheath or spatha rather than bract at the base; the calycine segments are lanceolate, acuminate, with a tuft of silky hairs at the base; the tube of the corolla is twice as long as the calyx, slender, and at least three times longer in proportion to its breadth than in any of the genus which I have examined ; the filaments very long, straight and erect. M. Kunth places it in a section "capsule loculis l-spermis," bnt says he has not seen the fruit. From the small size of the ovarium I could not detect the ovules in the flower I examined. P. monanthos, though generally single-flowered, has often two or even three flowers; the capsule is four-seeded ; it is a very distinct species, common in the Falkland Islands and in Fuegia, singularly variable in size, and in favourable situations often becoming spuriously caulescent, with stems similar to those of the P. arborescens of Madeira ; the leaves are then two inches long; whilst in other situations, as on the exposed rocks of Cape Horn, the whole plant resembles a densely tufted moss, the leaves being rosulate and not two lines long. Had I not the opportunity of examining it in its native state, I should not have considered several of its varieties as belonging to one aud the same species. P. andicola, Gill., is a very singular plant with roots as thick and long as the little finger, the collum often much thicker, bearing two or more capitula of very coriaceous, lanceolate, smooth or pilose leaves, about $\mathbf{I}_{2}^{\frac{1}{2}}$ inch long. The scapes are longer, often twice as long as the leaves, slender and hairy, with three to five flowers. The ovarium contains several ovules, and the capsule four or more seeds, rarely less, but sometimes only two. It has been gathered on the Andes of Chili, both by Dr. Gillies and by Mr. Bridges. P. pauciflora, Lam., and P. barbata, Forst., seem involved in some confusion; I have seen no specimens answering to the description of either, if they be truly distinct. In Mr. Anderson's collection, formed during Captain King's voyage, there is a species (P. imberbis, MSS.) agreeing with
the description given by Lamarck, except that the whole plant is perfectly glabrous; it also is four-seeded, and the flowers vary from one to three. These species pass into other forms of the genus: the P. monanthos, by P. arborescens, into the ovate and compressed spike of P. Psyllium and its allies; and the P. nubigena through P. tumida, Link, into the ordinary forms with cylindrical elongated spikes.

Plantago is perhaps as universally distributed a genus as any of dicotyledonous plants. In Arctic America Dr. Richardson has gathered the P. major, L., in lat. $68^{\circ} \mathrm{N}$., and I have seen the P. monanthos, D'Urv., in the immediate neighbourhood of Cape Horn, in the 57 th degree of south latitude: other species not only run along the whole chain of the Andes, from Fuegia through Chili, Peru and Colombia, from whence they are continucd along the Rocky mountains, but they also frequent the vast plains on both sides of these great barriers. Under the equator in South America they attain an altitude of 13,000 feet, whence Prof. Jameson has sent to us a species, gathered on Pichincha in Colombia. In the continent of Europe they are no less universally distributed, P. major, which Mr. Humboldt brought from a height of 6000 feet on the Andes of Peru, occurring in Lapland as far north as 67°, whilst in the same country the P. maritima reaches the 72 nd degree. In Asia their principal parallel is in Persia, Cashmere and Affghanistan, where Mr. Griffiths has collected numerous species, and from whence they spread over the great Siberian plains to Kamtschatka and the borders of the Chincse empire. A few species are natives of Upper India, Nepaul, and the Himalayah mountains. Only one occurs in the Peninsula of India, the P.Uspaghool, Roxb. ; this is cultivated in the colder season, and Dr. Royle considers it as probably a native of Persia. Hitherto they are unknown in the Malay peninsula and islands, being natives of open and not wooded localities. For this reason they are not found, as far as we know, in central Africa, though several species are natives of the Cape of Good Hope, and are frequent along the southern shores of the Mediterranean. The various Atlantic islands, as well as the Mauritius and Ceylon in the Indian Ocean, and those of the Pacific, Australia and New Zealand, have all representatives of the genus.

I have retained Mr. Brown's name for this species, the P. carnosa of Lamarck being probably a variety of P. maritima, L.

Plate XLIIl. Fig. 1, flower and bract; fig. 2, corolla cut open; fig. 3, stamen; fig. 4, ovarium ; fig. 5, capsule with persistent calyx and bract; fig. 6, the same removed; fig. 7 , the same with the upper valve fallen away; fig. 8, side view of dissepiments and seeds; fig. 9, front view of the same; fig. 10 , seed showing the hilum ; fig. 11, side view of the same; fig. 12, seed cut open parallel to, and fig. 13, at right angles to the axis : -all magnified.

XXIV. POLYGONE天, Juss.

1. Rumex cuneifolius, Campd., Mon. des Rum. p. 95. Cham. et Schlecht. in Linncea, vol. iii. p.58. Roem. et Schult. vol. vii. p. 1416.

Var. alismafolius, Hook. fil. ; foliis ovato- v. lineari-oblongis rarius basi attenuatis :-an species distincta?
Hab. Lord Auckland's group; on the sandy and pebbly beach near the N.IV. point of the large island, rare.

Of this plant I have seen neither flower nor fruit, having met with it in a very young state only. In habit, size, and general appearance it very closely resembles the R. cuncifolius. It has the large membranous stipules of that plant, which are fimbriated only in age; the branching and size of the two are also the same; but in the Auckland Island specimens the leaves are not decidedly cuneate at the base, often indeed quite the contrary. Of the true plant we have many specimens from both sides of America, from the southward of the province of St. Paul on the cast coast, and Valdivia on the west, to the Straits of Magalhaens. They vary but slightly in the form and length of the leaf, some being attenuated, others cordate at the base; always, in the Amcrican specimens, broadest above the middle, and crisped rather than undulated at the margin.

XXV. URTICE E, Juss.

1. Urtica australis, Hook. fil.; caule elato basi prostrato radicante valido glaberrimo v. parce piloso ad nodos setoso, foliis amplis longe petiolatis ternatis infimis oppositis late ovato-cordatis grosse crenatis sinubus segmentisque acutis $5-7$-nerviis utrinque parce setosis et sub lente scabriusculis subtus pilosiusculis, stipulis ovato-lanceolatis acuminatis integris v . bifidis.

Hab. Lord Auckland's group; in woods near the sea, rare; also on the pebbly beach abore high-water mark.

Caulis basi repens, remote nodosus, ad nodos radicans, deinde ascendens et crectus, 2-3 pedalis, teres, crassus, crassitie pennæ olorinæ, herbaceus, succulentus, glaberrimus v. hic illic parce pilosus, pilis albidis, plerumque ad nodos subincrassatos setosus, internodiis 3-4 uncialibus. Folia longe petiolata, infima opposita, superiora ternata, carnosiuscula, siccitate submembranacea, majuscula, 4-6 unc. longa, 3-5 lata, late ovata, acuta, basi plus minusve profunde cordata, grosse serrato-dentata, segmentis latis, acutis v. rarius breviter acuminatis, sæpius cucullata, nervis $5-7$ validis percursa, tuberculis minutis scaberula, setis paucis, sparsis, subtus pilosiuscula, pilis obscuris albis. Petioli folio æquilongi v. paulo breviores, graciles, glaberrimi. Stipula ad basin petioli $2, \frac{1}{2}-\frac{3}{4}$ unc. longæ, foliaceæ, erectæ, lanceolatæ, acuminatæ, glaberrimæ, interdum foliorum oppositorum connate, tunc latiores et plus minusve profunde bifidæ.

Planta maritima paulo diversa; humilior, crassior, foliis minoribus petiolis superne stipulisque majoribus setosis. Plantis junioribus folia inferiora latiora evadunt, argutius serrato-dentata.

I find no species in the Herbarium exactly agreeing with this; it is however nearly allied to a New Zealand plant of which we have very imperfect specimens collected in the southern part of the Northern Island by Mr. Bidwill, with the petioles rather shorter and the leaves and stem copiously setose.
2. Urtica Aucklandica, Hook. fil.; tota pubescens, caule erecto robusto angulato, foliis omnibus oppositis petiolatis late ovatis acutis basi plus minusve cordatis grosse serrato-dentatis segmentis acuminatis multinerviis rugosis sparse setosis coriaceis, petiolo lamina $\frac{1}{3}$ breviore, stipulis subfoliaceis plerisque connatis late ovatis bifidis nervosis, perigonio mase. tetraphyllo.

Hab. Lord Auckland's group; on the sea-beach near the margins of woods, rare.
Herba rigida, tota pilis brevibus, cinereo-albidis pubescens. Caulis erectus, validus, durus, rigidus, pedalis, crassitie pennæ anserinæ, tetragonus, angulis obtusis, ad nodos incrassatus et setosus; internodiis contractis, subuncialibus, sulcatis. Folia opposita, patentia, petiolata, majuscula, 2-3 uncias longa, $1 \frac{1}{2}-2 \frac{1}{2}$ lata, late ovata, acuta, basi sxpius cordata, interdum imo rotundata, cucullata, grosse serrato-dentata, sinubus acutis, segmentis latis breviter acuminatis, coriacea et rigida, rugosa, subplicata, pluri-7-9-nervia, nervis subtus prominulis costata, reticulata, sparse et precipue subtus ad nervos setosa, setis urentibus, luride virescentia, opaca; siccitate nigrescentia; juniora fusco-pubescentia. Petioli subunciales, validi, sulcati. Stipula majusculæ, foliacere, late ovatæ, bifidæ, bipartitæ v. rarius usque ad basin fisse, et tunc lanceolatæ, acuminatr. Spica masculx axillares, breviusculæ ; immaturæ tantum mihi visæ. Flores aggregati, pedicellati ; pedicellis basi bracteolatis; bracteola ovata integra. Perigonii foliola rotundata, concava, $\frac{1}{\frac{1}{4}}$ lin. longa, dorso sctosa. Stamina 4, filamentis brevibus.

This is unlike any species with which I am acquainted, and apparently quite distinct from the last, though 1 much regret having been unable, from the early season of the year, to obtain more satisfactory specimens of both.

XXVI. ORCHIDE $ఱ$, Juss.

1. Chiloglottis cornuta, Hook. fil.; perianthio ringente, foliolis inferioribus linearibus obtusis canaliculatis, interioribus erectis ovato-lanceolatis acutis dorsali ovato-lanceolato acuminato, labello trulliformi versus apicem attenuato disco 6 -glanduloso, glandula intermedia basali (appendix labelli) porrecta subrecurva.

Hab. Campbell's Island; on the decaying roots of trees in shaded places, rare : D. Lyall, Esq.
Rudix tuberosa; tuberibus 2, pisiformibus, remotis, caudice elongato, radiciformi, descendente connexis. Folia 2, petiolata, patentia v. subrecurva, ovata, v. ovato-lanceolata, subacuta, $1-1 \frac{1}{2}$ unc. longa, $\frac{1}{3}-\frac{1}{2}$ unc. lata, nervis parallelis, venisque transversalibus reticulata, planiuscula. Petioli erecti, $\frac{1}{2}-\frac{3}{4}$ unc. longi, basi vaginantes, vagina scariosa, integra. Scapus erectus, gracilis, brevis, $\frac{1}{2}$ uncialis, medio bracteatus, uniflorus. Bractea spathacea, ovata, acuminata, membranacea, florem immaturum amplectens. Flos una cum ovario $\frac{3}{4}$ unc. longus, erectus. Perianthium obliquum, foliola omnia erecta; exteriora v. sepala subæqualia, superius v. dorsale paulo majus, concavum, vix cucullatum, ovato-lanceolatum, longe acuminatum, apice subulatum, sub 5 -nerve ; inferiora labello supposita, ima basi lata, deinde linearia, obtusa, curvata, marginibus involutis, superiore æquilonga; foliola interiora sive petala erecta, ovato-lanceolata; exteriora breviora, submembranacea, trinervia, versus apices subserrulata v. undulata. Labellum erectum, unguiculatum, petalis paulo brevius; lamina planiuscula trulliformis, vel triangulari-cordata, attenuata, basi truncato-biloba, breviter petiolata, disco 6 -glanduloso ; glandulce v. tubercula valde prominentes, 4 laterales subquadratæ, compressæ, squamæformes, duæ prope basin, aliæque altius sitæ ; intermediarum basali (v. appendicula) supra discum elata, porrecta, cornu referens, et recurva, antice canaliculata; quinta trilobata. Columna erecta, modice arcuata, valida, superne bifida, bialata, alis angustis. Anthera apice recurva.

An glandulæ laterales labelli vere clavatæ, siccitate tantum compressæ et quasi squamæformes?
This is a very interesting plant, belonging to an Australian gerus of which only two species were previously known. I have never seen it alive, and am therefore unable to give a coloured figure of the plant. In Tasmania two species grow at the foot of Mount Wellington, in a latitude however much below that of Campbell's Island and in a widely different climate. The flower is smaller than that of C. Gunnii, Lindlo, to which, of the two other species, the present is, on account of the erect petals, most nearly allied. I aminclined to think that the glands on the disc of the labellum will be found to prove a variable character. In one Tasmanian species they bear the most striking resemblance in form and colour to an ant.
2. Tuelfmitra stenopetala, Hook. fil.; foliis petiolatis lineari-lanceolatis gradatim acuminatis, scapo 1-2-floro, perianthii foliolis lanceolatis acuminatis, cuculli lobulis lateralibus plumosis, capsulis inclinatis paulo curvatis lineari-oblongis.

Hab. Lord Auckland's group; in woods and on the bare ground in exposed places, not uncommon.

The leaves of this plant are dark green, very coriaceous, about 4 inches long and $3-4$ lines in breadth, gradually attenuated below into a narrow sheathing petiole. The scapes of the former year, bearing the fruit and crowned with the withered, persistent perianth, were found along with the young leares. The capsules are shortly pedunculate, pale brown, $\frac{1}{2}-\frac{3}{4}$ of an inch long ; the column considerably curved, the lateral lobes each with a tuft of hairs.

I have closely compared my very indifferent specimens of this plant with the several species of New Zealand and Tasmania, and have no hesitation in describing it as new.
3. Thelymitra? unifora, Hook. fil.; perianthii foliolis exterioribus ovato-oblongis acutis, interioribus obovato-lanceolatis brevitcr acuminatis, labello late obovato-spathulato subcumeato basi depresso, cuculli lobulis lateralibus erectis apice bifidis medio uninerviis imberbibus, anthera subterminali.

Hab. Lord Auckland's group; on the bare ground and growing in tufts of moss, Forstera, \&c., on the bleak hills.

Of this species I possess only the old scapes, which are about six inches long, each bearing a solitary capsule, with the withered perianth. The leaves I have never seen, but there are traces of sheaths or leaves on the scape, and of a larger one, probably a bractea, below the flower. The capsule is turgid, elliptical-obovate, erect, about lialf an inch long and quite glabrous. The leafiets of the perianth are rather shorter than the capsule and strongly nerved, as is the labellum, which is rounded at the lower extremity, with a short apiculus. The antber is inserted a little below the aper of the column.

I am very uncertain as to the genus of this plant; it differs from any with which I am acquainted; yet I am unwilling, in the absence of better specimens, to constitute a new one of it. In the petaloid, very distinct lateral lobes of the column, which is 3 -cleft nearly to the base, it shows some analogy to Diuris, and in the terminal anther to the group which includes Caladenia and many other New Holland Orchidece. The regular and nearly equal leafiets of the perianth, to which the labellum is very similar in form and structure, induce me to retain it among Thelymitra. It is further undoubtedly nearly allied to a plant included by Mr. Gunn under the genus Macdonaldia (vid. Lindl. Swan River Botany, p. 50. no. 217, and Gen. and Sp. Orchid. p. 385), which contains two Tasmanian species, one M. Smithiant, Lindl. (l.c.t.9. B.), in which the column is undivided or obliquely trifid or three-lobed; the rounded anther is situated below the apex of the column, on its inner face, and is villous; in the colour and appearance also of the plant, and in the shape of the leaflets of the perianth, it differs from Thelymitra. The other species, M. cyanea, Lindl., very much resembles the more ordinary forms of Thelymitra in size, habit, colour, and in the shape of the perianth; in the more terminal acute anther, and in the lateral lobes of the column being produced upwards beyond the anther and bifid at the apex, it agrees with the T.? uniflora.
4. Caladenia sp. ? ; folio lineari acuto parce glanduloso-piloso, perianthii foliolis subequilongis dorsali late ovato acuto lateralibus ovato-lanceolatis interioribus lanccolatis subacutis, labello subquadrato unguiculato disco nudo.

Hab. Lord Auckland's group; amongst moss in the woods near the sea.
This apparently belongs to the genus Caladenia, but it is in a very young state, and the glands on the labellum are probably undeveloped. The roots are small, oblong tubers, connected by a terete cauliculus. Leaves $\frac{1}{2}-2$ inches long. The only flowers 1 possess are just emerging from a large cucullate bractea; they are of a pale flesh-colour mixed with yellow.
5. Caladenia sp.? ; foliis ovato-lanceolatis acutis parce piloso-glandulosis seu glabriusculis, perianthii foliolis exterioribus extus glandulosis lateralibus linearibus obtusis dorsali latiore, interioribus anguste linearibus obtusis, labello obovato-cuneato basi sericbus 2 glandularum ornato.

Hab. Lord Auckland's group and Campbell's Island; amongst moss in the woods, not uncommon.

What I take to be the leaves of this plant (for though growing along with the scapes they were not attached to them) are solitary or rarely two together, arising from a short couliculus terminating in an elongated tuber and throwing out stout horizontal fibres from its lower extremity. The withered scapes, which
bear solitary capsules, are 2-3 inches long; the capsules half an inch long, oblong-turbinate, obscurely glandular, and crowned with the reflexed leaflets of the perianth. In one specimen the labellum was furnished with only four glands in two lines; in another they extended to the middle with four or six in each series.
6. Aciantuus rivularis? A. Cunningham, Prodr. Flor. Nov. Zel. in Hook. Comp. Bot. Mey. vol. ii. p. 376. Lindl. Gen. et Sp. Orchid. p. 397.

Hab. Lord Auckland's group and Campbell's Island; on mossy banks in the woods, common. I have seen neither flower nor fruit of this plant, and only a withered capsule of what I believe to be Mr. Cunningham's A. rivularis, gathered in New Zealand by Mr. Colenso. The leaves of the former vary very much in size and shape according to their age; the younger ones are cordate or ovate and cordate at the base, acute; as they grow older they become orbicular, deeply lobed at the petiole, of the same size and texture and similarly nerved as in the genus Acionthus.

Dulii generis.

The following species I am unable to refer to any genus, the flowers being too imperfectly developed for a satisfactory determination.
7. Tuberibus didymis obovatis ad collum fibras validas horizontaliter emittentibus, caule erecto basi vaginato, vagina clongata integra ore abrupta tenuissime scariosa, folio solitario lineari-clongato semiterete superne canaliculato crasso et subcarnoso basi fisso scapum vaginante, scapo 3-5-floro, floribus spathaceo-bracteatis ut in Orthocerate, perianthii foliolis valde immaturis subrequalibus exterioribus late ovatis acutis, interioribus panlo angustioribus, labello late obovato nudo, columna semiterete lobis lateralibus nullis, anthera majuscula terminali.

Hab. Lord Auckland's group; in woods near the sea, not uncommon.
Tubers about 3 lines long, similar to those of Orchis latifolia, but much smaller; from these the leaf springs at once, its petiole surrounded by a tubular cylindrical sheath. The leaf is $6-8$ inches long, $1-2$ lines wide, acute or blunt at the apex, green, and of a singularly thick and fleshy texture when recent, coriaceous when dry and quite black. The young scape is covered with what appear sheathing cucullate bracts; they arise one from the base of each of the flowers; the latter are very small.
8. Foliis solitariis (rarius binis) lineari-lanceolatis acutis valde concavis coriaceis nervis parallelis basi vaginatis, scapo ut videtur bibracteolato, flore immaturo solitario, perianthii foliolo dorsali late ovato subacuto cucullato lateralibus interioribusque linearibus obtusis, labello orato disco obscure 6-7-glanduloso, anthera terminali.

Hab. Lord Auckland's group; in woods, rare.
The leaves here are $2-3$ inches long, very concave; the petiole inclosed in a long scarious sheath which is split above; the flower is small and inclosed in two sheathing bracts. This plant has some points in common with Chiloglottis, Br., but the leaves are not like those of that genus.

XXVII. ASPHODELE®, Juss.

1. CHRISOBACTRON, Hook. fil.

Dioicum. Flores racemosi. Masc. Perianthium corollinum, hexaphyllum; foliola patentia, æqualia, ovatooblonga, obtusa, medio incrassata. Stamina 6, hypogyna; filamenta elongato-subulata, perianthio breviora, nuda; antherce versatiles. Ovarium ovatum, acuminatum, trisulcatum, vacuum. Flor. fem. Perianthium ut in fl. masc., sed foliolis post anthesin erectis, demum deciduis. Stamina 6, antheris incompletis. Ovarium late ovatum, profunde trisulcatum, triloculare, lobis dorso canaliculatis, loculis bi- rarius uniorulatis. Ovula, ubi 2, collateralia, funiculis brevibus infra apicem loculi angulo interiori suspensa. Stylus validus, erectus, teres. Stigma capitatum, parvum, obscure 3-6-lobum. Capsula ovata, trilocularis, loculicide trivalvis; valva coriaceosubmembranaceæ, intus medio septiferæ. Semina loculis plerumque bina, collateralia, triquetra; testa atra, subcrustacea; albumen comeum ; embryo axilis, paulo curratus, albumine parum brevior; radicula incrassata.Herba speciosa, elata, perennis, Aucklandica, et in insula Campbell proveniens. Radix elongata, tuberibus elongatis fasciculatis donata. Folia late ensiformia, basi vaginantia. Scapi solitarii v. plurimi, pedales et ultra. Flores racemosi, aurantiaci.

1. Chrysobactron Rossii, Hook. fil. (Tab. XLIV. \& XLV.)

Radix, rhizoma horizontale seu perpendiculare, crassum, carnosum, l-2 unc. longum, pollicis humanæ et ultra diametr., transverse rugosum, hic illic constrictum, atrum, tubera elongata, fasciculata undique emittens. Tubera cylindrica, 2-3 uncialia, carnosa, atro-fusca, crassitie pennæ anserinæ, fibris crassis intermixta. Collum validum, brevissimum, simplex v. rarius bi- triceps, tuberibus minoribus, horizontaliter patentibus circumdatum. Caulis nullus. Folia plurima, circiter 12-16, omnia radicalia, erecto-patentia, inferiora horizontalia v. recurva, elongata, interdum bipedalia, lato-ensiformia, 2-4 unc. lata, integerrima, obtusa v. subacuta, superne præcipue concara, plurinervia, nervis approximatis et venis transversis inconspicuis reticulata, læte viridia, nitida, subtus pallidiora, crassa, herbacea, basi longe vaginantia; vaginis $3-4$ unc. longis, integris, striatis; ore obliquo submembranaceo; sinu obtuso. Scupi solitarii vel non raro plurimi, $6-8$, erecti, validi, pedales, $\frac{1}{4}-\frac{1}{2}$ unc. diametr., striati, ad apices canaliculati, intus spongiosi, fructiferi et anni preteriti emarcidi, fistulosi, dealbati. Racemi conspicui, erecti, 4-7 unc. longi, $1 \frac{1}{2}-2$ unc. diametr. ; masculi breviores, subconico-ovati, pedicellis nempe florum inferiorum elongatis, horizontales, apice attenuati, subacuti ; faminei elongati, cylindracei, obtusi, paulo angustiores; rachis infra pedicellos sulcata, sape medio turgida, vacua, vel per totam longitudinem fistulosa. Flores numerosissimi, conferti, pedicellati, odore suavi. Pedicelli graciles, $\frac{1}{2}-1$ unc. longi, in floribus fomineis suberecti, fructiferi subincrassati, erecti, basi bracteolati. Bracteola lineari-elongatæ, obtusæ v. subacutæ, pedicellis nunc longiores, sed sæpius abbreviatæ, foliaceæ, floribus concolores. Perianthium corollinum, hexaphyllum, aureum, 3-4 lin. diametr.; foliola lineari-oblonga, v. oblongo-owata, supra medium paulo contracta, costa paulo incrassata e nervis 3 approximatis, valde inconspicuis formata, 3 interiora vix ac ne vix minora, foribus masculis patentia, ad apices subincurva, fremineis erecto-patentia, post anthesin erecta, capsulæ immaturæ appressa, dein decidua. Stamince 6, foliolis perianthii opposita, iis breviora, hypogyna, erecto-patentia; filamenta valida, elon-gato-subulata, teretia, glaberrima; anthere versatiles, oblongre; loculis parallelis, contiguis, rimis longitudinalibus dehiscentibus; in floribus fœmineis imperfectis, racuis. Pollen flarum, ovoideum, longitudinaliter bi- vel trisulcatum. Ovarium, fl. masc., elongato-ovatum, trisulcatum, apice acutum v. trifidum, una cum perianthio marcescens et deciduum ; fl. fæm. late ovatum, turgidum, 2 lin. longum, obscure trigonum, angulis obtusis, 3 -sulcatum, 3-loculare; loculi 2-rarius 1-ovulati; ovula collateralia, ex angulo interno infra apicem loculi orta, funiculis brevibus suspensa. Stylus terminalis, erectus, validus, teres, longitudine ovarium æquans, stigmate parvo, subcapitato, obscure 3-6-lobato terminatus. Capsulce late ovatæ, 3-4 lin. longæ, submembranaceæ, 3-loculares, locilicido trivalves ; valva cllipticæ, dorso canaliculatr ; dissepimenta membranacea. Semina elliptico-ovata, triquetra,
dorso convexa; dum solitaria latiora, intus carinata. Testa utrinque in alam producta; membrana exterior laxa, membranacea, atro-fusca; interna crustacea, aterrima, nitida, sub lente impresso-punctata. Albumen carnosum, pallide viride. Embryo axilis, filiformis, teres, paulo arcuatus, carnosus, viridis, albumine parum brevior ; extremitate radiculari incrassata, obtusa:-Monstra, racemis bifidis, seu scapis divisis, dicephalis, non raro occurrunt.

I am unable to refer this to any described genus of A sphodelece, and have adopted the name* in allusion to the magnificent racemcs of golden-yellow flowers which it bears. It will rank near Anthericum, L., from which it differs in having only one or at most two ovules and in the erect style. It is also very nearly allied to Bulbinella, Kurth (En. Plant. vol. iv. p. 569), especially in general appearance; but in that genus the periantl is persistent, a character probably of more importance than the number of ovules or bearded filaments, which have hitherto been considered sufficient to distinguish genera too nearly allied in other respects.

Perhaps no group of islands on the surface of the globe, of the same limited extent and so perfectly isolated, can boast of three such beautiful plants, peculiar to their flora, as the Pleurophyllum speciosum (Plate XXII. \& XXIII.), Celmisia vernicosa (Plate XXV1. \& XXVII.), and the subject of the foregoing description. The last, from its greater abundance and conspicuous colour, is certainly the most striking of the three, not only giving a feature to the landscape wherever it grows, but in Campbell's Island covering the swampy sides of the hills in such profusion as to be distinctly visible at the distance of a full mile from shore. The specific name I have given in compliment to Sir James Ross, who, during our two days' stay in this island, brought to me, amongst many other new plants, one most luxuriant specimen of this, having three crowns of leaves from one root and no less than seven racemes of flowers, some of which were bifid; it was between three and four feet high; I much regretted the impossibility of preserving it whole, and the necessity there was of cutting it up into many fragments. The difficulty of preserving specimens at all, in latitudes so constantly wet and stormy, is very great; especially on board ship, where, from the vicissitudes of the climate, they can rarely be exposed to the air on deck : the operation is rendered doubly tedious, when, as in the islands under consideration, the vegetation is of a very succulent and coriaceous consistence. Most of my specimens required to be changed daily, and the papers to be dried over a long smoke funnel which traversed Captain Ross's cabin, the limited accommodation of our ships affording no other place available for this purpose. But for this privilege, constantly allowed me during the voyage, and which to any one less devoted than that officer to the objects of the expedition must have proved an insupportable annoyance, my collections would have been small indeed. The present plant was collected on the 15 th of December 1840, hut not fully dried when we had reached the 78 th degree of latitude in February 1841.

It is very natural that the great size and luxuriance of this and several other plants of the high southern latitudes should excite surprise. Arguing from those countries in the northern hemisphere which are upon the limits of terrestrial vegetation and which have a similarly rigorous climate, the vegetation of the former might be expected to consist of small and densely tufted μ lants. This is however not the case, and I have endeavoured to account for the apparent anomaly from the fact that the higher southern regions enjoy a singularly equable, though to the human constitution always inclement climate. It is further to be remarked, that the Flora, even under these circumstances of a peculiar luxuriance in individuals, is composed of very few species; and again, that in the South, hardly any state of vegetation is met with between that of considerable abundance and almost complete sterility, and on ascending the mountains few or no new forms occur : the great mass of the alpine plants (even on the limits of perpetual snow) being those which inhabit the open lands at the level of the ocean. The botany of the densely wooded regions of the southern islands of the New Zealand group and of Fuegia is much more meagre, not only than that of similarly clothed regions in Europe, but of islands many degrees nearer the North-

[^5]vol. I.
ern Pole than these are to the opposite one. Iceland for instance, in lat. $62^{\circ} \mathrm{N}$., proverbially barren as it is, and upon which no tree, but a few stonted birches, is to be found, contains certainly five times as many flowering plants as Lord Auckland's group and Campbell's Island together, whose rich regetation is evident on their being first approached from sea; and yet the numerical proportion which the two great groups of flowering plants bear to one another in each country is almost identical. Kerguelen's Land is on the southern limit of vegetation in its own longitude, as we may presume from its containing only eighteen species of flowering plants; but these cover as much of the surface of the island as the plants of Spitzbergen do, and yet the latter country contains forty-five species, though on the verge of Arctic regetation and infinitely nearer the Pole. Lastly, on Walden Island (lat. $80 \frac{1}{2}^{\circ} \mathrm{N}$.) we have the last traces of phænogamic plants in the northern hemisphere, and in the opposite one beyond the South Shetlands ($63^{\circ} \mathrm{S}$.) no flowering plants exist; but whilst the former islet boasts of ten species of flowering plants, the latter contams but a solitary grass.

The uniformity of the Flora at the different levels in any given island of the South is to be expected from the paucity of species, and we further find that these are spread over vast extents of country. This is remarkably the case with the southern American Flora, where the northern limit at which the antarctic Beech grows near the sea is 45°, from which latitude as far as $56^{\circ} \mathrm{S}$. the level of the ocean seems to be its natural habitat: again, the plants which form the bogs of the Chonos Archipelago in lat. $45^{\circ} \mathrm{S}$. are the same as those of Cape Horn, and the general features of the vegetation of the two localities are the same. In the northern temperate regions a very different state of things will be found to prevail : compare the Flora of the south of France, in the latitude of the Chonos Archipelago, with that of Argyleshire in the parallel of Cape Horn, and how little similarity exists; and this not only because the plants of France cannot bear the climate of Scotland, but because new forms are developed in the latter country, equally unsuited to the south of France. Many parallel cases to this might be adduced, all tending to prove that there are conditions in the physical geography of the southern islands which render them unfavourable to the production of species, but which are accompanied with a luxuriant development of such as do exist: and further, that species which form the mass of the vegetation under these conditions are such as continue to be typical of the Flora through many degrees of latitude whose mean temperature is considerably different.

The equable climate which these countries now under consideration enjoy, is doubtless mainly attributable to the vast body of ocean surrounding them; and though the want of new species must in a measure depend on the limited extent of surface for their development, it is not altogether from the want of space that the paucity of new forms in proceeding to the South is to be accounted for, since in no other part of the globe can sixteen degrees of so luxuriant a Flora composed of so few species be traversed.

All parts of antarctic America as it is called, a name its ungenial climate alone, and not its geographical position, warrants, are wet, foggy and cold; snow-storms and gales of wind prevail throughout the year; and not only on the hills, for the atmosphere seems so loaded with moisture, that a precipitation on the upper regions is gencrally followed at once by rain or snow on the lower grounds. In the summer the sun scarcely exerts any power without raising mists which intcrcept its rays. The difference between the summer and winter temperature is small, and the diurnal changes trifling. The perennial hurricanes which sweep the exposed surfaces of the hills seem alone materially to check the vegetation, for even on the mountains the plants of the plains reappear wherever a shelter is afforded. In no part of Scotland does 1700 feet of elevation exist without showing a material change in the regetable kingdom, such a height producing many subalpine and even alpine plants not met with at the level of the ocean ; but though in Hermite Island the mountains attain that height, there is scarcely a plant growing upon them which does not equally exist in the open grounds near the sea. Nor is there probably any country where the prevailing species, forming the mass of the Flora, have such wide ranges as in Antarctic America.

From this we may presume, that plants will pass through many degrees of latitude, and consequently from
one climate to another, provided there is no sudden change of temperature to check their progress*; that is to say, if in each climate the difference between the extremes is the same, small, and that change slow; and that we may expect the range of individual species to increase with the uniformity of the temperature throughout the year.

The above observations have been drawn chiefly from a consideration of the antarctic American Flora, which is the only one sufficiently investigated hitherto for this purpose. The plants of the Middle Island of New Zealand are only known from the collections of Banks and Solander, Forster and Menzies, which were made in Queen Charlotte's Sound and Dusky Bay, chiefly in the latter ; those of the Southern or Stewart's Island are entirely unknown; the Northern Island may be considered as pretty well explored, but an aggregate of the whole shows the Flora of New Zealand to be in all probability the poorest of any country of its size situated in the same latitude. Thongh this group extends from lat. 34° to the 48 th degree, the snmmers of the northern extremity are not scorching, nor the winters, in its southern, severe. It is true that its high mountains have been but partially explored ; but botanists have ascended them, as Mr. Bidwill, Dr. Dieffenbach, and Mr. Colenso, in whose collections the amount of new forms from so considerable an altitude as that of $6-10,000$ feet is very trifling, and the species bronght by each person the same. In the immediate neighbourhood of Port Jackson, 400 species of flowering plants may be easily collected in four days' excursions; in the same time scarcely half that number would be detected in the Bay of Islands, very little to the southward of Syduey in latitude; and on extending the journeys further in each country to thirty or forty miles, the disproportion increases. A remarkable uniformity in the Flora pervades all the South Sea Islands, also accompanied with a singularly equable temperature. The change which an elevation of 10,000 feet produces in the Flora of Colombia is complete, and the number of species inhabiting the plains of Quito much exceeds that in the low forests of the west coast of America, in the same parallel ; but though the volcanic islands of the Sandwich group attain a greater elevation than this, there is no snch development of new species at the upper level.

Amongst the many branches of inquiry into which the science of Botanical Geography divides itself, that which concerns the comparative richness in species of countries similarly situated is a highly interesting one. An exuberant vegetation we find not to be necessarily the index of an extensive flora, nor is it in the most densely clothed spots that the greatest variety of forms is to be met with, but very often the contrary. Few lands we have seen are so deceptive in this respect as New Zealand and Tierra del Fuego; and on extending the inquiry, we further see that the sandy plains of Australia, the Cape of Good Hope, and the campos of central Brazil, are richer in species than the more luxuriant woods of those or most other countries.

Plate XLIV. \& XLV. Fig. 1, a male flower; fig. 2, petal ; fig. 3, stamen; fig. 4, pollen; fig. 5, imperfect ovarium of male flower ; fig. 6, female flower with pedicel and bractea; fig. 7 , ovarium from do.; fig. 8 , orule; fig. 9, immature capsule ; fig. 10, longitudinal, and fig. 11, transverse section of do.; fig. 12, ripe capsule, the valves burst open ; fig. 13, side, and fig. 14, front view of a seed; fig. 15 , transverse section of do., showing the outer membrane ; fig. 16, albumen coated with the inner membrane removed from the outer ; fig. 17, embryo : -all magnified.

[^6]
"Genus inter ASPHODELEAS et JUNCEAS."-Brown.

ASTELIA, Banks et Soland.

Flores polygamodioici. Herm. Masc. Perianthium semiglumaceum, sexfidum v. profunde sexpartitum; laciniis oblongis lineari-oblongisve, sub apice incrassatis, 3 exterioribus paulo majoribus, dorso sericeis. Stamine 6 , laciniis perianthii inserta; filamentis brevibus v. elongatis ; aniheris brevibus, didymis, introrsis; pollen ovoideum v. angulatum, granulatum v. minutissime echinulatum, latere unico excavatum. Ovarium abortivum. Fl. Herm. Fem. Perianthium ut in masculo, persistens. Staminu imperfecta. Ovarium oblongum v. globosum, obtuse trigonum v. trilobum, uni- tri- sexloculare. Ovula plurima, biserialia, ascendentia, anatropa. Placente in ovariis unilocularibus 3 -seriales, parietales, v . summo loculi affixæ; in iis trilocularibus angulo interiore superne suspensæ. Stylus brevissimus, crassus, teres, sæpius subnullus. Stigma sessile, trilobum. Bacca turgida, globosa v. elongata, perianthio emarcido v. rarius baccato suffulta v. inclusa et stigmate plerumque coronata, interdum submembranacea uni- trilocularis, rarius 5-6-locularis, loculis 2-polyspermis. Semina ovoidea v. angulata, ad raphin incrassata v. subcurinata, in bacca uniloculari plurima, interdum pulpa immersa, horizontalia, biserialia, rarius pendula ; in bacca pluriloculari ex apice loculi pendula; funiculis brevibus; umbilico nudo. Membrana seminis externa crustacea, interdum ossea, aterrima, nitida. Nucleus pendulus ; membrana interior tenuis, cbalaza lata orbiculari ope raphis cum umbilico junctus. Albumen dense carnosum. Embryo parvus in basi albuminis inclusus, extremitate radiculari incrassata hilo proxima.-Herbæ insularum Oceani Pacifici et Antarctici, Nove Zelandice Tasmanicque incola, nullibi copiosce, cespitose, plus minusve sericeo-paleacere. Caules breviusculi, foliosi. Folia elongata, plerumque carinata, trinervia. Flores racemosi, paniculati v. scapis abbreviatis bini, busi bracteolati.

1. Astelia linearis, Hook. fil.; foliis patulis lineari-clongatis acutis canaliculatis appresse argenteo-paleaceis sericeis v. glabriusculis subtus carinatis, scapo perbrevi l-2-flore, flore inferiore basi bracteato, bacca lineari-oblonga carnosa obtuse trigona 1 -loculari, seminibus plurimis placentis parietalibus affixis.

Var. β. subulata; pumila, foliis lineari-subulatis.
Hab. Lord Auckland's group and Campbell's Island; on the bare ground, not uncommon, especially on the hills in open places.

Species pusilla, polymorpha, dense cæspitosa, habitu A. alpina et pumila sed folis multoties angustioribus, magnitudine varians. Rudix lignosa, fusiformis, descendens, parce fibrosa, fibris patentibus, flexuosis, elongatis, 2-3 unc. longis, 1 lin. diametr. Caules breviusculi, $\frac{1}{2}-3$ unc. longi, densissime compacti, pluries divisi, vaginis fuscis foliorum obtecti, una cum foliis $\frac{1}{4}-\frac{3}{4}$ unc. diametri, basi reliquiis fibrosis et squamosis foliorum vetustorum obsiti. Folia omnia radicalia, inferiora interdum recurva, undique patentia, (an obscure trifariam imbricata ?) basi late vaginantia, $2-4$ unc. longa (in var. $\beta \cdot \frac{1}{4}-\frac{1}{2}$ uncialia), lineari-elongata v. rarius anguste lanceolata, 2-3 liu. lata, gradatim acuminata, crassa et coriacea, supra profunde sulcata v. canaliculata, ad margines plerumque recurva, subtus medio carinata, utrinque plus minusve paleis squamisve argenteis v. rufofuscis obtecta v. subsericea, interdum sed rarius glaberrima, luride viridia, ad apices fasciculo squamarum penicillata; vagince latiusculæ, scarioso-membranaceæ, squamosæ ; squamis byalinis, appressis, elongatis, fimbriatolaceris, deciduis. Scapus solitarius, perbrevis, $\frac{1}{2}$ unc. longus, inter vaginas foliorum occlusus, argenteo-squamosus, apice bifidus, biflorus. Flores approximati, erecti ; inferior subsessilis, basi bracteatus; superior pedicellatus. Bractea lineari-elongata, obtusa, utrinque furfuraceo-squamosa. Fl. Masc. mibi ignoti. Fem. Perianthium sexpartitum ; laciniæ lineares, obtusæ, exteriores majores, extus sericeæ, vcrsus apices incrassatæ, subcucullatæ, dorso penicillatæ, interiores angustiores, apicibus subincrassatis. Stamina imo perianthii inserta,
parva, imperfecta. Ovarium ovato-oblongum, obtuse trigonum, stigmate trilobo sessili terminatum, uniloculare. Placente parietales, triseriales, nerviformes. Ovula plurima, biserialia, semi-anatropa, ascendentia. Bacca caruosa, oblongo-elongata, $\frac{1}{3}$ unc. longa, prismatica, angulis obtusis, pallide rufa, perianthio duplo longior. Semina plurima, horizontalia, obovata, obtusa, latere unico compressa, subcarinata; funiculus crassiusculus, subelongatus, filamentosus; membrana exterior crustacea, subossea, aterrima, nitida; nucleus pendulus solutus, chalaza orbiculari apiceque fusca; membrana interior tenuis, pallide fusca. Albumen carnosum. Embryo parvus, ovatus, basi albuminis inclusus; radicula hilo proxima.

Since the first appearance of the 'Prodromus Floræ Nov. Holl.,' in which Mr. Brown published the genus Astelia from the manuscripts of Banks and Solander, nothing seems to have been done by the many authors who have transcribed his characters and remarks towards determining its affinities. Mr. Brown himself views it as intermediate between Asphodelee and Juncere, and retains it at the end of the former order; from this it has been removed with one consent by all future classifiers, some placing it after Juncece and others with Melanthacece. Mr. Forster's name of Melanthium pumilum, given to the Fuegian species, shows that he considered it as being most nearly allied to the latter-named order; but I am not aware that any other author has stated his reasons for following Forster's views of its affinity, except perhaps 'Thunberg, whose dissertation de Melanthaceis I have never seen.

In 1819 Sir J. E. Smith (Appendix to Rees's Cycloprdia) added a new species to the genus, the A. Menziesiana of the Sandwich lslands; the form of the seeds is mentioned, but no particulars of their structure. This species was redescribed by Gaudichaud (Voy. Freyc. Bot. p. 420), who docs not seem to have been aware of Sir James Smith's paper, and he named it A. veratroides, placing it in Melanthacere without any remark; the fruit seems unknown to Gaudichaud, but was described as three-celled by Smith and again by Hooker and Arnott (Bot. Beechey Voy. p. 97), who also retain it in the same order.
A. Richard published his 'Flora Nove Zelandie' in 1830, wherein no notice is taken of the genus Astelia, but a species of it is figured and described as Hamelinia (nov. gen.) veratroides: the male flowers and ripe fruit appear to have been both unknown to that author, the ovary is describcd as trilocular, and the genus arranged in Colchicacea (Melanthacea).

In 1836 Mr. Cunningham described (in his Prodr. Flor. Nov. Zel.) two species of Astelia, under one of which (A. Banksii), Ricbard's Hamelinia is quoted as a synonym; it is placed in Junci. Shortly afterwards Endlicher (in lis 'Genera Plantarum') removed it to the end of Juncece. Lastly, Kuntli takes up the genus Astelia (Enum. Plant. vol. iii. p. 36t) and follows Endlicher's views of its affinity. Though however his work was published as late as 1841 , all notice of Cunningham's species are omitted, and the A. Banksii receives the third name of A. Richardi.

I have had the opportunity of examining the ripe fruit of six species of the genus, and find the seeds of all to agree in structure and to partake of the peculiarities both of Liliacea and Juncere; with Melanthacere they have fewer characters in common.

Except in the more fleshy substance of the capsule in most of the species and its not bursting by valves, to which however there is a manifest tendency in the A. pumila, there is no material difference in that organ between Astelia and Juncus. The ovaria are the same in both, being one or more celled; when one-celled generally bearing the anatropous ovules in two series on three lines of parietal placentre, and when three-celled they are pendent from the inner angles of the cells. The internal structure of the seeds of the two genera is identical ; the outer coat alone, from becoming thick and even in Astelia, agrees only with Rostkoria amongst Juncce, but in being crustaceous and black differs from all. The nuclens, raphe, chalaza, inner coat of the seed immediately surrounding the albumen, the albumen itself, and form and position of the embryo, are precisely alike in both. Together with these remarkable accordances in structure there are many points of discrepancy, especially in habit, as also in the chaffy covering of the leaves and other parts, the uniformly diœcious or poly-
gamous fiowers, the texture of the leaflets of the perianth and their being often united above the base, the subulate and generally terete, not linear or compressed filaments, the short anthers and different nature of the pollen, which is minutely granular and furrowed on one side, and the constantly nearly sessile and three-lobed stigma.

With Asphodelece, Astelia has many points in common: though, as stated above, the internal structure of the seed is more manifestly that of Juncere, it is not opposed to the description of that organ in Asphodelec, and the brittle black shining testa is almost typical of that order. The stamens are the same, in some Astelice being much elongated and bearing versatile anthers; and the form of the pollen likewise, though I have always observed it to be granulated. The thickened and subincurved apices of the leaflets of the perianth are analogous to the cucullate tips of these organs in Drimia and Albuca. The form of the perianth is variable in the New Zealand species, nor is its texture always peculiarly semi-glumaceous, as in one species the lacinire, which are linear, are also thin, membranous and white ; in another it expands at the base into a broad, flattened or cupshaped dise with six equal lobes; in a third the base is subcampanulate, with erect linear laciniæ, subpetaloid in texture; and in a fourth species it completely surrounds the ripe berries, which are very large. Nor is the berry itself very constant in internal structure, as in Dianella, Lam., amongst Asphodelece, it is baccate, and as in Allium, L., it varies in the number of cells from one to three. In one of the above New Zealand species it is, as far as I can judge from dried specimens, one-celled, with many seeds pendulous from the summit, attached by short funiculi to what probably was a fleshy pendent column, but of which I see only the membranons remains; if any dissepiments existed they must lave been very imperfect. Another species has the berry constantly three-celled, with several seeds pendulous from the upper inner angle of the cell; and in a third the fruit is membranous and subcapsular with three to six cells, each containing two or more pendulous seeds, which are convex at the back and with the sides much compressed like those of many Asphodelcce. To Mclenthacece the genus is allied in habit, in the polygamous flowers, in the perianth sometimes (exactly similar to that of Wurmbia, Thunb.) forming a tube round the fruit, in the baccate fruit, and in the form and surface of the pollen, which in some Melanthacec is minutely granular : from this order however they essentially differ, in the æstivation of the perianth not being induplicate, in the antlers being at no period extrorse, in the single style, sessile, lohed stigma, and in the crustaceons integument of the seed. Whilst alluding to this order I mey mention another plant whose affinity has been considered dubious, the Campyncma linearis, Lab. (Flor. Nov. Holl. vol. i. p. 93. t. 121). This I have lately examined, and find it to be, as Mr. Brown rightly conjectured (Prodr. p. 290), truly Melanthaceous, with the tube of the perianth united to the ovarium. The fruits I have only seen in an immature state; but in them the adhesion of the perianth to the capsule is exident, and in a forwarder state the line of separation wonld doubtless be more clear. The plant is diœcious or probably polygamous, the anthers extrorse and caducous, the filaments after their falling away becoming recurved and projecting between the segments of the perianth; the pollen is yellow and granulate. The immature seeds are very numerous, imbricated in two series in each cell, and are attached to the middle of the dissepiments.

I have not ventured to subdivide the genus Astelia, as I doubt if characters of sufficient importance will be found to render it necessary, especially until good specimens in all states of the New Zealand species shall have been examincd. The A. pumila, Br ., is the most abnormal species in habit and in the subcapsular fruit; it is allied to the Tasmanian A. alpina, Br. in the form of that organ and shape of the leaves, and, on the other hand, to A. linearis in the short two-flowered scape. The A. alpina again, having a racemose inflorescence, connects these with the New Zealand species, in one of which the ovarium is one-celled. There are probably two species in the Sandwich group, one of which has two sceds in each of the cells of the berry and the seed-coat is very thick and osseous.

The A. linearis is the most inconspicuous of any of the species, owing to the grassy appearance of the leaves and its small size. Both the A. pumila and A. alpina are very striking plants; the former constituting singular hard flat green beds on the bogs, often several yards across; while the latter, with its beautifully silky and copious foliage, is a great ornament to the top of Mount Wellington and other mountains of Tasmania.

Some of the New Zealand species are wonderful features in the forest scenery of those islands; they form huge tufted masses, often as large as the human body, perched on the naked limbs of the most lofty pines; elevated as they are $80-100$ feet above the ground, they remind the beholder of the nest of some gigantic bird.

XXVIII. JUNCE E, DeC.

JUNCUS: L.

1. Juncus antarcticus, Hook. fil.; pumilus, cæspitosus, culmo terete superne nudo foliis subaquilongo, foliis radicalibus e basi vaginante linearibus semiteretibus versus apices obtusos cylindraceis, floribus $2-4$ capitatis hexandris, perianthii foliolis subulato-lanceolatis exterioribus concavis dorso acutis, stylo nullo, capsula periantliii longitudine triloculari. (TAB. XLVI.)

Hab. Campbell's Island; on the exposed summits of the mountains: alt. 1000 feet, rare.
Planta perpusillæ, vix unciam longx, inter muscos cæspites densos formantes. Rulix fibrosa; fibris elongatis, tortuosis. Culmi erecti, $\frac{1}{4}-\frac{1}{2}$ unc. longi, ima basi divisi, rarius parce ramosi, reliquiis foliorum vetustorum vaginati, foliosi. Folia plurima, radicalia, numerosa, sub $\frac{I}{2}$ unc. longa, basi vaginantia, suberecta vel paulo curvata, e basi latiore lineari-subulata v. linearia, semiteretia v. superne obscure canaliculata, versus apices cylindracea, obtusa; basi vaginaute elongato-ovata, medio coriacea, striata, marginibus subscariosis. Scepi solitarii, rarius bini, stricti, erecti, subvalidi, foliis breviores, post anthesin elongati. Flores plerumque 3, capitati, basi bibracteolati, unico non raro incompleto, altero breviter pedicellato. Bracteole ovatæ, acuminatæ, longitudine varix, flores plerumque superantes, unica interdum subelongata, folium simulante. Perianthium $1 \frac{1}{2}$ lin. longum, castaneum, nitidum ; foliola subæqualia; exteriora lanceolato-subulata, coriacea, concava, dorso acuta, vix carinata; interiora planiuscula, sublatiora, medio coriacea, marginibus anguste membranaceis. Stamina 6 ; filamenta latiuscula, plana, uninervia ; antherce ohlongæ, subrecurvæ, apice brevissime unguiculatæ. Ovarium parvum, obovatum, turgidum, triloculare, in stylum non attenuatum ; valvis dorso carinatis. Stigmata 3 , sessilia, inclusa, lineari-subulata, post anthesin torta. Ovula plurima, angulo interno loculi biserialia. Capsula perianthio inclusa, castanea, ovata v. ovato-oblonga, subacuta, 3 -locularis, 3 -valvis; valve convexæ, medio dorso canaliculatæ, intus septiferæ ; dissepimentis in axi capsulæ primo inter se cohærentibus, denique solutis. Semina plurima, quoris loculo 15-20, funiculis brevibus margini septorum adnexa, ovato- v. elliptico-oblonga, obtusa, flavobrunnea; funiculi incrassati, reliquiis filamentosis membranæ externæ seminis circumdati : testa membranacea, pallide flaro-brunnea, obsolete striata v. reticulata.

This curious little species is allied to none with which I am acquainted; in size and general appearance it somewhat resembles the Luzula arcuata, Hook., of the Scottish Alps. The form of the leaves is that of Juncus castaneus, Sm., but they are in this plant solid internally and of quite a different structure. The capitate flowers and naked scapes are common to this, with the J. biglumis, L., J. triglumis, L., and with the following.

Plate XLVI. Fig. 1, leaf; fig. 2, section of central part of do.; fig. 3, upper part of do.; fig.4, capitulum; fig. 5 , flower; fig. 6 .outer leaflet of perianth; fig. 7 , inner leaflet of do.; fig. 8 , stamen; fig. 9 , ovarium; fig. 10, capsule inclosed in perianth; fig. 11, the same removed with the valves burst open; fig. 12, transverse section of do. ; fig. 13, one valve of capsule; fig. 14, seeds :-all magmified.
2. Juncus scheuchaerioides, Gaud.; culmo brevissimo compresso basi fastigiatim ramoso, foliis erectis longissime lineari-subulatis compressis basi longe vaginantibus intus articulatis, scapo brevissimo foliis multoties breviore, floribus $6-\dot{8}$ capitatis hexandris bractea elongata subteusis, perianthii foliolis ovato-lanceolatis medio coriaccis omnibus planiusculis, stylo clongato, capsula perianthio
sublongiore semitriloculari.—Gaud. in Ann. Sc. Nat. vol. v. p. 100, et in Freyc. Voy. Bot. pp. 132 \& 419. D'Urv. Fl. Ins. Mal. in Trans. Soc. Linn. Paris, vol. iii. p. 124. Roem. et Schultes, vol. vii. pt. 1. p. 196. La Hurpe, Junc.36. Kunth, En. Plant. vol. iii. p.325.-Var. ß. inconspicuus. J. inconspicuus, D'Urv., Gaud., La Harpe, locis citatis.

Hab. Lord Auckland's group and Campbell's Island; sparingly in marshy places near the tops of the hills, alt. 1000 feet; more abundant in the latter island at the level of the sea. β. Campbell's Island, not uncommon in gravelly places.

Culmi brevissimi, sub $\frac{\mathrm{I}}{2}$ unc. longi, sæpius pluries divisi, surculos radicantes interdum lateraliter emittentes, basi fibrosi; fibris simplicibus. Foliu subdistiche inserta, stricta, erecta, basi longe vaginantia, longitudine varia, in var. β. plerumque vis $\frac{1}{2}$ unc. longa, sed exemplaribus plerisque $4-8$ uncialia, per totam longitudinem compressa, in acumen curvatum v. uncinatum srepe ad apicem attenuata, herbacea et subgraminea, nunquam dura v. coriacea, striata, pallide viridia; intus fistulosa, transverse articulata, nodis siccitate solummodo externe conspicuis, internodiis $2-4$ lin. longis, nervis prominentibus costatis ; vagine $\frac{1}{4}-\frac{1}{3}$ folii æquantes, membranaceodilatatæ, superne oblique rotundatæ v. truncatæ, seu in auriculas interdum sursum productæ. Scapi foliis $\frac{1}{4}-\frac{1}{3}$ breviores, graciles, teretes vel paulo compressi, superne nudi. Capitula 4 - 8 -flora, bractea foliiformi, plus minusve elongata subtensa. Bracteolce late ovatæ, acuminatæ, $3-5$-nerves, dorso infra apicem carinatæ. Perianthii foliola exteriora vix concava, ovato-lanceolata, acuminata, medio coriacea, trinervia, dorso subcarinata; marginibus late membranaceis, subscariosis, infra apicem involutis, fusco-purpureis ; interiora planiuscula, ovatooblonga, obtusa v. breviter acuminata, medio incrassata, nervosa, viridia; marginibus albidis v. pallide fuscis, late membranaceis. Staminu foliolis perianthii breviora; filamenta plana, linearia, subelongata; anthere linearioblongæ, apice breviter unguiculatr. Ovarium triquetrum, triloculare. Stylus erectus. Stigmata 3, elongatofiliformia, horizontaliter patentia, post anthesin torta. Capsuta ovato-oblonga, perianthio paulo longior, trigona, angulis obtusis, 3 -valvis; valva dorso concaræ, medio subcanaliculatæ, septiferæ ; dissepimentis retractis, polyspermis. Semina plurima, biscrialia, ovoidea; membrana externa hyalina, filamentosa, tenuissima, caduca, ad raphin incrassata; interna pallide fusca, reticulata, utrinque reliquiis membranæ externæ subfilamentosa; chalaza latiuscula, opaca.

The Auckland and Campbell Island plant is assuredly identical with that of South America, and as a species it is exceedingly distinct from any other with which I am acquainted, except perhaps, as Kunth suggests, the J.microcephalus, I. B. K. Of this plant we have copious specimens, but as they are in the hands of Meyer, who is now preparing a monograph of the genus Juncus, I am unable to compare them. So far as my recollection serves me, there is much similarity between this species and one from the Andes of South America; but judging from the descriptions of Kunth in Humboldt's Nov. Gen., the J. microcephalus differs materially from this in size, in the creeping rhizoma, in the leaves being shorter than the scapes, the dichotomous corymb and many other characters; in fact, the articulated leaves, described by Kunth as terete, but by La Harpe as compressed, scem to be almost the only character they possess in common. This is a much more common species than the J. antarcticus, and differs as materially from it in the structure of the leaf, as the J. biglumis does from J. triglumis. The J. scheuchzerioides has the leaves of a very soft texture, as are the leaflets of the perianth, none of which are carinated at the back. The difference between the length of the scape and leaf is very remarkable.

I have retained the J. exiguus, Gaud., as a variety, though it hardly possesses characters sufficient to rank as such; it consists here, as in the Falkland Islands, of small specimens of the plant, often growing in a poorer soil or drier locality.

2. ROSTKOVIA, Desv.

Flos majusculus, solitarius. Periunthium glumaceum, hexaphyllum ; foliolis lineari-subulatis, 3 exterioribus paulo inajoribus, dorso acutis. Stamina 6, imo perianthii inserta, foliolis opposita; antherce apice unguiculatæ. Ovarium oblongum, elongatum v. ovatum, trigonum, uniloculare. Ovula plurima, biserialia, placentis 3 parietalibus adnexa, anatropa. Stylus validus, elongatus, apice incrassatus. Stigmata 3, exserta, maxima, lineari-subulata, intus glandulosa, dorso profunde canaliculata. Capsula unilocularis, trivalvis, valvis medio intus carinatis, carinis e septis retractis formatis. Semina plurima, horizontalia \mathbf{v}. ascendentia. Testa varia. Embryo minimus, subquadratus, in basi albuminis carnosi inclusus.-Herbæ Antarcticce. Culmi basi vaginati. Folia solitaria v. plurimu, elongata, teretia. Scapi graciles, apice uniftori, foliis breviores.-Character ex Desvaux, paucis mutatis.-Rostkovia et Marsippospermum, Desv.

1. Rosteovia Magellanica; culmis crespitosis simplicibus v. ima basi divisis, foliis plurimis strictis erectis basi vaginantibns longe lineari-subulatis semiteretibus infra medium canaliculatis, scapis foliis longioribus, floribus bractea elongata subtensis, perianthii foliolis ovato-lanceolatis marginibus late scarioso-membranaceis, capsula perianthio paulo longiore, seminum testa albumine conformi coriacea.-Rostkovia sphærocarpa, Desvaux, Journ. de Bot. vol. i. p. 327. Juncus Magellanicus, Lamk. Encycl. Méthod. iii. p. 266. Gaud. in Ann. Sc. Nat. vol. v. p. 100, et in Freyc. Voy. Bot. p. 132. D'Urv. Fl. Ins. Mal. in Ann. Soc. Linn. Paris, vol. iv. p. 604. Kunth, En. Plant. vol. iii. p. 357.

Hab. Campbell's Island; in mossy and springy places on the hills, especially at the sources of streams.

Culmi basi compressi, subelongati, inclinati, fibras crassas emittentes, interdum subsurculosi, simplices vel divisi, rarius parce ramosi. Folia plurima, ad basin scapi cujusvis $8-10$, erecta, stricta, rigida, longissime lineari-subulata, 5-10 unc. longa, basi longe vaginantia, semiteretia v. obscure trigona, intus solida, supra basi ad medium canaliculata, superne subtriquetra, ad apices pungentia, plus minusve curvata, glaberrima, polita, nitida : vaginæ compressæ, $\frac{1}{2}-1$ unc. longæ, basi $3-4$ lin. latæ, subchartaceæ, superne coriaceæ, oblique truncatæ. Scapi solitarii v. rarissime duo, erecti, graciles, teretes v. subtrigoni, foliis $\frac{1}{3} \frac{1}{4}$ breviores, infra florem solitarium subincrassati, rigidi, solidi. Bractec ad basin floris 2, valde inæquales; superior e basi ovato-lanceolata subulata, concava, chartacea, perianthium vix superans; inferior concava, e basi vaginante late ovata, longe subulata, erecta, stricta, perianthium bis quaterve superans, interdum folium omnino simulans. Perianthium $\frac{1}{4}$ unc. longum $;$ foliola lineari-oblonga, attenuata, acuta v. acuminata, inter se subrequalia; exteriora paulo majora, concava, dorso acuta, superne carinata, coriacea, striata, castanea, nitida, marginibus late scariosis, pallidis ; interiora planiora, medio incrassata. Stamina 6, inclusa ; filamenta linearia, medio uninervia, perianthio $\frac{1}{2}$ breviora ; anthere lineares, elongatæ, filamentis paulo breviores; connectivo ultra apicem in unguem brevern, obtusum, subrecurvum producto; loculis parallelis, rimis lateralibus dehiscentibus. Pollen tetragonum, intus 3-4granulosum, flavum. Ocarium elliptico-ovatum, in stylum attenuatum, obtuse trigonum, 1-loculare. Placentce nerviformes, parietales, dissepimentis obsoletis sitæ. Ovula plurima, biserialia, ascendentia, funiculis brevibus placeutis adnexa, anatropa. Stylus elongatus, erectus, validus, strictus, basi gracilis, superne gradatim incrassatus, ovario æquilongus. Stigmata 3 , tota exserta, erecto-patentia, subulato-filiformia, ad baseos latiores confluentia, intus per totam longitudinem glandulosa, dorso glaberrima, profunde canaliculata. Capsula perianthium superans, late obovato-oblonga, prismatica, angulis obtusiusculis, apice acuta, v. stylo persistente mucronata, dura et coriacea, sublignea, castanea, nitida, quasi vernicosa, unilocularis, polysperma, trivalvis ; valve oblongæ, utrinque acutæ, concavæ, dorso medio canaliculatæ, intus septo incompleto costatæ. Semina numerosa, conferta, lentiformia, utrinque obtusa, paulo compressa, latere unico subcarinata, lævia, castanea, nitida, basi pallidiora ; umbilico nudo. Membrana seminis exterior crassa, coriacea, intus spongiosa ; interior membranacea, obscure reticulata,
pallide flavo-brunnea, utrinque (chalaza apiceque) fusca, albumini appressa, exteriore remota; inter has duas raphe sæpius solutus apparet. Albumen carnosum. Embryo parvus, albidus, oblique tetragonus, in basi albuminis immersus, hilo proximus.

This species was, according to Lamarck, originally discovered by Commerson, who accompanied Bougainville in his voyage to the Straits of Magalhaens, \&c. I have gathered it abundantly both in Tierra del Fuego and the Falkland Islands. In the latter locality it is very abundant, and had beeu previously detected by M. Gaudichaud and by Admiral D'Urville. It is rare in Campbell's Island, and was not observed upon Lord Auckland's group. It is equally distinct from the R. grandiflora (Marsippospermum grandiforum, Desv., Hook. Ic. Plant. t. 533) and from the following, in the elongated bractea which subtends the flower, as well as the size of the plant, form of the leaf and capsule, and curious structure of the seeds. I have no hesitation in retaining Lamarck's specific name of Magellanica for this plant, the species being well characterized hy that author, and known to Desvaux at the time he established the genus Rostkoria; this he did upon different grounds however from those which induce me to retain it.
M. Desvaux founds the genus on this solitary species, but grounds his generic character on an erroneous idea of the structure of the capsule, which he describes (Journ. de Bot. l. c.) as "capsula globosa, unilocularis, non dehiscens; trophospermum suturale" (p. 326) ; and again in the previous page, "Je crois que la capsule ne s'ourre point; par suite d'une observation générale, c'est que tout fruit qui n'est point anguleux dans aucune de ses parties, n'est pus déhiscent, surtout s'il est sphérique les graines en grand nombre sont disposées sur trois trophospermes (placentæ) fixés sur les parois de la capsule et alternant avec les indices de déhiscence qui s'aperçoivent au milieu des parois des loges, et qui sont toujours indiqués, malgré que cette déhiscence n'ait point lieu dans quelques genres de la famille des Joncinées" (p. 325). The capsule of R. Magellanica 1 have described as of a very hard consistence, and its dehiscence does not take place until a considerable period after the apparent ripening of the seeds; that it does burst is however abundantly evident, and the dehiscence takes place by three ralves, exactly as in Deswaux's genus Marsippospermam and in other Juncece, the placentæ occupying the axis of the valves. From the above extract I conclude that M. Desvaux did not examine fully ripe capsules, and took the groove at the back of the valves, which is seen in almost all Junci, denoting the position of the placenta, for the line of dehiscence. In the work alluded to no description of the seeds themselves is given, though another genus is founded on a supposed peculiarity of structure in that organ. Mr. Brown (Prodr. p. 258), in his observations on the genus Juncus, remarks that no dependeuce is to be placed on the form of the testa as a generic character, " nec secernendæ eæ seminibus scobiformibus, testa nempe, qua in pluribus utrinque laxa, in his valde elongata :" and as in the genus Juncus itself there are several forms of that organ, so in Rostkoria, as it now stands, it differs remarkably in two of the species. In R.grandiflora the outer integument of the seed is lax and drawn out at both ends, as in Juncus castaneus, Sm., and several other species; but in the R. Magellanica it assumes a form which I have not seen in any other species of the Natural Order, forming a very thick, even seed-coat, hard, smooth and shining externally, marked on one side with a prominent ridge, indicating the position of the raphe; within it is soft and spongy, with a large cavity. Inside this the mucleus hangs loose, suspended by the vessels of the raphe, which are more or less detached and often quite scparate from the walls of the seed-coat, except at the base. The inner membrane immediately surrounds the albumen; it is thin and membranous, obscurely striated or reticulated, of a pale brown colour with a broad orbicular dark-coloured chalaza at the summit and another dark spot and apiculus at the pendent apex. This membrane is quite frec from the outer, and analogous to what is generally considered as the testa in many Junci which are described as not having that organ scobiform, but in which the true outer membrane of the seed, ana. logous to the coriaccous one of the present species, is delicate and hyaline, either altogether deciduous or leaving a few filamentous residua round the base and apes of the seed, or as in J. scheuchzerioides, leaving the raphe as the only attachment between the seed and placenta. In some spccies of the Order this outer membrane forms with water a transparent jelly, in which the seed appears immersed; it is rery similar to what is seen surround-
ing the moistened achænia of some Conposita. In South American specimens of R. Magellanica the seeds are paler and generally angled or. compressed; the vessels of the raphe are also seen entircly detached from the walls of the membranes and running quite free between them to the summit of the albumen covered with the inner membrane, which thus appears suspended in the carity of the outer coat, like the seed of some Amaranthaceous plant attached to a long funiculus.

The R.grandiflora is the type of this genus, to which the name of Marsippospermum was given by Desvaux ; but from that word denoting a structure in the seed foreigu to this species, and not implying a character peculiar to any group of Junci, I have substituted that of Rostkovia, to include both these and the following. The very peculiar habit and appearance of the species, the singularly large and solitary flowers, unlike those of any Juncus, together with the elongated style and the disproportionate size of the stigmata, are characters peculiar to all these, and appear of sufficient importance to warrant the retaining them under a separate generic name. M. Kunth in his 'Enumeratio Plantarum' (vol. iii. p. 356) places the R. Magellanica near Juncus trifidus, L., a plant to which it has assuredly no affinity, either in habit, inflorescence, or structure of the capsule. The R. grandiffora the same author removes to another section, and arranges it (probably following Mr. Brown's suggestion) along with J. castaneus, Sm., biglumis, L., triglumis, L., and some others of more dubious affinity, in a group at the end of the genus.
2. Rostrovia gracilis, Hook. fil. ; rhizomate valido repente, culmis erectis fastigiatis gracilibus, foliis solitariis elongatis basi squamosis et vaginatis filiformibus teretibus rigidis, scapis solitariis folio ter brevioribus, bractea infra-florali solitaria brevissima obtusa, perianthii foliolis longissime lanceo-lato-subulatis, capsula lineari-oblonga perianthio multoties breviore. (Tab. XLVII.)

Hab. Lord Auckland's group and Campbell's Island; amongst rocks and also in marshy places ; common at an elevation of 800-1200 feet.

Rhizomata cæespitosa, intertexta, horizontaliter repentia, $3-\frac{1}{4}$ unc. longa, valida, crassa, sub $\frac{1}{4}$ unc. diametr., dura, lignea, per totam longitudinem et precipue versus apices culnos perplurimos superne emittentia, reliquiis foliorum vetustorum ubique vestita, subtus fibrosa; fibris validis, elongatis, 1-2 unc, longis, descendentibus, cnrvatis, diametro pennæ passerinæ, copiosissime fibrillosis. Culmi numerosi, fastigiati, erecti, stricti, teretes, basi squamosi et vaginati ; squamce e vaginis jmioribus explanatis formatr, striatre, nitidæ, castaneæ; vagina $\underline{-}-3$, folinm arcte amplectentes, elongatæ, $1-1 \frac{1}{2}$ unc. longæ, teretes, striatæ, fulvæv. pallide castaneæ, basi brunner, polite, vernicosæ, ad apices rotundatæ, mucronatæ; mucrone plus minusve elongato, pungente. Folium solitarinm v . rarius duo, erectum, filiforme, elongatum, $\frac{3}{4}-1$ pedale, gracile, teres, striatum, vix $\frac{1}{2}$ lin. diametr., gradatim acuminatnm, apice subpungente, pallide viride, politum, intus spongiosum, fascicnlis $8-10$ tubulosis intramarginalibus vasorum percursum. Scapus erectns, solitarius, gracilis, teres, $2-3$ nncialis, folio bis terve brevior, infra florem paulo incrassatus. Flos solitarius, majusculus, erectus, $\frac{3}{4}-1$ unc. longus. Bracteola infra-floratis solitaria, parva, late ovato-oblonga, obtusa, membranacea, sub lineam longa. Perianthium angustum; foliola longe lineari-subulata, gradatim acuminata; exteriora subinequalia, longiora, et paulo latiora, inferne plana, supra medium concava, dorso carinata, medio pergamentacca, striata, castanea, nitida, marginibns late scariosis; interiora subsimilia sed breviora et angustiora. Stamina breviuscula, foliolis interioribus perianthii $\frac{2}{3}$ breviora; filamenta brevia, latiuscula, plana, medio uninervia; anthera filamentis quadruplo longiores, lineari-elongatre; connectivo ultra apicem in ungnem obtusum, subrecurvum producto ; loculis parallelis, contiguis, rimis lateralibus dehiscentibus. Pollen flavam, obtuse tetragonum. Ovarium elongatum, ovato-oblongum v. subconicum, obtuse trigonum v. prismaticum, in stylum gradatim acuminatum, uniloculare, plnriorulatum, staminibus brevius. Plucentee nerviformes, 3 -serialcs, a valvis facile divulsa. Ocula plurima, ascendentia, biserialia, funiculis brevibus placentis adnexa. Stylus rectus, clongatus, validus, ovario æquilongus, superne subincrassatus. Stigmata 3, majuscula, erecta, basi confluentia, perianthio inclusa, filiformi-subulata, intus glandulis pellucidis obsita, dor:o
glaberrima, profunde canaliculata; marginibus recurvis. Capsula lineari-oblonga, trigona, angulis obtusis, perianthio $\frac{2}{3}$ brevior, unilocularis, trivalvis, polysperma. Valvæ lineari-lanceolatæ, acuminatæ, concavæ, coriaceæ, pallide fuscæ, medio intus dissepimento incompleto carinatæ, dorso canaliculatæ. Semina - ?

I much regret not finding the seeds of this fine species amongst my dried specimens; a few were contained in the old capsules when first collected, of which I neglected to make any note at the time : if my memory does not deceive me, they were small and covered with a pearly white, very lax and much elongated outer membrane, not unlike that of Narthecium ossifragum. It is most remarkable for the apparently entire suppression of one of the bracteole at the base of the flower, and also differs from the two other species in having a coriaceous, not indurated capsule. It is more nearly allied to the R. grandifora (Marsippaspermum grandiforum, Desv.) than to R. Magellanica in size, in the creeping rhizoma, the solitary leaf sheathed at the base, the unequal outer leaflets of the perianth, and in the long capsule and lax outer coat of the seed; that plant is however of a much larger size, has longer rhizomata and scapes, with two or three bracteole below the flowers, and an almost woody capsule. The seeds of R. grandifora, like those of Juncus castaneus and especially of J. triglumis, are fusiform, invested with a loose, pale yellow, lax, glistening membrame, thickened on one side, denoting the position of the raphe, and produced at both ends; it is formed of elongated cellular tissue. The albumen is covered by a rather thick inner coat, composed of hexagonal cellular tissue, and is pendulous in the cavity of the outer membrane by the vessels of the raphe, which, arising from near the funiculus, terminate in a broad dark-coloured chalaza at the top of the inner coat. The small quadrate embryo is placed at the lower or opposite extremity, close to the apex, which is acute and discoloured.

Plate XLVII. Fig. 1, flower and bractea; fig. 2, stamen; fig. 3, ovarium, style and stigmata; fig.4, transverse section of ovarium, showing the young ovules; fig. 5, an ovule; fig. 6 , a ripe capsule :-all magnified.

3. LUZULA, DeC.

1. Luzula crinita, Hook.fil.; foliis planiusculis crinito-ciliatis, spicis plurimis in capitulum majusculum solitarium sessile late ovatum foliaccum arcte congestis rarius unico pedunculato bractea elongata foliacca subtensis, bracteolis scariosis fimbriato-laceris, perianthii foliolis ovato-lanceolatis coriaceis exterioribus carinatis apicibus subrecurvis, stylo elongato, membrana exteriore seminis fugacea. (Tab. XLVIII.)

Hab. Lord Auckland's group and Campbell's Island; in the former locality found only near the tops of the hills, alt. 1200-1400 feet; more abundant in the latter, from the sea to alt. 1200 feet.

Herba cæspitosa, magnitudine sat varians, summis montibus locisque algidis vix pollicaris, sole sub calidiore S-pollicaris ad pedalem evadit. Radix descendens, perennis, elongata, 1-2 unc. longa, valida, reliquiis copiosis foliorum vetustorum vestita, ubique fibras tenues, elongatas, fasciculatas emittens; sæpius superne pluries divisa, non raro autem simplex vel biceps. Culmi plurimi, rarius solitarii, basi præcipue et plus minusve per totam longitudinem foliosi, erecti, stricti, validi, glaberrimi, striati, superne obscure trigoni, ad apices mono-dicephali, plerumque ultra folia extensi, interdum abbreviati foliisque multoties breviores. Folia plurima, erecto-patentia, seu omnia v. infima solummodo squarroso-recurva, plantis junioribus planiuscula, demum marginibus plus minusve incurvis involuta, subcoriacea, lineari-subulata, ad apices obtusas incrassata, $3-5$ unc. longa, $\frac{1}{6}-\frac{1}{4}$ unc. lata, margine pilis elongatis, flexuosis, albidis ciliata et crinita, læte viridia, basi vaginantia, superiora abbreviata, omnia vaginantia; vagince elongatæ, erectæ, striatæ, integræ; ore obliquo, laxe lanuginoso. Spica v. potius paniculc, multiflore, ramis pedunculisque abbreviatis hinc inflorescentia capitata; capitula solitaria, terminalia, v. rarius 2, unico pedunculato, late ovata, obtusa, v. globosa, integra v. lobata, $\frac{3}{4}$ unc. longa, atrofusca, opaca, basi lanuginosa, medio 2-3-bracteata, et bractea unica v. bracteis duabus foliaceis, inferne concavis, $1-1 \frac{1}{2}$ unc. longis subtensa. Flores parvi, sub 1 lin. longi, numerosissimi, dense conferti, brevissime pedi-
cellati ; pedicelli bractcolati ; bracteolæ parve, late ovate, longe acuminate, pilosæ, concavæ, membranaceo-scariose, fimbriato-lacera, laciuis longe piliferis, ultra florem productis. Perianthii foliola 3 exteriora lanceolata, longe acuminata, versus apices lemiter recurra, concava, superne camata, coriacea, atro-fusca; interiora breviora, planiuscula, oblongo-lauceolata, acuminata, medio coriacea, rufo-brumea, marginibus late scariosis, pallidioribus. Staniua 6, periauthio $\frac{1}{3}$ breviora; filamenta elongata, linearia, compressa; autherce breviusculæ, oblongæ, ad apices brevissime unguiculata. Pollen stramineun, globosum, immaturum trigouum, lyyalinum, nucleo opaco, intus tripartito. Ovarium elliptico-ovatum, trigonm, utrinque angustatum, superne in stylum attemuatum, miloculare, triovilatum; stylus ovario brevior, erectus, gracilis, in stigmata 3 inclusa filiformia desinens. Ocula 3 , e basi loculi erecta, amatropa; funiculis brevibus. Copsula perianthio inclusa et subæquilonga, membrautcea, obovata, acuta, turgida, trigona, angulis obtusis, unilocularis, trisperma, trivalris; ralve late obovato-oblonge, acutæ, concaræ, dorso canaliculatæ, intus medio carinatæ. Semina 3, parva, oroidea, fundo loculi funiculis breribus admexa, valvis opposita; membrana exterior laxa, teuuis, hyalina, albida, latere unico ad raphem incrassata, lacera, demum decidua, reliquiis circa chalazam tantum et fumiculum persistentilus; interior albumini appressa, brumea, striata v. reticulata, ad chalazam latam apicemque pendulum atra. Albumen canosum. Embryo parvus, ovato-oblongus, teres, funiculo proximus albmmine inclusus.

This appears to be a very distinct species, most wearly allicd to the L. Alopecurus, Desw., of Tiera del Fnego and the Falkland Islands, a plant which Mr. Kimth considers as a form of L. Peruriana, Desr., and which much resembles the present in size, general appearance, and in all particulars but the segments of the perianth, which are in I. Alopecurus lacerated and fimbriated at the searions margins, like the bracteolce. It also resembles some states of L. campestris, D. C., as that plant appears in Tasmania, but the leaflets of the perianth are ncarly scarious throughont in that species, more plane and not so thick and coriaceous; the outer ones are also in this very convex and distinctly carinated above the middle.

Plate XLVIII. Fig. 1, flowers; fig. 2, outer leaflet of the perianth; fig. 3, inmer do.; fig. 4, a stamen; fig. 5, immature pollen; fig. 6, the same more adranced; fig. 7, orarium; fig. 8 , longitudinal section of the same; fiy. 9 , a ripe capsule ; fiy. 10, seed; fiy. 11, vertical section of the same:-all magnified.

NXIN. RESTIACEA, $B r$.

1. GATMARDLA, Gaud.

1. Gaimardia ciliata, Hook. fil.; dense crespitosa, foliis erectis undique arcte imbricatis lineari-subulatis obtusis teretiusculis compressis fistulosis basi vaginantibus dorso versus medium marginibusque vaginarum ciliatis, pedunculis fructiferis folio longioribus.

Hab. Lord Auckland's group; exposed places on the hills, very abindant, forming large green patches.
Radix fibrosa; fibris simplicibus, tortuosis, spongiosis, albidis. Cunles erecti, ranosi, 2-3 une. longi, dense fastigiatim compacti, foliosi. Folia plurima, erecta, cauli appressa, $\frac{1}{3}$ unc. longa, lincari-subudata, gradatim attennata, apicibus obtusis, terctia, lateraliter compressa, intus fistulosa, dorso ad medim, ciliata, basi longe raginautia, late viridia, nitida, vetustiora flavo-burmnea; vaginn folio adnatx, searioso-membranacex, hyalinæ, superne in ligulam hreven, apice rotuudatam, integram producta, marginibus dorsoque ciliatis, pilis clongatis, allidis, articulatis. Peclunculus ami preteriti elongatus, validus, crectus, folio longior.-Cæetera mihi ommino ignota.

A close examination of this species with the Gainardia anstralis (Gandichand in Freye. Voy. Bot. p. 41 s.t. 30), has satisfied me that they are, as far as I can judge without flowers or fruit, congeneric. The habit of the two plants is entirely the same, and both form extended plane hard green tufts on the bare boggy surface of the hills in their respective islands, often of two or three yards across. The present is rather the smaller species, with much smaller leares, not flattened on the upper surface, ciliated at the back about the middle, as also on the sides ant margims of the sheaths, which are produced upwards into a shorter ligula than in G. australis.
2. Gamardla pallicla, Hook. fil.; cespitosa, ramosa, ramis brevibus fastighatis compressis, foliis subdistichis equitantibus laneeolato-ensiformibns aemminatis compressis fistulosis basi ad medium vaginantibus, peduneulis brevissimis flores fæmineos $1-3$ stamenque unicum gerentibus, fructiferis folio brevioribus, ovario 1-3-loeulari, stylis 1-3.

IIab. Campbell's Island; forming small pale-coloured tufts amongst other plants in springy plaees on the hills.

Radices fibrosæ; fibre simplices, tennes, horizontaliter patentes, spongiosæ, albidx, sxpe e basibus foliorum v . ranorum orta. Canles fastigiation ramosi, $1-1 \frac{1}{2}$ une. longi, erespites densos, convexos, $2-3$ me. latos formantes, copiose foliosi; rami uma cum foliis pateutibus compressi, $\frac{1}{3}$ nne. lati et ejnsdem longitudinis. Folia arete imbincata, in ramis ultinis plurima, subdistiche inserta, flabellatim disposita, basi equitautia, deinde erecto-patentia, stricta, laneeolato-ensiformia, aemminata, vix aistata, sub, 3 lim. longa, lateraliter compressa, supra obscure concara, basi ad medium et ultra raginautia, intus fistulosa r : junioribns laxe cellulosa, glaberrima, albida, ad apiees immaturaque pallide siridia, textura mollia; vagince aperta, membranaceæ, subly̧aline, obscure reticulatæ, superne gradation in foliun eramidæ. Flores valıle immatmi tantum nihi visi, inter folia summa ommino oeclusi. Pedureulus brevissimus terninalis, fructiferns post anthesin elongatus, auni preteriti ramo lateralis, compressus, anceps, foliis brevior. Gilunere dux, flore $\frac{3}{3}$ breviores, temussime hyalinæ, oblique truncata? an a dissectione lacere? Stamen solitanium ; filamentum crassum, erectum, teres; anthera majuscula, oroidea, miloenlaris, rima longitudinali dechiseens, medio dorso affixa. Ocaria $2-3 \mathrm{v}$. rarius plura, distineta v. inter se plus minnsve coalita, sessilia? collateralia, 1-3-loendaria, stylos tot quot loculos gerentia; nume orarium solitarinm columniforme abortivim.

The early season in which we risited Compbell's Island was a subject of much regret, as some of the most interesting, especially of the alpine pliments, were deteeted only in a state unfit for satisfactory examination. It is with much hesitation that I have referred the present to Gainerdia, in preference to erecting it into anew genus from such imperteet speeimens, though I have little doubt but that it will prove to be a new form of that interesting group to which Mr. Brown's genera Destanxia (Centrolepis, Lab.) and Alppyrum belong, but which have, with the execption of Gainardia, been hitherto considered as confined to Australia. With Descaucia it has muth similarity in texture, in the soft leaves, green ouly towards the extremities, and fistulose, in the simple spongy fibrous roots and glistening appearance of the lower parts of the stem ; there is also a marked tendeney in this plant to a mion of the carpels into one pistil, with as many styles as there are oraries. In the tufted habit, alpine and antaretic loeality, short pedunele and apparent want of spatha, it agrees with Gaimardia, lmot differs from that genus in the solitary stamen, greater mumber of ovaria which are probably sessile, the latter, however, I am not inclined to consider as a character of mueh value, as in his description of that gemns M. Gaudiehaud says, "Orarium uniemm, interdum oraria duo, altero effecto," and, further, I have gathered eapsules of that speeies which are truly one-eclled and dehisce down one side only. In the present plant the ovaria vary from one to three, and are either one, two, or three-celled, frequently there are three together, with as many variations in developement, and not rarely one is reduced to a simple column ; at other times all are comhined into a single axis. In the imperfect state of these minute organs, in the only specimens I possess, I hare found it impossible to decide whether or not two of the upper leares are analogous to the glumes or spathe of Descouxia, or whether the two hyaline scales surrounding both stamen and ovaria are the only floral envelopes.
M. Gaudichand's genus appears to me certainly most nearly allied to the order Centrolepidece or Desvanxiere, and from their near aftinity to Eriocanton in all respects but the want of as many floral envelopes, of which several modifications oceur in the former group, I have considered them true species of Restiacece with a reduced mmber of parts. G. anstratis is deseribed as having the stamens opposite the ghmes; 1 have only examined that plamt in the state of ripe fruit, wherein it appears to me that the remains of the filament alternate with the glumes and earpels.

XXX. CYPERACEE, DeC.

1. OREOBOLUS, $B r$.

1. Oreobolus pectinatus, Mook. fil.; culmis dense cæspitosis ramosis foliosis, foliis distichis equitantibus lineari-subulatis apicibus obtusis rigidis basi vaginantibus, seapo brevissimo terminali unifloro post anthesin elongato, perianthiii foliolis ciliatis interioribns utrinque unidentatis. (Tab. XLIX.)

Hab. Lord Auckland's group and Campbell's Island; on the bare and exposed faces of the hills, forming dense convex masses.

Radi.t fibrosa; fibre elongata, 2-3 unc. longæ, validæ, crassitie pennæ passcrinæ, teretes, hic illie tortuosæ, subcrose v. spongiosæ, inferne fibrillose. Catles densissime cespitosi, duri, rigidi, ramosi, per totam longitudinem foliosi, plerumque 2 unc. longi sed locis ndioribus $4-6$ meiales, inferne prrecipue radices fibrosas emittentes. Folia densissime imbrieata, disticla, equitantia, basi vaginantia, flabellatim disposita, lineari-subulata, obtusa, $\frac{1}{2}-\frac{3}{4}$ me. longa, paulo emvata r. ascendentia, supra caualiculata, subtus convexa, medio obseure 1 -nervia, basin versus 5-7 nervia, rigide coriacea, crassiusenla, ad margines minute eartilaginco-serrulata, lete viridia, inferiora pallide fusca, vetnstiora suberosa, grisea ; ragine lamine $\frac{1}{3}$ longitudine, ima basi integre, simu obtnso, superne hiantes, coriacte, ad margines subscariose, nervis prominentibus 7-9 costatie, supeme oblique truncate, pallide rufo-fuseæ. Pedunculi terminales; floriferi brevissimi, post anthesin elongati ; fructiferi validi, $\frac{1}{2}-\frac{3}{3}$ unc. longi, infra medium turgidi, superne suleati, obsemre angulati, ad apicem a lapsu ghmarum cicatricosi. Glume 2 , subrequales, lineari-oblongæ, subacutæ, 2 lin. longe, coriaceæ, enerres, concaræ, albidæ, convolnte, superior inferiorem anplectens, deciduæ, Horem solitaniun inchdentes. Perianthium minimum, sexpartitum v. potius hexaphyllrm; foliola erecta, orata, acuta, planiuscula, ad margiues ciliata, subenervia, ad medium obscure incrassata, coriacea, subretienlata, persistentia, post anthesin subincrassata, pergamentacea; iuteriora minora, utrinque obtuse mi-dentata. Staminue 3, hypogyna, foliolis perianthii exterionbus opposita; fitamenta longissime linearia, medio unincria, longe exserta; anthere lineares, basifixe, longitudinaliter delniscentes; comection ultra loculos producto, apice obtuso; pollen hyalinmm, stramineum, tri-tetragonum, angulis obtusis, intus granulis opacis tot quot angulis. Ocarium minmtrm, triquetrum, elongato-obovatum, obtusum, uniloculare, umiovulatum, superme hemisplericum, hispidulum; oculum erectum. Stylus elongatns, exsertus, gracilis, teres, erectus, lasi modice bulboso-incrassatus, enm orario articulatus, deciduns, in stigmata 3 , æquilonga, filiformia, pilosa productus. Nux obovata, obtusa, perianthio persistente basi circumdata, trigona, ad angulos longitudmaliter sulcata, quasi trivalvis, yalvis coalitis, extus nitida, intus crustacca, subossea; vertex depressus suls lente gramlatus v. subhispidus. Semen crectum, loculo conforme, pyriforme, basi subito attenuatum; funiculus brevissimus. Testa membramacea, pallide viridis; clalaza apicalis, orbieularis, fusca; raphe temuis, superne latior, deorsum evanida. Albmen copiosum, camoso-farinaceum. Embryo parvis, late obeonicus, obtusus, parte superiore solummodo vix et ne vix basi albuminis immersa.

The equitant leaves will at once distinguislı this very distinct species from cither the Tasmanian O. pmailio, Br: or O. obtusangulus, Gand., which are more nearly allied to one another than to the present in appearance.
M. Gaudichaud describes four imbrieating seales or glumes in the Falkland Island species; but in this, as in the Tasmanian, there are certainly only two. The six leaflets of the perianth are most probalsly analogous to the hypogynous setæ in Scirpus, and more especially to those organs in Pterolepis, in which genus they are flattened; from their great breadth in Oreobolus they are seen to belong to two series, a character difficult of detection if it exists where those organs consist of simple slender scta. The structure of the periearp is somewhat singular, it is oborate and distinetly trigonons in all the species, the angles are chamelled and the three sides much thickened, but the thickening is not continued to the apex, where there is a shallow cavity with a convex base; in a longitudinal section the thickened sides are found to be coriaccous, and have the appearaner of three valves united at their margins and to the imer crustaceous pericarp, which they do not altogether cnclose, but leave its convex apex free at the
summit. This thickening of the three sides takes place during the growth of the seed-vessel, as in the young ovarium the sides are much narrower than the apex, which is convex and hispid, and which answers to the convex base of the hollow at the top of the ripe mut. I have examined several embryos in all the species, and very many of the present; their structure and form are exceedingly constant, lying in the very bottom of the seed, the broad upper end sunk in a shallow fossa at the base of the albmen.

Plate XLIN. Fig. 1, a leaf; fiy. 2, a flower enclosed in the ghmes; fig. 3, the same, with the ghmes removed; fig. 4, a stamen; fig. 5, ovarium, style and stigmata; fig. 6 , immature nut after the style has fallen away; fily. 7 , a mipe nut enclosed in the persistent perianth; fig. 8 , longitudinal section of a nut, showing the seed ; fig. 9 , a seed removed, ent vertically, showing the embryo :-all magnified.

2. ISOLEPIS, $B r$.

1. Isolepis Aucklandica, Mook. fil.; pusilla, dense cæspitosa, culmis erectis setaceis basi divisis foliosis terctibus polyphyllis, foliis culmo suberpuilongis semitcretibus superne canaliculatis striatis, spiea solitaria laterali, squamis pancis omnibus floriferis, staminibus stigmatibusque 3, nucibns elliptico-ovatis trigome lævibus pallide stramineis. (Tab. L.)

Mab. Lord Auckland's group and Campbell's Island; in moist places especially near the sea, also amongst grass on the hills, abundant.

Radices cespites $2-3$ unc. latos formantes, fibrose, fibris elongatis, creberrine intertextis, tortuosis, fibrillosis, atro-fuscis. Culmi plurimi, dense fastigiati; basi prassitie pemme passerinæ, subelongati, $\frac{1}{2}$ une. longi, nodosi, ad nodos fibrillosi, vaginis ruli-castaneis foliormn vetustorm obtecti, ter ruaterve divisi; superne subvalidi, nudi, erecti, $2 \frac{1}{2}-4$-unciales, teretes, striati. Folia $2-6$, plerumque $3-1$, erecta, basi vaginantia, subeoriacea, glaberrima, levia, filiformia, obtusa v. apice rotumdata, euhnm plerunque paulo superantia, interdum $\frac{1}{2}-\frac{3}{4}$ unc. lata, semiteretia, dorso convexa, supra canaliculata, narginihus sulinvolutis r . planiusenlis, sub lente hincis alternantibus viridibus atbidisque striata. Fagiuce $\frac{1}{4}$ unc. longæ, teretiusculæ, compressæ, basi rufo-castaneæ, nitidæ, nerrosæ, antice membranacex, reticulatre, ore oblique trucato, integerimo, ligula nulla. Spicula solitaria, v. rarius spiculz 2, parva, linea rix longior, latiuscula, apice truncata, nempe squamis inferioribus elongatis spieam eequantibus. Sqname pauce, $6-8$, late ovatr, valde eoneave, coriacer, ad margines late membranaceæ, in apicem crassum productæ, dorso superne subincrassatæ, carinatæ, lateribus temuiter $3-5$ nerviis, virides v . eastaneo pupureove pietæ, nitidac. Stawina 3 ; fitamenta linearia, plana, reticulata, superne latiora; anthere basifixæ, elongate, loenlis basi apiceque divaricatis. Orarium minimum, ovatum, in stylum rectum desinens. Stigmata 3, exserta, elongata, hispida. Nux squama paulo brevior, elliptica, utrinque aeuta, trigona, eompressa, angulis abtusis, glaberrima, levis, non polita, patlide flara v . straminea.

It is not before the most carcful examination and comparison of this with many other similar species from various parts of the world, that I have decided upon deseribing it as new. Nor conld I make it agree with the description of any of the numerous species of the southern hemisphere. It appears not ondy to differ from the European, but also from the twelve or fourteen plants belonging to this gems now known to inhabit Anstralia and New Zealand. In habit and appearance it resembles I. setacea, L. and I. Sacii, from which it diflers in the leaves being always more nmerons and as long or longer than the eulm, in the shorter spikes, and more materially in the seed, which is twice as large as in those species and of quite a different shape, being elliptical-ovate, compressed, trigonous with the angles rounded, the surface is snooth but not shining and the colom pale ycllow. Ny suite of specinens is very extensive, and these characters are constant in them all. The breadth of the leaves is greater in the uphand specimens than in those of the sea-coast.

Plate L. Fig. 1, apex of the culm and spikelet; fig. 2, a seale and flower; fiy. 3, a stamen; fiy. 4 and fig. 5, ripe achæmia :-all maynified.

3. CaREX, Mieh.

1. Carex ternaria, Forst.; spicis $9-10$ cylindraccis acutis pedunculatis altermis evagmatis ferrugineis longissime foliaceo-bracteatis simplicibus geminatisque, masculis 3-4 remotiusculis, fœmineis 5-6 geminatis unica solum simplici, stigmatibus : perigynuis (peralolescentibus) oblougis ore integro squama lanceolata acuta v. obtusa ferruginea longe hispido-aristata multoties brevioribus. Boott, MSS. C. ternaria, Sol. MSS., Forst. Prodr. no. 549. C. geminata, Schkukr, Carie. p. S3. no.54. Tab. IF. \&. P. p. A. Cumu. Prodr. Flor. Nov. Zel. in Hook. Comp. to Bot. May. v. 2. p. 373.

Hab. Lord Auckland's group; on the margins of woods near the sea, but not common, growing with the C. trifida.

Culmus bipedalis et ultra, basi foliorum rudimentis purpureis lanceolatis, ad margines lacerato-reticulatis tectus, firmus, apice gracilis, triqueter, scaber ; pars spicas gerens pedalis. Folia $3-4$ lin. lata, culmo longiora, carina marginibusfue scabra. Bractece foliaceæ, longissimæ, evaginatæ, superiores setaceæ, spicis suis (nisi 2 supremis masculis) longiores. Spice $2-2 \frac{1}{2}$ poll. longæ, $1 \frac{1}{2}-2$ lin. latæ, alteruæ; supremæ $3-4$ masculæ, simplices; reliqux fominere, 2 superiores geminate, inferior simplex; rel infima superioresque geminate, ma media simplex. Peduncerli triquetri, scabri, l-2 poll. longi. Squame ferrngineæ, obtusæ r. acutæ, nerro viridi in aristam plus minus longam serratam producto. Perigynium immaturum.-Boott.

For the above description I am indebted to Dr. Boott, who has most kindly given me the aid of his great skill and experience in determining such species of this fine genus as were collected during the royage. With his sanction I have retained Banks and Solander's manuscript name of this plant, as adopted by Forster in his Prodromus, and which was changed by Schkulur into geminata, certanly without sufficient authority, and of which he says, "Cette plante me parvint sons le nom de C. termaria, mais ne trouvant ricn en elle qui ait quelque rapport avec ce nom, je me suis cru fondé a douter que ce soit la plante que Forster indique," \$ce. M. Schkulu's specimens seem to have been in a very imperfect state, but given him from Forster's herbarimn. Our own entirely agree with those preserved in the British Museum. It appears to be rather a common plant in many parts of New Zealand.
2. Carex trifilu, Cav.; spicis 6-10 oblongo-cylindraceis obtnsis alternis breniter raginatis ferrugineis longissime foliaceo-bracteatis solitariis, masculis 2-4 sessilibus approximatis, fomineis 5-6 breviter pedunculatis, stigmatibus 3 , squamis lineari-oblongis integris v . apice trifidis segmento intermedio in aristam subulatam hispidam producto, perigyniis pedicellatis obovato-oblongis longe rostratis, rostro bidentato. C. trifida, Caranilles Teones, vol. v. p. 41. t. 465. Brong. Toy. de la Coquille, Bot. Phan. p. 155. Willd. Sp. Pl. v. 4. 13. 301. Spr. Syst. Feg. v. 3. p. S29. C. incrassata, Bankis and Sol. MSS. in Bibl. Banks. C. aristata, D'Lre. Fl. Ins. Mal. in Trans. Linn. Soe. Paris, vol. iv. p. 599. Gaud. in Freye. Toy. Bot. p. 131.

Hab. Lord Auckland's group and Campbell's Island; by the margins of the woods near the sea in moist places.

Rhizonuta densissime congesta et intertexta, cæspites convexos, supra terram elatos, I-2 pedales diametr. formantia, crassitudine pollicis lumanæ, iuclinata v. prostrata, fusca, fibras crassas, diametr. pemre anatinæ demittentia, et in fibras subsimiles desinentia. Culmi $15-30 \mathrm{v}$. plures, fasciculati, erecti, $2-4$ pedales, copiosissime foliosi, glaberrimi, basi crassi, una cum vaginis foliorum $\frac{3}{4}-1$ unc. diametr., triquetri, reliquiis pallidis vaginisque scariosis sape laceris foliorum vetustorum obtecti, superne graciles, inclinati, pars spicas gerens $1-1 \frac{1}{2}$ pedalis. Folia plurima, circiter 12-20 quoris culmo, longe vaginantia, valdè elongata, culnum longe superantia, $3-5$ pedalia, diffusa, flexuosa, supra medinm curvata et pendula, gradatim in apicem trigonum filiformem hispidum producta, profunde striata, rigila, læte tiridia, subtus pallidiora, subglaucescentia, ad costam subtus prominentem marginesque recuras scabrido-ciliata, inferne carmata, superne medio per totam longitudinem canaliculata. I'eryine foliorum inferiorun

2-4 pollicares, superiorum pedales, trigonæ r. compressæ, dorso coriaceæ, carinatæ, rigidæ, nervosæ, profunde striatæ, antice scariosæ, lỵalinæ, albidæ; ore integro, abrupto, margine undulato; ligula angusta, comica, integerrima. Bractere foliaceæ, folia superiora omnino simulantes sed minores, spicis multoties longiores, vaginis abbreviatis. Spice 2-4-unciales, 3-5 lin. latæ, late cylindraceæ v. elongato-ovatæ v. oblongæ, obtusæ r. subacutæ, basi sæpius attenuatæ, aristis elongatis squamarum quasi crinitæ, inferiores rarius bifidæ, r. spicula abbreriata subtensæ; masculæ supremæ, 2-4, approximatæ, cæteris breriores, medio sæpius turgidæ, breviter pedicellatæ r. subsessiles, basi brevissime vaginatæ; bractea abbreviata, spica brevior, torta; fominece longiores, longius pedicellatæ, fructiferæ squarrosæ. Pedunculi breviter exserti, sub $\frac{1}{2}$ unciales, trigoni, striati, scaberuli, sæpe apices versus flexuosi. Squame scariosæ, forma variæ, lineari- v. oblongo-lanceolatæ, 3-4 lin. longæ, planiusculæ, erectæ, floriferæ appressæ, fructiferæ squarroso-subrecurvæ," omnes striatæ, castaneo-brumneæ, nitidæ, linea pallida medio notatæ, ad apices integræ, in aristam æquilongam vel ter longiorem productæ, vel sæpius trifidæ, segmento intermedio elougato aristæformi; arista straminea, erecta, flexuosa, hispida, interdum $\frac{1}{3}$ unc. longa. Stamina 3 ; antherce lineares, stramineæ, 2-3 lin. longæ. Perigynium immaturum elliptico-ovatum, utrinque attenuatum, pedicellatum, squama $\frac{1}{3}$ brevius, valde compressum, dorso convexum, ore bifido: stylus 1 , una cum stigmatibus 3 perigynio æquilongus. Fructus (exemplaribus Americanis tantum mihi visus), majusculus, squamæ subæquilongus, elongato-obovatus v. oborato-oblongus, turgidus, sublonge pedicellatus, obscure trigonus, superne rostratus, ad apicem bidentatus, fulrus, nitidus. Acheniun parvum, perigrnio duplo brerius, oborato-ellipticum, utrinque acutum, glaberrimum, angulis acutis, luride fuscum. Pericarpium crustaceum. Enbryo basi albuminis totus inclusus.

This is a very handsome species, discorered by Sir Josepk Banks and Dr. Solander in New Zealand, though first described from Falkland Island specimens by Cavanilles. In Antarctic America it is more abundant, and attains a larger size than it does in Lord Auckland's group, but I can detect no further difference between them ; Dr. Boott also considers them entirely the same. In Cavanilles' figure the scales are represented as shortcr and more abruptly truncated than they are in most of my specimens; they, however, wary so much in form that little dependence can be placed upon that character. M. D'Urville, in his Flor. Ins. Mal. l. c., describes this species under the name of C. aristata and says of it, "forsan eadem species ac C. trifida, Cav.? verum in nostra nunquam squamam trifidam vidi." Cavanilles' character, however, "gluma apice trifida, laciniis lateratibus latioribns, media breviore ex qua arista prodit subulata," Sc., seems to me sufficiently to accord with this and M. D'Urville's plant, whilst his characteristic figure leaves no doubt of their identity, or at least of the latter being a variety with all the scales short, in our plant it is only on the lower part of the spikes that they are so broad. The embryo appears to me wholly included in the base of the albumen.
3. Carex appressa, Br.; spica decomposita androgyna subelongata, partialibus appressis inferioribus distinctis, spiculis parvis ovatis acutis apice masculis, bracteis subulatis spicula brevioribus elongatisve, squamis ovatis acntis concavis, perig? niis late ovato-rotundatis infra orem minute bidentatum attematis utrinque nervosis marginibus supra medium denticulatis, stigmatibus 3. C. appressa, Brown, Prodr. p. 242.

Hab. Lord Auckland's group and Campbell's Islands ; in the woods especially near the sea, forming large harsh tufts.

Rhizomata intertexta, dense fasciculata, cæspites 5-6 uncias latos formantia, repentia, crassiuscula, diametr. pennæ corvinæ, hic illic fibrosa, ad collum reliquiis foliorum retustorum obtecta. Culmi erecti, exteriores inchinati, ascendentes, basi una cun vaginis foliorum crassit. digiti minoris, pedales et infra, superne nudi, pallo inclinati, scaberuli, sulcati, rigidi, triquetri, ad angulos scabridi; pars spicas gerens $3-5$-uncialis, stricta. Folie plurima, S-10 quoris culmo, basi raginantia, flexuosa, rigida, dura, $2-3$ pedalia, $\frac{1}{2}$ unc. lata, in apicem elongatum, trigonum, scabridum prodncta, medio canaliculata, subtus precipue profunde striata, acute carinata, carina marginibusque lente recurvis denticulato-ciliatis, pallide niridia, subnitida, subtns pallidiora. Fagince 1-2-unciales, obtuse trigonæ, compressæ, profunde striatæ, coriaceæ, antice scariosæ, integræ; ore integerrimo, truicato; ligula angusta,
scariosa, horizontalis, vix lineam longa. Inforescentia subpaniculata, e spicis plurimis compositis formata, in paniculam linearem, elongatam, coarctatam, $\frac{1}{4}$ unc. latam, interruptam disposita. Spicce partiales muticæ, $\frac{1}{4}-\frac{3}{4}$ unc. longæ, breviter pcdicellatæ, rachi appressæ, lineari-oblongæ, compressæ, spiculas $5-10$ gerentes, basi nudæ v. bracteatæ, eraginate. Bractea dum adsit spica partiali brevior v. æquilouga, subulata, hispida, basi latior, semiamplexicaulis, scariosa, interdum ad squaman elongatam, aristatam, vacuam redacta. Spicella parææ, ovatæ v. oblongæ, obtusæ, cyliudraceer v. paudo compressæ, audrogynæ, squamis supcrioribus masculis. Squame appressæ, fructifere squarrosopatentes, late ovatæ, subacutæ v . obtusæ, valde concaræ, scariosæ, medio coriaceæ, dorso obscure carinatæ, carina plerumque superne ciliata, $\mathbf{1} \frac{1}{2}$ lin. longæ, pallide flavo-brumeæ, nitidæ, medio linea straminea notatæ. Staminue 3 ; antherce lineares, parræ. Perigynium immaturum brevitcr pedicellatuu, elliptico-oblongum, utrinque attenuatum, valde compressum, nervosum, ad nargines supra medium argute denticnlatum, dorso convexiusculum, nervo utrinque minute scabrido. Ovarium parvum, obovatum, ad apicem profunde emarginatum. Stylus vix exsertus, in stigmata 3 desiuens. Fructus squamam paudo superans, nervis plurimis costatus, late orbicularis v. ampullaceus, basi subcordatus, breviter pedicellatus, superne in rostrom subelongatum apice bidentatum attenuatus, antice planus v. concarus, dorso convexus v. turgidus, pallide fuscus v. atro-fuscus, subnitidus, achænio appressus, marginibus supra medium ntrinque serratis. Achenium late elliptico-ovatum, utrinque attenuatum, subiuduratuu.

A frequent inhabitant of the woods in some parts of Tasmania, New Holland, and New Zealand; of a rigid harsh texture, cutting the hand when incautiously grasped.

4. UNCINLA, Pers.

1. Uncinla Hookeri, Boott; spica ferruginea laxiflora tenui cylindracea apice mascula, stigmatibus 3, perigyniis (arista pallida duplo brevioribus) lancolatis ore integro loevibus nervosis alternatim contiguis squama lanceolata acuminata acnta ferruginea nervo viridi infra apicem evanescente brevioribus.-Boott, MSS. (TAB. LI.)

Hab. Lord Auckland's group and Campbell's Island; grassy places in the woods, also on the rocks at the tops of the hills.

Radiu stolonifcra. Culmus 6 -pollicaris (ami prioris marcidus pedalis), filiformis, læris, basi foliatus vaginisque ferrugineis striatis tectus. Folia plana, $\frac{1}{2}-1$ lin. lata, culmo subduplo longiora, carinata, apice triquetra, scabra; in exemplaribus minoritus vix tripollicaribus, locis siccis natis folia rigida curvata. Spica 17 lin. longa, $1 \frac{1}{2}$ lin. lata, ferruginea, laxiflora, e floribus laxis, alteruatim contiguis, pars tertia suprema mascula, nuda v. rarius setaceo-bracteata. Squame omnes conformes, lanceolatæ, elongatæ, acuminatæ, acutæ, nervo viridi, infra apicem albo-hyalinum cvanescentc, perigyniis (floriferis) paululum longiores. Perigynium (floriferum) $2 \frac{1}{2}$ lin. longum (cum arista et stipite $4 \frac{1}{2}$ lin. longum) $\frac{1}{2}$ lin. latum, lanceolatum, utrinque attematum, pallidum, nervosum, ore integro, stipitatum. Achanium inmaturum. Stigmata 3 , longe plumosa, ferruginea.-Boott.

Plate LI. Fig. 1, a male flower aud scale; fig. 2, pollen; fig. 3, a female flower and scale; fiy. 4, the same removed from the scale with the perianth laid open; fig. 5, ovarium, style and stigmata; fig. 6, arista:-all magnified.

NXXI. GRAMINEE, Juss.

Tribe ATENACEE, Kunth.

1. HIEROCHLOE, Gmel.

1. Hieroculoe redolens, Br.; pancula effusa subnutante, glumarum valvis flosculis subæquilongis iuteriore trinervi nervis 2 lateralibus ad medium attingentibus, flosculis masculis 5 -11erviis pubesceutibus
basi sub barbatis infra apices truncatas aristatis marginibus longe dorsoque ciliatis, hermaphrodito obtuso apice mucronato r. subaristato, foliis planis glabriusculis, ligulis late ovatis obtusis. H. redolens, Brocn, Prodr. p. 209 (in observat.). Kunth Agrost. p. 37 (in part.). H. Banksiana, Endl. Bemerkungen üler die Flona der Südseeinseln, p. 156. no. 549. Holeus redolens, Sol. MSS. et Forst. Prods. no. 563. non Tehl. Torresia redolens, Roem. et Schultes, vol. ii. p. 516. A. Cumn. Prodr. Flor. Nor. Zel. in Hook. Comp. Bot. JLag. vol. ii. p. 372.

Hab. Campbell's Island; in marshy places near the sea; rare, not observed in Lord Auckland's group.
Gramen perenne, plerumqne elatum tri-quadripedale, in Insula Campbell vix bipedale, cexspitosum, odore suavi. Radices fasciculate, intertextæ, fibrosæ ; fibris elongatis, $1-2$-uncialibus, crassiusculis, crassitie penmæ passerine, descendentibus, duris, albidis, hic illic fibrillosis. Culani basi plus minusve elongati, inclinati v. prostrati, diametr. pennæ corvinæ et ultra, rarius divisi, nodosi, eylindracei, ad nodos fibrillosi, superne vaginis seariosis obtecti, internodiis sub $\frac{1}{2}$ uncialibus, superne ascendentes, rarius crecti, basi compressi, foliosi, una cum foliis $\frac{1}{4}$ unc. diametr., profunde striati, læeres, nitidi, pallide vindes, siceitate flavi, remote nodosi, ad nodos sulgeniculati, nodis constrictis, fusco-brunneis, opacis, internodiis $\frac{1}{2}-2$-uncialibus, superioribus $5-8$ unc. longis. Folia plưmua, culmo subequilouga, basi longe raginautia, infima stricta, abbreviata, superiora elongata, $1-2$ pecalia, sub $\frac{1}{3}$ unc. lata, erectopatentia, demum flexuosa, plana, superne involuta, lierbacea, v . subeoriacea, profuide striata, superue glaberrima, lerria r. sulb lente minutissime scalerula, nitida, lete viridia, sultus glaucescentia scabrinscula. Vagina 3-7 unc. longe, compressæ, ad basin fissæ, profunde striate, glaberrime, nitidæ, virides, rubro-purpureo pictæ, ad margines scariose, inferiores latiores, hiantes, busi purpurascentes, vernicose; ligula late orata, obtusa, scariosa, integra v. lacera. Penicula gracilis, elongata, inclinata \mathbf{v}. nutans, cffissa, $6-10$ unc. longa, sub 2 unc. lata, pallide flavo-fusca, nitida; rachi striata, glaberrima; ramis clongatis, gracillimis, angulatis, hic illic parce pilosis, inferioribus 2-4 unc. longis, nutantibns. Spicule pedicellate, pelicellis spicula $\frac{2}{3}$ brevioribus, pilosis. Gluma bivalvis, uembranaceoscariosa, glaberrina, nitida; ralece subæquales flosenlis paulo longores v. æquilongr, 2-3 lin. longæ, acuminatæ, nervo medio tenui, dorso subdenticulato ; inferior uninervis v. rarissime basi nervis duobus lateralibus brevissiuuis; syprrior trinervis, nervis lateralibus medium vix attingentibus, inconspicuis, viridibus. Flosculus iuferior subsessilis, intermedins termiualisque pedicellati. Flosculi laterales.- Palea inferior ovato-oblonga, superne subtrumcata, cmarginata r. bifida, dorso aristata, quinquenervis, r . iniequilateralis et sexnervis, ad nerros angulata, inferne ciliato-subbarbata, superne pubescens v . pilosa, dorso brevissime ad marginesque longe sericeo-ciliata, cilizis margimm reetis r . paulo curvatis; arista erecta, infra apicem inserta, gluma breviore, scabrida: Palea superior inferiore paulo brevior, lineari-oblouga, bifida, bicarinata, carinis extus ciliatis. Stamina 3 ; flamentis breviusculis; antheris elongatis, stramineis. Flosculus termisalis v . intermedics lateralibus $\frac{1}{3}$ minor. Palea inferior ut in flosedis lateralibus sed plerumque glaberrima, apice tantum pulberula et dorso versus apicem ciliata; arista lirevi, infra apicem inserta, hispida. Palea superior lineari-oblonga, concara, apice truncata, medio uninerris, v. rarius nerris duobus, apice extus nerroque dorso pubescentibus. Squamule 2 , ovato-lanceolate, acuminate. Stomina 2 ; fitumentis brevibus; untheris parris. Ovarium oblongo-lanceolatum, utrinque attemuatum. Styli basi contigui, palea bis longiores. Curyopsis parva, cylindracea.

The ibove described plant is very nearly allied both to the IFierochloe antarctica, Br., and to the II. Magellanich, l'al. de Beaur., if indeed these three be truly distinct. When describing the first of them, Mrr. Brown remarks, "huic quam maxine affinis est Holcus redolens, Forst :" and he draws the chief distinction from the inner glume of the latter being three-nerved and the cilix on the margin of its lower florets being curved. In the Tasmanian specimens of II. antarctica, which I have examined, I find that the upper glume is often furnished with two short lateral nerres at the base, and in the New Zealand specics (II. redolenss) the cilix alluded to are as often straight as curred. Perlhaps a more constant character between the plants of these two coumtries exists in the surface of the leares of the II. anturctica being decidedly seabrid, not only to the touch but under a moderate magnifying power, its florets also are not so abruptly trumeated; I have not been able to detect any other points of dillerence. The South

American plant again, which is the Holcus redolens, Vahl, (not of Forstcr), is considered by A. Brongmart as a variety (redolens) of the Hierochloe antarctica, Br. (Yoy. de la Coquille, Bot. Plan. p. 144. t. 23.), and he quotes Raspail (Amn. Sc. Obs. vol. ï. p. 83.) in confirmation of his views ; it certainly differs but slightly from the plant of the Old World, and chiefly in the longer ciliæ at the back of the lower florets, in having the glumes three-nerved, the panicle more contracted, and rather larger glumes. The leaves are generally quite smooth and glossy, the under surface only obscurcly scabrid.

Besides the above mentioned species there are four more very distinct ones in the Southern Hemisphere, (as well as three natives of the Cape of Good Hope); one, the II. Brunonis, mihi (vid. infra), from Lord Auckland's group; another, the H. utriculata, Kunth, a native of Chili ; and two hitherto undescribed species. The first of these is from Australia, H. rariflora, mihi*, and was discovered by Mr. Baxter in King Gcorge's Somd; it may readily be distingrished by its slender culms, branching upwards, and its narrow scabrid leaves, loose few-flowered panicle and small locustæ. The other, H. Fraseri, MS., will be described in the Flora of Tasmania; it is the smallest of any of the southern species, and has a more coarctate panicle of small locustr, rescmbling that of II. australis, R. and S.; the florets themselves are marked with purple as in H. pauciflora, Br., the glumes are large, broad and three-nerved, the lower palea silky, acute, with a short awn, the leaves are mnch shorter than the culm.

Mr. Brown's remarks upon the structure of the florets of this genus, in the 'Plantre rariores Jawamere' are very important (vid. fasc. 1. p. 8. sub genere Ataxia), especially regarding the nature of the upper palea of the middle flower. I have described that organ as sometimes two-nerred in H. redolens, which is a strong argument in favour of that author's assumption that "the median nerve is here fommed of two confluent cords," and hence that the real nature of the upper palea is the same as in other genera of grasses. Where I observed two nerves to exist, both were rather faint, but distinctly scabrid on the back. The frequently emarginate or bifid apex of this palea in the other species of the genus, where I have not seen a double nerve, is also worthy of remark.

The Ihierochloe redolens is a scarce plant in Campbell's Island and of stunted growth; it was not observed in Lord Auckland's group.
2. Herochloe Brunonis, Hook, fil.; panicula ovata subeffusa mutante, glumarum valvis æqualibus flosculis longioribus lanceolatis acuminatis basi trinerviis nervis lateratibus brevibus, flosculis masculis 5 -nerviis pubescentibus basi pilosis superne bifidis inter segmenta acuta aristatis dorso scabridis marginibus breviter ciliatis, hermaphrodito apicem versus integrum breviter aristatum piloso, foliis involutis glaberrimis, ligulis late ovatis scariosis. (Tab. LII.)

Hab. Lord Aucklaud's group and Campbell's Island ; in the former islands growing towards the tops of the mountains, alt. $1000-1400 \mathrm{ft}$. ; abundant near the sea in the latter.

Gramen pulchrum, snaviter odorum, $1-1 \frac{1}{2}$ pedale. Radix fibrosa, fibris tenubus, elongatis, fibrillosis. Culmi parce cæspitosi, basi inclinati, lignosi, crassitie pemmæ corvinæ, rcliquiis pallidis fibrosis foliorum vetustorum obsiti, ad collum seepe bis terve divisi et surculos nodosos ad nodos radicantes emittentes, superne erecti, graciles, curvati, foliosi, striati, mna cum vagins fohorum $\frac{1}{3}$ unc. diametr., remote nodosi, nodis constrictis, flavo-fuscis. Folia subdistiche inserta, suberceta, stricta v. paulo curvata, $\frac{3}{4}-1$ ped. longa, longe lineari-subulata, gradatim attemata, imo apice acuta, involuta, subcoriacea, extus levia v. obscure striata, glaberrima, nitida, straminea, intus profunde striata, opaca, sub lente scaberula, pallide viridia. Vagince erectæ, subcompressæ, culmo appressæ, latiusculæ, usque ad

[^7]Hab. Australia. King George's Sound, Baxter.
basin fissæ, folionum inferiorum $1-1 \frac{1}{2}$ unc. longæ, coriacer, sulcatæ, politæ, nitidæ, pallide stramineæ; foliorum superiorum elongate, tcretes, profunde striatæ, ad collum subincrassatæ; ligula scariosa, late ovata, obtusa, fimbriatolacera. Panicuta mutans, ramosa, $4-5 \mathrm{mc}$. longa, ovato-lanceolata, $1 \frac{1}{2}$ me. lata, multiflora; rachi gracili, curvato, tereti, læri; ramis lic illic subverticillatis, gracillimis, flexuosis, inferioribus uncialibus, subercetis. Spiculce obo-vato-oblongæ, $\frac{1}{3}$ unc. longæ, pedicellatr, pedicello sparse piloso. Gluma bivalvis; valvæ requales, scarioso-membranaceæ, flosculis $\frac{1}{3}$ longiores, lanccolatæ, longe acuminatæ, dorso convexæ, glaberrimæ, micantes, marginibus versus apices sepe laceris, nervo medio tenmi, vix scaberulo, duobus lateralibus infra medium evanidis, viridibus. Flosculi straminei, fusco-pmpureo picti, breviter pedicellati, pedicello mudo v. obscure ciliato. Florvm maseclorem palea inferior late ovato-oblonga, concava, quinquenervis, subsericea, apicem versus pilosa, superne bifida, inter segmenta acuta aristata, dorso sub arista ciliata, basin versus fere nuda, ad marginem pilis subcurvatis breviusculis ciliata; arista scabrida, recta v. subtorta, ultra glumas vix producta : palea superior infcriori subæquilonga, oblonga, apice bifida, binervis, bicarinata, carims ciliatis. Stamina 3 ; filamentis elongatis; antheris exsertis, stramineis. Floseull hermaphroditi patea inferior ut in fl. masc. sed glabrior, superne tantummodo pilosa, ad apicem subacuta, in aristam brevem setiformem producta, dorso superne ciliata, marginibus undis : palea superior lineari-oblonga, concava, infra apicem cmarginatum subpubescens, nervo medio temui extus scabcrulo. Squamula 2, ovatæ, acuminatæ. Slamina 2; antheris uinoribus quam in fl. masc. Ocariun ellipticum, utrinque attenuatum. Styli 2, basi approximati; stigmatibus plumosis. Caryopsis non visa.

This is a handsome and very distinct plant, with more the habit of growth of the European species than of the larger and more leafy H. redolens or antarctica. It is very abmendant in some parts of the islands now under consideration, always growing in exposed situations, where its graceful habit and nodding panicles are a great omament to the dreary regions it inhabits.

Plate LII. Fig. 1, spikelet; fig. 2, florets removed from the same; fig. 3, a male floret; fig. 4, a hermaphrodite floret; fiy. 5, upper palea from the same; fig. 6, squamula; fig. 7, ovarium, styles and stigmata from the same:all magnified.

Tibe AGROSTIDEE, Kimth.

2. AGROSTIS, L.

§. I. Floris superioris rudimenta mulla.

1. Agrostis leptostuchys, Hook. fil.; panicula gracillinua effiusa pauciflora, ramis clongatis versus apices floriferis, glumarum valvis requilongis lineari-laneeolatis marginibus superne carinisque ciliatis flosculum sessile longe superantibus, palca inferiore late ovata basi nuda apice truncata quadrifida dorso pilosa infra medium aristata, arista glumas superante, palea supcriore nulla (an minima?), setula mulla.

Hab. Camplocll's Island; growing amongst tufts of other plants near the sea, scarce.
Radix. fibrosa. Culmi graciles, crecti, foliosi, 6-8 ume. longi. Folia longe vaginantia, erecto-patentia, 5-7 unc. longa, planiuscula, demum involuta, anguste linearia, l-2 lin. lata, striata, sub lente scabriuscula, luride viridia, opaca. V Tagince 2-3 unc. longæ, cylindraceæ, diametr. pemæ corvinæ, usque ad basin fissæ, profunde striatæ, scabriusculx, pallide virides v. stramincre, ore contracto; ligula elongato-oblonga, trumeata, scariosa, laccra. Panicula effusa, sub 3 unc. longa, parce ramosa; rachi ramisque capillaribus, sub lente scabridis. Spiculce pedicellatæ, pedicello ghuma sub $\frac{1}{2}$ breviore, superne incrassato, suleato. Chumarum valvæ $\frac{1}{4}$ unc. longa, flosculum inchsum subduplo longiores et ultra, lineari-lanceolate, dorso acute carinate, carina argute ciliato-denticulata, viridi. Fosculus lorevissime pedicellatns, pedicello glaberrimo. Palea late ovato-oblonga, sparse pilosa, apice truncata, 4-dentata, quinquencris ncrvo medio infra medium in aristam desimente; arista glumam subxquante, gracili, scabrida, basi curvatar. geniculata.

Of this grass I have only seen immature specimens, with the pancle, however, fully formed; it is very distinet from any species with which I am acquainted, certainly wanting the rudimentary setula of the second flower, and, as far as I can observe, the upper palea also. Its labit and general appearance are decidedly those of A. Billardieri, Br. and A. cmula, Br., plants which have been removed not only from this genus, but into a separate division of the Natural Order (Arundinacece) as it is now divided. These, with several other Australian and New Zealand species appear to form a very natural group, thongh they vary in the presence or absence of the upper palea, of the setula, of the awn, and of a bearded pedicel to the flower; neither the genus Lachnagrostis (founded by Trinius) as defined by Nees (Act. Acad. Cæs. Leop., \&e., vol. xix. Suppl. p. 146), nor Deyeuria, Clar., as adopted ly Kumth (Agrost., p. 239.), will include these species. Under whatever gems they may rank, their affinity appears to me to be near Agrostis, L. and not with Calamagrostis, Adans. and Armudo, L.
2. Agrostis multicautis, Hook. fil.; panicula contracta bineari-oblonga, glumarmun valvis requilongis obscure pilosis dorso denticulatis floseulo sessili glaberrimo bis longioribns, palea inferiore late ovata apice truncata quadrifida quinquenervi nervo dorsali ad medium in aristam elongatam producta, superiore $\frac{1}{3}$ brcviore ovata obtusa, setula nulla, foliis substrietis lineari-subulatis, culmis basi pluries divisis.

Hab. Campbell's Island; on the sloping faces of the hills in the most exposed parts of the island, not common.

Redix fibrosa. Culmi fascieulati, 5-7 me. longi, validi, basi horizontales v. subrepentes, nodosi, ad nodos fibrosi, sæpe geniculati, erassitie pemne anatine, ramosi, superue ereeti, simplices, remote nodosi, foliosi. Folia plurima, longius vaginantia, 2-3 me. longa, lineari-lanceolata v . subulata, eoncara, supene involuta, striata, utrinque seabrida, luride rinidia, opaea. Tayine elongatæ, 1-2 une. longæ, ad basin fisse, utrinque contracte, foliorum supremorum medio turgidæ, suleatæ, pallide virides, ore contraeto ; ligula ovato-oblonga, seariosa, apice truneata, lacera. Panicula coaretata, sub $1 \frac{1}{2}$ mic. longa, lineari-oblonga; rachi ramisque validis, scabridis. Spiculte pedicellatæ; pedicello breviusculo, infra florem incrassato. Glumarren ralve 2 lin. longæ, lanceolate, acuminatr, obscure scabriusenlæ, dorso ciliato-dentate, marginibus superne subdenticulatis. Flosculus sessilis, basi mudus. Palea inferior gluma $\frac{1}{2}$ brevior, glaberrima, kite ovata, coneava, superne trmeata, quadridentata, dentibus erosis, quinquenervis, nervo dorsali ad medium in aristam tenuem seabridam glumas superantem producta ; palea superior inferiore $\frac{2}{3}$ brevior, oblonga v . ovato-oblonga, apice rotundata. Stamina 3 ; filamentis brevibus; anlheris late oblongis, stramineis. Caryopsis lineari-oblonga, utrinque attenuata.

This is not anl uncommon grass at the bases of preeipices and on the exposed slopes of the island. It is remarkable for being nearly allied to a species bronglit by Dr. Jameson from the extreme rerge of vegetation on Piehincha in Colombia, the A. foliata *, mihi ; that species is, however, more leafy and its whole culm is enclosed in the sheathing vagine.
3. Agrostis subuluta, Hook. fil.; parva, cespitosa, panienla erecta pauciflora, glumarm valvis ovatolauceolatis parce pilosis, dorso margimibusque supra medium scabrido-ciliatis floseulo glaberrimo subsessili

[^8]duplo longioribus, palea inferiore late obovato-oblonga superne truncata 4-5-dentata quinquenervi nervo medio apicem attingente v . supra medium in aristam muticam producto, inferiore minima squamæformi (an mulla ?), folius plurimis glaberrimis setaceo-filiformibus culmo brevioribus. (Tab. LIII.)

Hab. Campbell's Island; on elevated and exposed rocks at the lighest summits of the mountains. $_{\text {a }}$
Radix fibrosa. Culni cespitosi, basi interdum inclinati, stricti v. curvati, sæpius divisi, 1-2 unc. longi, bis terve nodosi, copiose foliosi, una cum foliis 3 lin. lati, supenve nudi, stricti, folia $\frac{1}{2}$ superantes, teretes, leves, nitidi, nodis incrassatis. Folia plurima, basi vaginantia, strieta, curvata v. superne subrecurva, lineari-setacea, involuta, rigida, profunde striata, vix $1-1 \frac{1}{2}$ uncialia, sub leute setis minimis ascendentibus scaberula, lrete viridia. Fagine latiuscule, apertæ, laminæ æquilouge, his latiores, basi submembranacex, suleatæ, ad orem gradatim angustatæ ; ligula scariosa, late ovata, obtusa, apiee sæpius lacera. Panicula sub $\frac{2}{3}$ unc. longa, contracta, 2 lin. lata, pauci-snb 12 -flora ; rachi ramisque erectis, scabridis. Spicule majusculx, brevissime pedieellatæ; pedicello valido, scaberulo. Glumarum valce inequales, superior major, $1 \frac{1}{2}$ lin. longa, utreque lanceolatæ, acuta, marginibus superne ciliatis, earina scabido-dentata. Palea inferior membranacea, glaberrima, late oblonga, superne abrupte trincata, irregulariter crosa v. subquadridcutata, nervo medio interdum ad medium in aristam tenuem desinente, mun ad apicem producto v . infra apieem evanido: palea superior minima, lyalina, encrris, apice truneata v . rotundata, floseulis nomullis milhi non risa. Squamula late cultriformes. Stamina 3 ; flamentis brevibus; antheris late oblongis, stramineis. Ocarium late elliptico-ovatum ; stylis breviusculis; stigmatibus plumosis. Caryopsis perianthio inclusus sed eo noss adherens, ovato-oblonga, teres, palcæ æquilonga.

A small tufted grass, nestling in the crevices of rocks in the most elcrated places, highly claractenstie of the rigorous climate it inhabits. In general appearanee it resembles one or two of the Antaretic Anerican species, but is quite distinet from them and from any other with which I am acquainted. The upper palea, if ever really present, is extremely small, what I have taken for it may have been a portion of the lacerated base of the lower; in parts of such extreme minutencss and of so membranons and hyatine a texture, it is very difficult to ascertain clearly the true position and form of this organ and of the squamule.

Plate LIII. Fig.1, a spikelet ; fig. 2, front, and fig. 3, baek vicw of floret ; fig. 4 , squamula, stamens and orarium ; fig. ŏ, ripe caryopsis :-all magnified.

§. II. Palea superiore basi setula aucta.

4. Agrostis Aucklandica, Hook. fil. ; panicula contracta, glumarum valvis subæquilongis dorso ciliatis flosculo breviter pelicellato duplo longioribus, palea inferiore subsericea basi barbata apice bifida quinquenervi, nervo medio in aristam validam geniculatam producto, palea superiore paulo breviore apice bifida bicarinata carinis ciliatis basi setula longe plumoso-ciliata aucta, fobis radicalibus erecto-patentibus strictis.

Hab. Lord Auckland's group; rocky places on the very tops of the hills, scarce.
Culmi cespitosi, breviusculi, 3-4 wuc. longi, ralidi, erecti, basi foliosi, simplices v . parce ramosi, superne folio unico foliisve duobus vaginati. Folia brevia, sub polliearia, stricta, erecto-patentia, lineari-subulata, v. subsetacea, involuta, striata, glaberrima. l'agince laminam subequantes et panlo latiores, foliorum superiorum elongatæ, profulde striatæ, utrinque attematæ, medio turgidæ, ore contracto; ligula ovata, seariosa. Panienla $\frac{3}{3}$ unc. longa, pauciflora; rachi ramisque seabridis. Chema sub $1 \frac{1}{2}$ lin. longa; valve laneeolate, acuminatæ, concavæ, uninerves, acute carinatæ, carina ciliata, floseulo incluso bis longiores, superior paulo brevior. Flosculus brevissime pedicellatus. Palea iuferior ima basi sericeo-barbata, concava, apiee bifida, inter segmenta subaeuta aristata, subserieea, quinquenerris, marginibus dorsoque ciliatis; arista valida geniculato-curvata, scabrida, imo apice obtusa. Palea superior inferiore parum brevior v. equilonga, lineari-oblonga, apice bifida, binervis, bicariuata, cariuis argute ciliato-
denticulatis. Setula palea inferiore $\frac{1}{4}$ brevior, longissime plnmoso-barbata; pilis strictis, sericeis, flosculo æquilongis. Squamulce 2, oblique ovato-lanceolatæ, acuminatre. Stamina 3 ; filamentis breviusculis; antheris subersertis, linearioblongis, stramineis. Ovariun late oratum ; stylis basi approximatis ; stigmatibus exsertis, plumosis.

Of this plant I have but rery imperfect specimens, nor could I anywhere detect more of it than one or two culms which grew in the highest parts of the island, from whence the snow had but recently disappearen.

Tribe AVENACEE, Kunth.

3. TRISETUMI, Kunth.

1. Trisetum subspicatum, Beau. Agrost. p. SS. Brown in Pury's First Toyage, App. p. 292. Richardson's App. to Frantin's 1st Foy. p. 3, and in Frankitin's Journal, p. 731. Hooker, App. to Parry's 2ud Toy. p. 409. App. to 3rd Toy. p. 129. Flor. Bor. Am. v. 2. p. 244. T. phleoides, Kunth Gram., vol. i. p. 101. Agrost. p. 295, (non Trinins). Avena phleoides, LP Ure. Fl. Ins. Mul. in Trans. Soc. Linn. Par. vol.iv. p. 601. Brongniart in Duporrey, Toy. Bot. Phan. p. 29.

Hab. Campbell's Island; on ledges of rocks at the very summits of the mountains, abundant.
I have very closely compared numerons specimens of this plant with most copious suites of authentically named forms of the T, subspicatum from the northern hemisphere, without being able to detect any specific difference. In Europe and Northern America the plant varies much in size, in being of a slender or robust habit and in the form of its panicle; similar discrepancies are not obscrved in Campbell's Island, where its habitat is very limited; but in the Falkland Islands and in Tierra del Fucgo it assumes various forms, whence it has been described by Admiral D'Urrille as a different species, which was adopted by Brougniart with much doubt. The T. molle, Kunth and Trinius, (Avena mollis, Mich.), is deciledly only a rariety of larger growth and may be added to the other synonyms already included by Kumth under this species. Few grasses have so wide a range as this, nor am I acquainted with any other Aretic species which is cqually an inhabitant of the opposite polar regions. In Emope it is found at a rery great elevation on the $\Lambda_{p s}$ and on the Pyrences, as also in Lapland. In Λ sia it frequents the Altai range, the northern parts of Siberia and Kamtschatka, from whence it crosses to Kotzebue's Sound, and is apparently more generally distributed through Arctic America (than in the Old World), from the utmost limits of Polar vegetation in Melrille Island, throughout Greenland and the Aretic Islands, the Aretic sea-coast, Labrador, Canada, and the Rocky Mountains. We have specimens in no way different from some of the Emropean states, which were gathered on the Audes of Peru by Mr. McLean, and it is a particularly common grass on the sea-coast and upland regions of the Falkland Islands, forming a considerable portion of the pasturage. In Fuegia and South Chili it is probably no less abundant.

Tribe FESTUCACEA, Kunth.

4. BROMUS, L.

1. Brosus antarcticus, Hook., fil.; glabermus, panicula inclinata subcoarctata, ramis multiforis, spiculis ovato-oblongis 6-S-floris, flosculis pedicellatis basi sericco-barbatis, arista valida palea longiore, folis involutis eulmum elatum superantibus. (Tab. LIV.)

Hab. Lord Auckland's group and Campbell's Island; a common grass upon the hills, forming large tussacks, particularly at an elevation of between $S 00$ and 1200 feet.

Gramen elatum, 3-1 pedale, crespites supra terman 2-3 ped. diametr. formans. Cumi ascendentes, validi, fasciculati ; pars infima prostrata, subrepens, crassa, lignosa, $3-4$ ime. longa, diametro digiti minoris, undique fibras crassas tortas intertextas emittens, reliquiis rigidis foliormu emortuorum obtecta, simplex v . divisa; culmi
deinde ascendentes, foliis plurimis per totam longitudinem vaginati, ma eum foliis 1 unc. diametr., graciles, nodosi; internodiis sub 2 -uncialibus; nodis constrictis, brumeis. Folia longissima, 3-4 pedalia, basi longe vaginantia, lineari-elongata, in apicem subfiliformem gradatim desinentia, pamiculam longe superautia, per tatam longitudinem invohta, glaberrima, coniacea, profunde striata, levia, polita, viridi-straminea, supra pallide virescentia; marginibus lævissimis, prope ligulan parce pilosis. Fagince elougatæ, interdun pedales, ad basin fisse, compresse, iuferiores paulo curvatæ, sulcatæ, con구eæ, ad margines scanosæ, inferue induratæ, sublignosæ, pallide flaræ; ligula tenuissima, sericeo-barbata. Panicula subcoarctata, ovata r. ovato-oblonga, compressa, $4-6$ imc. longa, multiflora, ramosa; rachi glaberrima, angulata; ramis gracillimis divisis, ad axillos pilosis v. barbatis. Spiculoe pedicellate; $\frac{3}{4}-1$ unc. longæ, ovato- v. lineari-oblongæ, $\frac{1}{3}$ unc. latæ, multi-S-11-flores, pallidc flavæ, nitidæ. Glume coriaceæ, flosculis $\frac{2}{3}$ breviores, valvæ lanceolatæ, concavæ, ccarinatæ, glabenvimæ, obscure quinquenerves, nervis tribus interioribus interdum supra medium in unum coalitis; ralva superior major, nervis magis distinctis, marginibus inferne sericeo-ciliatis. Flosculi pedicellati, basi remotiusculi; pedicellis dense villoso-barbatis. Palea 2, coriaceæ, subæquales, inferior concava, ad margines dorsoque basi sericea, superne bifida, inter scgmenta lanceolato-subulata longe aristata, 5-7 nervis, uervis extus costatis; arista erecta v. patula, valida, palea bis longiore, scabriuscula, straminea. Palea superior lineari-oblonga, apice bidentata, longitudinaliter plicata, bicarinata; carinis dorso ciliatis, basi extus sericeis. Squamule 2, ovatæ, acuminatæ, integre. Stamina 3, inchsa; antheris fulvis. Ovarium obovatum, compressum, sub-longe stipitatum; slylis basi remotis; stigmatibus paree plumosis.

This is a fine species and quite distimet from any other; it grows throughout the islands in great abundance, especially on the upland regions, where it forms much the greater proportion of the herbage, appearing in large, often isolated tussacks, one or two feet in diameter. Amongst them the Albatrosses are wont to raise their curions nests, which they construct of dirt and the straw of this grass, moulded into the form of a very large low Stilton cheese, with a shallow hollow at top: in these they lay a solitary egg weighing $16-20 \mathrm{oz}$. So strong is their attachment to their progeny that in no instance can an Albatross be removed from its charge without actual force; they vigorously defend their nests, striking boldly at the aggressor with their bills, so that it is sometimes difficult to obtain possession of the egg at all without eruelty to these beautiful and snow-white birds, whose confidence in man leads them to suspect no evil until actually attacked, and whose self-denying devotion to their young deserves a different treatmeut. The great size and beauty of the egg, coupled with its rarity in European collections, are attractions too strong to be resisted; and even had it not these reasons for being prized, it possesses in the excellence of its contents for culinary purposes a great recommendation to the members of a mess long restricted to salt provisions.

The tufts of Bromus antarcticus are of a very rigid, hard and wiry consistenee, and after a few hours sunshine become so dry, that on being ignited a rapidly devouring flame quickly spreads from one hummock to another, until many acres are blazing in a most alarming manner. A fire incautiously kindled on oue occasion by a small party of officers, soou covered many miles of ground ; after consuming all the Bromus in its neighbourhood, it communicated with the brushwood whieh borders the woods, and thence to the low deuse forest itself, for many hours threatening the destruction of the observatories and our little temporary village ashore; the progress of the fire was lappily checked for a time by a small stream, until a severe storm of slect, which the falling barometer and unusual (for these latitudes) fineness of the weather had predicted, finally pat on cnd to the conflagration. From the ships in the harbour the sight was very grand, especially at night, the flames seeming to leap from spot to spot wherever this grass prevailed.

Plate LIV. Fig. 1, a spikelet; fig. 2, a floret removed from the spikelet ; fig. 3, squamulæ, stamina and ovarium, \&c.; fig. 4 , two forms of the squamule:-all magnified.

5. FESTUCA, L.

1. Pestuca scoparia, Hook. fil.; panicula paucitlora subcoarctata, spiculis compressis majusculis 4-ǒfloris, glumarum valvis subæqualibus trinerviis flosculis brevioribus, palea inferiore scaberula basi longe
villoso-barbata apice subacuta, foliis arcte involutis plerumque longissime lineari-filiformibus rigidis gradatim attenuatis, culmis erectis fasciculatis superne gracilibus nudis.

Far. β, minor, foliis culmo subæquilongis.
Hab. Lord Aucklaud's group and Campbell's Islaud; abundant, especially in rocky places near the sea : β. Campbell's Island, on ledges of rock, alt. 1000 feet.

Gramen elatum, 2-3 pedale, suberectum, cespites magnos densos præscrtim iuter rupes efficiens. Radix fibrosa, fibris intertextis, crassis, dianetr. pennæ corrinæ, elongatis, 1-2 uncialibus, tortis, ramosis, suberosis V . spongiosis, pallide fuscis, fibrillosis v. interdum subtomentosis. Culmi plurimi, dense fasciculati, copiose foliosi, basi una cum vaginis foliorum $\frac{1}{2}$ une. diametri, ima basi divisi, e parte infima prostrata, ramosa, lignosa, ascendentes, graciles, 1-2 pedales, glaberrimi, vix striati, bis terve nodosi; iutcruodiis $2-3$ uncialibus; nodis constrictis, Havo-fuscis. Folia longissima, anguste lineari-filiformia, gradatim attenuata, subflexuosa, culmum bis terve superantia, basi longe vaginantia, per totam lougitudinem arcte involuta, glaberrima, striata, subrigide coriacea, vaginis angustiora, in rar. β, folia stricta, rigida, culmo breviora. Fagiure lineares, elongate, 8-10 unc. longæ, ad basim latiorem fisse, superne hiantes, pallide straminex, læves, nitidæ; ad orem utrinque in auriculas breves sursum producte; liyula horizontali, angusta, inconspicua. Panicula $3-5$ unc. longa, suberecta v. paulo inclinata, parce ramosa, pauciflora; rachi gracili, scabrida; ramis alternis, angnlatis, scabridis, 3 -5-floris. Spicule pedicellatæ, valde compressæ, orato-oblongæ, sub 4 lin. longæ, 4 -floræ. Glumaruin valvee coriaceæ, subæquales, flosculis breviores, lanceolatæ, acutæ; concavæ, dorso nervisque scabridis, inferiore paulo minore. Flosculi dissiti, inferior subscssilis, reliqui pedicellati, pedicello nisi ad basiu flosculi nudo. Palea inferior lineari-oblouga, subacuta, dorso convexa, basi longe villosobarbata, extus parce pilosa, quinquenervis, nervis prominentibus, extus scabridis. Palea supcrior $\frac{1}{4}$ brevior, apice bifida, bicariuata, carinis scabrido-ciliatis. Squamule oborato-oblongæ, ad medium bipartitæ; segmentis inæqualibus, orato-subulatis, acuminatis. Stamiun 3 ; flamentis breviusculis; antheris paulo exsertis, stramineis. Ovarium minutum, late obovatum ; stylis basi discretis. Caryopsis glabra, palea $\frac{1}{2}$ brevior, obovata, apice giblosa, latere unico excavata, stylis lateralibus.

This plant is most nearly allied to Festuca? littoralis, Br. (Prodr., p. 178), from which it differs, according to our specimens from various parts of New Holland, Tasmania, and New Zealand, iu the longer leaves, fewer flowered panicle, narrower florets, in the entire absence of any toothing at the apex of the lower palea, and in the long villous beard at its base. That plant also has turgid distichous approximated florets, resembling those of a Uniola. I have referred this species to Festuca, as Mr. Brown has the F. liftoralis, though with a mark of doubt; they are manifestly congeneric, but in this I sec no approach to the character of Danthonia; they further bear a good deal of resemblance to the F. spadicea, L., a South of Europe plant.

Of M. Labillardière's F. littoralis we have an autheutically named specimen, gathered by that voyager himsell; and received from our liberal correspondent Mr. Webl of Paris; it entirely rescmbles the figure given in 'Plantre Nov. Holl.' (t. 27), especially in the branching aud elongated lower portion of the culm, but the pedicels of the florets are decidedly hairy and the lower palea trumeated, characters not portrayed in the plate alluded to, but which Mr. Brown has observed in his phant. This species Nees v. Esenbeck notices in his 'Gramina Novæ Hollandiæ,' (vid. Lond. Journ. of Bot., vol. ii. p. 419), as "Schedonorns Billardieriamus, N. ab E., Poa littoralis, Lab. nec R. Br.," and further quotes Mr. Gumn's specimens, which agree with Labillardière's own and with Mr. Brown's description. Kunth (Agrost., p. 409), unites these two plauts, retaining them under a scetion of Festuce, which includes his "species anomale, minus cognitæ et dubiæ." Sprengel refers it to Triodia, and Trinius in his bcautiful mork places it in Arundo! (A. triodioides, Trin. Species Gramin. vol. iii.)
2. Festuca foliosa, Hook. fil. ; panicula inclinata majuscula coarctata ramosa multiflora, ramis erectis compositis, spiculis sub 4 -floris late ovatis, glumarum valvis lanceolatis v. acuminatis æ¢ualibus, flosculis
breviter pecticellatis brevioribus, palea inferiore subsericea acuta quinquenervi basi barbata dorso scabrida, superiore breviorc bifida, squamulis basi comnatis, foliis subdistiche insertis longissimis latis planis carinatis glaberrimis, culmis ceespitosis compressis. (Tab. LV.)

Far. β, minor, spiculis minoribus subtrifloris.
Hab. Lord Auckland's group and Campbell's Island; on banks and in rocky places, chiefly near the sea, very abnudant. B. more common in Campbell's Island; growing amongst rocks. McQuarrie's Island, (Herb. Hook.)

Rhizomata prostrata, crassa, lignosa, 3-4 unc. longa, crassitie digiti minoris et infra, creberrime nodosa, radices pluximas fibrosas ubiquc emittentia, reliquiis fibrosis foliorum vetustorun obtecta, eespites densos magnos scabellum simulantes efficientia, versus apices culmos plurimos cmittentia; fibris 3-4 unc. longis, filifornibus, subrigidis, hic illic tortis, simplicilus v. filrrillosis. Culmi validi, ereeti, 2-3 ped. longi, $\frac{1}{2}-\frac{3}{4}$ unc. lati, basi compressi et foliis abbreciatis vaginati; in var. β, 6 unc. ad pedalem et graciliores. Folia plurima, plautis juioribus presertion distiche iuserta, longissime lincaria, flexuosa, culmum longc superantia, $3-4$ ped. louga, gradatim attennata, latiuscula, $\frac{1}{2}-\frac{3}{3}$ unc. latitudine, plana, per totan longitudinem carinata, glaberrina, striata, utrinque opaca, herbacea, lete viridia, subtus glancescutia. Tayine late, 3-4 unc. longæ, compressie, striate, opace, ad basin fisse, foliorum vetustorum 1 unc. latæ, emarcilx fibrosæ; ore paulo contracto, sepc fusco-brunueo; ligula conica, longitudine varia, scariosa, acuta v . obtusa, integra v . lacera. Punicula lineari-oblonga, contracta, valde compressa, decomposita, nutans v . incliuata, 5-8 unc. longa, I-3 lata, rachi valida, tereti, glaberrima; ramis suberectis, compositis, $1 \frac{1}{2}-2$ unc. longis, glaberrimis, politis, multiflonis. Spicule pedicellatr, $2 \frac{1}{2}-3$ lin. longe, pedicello gracili, curvato. Glumarum ralve æquales, lanceolatæ, acuminatre, flosculis breviores, conearæ, sub-cariuatæ, basi trinerves; nerris temuibus, intermedio dorso vix scaberulo, lateraibus medinm vix attingentibus. Flosculi $3-5$, plerumquc 4 , inferior sessilis, reliqui brevitcr pedicellati, pedicello glabro. Palea inferior subherbacea, acuminata, apice subincurva, dorso ciliata, basi breviter villoso-barbata, subsericea, quiuquenervis. Paleu superior paulo brevior, ollonga, bifida, bicarinata, carinis ciliatis. Squumule basi carnosie et comuate, subquadrate, oblique bifide ; segmentis acutis, crosis ; in var β, oborate, bipartite, segmentis acuminatis. Stanina 3; filamentis elongatis; antheris exsertis, stramineis. Ocarium minimum, ovatum; stylis basi approximatis, elongatis; stigmatibus parec plumosis.

A grass of large growth and very leafy, affording a rich and nutritions food for animals; in some cases it forms large mounds or tussacks, not unlike those of the Dactylis cesspitosa of the Falkland Islands (the Tussack grass), but smaller; with, howerer, a similarly luxwiant labit. In size it varies extremely, from several feet to a few inches in beight, and from a robust to rather a slender habit; it is only indeed when growing in large masses that it assumes a characteristic appearance, in this respect further resembling the celebratcd grass above mentioned. The small specimen from McQuarrie's Island especially, I should have been inclined to regard as another species, hat the plant not appeared in a similarly starred state in Campbell's Island. In the large culms the ample sheaths of the old leaves conceal the coupressed form and distichous insertion of the leaves, which are very marked in the younger ones, and in certain states as conspicuons as in small states of the Tussack grass itsclf.

It is with much hesitation that I refer this to Festuca, for I know no species of that genns with a similarly leafy and soft labit, or with compressed culms and distichous leaves, the only one indeed which appears to bear any rescmblance to it is the F. Donax, Lowe, a Madeira plant, and that mercly in being of a large size and having a somewhat similar large and branched panicle. The want of the arista alone at the apex of the lower palea restrains me from placing it with what is certainly its nearest ally, the true Tussack Grass.

Plate LV. Fig. 1, spikelet; fig. 2, a floret; fig. 3, comnate squamulx; fig. 4, one squamula of var. β; fig. 5, ovarium, style and stigmata :--all numgnifeed.

6. POA, I.

1. Poa annua, Linu., Sp. pl. 99. et auctorum.

Hab. Lord Auckland's gromp; abumdant on the tomb of a French sailor, growing with Stellaria media, With.; both undoubtedly introduced.

This is the common European form of the plant; it has not as yet spread far from the above locality.
2. Poa ramosissima, Hook. fil.; glaberrina, panicula contracta ovato-lanceolata, ramis strictis subercctis alternis bis terve divisis, spiculis ovatis 3-4-floris, glumis acutis, flosculis basi remotis, palea inferiore acuta quinquenervi, foliis planis paniculam superantibus vaginisque lævibus, ligula late ovata apice truncata lacera, culmis laxe cæspitosis basi longe nudis et prostratis superme fasciculatim ramosissimis, ramis brevibus omuibus floriferis.

Tar. β, palea exteriore basi extus longe villoso-barbata.
Hab. Lord Auckland's group; very common on the rocks overhanging the sea, trailing over banks, \&c.及. Campbell's Island; plentiful on the faces of hills sloping to the south; rare in Lord Auckland's group.

Gramen gregarinn, late supra terran diffusum, pascuum copiosun efficiens, pedale ct ultra. Cumi elongati, longe prostrati, pars prostrata nuda, simplex, pedalis, crassitie pennæ corrinæ, rigida, fusca, vaginis emarcidis et fibrosis foliorum vetustormm vestifa, uodosa; internodiis teretibus, glaberrimis; nodis incrassatis. Rami plurimi, ab apice partis prostrati erecti v. ascendentes, fasciculati, pluries divisi, $3-4$ unc. longi, foliosi, omnes floriferi, graciles, basi pare nodosi, foliis emarcidis subcriniti. Folia erccta, paniculam superantia, $3-4$ unc. longa, anguste lineari-subulata, vix $\frac{3}{4}$ lin. lata, plamiuscula, glaberrima, obsolcte striata, utrinque opaca. Vagince laminam longitud. subæquantes, terctes, leves, striate, ad basin fissæ, marginibus subscariosis, collo interdum castaneo ; ligula scariosa, late ovata, superne abrupte trmeata, lacera. Panicula crecta, lineari-oblouga v. ovato-lanceolata, $1-1 \frac{1}{2}$ unc. longa, $\frac{1}{3}$ unc. lata, compressa, ramosa; rachi gracili, angulata, lavi; ramis alteruis, erectis, $\frac{1}{4}$ unc. longis, spiculas pedicellatas 3-4 gerentibus. Spicule herbaccæ, ovato-lanceolatæ, 2 lin. lougæ, 3-5-flore. Glumarum valuce subæquales, concavæ, acutæ, glaberrimæ, flosculis breviores; superior latior, trinervis; inferior acuminata, uninervis. Floseuli dissiti, longius pedicellati, infimo sessili; pedicello glabervino v. infra paleam barbato. Palea inferior late ovata, acuta, curinquenervis, nervis latcralibus obscuris, glabervima, var. β excepta ubi palea basi villoso-barbata evadit. Palea superior lincarioblonga, inferiore brerior, apice bifida, bicarinata, carimis glabris. Stamina 3 ; fitamentis brevibus; antheris stramineis, inclusis.

This is a very abundant grass in both groups of islands and of a most singular habit of growth. The culms are invariably prostrate and quitc simple for a foot or so, when they suddenly ascend and divide into many short, leafy branches, each bearing a pamicle of flowers. It forms a copious, soft, green herbage, especially on the banks near the sea, always throwing its long culms over the edges of the cliffs, which are thns fringed with a delicate festoon of green.

The almost constant presence of a villous tuft at the base of the lower palea, in the Campbell's Island specimens, is a singular circumstance; but as I have detected no further distinction between these two varietics, and in some specimens observed intermediate grades, it camot be considered as a character of specific importance.
3. Poa breviglumis, Hook. fil.; glabcrrima, panicula laxa erecta panciflora, rachi gracili, ramis suberectis oppositis v. subverticillatis divisis versus apices floriferis, spiculis obovato-oblongis 4-floris, glumarum valvis inæqualibus infcriore minima, superiore flosculis $\frac{1}{2}$ breviore apice bifida v. emarginata, flosculis pedi-
cellatis basi nudis, palea inferiore glaberrima ovato-lanceolata obtusa concava trinervi nervis sub lente scabridis, foliis planis lineari-setaceis culmo brevioribus, culmis basi ramosis inclinatis v. ascendentibus.

Hab. Campbell's Island; open grassy places near the sea, not uncommon.
Rhizomata tenuia, breviuscula, ramosa, radices fibrosas plurimas emittentia; fibris tortis, filiformibus, fibrillosis, fuscis. Cumimi basi plurics divisi et inclinati, deinde ascendentes, graciles, 6 unc. ad pedalem, crassitic pennæ passerinæ, uodosi, ad nodos plernmque geniculati ; internodiis uncialibus, glaberrimis, striatis, læribus, nitidis; nodis subincrassatis, fuscis. Folia pauca, $1 \frac{1}{2}-3 \mathrm{mc}$. longa, culmo breviora, suberecta v. patentia, anguste linearisubulata, sub $1-1 \frac{1}{2}$ lin. lata, gradatim attenuata, plamuscula, striata, glaberrima, utrinque opaca, late viridia. Vagine lamina breviores, profunde striatæ, marginibns scariosis, ore paulo contracto; ligula late ovata, apice rotundata, scariosa. Panicula erecta, laxa, gracilis, 3-5 unc. longa, parce ramosa, pauciflora, rachi tereti, gracili, stricta, striata, levi, nitida; ramis remotis, plerumque verticillatis v. oppositis, gracillimis, divisis, suberectis patentibusve, inferioribus elongatis, $1 \frac{1}{2}$ uncialibus, versus apices floriferis. Spiculce sub $1 \frac{1}{2}$ lin. longæ, oborato-oblongæ, compressæ, 4 -floræ, pedicellatæ; pedicello spiculæ subæquilongo, striato, scaberulo. Glumarum ralvee parææ, glaberrimæ, valde inrequales, inferior minuta, ovata, obtusa, concava, uninervis; superior duplo triplove major, flosculi dimidii longitudine, orato-oblonga, apice truncata, emarginata v. bidentata, concava, trinervis, nervo medio scaberulo. Flosculi basi dissiti, glabernimi, infimus sessilis, reliqui pedicellati, terminalis cum arista brevi alterius incompleti sæpe anctus; pedicellis glaberrimis. Palea inferior oblongo-lanceolata, obtusa, concava, trinervis, nervis prominentibus sub lente scaberulis. Palea superior paulo brevior, lineari-oblonga, apice bifida, bicarinata, carinis minute ciliatis. Squamute late oborato-quadratæ, oblique bifidæ, segmentis acutis, valde inequalibus. Stamina 3 ; filamentis elongatis; antheris exsertis, brevibus, late oblongis. Ovarium obovato-oblongmo ; stylis basi discretis, lateraliter insertis; stigmatibus longe plumosis, exsertis.

In several respects this species approaches the following genus Catabrosa, especially in the small glumes, the upper one of which is erose or toothed at the apex, and in the remote bases of the styles, but the palex are not truncated, though obtuse, and the florets are always four in number.

In the very short glumes and indecd in the entire structure of the spikelets, florets and their squamula and ovarium, it resembles the Splenopus divaricatus, Reich., with which it further agrees in the branching of the pamicle, its few flowers being placed towards the apices of the branchlets; but it has not the gencral habit of that curious little grass, nor the peculiarly thickened pedicels to the spikelets. M. Kunth (Agrost., p. 392), has reduced the genus Sphenopus (Trinins) to Festuca; but Theodore Nees, in his beautiful genera of German plants, has retained that generic name and published an excellent analysis of it; I quite agree with him in considering it as more closely allied to Poa, in which genus its original describer, Gouan, placed it, than to Festuca.

7. CATABROSA, Palis.

1. Catabrosa antarctica, Hook. fil.; panicula laxa pauciflora, ghlumarum valvis inæqualibus inferiore lineari-oblonga subacuta superiore oblongo-lanceolata apice breviter bifida v. bidentata, palea inferiore apice truncata basi pilosa 3-5 nervi nervis obscuris inter medio in aristam brevissimam setiformem producta, antheris breribus late oblongis, foliis anguste linearibus involutis paniculam superantibus, culmis gracilibus erectis basi divisis. (Tab. LVI.)

Hib. Campbell's Island; on moist rocky ledges, rare, only found at an elevation of 1000 feet.
Gramen gracile, 6-8 unciale, magnitudine sat varians. Rhizomata laxe cæspitosa, elongata, 1-2 unc. longa, currata, crassa, diametro penme corvinæ vel minora, lignosa, fusca, nodosa, ad modos fibrosa, versus apices divisa v. subramosa; fibris elongatis, tortis, fuscis, fibrillosis. Culmi fasciculati, erceti, graciles, foliosi, 2-5 unc. longi, remote nodosi; intcrnodiis teretibus, striatis, sub $\frac{1}{2}$ uncialibus, glaberrimis; nodis constrictis, brunneis. Folia erceta,
elougata, culmum superantia, superne flexuosa, basi longe vaginantia, longe et anguste linearia, involuta, glaberrima, striata, lævia, læte viridia. V'ayince folii $\frac{1}{4}$ longitudine, angustæ, ad margines subscariosæ, profunde striatæ; ligula elongata, lineari, acuminata, membranacea, ad apicem fimbriata. Panicula 3-5 unc. longa, erecta, gracillima, parce ramosa, pauciflora; rachi gracili, tereti, lævi, flexuosa; ramis alternis vel plerumque subverticillatis, filiformibus, divisis, suberectis v. modice patentibus, presertim apicem versus floriferis. Spicula parvæ, $1 \frac{1}{2}$ lin. longæ, remotæ, micantes, glaberrimæ, 2-rarus 3 -flores, flore terminali tabescente, pedicellata; pedicello sub lente glaberrimo. Glumee bivalves; ralvæ inrequales, flosculis infcrioribus breviores, herbaceo-coriaceæ, inferior oblongo-lanceolata, acuta, marginibus minute ciliatis, uninervis, nervo dorso scaberulo; superior $\frac{1}{2}$ longior, oblongo-lanceolata, apice bifida truncata r. emarginata, concava, dorso carinata, trinervis, nervis prominentibus, lateralibus ad medium evanescentibus, carina dorso ciliata, marginibus superne tenuiter ciliatis. Flosculi remoti, superior pedicellatus; pedicello infra florem incrassato, et pubescente. Palea inferior late ovato-oblonga, concava, abrupte truncata, superne plus minusve distincte $4-5$-dentata, dente medio interdum in aristam brevissimann producto, membranacea, obsolete 3-5 nervis, basi pilosa : palea superior subæquilonga, apice bifida, bicarinata, carimis ciliatis. Squamuke ovatæ, acuminatæ, subcarnosæ, integre. Stamina 3, filamentis gracilibus; antheris late oblongis, prope basin fixis, loculis apicem versus divaricatis, flavo-stramincis. Ovarimm late oboratum, basi subattenuatun; stylis basi distinctis, latere unico insertis; stigmatibus valde plumosis. Caryopsis ovato-oblonga, paleis $\frac{1}{2}$ brevior.

My specimens of this grass, though not in so good a state as is desirable, are, I think, sufficient to prove it a most distiuct species of an European genus, which reaches in Great Britain the parallel of 59°, the 67 th degree in Lapland and Iceland, and the 57th in North America.

The present species differs considerably from the type of the genus, in its slender habit and narrow leaves, and more particularly in the larger glumes being less tnueated and narrower, in the more unequal paleæ and obscure nerves of the lower one, and in the very short anthers.

Plate LTI. Fig. 1, a spikelet; fig. 2, glumes; fig. 3, a floret; fig. 4, a squamula; fig. 5, a stamen; fig. 6, ovarium, strles and stigmata; fig. 7, caryopsis:-all magnified.

XXXII. FILICES, Willd.

1. HYMENOPHYLLUM, Sm.

1. Hynexophyllem minimum, A. Rich.; pusillım, cæspitosum, glaberrimum, frondibus late-oratis falcato-recurvis pimnatificlis v. basi pimatis, segmentis integris bifidis rariusve bipartitis linearibus obtusis margimibus ciliato-dentatis per totam longitudinem concavis subrigidis siccitate rufo-fuscis, involucris terminalibns omnino exsertis subpedicellatis obovato-cuneatis valvis dorso spimuloso-ciliatis, ore breviter bilobo argute dentato, rachi stipiteque crassinsculis rigidis. H. minimum, A. Richarl, Flor. Nov. Zel. p. 93. t. 14. f. 2. F. Cumn. Proll. Flor, Nor. Zel. in Ilook. Comp. Bot. Mag. vol. ii. p. 369. Presl, IIymenophyll. p. 32.

Hab. Lord Ancklaud's gronp; on trunks of trees in the woods; rare.
Caudex repeus, radicans, rigidus, filiformis, seta equina crassior, ater. Frondes plerumque plus mimusve falcatorecurve v. demissæ, rarius suberectæ, $\frac{1}{4}-\frac{1}{2}$ unc. longæ, rigidæ, firmæ, pimatifid v. segmentis inferioribus dissitis, basi pimatr; pinnis seu segmentis superioribns integris, inferioribus bifidis v. bipartitis, infimis interdum pimatifidis, omnibus linearibus, obtusis, argute ciliato-dentatis, per totam longitudinem concaris, fusco-brunneis, siccitate rufis; costa rachique validis, glaberrimis. Involuerum ad apicem frondis terminale, solitarium, majnsenlum, breviter pedicellatum, ovato-cuneatum, basi attenuatum, durum, siccitate atrum ; valvis dorso spimulis mollibus basi latiusculis obsitis; ore breviter bilabiato, latiusculo, labiis rotundatis, argute spinuloso-dentatis, dentibus erectis, simubns rotundatis; receptaculo ralido, rarius clongato, exserto.

During the examination of the materials from which the genns Hymenophyllum was described in the second part of the "Species Filicum," I had but cursorily inrestigated the Anckland Island species, and considered the Π. minimum of Richard to be a snall variety of II. Tunbridyense, with terminal involucres. This state is not uncommon in the vicinity of the Bay of Islands, and this I laid before my father; whence the $I I$. minimum was by lim included as a synonym of that widely diffused specics. Amongst my specimens of H. multifidum I now find others of this very minute and most distinct plant, which have enabled me to correct that error. In the rigid consistence of the frond, its decurved habit and lurid colour, it is more nemly allied to II. multifidum than to any other species, but the curiously spinulose valves of the involucre afford an excellent specific character, as do the small size, simple frond and singularly concave segments, which appear like the half of a tube, that is, hollow throughout their length and open at the end. Between this plant and the Trichomanes cespitosum of the Falkland Islands and Cape Horn, much analogy exists, especially in size, locality and habit; in each the fronds are generally once divided, with the scgments concave and obtuse ; both have the indusia free or nearly so, spimulose at the back of the valves, and though often lateral in the latter plant, the fructifications are, especially on small specimens, very generally terminal, and may prove to be truly lateral in I. minimum, should that plant be found in a more luxuriant state than M. Richard's or my specimens exhibit. In the 'Flora Nore Zelandie' M. Richard does not mention the original discorerer of the species; the figure in the 'Voy. de la Coquille' is not characteristic of the curious involucres.
2. Hymenophyllum multifidum, Sw. Syn. Fil. p. 149 and 37S. Hook. and Gree. Ic. Fil. t. 165. Presl, Hymenophyll. p. 32. Hook. Sp. Fil. vol. i. p. 9 S.

Hab. Lord Auckland's group and Campbell's Island; in all situations, from the level of the sea to the tops of the mountains, growing on the ground, on trunks of trees and on rocks.

A very common New Zealand fern, from the latitude of the Bay of Islands to that of Campbell's Island ; representing in this region the II. tortuosum of Antarctic America and the II. Tunbridyense of the Northern Hemisphere. It is sery variable in size, but the fronds are always remarkably bent downwards, their apices often touching the ground.
3. Hymenophyllum demissum, Sw. Syn. Fit. p. 147 and 374. Schkuhi Fil. t. 135. c. F. Rich. Fl. Nov. Zel. p. 92. Hook. Sp. Fil. vol. i. p. 109. Sphærocionium demissum, Presl, Hymenophyll. p. 35.

Hab. Lord Auckland's group; in dense woods near the sea, often covering the ground with large patcles of a lurid green colour.

The specimens of this beautifud species are smaller than those collected in the northern island of New Zealand, but do not otherwise differ.

Mr. Presl's gems Spherocionim is apparently founded only upon the form of the receptacle, in its being "shorter than the indusium, maked and cylindrical below, and thickened and globose at the apex, which alone bears the eapsules;" such characters can hardly be applied to this species, where the receptacle, thongh short, produces capsules for at least two-thirds of its length, the lowest portion or third part only being naked and cylindrical, gradually thickening upwards into an elongated club-shaped loody.

The structure of the receptacle in most species of the genus Ihymenophyllum, in its more extended sense, appears to me very uniform; in length it varics extremely, but there is generally a short cylindrical body, which may be considered a pedicellus to the elongated capsuliferous portion or true receptaculum; upon the comparative length of this latter portion the genus of Presl rests. In some New Zealand specimens of this fern the pedicel is so short as to be almost obliteratcd, the receptacle appearing like a stout column covered throughout its length with capsules; in others the whole organ is reduced to an elevated tubercle in the bottom of the involucre. Of the other plants included by Mr. Presl under this genus I have examined several ; of these, S. infortunatum, the only

St. Helena species of this genus, and originally noticed in Pritchard's list of the plants of that island as Hym. capillare, has the receptacle more nearly as described, thongh I should rather have called it clavate than "apice globoso-incrassatum"; the capsules are not eonfined to its apex, but extend half way down the rcceptacle. S. ricciafolium I have not seen in fruit; it appears, however, identical with I. polyanthos, Sw. (v. Sp. Fil. p. 107.). Whether the II. polyantlos, Hook. and Grev., be that of Swartz, or, as Presl supposed, another species, is difficult to decide, without authentic specimens of Swartz's plant ; it is, however, an excessively common West ludian form, nor does its receptacle differ in any particular from that of several species of Spharocionium; as from S. sanguinolentum, Presl, (certainly a variety of polyonthos, Hook. and Grev., if not of Swartz), from some states of demissum and others. S. coudiculatum: in most of the specimens in Hlook. Jlerb. the short pedicellus is surmonnted by a very large depressed sphere covered with eapsules, in some indusia this character is very striking, but in others, from the same specimen, it becomes conşidcrably smaber, and in what is manifestly the same plant from other localities the receptacle is simply clavate but very broad. S. dilatatum: this very common New Zcaland plant is properly retained in the immediate vicinity of demissum ; in no case, however, do I find its receptacle to be globose and iucrassated at the apex, it is very like, and varies similarly with, that of the last-named plant. S. crispatum: the receptacle of Indian specimens quite agrees with Presl's character, in some Yau Diemen's Land ones that organ is narrower at the summit. S. badium, gracile, axillare, and abietinum have the receptacles rey short and clavate, or more or less capitate. It is not to be wondered at that an organ so variable in the above-mentioned species should afford too frail charaeters upon which to found a genus; and a similar examination of some of the plants included in Presl's Hymenophyllum will show that it exists of all lengths, between the long exserted stout column so often seen in II. multifidum and secundum and the short sessile receptacle of demissum and Clitatatum; transition stages, comecting the two genera, are foumd in both. The limits of Mymenophyllum, as established in the 'Species Filicum,' have been defined after a study of several thousand specimens; a re-examination of many of which has comvinced me that neither can most of the new genera formed out of it remain, nor such sections as that author has proposed under the names of Evoluta and Dimidiata.

Having occasion to describe sevcral species of this genus during the course of publishing the results of the Antarctic Expedition, some apology scems necessary for not adopting Presl's views of the Order Mymenophyllacere. I am fully sensible of the great value of that author's labours and of the accuracy and precision with which he has described what he has examined, as also of his intimate acquaintance with the whole order of Ferns: and whilst I cannot but plaee some reliance upon the results of my own observation of far more extensive suites of specimens, in many cases gathered by myself, than Presl has probably had access to, I would further remark, that whilst examining, in the Hookerian herbarium, almost all the species mentioned by Presl, and anthentically named specimens of many, I have constantly met with abundant evidence of that writer's accuracy in his descriptions of individual species, together with full proof that he has considered some of their peculiaritics as of too much importance in Systematic Botany.
4. Hymexophyllum flabellatum, Lab.; Fl. Nov. Holl. v. 2. p. 101. t. 250. f. 1. Hook. Sp. Fit. v. I. p. 111. Presl, Mymenoph. p. 32. H. nitens, Brown Prodi. p. 159. Hook. et Grer. Ic. Fit. t. 197.

Hab. Lord Auckland's group; not uncommon on the old and decaying trunks of trees and upon rocks both near the sea and on the hills.

Of a paler but brighter and more glistening green than the former. A very abundant New Zealand and Tasmanian species, rarying a good deal in size and somewhat in the form of the frond.
5. Hymenophyllum rarum, Br.; Prodr. p. 159. Hook. Sp. Fit.v. 1. p.101. H. semibivalve, Hook. et Grev. Ic. Fil. t. 83. Presl, Hymenoph. p. 32.

Far. ß. Hook. Sp. Fil. p. 101.
Hab. Lord Auckland's group; in woods near the sea, rare.

A very variable species, which also inhabits the extreme south of the American continent, as well as other and warmer parts of the globe. Presl, retaining the name of H. semibivalve, arranges this in his seetion "Cycloglossum," removing it from that of "Euhymenophyllum," in which the II. asplenioides, fumarioides and nitens, Br., are placed; but in the structure of the involucre and receptacle I have been unable to detect even a specific difference between those species and the H. rarum or semibivalve. The H. fumarioides, on the authority of Drège's specimeus, which are so named and agree in the main with Bory's description, has been included in the "Species Filicum" under H. rarkm, of which plant I have examined numerous and very varying Cape forms from Messrs. Harvey, Forbes, Mund and Capt. Carmichael, and have also gathered it upon Table Mountain. In both Tasmaniau aud New Zealand sperimens I have seen the receptacle to be either included or exserted, and in one from the former country the form of the indusia varies from being short, almost wholly sunk in the frond, much broader than long, with scarcely prominent lips, to an elliptical ovate form, with the lips protruded and nearly twice the length of the sunk portiou. The H. asplenioides and abruplum are both very nearly allied to H. rarum, the latter especially; the former has a much stouter caudex and stipes.

2. ASPIDIUM, Su.

1. Aspidiur (Polystichum) renustum, Hombr. et Jacq.; frondibus elongatis lineari-oblongis acuminatis bipinnatis, pinnis linearibus acuminatis, pinnulis breviter petiolatis oblique ovatis acutis basi superne productis grosse crenato-dentatis coriaceis concavis glaberrimis venosis, segmentis inferioribus obtusis superioribus acutis acuminatisve, rachi stipiteque superne villoso-hirtis, subtus paleis majusculis dense vestitis. A. venustum, Hombr. et Jacq. in Toy. au Pole Sud, Bot. Monocot. Cryptog. t. 5. sine descript. A. Waikarense, Colenso, MSS. in Herb. Hook.

Hab. Lord Anckland's group and Campbell's Island; very abundant from the level of the sea to an altitude of $1200-1400$ feet.

Filix, in sylvis maritimis caulescens. Candex $2-4$ pedalis, erectus, stipitibus frondium vetustorum fibrisque nigrofuscis ubique restitus, $\frac{1}{3}$ ped. diametr. et infra, versus apiccm frondibus undique patentibus coronatus. Frondes 3-5 pedales, exemplaribus sylvicolis horizontaliter patentes, alpicolis subercetæ, $\frac{1}{2}-\frac{3}{4}$ ped. latæ, hneari-oblongæ, gradatim acuminatr; pinnis plurimis, $4-6$ uncialibus, $\frac{3}{4}$ unc. latis, linearibus, acuminatis, coriaceis, glaberrimis, pimatis, pimis ultimis in caudam profunde et argute serratam confluentibus, pinnulis distantibus 5 . subimbricatis, divaricatis, breviter sed manifeste petiolatis, infimis supra rachin plus minusve productis, omnibus oblique ovatis, acutis, convexis, rigide coriaceis, grosse crenato-scrratis, basi cuncata supeme oblique producta, margine inferiore costæ parallelo, segmento infimo majore, obtuso, intermediis obtusis acutisve, supremo acuto, pungente, rarissime ommibus obtusis acutisve, superne lineis depressis notatis, venis furcatis pluriesve divisis, subtus prominentibus, glaberrimis, rarins exemplaribus valde coriaceis evamidis. Sori parvi v. minimi, plerumque $4-7$ quavis pinnula, costa propius quam margini ; reccptaculum elevatum ; indusium minimum, stipitatum, peltatim affixum, orbiculare. Costa rachisque rigide, validie, superne tomento molli rufo subvillosx, subtus hic illic tuberculatæ, hirtæ, squamis paleisque undique et tota obsitæ; paleæ plurimæ, majusculæ, scariosæ, subsquarrosæ, curvatæ, ovato-oblongæ, in acumen elongatum attenuatæ, rufo-brunneæ, nitidæ, margine pallide fulvo.

The above description has been drawn up after the cxamination of many states of a plant, which will very likely give as much trouble to a botanist in the mipodes as the states of its representatives, A. aculealum and angulare, have eaused to those of Europe. It was first discovered by Sir Joseph Banks and Dr. Solander in New Zealand, to small specimens gathered by whom the MS. name of Asp.coriaceum, β. is attached in the Banksian Herbarium. I consider myself fortumate in having met with it in Lord Auckland's group, wherc it varies cousiderably, inhabiting various situations from the level of the sca to an altitude of 1200 to 1400 feet; in the former locality appearing as a most elegant subarborescent species, for the stipites do really become consolidated into a ligneons caudex, and in the
upper regions forming small tufts of the ordinary mode of growth in ferns. Besides these rariations in size and luxuriance, depending wholly upon climate, I find that the piunæ and pinnules are more or less remote, with longer or shorter apices, and the segments of the latter are either decidedly rounded and blunt, or all acuminated and pungent; in general, however, the lower segments are obtuse and the upper acute. As a species it is abundantly distinct from A. proliferum, Br., in the presence of the large paleæ. In New Zealand it is probably even a more sportive plant than in the islands now under consideration, for I am inchined to refer to it Mr. Colenso's A. Faikarense, A. sylvaticum, and A. pulcherrimum.

The islands of New Zealand have long been known to produce a very large proportion of Ferns compared to their phænogamic plants; a circumstance which must strike the most casual observer. Being an attractire branch of Botany, it might be supposed that the excess of this Natural Order was rather apparent than real, and only due to its species being more generally collected and transmitted to England: but this is not wholly the case, the exertions of recent collectors having increased this proportion, to what is probably the maximum; for being more widely distributed than the higher orders, the hitherto partially explored middle island may be expected to produce new forms of flowering plants, accompanied with a large number of Fierns it is true, but those of species already detected eisewhere. The species of widely spread natural orders, being very frequently themselves distributed over large areas, it follows that the relative anount which such bear to the remainder of the regetable kingdom, in a comtry so large as New Zealand, cannot be ascertained from an examination of the productions of oue half of its area only. Mr. Brown has stated (Expedition to Congo, $\Lambda_{\text {Pp. p. 462) the conditions which appear most }}$ requisite for the abundant production of Ferns, and these are to a great extent amply fulfilled in the position and climate of New Zealand ; for not only the number of species is great, but the mode of growth of many is indicative of a lower latitude than they inhabit, no less than six assuming the arborescent form, oue of which attains the 47 th degree of south latitude: besides this, other species, whose stipites spring from the root at once, become caulescent, having their fronds disposed on the apex of the caudex, as those of the true tree-ferus are, giving a totally different, as well as far more beautiful habit to the plant. Of this there are a few examples in New Zealand, as the Aspidium pemigerum and several species of Lomaria, and a more striking one in the Asp. vemustum, which presents this mexpected appearance in the high latitude (for these regions) of the 53 rd degree, and is wholly due to the shade, moisture, and equable climate of the sea-level in Lord Auckland's group and Campbell's Island; for on asceuding the hills, or even leaving the woods, this fern assumes the ordinary appearance of other Aspidia.

Although the most abundant production of Ferns is found monder the physical features of shade, moisture, and a certain amount of heat, these are not on the one hand always prescut where the Ferns do preponderate to a great degree, nor on the other do the latter always appear where these conditions are the most evident.

The small island of St. Helena has its Flora composed of nearly equal portions of Phænogamic plants, Ferns, and other Cryptogamiæ, the Ferns forming about a third part of the whole, and nearly equalling the flowering plants; this is only to be expected from St. Helena fulfilling the above conditions in a most eminent degree. The little island of Ascension, on the other hand, about 500 miles distant, is proverbially called a cinder, with hardly water sufficient to supply a garrison composed of a mere handful of men, and absolutely but one small drip, rather than spring, in the whole island, supplied by the percolation of condensed sea-rapours on the narrow top of a hill, 2818 feet high; no shade exists any where, and the soil is porous volcanic scorie, that scorehes the feet after being heated by a tropical sun ; under all these circumstances it produces likewise as many Ferns as native flowering plants. It is true that they are confined to the top of Green Mountain, whose slopes in many places are completely covered by them, but they cujoy no shade, the only native woody plant not attaining two feet in height; and what is more remarkable, out of mine species of Fems existing under these circmastances, only two are common to Ascension lstand and St. IIelena; sereral are pecukar to their isolated position, and one is a species of Marattia, a genus I believe to be in gencral particularly impaticnt of exposure. I know no parallel instance to this amongst the Atlantic islauds; a far larger proportion of the ferms, both of St. Helcna and of Tristan d'Acunha, is common to both these spots, and to other parts of the globe, than are those of Ascension;
and in the little island of Trinidad, in lat. $20^{\circ} \mathrm{S}$., where we effected a landing with considerable difficulty, in a rocky cove which was cut off by precipices from all other parts of the island, I found the Ferns at the level of the sea in the proportion of $2-3$ to the phænogamic plants, and the species were the most common Brazilian ones. This remarkable disparity betreen the vegetable productions of two islands so contiguous as St. Helena and Ascension, and both so remote from any other land whatever, has some analogy to what obtains in the islands of another isolated group, also situated within the Tropics, though in another ocean-the Galapagos. From the examination of an excellent herbarimn formed by Mr. Darwin in three of these islands, and of some of the plants from a fourth island, as well as of those collected by Mr. Douglas, Dr. Scouler, Mr. Macrae, aud Mr. Cuming, in the localities also visited by Mr. Darwin, it would appear not only that the plants of that little archipelago differ widely from those of the main land of S. America, but that its several islets possess in some cases different genera, and more often representative species. The Ferus there bear but a small proportion to the whole Flora, though a more considerable one to that of the two islands in which they are most abundant, and they are rather the common forms of the West Indies than of the neighbouring coasts of Columbia, Peru, or of Mexico.

The Aspidium renustum, as it grows in the low woods of Lord Auckland's group, is, for its size, among the most ornamental of Ferns, the larger tree-ferns alone excepted. In one respect it eren excels those of more majestic growth, for its feathery fronds are spread out below the le el of the eye, so that the beautiful symmetry of the cromn, with its rich relvetty crosier-formed young leaves in the centre, is thus fully displayed.

3. ASPLENIUM, L.

1. Aspleitem obtusatum, Forst. Prodt. n. 430. Lab. F̌. Nor. Holl. v. 2. p. 93. t. 242. f. 2. Brown, Prodr. p. 150. Schkukr, Fil. r. 1. p.6.t. 6s. Mombr. et Jacq. in Toy. au Pole Sul, Bot. Monocot. Crypt. t. 1. A. (sine descript.).

Tar. B. olliquam;-A. obliqum, Forst. Proth. r. 429. Labillard. 1.c.t. 242. f. 1. Schkuhr, l. c. t. 71. A. chondrophyllum, Bertero in Merb. Hook. A. apicidentatum*, Hombr. et Jacq. l. c. t. l. A. (sine clescript.).

Hab. Lord Auckland's group and Campbell's Island; very common on the rocks near the sea and at the margins of the woods.

All the varions stagcs between the A. obliqum, Forst., and A. oltusatum, Forst., exist in Lord Anckland's group, and probably in other islands of which this plant is an inhabitant; one of the specimens indeed, is intermediate between the excellent delineations of the two given by Schkuhr. MM. Hombron and Jacquinot have also figured both the states (from Lord Anckland's group), retaining them under the name of "obtusatum," and added to the plate a representation of another, under the name of A. apicidentatum, which is equally abundant with the others, and I have been unable to distinguish it even as a variety; the production of the aper of the pinna into a tooth, not affording a constant character. I have not quoted the Flora of Mr. Cunningham, or of M. A. Richard, the former not baving gathered this species at the time of the publication of his Prodromus, and the latter author, considering it identical with A. lucidum, Forst., leaves it doultfful whether he knew both species. Besides the greater size, different texture, and shining surface of the A. lucidum, its involucres are always very much narrower and longer in proportion to the breadth of the frond. Both are common to many parts of the sonthern hemisphere, and are particularly frequent in the Pacific Islands.

I have retained the name of obtusatum for this species, that variety being the more frequent of the two described by Forster.

* A. apicidentatum, Homb, and Jacq.; this name probably applies to the pinnæ being terminated by a tooth ; but all the pinnæ being serrated throughout their whole margin, I presume the term is not used in its ordinary acceptation.

2. Asplenius seleroprium, Hombr, et Jacq. in Foy. au Pole Sud, Bot. Monocot. Crypt. t. 1. D. sine descript.

Hab. Lord Auckland's group. (IMI. IIombron et Jacquinot.)

On this plant I can give no information, the plate of MM. Hombron and Jacquinot being unaccompanied by any description. Some of my specinens of .t. obtusatun approach the figure quoted abore, and eutirely agree with it in the form of the sori : they differ in the piunæ being less strongly cremato-serratc. The name probably alludes to the texture of the plant, which like that of many of the southem species is remarkably thick and coriaceous.
3. Asplexidm flaccillum, Forst.; Proll. n. 426. Presl, Pterid. p. 106. Canopteris et Darea auctorum.

Far. β. Aucklandicum, Hook. fil.; erectum, frondibus lineari- v. oblongo-lanceolatis crassis pimatis, pinuis lineari-lauceolatis inciso-serratis, involueris a costa remotis interdum supra segmenta productis.

Hab. Lord Auckland's group; frequent on the margins of woods near the sea.
$F_{\text {arietas }}$ crecta, bi-tripedalis, crassa et coriacea, lete-virens, sublucida, inter Asplenium verum Cenopteridenque quasi media. Frondes $1-1 \frac{1}{2}$ ped. longe, $\frac{1}{2}-\frac{3}{4}$ late, apice in laminam attenuatam basi profunde laciuiatan producte, pimatæ. Pinnce remotæ, sublonge petiolate, lineari-elongatæ v . lanceolatæ, crassx, $3-5$ unc. longæ, $\frac{1}{2}$ muc. latæ, basi suboblique attenuatæ, superne in apiccm linearen oltusam sinuatam subcandatam productæ, per totam longitudinem regulariter profunde inciso-serrate; laciuiis linearibns, oltusis, sub $\frac{1}{\frac{1}{4}}$ unc. longis, infimis rarissime bifidis, costa crassa, latiuscula; venis simplicibus, obscuris, ad apices laciniarum percurrentibus. Sori latiusculi, a costa remoti, parte superiore sepe ultra pinnam supra lacinias producto, iisque marginale. Rachis latinscula, subaata, supra medio costata, subtus canaliculata, plerumque glaberrima. Stipes validus, crassitie penux auscriux, basi curratus et ascendens, angulatus, hiuc illine palcis rarissimis membranaceis sparsis.

This is a rery handsome Fern, aud, as it appears in Lord Auckland's group, very different from A. obtusatern, but is so closely allied to the A. flaceidum, a very common plant in the New Zealand Islauds, that I have retained it as a variety of that plant. The piumæ are attemuate and narrow, produced at the apex into a long caudate obtuse laciuia, they are remarkably uniform throughout the frond, but in my largest specimen the base of one of the lowest pimne is trapezoid, much broader than the rest, more deeply divided, with the veins sometimes forked. This, together with the remoteness of the short sori from the costa, and their frequent extension along the iuner edge of the laciuie, is what obtains in the more entire varietics of the A. flaccidun. The tendency to produce the sori at a distance from the costa appears to remove this species from . 4 . obtusatum, Forst. and its allies, to which its regularly pimated frond bears much resemblance, conneeting it on the other band with A. bulliferrum, Forst., and its inconstant ally A. laxum, Br., some of whose states again are very near to varictics of this. With reference to the very rariable nature of some genera of Ferns, and especially of those in the islands of the Southern Hemisphere, I may bere transcribe a remark made by a very acnte obserrer of plants, Mr. James Backhouse, during his visit to Norfolk Island:* "On the rocks of the S. coast Aspleniem difforme grows, a Fern rescmbling the A. marinum of England. At a short distance from the shore its leaves become more diviled, and in the woorts, in the iuterior of the island, they are separated into such narrow segments, that the lines of fructification are thrown upon their margins. It then becones Cenopteris Odontites. But crery possible gradation is to be met with between this state, and that in which it grows on rocks washed by the sea." Hating no Norfolk Island specimens of these plants, I am mable to offer any further comment except that some specimens of A. difforme in Mr. J. Smith's Herbarium seem to confirm this siew, and that Mr. Backhonse's well known accuracy entitles any obscrration of lis to much consideration. The .1 . marinum itself has a wide geographical range, varying considerably in its several localities, and more in some places than in others; some of these I have alluded to in describing the plants of the Galapago Islands. (MS. ineed.)

[^9]
4. PTERIS, L.

1. Pteris vespertilionis, Lab.; Fl. Nov. IIoll. vol. ii. p. 96. t. 245. Brown, Prodr. p. 154.

Hab. Lord Auckland's group and Camploll's Island; very common on rocks near the sea.
These specimens, which are small, accord with others gathered in Tasmania. The veins are generally free, but in the broader pinnules the upper primary one often mites with that of the segment below it. The P. Brunoniana of New Zealand (A. Cunn. Prodr. Fl. Nov. Zel. in Comp. Bot. Mag. vol. ii. p. 365.), has the veins much more anastomosing, in which respect it differs from the plant of New Holland. This is also the case in specinens of a rery similar plant from Brazil, the Mamitins, Juan Fernandez, and the Philippine Islands. The more simple veined species is apparently an inhabitant of New Holland, Tristan d'Acunha, and the Cape of Good Hope.

The Lord Auckland's group specimens, growing in the immediate neighbourhood of the sea, have a very suceulent habit.

5. LOMARIA, Filld.

1. Lomarla procera, Spreng. Syst. Teg. vol. iv. p. 65. A. Cum. Prodr. Flor. Tov. Zel. in Comp. Bot. Mag. vol. ii. p. 363. L. procera var. tegmentosa, Hombr. et Jacq. in Toy. au Pule Sud, Bot. Monocot. Crypt. t. 2. E. sine descript. Stegania procera, Brown, Prodr. p. 153. A. Rich. Flor. Nor. Zel. p. S6. t. 13, fertile frond only. Blechnum, Sw., Lab. Flor. Noz. Moll. vol. ii. p. 97. t. 247.

Hab. Lord Auckland's group and Campbell's Island ; abundant, especially by the banks of streams and in watery places, ascending to the tops of the hills where it is very stunted.

This is the ordinary New Holland and Tasmanian form. M. A. Richard, in the Flor. Nor. Zel., gives an excellent flgure of the sterile frond along with the barren state of another, probably the following, species.
2. Lomaria lanceolata, Spreng. ct A. Cumn. locis citatis. Stegania, Brown et A. Rick.

Hab. Lord Auckland's group and Camplell's Island; in woods close to the sea abundant.

6. POLYPODIUM, Sk.

1. Polypodum viscidum, Spreng. Sp. Pl. vol. iv. p. 61. Cheilanthes viscosa, Carm. in Linn. Soc. Trans. vol. xii. p. 511. non Link. C. fragilis, Carm. in Ilerl. Ilook. "Polypodinm villoso-viscidum, Aubert du Pet. Thouars, Flore de Trist. d'Acunha, in Mel. de Bot. p. 14." Carm. l. e.

Hab. Lord Auckland's group and Campbell's Island; moist places on the hills, especially under the shelter of bushes.

Mry specimens entirely accord with Capt. Carmichael's in Herb. Hook. Very similar plants inhabit other islands of the Southern Hemisphere, which have been placed in Polypodium or Cheilanthes, according to the views entertained by the authors of the several species as to the nature of the recurved apices of the lobules, which, cspecially in a young state, corer the sori. The species most nearly allicd to this are the Polypodium ciscosum of Pritchard's 'Catalogue of St. Helena plants,' the P. riscidum of Colenso MSS., a native of New Zealand alluded to in a catalogne of those collected by Mr. Stephenson (rid. Iook. Lond. Bot. Journ. vol. iin. p. 413.), and a Juan Femandez species in Herb. Hook., bearing the name of P. spectabile, Kaulf. ?, in Mr. Bertero's hand-writing ; all these have the sori invariably placed close to the margin of the segments, in whose concave apices they are somewhat stimk. The P. rugosulum (Lab.Fl. Nor. Holl. vol. ii. p. 92. t. 241.), another closely allied plant, is retained in this genus by Mr. Brown (Prodr.
p. I47.), and to it the Cheilanthes ambigua, A. Rich. (Flor. Nov. Zel. p. 84.), seems very ncarly related. M. Richard aecurately describes his plant, of which I have gathered specimens near the Bay of Islands, and should be inclined to place them near to the P. rugosulum, Lab.; though in habit and most of the characters it approaches a true species of Cheilanthes or Hypotepis, from the interior of New Zcaland, which is hitherto undescribed. Mr. Colenso's P. viscidum, a mountain plant, is, I beliere, identical with this from Lord Auckland's group.
2. Polypodus Grammitidis; Bromn, Prodi. p. 107 et auetorum. Grammitis heterophylla, Lab. Flor. Nor. IIoll. v. 2. p. 90. t. 239.

Hab. Lord Anckland's group; on the trunks of trees, rare.
This plant appears intemediate between the genera Polypodium and Crammitis; I have followed Mr. Brown in retaining it in the former of these. The Auckland Island specimens do not differ from those of New Zealand and Tasmania.

7. PHYMATODES, Presl.

1. Phymatodes Billardieri, Presl, Pterid. p. 196. Polypodium Billardieri, Broun, Prodr. p. 147, et auctorum. P.scandens, Lab. Nov. Holl. vol. ii. p. 91. t. 240. P. phymatodes, A. Rich. Fl. Nor. Zel. p. 66.

H1ab. Lord Auckland's group and Campbell's Island; common on trunks of trees and rocks in the woods near the sea.

The Anckland group specimens are equally variable with those of New Zealand and Tasmania.

8. GRAMIMITIS, Su.

1. Gramatis australis, Brown, Prodi. p. 146. A. Cum. Flor. Not. Zel. 1.c. p. 362. Mombr. et Jacq. in Toy, an Pole Sul, Bot. Monocot. Crypt. t. 2. G. G. Billardicri, IFilld. Sp. Pl. vol. v. p. 139. Presl, Pterid. p. 209. G. rigida ct G. humilis, Mombr. and Jacq. l. c., t. 2. fig. F. and H.

Hab. Lord Auckland's group and Campbell's Island; very common in all situations, from the level of the sea to the tops of the mountains.

A eopious suite of specimens, eollected at different levels, from the sea to an altitude of 1400 ft ., prove all the three species figured by MITI. Hombron and Jacquinot to belong to states of one plant. The same rarieties are found on ascending Mount Wellington in Tasmania, where also they pass insensibly into one another. I have retained Mr. Brown's name for this species, the name G. Bitlardieri having been already applied to another of the genus, and I am not aware whether the 'Prodromus Flore Nove Hollandiæ' or Willdenow's 'Species Plantarme' appeared first in the year 1810 .

> 9. SCHIZモA, Suc.

1. Schzeta australis, Gaud. Flor. Ins. Mal. in Amn. Sc. Nat. Maie. 18:5, p. 95 et in Freye. Toy. Bot. 1. 296. S. palmata, Hombr. et Jacq. in Foy. an Pole Sul, Bot. Monocot. Crypt. t. 4. Z. sine descript.

Hab. Lord Auckland's group; upland places, rery common on the hard soil, which is often bare of any vegetation but Lichens.

These specimens entirely aceord with the description of M. Gaudichand's S. australis, quoted above: the figure of MIM. Hombron and Jacquinot not aftording any character to distinguish their S. patmate specifically from this, and no letter-press having accompanied their plates, I feel obliged to set aside the name they have adopted.

10. LYCOPODIUM, L.

1. Lycopodium scariosum, Forst. Prodr. n. 484. Spr. Syst. Ieg. vol. iv. p. 1S. Hook. and Grev. in Bot. Misc. vol.ii. p. 388. L. Jussieui, Dest. Encycl. Bot. Suppl. vol. iii. p. 534. Willd. et auctorum. L. reptans, Banks and Sol. MSS. in Bill. Banks.

Hab. Lord Anckland's group; in woods, D. Lyall, Esq.
Sir J. Banks and Dr. Solander it would appear were amongst the original discoverers of this species, though it is of so general occurrence throughout many parts of the tropies, as very probably to exist in some of the older Herbaria. Forster's name secms to have been entirely overlooked by botanists; it is attached to a specimen, preserved in the British Museun, of the plant now well known merer the uame of L. Jussieni Desr., a very widely diffused species, especially throughout the S. American continent. Mr. Colenso has collected it in the mountainous interior of the northern islaud of New Zealand, and Sir J. Banks and Dr. Solander in Admralty Sound. There exist, in Herb. lłook., South Americaus specimens from as firr south as Valdivia, and also from Peru, New Grenada, and Jamaica, where it appears to be abundant, rarying slightly in habit, being sometimes suberect or ascending, but more generally Laring a long trailing caulex, which sends up erect branching stems.

The L. scariosum belongs to a small section of the genus, whose natural position is between the two great groups, namely, that with the leaves imbricated all round the stem, and that in which they are stipudate, distichons, and more or less of a membranous texture. The spikes of this section are gencrally perlunculate and often branched, as in this species and L. complanatum, L.; bnt sometimes sessile, which is the case with L. decurrens, Br .; in the former character, as in the coriaceons foliage, often indistinct stipules and aretic, alpine or temperate habitats, this section differs from the tropical distichons-leaved division to which the form of foliage approximates it. Like most natural groups, the limits of this camot be very strictly defined; Ar. Brown's L. decurrens has the sessile spikes of the tropical species of Selaginella and some states of L. complanatum; approaching forms of L. Alpinum, D., pass into the imbricated ones. The allies of L. scariosum are few ; I am acquainted with the followiug ; 1. L.decurrens, Br., only known as an inhabitant of the Alps of Van Diemen's Land ; 2. L. comptunatnm, L., this is a very widely diffused plant throughout the temperate and arctic regions of Europe, Asia, and America; we possess specimens of a very similar, if not the same species, from upper India and the Peninsula of Hindostan, as also from Jamaica, from Mexico, Columbia. Peru, Caraccas and Brazil, it is the L. thuyoides, II. B. K.; 3. L. volubite, Forst, a yery common New Zcaland species this and the two following have compound panicles of spikes, with elongated and sprcading branches; t. L. filicaule,* (vid. infra) ; 5. L. + comans, (vid. infria) ; 6. L. Wightianm, Wall., some states of this have the leaves towards the

* L. filicaule, Hook. fil.; rage ramosum, caule gracillimo mudo tereti valde ramoso, ramis divaricatis patentibus filifonnibus compressis foliosis utrinque stipulatis, foliis altemis oppositisve linearilus longe deeurentibus partu superiore solum libero curvato subulato apice pilifero, stipulis parvis raris piliferis, pilis diaphanis, spicis plurmis pedicellatis pranculatis inclinatis v . pendulis, squamis late ovatis acmeninatis.

Hab. Upper India. Moflong fir forest Khasya Hills, Mr. Griffiths. A very fine species; the brauches are of a dusky red color when dry; the uttimate ones, with the leaves, 1 line across. The panicles of spikes are lateral, $3-4$ inches long and spreading; the spikes themselves, $\frac{1}{4}-\frac{1}{2}$ inch long, generally curving.
\dagger L. comans, Hook. fil. ; pendulum, caule dichotome ramoso tereti hine illine cicatricato nudo v. foliis diaphanis sparsis, ramis longissimis pendulis gracilibus flaccidis pluries divisis valde compressis utrinfue stipulatis foliosis, foliis distichis suboppositis altemisve longe linerribus per totam fere longitudinem decurrentibus coadunatis apieibus solum liberris acutis, stipulis scariosis raris, spicarm paniculis lateralibus ralde ramosis, ramis jechicellisque teretibus foliis sparsis lanccolatis scariosis obsitis, spicis longe pedicellatis arcuatis, squanis ovatis in laminam erosam scariosam diephanam productis.
apices of the branches quadrifarious, in others they are so almost throughout the branches, it is probably not different from,-6. L. alpinum, in which they are sometimes distichous, when the more sessile spikes alone distinguish it from L. complanatum. The quadrifarious disposition arises from the stipules becoming leaves. Of other species, referred to this section in the Botanieal Miscellany (l. c.), there are no specimens in Herb. Hook. L. alpinem I have mentioned as perhaps a doubtful species of this section, its leaves being sometimes imbricated even in more than four series; in some Norway specimens the spike-bearing branches are elongated and become rather bare of leares, which are also more appressed, thus exhibiting a manifest approach towards some species with pedicellate fructification. It may further be remarked that L. complanatum is not a British, and L. alpinum hardly an Anerican plant.

The leaves of L. dendroideum, Mich., a species apparently confined to North America, are sometimes partially distichous; they are not, however, coadmate with the branches, as in this group.
2. Licopodrem claratum, L., var.- L. magellanicum, Suartz Syn. Fil. p. 1S0. Wille. Sp. Pl. vol. v. p. 15. Gaud. Fl. Ins. Mal. in Ann. Sc. Nat. vol. v. p. 9S, and in Freycinet, Foy. Bot. pp. 130 and 2S2. IPUrr. F7. Ius. Mal. in Mem. Soc. Limn. Paris, vol. iv. p. 597.

Hab. Lord Auckland's group and Campbell's Island; on the hills, not uncommon, but only found at a considerable elevation.

These specimens differ in no respect from others which I have gathered in the Falkland Islands and on Mormt Wellington, Tasnmana, and have considered to he the L. fastigiatum, Bromı, (Prodr., p. 165). The Falkland Island plant, which is also common in Antarctic America, raries from one to many inches in height. The candex is ascending or creeping, often one to two feet long, naked or clothed with leaves; the branches are erect and divide in a panicled form, and are copionsly leafy; the leaves are subacute or acuminated, always more or less cunted, but are at some times moch more numerous than at others. In starved alpine specimens the spikes are solitary and often sessile : as the plant inhabits lower levels and more favourable situations its peduncles elongate, fork or hranch, and bear two or more spikes: the spikes themselves vary from $\frac{1}{4}$ to 2 inches long, with the scales ovatolanceolate, acuminate, rather variable in length, and more or less recurved.

The species of Lycopodium are liable to great variation, as a copious suite of any one will readily show; many of them have been examined and characterized with reference to the conntry they indabit and their congeners in that country, and have not been compared with the whole genus. As our collections increase, specimens are constantly presenting themselves, which tend to unite the species of two distant localitics; partly because they partake of the characters of both, and also becanse, coming as many do, from intermediate stations, they strengthen the supposition that such are mere forms of one widely diffised plant. It is seldom that a collector has the time, and few have the inctimation, to preserve such a series of specimens from one locality, as will give any idea of the amount of variation a species may be liable to, in a limited area: on the other hand, the extreme ranieties are collected as two different species, and a future author is often obliged to describe as a third an unrecorded state of what actually exists in both situations. The L. magellanicum, Sw., presents a case in point. In the Falkland Islands, states of it are not umfrequently met with in all respects resembling the L. clacatum, excepting that the leaves are not

Ilab. Philippine Islands; Cuming, no. 23 ± 6.

A rery fine species. Branches 1-2 feet long, about a tine broad, lunid red. Leaves 2 lines long, wholly consolidated with the branch, except their apices, which are sometimes free and acute, or more rarely with a diaphanous point. The stipules are often irregularly placed, generally with long diaphanous acmmated apices, appressed to the branch. The pedicels of the spikes and branches of the pamicle have leaves similar to the stipules. Panicles $3-1$ inches long, their pedicels about an inch; the spikes curved, about $\frac{3}{4}$ inch, their scales with long subercet or patent diaphanous apices.
piliferous at the apex; so close indeed is the resemblance in habit that M. D'Urville has remarked, "Je possede un échautillon de Gaudichaud, double de taille, et roisin de notre L. clavalum." Such being the case, should L. claratum be seen to vary in this respect, and especially if it is found to inhabit all intermediate latitudes between its northeru habitats and Fuegia, we shall be obliged to conclude either that the plants are the same, or that L. magellanicum may be so sportive as to assume a form mdistingushable from the European plant. The former of these couclusions is generally admitted in such cases. The limits within which a species varies are acknowledged to be wider in one locality than in another, and two closely allied individuals may be modified almost infinitely without ruming into one another, as it is called; but, since the knowledge of specific difference is limited to the powers of observation, which are only attainable by the microscope, we are forced to acknowledge it possible that two totally different plants, inhabiting widely separated countries, may present to our senses a precisely similar appearance and remain undistinguishable ; a conclusiou which, if acted upon without cantion, would lead to the subrersion of all our confidence in what are umiversally confessed to be well established species.

The acute-leaved Iycopodia, which are not piliferous at the apex and otherwise closcly allied to the L. mageltomicum, are L. fastigiatum, Br., and L. Pichinchense, Hook. (Ic. Pl. t. 85), the latter certainly is, and probably the former also, a state of or ileutical with this; both of them, though inhabiting a lower latitude, are only found at a great height. From Orryce we have L. helerophyllum, Hook. (lc. Fil. t. 113), in which the leaves are some of them simply acute as in the more southern form, bnt others piliferous and ciliated or crose at the margin, the former a very constant character in the L. clacatum, and the latter sufficiently obvious in some states only of that plant; in other respects this is not to be distinguished from the above or from a very common Chilian species, whose leaves have long acuminated points, and which seems identical with the L. dendromorplum, Kunze; of this, however, 1 have only seen barren specimens, exidently passing into the L. aristatum of the tropies, a very widely diffused and generally acknowledged variety of L. clavatum. Many states of L. clavatuaz are enumerated by Mr. Spring, in his account of the Brazilian Lycopodia, (vid. Regensburg Flora, 1838).

The last named author seems to have described from copions suites of specimens, and to have arnved, in most points, at the same conclusions with nyself; thus, he has found it necessary to combine the L. alopecnroides, L. and L. longipes, Hook. and Grev., with L. inundatum, L., to which must be added L. Mathererii, IIook. (lc. Pl. t. 26), and perhaps I. contextmm, Mart. (Fl. Bras. Crypt. vol. i. p. 38, t. 23, f. 1.), these species I had considered as merely forms of one, before Mr'. Spring's paper was pointed out to me. The L. caroliniumm, L., accompanies the last mentioned species throughout the temperate and warm parts of the American continent, and has also a very wide range through other comutrics, having been found in Tropical and South Africa, the East Indies, Madagascar, Tasmania, and New Zealand ; these two constitute part of a natural section allied to the Clacatum group in the spiked, more or less pedunculate fructifications, and ascending direction of the leaves on the prostrate stems, and to the Complanatum division in the tendency of the leaves of L. caroliniamm to become distichous and decurrent, the other species of it are L. selaginoides, L. and L. pygmemm, Kaulf. A third group of species, which, like the former, have cylindrical spikes, contains-l. the L. annotinum, L., a species spread over all temperate and Northern Europe, Asia, and especially America, where it is found as far south as the Alleghany and White Momtains. There are what appear barren specimens of this in Hook. Herb. from Dr. Wallich, ander the MS. name of L. Heyneanum. In South America L. amotinum is represented by a more slender but very nearly allied plant, whose spikes are sometimes bifid and spmiously pedunculate; it is Hartweg's 1474 and 1479 from Colombia, where it has also been gathered by Professor Jameson.-2. L. diaphamm, Sw., this is a Tristan d'Acunha species, very distinct in the form of the scales of the spikes and long piliferous apices of the leares.-3. L. sericerm, Mst., this is the L. seariosum, llook. (Ic. PI. t. 87 , note), from Peru, one of the most beantiful species of the genus. I know of no others very closely allied to these, they rank near the Clacatum group, from which indeed they only differ in the truly sessile spikes, and also approach that contaming L. complanatum, through L. alpimen, whose spikes are sessile.

The L. cernum, L., may be considered as the type of another natural section, it is perhaps the most abmantant
species of the genus, throughont the tropics especially, probably coveriug more space than any two others. There are specimens from no less than fifty different stations and seventy collectors, preserved in the Hookeriau Herbarium ; its northern linit seems to be lat. 39°, where it is found in the Azores Islands, and its southeru the Cape Colony; this, like several other very widely diffused species, docs not inhabit the Australian contincut, so far as 1 am aware. The following species should rank with it,-2. L. pendulinum, Hook. (Fc. Pl. t. 90).-3. L.tortum, Sieber.-4. L. densum, Lab.-5.? L.dendroideenn, Micll., this species is of rather duhious affinty and should perhaps be more properly placed in the Complanatun group, the branches being spread out in a flabellate manncr, the whole frond very compressed or plane, and the leares laving a tendency to become bifarious; the lattcr are described as "being 4-6 fariously disposed, with those of the under surface sunaller than the rest," (vid. Bot. Misc., vol. ii. p. 386), this is always the case, but at the same time those both on the upper and lower surface of the branches are appressed whilst the latcral spread, and the lower are often so small as to partake of the nature of stipules. All the specics of the Cernumn group are robust in habit, erect, generally tall, copiously branched with their branches spreading on all sides; the spikes are sessile and very numerous, their mode of growth suffices to distinguish them from those of the Annotinuan sectiou.

The four groups above enumerated contain most of the imbricate-leaved species with uniform capsules arrauged in terete spikes ; they are I beliere strictly natural, though all are not fomdel upon characters of equal value. One species, more nearly allied to some of the above than to any of the other great divisions of the gemus, stands very much by itself, the L. keterale, Br. (Mr. Brown's L. diffusum being possibly a rariety of it), in whieh the spikes are placed upon such very short branches as to appear truly lateral; in this respect, as in their obsenrely angular form, it approaches some of the distichous-leaved group, but the habit is totally dissinilar and the foliage like that of L. inundatun, rar. Alopecuroides.
3. Lycopodium varium, Bromn, Prodr. p. 165 et auctorum. L. pachystachyon, Desv. Encycl. Meth. Suppl. vol. iii. p. 544.

Hab. Lord Auckland's group and Campbell's Island ; very common in the woods.
Under the former species I enumerated the different groups into which those of this genns with leares imbricated round the stem and terete spikes arranged themselves; they form, together, one of the large primary divisions of Lycopodiun ; they are inhabitants of the cold as well as of the tropical parts of the globe, generally assuming, as they approach the equator, a larger growth and more robust habit, both the individual speeies peculiar to the low latitudes, and the rarieties of those which equally inhabit the polar regions, being more fully developed within or near the tropics. There they are not replaced by the distichous-leared group, but under most conditions are equally abundant with them. Thronghout all changes of temperature and varieties of exposure, the seales of the spike never exhibit any tendency to become foliaceons, nor do they possess capsules in the axils of the leares.

There are, however, other Lycopodia whose fructifications are as manifestly spicate as the last, and which accompany them through all climates, but whose spikes are angular and the scales not materially different from the cauline leares; these, in passiug from a temperate to a warmer parallel, gradually lose their spieate charaeter, the eapsules appear equally in the axils of the upper leaves and in the spikes, the latter become gradually reduced and at length obliterated, when the fructifications are wholly axillary : under excessive heat and moisture, the same effect is produced by the prolongation of the axis beyond the apex of the spike, into a leafy branch, similar to the lower parts of the stem, and at the same time the conversion of the seales into ordinary leaves. A third modification is presented in those whose spikes divide or branch. Here there is a blending of the two divisions Selago and Phlegnaria, through L. varium and its allies, which together, I eonsiler to form one natural group; and it is firther to be remarked, with regard to them all, that these modifcations of the inflorescence are not only the cffects of latitude and climate, but that oue species secms to assume all these appearances in a single locality, which in other parts of the globe is invariable through a considerable area; and that the causes of the change
are at onc time quite latent and at another conformable to our idens of the effects of temperature and local eireumstances. It is not only in the infloreseenee that this group is liable to vary, but one form passes into others by the modifications of many of its organs at onee, and this to so great an extent as to render it extremely difficult to define any one species between the two extremely dissimilar forms of L. Selago and L. Phlegmaria. Want of spaee obliges me here to confine my attention to the phases under which L. varium occurs; these are so remarkable and were so wholly unexpected, that if we agree to consider sueh plants to be the same species as only offer forms umdistinguishable to our senses, it will follow that the most of these supposed species must merge into one, and that Lycopodiun Selago is perhaps the most variable plant in the world.
L. varium, in Lord Auckland's group and Campbell's Island, is one of the finest of the genus; it grows nearly erect on the bare gromd, to a height of 1-2 feet, branehing upwards, eopiously leafy, with large spreading leaves, bearing at the apiees of the branches numerous pendulons or drooping tetragonous spikes $2-4$ inches long. The stems of this species are often nearly the thickness of a swan's quill with spreading leares as broad as the middle finger; I have no where seen handsomer specimens of it thau this island presents, and more constant ones, for it is confined to the woods, and does not ascend the hills', neither warying in the narrow belt it inhabits nor seeking other localities where it would be exposed to the influenee of exciting canses. The case is very differcnt in Tasmamia, where it also grows very commonly in the subalpine woods, and from whence I have specimens of Lycopodia presenting all intermediate stages between this and L. Selayo, the connecting links being similar to what have been considered different speeies in other parts of the globe. Form and habit alone have not induced me to mite such dissimilar plants, for I have in wain sought with the microscope for diagnostic characters. The smallest Tasmanian specimens have been published as L. Selago (Hook. and Grer. in Bot. Mise., rol. iii. p. 104), they are about five inches high, simple at the base, branching upwards, in all respeets similar to the Ameriean and European plant; they are likewise copiously supplied with gemme, giving a squarose appearance, these were furst observed on the North-west Ameriean speemens of L. Selago, but are now known to be common on this species even in Scotland, where a rariety occurs with small rery acuminated leaves, those of the gemme being sometimes mneh altered, broadly oborate-oblong, acute, and keeled on the back. In the next stage of the Tasmamian plant, the stem ascends from a curving prostrate base, is about 5-6 inches long, the lower leares are limear, acute or aeuminate, patent or subsquarrose, subserrulate towards their apices, obscurely nerved in the middle, the upper leares are generally appressed for nearly the whole length of the stem, lanceolate or orato-lanceolate, acuminate, aente or subacute, obscurely nerved, the margins cartilaginous with obsolete serratures: this form is quite identical with others of L. Selago from Cumberland, as well as with many from North Lurope, Asia, and America. The two first described states inhabit exposed plaees, the following (the third), whieh grows on roeky places on the margins of woorls, has the stems a foot or more high, branehing, much curved and aseending at the base, sparingly branched above; the leaves, except towards their apices, are patent or subsquarrose, larger and more loosely placed than in the former, with the nerve more thickened, thase at the summits of the branehes are similar to the leares of the seeond state but more distinctly serrated. L. Selago of Tasmania resembles L. suberectum, Lowe, of Madeura and other warmer parts of the northern hemisphere, in which the leares are generally all squarrose, nearly entire or strongly eiliate at the margins; this is such a form as a species, in passing from a colder to a more genial temperature, might be supposed to assume. In the fourth stage of the Tasmaman plant the leaves become larger, more patent or subreflexed, coriaceous and shining, still they are more or less acute, and the eapsules are wholly axillary, sometimes confined to the midde of the braneh, at others to the upper portion, whieh looks rather different from the lower and indicates the transition to L. carium. This state is nearly allied to some Indian forms of the genus, as also to L. Tucidutum, Mich., whieh varies in the serratures of its leaves and in other partieulars approaehes very near, if it does not absolutely merge into Ameriean forms of L. Selago. Nor is it to be distinguished from Ceylon and Tristan d'Acmiha specimens of L. insulare, Carm., whieh further passes into L. crassum, Hook. and Grev., and through it into some other South American species.

The remaiming Tasmanian states of L. Selayo may be considered as belonging to L. varium; in the fifth of these
(from the small one with whieh I commenced), the stout stem becomes naked below, sparingly leafy upward, with long, linear, coriaceous, acnte or oltuse leares, the capsules are both axillary and spieate, but the spike is interrupted, the scales being at one time small, and at another foliaceous. This approaehes the L.taxifolium, Sw., and L. linifolium, L., natives of various parts of the world, also L. gnidioides, L., Cape speeimens of whieh differ from the normal state of varium only in haring axillary capsules, whilst in other localities it becomes pendulous and spicate; and so with regard to the L. Flagellaria, Bory, of New Zealand, whieh I cannot distinguish, exeept by its mode of growth, from L. varium. To dwell at length upon all the varieties of this species would be out of place here, and occupy many pages; the transitions from it to Phlegmaria are not obscure, the variations of that plant being excessive.

The inportanee of the question, "whether two perfeetly similar plants, from remote quarters of the globe, are to be considered as belonging to one species," has induced me to canvass very fully the claims of many supposed forms of Lycopodium to the title of distinct species. In all such eases, my first object has been to determine whether the plant inhabits various intermediate countries. When, as is the case with Callitricke verna (p. 11.), Montia fontana (p. 13.), Gentiana prostrata (p. 56, in note), Myosotis fulva (p. 57, note), aud Trisetum subspicatum (p. 97.), they are found to do so, there need be little hesitation in referring them, after due examination, to one plant ; in such instances, the supposition of a double ereation of the same speeies, or of one of them being a variety of some other really distinct plant, which plant wholly resembles another from other countries, would be confessedly a gratuitous assumption. Where however no intermediate stations ean be detected, these suppositions become more plansible; the only alternatives to sueh conelusions being, lst, the possibility of the species being destroyed in the intervening positions whieh it may formerly have inhabited; 2nd, the great improbability that the seed las been earried at once from one polar region to the other ; or, lastly, what I have endearoured to establish with regard to Lycopodium varium and Selago, that the species does exist in all intermediate latitudes, but in a hitherto umrecognised form; a cireumstance the less to be wondered at on many aceounts, and the following in particular. Ow daily increasing knowledge of Ferns proves that the species are infinitely more widely distributed than has been supposed. The several speeies being variable in limited areas, it is to be expeeted that the amount of variation should inerease proportionally with the space they eover; because the individual species of many widcly distributed genera, as Iycopodium, have often themselves wide ranges; bceause the lower we descend in the scale, according to which all known regetable produetions are now arranged, the more universally we find the species scattered over the smface of the globe; and lastly, the minute size and abundance of the sporules of Lycopodium are farourable to their extended dispersion.

ACOTYLEDONES.

XXXIII. MUSCI.

(By W. Wilson*, Esq. and J. D. Hooker.)

1. ANDREEA, Ehrh.

Theca quadrifida, rarius octofida; ralrulis apice operculo persistente comexis. Calyptra mitræformis. Faginula apophysiformis, setan brevissimam oceultans, demum stipitata.

The pedunele, which clevates the mature eapsule in this genus, is nothing more than an elongated receptacle (pseudopodium, Brid.) of a white colow; such as is also found in Sphagnum. In an carly stage, this reeeptacle scarcely differs in appearance from that of other mosses; by its subsequent elongation the theea is elerated, generally above

[^10]the perichætial leares, whilst the true pedicel or scta remains wholly included in the raginula. The calyptra hence continues attached to the vaginula for a much longer period than in other genera, and its rupture is occasioned by the distension of the theca; and not by an elongation of the seta. If a very young capsule be longitudinally divided, the seminal sac will be seen lining its interior, and also extending orer the surface of the columella, the apex of the latter being attached to the summit of the operculum. The sporules, in a very early stage, are aggregated in fours, and long before the bursting of the calyptra attain a deep brown colour.

The inflorcscence is usually, and perhaps invariably, moncecious, the male fructification being on separate branches; thongh A. mutabilis (nobis) appears really diocions. Both kinds of flowers are, at first, truly terminal, though, owing to the rapid growth of innovations, especially on the male surculi, they soon become, to all appearance, lateral and even axillary. The male flowers, from their small size, are, in general, concealed by the cauline leaves. The antheridia vary in number, from one or tro to seven, intermixed with paraphyses, which, however, have not been seen in A.mutabilis (nobis), and which that species probably wants. In the female flower the archegonia are generally four, never more, and are not accompanied with any paraphyses.

1. Andreefa mitida, Hook. fil. et Wils.; caulibus suberectis laxe cæspitosis parce ramosis, foliis erecto-patentibus ovato-oblongis obtuse apiculatis concavis enerviis nitidis marginibus reflexis, perichætialibus paulo longioribus erectis. (Tab. LVII. fig. III.)

Hab. Lord Auckland's group; on rocks near the tops of the hills, at an altitude of 1200 feet; vely rare.

Caules semi-unciales et ultra, crassiusculi, sub $\frac{1}{2}$ unc. lati, hic illic divisi. Folia suberecta, conferta, imbricata, snblingulata, obtusa, summo apice apiculata, dorso conrexa, subcarinata, margine superne apiceque subreflexa, puniccoatra, luce obversa rufo-brunnca, siccitate erecta, vix crispata; perichcetialia subsimilia, sed longiora, tenera, marginibus planis, areolis minimis subrotumdatis. Inforescentia terminalis, dioica? Flores masculi gemmiformes, ovati, acuti, denique laterales, foliis caulinis dimidio breviores, foliis valde concavis ovato-rotmdatis acutis occlusi ; antheridia 6 ant plura, paraphysibus pancis filiformibus immixta. Flores fcominei: Archegonia quatnor, paraphysibus mullis. Pedicellus (seu psendopodium) $\frac{1}{15}$ unc. longus, pcrichætii dimidio longior, v. rarius eo inchsus, apice (ad raginulam proprians) incrassatus. Theca sessilis, parva, cliptica, nigro-fusca, 4 -valvis, siccitate dilatata, $\frac{1}{3}$ lin. longa.

A highly remarkable species, and quite unlike any hitherto described.
Plate LViI. Fig. III.-1, a tuft, of the natural size; 2, branch and theea; 3 and 4, leaves; 5, a moist theca ; 6 , an archegouium :-magnified.
2. Andreet acutifolia, Hook. fil. et Wils.; caulibus fastigiatim ramosis, ramis apice ramulosis, foliis erceto-patcutibus incurvis rigidis lanceolato-subulatis acutis v . ovatis longe acuminatis concaviusculis enerviis basi inæqualibus siccitate ercetis, perichæetialibus elongatis lanceolatis convolutis, theca subexserta.

Hab. Campbell's Island; on rocks, barren.
Caules erceti, conferti, ramosissimi, $\frac{1}{2}$ unc. longi et ultra, siccitate rigidi. Folia undique inserta, patentia, demde incurra, ovata, acuminata, basi gibhosa, cnervia, infra medium denticulata, siccitate subappressa, opaca, rufo-brumnea, juniora flavo-viridia v. rufescentia, areolis pellucido-punctatis moniliformibus; perichatialia submajora, lanceolata, erecta. Flores masculi gemmiformes, foliis oratis concavis inclusi. Antheridia $4-7$, paraplysibus filiformibus $\frac{1}{2}$ breviora. Pedicellus perichætium vix supcrans. Theca parva, nigra, paulo exserta. Sporce majusculæ, ferruginere.

This specics may he distinguished from A. alpina by its narrower and much more acuminated leaves, which are of a paler hne, never shining, gibbous at the base; those of the perichretiun do not differ materially from the cauline ones. The specific character and description are drawn up in part from Hermite Island (Cape Horn) specimens;
those now before us, from Campbell's Island, are smaller, less branched and various in colour, sometimes forming small dense tufts, hardly $\frac{1}{4}$ inch in height, but not different in other respects.
3. Andrees mutatilis, Hook. fil. et Wils.; caulibus cespitosis elongatis ramosis gracillimis, foliis confertis laxisve erecto-patentibus rarius falcato-secumdis lanceolatis ovato-lanccolatisve subconcavis enerviis siccitate appressis.

Tar. β, microplylle; foliis minimis ovato-lanceolatis. (Tab. LVII. fig. II.)
Hab. Lord Auckland's group; on rocks, at an clevation of 1200 fcet; rare, (with female fructification). Campbell's Island; on the hills, in rocky places, from $800-1000$ feet of elevation, with male inflorescence only.

Muscus polỵmorphus, cespitosus. Caules semi- ad bi-mnciales, inferne nudi, superne ramosi. Folia basi macula flawa notata, dorso rix papillosa, areolis granuloso-pumetatis. Inftorescentic dioica; folia perigonii orato-rotundata, acuta, concava. Antleridia 3 v. plura, elliptica, majora longiusque pedicellata quan in affinibus. Paraphyses nullæ. Folia perichætialia caulinis longiora, elliptico-lanceolata, convoluta.

This species, of which we have no examples in good fruit, differs from A. rupestris in the more erect and narrower leaves. The specific character has been drawn up from an examination of Falkland Island specimens, as well as of those from the Islands now under consideration. The other varieties are eummerated in the London Joumal of Botany (rol. 3. p. 536.).

Plate LVII. Fig. II.-1, a tuft of the natural size ; 2, a branch; 3 and 4, leaves:-magnified.
4. Andreen subulata, Harvey ; caule subramoso, foliis falcato-sccundis subulatis attenuatis basi dilatatis crassinerviis, perichæetialibus convolutis. A. subulata, IIarvey in Mook. Ic. Plant. vol. iii. t. 201.

Tai. γ, perichatialis; theca foliis perichretialibus minoribus immersa. (Tab. LVII. fig. I.)
Hab. Lord Auckland's group and Campbell's Island; upon rocks, at a considerable elevation on the hills.

The cauline leares of this rariety are longer and more strict than in the other states of the plant enumerated in the 'London Journ. of Botany' (l. c.), and the theca and perichætium very inconspicuous; we cannot however venture to separate it as a species. It differs from A.Rothii, its nearest ally, in the leaves being longer and the nerve thicker, the latter occupying the whole breadth of the leaf, except at the base, so as to have been overlooked, and the leaves consequently described as nerveless.

Plate LVII. Fig. I.-l, specimens of the natural size ; 2, a brauch; 3 and 4 , cauline leaves; 5 , section of ditto; 6 and 7, pericheetial leaves; 8, a theca:-magnified.

2. SPHAGNUM, Dill.

Theca globosa, stomate nudo exannulato. Columella apice libcra, abbreviata. Calyptra medio rupta, basi persistentc. Faginula apophysiformis, pedicellum brevissimum occultans, demum stipitata. Perichatium laterale.

Bridel, supposing this genus to be destitute of a vaginula, constituted it a separate order ; in which he was followed by Bruch and Schimper.

The fcmale flower, at first sessile, in evcry respect like that of other pleurocarpous mosses, occupies the place of a ramulus, or is inserted in the axis of two or more branches. As the fructification advances, the receptacle elongates, and the perichretial leares, becoming separated from one another, it presents the appearance of a lateral branch. The anthcridia are found in the fertile plant at the clavate and often discoloured extrenities of short deflexed ramuli.

They are romdish, on pedicels as long or longer than themselves, generally solitary in the axils of the perigonial leaves, which are somewhat ventricose at the base, but not otherwise different from those of the stems.

The anatomy of the theca of Sphagnum is very peculiar. What appears the columella does not extend, as in other genera, to the summit of the theca, but is a contination of the seminal sac, ascending from the bottom of the theca, and forms a portion of the same membrane which also lines the under surface of the operculum, passing completely across the stoma, as shewn in Plate LTII. fig. VI., where the central figwe is drawn from a sketch and section prepared by Mr. Wilson.

This curions structure of the seminal sac is quite different from what obtains in most genera of mosses, and appears to have been misunderstood by Amott and Greville, in whose excellent essays upon the 'Genera of Mosses,' the columella is described as suking, along with its opercular membrane, so low, as to assume the appearance of a tympamm, stretched across the interior of the theca, a little below its base (Wern.Trans. vol. iv. p.131.); their figure however does not represent the columella bearing any residua of the opercular membrane, but merely haring the base of the seminal sac drawn up into the axis of the theca in the form of a cone, which is its true orgin. The more striking peculiarities of the sporular sac of Sphagnoun are these; lst. its forming a bag or cyst without any orifice: 2nd, in the drawing up of the base of this bag into the axis of the theca, but not so far as to reach the level of the stoma, nor consequently the upper surface, or that opposite the base, which remains entire and stretched across the stoma. If the columella were carried up to the same height as in other mosses, an obliteration of the upper part of the sporular membrane would be caused by the perforation of the latter, (if we regard the metula as a portion of the columella), or else there would ensue a mutual cohesion of the membranes of cohmella and sac.

Sphagnum may be considered to possess the simplest form of sporular sac, the dehiscence of which is probably caused by a remoral of the upper portion in the same plane as the stoma and parallel to the operculum. The next stage of dcvelopment of this organ is, perhaps, presented in some astomatous mosses; Foitia*, for instance, a perpendicular section of the theca in which genus exhibits the seminal sac in the form of a vertically elongated ring, supported in the axis of the theca by the corculum of the columella. The latter passes minterruptedly from the apex of the seta to the top of the persistent operculum, thus apparently perforating the sac, by whose inflected walls it is lined for the greater part of its length. In this case, dehiscence and the escape of the spormles may be supposed

* In the young state of Toitia luyperborea, of which (through the kindness of Sir James Ross), I have examined many thecæ, there is a commumication between the seminal sac and the liming of the walls of the theca (thecal membrane), by means of conferra-like filaments such as are seen in most other mosses. Tracing the different membranes upwards, from the apex of the theca, I was led to believe that the same tissue formed the thecal membrane, the conferva-like filaments, and the corculum of the columella; and further, the immediate commumication between all the surfaces of the seminal sac and the walls of the theca afforded room for a conjecture, that the latter were immediately concerned in the development of the sporules, especially as before the separation of the spores both the thecal membranes and filaments were full of a grumons fluid, which afterwards disappears. If such a view be correct, the internal strncture of the theca of Foitia is very simple, and consists, 1st, of stout cells forming the external walls; 2ud, of a fine tissue, not ouly lining the former and sending filaments to the opposite walls of the seminal sac, but, becoming more condensed at the base and apex of the cavity of the theca, it ascends in its axis and meets the descending portiou in the hollow of the columella, over whose suffaces they both ramify; and 3rd, of a vertically elongated ring (the seminal sac) through whose centre this second membrane passes. Mr. Wilson (to whom I an indebted for my knowledge of the structure of both theea and cellular tissuc of Splagnum), has not been able, from the want of specimens, to confirm this view of the structure of Voitia; he, however, informs me, that "the existence of such a comnecting tissue is ouly analogons to what is fomd in Gymostomum pyriforme, whose sporular sac is commected with the base of the theca lyy a bundle of filaments;" he also adds, that "in many l"olytricha there is a distinct, almost woody, central axis to the columella, with filaments intervening betwixt it and the winged folds of the sporular sac which forms the outer part of the columella."-J.D. H.
to take place through the decay of the theea, when, as freqnently happens, the theea and seta are together detached from the plant, aud possibly, if persistent, the operation may be aided by the development of a fungus which we have seen in the walls of the eapsule of V. hyperborea.

The more complicated structme of these parts, which most peristomed mosses possess, may eventually prove mere modifieations of, or deviations from the simpler organization of Foitia and Sphagnum. Gymnostomum pyriforme tends to confirm such a theory ; iu it the columella (what is considered as such being the inflected portion of the sae), aseends from the bottom of the theca to the level of the stoma, and then, expanding outwards, like the month of a funnel, reunites with the seminal sac around the rim of the stoma (vid. Grev, and Arm. l. c. vol. p. -). After a time, the edge of the funnel breaks away from that of the sac and with the columella shrivels up, thus giving egress to the sporules.

Mr. Valentine, in his 'Genera of Mosses,' has acenrately described the cellular tissue of Sphagnum, which is, in several respects, exceedingly curious. The cells themselves are bonnded by very thick lines, formed of slender tubes, rumning between the contiguous cells, but on one side of the leaf only; a transverse seetion of a small portion of a leaf, exhibiting both the eclls aud the interjeeted tubes, is shown at fig. 46. Valentine considers that the latter are derived from the elongated tubes of the steru.

The cells thenselves are funnshed, in some forms of the genus, with one or more spiral filaments, closely adhcring to their walls, sometimes these are cutire throughout the length of the cell, at others broken or both broken and branched. We are inclincd to believe that the spiral filament is terete and adheres by a small portion only of its surface to the tissue of the leaf; the extreme mimateness and transparency of the parts, however, increase the difficulty of deternining such a poiut with the aceuracy that is desirable. No function has, litherto, that we are aware of, been assigned to these filaments; they may act powerfully in enabling so delicate a tissue to withstand the pressure of the water.

The pores, by means of which a commmication between the cavity of the cells and their surrounding medium is preserved, are, in most cases, numerous and large, in others less so; they appear more frequent on the upper surface of the leaf, but are ly uo means confmed to it, for sometimes they are placed opposite to one another, when the leaf itself is perforated. They exist both in cells provided with spiral filaments and without; in some instauces, where the spires are broken and branched, the pores are bordered with a thick ring given off from the filament, whence probably arises the supposition that what appeared to be pores were supplementary eoils. They vary greatly in size, occasionally extending completely across the cell. Valentine describes them as resembling a minute truneated cone; to us they appear on the same plane with the walls of the cells, cxcept where their edges are thickened, as deseribed aloove. In S. macrophyllum the cells are devoid of any filaments, are very narrow, much elongated, and each perforated by from 8 to 14 large pores, which sometimes nearly divide the cell ou one side; they are by far most mumerous on the upper suface of the leaf. The uses of these pores are litherto mknown, they may be dne to the nature of the situations in which the species are found. We have not proved them to reside in the intercellular tubes, though their existence in their walls is possible also. On the other hand, the latter alone may continue reservoirs for water dwing dry seasons, when, from the porous nature of the former, they readily part with their moisture.

Until the dehiscence of the operenlum, no rupture of the calyptra takes place in Sphagnum. We have not observed the desilient property of the operculum, noticed by some anthors. The spontes in all the species are clustered together in fours, of which three only are generally risible at first sight, as represented at Fig. VI. Iu most of the species the surface of the theca is studded over with stomatiform pores; these are however very inconspicuons, if not wholly absent, in S. cymbifolium. The true pedicel is included within the vagiuula and is singudarly dilated below the orifice of the latter.

Plate LIII. Fig. VI.-1, Longitudinal section of theca of S. cymbifotiem; 2, section of cellular substance from centre of the same; 3 , spores in a very young state; 4 , celludar tissue of leaf showing spiral ressels and pores;

5 , cell of S. macroplyllum with no spiral filament and many large pores; 6 , transverse section of the cells of a leaf of S. cymbifolium:-all highly magnified.

1. Sphagnum compactum, Brid., caule erecto ramoso, ramis dense confertis, foliis imbricatis concavis ovato-oblongis obtusis apice denticulatis, theca ovato-rotundata, pseadopodio brevi. S. compactum, Brid. Bryol. Unic. vol. i. p. 16.

Tar. β, rigidum; foliis subrigidis convolutis superne attenuatis apice patulis, psendopodio gracili subelongato. Nees et Hornsch. Bryol. Germ. vol. i. p. 14. t. 2. f. 5*.

Tur. γ, oratum; foliis patentibus ovatis subacutis.
IIs. Campbell's Island; in bogs near the sea, both the varieties growing together.
The rariety γ. oratum may possibly be a distinct species, though we have not veutured to separate it specifically; it differs from the usual state of the plant in the ovate, not oblong, leaves, which are more acute at the apex, with somewhat cartilaginous margins. Dr. Lyall's specimens, though fragments, eridently belong to a much larger moss than S. cymbifulium, Dill., with more tumid branches. Of this species Bridel remarks, "a S. cymbifolio, foliis semper apice denticulatis, i.e. premorsis, ut et toto habitu distinctissimum." The oblong leaves of var. β and the absence of the spiral fibres in the outer cells of the ramuli also appear coustant peculiarities.

In this, as in some other species, it is not uncommon to observe the spiral fibres of the lower cells of the leaf disposed in a double or triple helix. The interposed circular dises are readily secn to be pores, from their strong similarity to the distinct apertures found ou the cells of the ramulus. The outer cells of the branches seem analogous to the ordinary cellular tissue of the leares, and the inuer to their intercellular tubes; whence the true position of the latter on the upper surface of the leaf nuay be inferred: whilst, on the other hand, the concarity of the foliage would lead to the supposition of their occupying the opposite one.

3. LEPTOSTOMUM, Br.

Peristomium simplex e thecæ membrana interiore ortum, annulare, suberectum, indirisum v . rarius subdenticuliltum. Calyptra glabra, dimidiata. Theca æqualis v. rarius gibbosa, oblonga, in apophysin spuriam obconicam attenuata.

1. Leptostomum gracile, Br. ; caule cæspitoso subramoso, foliis oblongis subacutis piliferis inferioribus orato-lanceolatis, theca pendula oblongo-cylindracea, operculo hemispherico. L. gracile, Brown in Trans. Limn. Soc. vol. x. p. 321. Schwaeg. Suppl. vol. ii. pt. 1. p. 12. t. 104. Gymnostomum gracile, Mook. Musc. Exot. t. ${ }_{2}^{2}$.

Hab. Campbell's Island; on exposed rocks, altitude 1200 feet, barren.

It is not yet proved whether the L. gracile and L. inclinans be really distinct. Our specimens agree with the former, in hariug a strong excurent uerve; they differ from it in the stems being denscly matted with radicles, and from L. inclinans in the leaves uot being contorted when dry and their margins uot revolute. There is a new and rery well marked species in the Hookerian Herbarium, L. Bridgesii, Wils., MS., from Conception and Colchagua in Chili, in which the leaves are piliferous, with the nerve cvanescent below the apex, the seta short, and the theca, instead of being pyriform, is widest at the base.

4. SPLACHNUM, L.

Peristomium simplex. Dentes sedccim, per paria coadunati v. approximati, longitudinaliter cxarati, tandem reflexi ct plerumque thecre extus appressi. Calyptra campauulata, basi subintegra v . fissa, theca brevior. Theca æqualis, apophysata, exannulata.

It is with much reluctauce that we refuse to adopt the views of Bruch and Sehimper, who, in their beautiful ' Bryologia Europra,' subdivide Splachnum into three or four genera. The several characters which the two specics here enumerated possess and which are not conformable with those of any of the subgenera alluded to, woudd, were these adopted, oblige us to construct a fifth for thcir reception. S. octoblepharum and S. purpurascens are so nearly allied to the S. mnioides, that we doubt the propriety of eveu retaining two genera which might be founded on the rery dissinular strueture of the calyptra, but on that charaeter aloue, unaccompanied with any difference of habit. In one of Bruch and Schimper's divisions, Tetraptodon, the calyptra is truly dimidiate and neither inflexed nor appendiculate at the base; in the other, we always find it, previous to its separation from the raginula, inflexed at the base, but when the seta elongates and carries up the calyptra, this inflexed portion is drawn out and remains as a lacerated and somewhat incurved membrane or appendage. A similar structure is observable in Schlotheimia, under which genus the development of S. quadrifida is illnstrated.

In all the species whicl we have had an opportunity of cxamining iu a recent state, and especially in S. sphericum, ampullaceum and mioides, there is a very peeubar arrangement of the sportes, in lines radiating from the columella. Each of these lines is composed of eight or more sporules, contained either in separate cells or in membranous tubes, of a nature evidently analogous to the asci of some Fungi. This structure is probably common to all the species and may be traced obscurely in the dricd state of some; it has, howerer, escaped the observation of Bruch and Schimper, who perhaps did not examine specimens in a sufficiently youmg state.

The southern species, those at least from the ligher latitudes, inhabit decayed vegetable matter.

1. Splachnum purpurascens, Hook. fil. et Wils.; caule elongato, foliis patulis obovatis acuminatis integerrimis undulatis evauidinerviis apicibus recurvis, theca elliptico-oblonga microstoma, apophysi obconica angusta, operculo conico. (Tab. LVII. Fig. V. 1.)

Far. β, minor. (Tab. LIII. Fig. V. 8.)
Hab. Campbell's Island; in moist bogs, amongst grass; altitude 1000 fect.
Caules laxe cæspitosi, rix ramosi, semiunciales et utra. Folia patula, subremota, planiuscula v. undulata, siccitate crispa, laxe reticulata, inferiora luride purpurascentia. Inflorescentia monoiea; flores masculi gemmaceocapituliformes ad baseos foliorum sessiles v . in ramulis propriis terminales. Seta uncialis, ralida, rubra, nitida, sensim in apophysin theca breviorem inerassata. Peristomii dentes octo, comnventes, luteoli, integri v. medio rima longitudinali ad apicem non producta fissi, siccitate fusci et reflexi. Columella apice dilatata, plerumque breviter exserta. Operculum parrum, anguste conicum, subrostellatnm, rarius hemispherieum, flavescens v. rufo-brunneum. Calyptra non visa.

Nearly allied to S. octoblepharum, but larger, the leaves wider, more distant, less produced at the apex and more crisped when dry. Capsule narrow and more attemuated below, with a smaller mouth. Iu the rar. β, both the two lateral of the longitudinal and the trausverse lines on the teeth are very faint; in no instance do the teeth in this species appear to be really formed of four, the lateral lines always ceasing below the apex; the lower part of each double tooth is formed by four cells in a line, but their summits of ouly two.

Plate LVII. Fig. V.-1, S. purpurascens, of the natural size; 2, a leaf; 3 and 4, capsules; 5, teeth closely approximated in pairs; 6 , the same, of rar. $\beta ; 7$, the same of var. a, with a longitudiual fissure and some sporules :-magnified. 8 , a small tuft of var. β, of the natural size.
2. Splachnem octoblepharum, Hook.; subramosum, foliis oboratis longe acuminatis subpiliferis integerrimis, theca una cum apophysi clavata, peristomii dentibus octo solitariis. S. octoblepharum, Mook. Musc. Exot. t. 167. Schwaeg. Suppl. II. pt. 1. p. 105. t. 129. (omitted in Bridel. Bryol. Uniw.)

Far. β, pyriforme; foliis magis erectis confertis, apophysi angustiore. (Tab. LVII. Fig. IV. 1.)

Far. γ, major; foliis majoribus latioribus luride viridibus, dentibus 8 geminatis. (Tab. LVII. Fig.IV. 6.)
H_{ab}. Lord Auckland's group; rars. a and β, in spongy bogs and in holes of trees in the woods, frequent. Campbell's Island; rar. a, not uncommon; and var. β, in the wet and wooded valleys, on the ground.

From its northern ally, S. mmioides, this species differs, both in the structure of the peristome and in the shorter calyptra, which is mitroform and inflexed at the base ; also in the carinate leaves. The inflorescence appears truly monoicons, once only we found a hermaphrodite flower. In the rarieties a and β, the theca varies greatly in form, and the columella is either included or exserted. In var. γ, the leaves are often rery large, and the teeth comine so closely as to appear but 8 , which are separable into 16 ; they arc pale ycllow, each with a faint middle line : when dry they are crect, recurved or reflexed, and generally of a purple brown colour.

Plate LVII. Fig. $\boldsymbol{\text { Kr.-l }}$, a small tuft of var. β, of the natural size; 2, a leaf; 3, a capsule; 4 , teeth; 5, a calyptra ;-magnifed: 6 , a plant of var. γ, of the natural site; 7 , a leaf; 8 , a capsule; and 9 , teeth of the same :magnifed.

5. DRYPTODON, Brid.

Peristomium simplex. Dentes sedecim, inæqualiter bifidi, r. apice lacero-fissi. Calyptra mitreformis, basi lacera. Theca æqualis, annulata. Brid. Bryol. Uiivo, vol. i. p. 191.

This geuns is perlaps not distinct from Grimmia.

1. Dryptodos crispulus, Ilook. fil. et Tiils. ; caule fastigiation ramoso, foliis ovato-oblougis acuminatis v. e basi ovata gradatim subulato-acuminatis carinatis nervo percurrente, seta perbrevi, theca elliptica, operculo rostrato. (Tab. LVII. Fig. IX.)

Hab. Campbell's Island; on alpine rocks.
Caules laxe crespitosi, supernc fastigiatim ramosi, subrigidi. Folia erecto-patentia, subrecurva, margine basi reflexa, ferma sat varia, superiora longiora, apice subdiaphana, vix pilifera, nervo valido contimo iustructa, flavoviridia, siccitate crispatula erecta; perichatialia breriora, elliptico-oblonga, obtusa v. acuta. Seta vix lineam longa, foliis immersa, pallida, tanden lateralis. Theca erecta v. inclinata, elliptico-oblonga, fusco-lutea. Peristomii dentes vis ad medium fissi, rufi, comniventes, siceitate reflexi. Operculumn conico-rostratum, rectum, theca $\frac{2}{3}$ brerius. Culyptra conico-mitracfornis, sulpplicata, costata, fusea, basi lacera et inflexa, operculo paulo longior. Aamulus partus.

The foliage of this moss lears a considerable resemblance to that of Raconitrium fasciculare, from which it differs in the very short seta, pale elliptical theca, and in the peristome being truly that of a Dryptodon.

Plate LV11. Fig. IX.-1, a specinen of the natural size; 2, a cauline leaf; 3 and 4, pericharial leavcs; ${ }^{5}$, theca; 6, operculun ; 7, teeth; 8, calyptra:-magnified.

6. RaCOMITRILM, Briz.

Peristomium simplex. Dentes sedecim ad basin usque bi-tri-quadripartiti, cruribus filiformibus conjuncti. Calyptra mitrefomus r. companulata et subulata, theca brevior, basi lacera. Theca æqualis exannulata.

1. Racomitrium lanuginosum, Bridel, Bryol. Thiz. vol. i. p. 215. Trichostomum, Hedw. Muse. Frond. vol. iii. p. 3. t. 2. Mook. et Tayl. Musc. Brit. p. 105. t. 19.

Hab. Campbell's Islaul; amongst tufts of grass at the foot of precipices, rare and barren.
This does not appear to differ from European specimens.

7. ORTIIOTRICHUM, Hedu.

Peristomium simplex v. duplex, rarius nullum ; exterius alentes triginta dno, geminatinı v. bigcminatim coadunati, (hine quasi octo v . sedeein apparent) ; interius ciliæ octo, æquales, v. sedecim, alternis brevioribus, erectis v . horizontaliter patentibus. Calyptra campanulata, costata, basi lacera v. crcnata, plerumque pilosa. Theca erecta, æqualis, exanuulata, tandem sulcata, in setam superne incrassatam gradatim attenuata.

1. Orthotrichum crassifolium, Hook. fil. et Wils.; caule brevi subramoso, foliis ereeto-patentibus laneeolato-subulatis obtusis earnosis nervo erasso subeontinuo, theca breviter exserta pyriformi lævi, peristomii dentibus sedecim, ciliis nullis, calyptra glabra. (TAB. LVII. Fig. VIII.)

Tar. β; foliis longioribus, theca breviore foliis immersa.
Hab. Lord Auckland's group and Campbell's Islaud; on rocks aud stones immediately above highwater mark. Var. β, Campbell's Island, with the following species.

Caules pulvinati, 2-4 lin. longi. Folia suberecta, crassa, coriacea, supra plana, apice subobtusa, margimibus hasi inflexis, nervo crasso iufra apicem cvanido, siccitate paulo incurva, olivacea v . fusco-lutea, denmm nigricantia, suprema linearia, basi latiora. Infloresceutia dioiea? Fl. masc. gemmiformis, terminalis. Sela sub lineam longa, valida ; vaginula oblonga. Theca crecta, pyriformis, v. subturbinata, fusco-lutea, collo brevi, siecitate subeylindracea Peristomii dentes liberi, siecitate erectiv. reflexi, lutei. Sporce majusculæ, subrotundie, rufo-olivacce. Operculun convexum, rostello recto, theere $\frac{1}{3}$ longitud. Calyptra plicata, glabra, rufo-brunnea, basi octofida.

Perhaps allied to the O. psychrophilum, Montagne (Ann. Se. Nat., vol. ix. p. 52); but the leaves are more erect with their margins not reflexed, the eapsule eren, of a thicker texture, and there is no inner peristome. It bears some resemblance to the O. Magellanicum, Mont., from which the same characters will also distinguish it. The dry foliage is of an almost horny consistence.

Plate LIII. Fiy. Vill.-1, a specimen of the nalural size; 2, a portion of stem and theca; 3 and 4 , leaves; 5, transverse scction of ditto; 6, tecth; 7, sporules; 8, calyptra:-magnified.
2. Orthotricnum angustifolium, Hook. fil. et Wils.; caule brevi subramoso, foliis ercetis anguste lineari-snbulatis aeutiusculis earnosis nervo coutimuo, theca subsessili immersa elliptica, operculo rostellato, peristomii simplicis dentibns sedecim. (Tab. LVII. Fig. VII.)

Hab. Campboll's Island; ou rocks at an elevation of 1200-1400 feet.
Caules pulvinati, 2-3 lin. longi, luridi, rigidi, ramis subterminalibus abbreviatis. Folia suberecta, conferta, elongata, strieta, opaca, subcarnosa, supra plana, nervo erasso continuo, siecitate subineura, atro-viridia; perichatialia longiora, lanccolata, acuminata, superue attcunata, subsecunda. Sela brevissima. Theece elliptieo-orata, parva, pallide fusea, ore majusculo. Dentes comniventes, pallide ferruginei, siccitate retlexi. Sporce majuseule. Operculum basi convexum, rostello brevi recto. Calyptra non visa.

Allied to the former species, but with larger, much narrower and almost setaceous leaves; the capsule also is smaller and hidden amongst the foliage.

Plate LVII. Fig. VII.-1, a tuft of the natural size; 2, branch; 3 and 4, leaves; 5, theca and seta :maynified.

8. MACROMITRIUM, Brid.

Peristomium simplex v. duplex ; exterius dentes sedecim, lanceolati, plus minusve geminatim connexi; interius membrana apiec lacera, multifida. Calyptra conica, glabra r. pilosa, basi in lacinias plurimas requilougas fissa. Theca æqualis, examulata.

In an carly state the difference between the calyptra of this genus and of Orthotrichum is very considerable, being, in the prescut case, linear and subulate ; but in the latter genus campanulate. We consider Bridel's definition of this as drawn from more natural characters than that of Schwaegrichen.

1. Macromitrium longirostre, Schwaegr. ; caule repente, ramis erectis, foliis confertis crecto-patentibus lineari-lanceolatis lineis duabus notatis solidinerviis siccitate tortilibus, theca ovali sulcata, calyptra glabra. M. longirostre, Schwaeg. Suppl. vol. ii. pt. 2. p.131.t.11~. Brid. Bryol. Uniw. vol. i. p. 310. Orthotrichum, Hook. Musc. Erot. t. 25.

Hab. Lord Auckland's group and Campbell's Island; abundant on the trunks of trees near the sea.
This species varies considerably in colour and in habit; the leaves are, sometimes, narrower and more spreading than in these specimens; when dry they are always twisted round the stem.
2. Macromitrius acutifolium, Brid.; canle repente ramosissimo, foliis lanceolatis salde acuminatis tortis nervo subexcurente, theca ovata striata, operculi rostro aciculari, calyptra glabra. M. acutifolium, Brid. Bryol. Lniv. vol. i. p. 736. Orthotrichum, Hook. and Grer. in Edinb. Journ. of Science, rol. i. p. 11S. t. 5.

IIab. Lord Auckland's group; on rocks at the top of the hill above Rendezvous Harbour, barren and very scarce.

9. SCHLOTIIEIMTA, Brid.

Peristomium duplex ; exterius dentes sedecim, per paria approximati, siccitate spiraliter reroluti ; interius mombrana conica, in laeinias sedecim phuresve dentiformes inæqualiter fissa. Cutyptra conico-mitreformis, glabra, basi appendiculata, demum laccra. Thece æqualis, exannulata.

Some specics of Dfacromitrium, possessing a double peristome, have been confounded with this genus: from our own experienec we are huclined to consider the appendiculate eylindrieal calyptra as the most decisive character of Schlotheimit: the structure of the peristome apparently affording marks of minor importance only. In an carly stage, a fold of the calyptra is produced downwards below the point of insertion of that organ into the raginula, as in some Spluchua, Encalypta, and possibly in other genera of Mosses. This inverted portion, after the lengthening of the seta has detached the ealyptra, splits into four or more segments; rid. Plate LVIII. Fig. I.-11 and 12.

1. Schlothetmia quadrifita, Brid. ; foliis oblongo-lanceolatis cuspidatis tortis, theca oblongo-pyriformi lævi, calyptra glabra. S. quadrifida, Brid. Suppl. MLusc. vol. ii. p. 18. Schtcaeg. Suppl. vol. i. pt. 2. p. 41. and vol. ii. pt. 2. p. 147. t. 57. Brid. Bryol. Univ. vol. i. p. 321. (Tab. LIIII. Fig. I.)

Far. β; caule robusto, folis magis confertis inferioribus nigricantibus brevius cuspidatis.
1Iab. Campbell's Island; on rocks and dead bushes, frequeut. Tar. β, on rocks at an elevation of 1200-1400 fect.

This species approaches the S. Broomii, Schwacg. (Suppl. vol. ii. pt. 2. p. 52. t. 167), from which it differs in the shorter and less excurent nerre, and from S. nitida in the leaves being straight and not recurved. The leaves of war. β are of a darker colour, more elosely and regularly twisted romd the stem, and do not readily recover in watcr.

It is singular to remark how far these tropical forms extend into the southern regions, whence we infer that an equable climate is the chief condition they require. In Tasmania, where the elimate is more cxcessive than im New Zealand under the same parallel, the Schlotheimice and Alucromitria are almost mknown, though in the latter loca-
lity, and indced throughout the three islands of New Zealand, they abound. Wherever they grow they invariably affect shade and shelter. The European gemns Orthotrichum, on the other hand, of which there are several Tasmanian examples, is very rare in New Zealand ; and in Lord Auckland's group and Campbell's Island, as in the Falkland and other Antaretic Islands, the species count cxposmec, growing on black and exposed rocks, enduring the fidl power of such solar heat as those regions afford during the day, and of the frost, wind, and nocturnal radiation at other times. Under these circumstances, their foliage is of a peculiarly hard and almost horny consistence, especially when dry.

Plate LVIII. Fig. I.-1 and 2, tufts of the natural size; 3, cauline leaf; 4, upper leaf from near the perichætium; 5, theca; 6, peristome; 7, a tooth; S, calyptra; 9, calyptra, in a very young state, adherent with the ragimula, split open, exposing the cnclosed seta, which is erroneonsly represented as bulbous; 10 , the same, entire, surrounded by pistilla; 11 and 12 ,ealyptra, showing the base inflexed and attached to the summit of the raginula:magnified.

10. WEISSLA, Hcdu.

Peristomium simplex, dentibus sedecim, suberectis, angustis, imperforatis. Calyptra cuculliformis. Thece æqualis, exapophysata, anmulata v. cxamulata.

1. Werssla crispula, Ludw. ; caule erecto diviso, fobis imbricatis secundis lanceolatis aeuminatis canaliculatis siccitate crispulis, theca crecta oblonga, opereulo oblique rostrato. W. crispula, Hedw. Sp. Musc. p. 6s. t. 12. Brid. Bryot. Chic. vol. i. p. 346.

Far. β, ambigua; foliis brevioribus subsccundis siccitate vix crispatis, perichætialibus acuminatis nervo excurrente, seta breviore, dentibus interdum per paria approximatis. ('Tab. LVIII. Fig. II.)

IIab. Campbell's Istand; on exposed rocks from 600-1200 feet above the lercl of the sea, abundant.
After a rery careful comparison of the Campbell's Island plant with specimens of $\Pi_{\text {. crisputa from Snowdon, }}$ we are at length satisficd of the specific identity of the two. It is still uncertain whether the Π^{r}. crispula of llooker and Taylor be the same as that of IIcdwig. The characters of the latter aud of H°. cirvata, as given by Schwaegrichen (Supp.vol.i.pt.1. p.75.), differ very slightly. Of Π^{\prime}. cirrata both IIedwig and Bridel remark, "folia marginibus reflexis aut inflexis," the former we find constantly to be the case, in which respect the plant differs essentially from crispulu. It is more than probable that the Moss from Snowdon, figured by Dillenius (Hist. Musc. t. 47. f. 38.), and (qnoted by Bridel as a symonym of his Dicramum interruptum, is the $\Pi_{\text {. crispula of Hooker and Taylor, which may well be }}$ considered by Bridel, a Dicranum, having the habit of that genus, and the peristome being unknown to him.

Plate LVIII. Fig. II.-1, tuft of the naturat size ; 2, a branch and theca; 3. a leaf; 4, a theca; 5, teeth; 6, calyptra :-magnified.
2. Weissia contecta, Ilook. fil. et Wils.; caule fastigiation ramoso, foliis ereetis strictis lanceolatis superne setaccis integerrimis solidinerviis, seta perbrevi, theea orata, operculo rostrato. (Tab. LVIII. Fig. III.)

Hab. Campboll's Island ; on alpine rocks.
Caules sesquiunciales, dense cespitosi, subrigidi, fragiles. Folia conferta, erecta, vix secunda, 3 hin. longa, in apicem rigidum linearem e nervo crasso excurrente formatun producta, integerrima, canaliculata, margimbus basi inflexis, inferiora fusco-atra, superiora flavo-viridia; perichetialia majora, conformia. Inflorescentia monoica. Fl. masc. ad basin feminei, gemmiformes; autheridia paraphysibus plwimis immixta. Seta vix lineam longa, crassiuscula, innovationibus mox lateralis. Theca badia, ore patente. Amulus o. Dentes pyramidati, incurvi, transverse sulcati, ferrugineo-lutei, integri v. apice fissi, siceitate reflexi. Sporee minutæ. Operculem basi hemisphericum, rostro obliquo, capsuda parum breviore. Calyptra coriacca, subulata, parra, fusca.

This agrees with no other species of the genus in habit. It is allied to Dicranum filiforme, Schwaeg., but has entire teeth. The calyptra and operculum we have only seen detached amongst the leaves. There is a very similar plant in the Hookerian Herbarimn, reeeived from Mr. Dickson; it has howerer a mueh longer seta, the periehatial leaves are smaller and shorter, the cauliue subseeund, more crisped when dry, and furnished with a thinner nerve.

Plate LVili. Fig. III.-1, a specimen of the natural size; 2 and 3, leaves; 4, perichætial leaf, seta, theca, \&c.; 5, teeth; 6, calyptra:-magnified.

11. SPRUCEA*, Brid.

Peristomium simplex. Dentes sedecim, bifidi. Calyptra ampla, glaberrima, latere fissa, basi integerrima.Holomitrium, Bridel. Endl. et Mart.fl. Bras. p. 17.

The generic mame was fomded on a mistaken view of the nature of the calyptra, described by Bridel as " elongatocomiea, basi coaretata latereque integerrima;" it is entirc, in a very young state only, before the theca is developed. Hornselmeh first modified the deseription of that organ, wheh is truly dimidiate in all the species, though not as the last named author deseribes it, "campanulata." Except in greater size, it does not differ from that of $W_{\text {eissia }}$. The essential difference between a dimidiate and mitriform ealyptra arises simply from the former being too narrow to contain the mature theea, whilst the other is of suffieient capacity for that purpose. In habit this genus appears to us far less intimately allici to Racomitrium than to Didymodon, with which it coincides in the dilated bases of the leaves; the elnef peculiarities are the shorter tecth and longer operculum, charaeteristies which, if taken in conjunetion with the large perichætial leaves, may serve to keep the present distimet.

1. Sprucea perichetialis, Brid.; caule crecto ramoso, foliis imbricatis erceto-patentibus lanceolatis acuminatis margine plamis, nervo continuo, perichætialibus vaginantibus, theca oblonga, operculo aciculari. Holomitrium perichretiale, Brid. Bryol. Uuiv. vol. i. p. 2.27. Trichostomum, Mook. Musc. Exot. t. 73.

Hab. Campbell's Island; not uncommon on the stems of shrubs.
In this speeies the tecth are split near the summit only, perforated below, and of a similar strueture with those of a Dryptodon, Brid.

12. DICRANUM, IIcdu.

Peristomium simplex ; dentibus sedecim, bifidis. Calyplra cuculliformis.

1. Dicranum Menziesii, Tayl.; caule ascendente subramoso, foliis sccundis setaceis basi lanceolatis subrigidis apice sub lente scrrulatis siccitate strictis nervo latiusculo valido subexcurrente, seta brevi, theca elliptico-oblonga basi substrumosa semiimmersa, operculo longirostro. D. Menziesii, Taylor in Phytologist, vol. ii. p. 1094.

Hab. Lord Auckland's group; on trunks of trees sparingly, barren.
Caules semiuneiales. Folia suberecta, conferta, $3-5$ lin. louga, valde angusta, supra eanaliculata, flavescentia, marginibus basi intlexis; perichetialia vaginantia $\frac{1}{2}-\frac{1}{3}$ breviora, basi dilatata. Seta 3 lin. longa, pallida, vix tortilis.

[^11]Theca suberecta, curvata, brumnea, siecitate infra orem contracta, demum obscurc striata. Dentes suberecti, ineurvi, rubri. Operculum eapsulam æquans, rostro gracili, curvato.

The above description has becn drawn up from original specimens, gathered by Mr. Menzies (during Vancourer's Voyage) in Dusky Bay, New Zealand. This plant differs from D. fasciatum, Hedr. (Sp. Musc. p. 127. t. 28.), in the longer, more setaeeous, nerved leares, solitary seta, and oblong theea. Two closely allied forms occur in Herb. Hook., one having longer stems and more rigid, lurid green leaves, suddenly dilated at the base; the other with lax spreading foliage.

Plate LVIII. Fig. IV.-1, plant of the natural size; 2, part of branch with theca; 3, leaf; 4, lower part of ditto; 5, theca:-magnified.
2. Dicranum pungens, llook. fil. et Wils. ; caule elongato subramoso, foliis secundis patentibus linearilanceolatis attenuatis convolutis apice carinatis serrulatis tenuinerviis, perichætialibus elongatis convolutis, seta mediocri torta, theca inclinata oblonga curvula, operculo longirostro. (Tab, LLX. Fig. I.)

Hab. Lord Auckland's group and Camphell's Island; barren in the latter locality.
Caules 3-1-muciales, robusti, creeti v. curvati, parce ramosi. Folia 4-5 lin. longa, conferta, patentia, subrigida, inferiora subsquarrosa, superiora dense congesta, supra carinata, marginibus apices versus dorsoque serratis, plerumque arcte convohtis, nervo temi, lutco-viridia, mitida, siccitate supra medium torta; perichatialia intima 8 lin. longa, encria, eonvoluta, integerrima. Seta interdum binæ, 8-9 lin. longæ, graciles, subflexnosæ, rubræ, siccitate tortre. Theca parrula, elliptieo-oblonga, subeurrata, basi vix strumosa, rufo-brumea, siccitate infra orem contracta. Dentes pro genere parvi, comniventes, demum supra medium fissi, ferruginci. Operculum (delapsum) theea longins, eurvirostrum. Calyptra straminea.

This very handsome speeies resembles the D. Blumii, Sclımaeg. (Suppl., vol. ii. pt. 2. p. 116. t. 185), inaccurately described as nerveless, but differs cssentially in the form of the theca. D. Billardieri has shorter and broader leares, and larger thece. In D. setosum, nobis, a nearcr ally, the leares are more setaccons and fragile, the nerve broader, and oceupying the whole breadth towards the apex, the capsnle is longer and more curved, the peristome larger and of a red colour, and the seta not twisted when dry.

Plate LIN. Fig. I-1, a speeimen of the natural size; 2, front, and 3, baek view of a leaf; 4, young theca; ร, mature ditto; 6 , tecth :-magnified.
3. Dicranum Billardieri, Schrracg.; caule elongato dichotome ramoso, foliis snbsecundis basi lanceolatis longe acmminatis denticulatis, theca strumosa, operculo longirostro. D. Billardieri, Schuaeg. Suppt. vol. ii. pt. 1. p. 70. t. 121.

Var. β, duriusculum ; caule humili fastigiatim ramoso, foliis magis rigidis attennatis, nervo latiore, seta longiore.

Hab. Lord Auckland's group; on the ground and dead trunks of trecs in moods, both varieties.
The habit of the var. β, which also grows on the morc exposed uplands, is rather peculiar ; still we can find no specifie distinction between them. The D. Nove Hollandire, Hornsch., docs not appear different from this species.
4. Dicranum setosum, Hook. fil. et Thils.; caule fragili subramoso, foliis strictis fragilibus subercetis longissime lanceolato-setaceis apice serrulatis nervo latiusculo subexcurrente, seta longinscula, theca oblonga curvata, operculo longirostro. (Tab. LVIII. lig. V.)

Var. β, attenuatum ; caule flesili elongato ramoso.(Tab. LVIII. Fig. V. 2.)

Hab. Lord Auckland's group and Campbell's Island ; on the ground, at the roots of trecs in the woods. Var. β, Campbell's Island.

Caules 1-2 unciales et ultra, densi, fragiles. Folia semiuncialia, nitida, flavida, solidincrvia, nervo in aristam longam excurrente; perichretialia abbreviata, vaginantia, basi dilatata. Seta 1 unc. longa, erassinseula, vix torta. Theca subereeta, arenata, substrumosa. Operculum theea longius, rostro tenui eurvato. Calyptra fusca, apiee rubra.

We are not aequainted with any speeies with which the present could be confonnded. D. longisetum, Hook., has the leares of a similar form, but their nerve is very broad and indistinet, and the theea is erect. D. capillaceum, Brid. (Bryol. Univ., vol. ï. p. 460), differs in the striated eapsule. The stems of the var. β are four inches long.

Plate LVIII. Fig. V.-1, a tuft, of the natural size; 2, a stem of var. β, of the nalural size; 3 and 4 , leaves; 5, theca and calyptra; 6, operculum :-magnified.

13. CAMPYLOPUS, Brid.

Peristomium simplex ; dentibns sedeeim, bifidis r. bpartitis, imperforatis, cruribus requalibns. Calyptra eoniea, fissa, rarius integra, basi fimbriato-lacera v. subeiliata. Theca eequalis, exannulata, exapoplysata, munc basi inæquali pseudo-apophysata.

1. Campylopus introftexus, Brid.; caule erccto ramoso, foliis imbricatis e basi lata lanccolatis acmminatis pilifcris nervo lato excurrente, seta madore curvata, theca elliptica striata, operculo conico. C. introflexus, Brid. Bryol. Univ. vol. i. p. 472. Dicranum, Medw. Sp. Musc. p. 147. t. a9. fig. 1-7.

Hab. Lord Auckland's group and Campbell's Island; growing both in moist and dry places on the hills.
This species is remarkable for the divergence of the filiform apiees of its leaves and the broad nerve which is obscurely lamellated at the back, their margins also are so inflexed as to give them a subulate appearance. The numerous theere arise from aggregated perichætia and are quite buried and concealed amongst the foliage. New Holland specimens of this moss exist in the Hookerian Herbarium under the name of D. pudicum, Hornsch. D. capitiflorum, Pal. de Beaur., from Bourbon, has more strict leaves, more distinetly lamellated at the back.
2. Campylopus fermosus, Brid. ; caule crecto subramoso, folius rigidinsculis concavis subulatis acuminatis nervo lato continno, seta curvata, theca ovata striata, operculo recto cnspidato. C. flexuosus, Brich. Bryol. Uniw. vol. ii. p. 469. Dicranum, Medw. Sp. Musc. p. 146. t. 38. f. 1-6. Mook. et Tayl. Muse. Brit. p. 94. t. 16.
$H_{A B}$ Campbcll's Island; barren.

14. LOPIIODON*, Mook. fil. et Wils.

Perislomium simplex ; dentibus sedeeim, pyramidatis, per paria approximatis. Calyplra cueulliformis.
This genus corresponds with the Cynodon of Bridel, a preoccupied name. The present species does not accord with Sehwaegrichen's defintion of Cynodontium, and we are thus obliged to establish a genus for its reception.

1. Lophiodon strictus, Hook. fil. et Wils. (Tab. LLX. Fig. II.)

Tar. β, foliis lougioribus flavidis, theea majorc.

[^12]Hab. Lord Anckland's gromp and Campbell's Island; on moist rocks at an altitude of 1200 feet in the former locality, descending lower in the latter. Var. β, Lord Auckland's group, with the former.

Coules sesquiunciales, cespitosi, fastigiatim ramosi, ramis gracilibus. Folia erecta, subsecunda, striata, siceitate appressa, sulrigida, longe lineari-setacca, basi laneeolata, vaginantia, flaw-viridia, inferiora nigrescentia; nervo valido continno, apiccm versus obtusum denticulatum paulo dilatato; perichetialia majora, convoluta. Inflorescentia dioica; Fl. masc. terminalis, gemmiformis. Seta vix uncialis, pallida, subtorta. Theca erecta, ovata, cylindracea, basi rotunda, badia, læris, nitida. Peristomii dentes breves, fere horizontales, madore comiventes, siecitate creeti, pallide fermginei. Ammtus majuseulus. Spore majusculæ. Operculum conieo-rostratum, erectum, theca paulo longior. Calyptra theca longior, scariosa, fusca, latere fissa.

The singular apex of the leaf distinguishes this species, even in a barren state, from $W_{\text {eissia contecta, or any }}$ similar moss.

Plate LIX. Fig. I.-1 and 2, specimens of the natural size; 3 and 4, leaves; 5 and 6, theere; 7, peristome ; 8, teeth; 9, calyptra:-magnified.

15. CERATODON, Brid.

Peristomium simplex; dentibns basi liberis, bipartitis, cruribus trabeculisque horizontalibus connexis, superne solutis, flexuosis. Calyptra cuculliformis. Theca ineequalis, annulata, tandem profunde suleata, substrumosa.-Ceratodon, Brid. Bryol. Chiv., vol. i. p. 480.

1. Ceratodon purpureus, Brid. ; l. c. Didymodon purpureus, Mook. et Tayl. Musc. Brit. p. 113. t. 20. Dicranum, Merluig, Sp. Muse. p, 136. t. 36.

Hab. Lord Ancklaud's group and Campbell's Island; on the ground, abundant.

36. POLYTRICHLM, L.

Peristomium simplex; dentibus $32-64$, brevibus, inflexis, cartilagineis, apicibus membrana horizontali (cpipliragma) comexis. Theca cxannulata, ore epiphragmate (e columellx apice dilatato) clansa. Calyptra cuculliformis, glabra, r. indusio villoso e pilis intertextis obteeto. Theca exannulata.-Psilopilum, Catharinea, Pogonatum et Polytrichum, Bridel et auctorum.

We would gladly avail ourselves of Bruch and Schimper's subdivisions of this gems, as proposed in the 'Bryologia Europara,' did not the autaretic species prove them to be mmatural. Even the Emropean species do not coincide with the viers of those authors, for the Pogonatum namm, Br. and S., has the immer membrane of the sporanginm surrounding the columella perfeetly cylindrical, and thus is at variance with their definition; and there is nothing essentially different between its structure and that of Atrichum, of the corresponding membrane in which no mention is made. This imer sporuliferons lining of the columella exists in all mosses, as well as in the Atrichum untulatum, Br. and S., and is the portion of the seminal sac, which, being inverted at the base, ascends the axis of the thea surrounding the columella; it forms the risible columella; the tissue itself, being often of extreme tenuity, is frequently overlooked and its contimity with the sporular membrane is not always crident. We have attempted to explain this structure at p. 120, under Sphagmm. That the characters denved from the calyptra are not of generic value is proved by that organ being exposed in P. magellanicum and dendroides, which have otherwise all the characters of logonatum. The origin of the villons hairs composing the outer calyptra of many species and their original attachment to the raginula did not eseape the notice of Ehrhart and Mohr and subsequently of Wahlenberg, although overlooked by Bruch and Schimper, whose analyses of the genera of mosses are unequalled in point of exc-
cution. The origin of these hairs in no way argues the absence of paraphyses, which those authors observe, and which are sufficiently pereeptible though of only half the diameter of the hairs themselves, these are perfectly straight and inserted near the base of the vaginula.

1. Polytrichum magellanicum, Hedw.; caule ramoso, foliis rigidis patentibus recurvis basi ovatis vaginantibus deinde subulatis serratis, theca inchinata v. horizontali oblonga semi-cylindracea supra plana, operculo conico-rostrato, calyptra glabra. P. magellanicum, Hedw. Sp. Musc., p. 101. t. 20. f. 1, 2. Catharimea, Brid. Bryol. Univ. vol. ii. p. 106. (Tab. LIX. Fig. III.)

Hab. Lord Auckland's group; moist ground, amongst grass ucar the tops of the hills.
Theca jumior ereeta, matura inclinata, tandem horizontalis, basi subgibbosa, fuseo-bnnnea.
In the peculiar form of the capsule (ill represented in IIedwig's figure) and in general habit, this moss bears a strong similarity to Duresonia; Menzies, who deseribes the theea as subcylindrical in the Limæan Transactions (vol. iv. p. 71.), is the only observer who has remarked its peculiar strueture. The naked ealyptra allies this species to the Catharinea of Bridel, whence some may include it under the division ealled Pogonatum by Bruch and Sehimper ; on the other hand, the absence of an apophysis will comect it with Oligotrichum. From Polytrichum of Bruch. and Schimper, it differs in wanting proper angles on the capsule, and from Atrichum, of the same authors, in having the inner or inverted portion of the sporular membrane surounding the columella 4 -winged.

This moss is found in as low a sonth latitude as Brazil, from whence we have seen specimens collected by Raddi and named Catharinea psendo-polytrichum, and there are others in the Herbarium formed by Mr. Gardner. It varies in the length and somewhat in the disposition of the leaves, which are sometimes widely spreading and squarrose, but in the specimens now under consideration, they are shorter than in others from Cape IIorn. The seta is also of rariable length.

Plate LIX. Fig. III.-1, a specimen of the natural size; 2 and 3 , leaves; 4 , young theea; 5, mature ditto; 6, teeth; 7, transverse section of theea; 8, calyptra:-magnified.

17. CONOSTOMUM, Suartz.

Peristomium simplex; dentibus sedecim, in connm persistentem comiventibus, apieibus subulatis. Calyptra brevissima, conico-subulata, stricta, latere fissa. Theca subinequalis, exannulata.

1. Coxostonum australe, Swartz; caule erecto valde ramoso, ramis fastigiatis obscure pentagonis, foliis densis arcte imbricatis lincari-lanceolatis acuminatis supremis longe piliferis, theca cernua subrotundata v. ovato-ghobosa. C. austrahe, Seartz in Schrader, New Bot. Journ. vol. i. pt. 3. p. 31. t. G. Schuaeg. Suppl., vol. i. pt. 1. p. S0. and pt. 2. p. 10s. t. 130. Brid. Bryol. Uniu. vol. i. p. 152.

Hlab. Lord Auckland's group and Campbell's Island; on moist rocks, at a considerable elcration.
Conostomum has reeently been united with Bartramia, by Bruch and Schimper. The genus is still an eminently natural onc. It is not upon the most evident characters, such as the rarious speeies of Polytrichum present, horever constant they may be, that natural genera can in many cases be founded.

18. BARTRAMIA, Hedu.

Peristomium duplex; exterius dentes sedecim, inflexi; interius membrana carinata, in lacinias scdecim integras bifidasre fissa, ciliis interjectis v. nullis. Calyptra cuculliformis. Theca globosa v. ovato-globosa rarius elongata, mequalis; ore obliquo, exannulato.-Philonotis et Bartramia, Brid. Bryol. Unio. vol. ii. p. 15 et 32.

1. Bartramla patens, Brid.; caule erecto subramoso, foliis patentibus rigidis linearibus acuminatis serrulatis basi dilatatis vaginantibus, theca obliqua, operculo convexo. B. patens, Brid. Bryol. Urie. vol. ii. p. 35. Schucaeg. Suppl. vol. i. pt. A. p. 55. t. 62. B. squarrosa, Turner in Koenig's Innals of Botany, rol. i. p. 583. t. 2. f. 2.

Hab. Campbell's Lsland; on rocks, half may up the hills; barren.
Allied to B. ithyphylla, Brid.; but larger, with the leaves longer and more dilated at the base.
2. Bartramia robusta, Hook. fil. et Wils.; caule ereeto subramoso, foliis patentibus rigidis subulatis serrulatis basi quadratis vagiuantibus nervo lato continuo, seta crassiuscula, theca ereeta, operculo conico rostellato. (Tab. LIX. Fig. IV.)

Hab. Lord Auckland's group and Campbell's Island; in moist places, especially towards the tops of the hills; barren in the latter island.

Caules crespitosi, pollicares, robusti, basi radicnlis intertexis fuscis dense obtecti et connexi. Folia densa, rigida, subfragilia, nervo latissimo crasso superne supra paginam folii totam extenso, flavo-viridia, inferiora subrufescentia. Inflorescentia dioiea; Fl. masc. terminalis; antheridiis plurimis oblongis, paraphysibus longioribus immixtis. Seta 8 lin. longa, valida, haud torta, rubra. Theca erecta, globosa, brunnea, siceitate sulcata. Peristomium non visuun, an nullum? Operculum conico-rostellatum, hateum. Calyptra fusca.

A more robust species than the B. patens, with broader and more rigid leaves, their dilated bases truly quadrate. The capsule is perfectly erect and the operculum rostellate. It essentially differs from the former in the diœcious inflorescenee. The thecæ are not in a fit state to show the peristome, if this moss really possesses one, of whieh we have some doubt. This is not distinguishable from the B. potosica of Montagne (Amn. Sc. Nat., 2nd Series, rol. ix. p. 56), judging only from the description of that author; but an examination of authentic specimens proves the two truly distinet, the latter being more closely allied to B. patens, though having shorter leaves with their bases not quadrate, but oblong or almost obovate.

Plite LIX. Fig. IV.-1, plant of the natural size ; 2 and 3, leaves ; 4 and 5 , theca; 6, old ditto; 7, calyptra: -magnified.
3. Bartramis pendula, Hook.; eaule subpinnatim ramoso fastigiato, foliis ovato-lanceolatis longe acuminati-serrulatis striatis nervo continuo, theca pendula orato-globosa subcylindracea suleata, operenlo planiusculo. B. pendula, Mook. Mhusc. E.rot. t. 21. Philonotis peudula, Brid. Bryol. Unir. vol. ii. p. 27. Minium pendulum, Smith in Linn. Trans. vol. vii. p. 262.

Hlab. Campbell's Island; frequent in marshy places, always barren.
「ariable in aspect and sometimes resembling B. fontana.

19. BRYUM, Dill.

Peristomium duplex; exterius dentes sedecim, æquidistantes, lanceolati, simplices; interius membrana tenera, sedecim earinata, in proeessus totidem dorso carimatos produeta, ciliis aut nullis aut plurimis fliformibus interjectis, dentibus exteruis oppositis. Calyptra parvula, cuculliformis. Theca inclinata v . pendula, oblonga, pyrifornis v . clavata, plerumque annulata, collo brevissimo v. clongato instrueta. Caules apices cersus innoocantes.-Bryum, Webera, Pohlia, Cladodium, et Ptychostomum, Bridet et auctorum.

In the generic claaracter, given above, we have closely followed that of Bruch and Schimper (Bryol. Europ.), thongh not satisfied of the propriety of excluding Bhium.

1. Bryum mutans, Schreb. ; caule subramoso breviusculo v. elongato, foliis superioribus elongato-lanceolatis apice serratis inferioribus orato-lanceolatis integerrimis, theca nutante v. pendula oblongo-pyriformi longitudine varia, operculo majusculo convexo papillato. B. nutans, Schreber, Fl. Lips. p. 81. Hook. et Tayl. Musc. Brit. p. 203. t. 29. Bruch et Schimper, Bryol. Europ. Fasc. 6-9, p. 34. t. 12.

Hab. Lord Anckland's group; on the hills, at an altitude of 1000 feet; rare, growing in a peaty soil.
The description given above is mainly taken from the 'Bryologia Europaea,' the authors of which add to the specific character "hermaphroditum, antheridiis per paria in foliorum summorum periehætialinmque axillis inque archegoniorum reccptaculo." The Anckland Island specimens are immature and rary in size, but coincide well with others of British growth. This is a moss of a high arctic as well as antaretic latitnde.
2. Bryum IFahlenbergii, Schwaeg.; caule simplici erecto v. ascendente, foliis apices rersus serratis inferioribus remotis oratis acuminatis, caulinis confertis lanceolatis costa evanida instruetis, theca inclinata v. pendula brevi pyriformi, operculo convexo v. subconico mamillato, dentibus majusculis. B. Wallenbergii, Schwaeg. Suppl. vol. i. pt. 2. p. 92. t. 70. Bruch et Schimper, Bryol. Europ. Fusc. 6-9, p. 44. t. 19.

Hab. Lord Auckland's group; barreu. (Di. Lyall.)
The inflorescenee of this moss is diæcious.
3. Bryua blandum, IIook. fil. et TVils.; caule subsimplici, foliis imbricatis erecto-patentibus oblongis obtusis integertimis concaris, nervo tenui subcontiuno, theca-? (Tab. LX. Fig. I.)

Hab. Campbell's Island; in boggy places, frequent, but borren.
Caules poilicares, cæspitosi, parce ramosi, Haccidi. Folia suberecta, laxe imbricata, valde coneava, membrauacea, pellucida, laxe reticulata, areolis rhomboideo-hexagoms, marginibus non reflexis, siccitate appressa, contracta, nitida, infima rubella v. rosca, superiora pallide viridia, nervo rubcllo sub apicen v. cramido. Fructus deest.

A rery beantifut moss, remarkable for its brilliant reddish and very membranous foliage. Allied to B. cellutare, Hook. (in Schwaeg. Suppl., t. 214 a, idem ae Poflia turbinata, Schwaeg., l. c. t. 194?); but the leaves are larger, much more concave and obtuse, and the stems longer.

Plate LA. Fig. I.-1, and 2, specimens of the natural size; 3, a portion of a branch and leaves; 4, leaf:maynifed.
4. Bryun tmencoru, Brid.; caule erecto subsimplici, foliis marginatis oboratis serratis longe acuminatis supremis rosulatis, theca pendula clongata cylindracea, operculo breci conico apice acuto. B. truncorum, Brit. Bryol. Ľnir. vol. i. p. 699.

Hab. Campbell's Island; in moist exposed places, barren.
These specimens seem to be of the same species as others gathered in New Zeałand with capsules, and which agree well with Bridel's deseription of B. truncorum, a Bourbon plant, detected by Bory de St. Vinceut. Our moss is closcly alliced to the B. remosm, Hook. (Ic. Mlaut. t. 20. f. 2), and also to B. patens, Hook. and Wils. (Lond. Journ. of Bot., rol. iii. p. lă5), from which Fatter, as also from B. roseum, it differs in the margined leaves and in the romakably narrow elongated theca. It is perhaps the B. leptothecium, Tayl. MSS.
5. Braum anmulutum, Hook. fil. et Tils.; caule perbrevi, foliis patentibus subrigidis orato-lanceolatis acutis integerrimis solidincrriis, theea pendula ovata, operculo conico, annulo latissimo. (Tab. LI. Fig. II.)

Hab. Campbell's Island; on the low grounds, searce.

Caules crespitosi, 2 lin. longi. Folia confurta, subconeava, nervo erasso continno vix excurrente iustructa, siccitate non erispata. Seta $3-4$ lin. longa, apice arenata. Theca subobovata. Peristomii externi dentes lutei, trabeculati, trabeculis remotis. Aunulus magnus, insignis, longitudine $\frac{1}{3}$ peristomii cxterioris.

We advance this species with much hesitation and after a very careful examination. It is most nearly allied to the B. balanoides (Tayl. MSS.), of which it may possibly be a variety, differing from that moss in the rigid and differently shaped leaves, in the large ammus and distant trabeende of the outer teeth. The capsule is not sufficiently mature to show the nature of the cilix of the imer peristome.

Plate LX. Fig. II.-1, a spccimen of the natural size; 2, 3, 4, and 5, leaves; 6. theea:-magnified.

20. FUNARLA, Schreb.

Peristomium duplex; exterius dentes sedecim, obliqui, apice cohærentes; interius cilia totiden membranacea, hasi connata, v. membrana plana, in ciliis 16 , dentibus oppositis, fissa. Calyptra cueulliformis, reutricosa, basi subtetragona. Thecu inæqualis, pyriformis, cernua, seppius amnulata.

1. Fuxaria hygrometrica, Hedw.; caule brevissimo subsinplici, foliis appressis ovato-lanceolatis integerrimis nervo excurrente, seta arcuata madore torta, theca cernua pyriformi profunde suleata, opereulo plamiusculo. F. hygrometriea, Hedro. Sp. Musc. p. 170, et auctorum.

Hab. Campbell's Island; frequent on the hills; not seen in Lord Auckland's group.
The alsence of this moss, in the parts of Lord Auckland's group explored by the expedition, is very remark able, considering its abundance in Campuell's Island, and is doubtless owing to the presence of carbonized matter over the surface of a great part of the latter island. In the Antarctie regions, as in Europe, the Funaria invariably follow fires, and the conferroid filaments of its youngest state constitute the first appearance of vegetation on the burnt soil of the Falkland Islands.

§ PLELROCARPI.

21. ANECTLIVGIUN, Briz.

Stoma nudum. Calyptra cueulliformis. Theca æqualis, exannulata. Seta lateralis.-Hedwigia, Hook. Musc. Exot.

1. Anectangius Ilumboldti, Brid.; caule creeto diviso pinnatim ramoso, ramis deflexis subrecurvis, foliis imbrieatis oboratis concavis enerviis piliferis, theea subglobosa suleatr, operenio basi planimsculo obligue rostrato. A. Humboldti, Brid. Bryol. Lnier. vol. ii. p. 165. IIedwigia, Ilook. Musc. Exot.t. 137. Schucueg. Syippl. vol. ii. pt. 1. p. 9. t. 103.

Yar. β, custrale ; caule breriore, foliis acutis seta recta breviore terminatis marginibus non cartilagineis.
His. Lord Auckland's group and Campleell's Islaud ; on moist rocks, at an elevation of 1400 feet in the former and 600 in the latter island.

The original specimen, figured in the ' Musci Exotici,' has the leaves terminated by a slender hair-like production of their omin leugth, mhilst others, gathered by Dr. Lyall at Rio, are muticous in that respect; those now before us are intermediate, and some others from Cape IIorn more closely resemble the moss of the Andes.

22. LELCODON, Schwaeg.

Peristomium simples, membranaceum; dentibus sedecim, bipartitis. Calyptra cuculliformis.

1. Levcodos Lagurus, Ilook.; caule ramoso tomentoso, foliis inbricatis ovatis conearis acuminatis piliferis seminerviis, theca crecta cyliudracea, operculo acuminato. L. Lagurus, ILook. Musc. Erot. t. 1:26. Schwaeg. Suppl. vol. i. pt. 1. p. 121. t. 133.

Tar. β, foliis majoribns ima basi binerviis.
$H_{A B}$. Campbell's Island; on rocks, at an clevation of 1000 feet, barren.
In the original specimens the leares are generally nerved half-way up; in the present they possess two very short nerves ; but the varicty is not otherwise distiuguishable from the Antaretic American plant.

23. LESKLA, Helwig.

Peristomium duplex; exterius dentes sedecim acuti; interius membrana in dentibus sedecim æquilougis fissa. Calyptra cucullifornis.

1. Leskia concinna, Hook. ; caule erecto bipinuatim ramoso, folïs distichis oblongis acuminatis marginatis apice serratis evamidinerviis stipulis conformibus duplo brevioribus, theca suberecta oblonga, operculo sululato. L. concinua, Mook. Musc. Exol. t. 34. Schuaeg. Suppl. t. 269. Hypopterygium, Bridel, Bryol. Unir. rol. ii. p. 711.

Hab. Lord Auckland's group; slady rocks on the tops of the hills, altitude 1200-1400 feet.
This moss, which is furnished with aceessory leaves (stipules) on the lower swface of the stem, belongs to the same group as Hypmum laricinum, IIook. (Muse. Exot. t. 35), and L. rotulata, Hedw., they should perhaps be separated from Leskia and from Hookeria, to which they are in some respects allied. Bridel's genus Hypopterygium is so constructed as uot to admit of these, the fertile flowers being lateral and not covered by the stipules, and the calyptra truly dimidiate instead of mitriforun. In Pterigynandrum ciliatum, Hedw., which has the habit of this group, the peristome is single.
2. Lesklı tamariscina, Medr.; caule flabellatim ramoso, ranis subdirisis, foliis distichis oblique lauccolatis serrulatis eranidinerviis, stipulis rotmdatis mucronatis, theca oblonga subpendula, operculo conico rostellato. L. tamariscina, Hedw. Sp. Musc. p. 212. t. 51. (excl. syn. Secartzii ficl. Hook.). Hypopterygium, Brit. Bryol. Univ. vol. ii. p. 715.

Ilab. Lord Auckland's group; barren. (Dr. Iyall.)
Aceording to the remark in Hooker's Musc. Exot. (sub. t. 35), the name Leskia tamariseina of Swartz (Fl. Ind. Occ.), should be substituted for that of L. rotulata, Hedw. We are not aware that any subsequent author has noticed the curions tubular setiform processes in the axille of the leaves and sometimes of the stiputes in this moss.
3. Leskia Norc--Hollundic, Schwaeg.; caule crecto simplici, foliis distichis oblongo-lancolatis apice denticulatis nervo in cuspidem excurrente, seta basilari elongata, theca ascendente cylindracea. L. Nora Hollandia, Schwaeg. Suppl. vol. i. pt. 2. p.160. t. S3. Rhizogonium, Brit. Bryol. Unit. vol. 2. p. 664.

Hıb. Lord Anckland's gronp; on the trunks of trecs in the deepest and darkest recesses of the woods; scarce and barren.
24. HYPNUM, Dill.

Peristomium duplex; exterius dentes sedecin, lanceolati, reflexiles; interius membrana carinata, in cilia totidem interdum pertusa ciliolis interjectis fissa. Calyptra cuculliformis.-Isothecium, Hypuura et Stereodon, Bridel.

a. Foliis ristichis.

1. Hypnum bifarium, Hook. ; caule crecto suhpinatim ramoso, foliis remotis erecto-patentibus distichis lanceolatis margiuatis duplicato-serratis solidinerviis, theca horizontali ovata, operculo conico acuminato. H. bifarium, ILook. Musc. Exot. t. 57. Schwaeg. Suppl. t. 257, a. Isothecium, Brid. Bryol. Univ. vol. ii. p. 356 .

Hab. Lord Auckland's group; on the dead trunks of trees.
The serratures of the leaves are composed of a double row of spines, as in II. spiniforme. The operculum is half the length of the theca, slorter and less acuminated than in the figure in ' Musci Exotici.'

b. Foliis imbricatis.

* Foliis solidinervirs.*

2. Hypnur spiniforme, L.; caule erecto subsimplici, foliis patentibus lineari-subulatis marginatis du-plicato-spimuloso-scrratis solidinerviis, seta subbasilari, theca ovata arcuata, operculo oblique conico rostrato. H. spiniforme, Linn. Sp. Pl. p. 15S7. Hedwig, Musc. vol. iii. p. 59. t. 25. Brid. Bryol. Univ. vol. ii. p. 557.

Var. β, caule gracili, foliis brevioribus lanccolato-subulatis luridis.
Hab. Lord Auckland's group; var. β, under large tussacks of grass on the hills, rare and barren.
Neither in this nor in any other specimens of $I I$. spiniforme have we seen the leaves to be bifarious.
3. Hypnum elongatum, Hook. fil. et Tils.; caule elongato robusto subramoso, ramis elongatis, foliis erecto-patentibus ovato-lanceolatis nervo excurrente apiculatis serrulatis striatis. (Tab. LX. Fig. III.)

Hab. Lord Auckland's group and Campbell's Island; in dry rocky places on the hills, rare and almays barreu.

Caules 4-6 unciales, basi procumbentes, deinde ascendentes, incurvi, parce et rage ramosi. Foliz suberecta, dense imbricata, servulata, plicato-striata, siccitate erecta, subtorta, nervo tenui iu apiculum exsertum subelongatum desimente instructa, flaro-viridia, nitida, inferiora sordide riridia, dorso papillosa, areolis minutis oblongis, basi marginibusque pellucidis reticulatis.

This moss closely resembles the I. densumt, Swartz (Fl. Ind. Occ.), which is but ill represented in Hedwig's 'Species Muscorum.'

Plate LX. Fig. III.-1, a specimen, of the natural size; 2, leaf:-magnified.
4. Hypacar consimile, Hook. fil. et Wils.; caule elongato subramoso debili, foliis erecto-patentibus supremis secundis ovato-lanceolatis acuminatis serrulatis striatis nervo subexcurrente. (Tab. LX. Fig. IV.)
$H_{A B}$. Lord Auckland's group; in marshy places on the hills, barren.

[^13]Caules 3-4 unciales, graciles, laxe exspitosi, paree ramosi ; ramis creetis. Folia lave imbrieata ut in H. elongato, sed multo minora et e basi subquadrata gradatim attennata, minute servulata, nervo valido apice incrassato subexcurrente instructa, areolis minimis subrotundis \mathbf{v}. punctiformibus.

This moss might readily be taken for a slender state of the II. elongatum, nobis, from which it is truly distinct in the lower part of the leaf being subquadrate, angled on each side a little above the base, thence tapering gradually to a point, iu the margin being more minutely scrrated, the nerve stronger, and in the smaller reticulation.

Plate LI. Fig. IV.-1, a specimen of the natural size; 2 and 3 , leaves; 4 , portion of a leaf, shewing the reti-culation:-marnified.
5. Hrpnom scabrifotium, Hook. fil. et Wils.; caule pinnatim ramoso, foliis laxe imbricatis ovato-lanceolatis acuminatis margine scabris dorso papillosis nervo valido subexcurrente. (Tab. LX. Fig. VI.)

Hab. Lord Auckland's group; barren. (Dr. Iyall.)
Caules unciales et ultra, ramis iuterdum divisis. Folia caulina dissita, patentia, subrecurva; ramulina minora, laxe imbricata, erceto-patentia, rix sccunda, siccitate iucurva, nervo continuo, omnia margine scabra subdenticulata, glaucescentia, areolis minimis punctiformibus opacis.

This is one of the discoreries of my zealons friend Dr. Lyall, the value of whose collcetion is particularly noticed in the preface to this work. The mmber of mosses and sca-weeds especially, bronght home from the Antarctic regions, was much increased through that officer's unwearied exertions.

Nearly allied to the H. crispifolium, Hook. (Muse. Exot. t. 31), but smaller, with the leaves neither plicate nor falcate.

Plate LX. Fig. VI.-1, a specimen of the natural size ; 2, a branch; 3 "and 4, leaves; 5, apex of dito:magnified.

* Foliis ruptinerviis.

6. Irpsum rutabum, L.; caule procumbente vage ramoso, ramis subcompressis, foliis patentibus laxe imbricatis ovatis acuminatis subsermlatis nervo ad medium evanido, seta scabra, theea cernua ovata, operculo conico. H. ratabulum, Linn. Sp. Pl. p. 1590. Hedw. Musc. Frond. vol. iv. p. 29. t. 12. Hook. et Tayl. Musc. Brit. p. 176. t. 26.

Hab. Lord Auckland's group and Campbell's Island; in marshy situations.
Therc are tro varieties in the collection, both of them barren.
7. Hypaum serpens, L.; caule subpimatim ramoso, ramdis simpliciusculis filiformibus suberectis, folis patentibus ovatis aemminatis evanidinerriis, theca cernua oblonga, operculo convexo subconico acuto. H. serpens, Limn. Sp. Pl. p. 1590. Hedwiy, Muse. Frond. vol. iv. p. 45. t. 18. Hook. et Tayl. Muse. Brit. p. 155.t. 24.

Tar. β; foliis subsolilinerriis.
Hab. Lord Anckland's group; the var. β only. (Dr. Lyall.)
Exeept in the more defined nerve, this does not materially differ from British specimens.
*** Foliis subenerviis.
S. Hypata acutifolium, Hook. fil. et Wils. ; caule fastigiatim ramoso, foliis dense imbricatis suberectis elliptico-lanceolatis acuminatis integerrimis enerviis. (Tab. LX. Fig. V.)

Hib. Campbell's Island.

Cautis procumbens, uncialis. Rami conferti, fastigiati, subsimplices, graciles, fragiles. Folia subsecunda, siccitate erecta, subappressa, vix pilifera, concava, luride riridia, areolis linearibus.

Allied to II. extenuatum, Brid., but smaller, the leaves more ereet, and tapering gradually to a very narrow point.

Plate LK. Fig. V.-1, a specimen, of the natural size; 2, portion of branch and leaves; 3, leaf:-magnified.
9. Hypnum chlamydophy hlem, Hook. fil. et Wils. ; caule prostrato subramoso, ramis simplicibus elongatis cuspidatis, foliis imbricatis patcutibus quadrato-rotundatis integerrimis basi truncatis concaris nervo breviusculo evanido, seta elougata gracili lævi, theca cernua ovato-oblonga, operculo conico. (Tab. LII. Fig. I.)

Hab. Campbell's Island; on the ground, barren.
Caules sesquiunciales, rage ramosi; ramis 1 mc . longis, ad apices e foliis arcte conrolutis cuspidatis. Folia valde concava, ad apiees rotundata, obtusissima, basi latissima, truncata, subauriculata, pallide luteo-viridia, subseariosa, pellucida, splendentia, nervo simplici infra medium evanido v. nervis duobus brevibus, areolis anguste oblongis inferioribus multo majoribus; perichetialia erecta. Seta ferc $1 \frac{1}{2}$ unc. longa, gracilis, lævis, torta, rubra. Theca cernua v. horizontalis, ovato-oblonga, brumea. Peristomim luteum. Operculm breve, theea eoncolor.

Allied to II. cochlearifolium, but with the halit of a Leskia, and readily distinguished by its cuspidate branehes, wider and more flaccid leaves which are singularly broad and truncate at the base, where also there are a number of large pellucid cells; the seta also is longer and more slender.

The above description has been drawn up in part from fertile Tasmanian specimens, gathered in that eountry by Mr. Lawrence. There are in the Hookerian Herbarium several allied undeseribed speeies, both from New Zealand and Tasmania. A Fuegian moss, Hypnum? auriculatum, Mont., (Voy. au Pole Sud, Bot. Cryptog., t. 20. fig. 3), is the American representative of this, it differs in haring the base of the leaves produced on each side into two lobes.

Plate LNI. Fig. I.-1, a specimen, of the natural size; 2, 3, and 4, leaves; 5 and 6, thecæ:-magnified.
10. Hypsear cochlearifolium, Schwacg.; caule subrepente, ramis ascendentibus apice radicantibus, foliis imbricatis subrotundis obtusiusculis concavissimis subhemisphericis cherviis, theca cernua ovata, operculo comico. H. flexile*, Hook. Musc. Exot. t. 110. (excl. syn. Swartzii, Hectwigii, et Schwotegr.)

Hab. Lord Anckland's group and Campbell's Tsland; at the foot of precipices near the tops of the mountaius, altitude $1200-1400$ feet ; barren.

This moss is a native of the woods of New Zealand, eren as far north as lat. $36^{\circ} \mathrm{S}$.; hence its occurrenee only at the tops of mountains in the most bleak and exposed situations of so high a latitude as Campbell's Island was quite mexpected. We cannot distinguish it from more huxuriant northeru specimens in its barren state.
11. Hypnom Arbuscula, Str: ; caule erecto bipiunatim ramoso, foliis imbricatis erecto-patentibus ovatis

[^14]obtusis integerrimis concavis subbinerviis, seta brevi, theca erecta ovata. H. Arbnscnla, Smith, in Linn. Trans, vol. xix. p. 280. t. 23. Hook. Muse. Erot. t. 112. Isothecium, Brid. Bryol. Uriv. vol. ii. p. 37 . .

Var. β, foliis subdisticlis. H. Arbuscula, Schucaey. Suppl. t. 300.
Hab. Lord Auckland's group and Campbell's Island; rocky places on the hills; and on the ground in the woods, where it was found in fruit by Dr. Lyall. Var. β, Lord Auckland's Island; barren. (Dr. Lyall.)

The original specimens, figured in the ' Musci Exotici,' are there correctly described as having the leaves imbricated all ronnd the stem, but the seta is represented too long and slender. The stems of the rar. β are somewhat compressed, and the leaves thus become in a measure distichous, as shown in Schwaegrichen's figure, which may indicate a different species. The majority of our specimens agree well with the figure in 'Musc. Exot.;' except that the theca is more trnly elliptical and somewhat apophysate, gradually tapering downwards into a thick slightly curved seta, which is very little longer than the capsule and barely exserted beyond the perichæotial leares. We have never seen the seta so short, or the theca so globose, as they are represented by Schwaegrichen. The arcuate stems sometimes root at the aper.

c. Foliis patulis squarrosis.

12. Hypxum aciculere, Brid.; caule vage ramoso, ramis simplicibus, foliis squarrosis oratis acuminatis apice inciso-serratis subenerviis, theca inclinata cylindracea arcuata, operculo aciculari longissimo. H. aciculare, Brid. Bryal. Uuiv. vol. ii. p. 505. Schueaeg. Suppl. vol. ii. p. 280. t. 92.

LLab. Lord Aucklaud's group and Campbell's Island; on the ground in the woods, rare in fruit.
The calyptra is remarkably long in this moss, lanceolato-subulate, slighlity inflated when young, of a rich chest-nut-brown colour.

d. Foliis secundis.
 * Nerrosis.

13. Hypnus comosum, Lab.; caule repente, ramis erectis superne fastigiatim ramosis subdendroideis, foliis imbricatis subscopraiis patentibus ovato-linceolatis apice serratis uervo excurrente superioribus subsecundis, theca pendula suleata, operculo curvirostro. H. comosum, La Billarl. Fl. Nov. Holl. vol. ii. p. 107. t. 253. f. 2. Schecueg. Suppl. vol. i. pt. 2. p. 265. t. 91. Isothecium, Brid. Bryol. Uhiv. vol. ii. p. 374.
$H_{A B}$ Lord Auckland's group; forming large tufts in the woods uear the sea, rarely fruiting.
In habit this fine moss resembles some specics of Bartramia.
14. Hypsusi hispidum, Hook. fil. et Wils.; caule ramoso curvato v. arcuato, foliis imbricatis falcatosecundis ovatis longe acuminatis integerrimis subplicatis nervo crasso longe exserto, seta lrvi, theca orata æquali, operculo longirostro. (Tab. LXI. Fig. II.)

Hab. Lord Auckland's gronp; rocky places near the tops of the hills, barren.
Caules 2-4 uneiales, vage ramosi, ramis rigidis simpliciusculis, curvatis. Folia dcuse imbricata, rigida, basi ovata, deinde setacco-sulbulata, nervo valido cxcurente longe acumiuata, subconcara, basi obseure plicata, atroviridia, siccitate subcrecta, areolis minutis; perichetialia minora, ovata, nervo longe exscrto. Seta valida, flexuosa, $\frac{1}{2}$ uuc. longa, rigida, rubra, apiec arcuata. Theca æqualis, subhorizontalis, fusco-lutea, operculo requilongo, rostro obliquo. Calyptra nou visa.

This is a very common moss in the northern island of New Zealand, growing on rocks, on the exposed roots of large forest-trees, especially of the Podocarpus dacrydioides, and upon stones in streams of water ; under the last circum-
stances the stems become much elougated, and the whole plant resembles the Anoctangium aquaticum, Hedw. The drawing is made from Nerv Zealand speeimens.

Plate LXI. Fig. II.-1, a speeimen of the natural size; 2, another, of the aquatic state, also of the natural size; 3 and 4, leares; 5, young theea; 6 and 7, mature thece:-magnifed.
15. Hypnum filicinum, L.; caule compresso pinnatim ramoso, foliis falcato-secundis lanceolatis acuminatis basi cordatis solidinerviis perichæetialibus striatis, theca cernua subcylindracea, operculo couico acuto. H. filicinum, Lim. Sp. Pl. p. 1590. Hedw. Sp. Musc. p. 25s. t. 76. f. 7-10. Hook. et Tayl. Musc. Brit. p. 183. t. 26.

Var. β, minor; caule gracili, foliis suberectis lanceolatis.
Hab. Var. β. Lord Auckland's group; in woods by the banks of streams. (Dr. Lyall.)
Though the habit is more delieate than that of British speeimens, we are unable to separate this moss speeifically from II. filicinom, of which a perfeetly intermediate rariety oecurs in the Falldand Islands.
16. Hypaum fluitans, L.; caule erecto v. natante subpinnatim ramoso, folïs lave imbricatis falcatis lanceolatis acuminatis nervo ultra medium producto, theca cernua oblonga, operculo conico. H. fluitans, Linn. Fl. Succ. Ed. 2. p. 399. Medw. Musc. Fiond. vol. iv. p. 94. t. 36. Mook. Musc. Brit. p. 1S5. t. 24.

Hab. Campbell's Island; in swampy places, barren.

> * * Foliis enerviis.
17. Hypnum gracile, Hook. fil. et Wils.; caule ramoso, ramis gracilibus subrecurvis, foliis imbricatis secundis erecto-patentibus ellipticis obtusiusculis concavis subdenticulatis subenerviis, perichetialibus squarrosis. (Tab. LNI. Fig. III.)

Hab. Lord Auckland's group; dry rocky places near the tops of the hills, scarce and barren.
Caules unciales et ultra, eurrati, subsimplices, nune valde ramosi ; ramis gracilibus. Folia elliptica, subspathulata, minutissime denticulata, nervo infra medium eranido v. nervis duobus brevibus, areolis linearibus supremis latioribus; perichatialia orata, aeuminata, serrulata, encrvia.

Allied to M. micans, Wils. (in Hook. Brit. Fl. vol. ii. p. 86), but different in the branched stems and larger leaves, which are not recurved at the margin.

Plate LIII. Fig. III.-1, a specimen of the natural size; 2, a portion of a branch; 3 and 4, leaves :-magnified.
15. Hypnum cupressiforme, L.; caule decumbente vage pinnatim ramoso, ramis simplicibus incurvis, foliis circimato-falcatis secundis ovato-lanceolatis integervimis subenerviis, perichætialibus conformibus, theca subcernua cylindracea, operculo conico cuspidato. H. cupressiforme, Lim. Sp. Pl. p. 1592. Hedw. Muse. Frond. vol. iv. p. 59. t. 23. ILook. ct Tuyl. Muse. Brit. p. 159. t. 27.

Hab. Lord Auckland's group and Campbell's Island; abundant, but barren.
19. Hypaum leptorhynchum, Brid.; caule subpimatim diviso, foliis falcatis tortis lineari-lanccolatis acuminatis apice denticulatis enerviis, theca nutante oblonga, operculo longissime et tenuissime rostrato. H. (Stereodon) leptorlınnchum, Brid. Bryol. Univ. vol. ï. p. 621. Schwaeg. Suppl. vol. i. pt. 2. p. 205. t. 03.

Tar. β, seta brevior.
Hab. Lord Auckland's group; both varieties on the trunks of prostrate trees, rare.
20. Hypsua Terre-Nocre, Brid.; caule pimation ramoso, ramis incurvis simplicibus, foliis secundis circinuation falcatis ovato-lanceolatis subintegris enerviis, perichæetialibus elongatis recurvis suberinitis sub_ serrulatis, theca suberecta cylindracea, operculo brevi conico apiculato. H. Terre-Noræ, Briul. Bryol. Univ. vol. ii. p. 619. (Tab. LXI. Fig. IV.)

Var. β, australe; foliis e basi lata gradatim attenuatis subpiliferis integerrimis.
Hab. Var. β. Campbell's Island; on decayed vegetable matter in the woods.
Our specimens do not sufficiently depart from the description of Bridel to warrant our considering them as a distinct species; the only difference appears to lie in the entire perichretial leares and the cauline being probably more gradually attenuated from the base upwards. The seta is half an inch long. Operculum convex, subconical, or nearly hemispherical.

Plate LXI. Fig. IV.-1, a specimen of the natural size; 2, 3, and 4, leares; 5 and 6, thece:-magnified.

25. HOOKERIA, Su.

Peristomium duplex ; exterius dentes sedecim, basi liberis; interius membrana erceta, in lacinias sedecim carinatas fissa, ciliolis interjectis plerumque mullis. Calyptra mitreformis.

1. Foliis marginatis metique imbricatis.

1. Hookeria nervosa, Hook. fil. et Wils.; caule parce fastigiatim ramoso, foliis imbricatis erectopatentibus orato-lanceolatis acuminatis carinatis marginatis integerrimis solidinerviis, theca erecta ovatoeylindracea apophysata, calyptra basi fimbriata. (Tab. LAI. Fig. T.)

Hab. Lord Auckland's group; on twigs of bushes in ravines, at an altitude of 500 feet, rare.
Caules fere $1 \frac{1}{2}$ unciales, dense confcrti, ramis fastigiatis. Folia arcte imbricata, acuminata r. longe cuspidata, margine incrassata, nervo valido subexcurrente, pallide viridia, siccitate appressa, areolis rotundatis; perichatialia breviora, erecta, elliptica, obtusiuscula. Seta 3-4 lin. longa, rubra, apice seabriuscula. Theca parrula, suberecta. Calyptra conico-subulata, basi fimbriata, apice scabrinscula, fusco-brumea.

This moss closely resembles the Daltonia splactnoides, Schwaeg., and cannot be generically removed from that plant. It differs specifically in the inflorescence not being hermaphrodite, in the shorter peristome, in the sporules being twice the diameter, the calyptra twice as long, less couical, the seta shorter and thicker, the theca more oblong; the leaves wider, more patent, carinate, and merved to the very apex or beyond it. We have South American specimens of D. spluchnoides; but none corresponding with the moss now before us.

Plate LII. Fig. T.-1 and 2, specimens of the natural size; 3, a leaf; 4 and 5, perichætial leaves; 6 , theca; 7 , operculum ; 8 , teeth; 9 , calyptra; 10 , base of ditto:-magnified.
2. Hookerda pulchella, Hook. fil. et Wils.; caule procumbente distiche ramoso, ramis compressis, foliis confertis imbricatis subdistichis obovatis obtusis marginatis seminerviis, thecia suberecta oblonga apoplysata, opereulo rostrato, calyptra basi dense fimbriata superne glabra. (Tab. LNII. Fig. I.)

НАв. Lord Auckland's group; on bushes and the ultimate branches of trees, about 500 feet abore the sea, rare, but abundantly fruiting.

Caules semiunciales et ultra, subpinnatim ramosi ; ramis subcomplanatis mollibus. Folia late obovala obtusa interdum apiculata, flaceida, pellucida, latcralia patentia, antica posticaque subappressa, margine tenue cartilaginea, albida, integerrima, nervo tenui ad medium evanido instructa, areolis parvis rotundatis inferioribus majoribus; perichatialia minora, erceta, ovata, obtusa, subconvoluta. Seta six semiuncialis, apice scabriuscula, luride rubra, infra
thecam paulo incrassata. Theca suberecta, parvula, oblonga, basi obconica, seta concolor, apophysi augusta. Peristomium stramineum. Operculum theca paulo brevius, basi conoideum, rostro recto cylindraceo, margine submembranacea, semidiaphana. Calyptra thece parum longior, conico-subulata, fusco-lnten, apice rufo-fusca, basi ciliis plurimis coufertis fimbriata.

A most beautiful little flaceid and tender species, of a pale straw colour, with the calyptra exactly as in Darosonia splachnoides, Schwaeg., whence the species will form a conuecting link between Daltonia and Hookeria (Pterigoplyylum, Brid.). It is not improbable that this curious structure of the ealyptra, which appears to be of very rare occurrence in the geuns, may, in conjunction with the ercet theca aud some other peculiarities, prove of sufficient inportance to scparate these specics from all other Hookeria.

Plate LXII. Fig. I.-1, a specimen of the natural size; , a leaf; 3 and 4 , theca; 5, operculum; 6, ea-lyptra:-magnified.
3. Hookerta denticulata, Hook. fil. et Wils. ; canle suberecto parce ramoso, foliis laxe imbricatis subquadrifariis lateralibus distichis intermediis appressis subrotundis grosse dentatis nervo ad medium evanido, theca pendula ovata, operculo rostrato, calyptra glabra. (Tab. LNII. Fig. II.)

Hab. Lord Auckland's group and Campbell's Island; in wet and marshy places, not uncommon, rare in fruit, which was only seen in the former locality.

Caules pollicares, parce ramosi; rami compressi, subincurvi, siccitate rigidi. Folia coufiguratione sat varia, late oblonga, ovata, v. oborata, obtusa, musco recenti micantia, pellucida, siccitate nigricantia, subcrispa, fragilia, madore tardius nerro valido plerumque furcato infra medium cranido interdum brevissimo, areolis majusculis hexagonis; perichatialia parra, orata. Seta $\frac{1}{2}$ unc. louga, crassa, vix torta, rubra. Theca cermua v. pendula, elliptica, basi attenuata, rufo-brumea, opaca. Peristomii dentes externi tlavi, lineis duobus rubris notati. Operculum rostratum, rectum, theca brevius. Calyptra conico-mitræformis, glabra, carnosa, rufo-fusca.

Our specimens want both the opcreulum and calyptra, the descriptions of which are taken from Tasmanian specimens. This species bears much affinity to II. quadrifaria, but is smaller and readily distinguishable by its dentate leares. In general aspect it approaches the II. cristata.

Plate LXII. Fig. II.-1, specimen from Cape llorn of the natural size; 2, a Campbell's Island specimen of the natural size; 3 and 4 , leaves:-magnified.

1. Hlookeria pennata, Smitll ; caule erecto simplici, foliis bifariis verticalibus ovato-lanceolatis serratis subenerviis, stipulis orbiculatis mucronulatis serratis, seta perbrevi, theca suberecta orata, operculo conico acuminato. H. pennata, Smith, in Limn. Trans. vol. ix. p. 277. Hook. Musc. Exot. t. 163. Cyathophorum, Brid. Bryol. Liuv. vol. ii. p. 722.

Var. β, minor; foliis rotundatis concavis fusco-oliraceis. (Tab. LXII. Fig. III.)
Hab. Lord Aucklant's group; in the dark woods, barren: var. β, on decaying stumps of trees by a water-course, also barron.

The var. β is certainly not cnititled to rank as a species, thongh at furst sight its difference appears striking. Another form, prolably also a variety, with very narrow leaves, has been scut from Assam by Mr. Griffith, under the name of Neckera Adiantum, Griff. MSS. Hookeria pemata, on account of its accessory leaves (stipules), appears most naturally allied to those species included by Bridel in Mypopterygium; it is only in the much advanced state that the raginula becomes hollow and cup-shaped, whence Bridel's name of Cyathophorum is scarcely tenable, considering that the vaginula in other specics of Hookeria is very turgid. The calyptra is truly mitriform.

We have New Zealand specimens of this magnificent moss, ncarly a foot long and loaded with thecæ.
Plate LXII. Fiy. III.-1, a specimen of the natural size; 2 and 3, leaves:-magnifed.

XXXIV. HEPATICE, Juss.

(By Dr. Thomas Taylor* and J. D. Hooker.)

1. JUNGERMANNIA, L.

(1. Gymnomitrion, Nees.)

1. Jumgermanma stygia, Hook. fil. et Tayl. ; perpusilla, caule crecto laxe cesspitoso ramoso, foliis erectis subimbricatis appressis obovatis obtusis integris v. emarginatis, perichætiis rotundatis caule duplo latioribus. (Tab, LXII. Fig. TV.)

Hab. Campbell's Island; on rocks on the hills, growing amongst other Hepatice and Mosses.
Caules $2-3 \mathrm{lin}$. longi, crassiusculi, superne fusco-v. atro-purpurei, inferne fusco-olivacei vage ramosi; ramis divaricatis. Folia minima, subsecuuda, alterna, vix imbricata, obovata v. oblonga, apices versus obtusos late emarginata, segmentis obtusis, rarius integra, margiue superiore intcrdum scariosa. Perichatia subrotunda, foliis imbricatis, latiusculis, ad apices albidos plerumque scariosis.

A rery inconspicuous little species, approaching J. concimata (Lightf.), of thich it is probably the representative in thesc islands. The leaves are, howerer, more distant, never bifid at the apex, the stems slenderer and the perichætia sessile and round. Its colour is like Cymm. adustum, Nees, a German plant, with short and simpler stems.

Plate LXII. Fig. IV.-1, a plant of the natural size; 2, a specimen, magnified; 3, stem and leaves; 4, leaf: both magnified.
2. Jungermannia acinacifolia, Hook. fil. et Tayl. ; atro-fusca, caulibus erectis cæspitosis parce ramosis, foliis secundis ante imbricatis erectis acinaciformibus integerrimis apice rotundatis demum scariosis coucaris atro-purpureis. (Tab. LNII. Fig. V.)

[^15]Hab. Campbell's Island; on rocks near the hill-tops, growing amongst mosses, \&cc.
Caspites luride atro-purpurei, vix 1 une. alti, supra muscos elati. Canles sepius curvati, anni proteriti nune ad apices innovationibus binis instrueti. Folia ita imbricata et secunda ut callis superme profunde canalieulata appareat, opaca, acinaciformin, margine posteriorc lente recurva, anteriore eonvexa.

A larger plant than the former, or than J. concinuata; of a rigid habit, more sparingly branched and of a fuscous or blackish purple colour, with leaves so densely imbricated all round the stem, that the latter appears terete and grooved down the front. It is perlaps more nearly allied to the J. lutescens, Gottsche, but its leaves are broady rounded, of a thinner texture, the shoots pale lemon-eolour, the whole plant of a different habit, and further, the latter is furnished with stipules.

Plate LXII. Fig. V.-1, a specimen of the natural size ; 2, another specimen, magnifed; 3, part of stem and leares; 4, a leaf; both magnifed.
3. Juxgermanyia ochrophylla, Hook. fil. et Tayl.; pallide viridis, caule suberecto v. decumbente parce ramoso, foliis distichis laxe imbricatis erecto-patentibus late oboratis v. snbqnadratis brcviter bifidis segmentis obtusis concavis, stipulis valde inconspicuis v. nullis. (Tab. LXII. Fig. VI.)

Hab. Lord Auckland's group; amougst mosses on rocks at the tops of the hills, altitude 1200 feet.
Laxe cerspitosa. Caspites pallide virescentes, 1 urc. lati et ultra. Caules subuneiales, superne subincrassati, irregulariter piunatim ramosi. Fotia scmiamplexicaulia, imbricata, patentia, subdivarieata, obovata, basi angusta, concava, bifida, sinu brevi, segmentis longitudine vix $\frac{1}{4}$ folii obtusis. Stipula dum adsint minime, oblonge, apicibus vix emarginatis.

This has more the appearance of the Enropean J. minuta than of any of its eongeners, but the leaves are not so abruptly trumeate, the notch at their summits is much narrower and thcir sides more rounded. It is a more conspicuous plant than either of the two preceding, of a looser texture aud paler colour, and has patent leaves. From J. perigoniatis, nobis, it may be distinguished by its greater size, paler hue, stout stems and more erowded leaves, which are loosely reticulated and hare obtuse segments.

Plate LXII. Fig. VI.-1, specimen of the natural size; 2, a portion of a branch with leaves; 3, a leaf; both magnifed.

(2. Sircoscypius, Corda.)

4. Juxgermanyia perigoniatis, Hook. fil. et Tayl.; pusilla, caule cespitoso erecto subramoso, foliis approximatis suberectis secundis obovatis v . ovato-rotumelatis inecqualiter bifidis subobtusis basi semi-amplexicaulibus marginibus iutegerrimis, perigoniis ovato-oblougis, foliis perigonialibus arete imbricatis snbintegris valde concavis basi ventricosis saccatisve. (Tab. LXIII. Fig. VII.)

Hab. Lord Anckland's gronp; on rocks, at the tops of the hills.
Cospites densi, huride bromnei, 2-3 unc. diametro. Caules graciles, intertesti, sub $\frac{1}{2}$ unc. longi, crassiuseuli. Folia laxe imbricata, subsecumda, curvata, breviter bifida, sinn obtuso, scgmento inferiorc plenmque majore. Perigonia plurima, terminalia v. ramulis ultimis lateralia, basi subampullacea v. in sacculum produeta, apicibus brevibus, rarius emarginatis, nunc bifidis.

No calyces have becn observed upon this plant, which is so nearly allied to the J. Funcriii, Mohr, that they might easily be confounded; the latter differing in its short stems and more closely imbricated leaves, which are, as well as those of the courolute perigonia, aentely bifid; the segments of all are acute. It also a good deal rescmbles J. stygia, nobis, though the plant is larger aud the leaves have a very different direction.

Plate LNII. Fig. VII.-1, a specimen of the natural size; 2, front riew and 3, lateral view of portion of stem and leaves; 4 , leaf; 5 , ditto of perigonium ; magnified.

(3. Aulicularta, Corda.)

5. Juxgermannia occlusa, Hook. fil. et Tayl.; caule erecto laxe cæspitoso, ramis binis simplicibus v. parce ramosis, foliis appressis reniformi-rotundatis basi sublobulatis in ramos decurrentibus integerrimis concaviusculis. (Tab. LXII. Fig. VIII.)

Hab. Campbell's Island; in moist boggy places.
Caules biunciales, luride v. pallide rirescentes, inferne brunnei v. nigrescentes. Folia olivacea, pallide flava v. brumnea, superne arcte in capitulum circimatum imbricata, areolis crebris minimis.

This is cridently the southern representative of J. compressa, from which it is distinguishable by the inferior margin of the leaf being produced into a lobe, as also by the closer and smaller cells of the leaves. In the European plant the lower lobe of the leaf is decurrent on the stem, but does not form a lobe nor is it produced below the junction of its inferior margin with the branch.

Plate LXII. Fig. VIII.-l, a specimen of the natural size; 2 and 3, leaves; magnified.
6. Jungermanala strongylophylla, Hook. fil. et Tayl.; minuta, caulibus cæspitosis erectis ramosis, foliis minimis suberectis laxe imbricatis secundis rotundatis integerrimis concaviusculis, stipulis truncatis bifidis, calyce oblongo subcompresso ore rotundato bilabiato. ((Tab. LNII. Fig. IX.)

Tar. β, minima; gracilis, foliis minoribus.
Hab. Campbell's Island; on the hills: var. β, Lord Auckland's group; in wet places at the roots of grasses, \&c.

Cespites brunnei v. virescentes, supra muscos prostrati v. iis immixti. Caules graciles, subflexuosi. Folia minima, laxe cellulosa, pellucida, cellulis marginalibus majoribus, madore sub lente pallide fusco-olivacea. Stipulce oblongre v. obovatæ, truncatæ, bifidæ. Folia perichatialia elongata calyce oblongo-obovato ore crenato paulo longiora. I^{\top} arietas β, minor evadit, foliis remotis perigoniisque instructa. Perigonia plurima, lateralia, e foliis majoribus confertis ventricosis spicatis formata.

There is no northern congener with which this will bear any close comparison; the form of the caly x and perichætial leaves resemble thic J. crenulata; the present is, however, a rery much smaller plant, distinctly stipulate, of a different habit and with rounder leaves.

Plate LXII. Fig. IX.-1, a specimen of the natural size; 2, the same, magnifed; 3, portion of branch with leaf and stipule; magnified.

(4. Gottschea, Nees.)

7. Jungermaxila Lehmanniana, Lind. in Lehm. Pugill. Plant. IV. p. 60. Gottsche, Nees et Lindenb. Synops. Mepat. p. 20. G. Hombroniana, Mont. in Toy. au Pole Sud. Bot. Crypt. t. 16. f. 1. et in Ann. Sc. Nat. 1843. p. 24.3.

Hab. Lord Auckland's group; on rocks and at the roots of trees in the moods, abundant.
Also a native of Tasmania and of New Holland. We quite agree with the authors of the 'Synopsis Hepaticarum ' in uniting G. Hombroniana, Mont. with this.
8. Juvgermannia pinnatifolia, Hook. Musc. Exot. t. 114. Gottsche, Lindenberg et Nees, Synops. Hepat. p. 22. G. ciliigera, Hook. fil. et Tayl. in Hook. Lond. Journ. of Bot. vol. iii. p. 376. (Tab. LXIII. Fig. I.)

Hab. Lord Auckland's group; growing amongst mosses in the woods, often forming large tufts by itself.

This noble plant was described under the name of J. ciliigera in the London Journal of Botany,' quoted above. The specimens differed from the published figure in the lobes of the leaf being eonsiderably unequal, and especially in their being produced at their union below into a ciliated wing or keel, characters which appear to have been overlooked in the ' Nusci Exotici.' We have added a correct drawing of this species, which was prepared before we were aware that it was an already published plant.

Plate LXIII. Fig. I.-(snb nom. J. ciliigera), 1, a specimen of the natural size; 2, the same, nagnifeed; 3 and 4 , leaves; 5, calyx ; magnifeed.
9. Juxgermannla Balfouriana, Tayl.; caulibus erectis laxe ceespitosis subsimplicibus squamosis, foliis subimbricatis patentibus lobo ventrali oblongo-falcato subtus apicem versus cristato cristis tribns ciliatis, dorsali semi-ovato utroque obtuso ciliato, stipulis quadrato-rotundatis quadrifidis.

Hab. Lord Auckland's group; in woods near the sea.
Lase cespitosa, pallide viridis. Caules e caudiee repente erecti, 3 unc. longi, squamis ciliatis lanceolatis obsiti. Folia conferta, vix imbricata, oblongo-lanceolata, obtusa, superne lobo verticali aucta. Stipnlarum lacinix obtusx, ciliatx.

The Gottscheee of Nees are a group of Jungermamiie almost conifined to the southern hemisphere; one is a native of the Philippine Islands, and a few others inhabit the Peninsula of India and the Island of Java; but the larger proportion frequent the humid and temperate woods of New Zealand, from whence we have reeeived no less than eight species; they are certainly the nobiles of the order Hepatica. J. Balfouriana is most nearly allied to Gottschea Blumii of Nees, a Java plant ; from which it may be diseriminated by its smaller size, less falcate leaves, more entire cauline seales, and above all by the quadrifid stipules. It was first reeeived by Dr. Balfour from New Zealand, though probably originally discorered by Mr. Colenso in that island, or by the Autarctic Expedition in Lord Auckland's group. A figure of it will be given in the Flora of New Zealand.
10. Juageranaria pachyphylla, Lelmann, Pugillus Plant. VI. p. 61. Gottsche, Nees ct Lindent. Synops. ILepat. p. 19.

Habi . Lord Auckland's group; on the bare ground, at an elevation of 600-800 feet, very rare.
Originally diseovered by Dn Petit Thonars in Tristan d'Acunha. Our specimens are small and very imperfect; growing on the bare ground in exposed places, the plant is with difficulty detected.
(5. Plagiochila, Nees et Mont.)
11. Jexgermannla fasciculata, Lind. Sp. Iepat. Fasc. 1. p. 7. n. 2. t. 1. Gottsche, Lind. et Nees, Synops. IIepat. p. 27.

Hab. Lord Auckland's group; forming large tufts in the woods.
A rery fine species, hitherto only known as a native of Ner Holland. The stems are rigid and wiry, 2-3 iuches long, branehing upwards, with the branches ereet and curving. The leaves are rather coriaceons, pale fus-cous-yellow; it belongs to the same section with the European J. spinulosa, Dicks.
12. Jungermannia hemicardia, Hook. fil. et Tayl.; caule ascendente subtriangulari simplici v. ramoso, foliis dense arcteque imbricatis crecto-patentibus oblique et late ovatis basi cordatis apicibus rotundatis marginibus integris v. superne denticulatis subconcavis, margine anteriore recurvo posteriore basi in lobulum producto. (Tab. LNIII. Fig. II.)

Hab. Campbell's Island; on exposed rocks, near the summits of the hills.
Crespites fusco-olivacei, 1-2 unc. lati. Caules una cum foliis triangulares, $\frac{3}{4}-1$ unc. longi, e rhizomate repente ascendentes, simpliciusculi, rigidi, antice plani, profunde canaliculati. Folia arcte imbricata, integra v. denticulata, opaca, dense cellulosa, areolis minimis hexagonis.

The leaves of this species meet back to back and are so closely imbricated that the stems appear triangular, their anterior margins not touching but leaving a space which appears like a groove running down the whole length of the stems, their recurved margins are rather tumid and decussate on the opposite face. In general habit this resembles the J.punctata, Tayl., a species recently detected both in Ireland and the Canary Islands, from which the gibbous or oblique leares will readily distinguish it.

Plate LXIII. Fig. II.-1, a specimen of the natural size; 2, a stem; 3, portion of a branch; 4 and 5 , leaves; magnified.
13. Jungermanna circinnalis, Lehm. Pugill. Plant. IV. p. 64. Lehm. et Lind. Spec. Hep. p. 124. t. 27. Gottsche, Lind. et Nees, Synops. Hep. p. 53.

Hab. Lord Anckland's group; on rocks and on the hills, rare.
This agrees with authentic specimens of Lehmann's plant, cxcept in the summits of the stems not being so remarkably circinnate as they are described. Such circinnate summits, however, are truly perigonia, whose leaves are smaller, more ventricose and erect than those of the stem ; and further, some of them contain in their axille a single, rather large, pericellated anther. Our specimens are about half an inch long, stout and curved; the leaves much more lax than in the former species.
14. Jungermanxia cognata, Hook. fil. et Tayl.; parvula, fulva, caule erecto cæspitoso subsimplici v. ramoso, fobiis laxe imbricatis patulis late ovatis v. clliptico-oblongis acuminatis paucidentatis basi attenuatis decurrentibus, margine autcriore vix recurvo, calyce terminali perichætio æquilongo vix curvato bilabiato labüs ciliato-dentatis. (Tab. LXIII. Fig. III.)

Hab. Lord Auckland's group; on alpine rocks, growing amongst stunted tufts of Mymenophyllum multifidum.

Ccespites diametro 1-2 unciales, inferne brunnei, superne flavi v. flavo-fusci. Caules erecti, l unc. longi, subrigidi, inferne mudi, parce ramosi, ami precedentis sæpius imnorati, apicibus subeurvatis. Folia disticha, snbpatentia v. divaricata, coriacea, apices versus 3-5 dentata, dente apicali majusculo acuminato, margine anteriore subrecurvo decurrente; folia perichetii erecta, clongata, magis dentata.

This has much affinity to the J.decipiens, Hook., a very rariable species in the form of the leaves, but in which their cellules are much larger and more lax, while in this they are so dense as to be hardly distingnishable. The European plant differs further from the present in a character alluded to by the authors of the 'Synopsis Hepaticarum,' who remark, " J. decipiens ab omnibus congeneribus margine dorsali folii inflexo nec reflexo differt."

Plate LXIII. Fig. IlI.-1, a specimen of the natural size; 2, the same, magnifed; 3 and 4, portions of stems aud leaves; 5, perichretinm and calyx; maynified.
15. Jungermannia pleurota, Hook. fil. et Tayl.; cæspitosa, caule erecto diviso v. parce ramoso, foliis
laxe imbricatis erecto-patentibus obovatis obtusiusculis apices versus parce crenato-dentatis basi angustatis, margine anteriorc recurvo decurrente, calyce elongato-obovato basi nudo 4-5-alato ore contracto denticulato. (Tab. LNIII. Fig. IV.)

Hab. Lord Auckland's group; on moist rocks, near the summits of the hills.
Ccespites subdensi, $2-3$ unc. diametro, pallide stramimei v. vireseentes. Caules $\frac{3}{4}$ unc. longi, subrigidi, simpliciusculi. Folio inferiora integra v. interdum unidentata, superiora apices versus plus minusve inregulariter erenatodentata, omnia conformia, basi angustata antice decurrentia, apices versus rotundata, cellulis distinetis. Calyx terminalis, subpedicellatus, erectus, basi attenuatus, foliis caulinis vix duplo longior, alis 4-5 angustis planis v. rugosis, duobus oppositis interdum opaeis, ore subtubuloso, crenato v. 4 -fido, tandem fisso, foliis perichætii proprïs nullis.

In external appearance this species very closely resembles the former, the leaves are, however, more loosely cellular, and in the structure of the ealyx it widely differs. The Peruvian Pl.gymnocalycina, Lind., (Spee. Hep. p. 48. t. 10) has the calyx equally naked below and of a similar outline, but it is smooth and furnished with only two very obseure ribs, its foliage also is perfectly dissimilar and the whole plant is much larger. The wings of the ealyx are formed out of deep folds of its membrane.

Plate LXIII. Fig. IV.-1, a specimen of the natural size; 2, calyx and upper leaves; highly magnified.
16. Jungermannia fuscella, Hook. fil. et Tayl.; caule subcespitoso ascendente curvato vage ramoso, foliis laxe imbricatis patulis late oblongo-rotundatis basi obliquis subdeflexis siccitate verticalibus v. subcrispatis, margine anteriore recurvo subdecurrente, posteriore in lobulum latum producto denticulato, calyce terminali obovato truncato deflexo foliis perichætialibus breviore. (Tab. LXIII. Fig. V.)

Hab. Lord Auckland's group; in moist boggy places.
Cespites late diffisi, 3-4 uncias diametro, luride olivacei r . fuseo-atri. Coules $1 \frac{1}{2}-2$ unciales, superne curvati, subgraciles, sæpe reflexi, siccitate una cum foliis suberispatis subsquarrosis rigidi. Folia latiuscula, dense cellulosa, opaca, areolis subpunctiformibus, luee transmissa pallide fusco-olivacea, margiuibus iutegris v. plerumque margine posteriore denticulato, supremis interdum omnino sub lente denticulatis.

In many respeets this species resembles Montagne's P. pusilla (Toy. au Pole Sud, Bot. Crypt. tab. 16. f. 3), a species, judging from the plate, founded upon a young and imperfect speeimen, and which we think exists in the Herbarium of the Expedition of a larger size. It differs from this in the deep serratures of the leaves, in the habit and colour and above all, in belouging (according to the figure) to a section having the leaves condmate at the base. In the form of the foliage our plant more nearly resembles the P. hemicardia, nobis, but is very different in the disposition of the leaves on the stem. A few calyces were obscrved; they are very uniform, shorter than the perichætial leaves and concealed by them; some are proliferous, the stem being produced through their axis and exserted : this abnormal state has been observed in J. Lyoni, Tayl., and in several species of mosses, as in Conomitrium Berterii, Montagne (Cryptog. Boliv. t. 3. f. 4).

Plate LXili. Fig. V.-1, a specimen of the natural size; 2, 3, 4, leaves; magnifed.

(6. Jungermannia, Nees.)

17. Jungermannia colorata, Lehmann, in Linuca, vol. iv. p. 366. Gottsehe, Nees et Lind. Synops. Hepat. p. 86.

Hab. Lord Auckland's group and Campbell's Island; in various situations from the sca to the hill tops, abundant.

This is one of the most universally diffused species in the Southern Hcmisphere, and especially abundant thronghout the Antaretic regions; it bears considerable resemblance to the J. orbicularis, Mich., of North America, and to several other species.
18. Jongermanna intortifolia, Hook. fil. et Tayl.; sordide purpurea, eæspitosa, canlibus erectis subflaccidis simplieibus v. parce ramosis, foliis patentibus imbrieatis concavissimis oblongo-rotundatis inæequaliter bi-quadrifidis segmentis acuminatis marginibus ineurvis paucidentatis, stipulis imbricatis rotundatis emarginatis v. bifidis subdentatis valde coneavis. (Tab. LAIV. Fig. I.)

Hab. Campbell's Island; in bogs on the hill-sides.
Cospites lati, interdum supra terran extensi, flaccidi, sordide pwrpurci. Caules $1 \frac{1}{2}-2$ unc. longi, crecti, superne incrassati, subdichotome ramosi. Folia valde concava et rentricosa, quasi inflata, amplexicaulia, rarius integra, segmentis acuminatis, apicibus incurris, substantia flaceida cellulosa laxc reticulata, vix pellucida. Stipula sæpc latere unieo solummodo dentatæ, majusenlæ, membranaceæ, dense imbricatæ.

The whole of the texture of this fine species is, when wet, so flaceid, that its large closely imbricated stipules are at first with difficulty distinguished from the leaves. It is perhaps more nearly allied to the J. servulata, Sw. (Musc. Exot. t .88), than to my other; still, this is quite a distinct plant, much larger, stoutcr, with the leares somewhat fleshy and brittle, longer and more crect, of a lurid purple colour.

Plate LXIT. Fig. I.-1, a specimen of the natural size ; 2, portion of stem with leaves and stipules; 3, a leaf; both maynified.
19. Jungermanvia schismoiles, Montagne in Toy. au Pole Sul, Bot. Crypt. t. 17. fig. 1. et in Anu. Sc. Nat. 1S43. p. 250. Guttsche, Lindenb. et Nees, Syn. Hepat. p. 81.

Hab. Lord Auckland's group and Campbell's Island; creeping amongst mosses and other Hepatice.
Gottsche (Synopsis, I. c.) compares this speeics with J.piligera, Nees, a plant of Java; it is perhaps more like J. incumbens, Lehm. of Tristan d'Acunha, differing by the greater size and nearly equal segments of the leares. These have no near ally in Emrope.
20. Jungermannia multicuspidata, Hook. fil. et Tayl.; laxe cæspitosa, subramosa, prostrata, ramis inferne radieantibns apicibus ascendentibus, foliis distantibus snberectis laxis obovatis bi-tri-quadrifidis segmentis acntis v. aeuminatis laxe cellulosis, calyce terminali v. laterali elongato eylindraceo ore dentato.

Hab. Campbell's lsland; in pools, near the sea.
Ciespites inter Spluagna repentes vel in aquam subnatantes, rarius supra terram in umbrosis, 1-2 unc. diametro, laxe intertexti, pallide albido-straminei. Caules subramosi, plerumque ad basin calycis immovationibus binis instructi, graciles, laxe foliosi. Folia pellucida, valde membranacea, ad medium divisa, sinubus obtusis, segmentis snbdivaricatis; perichetialia erceta, laxe imbricata, plerumque tri-quadrifida. Calys perichætio bis longior, elongatus, cylindraceus, ore contracto inrequaliter $3-5$ dentato, latere fissus, infra orem obscure sulcatus.

This species has indeed many points in common with J. bicuspidata, the same pale colowr, loose leaves with large cellules, acuminated segments, and an elongated calyx. It is marked by the smaller size, the stem-leaves being more crect, the division of the leaf deeper, and the calyx more gencrally terminal than in J. bicuspidata, L.
21. Jungermanma turgescens, Hook. fil. et Tayl.; caule cæspitoso procumbente ramoso, fohis imbrieatis secundis suberectis concavis reniformi-rotundatis integerrimis, margine anteriore decurrente, stipulis
obovatis rotundatisve integerrimis apice bifidis, calyce terminali compresso oblongo truncato ore integerrimo v. obscure lobato. (Tab. LXIV. Fig. II.)

Hab. Lord Aucklaud's group; on the ground, near the tops of the hills.
Cospites 2-3 unc. lati, pallide flaro-olivacei. Canles vix uneiales, intertexti, vage ramosi, prostrati, apicibus ascendentibus. Folia fere reniformia, e marginibus valde incurvis concava, subpellucida, arcolis minutis. Stipule parve, simu brevi, segmentis subaeutis. Calyx in ramo anni preteriti terminalis, compressus, oblongus, basi angustatus, vix curvatus.

The leaves on the fertile shoots of this species rapidly increase in size upwards, becoming more densely inbricated ; the terminal pair or perichætial leaves are the largest and most erect.

Those species of Jungermannia with round, concave, imbricating leaves and bifid stipules, which inhabit the north of Europe, have their calyces subeylindrical or ovate; the present differs from all of them in that organ being decidedly compressed and truncate, appearing like a flattencd eylinder after the egress of the capsule. It may by some be considered as forming a separate genus, to which perhaps our J. strongyloplyylla shoudl be referred.

Plate LXIV. Fig. II.-1, a specimen of the natural size; 2, back view of stem, leaves, and stipules; 3, front view of leaf and stipule; 4 , back view of leaf; 5 , stipule; 6 , calys; magnified.
22. Jungermannia notophylla, Hook. fil. et Tayl.; straminea, canle erecto subsimplici v. ramoso, foliis numerosissimis arcte imbricatis patenti-recurvis reniformi-rotundatis valde concavis integerrimis marginibus incurvis, stipulis ovato-rotundatis obtusis v. emarginatis integriusculis. (Tab. LNIV. Fig. III.)

ILab. Lord Auckland's group; on banks, in the woods near the sea, forming large patehes.
Ceespites majusculi. Canles graciles, teretes, supeme subincrassati et incurvi, pallide straminei, flaceidi, 2 une. longi. Folia densissime imbricata, marginibus valde incurvis, quasi inflata, substantia molli, flaceida, subpelheida, subauriculiformia, obliqua, antice decurrentia, carnosa. Stipulee vahde concavæ, latæ, plerumque integræ, magnitudine $\frac{1}{4}$ foliorm.

This ewrious and fine species is of a pecularly flaceid and as it were greasy texture when moist; there is no European or exotic Jungermannia known to us with which it can be at all compared.

Plate LXIT. Fig. III.-I, a specimen of the nalural size ; 2, portion of stem with leaves and stipules; 3, leat and stipule; 4, stipule; magnified.
23. Jungermanna cymbaliferu, Hook. fil. et Tayl.; canle laxe implexo suberecto v. procumbente subsimpliei tcreti eurvato, foliis arcte densecue imbrieatis erecto-patentibus oblique rotundatis scrrulatis conearis margine anteriore sursum in appendiculam obovato-rotundatam producto, stipulis transversis latissimis arcte imbrieatis obscure trilobis integerrimis, calyce laterali ovato-oblongo subcompresso plicato ore dentato. (Tab. LNTV. Fig. V.)

Hab. Lord Auckland's group; on the roots of old trees in the woods, rare.
Crespites laxi, pallide virescentes v . lntescentes. Cautes subunciales, teretes, intertextí, simplices v. parce ramosi, flexuosi, prostrati, apicibus sæpius incurvis. Folia densissime imbricata, subsecunda, marginibus anticis approximatis, appendieibus seu auriculis pedicellatis e membrana duplici formatis instrueta, substantia subearnosa, flaecida, pellucida, cellnlis distinctis. Calyx vere lateralis, basi subtumidus, infra orem compressus, longitndinaliter plicatus, foliis perichretialibus paucis.

A singularly beantiful and easily recognised plant, with much the habit and external appearance of J. notophylla, nobis, but most distinct from it and from any other species. The appendages of the leaves and the broad obscurcly lobed stipules all closely imbricating up the stem give the appearance of a very complicated structure. Like the
J. notophylla it swells much in moistening, and assumes a stout and as it were greasy appearance, from the peculiar texture of the distended cells. The broad stipules, reaching nearly across the back of the stem, resemble those of J. Bittardieri, and are as regular and close along the whole plant as the scales of a snake.

Plate LXIT. Fig. V.-1, a specimen of the natural size; 2, front ; 3, back, and 4, side view of stem; 5, a leaf; 6 , calyx and perichætium : magnified.
24. Juxgerminain diplophylla, Mook. fil. et Tayl.; caule procumbente laxe implexo divaricatim ramoso, foliis distichis arcte imbricatis divaricatis bilobis lobis plica conduplicatis ciliatis v. ciliato-dentatis, lobo superiore erecto patente multo minore ovato subacuto substipuliformi, inferiore patente late ovato obtuso, stipulis subquadrato-rotundatis bifidis segmentis ciliato-dentatis. (Tab. LXIV. Fig. IV.)

Hab. Lord Auckland's group; creeping over the candices of Ferns, rare.
Caules subsolitarii, vage repentes, v . cæspites laxos planos sub 1 unc. diametro formantes, planiusculi, procumbentes, parce divaricatim ramosi, 1 unc. longi, latinsculi, albidi. Folia tenerrima, membranacea, laxe cellulosa, pellucida, dense inbricata, pulchcrime ciliato-dentata, valde concava, profunde biloba, lobis valde inæqualibns, lobo anteriore multo minore supra faciem anticam caulis extenso, stipulam referente; folium superius in sinu concaro inferioris receptum.

In some respects this remarkably beautiful species resembles a Gotlschea, but it is in reality more allied to the genus Scapania of Lindenberg, from whose published characters it differs only in the presence of stipules! From what we have scen of the fructification, however, it widely departs from that group. The calyptra, in a specimen from M'Quarric's River (New Holland), is globose, destitute of auy calyx, surmounted by a truncated style, rough with numerons barren pistilla on its surface, and surrounded by scales; the scales are laciniate, the outermost the narrowest, and all enclosed in a triphyllous perichretium.

Plate LNit. Fig. IT.-1, a specimen of the nalural size; 2, front, and 3, back riew of a branch; 4, a stipule: magnified.
25. Juxgermania minuta, Crantz, Mist. Groen. p. 255. Hook. Brit. Jung. t. 44. Gottsche, Nees et Lind. Synops. ILepat. p. 120.

Hab. Lord Auckland's group; amongst mosses and other Hepaticce.
This little species is probably not uncommon in the high southern latitudes, having been also gathered in Kerguelen's Land.
26. Jtageramaha tenacifolia, Hook. fil. et Tayl.; caule rigido tenui laxe cæspitoso erecto subsimplici flexuoso, foliis distantibus patentibus rigidis tenacibus elliptico-oblougis obtusis iutegerrimis basi angustatis marginibus planis v. recurvis, stipulis conformibus minoribus integris bifidisve. (Tab. LXIV. Fig. VI.)

Hab. Lord Auckland's group ; amongst other Mepatica, mosses, \&c., in exposed situations near the tops of the hills.

Cospites laxi, fusco-brunnei v. atri. Caules graciles, vix 1 me. longi, rigidi, vix ramosi, flexnosi. Folia stipulis: conformia semper patentia, dura, rigida, opaca, rarius recurva, fusco-brunnca.

We know of no species with which the present can at all be compared. The leaves and stipules are so nearl! alike and so regularly stiff and patent, that the stems look pectinated with a triple row of spines, standing at regular intervals. This rigidity, combined with the sleuder habit, is very remarkable.

Plate LXIV. Fig. VI.-1, a specimen of the natural size; 2, back, and 3, side view of portion of stem; 4, leaf; 5 , stipule: all magnified.
27. Jungermannla vertelralis.-Scapania? vertebralis, Gottsche, Lind. et Nees, Synops. Hepat. p. 72.

Hab. Lord Auckland's group; on trees, very rare.
Our specimens of this beautiful speeies are smaller, but otherrise they eoineide with those of Tasmauia. It is very closely allied to the J. chloroleuca, nobis, from Cape Horn, and also to the J. densifolia, Hook.

(7. Gynnaxthe, Tayl., subgenus norum.)

Receptaculum commune terminale, descendens, obeonieum. Caly.x nullus. Capsula quadrivalvis, seta suffulta. Elateres spirales seminibus immixti. Anthere in foliorum axillis liberæ, pedicellate.-Stirps exstipulata; periehxtia majora; folia caulina infina minima. Tayl. MSS.

2S. Jungermarnia saccata, Hook. ; Nusc. Exot. t. xvi. J. tenella, nobis in Lond. Journ. of Boteny, vol. iii. p. 377, 560 and 579.

Hab. Lord Auekland's group; in the woods, abundant.
The figure of this plant, in the ' Musci Exotici,' does not well aceord with our species, in which the upper margin of the leaf is more produced iuto a lobe, the apex blunter and sometimes emarginate or even bilobed, the lower margin more reeurved and the whole base broader.

To this group may be added the Jengermannia (Acrobolus, Gotsehe) Wilsoni, Nees, and the following.
29. Jungermavsia Urvilleana.-Scapania Urvilleana, Mont. in Foy. au Pole Sur, Bot. Crypt. t. 16. f. 2. et in Amn. Sc. Nat. 1S43. p. 247. Gottsche, Lind. et Lehm. Syn. Ilepat. p. 63.

Hab. Lord Auckland's group; mixed with other Hepatice in the woods.
This species, rather variable in its form, espeeially of the margins of its leaves, is a native of Tasmania, as well as of Lord Anekland's group and the Straits of Magalhaens, where it was first detected by D'Urville.

(8. Lophocolea, Nees.)

30. Juxgermannla bispinosa, Hook. fil. et Tayl.; canlibus procumbentibus implexis subramosis, foliis laxe imbricatis secundis erecto-patentibus oblongo-ovatis v. quadratis obtuse emarginatis bifidisve segmentis divaricatis acuminatis basi lata decurrente, stipulis minimis bipartitis segmentis subulatis integerrimis v . utrinque subdentatis. (Tab. LXIV. Fig. VII.)

Hab. Campbell's Island ; ou moist ground and trunks of trees in the woods. $_{\text {and }}$
Caspites implexi, 2-3 une. lati, pallide straminei. Caules prostrati, subflexnosi, graciles. Folia secuuda, remota, bifida; stipulis bifidis, rarius multifidis.

Very nearly allied to the J. bidentata, L., differing in its smaller size, more remote and suberect leaves, which are narrower, their eellulcs more minute, their emargination deeper, and in the stipules being less and generally not so eompound.

Plate LXIV. Fig. VII.-1, a specimen of the natural size; 2, portion of the stem, magnifed.
31. Juxgermarnia lenta; Hook. fil. et Tayl.; caulibus elongatis cespitosis subsimplicibus flexuosis
flaccidis ascendentibus, foliis contiguis patentibus distichis oblongis bitidis segmentis divaricatis acuminatis integerrimis, stipulis minutis lanceolatis bipartitis integerrimis, calyce obovato compresso trigono, ore bilabiato dentato.

Hab. Lord Auckland's group; in large tufts upon the moist trunks of trees. $^{\text {a }}$
Cesspites lati, interdum 2-3 unciales, supra albidi v. pallide straminei, inferne dilute brunnei. Caules 1-2 unciales, valde intertexti, elougati, graciles, simplices v. rarius ramosi, apices versus paulo curvati, flaccidi, cellulosi. Folia e caule prostrato subcrecta, paulo divergentia, hinc quasi liserialia, oblonga, versus medium sublatiora, emarginata v. bifida, sinu obtuso, segmentis acuminatis; perichatialia conformia, erecta. Stipulce bifide, integerrimæ, rarius basi extus unidentate. Caly,x membranaceus, pellucidus, trigonus, latere anteriore latiore, angulis inerassatis opacis, ore majusculo bilobo, lobis acuminatis argute dentatis. Capsula ovalis, pedunculo $\frac{1}{4}$ unc. longo.

This specics is very nearly allied to and apparently intermediate between the J. bidentata, L. and J. perpusilla, nobis, the former in particular, from which it is only to be distinguished by the smaller size and the entire segments of the stipules; from the latter it may be known by being at least double the size, by the more tufted labit, the deeper emargination of the leaf, their more acuminate segments and larger cells, and by the deeper division of the stipules. There are numerous radicles issung from the stem throughout its whole length, their position is immediately above the stipules, whence it secms highly probable that, when less tufted, the plant may be wholly creeping. This species will be figured in the Flora of New Zealand, of which islaud also it is a mative.
32. Juxgernavmia perpusilla, Hook. fil. et Tayl.; cæspitosa, caulibus ascendentibus snbranosis, foliis erecto-patentibus subsecundis oblongo-ovatis bifidis segmentis divaricatis subobtusis integerrimis, stipulis minutis oblongis bifidis v. rarius laceris, perigonïs ovatis. (Tab. LXIV. Fig. IX.)

Hab. Campbell's Island ; mixed with other Hepatica and mosses, sparingly.
Ccaspites parvi, palide flavi, laxi. Caules vix 3 lin. lougi, subramosi, graciles. Folia patentia, ovata, basi lata, bifida v. rarius trifida, siuu obtuso. Stipule diametro caulem æquantes, in segmeutis 2 æquilongis integris v. rarius sectis divise. Perigonia e foliis ventricosis imbricatis ad apices recurvis in spicam brevem ovatam dispositis. Perichatiii abortivi folia elongata, subdentata, sinu minus profuida.

Under the preceding, to which this bears most affinity, we have pointed out their relative peculiarities.
Plate LXIV. Fig. IX.-1, a specimen of the natural size; 2, a portion of a branch, magnifeed.
33. Jungermannia grisea, Hook. fil. et Tayl.; ceespitosa, procumbens, caulibus implexis ramosis, foliis patentibus approximatis snpremis congestis oblongo-rotundatis integerrimis marginibus recurvis, stipulis bipartitis segmentis hinc unidentatis v . rarius multipartitis, calyce terminali oblongo trigono compresso ore dentato. (Tab. LXIV. Fig. VIII.)

Hab. Lord Auckland's group ; creeping amongst mosses, \&c., rare.
Caspites depressi, plani, fusco-olivacei. Caules I unc. longi, vage ramosi, flexuosi, apicibus ascendentibus. Folia inferiora disticha, marginibus recurris, convexa, suprema appressa, secunda, in capitulum congesta, substantia crassiuscula, luride flava, subpellucida, eellulis minimis. Calys 1 lin. longus, trigonus, angulis incrassatis opacis, latere inferiore latiore, ore triangulari dentato. Perichatii folia tria, crecta, horum duo superiora majora magisque elongata quam in foliis caulinis, rotundata, integra; tertium v. stipulare, oblongum, emarginatum, marginibus recurvis.

This very closely resembles the L. disceedens, Nees; it is, however, a larger spceics, of a paler colour. The leaves are erecto-patent and not recurved, their tops entirc, the stipules are divided, and cach segment is again divided or bears a tooth at the outer margin.

Plate LXIV. Fig. VIII.-1, a specimen of the nalural size ; 2, portion of braneh; 3, perichæetium and ealyx: both magnifeed.
34. Jungermavnia multipenna, Hook. fil. et Tayl.; procumbens, caulibus implexis ramosis, foliis distichis patentibus imbricatis obovatis acutis obtusisve truncatis v . emarginatis margine anteriore gibboso inferiore decurrente, stipulis subquadratis varie sectis plerumque bifidis segmentis divisis v. quadrifidis rarins irregulariter dentatis interdum in lacinias quatuor divaricatas subulatas fissis, calyce oblongo triquetro ala superiore latiore ciliato-dentata.

Hab. Lord Auckland's group; on the ground and on the bark of trees in the woods.
Caspites horizontales, appressi, pallide brumei v. rufi, rarius virescentes. Coules vix 1 une. longi, vage ramosi. Folia late ovato-oblonga, exaete opposita, horizontaliter patentia, forma apiees versus varia, plerumque truneata v. late emarginata, laxe eellulosa, pellucida, superiora interdun utrinque cum stipulis counata; perichatialia ereeta, dentata. Stipule varix, interdum subintegre, marginibus irregulariter dentatis, sæpius late quadratæ, quadrifide v. bifidæ, segmentis basi extus unidentatis, rarius quadripartite, laciniis divaricatis elongato-subulatis.

This plant has so many points in common with J. heterophylla, Sclrad., that we retain it as a separate species with mueh hesitation, and eliefly on aecount of the larger eells of its more rounded leaves, which are more gibbous above and narrower towards the apex; the broad stipules, whieh are never ovate, and also on aecount of the longer calyx, of whiel the lips are more frequently and deeply toothed, as are the periehætial leaves. Through a mistake the specific eharaeter and deseription of J.inlortifolia, nobis, were repeated under this speeies in the 'London Journal of Botany,' vol. iii. p. 381.
35. Jungermannia spinifera, Hook. fil. et Tayl.; caulibus prostratis laxe implexis subramosis, foliis densis arcte imbricatis erecto-patentibus tenerrimis laxe reticulatis ovato-oblongis basi decurrentibus marginibus recurvis bifidis segmentis elongatis subulatis, stipulis majoribus latissimis renifornihus sexfidis segmentis lanceolatis. (Tab. LXV. Fig. I.)

Hab. Lord Auckland's group; on wet rocks near the tops of the hills, scarce.
Pallide flava v. albo-virescens, inter alias Hepaticas repens. Caulis $\frac{1}{2}$ unc. longus, apicem versus attennatus recurvus, antice eanalieulatus. Folia arcte imbricata basi latiora antiec approximata, margine inferiore longe deeurrente, sinu obtuso, segmentis acuminatis divarieatis, cellulis majusculis laxis pellueidis. Stipula plerunque coufformes, pro genere maxinæ, basi concave, amplexieaules, in laeinias sex erectas v. divergeutes subulatas fissre. Anthere inter baseos foliorum perigonii parte superiore eaulis sitæ, pedieellate, albæ, majusculæ.

A highly beautiful species and very different from any we have ever seen. The apiees of the leaves are rather variable, in general they are bifid for $\frac{1}{3}$ or $\frac{1}{2}$ way down, with a rounded sinus; but, in other eases, the segments have more the appearanee of subulate appendages plaeed on eael of the rounded apiees of the leaf; in onc instance a trifid leaf was observed, the third segment was on the upper margin towards the base.

Plate LXV. Fig. I.-I, a speeimen of the natural size; 2 and 3, leaves; 4, stipule; magnifeed.
36. Jungermanvia allodonta, Hook. fil. et Tayl.; caulibus implexis prostratis ramosis, foliis disticlis imbricatis horizontaliter patentibus ovato-oblongis obtusis rotundatisve utrinque ad apiceu bisetosis v . trumcatis rarius acutis v . apiculatis, stipulis minutis lancoolatis bipartitis.

Hab. Lord Auckland's group; on the bark of trees in the woods.
Caspites 1-2 une. diametro, plani, appressi, luride vireseentes. Crutes sul 1 une. longi, rage ramosi, prostrati, hic illie radicantes, una eum foliis sub 1 lin. lati. Folia tenera, laxe cellulosa, alterna, horizoutaliter patentia,
orato-oblonga r. subquadrata, basi lata decurrente, plerumque rotundata, apicem rersus setis duabus subulatis divaricatis aucta, line quasi bicaudiculata, non raro autem truncata v. subemarginata, superiora interdum acuta v. apiculati. Stiputce profunde bifidæ, sæpius in lacinias duas subulatas parallelas v. paulo divergentes partitæ, inconspicus.
37. Jungermannia planiuscula, Hook. fil. et Tayl.; laxe cæspitosa, caule procumbente ramoso, foliis membranaecis tenerrimis distichis laxe imbricatis patentibus ovato-rotundatis basi obliquis latioribus decurrentibus integerrimis, stipulis ovatis apice bifidis utrinque unidentatis rariusve integris. (Tab. LXV. Fig. II.)

Hab. Lord Auckland's group; on wet rocks near the sea, in the beds of streams, \&c., forming large patches.

Cespites majusculi, $3-4$ nnc. lati, fusco-purpurei, innovationibus pallide olivaceis. Caules nigricantes, sub 2 unc. longi, flaccidi, vage ramosi, procumbentes v. prostrati. Folio magnitudine varia, plerumque majuscula, $1 \frac{1}{2}$ lin. longa, laxe cellulosa, tenerrima, pellucida, apicibus rotundatis sepe recurvis, marginibus interdum undulatis. Stipulce bifidæ, segmentis subulatis crectis approximatis.

This exhibits much the habit and mode of growth of the last, but is a widely different and far larger plant; it is very variable in size, some of the shoots on the same branch having leaves not half the length of others.

Plate LIV. Fig. II.-1, specimen of the natural size; 2, branch with stipule and leaf; 3, leaf; 4 and 5, stipules; magnified.

(9. Cheiloscyphus, Cortla.)

35. Jungermaxita australis, Hook. fil. et Tayl. ; cæspitosa, procumbens, caule ramoso, foliis imbricatis suberectis rotundatis basi superne sublobatis inferne decurrentibus, stipulis bipartitis varie sectis segmentis plerumque basi dentatis, fructu in ramis brevibus terminali, calyce oblongo curvato subcompresso bialato bilabiato labiis rotundatis obscure crenatis. (Tab. LXV. Fig. III.)

Hab. Lord Auckland's group and Campbell's Island; moist banks in the woods and on trunks of trees.
Cespites 2-3 unc. lati. Caules robusti, suberecti v. procumbentes, vage ramosi, nunc imter Hepalicas alias solitarii, subl unc. longi, fusco-brunnei, sæpe per totam longitudinem radicantes. Folia inferiora subpatentia, superiora imbricata, erecta, appressa, oblongo-rotundata, apicibus rotumdatis integerrimis, cellulis plerumque majusculis opacis. Stipulce forma variæ, plerumque oblongæ et bifidæ, utrinque basi unidentatæ, segmentis divaricatis acuminatis, rarius subquadratæ, quadrifidæ, v. quadridentatæ. Calyx exsertus, paulo curratns, oblongns, basi cylindraceus, superne compressus, bialatus, alis subundulatis, ore obliquo bilabiato, labuis divergentibus obscure crenulatis.

The fertile branches of this plant are short, with about five pairs of leaves, of which the upper, or perichætial, are oblong, and the corresponding stipule is the largest and most deeply laciniated. A broken capsule, found within the calyx, contained rounded angular seeds and slender much-twisted spiral filaments, each formed of a double helix. The barren plant strongly resembles some states of J. polyanthos, L., but in the fertile plant the oblong winged calyx, the included calyptra, and the more divided and toothed stipules abundantly distinguish it.

Plate LXV. Fig. III.-1, specimen of the natural size; 2, branch and calyx ; 3, leaves and stipule; 4 and 5, stipules: magnified.
39. Jungernannia Billardieri, Schmeg. Musc. Mepat. Prodr. p. 19. Mook. Musc. Exot. t. 61. Cheiloseyphus, Corda, Nees et auctorum.

Hab. Lord Auckland's group and Campbell's Island; abundant in the woods and in marshes ou the hills.
40. Jungermannia coalita, Hook.; Musc. Exot.t. 123. Cheiloscyphus, unctorum.

Hab. Lord Auckland's group; on the trunks of dead trees, \&c., in the woods.
41. Jungermannla sinuosa, Hook.; Musc. Exot.t. 113. Cheiloscyphus, auctormm.

Hab. Lord Auckland's group; at the roots of trees, growing mixed with mosses.
Our specimens are quite white, the leaves, and especially the stipules, broader than in the figure quoted above; the latter reniform, with shorter laciniæ.
42. Jungermanala leucophylla, Hook. fil. et Tayl. ; laxe cæspitosa, caulibus erectis elongatis subramosis gracilibus, foliis arcte imbricatis patentibus membranaceis convexis subtriangularibus una cum stipulis coalitis marginibus recurvis ciliato-dentatis, stipulis oblongis erectis marginibus recurvis eroso-dentatis, calyce elongato oblongo compresso bilabiato labiis denticulatis, perigonii folis confertis abbreviatis. (Tab. LXV. Fig. IV.)

Hab. Lord Auckland's group; on the ground in the woods, generally mixed with other species.
Caules laxe cæspitosi, dispersi, flaro-fnsci r. pallide brunnei, tenues, curvati, vage ramosi, vix 1 unc. lati, cum foliis stipulisque subtrigoni. Folia una cum stipulis in laminam triangularem horizoutaliter patentem perfoliatam omnino coalita, marginibus recurvis scu potius deflexis, substantia tenera pellucida laxe cellulosa. Perigoniu terminalia v. Iateralia, ramis angustiora, conspicna, foliis brevioribus quam folia canlina magisque confertis. Antherce $3-4$, pedicellatæ, minimæ.

A well marked and beautiful species.
Plate LXV. Fig. TV,-1, a specimen of the natural size; 2, front, 3, back, and 4, side view of a branch; magnified.
43. Jungermanna fissistipa, Hook. fil. et Tayl.; caule prostrato subramoso, foliis distichis oblique patentibus densis arcte imbricatis ovatis obtusis apices versus grosse dentatis, marginibus decurvis inferiore integerrimo basi decurrente, superiore cum stipula rotundata fimbriato-lacera coalito. Cheiloscyphms fissistipus, Gottsche, Lehm. et Lind. Spec. Hepat. (ined.)

Hab. Lord Auckland's group; on the dead and decaying trunks of trees, in the woods.
This beautiful and strongly scented species is a near ally of J. coalita, Hook.; but in that the leaves are simply bifid at the apex, in this they are toothed repeatedly, and the stipules are much more divided, besidcs being generally distinctly bifid at the apex owing to the terminal pair of teeth being more remote than the others.

(10. Lepidozea, Dumort.)

44. Jungermannia larifolia, Hook. fil. et Tayl.; cespitosa, implexa, caule elongato pinnato, ramis breviusculis patentibus attenuatis recurvis, foliis stipulisque quadrato-rotundatis quadrifidis rarius tri-quinquefidis segmentis acutis incurvis, calyce in ramis inferioribus abbreviatis terminali lanceolato acuminato sub orem denticulatum plicato.

Hab. Lord Auckland's group and Campbell's Island; at the roots of trees, \&c., abundant.
Cospites plani, appressi, subdensi, dilute flavo-bruunei v. olivacei. Caules graciles, 1-2 unc. longi, ramis divaricatis. Folia horizontaliter patentia, caule oblique inserta, remota, hevia, pallida, pellucida. Stiputce $\frac{1}{4}$ magnitudinis folii. Perichetium perbreve, e foliis paucis crectis appressis quan foliis canlinis minus profunde sectis. Capsulu cylindracea; semina numerosa, luride-brunnea, globosa; fila spiraliter torta, clongata, helice duplici.

This and the following may be considered representatives of the British J. reptans, L., to which the present is very nearly allied, though differing in the much smaller size, the less pinnated stems, the more distant leaves which have not the singularly prominent cells of the northem plant, and especially in the short perichætium and clongated calyx. It is also a native of New Zealand, in the Flora of which comentry it will be figured.
45. Jungermanna patentissima, Hook. fil. et Tayl.; subcæspitosa, caule valido repente pinnatim ramoso, ramis brevibus, foliis plus minusve imbricatis patentibus v . incurvis cellulosis latissime obovato-quadratis basi angustatis tri-quadrifidis segmentis iutegenimis obtusis rectis v. incurvis, stipulis brevibus subquadratis transverse elongatis tri-quadridentatis. (Tab. LXV. Fig. V.)

Hab. Lord Auckland's group; crecping among tufts of other IIepatica, on trunks of trees, \&c.
Cautes inter Ilepaticas alias Muscosque dispersi, pallide flavo-olivacei, breviusculi, vix $\frac{1}{4}$ unc. longi, validi, crassiusculi, cellulosi ; ramis plerumque inconspicuis, brevibus, alternis, versus apices attenuatis. Folia caulina plerumque conferta, patentia (sed oblique, non horizoutalia), subquadrata, plus minusve obovata, basi angustata v . subcuneata, segmentis incurvis v . planis, obovatis, 3 -ŏ-fidis, sapius t-fidis, cellulis majusculis. Stipulı caule vix latiores, segmentis brevibus.

This plant approaches nearer to the J. reptans, L., than the former ; it is, however, very much swaller, the leaves more closely imbricated, gencrally more deeply divided and narrower at the base.

Plate LXY. Fig. V.-1, specimen of the natural size ; 2, portion of branch; 3 and 4, leaves; 5 and 6, stipules; magnifict.
46. Jtagermania tenar, Greville, in Annals of Lycenm of New York, vol. i. p. 277. pl. 23.

IIab. Lord Auckland's group; on the dry trunks of trees and ou the ground.
A curious little species, first described by Dr. Greville, who gives an excellent figure of it, from New Holland specimens.
47. Jungermannla tetraductyla, Hook. fil. et Tayl. ; cæspitosa, implexa, caule debili prostrato subpimation ramoso, foliis subremotis clistichis patentiluns basi quadratis quadrispinosis spinis articulatis, stipulis minimis quadripartitis, calyce elongato cylindraceo ore contracto ciliato.

Ilab. Lord Auckland's group; creeping over patches of J. coalita.
Ccespites 1-2 unc. lati, pallide flavo-virides. Canles interdum 1 unc. longi, imnovationibus plurimis ramosi; cellulæ extermæ latæ, pellucidæ, albæ, centrales virides, opacæ, hinc caulis sub lente quasi ala memhranacea cinctus apparcat. Folia caulina remota, ramulina (plerwmque superiora) conferta, basi angusta, dcinde latiora, in spinas elongatas desinentia. Stipulce caule vix latiores, segmentis suhulatis.

Closely allied to the J. centipes, nobis, of Tasmania, from which it may be distinguished by the (transparent) more branched and pinmate stems, the more distant and patent transparent leaves, which are more deeply divided, with the segments clongated and setaceons: the two species are very near in other respects.

From New Zealand we have this plant with calyces and perigonia; the former are remarkably large in proportion to the size of the plant, being as long as the shoots which bear them, they are ovato-cylindrical and slightly bent on one side. The perichretial leaves are erect, with a longer entire portion or base than the cauline. Perigonia forming cylindrical spikes, their leaves large, lifid above with tumid bases, each containing in its axilla a simgle minute, round, brown, pedicellated anther.
48. Jungermannla dispar, Mont.; caulibus elongatis cæspitosis ramosis, foliis laxe imbricatis rarius in ramulis terminalibus imbricatis patenti-incurvis obovato-cuneatis basi angustatis ad mediun trifidis seg-
mentis lineari-subulatis snbacutis, stipulis minoribus conformibus, perigoniis terminalibus capitatis pro planta majusculis.-an J. hippurioides varietas? J. dispar, Montague in Foy. au Pole Sul, Bot. Cryptog. (ined.)

Hab. Lord Auckland's group and Campbell's Island ; on the ground.
49. Jungermancia /ippurioides, Hook. fil. et Tayl. ; minima, laxe cespitosa, caule procumbente ramoso, foliis subimbricatis patentibus obovatis bi-trifictis basi angustis, segmentis linearibus subacutis, stipulis minutis valde inconspicuis erectis appressis trifidis. (Tab. LXV. Fig. VII.)

Hab. Lord Auckland's group; on decayed bark, and at the roots of grasses and ferms in wet places.
Cicspites per innovationibus ragis intertexti, pallide olivacei. Caules vix unciales, irregulariter pinnati, una cum foliis densis crassiusculi. Folia conferta, imbricata, patentia, quasi verticillata, profunde bi-trifida rarius quadrifida, laciniis cellulosis inarticulatis. Stipulce valde inconspicuæ, canli latiori arcte appressæ, plerumque in segmenta tria diviser.

A very distinct little species, though not easily characterized; the figure will give the best idea of its labit and peculiarities. It is most nearly allied to the J.tetraductyla, nobis, (vid. autc) from which it may be recoguized by its shorter and more patent leares, which, as well as the stipules, are usually trifid.

Plate LXV. Fig. VII.-1, specimen of the natural size; 2, portion of branch; 3, stipules; magnifed.
50. Jungermanyia albula, Hook. fil. et Tayl. ; majuscula, caulibns subimplexis erectis ramosis, foliis dense et arcte imbricatis crecto-patentibus concavis late et oblique ovato-rotundatis fimbriato-laceris laciniis plerisque profunde bifidis, stipulis concavis majusculis rotundatis sex- ad decemfidis lacimis bifidis. (Tab. LXV. Fig. VI.)

Hab. Lord Auckland's gronp; creeping through tufts of Cottschea Lehmanniana.
Caules vage dispersi, pallide albido-virescentes, subpinnatim v. dichotome ramosi, $\frac{1}{2}-1$ unc. longi, sub $\frac{1}{2}$ lin. lati, ramis breriusculis sepe dichotomis, imorationibus flagelliformibus interdum instructis. Folia latissima, concava, basi semi-amplexicaulia, dense imbricata, sese amplectentia, laxe cellulosa, membranacea, pellucida, margine antcriore basiu rersus dentata, cæterum in lacinias curvatas bifidas partita. Stipulce $\frac{1}{3}$ magnitudine folii, imbricatæ, conspicuæ, marginibus lacinatis.

This is a rery beautiful plant, much larger and of a different aspect from any of the former.
Plate LIT. Fig. VI.-1, a specimen of the natural size; 2, lower, and 3, upper view of a portion of a branch; 4, leaf; 5, stipule:-magnified.

(11. Mastigobryum, Nees.)

51. Juxgermaxia Fove Hollandice, Nees; caule prostrato ramoso subtus flagellifero divaricatim ramoso, ramis patentibus plerisque recurvis, foliis arcte imbricatis oblongo-acinaciformibus curvatis concavis abrupte truncatis apice eroso bi-tridentato stijulis canle latioribus reniformi-rotundatis margimbus recurvis dentatis v. multifidis.

HAB. Lord Auckland's group; common in the woods, creeping amongst mosses and other Hepatice.
52. Jusgerminvia inroluta; Herpetium involutum, Mont. in Foy. au Pole Sud, Bot. Crypt. t. 18. fig. 2. et in Ama. Sc. Nut. 184.3. p. 253.

Hab. Lord Auckland's group; common in the woods, forming large tufts.
A very handsome species, wriable in size; of a much larger and more erect habit, and with broader leaves than the J. Nover Hollandice, the latter have larger cells also.
53. Jungermannia atro-tirens, Hook. fil. et Tayl.; caule gracili erecto disperso ramoso subtus flagellifero, foliis parvis patentibus subdistantibus triangulari-rotundatis apice inæqualiter bifilis segmentis acutis integerrimis, cellulis parvis punctiformibus marginem versus inferiorem majoribus, stipulis minutis transversis semi-rotundatis tripartitis segmentis acutis.
$H_{A b}$ Lord Anckland's group; creeping through tufts of Dicrana and other mosses, in the woods and on the hills, not uncommon.

Caules 1-2 unciales, graciles, sæpe solitarii, vage ramosi, rigidi, crecti, interdum subflexuosi, crassiusculi, oli-vaceo-brunnei. Folia pro magnitudine caulis parva, vix imbricata, verticaliter patentia, oblique ovato-rotundata v. snbtriangularia, bifida v. bidentata, segmento inferiore majore, apicibus plerumque incurvis, pallide brumea v. flavofusca, subopaca, densa ; cellnlis manifeste punctiformibus. Stipulae tridentatæ, dentibus acutis v . obtusis.

A very distinct species, which can scarcely be confounded with any other, of a wiry habit though particularly graceful and slender; this character, together with the great disproportion between the breadth of the leaves and stem, and the unequal cellules which are so large towards the inferior margin as almost to resemble a nerre, will readily distinguish it from any other. A similar disposition of the cellules is seen in M. incquilaterum, Nees.
54. Jungermancia mutans, Hook. fil. et Tayl. ; caulibus erassiusculis cespitosis subsimplicibus erectis incurvis apicibus sepe untantibus, foliis densis arcte imbricatis patentibus valde coneavis late ovatis apice inrequaliter bifidis margine subintegris camosiusculis laxe cellulosis, stipulis erectis late ovato-rotundatis apice bifidis v . subdentatis, stolonibus subbasilaribus ascendentibus ad apices demum foliosis. (Tab. LXV. Fig. VIII.)
$H_{a b}$. Lord Anckland's group; in moist places on the ground, and at the roots of trees.
Caules cespitosi, simplices, crecti, incurvi v. nutantos, ut in J. tenaci, Grev., crassinsculi, carnosuli, celliulosi, allidi v. pallide virescentes, ad apiees siccitate seppe nigricantes, subunciales. Folia valde concava, bifida, segmento inferiore minore, cellulis sexpe margines versus prominulis aquosis, ad medium folii majoribus.

Very unlike any of the other species of this genus, though in some respects approaching the J. tenax, Grev., in which the stems are branched aud the leaves multifid. The whole plant is of a singularly flaceid or flably consistence, formed of watery or flesly cells, a good deal similar to those of J. notophyllla, nobis (vid. ante).

Plate LXV. Fiy. VIII.-1, specimen of the natural size; 2, portion of branch; 3 , stipule :-magnified.

(12. Schisma, Dumort.)

55. Jungermannia Scolopendra, Hook.; Musc, Exot. t. 40. Schisma Scolopendra, Nees et auct.

Hab. Lord Anckland's group and Campbell's Island; on the hills, abundant; often resembling a Racomitrium in its habit of growth.

> (13. Mastigophora, Nees.)
56. Jungermannia hirsuta, Nees.

II_{A}. Campbell's Island.

This we have compared and found to agree with authentic specinens of J. hirsuta, Nees, but we are not aware where that species is published.

(14. Trichocolea, Nees.)

57. Jungermaxnia mollissina, Hook, fil. et Tayl.; laxe cespitosa, implexa, caule ascendente bipinnatim ramosissimo, foliis confertis alternis patentibus e basi lata dichotoma multifidis laciniis capillaribus sti-
pulis bifidis dichotome laciniatis, calyce ex parte inferiore caulis obovato clavato bilabiato undique squamis lineari-lanceolatis laciniatis tecto.

Hab. Lord Auckland's group and Campbell's Island; abundant on moist rocks on the hills, on trunks of trees in the woods, \&c.

Caspites plani, molles, albidi, juniores pallide virides. Caules 4-6 unc. longi et ultra, teretes; rami divaricati, conferti, per totam longitudinem caulis subæquilongi, hinc caulis subpectinatus. Folia basi patentia, sursum erecta, apicibus incurvis. Stipule foliis conformes sed minores. Calyx sub 2 lin. longus, lateralis; pedicello fere $\frac{1}{2}$ unc. longo; capsula oblonga.

This very beautiful plant is nearly allied to J. tomentella, Ehr., from which it differs in the more procumbent or prostrate mode of growth, in the more crowded cylindrical (not compressed) branches, in the stipules and leaves being broader at the base and dichotomonsly divided, and in the calyx bearing elongated linear-lanceolate scales. It is also a native of New Zealand.
58. Jungersiannia polyacantha, Hook. fil. et Tayl. ; caulibus subcæspitosis erectis ramosis spiculosis, foliis laxe imbricalis patentibus stipulisque basi angustis quadrifidis laciniis multifidis ramosis ultimis spiculaformibus articulatis, calyce terminali majore lineari-obovato superne tumido subquadridentato hispido. (Tab. LAV. Fig. IA.)

Hab. Lord Auckland's group; in woods near the sea.
Caules tenues, graciles, laxi, inter Muscos Hepaticasque alias dispersi, v. cæspitosi, pallide flavi, flaccidi, debiles, vix $\frac{1}{2}$ unc. longi, parce ramosi, apicibus plerumque e foliis plurimis confertis incrassati, spiculis articulatis obsiti. Folia basi semiamplexicaulia. Stipule concave. Calyx vere terminalis, pro planta maximus, squamis foliaceis obovatis multifidis hispidus.

A rery curious and distinct little species. The stems and branches have a peculiarly hispid and squarrose appearance, from the acicular scales and apices of the leaves which beset them and point in all directions. In some respects it resembles J. tetradactyla, nobis, and in others the J. setacea and J. trichophylla, from all of which it is abundantly distinguished by the compound segments of the leaves. From J. tomentella, its nearest ally, it differs in its much smaller size and different habit, in the rigid and fragile texture of its more deeply divided leaves, which appear hardly to possess any base or lamina, and in the crenate mouth of the calyx.

Plate LXV. Fig. IN.-1, specimen of the natural size; 2, leaf; 3, calyx:-magnified.

(15. Radula, Dumort.)

59. Juxgeriavita complanata, L.; Syst. Nat. vol. ii. p. 706. Hook. Brit. Jungerm. t: 81.

Hab. Campbell's Island; upon the bark of trees.
60. Juygermaryia physoloba, Mont., caulibus crespitosis prostratis subpinnatim ramosis, ramis complanatis, foliis suberectis inbricatis convexis integerrimis lobo superiore obovato-rotundato margine recurvo, perichæetialibus oblongis iransversis deflexis, calyce elongato obconico compresso truncato integerrimo. Radula plysoloba, Mont. in Foy. au Pole Sut, Bot. Crypt. t. 17. fig. 4. et in Ann. Sc. Nat. 1844. p. 255. J. complanata, var. B, Hook. Brit. Jungerm. t. 81. f. 17. J. Aquilegia, nolis, in Lonl. Journ. of Botany, vol. iii. p. 291.

Hab. Lord Auckland's group; growing mixed with mosses on wet rocks.

Cospites lati, appressi, plani, olivaceo-brunuei. Caules 1-4 unc. longi, irregulariter pinnati, ramis divaricatis. Folia basi angusta, concava; lobo inferiore basi tumido, superiori obtuse augulato arcte appresso.

Found abundantly in Ireland, and according to Lindenberg in Switzerland; in the former locality, as in its southern habitat, preferring wet rocks. It may be distinguished from J. complanata, L., by its smaller size, more convex leaves, thin texture and lrown colour, by the lesser lobe being tumid at the base and not sharply refleeted on the larger or upper, and by the deflexed perichætial leaves; besides these characters we may remark that the perigonia are usually terminal and not upon lateral short brauches, and that the angulate portion of the lower lobe is shorter than in J. complanata.
61. Jungermannia uifera, Hook. fil. et Tayl.; caule implexo procumbente pinnatim ramoso, foliis imbricatis patentibus integerrimis, lobo superiore majore convexo late oblongo-rotundato apice recurvo basi rotundato, inferiore superne truncato v. rotundato ovato-oblongo obtuso inferne subtumido apice lobo superiori appresso, perigomis latcralibus filiformibus sub foliis latentibus, calyce obovato-oblongo valde compresso subcochleariformi utrinque marginibus acutis subalatis lateribus basi ad medium 4-5 costatis, ore truncato integro.

Hab. Lord Auckland's group ; on the bark of trees, \&ce., abundant.
Ceespites plamiusculi v. tumidi, late extensi, olivaceo-brumei, implexi. Caules 1-2 une. longi, crassinsculi, valde ramosi, foliis convexis undique imbricati, apicem versus sæpe purpuraseentes. Folia subrecurva, late obovatorotundata; lobo superiore nune deorsum in auriculam produeto, nunc angustiore, lobo inferiore $\frac{1}{3}$ magnitudine snperioris, superne eo arcte appresso inferne tumido, forma varia, substantia opaca lete sed pallide flaro-brumnea. Innovationes infra folia plurimi, breves, parvi, perigoniis srepe alternantes. Perigonia omnino inter folia ocelusa, minuta, filiformia, foliis $8-10$ ureeolatis arcte imbricata. Perichcetium e foliis dnobus erectis constans, apicibus latis rotundatis, lobo inferiore subinvoluto.

This species is closely allied to the R. pectinata, Nees, but the upper lobes of the leaves are more elongated and the lower are broad at the apex, the perigonia also are shorter. The calyx is here remarkable for the compressed margins being almost winged and the two sides furnished with several elevated costre. The smaller lobe of the leaf is at first very tumid, more appressed when older.

(16. Madotheca, Dumort.)

62. Jungermannta elcgantula. Madotheca elegantula, Mont. in Fay. au Pole Sul, Bot. Crypt.t. 18. f. 3. et in Aun. Sc. Nat. 1S43. p. 255.

Hab. Lord Auckland's group; on trunks of trees in the woods.
Very closely allied to the European J. platyphylla, differing chiefly in the less decidedly pimate ramification, in the more distant branches, in the frequent toothing of the lower lobe (not shown in Montagne's figure), and in the plane margins of the stipules, which are recurved only at the tips; the capsule also is split down to the very base into four valves. Montagne compares it with M. subsquarrosa, Nees and Mout., from Juan Fernandez.

(17. Frumlania, Nees.)

63. Jungermannia Magellanica, Lamarck, Encycl. Bot. vol. ïi. p. 28. Mook. Musc. Exot. t. 115.

Hab. Campbell's Island; on alpine rocks.
The foliage is pater in colour and more lax than in the specimens figured in the "Musci Exotici.' It is also a native of Tasmania, from whence we have specimeus with fully formed calyces.
64. Jungermannia clavigera, Hook., Muse. Exot. t. 70.

Hab. Campbell's Islaud; on rocks, and on the trunks of trees.
These specimens vary much in colour, in general they are of a richer bromn, and less olivaceons than in the figure quoted, at other times they are nearly blaek.
65. Jungermannia ptychantha. Frullania ptyehantha, Mont. in Foy. au Pole Sud Bot. Crypt. t. 19. f. 3. et in Ann. Sc. Nat. 1843. p. 257. J. Myosota, nobis in Lond. Journ. of Bot. v. 3. p. 393.

Hab. Lord Auckland's group and Campbell's Island; on the trunks of trees, and on rocks on the hills, abuildant.

The periciretial leaves in this species are three, closely embracing the base of the calyx; the two lateral eutire, obovate, having a strap-shaped acute curved iuncr lobe with reflexed sides; the third or stipular lobe is oblong, deeply divided into recurved linear segments, whose margins are uneven but not toothed. Calyx eylindrical and smooth for $\frac{1}{3}$ way up, then ovate-rotundate, exscrted, laciniated; in the young state it appears terminated by a short tube.

This species may be known from all others by the minute, divergent aurieles below the leaves, and more particularly by the plicate calyx. Montagne compares it with F. gracilis, nodulosa aud integristipula, and adds that besides the difference in the calyx, the first of these has the involucral leaves serrated, and in the two others the stipules are entire.
66. Jexgermanyta allophylla, Hook. fil. et Tayl. ; canlibus laxe dispersis flaceidis gracilibus flexnosis subranosis, foliis distantilus crecto-patentibus patulisve late ovatis obtusis acutisve iutegriusculis lase reticulatis, auriculis anguste oblongo-pyriformibus clavatisve incurvis a folio divergentibus, stipulis minutis bifidis segmentis lanceolatis sxpius clavatis. (Tab. LXVI. Fig. I.)

Hab. Campbell's Island; on the hills, rare, growing with other Jungermaania.
Caules 2-3 lin. longi, parce ramosi ; rami alterni, siccitate subatri, madore lete sanguineo-purpurei. Folite forma sat varia, inferiora longiora, late ovata v. elliptica, obtusa v. rarius acuminata, integerrima v. bi-tridentata, cellulis pro planta maximis, auriculis pedicollatis majuseulis erectis interdun deflexis.

A beautiful little species and one of the smallest that is known of this subgenus; as in J. clavigera the lobes of the stipules are often replaced by club-shaped auricles.

Plate LXVI. Fig. I.-1, a specimen of the natural size; 2 and 3 , frout and baek view of leaves; magnified.
67. Juxgermaxia rostrata, Hook. fil. et Tayl.; caule exiguo repente subpimation ramoso, foliis subapproximatis patentibns rotundatis subapiculatis integerrimis lobo inferiore oblongo-lanceolato appendiculato, stipulis minutis rotundatis bifidis integerrimis, perigouiis obovatis rotundatis, perichretiis oblongo-rotundatis, calyce obovato apice tubuloso basi angusto lineari.

Hab. Lord Auckland's group; on Parmelia enteromorpha, Ach.
Cospites 1-2 unc. lati, rufo-brumei. Canles minuti, graciles. Folia rotundata, lobulo inferiore $\frac{1}{3}$ magnitudine superioris; perichetialia oblonga, apiculata, incurva, marginibus lobuli inferioris reflcsis. Caly.r perichretio bis longior.

The present species bears much general rescmblance to J. lobulata, Hook., differing from it in the smaller size, the narrow base of the calyx, which is of a different and less trigonons form, being wider above, and in the acute or apiculate learcs of the perichrtium. It is as small as the previous specics.
68. Jungermannla reticulata, Hook. fil. et Tayl.; caulibus implexis prostratis subpinnatim ramosis,
ramis brevibus, foliis distichis imbricatis pateutibus concavis late rotundatis apice recurvis superioribus late ovatis grosse dentatis, auriculis interdum nullis superioribus nunc bifidis segmento exteriore clavato interiore subulato, stipulis bi-quadripartitis. (Tab. LXVI. Fig. II.)
$H_{\text {AB. }}$ Lord Aucklaud's group; rocks on the mountains.
Caspites $2-3$ unc. lati, planiusculi, rupibus appressi, intertexti, nigrescentes, nunc pallidiores, innovationibus læte purpureis. Caules sub 2 unc. longi, interdum elongati, ramis plerumque brevibus. Folia tenerrima, valde pellucida, areolis majusculis, inferiora iutegerrima, sæpe lobulo intus aucta. Stipula concavæ, profunde partitæ, nonnullis v . omnibus clavatis.

This is a rery beautiful microscopic object, and though allied to J. clavigera is very distinct from it. The lower leares are sometimes nearly reniform, with no auricle whatever, but the most remarkable differential character lies in the very lax reticulation of its cells

Plate LXTI. Fig. II.-1, a specimen of the nalural size; 2 and 3, leares; 4, 5 and 6 , stipules; magnified.
69. Jungermannia aterrima, Hook. fil. et Tayl.; pusilla, caule implexo procumbente vage ramoso, foliis imbricatis patentibus convexis rotundato-oblongis integerrimis marginibus recurvis, auriculis late oblongopyriformibus inflatis, stipulis minutis ovatis bipartitis segmentis lanceolatis basi extus unidentatis, perigoniis rotundatis, foliis perichætialibus integerrimis incurvis. (Tab. LKVI. Fig. III.)

Hab. Lord Auckland's group; on alpiue rocks, mixed with Andreea and other mosses.
Cesspites nigri, apicibus nitidis rarius purpurascentibus; ramis subsolitariis. Folia rotundatav. late et oblique ovata. Stipule bipartite, integree v. utrinque dente majusculo extus aucto et hine quadrifidæ. Planta plerumque monoica. Perigonia breviter pedunculata, arete imbricata, rotundata, snperne longitndinaliter suleata, marginibus foliorum valde incurvis. Perichetii foliia tria, secunda, valde concava, corpora tria rotundata referentes.

This has some points of affinity with the J. fragilifolia, Tayl., a species lately observed in Ireland and Switzerland, which is equally minute but not so uniformly black aud shining, and has the leaves less densely cellular, and the perichretial ones dentatc.

Plate LXVI. Fig. III.-1, a specimen of the natural size ; 2, 3 and 4, leaves; 5 and 6, stipules; 7, perichætial leaf; magnified.
70. Jungermannia congesta, Hook. fil. et Tayl.; cæspitosa, caule procumbente ramoso, foliis imbricatis patentibus integerrimis late ovatis rotundatisve subapiculatis, auricula iuflata oblougo-pyriformi, stipulis minutis ovato-rotundatis bifidis integerrimis, foliis perichætialibus oblongis apiculatis integerrimis albidis.

Hab. Lord Aucklaud's group; on rocks and on the bark of trecs.
Ccespites extensi, sub 2 unc. lati, pallide flaro-brunnei. Caules graciles, sub 2 unciales, piunatim ramosi; ramis crecto-patentibus, seepe ascendentibus v. sursum curvatis. Folia valde convexa, plerumque apiculata, auricula caule remota infra marginem folii extensa. Stipule integerrimæ, caulc vix latiorcs, apicem versus bifidæ, segmentis acutis. Folia perichretialia erecta, integcrima, acuminata, duobus lateralibus oblongis lobulo inferiore margine inflexo, stipulari in segmenta duo lanccolata apiculata iutegerrima fissa.

Very similar to the J. ptychantha, Mont., but the whole plaut much smaller, the auricles occupy a different position, and the perichretial leaves are of a different form. The barren perichætia which have rounded summits, are probably modified in the perfect plant. From J. aterrima, to which it is in some respects allied, it may be known by the larger size, pale colour, acute perichætial leavcs, and, above all, by the entire stipules.
71. Jungermannia scandens. Frullania scandens, Mont. in Toy. au Pole Sud, Bot. Crypt. t. 19. f. 2. et in Amnal. des Sc. Nat. 1813, p. 255.

Hab. Lord Auckland's group; on branches of trees (ILII. Hombron et Jacquinot).
This species was not found during the stay of the Antarctic Expedition in Lord Anckland's group. Montagne compares it with F. hians, ornithocephala, and obscura, Nees.
(18. Lejeunia, Lib.)
72. Juxgermanya implericaulis, Hook. fil. et Tayl.; caulibus crespitosis subcrectis ramosis, foliis laxe imbricatis subcrectis patentibus valde concaris ovatis obtusis apicibus marginibusque incurvis areolis punctiformibus, lobulis anguste ovatis tumidis intlexis, stipulis rotundatis caule latioribus apice fissis seg. mentis suberectis.

Hab. Campbell's Island; creeping through tufts of mosses in rocky places.
Caules $\frac{1}{2}-1$ unc. longi, inter muscos dispersi v. crespites plus minusve confcrtos formantes, olivaceo-rirides, rage ramosi, ramis erectis. Folia valde concava, hinc oculo nudo rami moniliformes apparent, subdecurrentia, lobulo cauli proximo, areolis minimis punctiformibus. Stipulce ferc orbiculares, primo visu integre, sed fissæ segmentis approximatis v . imbricatis.

Very nearly allied to the J. serpyllifolia, Dicks.; it has, howerer, a different aspect, owing to the erect leaves, which are not plane lont very concave, and instead of bcing loosely cellular are formed of a very compact tissue, the cells of which require a high powcr to be distinguished, the leaves themselves also are twisted forwards and not patent. The stipules appear mudivided, except when the segments are forced asunder; whilst in J. serpyllifolia they diverge and often have a very rounded sims between them.
73. Jungermanvia Mimosa, Hook. fil. et Tayl.; caulibus implexis repentibus ramosis, foliis imbricatis patentibus concavis oblique obovato-oblongis subcurvatis v . acinaciformibus apicibus patentibus recurvis integerrimis, lobulis ovatis involutis, stipulis late ovatis acute bifidis, calyce late elliptico-ovato pentagono ore contracto subtubuloso.

IIab. Lorl Anckland's group; on moist alpine rocks.
Crespites parvi, fusco-olivacei. Canles sub $\frac{1}{2}$ unc. longi, irregulariter rage ramosi, ascendentes. Folia subincurva, ut in J. serpyllifolia, sed presertim apices versus latiora et ad latus curvata, hine subacinaciformia, lobulo erectopatcnte; substantia crassiuscula, areolis parvis. Stipulre caulc vix latiores, apice fissæ, segmentis subdistantibus erectis, sinu obtuso. Folia perichetialia late oblongo-rotundata, integra, concara, apicibus recurvis, tertio stipule confomi sed magis concavo. Perigonia lateralia, spicata; foliis arcte imbricatis, brevibus, rotundatis, tumidis. Caly.r basi angustatus, obovatus v. obovato-cllipticus, pentagonus v. sub 5 -alatus, orc minuto tubuloso.

The clief points of distinction between this and the J. serpyllifolin, Dicks., reside in the denser structure of the leaves, their tops being recurved; the larger calyx, which tapers towards the narrower base, and the rounder more concave perichetial leaves. From J. implexicomlis it may be known by the more cellular and planer leaves, their very different direction, and the remote scgments of the stipules.
74. Jungermanna primorlialis, Hook. fil. et Tayl. ; caulibns exilibus implexis vage ramosis, ramis subpatentibus, foliis laxis suberectis angustc obovatis apicibus rotundatis concavis integerrimis lobo inferiore ovato involuto, stipulis minimis emarginato-bifidis segmentis linearibus subobtusis divaricatis.

Hab. Lorl Auckland's group; on a species of Sticta in the woods.

Cespites parvi, pallide olivaceo-virides. Caules sub $\frac{1}{d}$ unc. longi, ramis divaricatis. Folia remota, suberecta, anguste obovata, lobo inferiore extus ad inflexionem dente obtuso aucto.

The mimute size, more erect, narrow and more distant leaves, will readily distinguish this species from small states of J. serpyllifolia, even in the absence of fructification.
75. Jungermannta allo-virens, Hook. fil. et Tayl. ; minima, canlibus implexis prostratis ramosis, foliis laxis patentibus valde concavis oblongis apice rotundatis integerrimis, lobulis involutis ovatis tumidis, stipulis exiguis oblongis bifidis segmentis obtusis acutisve, calyce in ramo brevi proprio terminali obovato-elongato basi angustato apice quadriplicato tubuloso. (Tab. IUXVI. Fig. IV.)

Ilab. Lord Auckland's group; on rocks at the summits of the monntains, mixed with other Jungermannie.

Laxe cellulosa. Caules per plantas alias dispersi, non crespitosi, pallide flaro-olivacei, 2-3 lin. longi, siccitate fragiles, irregulariter ramosi, ramis remotis. Folia basi semiamplexicaulia et subsaccata, superne oblonga et rotuudata, apicibus plerumque recurris, cellulis majusculis aquosis. Stipula cauli arcte appressæ, incouspicuæ, oblongæ, caule vix latiores. Perichetii foliola tria, lateralibus erectis concaris oltusis lobulo acuto intus anctis, tertio v stipulari oblongo bifido stipulis omnino conformi sed majore. Calyx apice tubulosus, demum in lacinias quatuor dehiscens. Capsula spherica, pallide brmnea, valvis basi coadunatis. Semina majuscula, pauca, angulata; filis spiralibus paucis, diametro $\frac{1}{3}$ seminum.

Very nearly allied to the J.ulicina, Tayl. (J.minutissima, Brit. Jung.), preferring also wet mosses on which to grow. The British plant may be distinguished by its smaller size, the larger cells of the leaves, which are not so concave and subacute, whilst their lobulus has a sharp process or tooth at the point of involution, also by the more divided stipules, whose segments are acuter, and by the recurved perichrtial leaves.

Plate LXIT. Fig. IV.-a specimen of the natural size; 2, portion of branch; 3, leaf, and 4, stipule : magnified.
76. Juygermannea latitans, Hook. fil. et Tayl.; minima, caule tenuissimo prostrato ramoso, foliis remotinsculis suberectis celluloso-crenulatis ovatis acutis apieibus sæpe incurvis, lobulis ovatis involutis, stipulis inconspicuis bifidis segmentis lanceolatis obtusis, foliis perichætialibus late obovato-cuneatis acuminatis.

Hab. Lord Auckland's group; mixed with other Ilepaticere.
Cellulosa, minima. Crespites laxi, dispersi, planiusculi, pallide tirescentes. Folia remotiuscula, longitudine varia, acuta v. acuminata, cellulis precipne versus margines majusculis tumidis et prominentibus, hinc folia subcrenata, lobuto $\frac{1}{2}$ latitudine folii. Stipule valde inconspicux, caulc vix latiores. Perichetio foliola ramis auni precedentis terminalia, erecta, obovata, acuminata, lateralia incurva, tertio oblongo concavo bifido.

Closely resembling the J. leamatifolia, Hook.; but the leaves are much broader. From J. eckinata, Tayl,, it may be known by the presence of stipules; from J. albo-virens, by its smaller size, more ccliular texture, and acute leaves.
77. Juygermannla plicatiluba, Ilook. fil. et Tayl.; caulibus implexis procumbentibus vage ramosis, foliis laxis erecto-pateutibus valde coucavis rotundato-quadratis subtruncatis integerrimis, lobo inferiore incurvo apice angulato superiori subæquali basi tumido appresso, stipulis exiguis emargiuato-bifidis segmentis linearibus subincurvis.

Hab. Lord Auckland's group; on Parmelia intestiniformis, Ach.
Cespites minuti, laxi, pallidi. Caules rix $\frac{1}{4}$ unc. longi. Folia remota. Stipulce minimæ.

The shoots of this species appear like rows of the minutest beads, so small is the whole plant, and the stem is all but impereeptible, even with a tolerable lens. The position of the lobe on the lower part of the leaf rescmbles that of a Radula.

(19. Smphiogmia, Nees.)

78. Jungermanvla Phyllanthus, Hook., Musc. Exot. t. 95.

Hab. Lord Auckland's group; in the shaded woods, abundant but barren.
79. Jungermannla flabellatu, Lab., Fl. Nov. Holl. vol.ii. p.109. t.254.f. 1. Mook. Musc. Exot.t. 13. Hab. Lord Auckland's group; with the former, but also barren.

(20. Aneura, Nees.)

80. Jungermannla multifida, L. ILooz. Brit. Jungerm. t. 45.

Tar. β, incisa; frondibus atro-viridibus caruosis inciso-ramosis, lobis pimnatis apice bilobis subdecurvis. J. incisa, nobis, in Hook. Lond. Journ. of Bot. vol. iv. p. 93.

Tar.? γ, minimu; cæspitosa, frondibus vix $\frac{1}{4}$ lin. latis.
Hab. Lord Aucklaud's group and Campbell's Islaud ; var. β, in the former locality only; var. γ, Lord Auckland's group. (Dr. Lyall.)

Of this widely diffused and highly variable plant we have noticed what appear to be the most striking varieties; all of them are destitute of any trace of fructification, and some may be impropcrly iucluded under this species, or even genus; there are, however, no grounds for removing them from Aneura, and being anxious to draw attention in this work to all that is known of the Flora of the South, we prefer arranging such dubious plants with their nearest apparent allies, to passing them by urecorded.

(21. Metzgeria, Nees.)

S1. Jungermania furcata, L. Hook. Brit. Jung. t. 55. and 56.
Var. γ, eruginosa, Brit. Jungerm. l.c.
Hab. Lord Auckland's group aud Campbell's Island; very abundant at the roots of ferns and other plants; var. γ, on the bark of trees.

This plant is as variable in size in this part of the world as in others.

$$
=(22 . \text { Zoopsis, Hook.fli.et Tayl.) }
$$

Perichatium e squanis paucis lanceolatis. Culyx e frondis nerro ortus, pedicellatus, obovato-oblongus, in lacinias plurimas fissus.-Frondes lineares, parce ramose, e cellulis hexagonis pro magnitudine plante majusculis tumidis formate, nervo centrali valido, marginibus crenatis interdum sinuato-repandis. Calyx maximus.-Planta anomala a Diplolena, Nees, differt ealyee simplici, hime, scilicet extrorsum, squamis periehætialibus predito.
82. Jungermannia argentea, Hook. fil. et Tayl.; Hook. Lond. Jouru. of Botany, vol. iii. p. 400. sub Metzgeria. (Tab. LXVI. Fig. VI.)
H.sb. Lord Auckland's group; at the roots of trees, ferns, \&c., growing amongst other Hepaticee and $_{\text {and }}$ mosses.

Cespites parvi, procumbentes, argentei, inter muscos dispersi. Frondes rigidiusculx, 2-3 lin. longæ, simpliciusculæ, gracillimæ, compresse. .complanatæ, e cellulis majusculis hexagonis nervum validum includentibus formatæ,marginibus e cellulis irregulariter prominentibus simuato-repandis, rarius hiuc inde in lobos expansis, nervo centrali viridi ralido. Rami pauci, patentes, simplices r. rarius fureati. Calyces pro magnitudine plantæ maximi, e nervo centrali ipso orti, breriter pelicellati, urceolititi r. campanulati, laxe cellulosi, in laciuias plurimas magis articulatas minnsre profunde fissi, basi squanis paucis (perichrtio) mumiti.

A rery singular plant, closely allied to none in the Order Hepatice; it forms pale silvery patches at the roots of ferns, \&ce, in the woods, but has ouly been found fruiting in New Zealand, where, as in Tasmania also, it is probably abundant. In the specimens from Lord Auckland's group the fronds are hardly siunated at the margins and often formed of ouly one or two series of cells surrounding the axis; in those from more Northern Latitudes other series of cells are superadded, the fronds are more compressed, and their margins so sinuated from the irregularly placed cells as to resemble the rudiments of leaves. Though the walls of the cells are exceedingly delicate, the whole plant is of a rigid texture, and rery slorly recorers itself when moistened; this somerhat horny consistency of the frond, resembling some Sertularia, has suggested to us the generic name. The drawing was made before the fructification was observed, by Mr. Wiilson, upon the New Zealand specimens.

Plate LXVI. Fig. VI.-1, a small tuft of the natural size ; 2, a frond; 3, a section of the same, very highly magnified.

2. HYGROPILA, Tayl.

1. Hygropila dilatata, Hook. fil. et Tayl. in Hook. Lond. Journ. of Bot. vol. iii. p. 576.

Hab. Lord Anckland's group; on the ground in damp woods.
This is one of the numerous frondose Hepatice which cover the groum so abundantly in the humid regions of the South; they eridently belong to many species, but laring never been found in fructification, it is exceedingly difficult to distinguish the species ly the form and texture of their cariable fronds, and still more to determine the genera to which they belong. The present, of which our specimens are but imperfect, seems identical with a rery common New Zealand plant, which abounds in moist places, and especially near cataracts.

3. MARCHANTLA, March.

1. Marchastla polymorpha, L.

Hab. Lord Auckland's group and Campbell's Island ; abundant.
A plant universally distributed throughout the Southern Hemisphere.

4. ANTHOCEROS, Hicher.

1. Axthoceros punctatus, L.?

Hab. Campbell's Island ; on the wet ground.
We are not assured of the identity of this plant with the Europæan A. punctatus, L., the specimens being very imperfect.

Dubii yeneris.
Riccia? cochleata, Hook. fil. et Tayl., in Hook. Lond. Journ. of Bot. vol. iv. p. 96. (Tab. LII. Fig. V.)

Hab. Lord Auckland's group; growing in dense tufts of mosses and Hepatica, on exposed rocks towards the hill tops.

Frondes laxe cæspitosæ, vix $\frac{1}{2}$ unc. longæ, $\frac{1}{10}$ crassitudine, olivaceæ, ascendentcs, lineari-oblongæ, crassæ, concavæ, hinc inde lobate, apicibus procumbentibus bilobis, lobis rotundatis integerrimis conmirentibus, marginibus integris incurris. Substantia caruosa, intus spongiosa, lase cellulosa.

This being quite unlike any of the hitherto deseribed Hepaticce, we attached the generic name of Riccia from a certain rescmblance in the form of its frond to several species of that genus, but the plant is more probably allied to some frondose Jungermannia, -J. epiphylla for instance. The concare frond with entire connivent lobes, partakes of the habit of that of Collema granulatum, Ach., but our plant is certainly a Hepatica.

Plate LIVI. Fig. Y.-1, a specimen of the natural size; 2, a frond, and 3, a section of the same; magnifed.

XXXV. FUNGI, L.

(By the Rev. M. J. Berkeley.)

The number of Fungi collected during the Expedition is very small, in proportion to that of other eryptogamic plants, with the exception of those found in New Zealand and Vau Diemen's Land. In the more southern localities, Fungi may naturally be expected to cease, sooner than Alga, Lichens, and Mosses; aud accordingly, from such localities, the amount of species is triffing indeed. Even where the degree of cold is not sufficient to prevent the growth of Fungi, their fructification is materially affected; and thus, in the higher forms, the lyymenium will frequently be found barren; while, in some hypogæous species, transformations of the sporophores themselves take place, eausing the fructifying mass to assume a rery anomalous appearance. Some species indeed, as Pilobolus crystallinus and Hydrophora stercorea, seem to flounsh most in the frosty nights of autumn, and the species of the genus Chetomypha and Lanosa nivalis thrive either beneath or upon the surface of the snow; but I know of no other exceptions to the more general habit of these species, and in these cases, the temperature either does not descend below the freezing point, or, as in the case of the Chetonyplea, regetation takes place only when the surface of the snow is just melting under the influence of the sun.

Amongst the more northern islands visited by the Expedition it is probable that some intcresting forms, had time allowed, would have rewarded further research; though, indeed, constant attention was directed, even to the obsenrest forms of regetation, wherever eireumstanees mould permit. As it is, there is a considerable number of new species to describe, and some of them possess much interest, especially a new Cyttaria from Cape Horn, the specimens of which are so numerous as to afford an excellent opportunity of examining the structme of this curious genus; which, like Podisoma and Gymnosporangium, which infest certain species of Juniper, developes itself on the living branchlets of the deciduous-leared Beeeh. Some of the species, like those of other Cryptogams, are identical with plants of the Northern Hemisphere; and this is especially observable in New Zealand, where the identity is not confined to those families in which it is more usual.

1. AGARICUS, I.

1. Agaricus pyxidatus, Bulliard, tab. 565, fig. 2.

Var. β, hepaticus, Fries Epicr. p. 122. Ag. subhepaticus, Batsch El., fig. 211.
Hab. Lord Auckland's group; in the woods near the sea.
A plant, so far as can be judged fiom the specimens, which were much damaged by insects before being
gathered, belongs to the species quoted abore. The stem is either equal or attenuated upwards, generally smooth, except towards the base, where it is at times clothed with cottony filaments which spread over the soil.

2. CLADOSPORIUM, Link.

1. Cladosporiusi herbarum, Link, Obs. II., p. 37.

Hab. Lord Auckland's group and Campbell's Island ; on the leaves of C̦arex appressa, Br. .ur :av? a.
This fungus originates beneath the cuticle, in slender dull black parallel tines; it afterwards forces itsell through to the surface and resembles some Puccinia. No characters exist to distinguish it as a species, though its habitris very peculias:

3. HENDERSONLA, Berk.

1. Hendersonia microsticta, Berk.; peritheciis sparsis punctiformibus atris globosis minutis, sporis lanceolatis acutis triseptatis. (Tab. LXVIII. Fig. I.)

Hab. Lord Auckland's group and Campbell's Island; on the withered stems of Chrysolactron Rossii of the previous year's growth.

Peritheciu parra, epidermide tecta, subprominula, atra, globosa. Sporee pellucidæ, irregulares v. lanceolatæ, utrinque acutæ, triseptatæ, quandoque breviter pedicellatæ; endochromio cellulis conformi.

There are no external characters by which this may be discriminated from several other black punctiform Fungi. The structure of the sporcs indicates a total want of affinity with Spharia; these, muder a low power, appear, multiseptate or triguttate; but, with a higher lens and well adjusted light, each is seen to be furnished with three transparent septa: their shape is that of Neottiospora.

Plate LXVIII. Fig. I.-1, stem of Chrysobactron with fungus of the natural size ; 2, a portion of the same, magnified.

4. UREDO, Pers.

1. Uredo antarctica, Berk.; amphigena, maculis oppositis purpureis, soris bullatis, sporis majusculis lævibus late obovatis fuscis. (Tab. LXVIII. Fig. II.)

Hab. Campbell's Island; on leaves of Inzula crinita.
Amphigena; maculis parris, oppositis, subrotundatis, purpureis, subtus pallidioribus. Sori bullati. Sporoe obsoletissimæ, pedicellatæ, obovatæ v. subglobosæ, læees, guttula centrali oleosa præditi.

External appearance very closely resembling the Ccooma Luzula, Libert., but the form of the spores is quite different, and also like Uredo oblongata, which likewise grows upon Luzulc, but is a very'different parasite.

Plate LXVIII. Fig. II.-1, leaf of Luzula with fungus of natural size; 2, portion of ditto, magnified; 3, spores very highly magnified.

5. SPHERLA, Hall.

1. Spherla herbarum, Pers. Synops. p. 79. (quoad var. γ, tectam), Fr. Syst. Myc. vol. ii. p. 511. Notaris in Act. Acad. Turin. vol. vii. p. 30. cum analysi optima. (Tab. LXVIII. Fig. III.)

Hab. Lord Auckland's group and Campbell's Island; on the scapes of Chrysobactron Rossii with Hendersonia microsticta.

Fries says of this plant, or rather of what have been referred to it, "Farrago specierum minimarum" and umder it two very different productions are given in the 'Scleromycetes Succicæ,' (1no.38). Of one of these, both a larger and smaller form occur ; the other is identical with what has been published as a small state of Spheriu complanata. I have given, at nos. 267 and 288, of my British 'Fungi' (Fasc. 4th), the latter as Fries's var. minor of Sp, herbarum and Sp. complanata intending to illustrate his views, and with no idea that it would prove identical with any of the larger or normal species, which are well distinguished by their sporidia. These, in the true S. herbarum, are oblong, with several longitndinal and transrerse dissepiments, like what are seen iu Spharia Laburni, in the specimens before me from Auckland Island and in the larger English form. The plant published in my ' Fasciculi' is destitute of asci, which is the case with S. acuta, Hoffm. The analysis of the latter plant as given by Greville, belongs to S. coniformis which often occurs on the same stem. It is not properly a Sphceria but either a Sphceronema or a Septoria, as extended by Desmazières, or finally, if Spherria be remodelled according to the plan upon which De Notaris has revised the Italian species, it will come muder some new generic name.

On carefully removing the cuticle of the Chrysobactron, I find that in the specimens before me the neritheria

DIRECTIONS TO BINDER.

Page 171-2 issued with Yol. 1. is to be cancelled and the present leaf substituted in place of it.

The volumes should be lettered as follows:-
the
BOTANY
of the
ANTARCTIC VOYAGE.

I.

FLORA ANTARCTICA.
vol. 1.

> The
> BOTANY
of the
ANTARCTIC VOYAGE
1.

FLORA ANTARCTICA. rol. mi.
globosum ostiolo subprominulo pụnctiformi latitat. Asci primun breves, sporidiis pellucidis cllipticis biscrialibus demum lineares, sporidiis fuscis breviter cymbifonuibus uniserialibus, nucleo magno globoso.

I know of no species at all resembling the present. The change in the form of the asci and sporidia is very instructive and confirms me in my opinion, that Spheria herbarum and its accompanying uniseptate state belong to the same species (vid. supra). It is worthy of observation, that the sporidia exhibit these changes whilst still colourless. Septa are however sometimes formed as in the genus Diplodia after the spores have acquired their colour.

Plate LXVIII. Fig. IV.-1, leaf and fungus of the natural size; 2, portion of the same, magnified; 3, an immature and mature ascus; 4, sporidia:-all magnified.
gathered, belongs'to the species quoted above. The stem is either equal or attenuated upwards, generally smooth, except towards the base, where it is at times clothed with cottony filaments which spread over the soil.

2. CLADOSPORIUM, Link.

1. Cladosporica herbarum, Link, Obs. II. p. 37.

Hab. Lord Auckland's group and Campbell's Island; on the leaves of Carex appressa, Bre mi ran an
This fungus originates beneath the cuticle, in slender dull black parallel lines; it afterwatds forces itself through to the surface and resembles some Puccinite: No characters exist to distinguish it as a species; though its habit is very peculiar.
3. HENDERSONIA, Berk.

Plate LiviII. Fig. II.-1, leaf of Luzula with fungus of natural size; 2, portion of ditto, magnified; 3, spores very highly magnified.

5. SPHERLA, Hall.

1. Spherla herbarum, Pers. Synops. p. 79. (quoad var. y, tectam), Fr. Syst. Mye. vol. ii. p. 511. Notaris in Act. Acad. Turin. vol. vii. p. 30. cum analysi optima. (Tab. LXVIII. Fig. III.)

Hab. Lord Auckland's group and Camplbell's Island; on the scapes of Chrysobactron Rossii with Hendersonia microsticta.

Fries says of this plant, or rather of what have been referred to it, "Farrago speeicrum miminarum" and under it two very different productions are given in the 'Scleromycetes Suecice,' (no.38). Of one of these, both a larger and smaller form occur ; the other is identical with what has been published as a small state of Spharia complanata. I have given, at nos. 267 and 288 , of my British ' Fungi' (Fasc. 4th), the latter as Fries's var. minor of $S p$. herbarmm and $S p$. complanata intending to illustrate his vicws, and with no idea that it would prove identical with any of the larger or normal speeies, whieh are well distinguished by their sporidia. These, in the true S. herbarm, are oblong, with several longitudinal and transrerse dissepiments, like what are seen in Spheria Laburni, in the speeimens before me from Auckland Island and in the larger English form. The plant published in my 'Fasciculi' is destitute of asci, which is the case with S. acuta, Hoffm. The analysis of the latter plant as given by Greville, belongs to S. coniformis which often occurs on the same stem. It is not properly a Spheria but either a Sphereronema or a Septoria, as extended by Desmazières, or finally, if Spharia be remodelled according to the plan upon which De Notaris has revised the Italian species, it will come under some new generic name.

On carefully removing the enticle of the Clirysobactron, I find that in the speeimens before we the perithecia give out a few stout filaments which creep for a short distanee; this I believe to be a common occurrence with the subeuticular species. On the same stalks, individuals having the same external characters oecm, in which the sporidia are uniseptate. This form I at first believed to be a distinct species, but am now satisfied that it is an imperfect state of S. herbarum; especially since three septa are sometimes visible.

Plate LXVIII. Fig. III.-1, stem of Chrysobactron with fungus of nalural size; 2, portion of ditto, magnified; 3 , aseus of S. herbarum; 4, the same, of an immature speeimen ; 5, sporidia of ditto:--highly magnified.

2. Spheria nebulosa, Pers.? Synops. Fung. p. 31.

Hab. With the former.
Very imperfeet ; as are also the published descriptions of S. nebulosa itself.
3. Splleria nigrella, Fries? Syst. Mycol. v. ii. p. 51~.

Hab. With the tro former.

Speeimens, unfortunately without fruetifieation and therefore scarcely determinable.
4. Spherla pheosticta, Berk.; gregaria, peritheciis globosis atris cpidermide fusco-maculato tectis, ostiolo prominulo punctiformi, ascis linearibus, sporidiis uniserialibus fuscis breviter cymbiformibus. (Tab. LXVIII. Fig. IV.)

Hab. Lord Auckland's group and Campbell's Island; on the dead leaves of Hierochloe Brunonis.
Gregaria, oculo mudo maculas parvas punetiformes brumeolas exhibens, sub quaque macula perithecium minutum globosum ostiolo subprominulo punctiformi latitat. Asci primm breves, sporidiis pellueidis ellipticis biserialibus demum lineares, sporidiis fuseis breviter cymbiformibus uniserialibus, mucleo magno globoso.

I know of no species at all resembling the present. The change in the form of the asci and sporidia is very instructive and confirms me in my opinion, that Spheria herbarum and its accompanying uniseptate state helong to the same species (rid. supra). It is worthy of observation, that the sporidia exhibit these changes whilst still colourless. Septa are however sometimes formed as in the genus Diplodia after the spores have aequircd their colour.

Plate LXVIII. Fig. IV.-1, leaf and fungns of the natural size; 2, portion of the same, magnified; 3, an immature and mature ascus; 4, sporidia:-all magnified.
5. Spherla (fohicolæ) depressa, Berk; gregaria, minor, atra, peritheciis tectis subglobosis lævibus collo destitutis siccitate depressis, sporidiis lanceolatis. (Tab, LXVIII. Fig. V.)

Hab. Campbell's Island; on the dead leaves of Inzula crinita.
Gregaria, epidermide atro-punctato omnino tecta. Perithecia minora, subglobosa, collo destituta, siccitate depressa. Asci lineares, paraphysibus tenuioribus immixti. Sporidia biseriata, lanceolata, endochromio bipartito sed non septato.

The only species with which the present can be compared are S. duplex and S. Scirpicola; from both these it will be found to differ by the external characters given abore, and, frou the latter in particular, by the simple pellucid and neither triseptate nor yellowish sporidia.

Plate LXVIII. Fig. V.-1, leaf and fungus of the natural size; 2, portion of the same, magnified; 3, asci and paraphyses; 4, sporidia, shewing the endochrome collected at either extremity; magnified.

6. DOTHIDEA *, Fries.

1. Dothidea hemispherica, Berk; hypogena, solitaria, erumpens, macula subeffusa epiphylla nigra, stromate hemispherico carbonaceo, cellnlis ellipticis obtusiusculis, ascis breviusculis, sporiduis uniseptatis oblongis. (Tab. LXVII. Fig. II.)

Hab. Lord Auckland's group; on the leaves of Veronica odora.

* I take the present opportunity of describing two new species of Dothidea, contained in the Herbarium of Sir W. J. Hooker.

1. Dothidea circumscripta, Berk.; innata, gregaria, macnlis suborbicularibus irregularibus depressis nigris nitidis circumscriptis, cellulis paucis magnis depresso-globosis, collo brevi, ostiolo papillæformi, ascis clavatis, sporidiis oblongo-lanceolatis. (Tab, LXVIII. Fig. VI.)

Hab. Andes of Columbia (Jameson). Chacapoyas, Peru (Mathews); on various species of Faccinium
Hypophylla, rarissime epiphylla, innata. Macule $\frac{3}{4}$ lin. latæ, suborbiculares v. coufluentes, integulares, depressæ, nigræ, uitidæ, quandoque leviter undulatæ, minutissime granulatæ, ostiolis paucis, papillæformibus notatæ, linea uigra plus minusve evidenter circumscriptæ, demum omnino fatiscentes, et scutellam epidermide marginatam exhibentes. Cellulæe fructiferæ paucissimæ, magnæ, globosæ, depressæ, collo brevi, ostiolo papillæformi. Asci clavati. Sporidia octona, oblonga, hinc acuminata,

A very pretty species, remarkable for the small number of fructifying cells and the dark line enclosing the stroma, which is especially evident when the latter is abortive; beyond this line there is sometimes a coloured ring. The sporidia are almost of the same shape with those figured by Corda, in Rhytisma Eugeniacearum; when young they are filled with distinct granules which become less evident as they are more developed. In age the stroma completely decays and falls out, leaving a scutellum surrounded by the caticle. This follows from the dark line indicating a harder substance than that of the stroma, which is not always externally risible, but will be found on inaking a vertical section.

Plate LXVIII. Fig. VI.-1, a branch of Vaccinium and fungus of the natural size; 2, a section, slightly magnified; 3, asci, slightly magnified; 4, sporidia, highly magnified.
2. Dothidea bullata, Berk.; epiphylla, bullata, suborbicularis, nigra, superficialis, crassiuscula, rugosa, grannlata, intus nigra, cellulis ellipticis, ostiolo papillæformi, ascis oblongis, sporidiis oblongis uniseptatis.
$\mathrm{Hab}_{\mathrm{A}}$. Pern; on the leaves of a resinous shrub. (Mathews.)
Epiphylla, submarginalis, superficialis. Macula $\frac{1}{4}$ unc. latæ, suborbiculares, crassiusculæ, depresso-bullatæ,

Fries says of this plant, or rather of what lave been referred to it, "Farrago specierum minimarum " and under it two very different spceies are given in the 'Scleromycetes Sueciex,' (no. 38). Of one of these, both a larger and smaller form oeeur; the other is ideutieal with what has been published as a small state of Sphereria complenata. I have giveu, at nos. 267 aud 288, of my ' British Fungi' (Fasc. 4th), the same plant, in two different stages of growth, as $S p$. kerbarum and $S p$. complanata; these are intended to illustrate the viers of Fries, and with no idea that either would prore identieal with any of the larger or normal species, whieh are well distinguished by their sporidia. These, ini the true S. Ievbarma, are oblong; with several longitudinal and transverse dissepinents, like what are seen in Spheria Laburni, iu the speeimens before me from Auckland Island and in the larger Euglish form. The plant published in my 'Faseiculi' is destitute of asei, whieh is the case with S. acuta, Hoffim. The analysis of the latter plant, given by Greville, belongs to S. coniformis (whicl often oceurs on the same stem), and does not therefore properly refer to Spheria at all; but either to the Spheronema or to the genus Septoria, as extended by Desmazières, or finally, if Spharia be remodelled aceording to the plan upon whieh De Notaris has revised the Italiau speceies, it will eome under a ner generie name.

On earefully remoring the cuticle of the Chrysobactron, I find that in the speeimens before me the perithecia give out a few straight filanents which ereep for a short distance; this I believe to be a common oceurreuce with the subentículur speciés'." On' the same stalks individuials having the same external chäracters occur, in "Whieh the sporidia are uniseptate. This form I at first believed to be a distinet speeies, but am now satisfied that it is is an imperfect state of S. herbaren; cspecially siuce three septa are at times seeu.

Plate LXVIII. Fig. III.-1, stcm of Chrysobactron with fungus of natural siee; 2, portion of ditto, magniffed; 3, ascus of S. herbarum; 4 , the same, of an immature specimen; 5 , sporidia of ditto:--highly magnified.

2. Spheria nebulosa, Pers.? Synops. Fung. p. 31.

Нав. With the former.
Very imperfect; as are also the published descriptions of S. nebulosa itself.

3. Spherla nigrella, Fries? Syst. Mycol. v. 2. p. 512.

Hab. With the two former.
Specimeus, unfortuately without fructifeation and therefore undeterminable.
4. Spheria pheosticta, Berk.; gregaria, peritheciis globosis atris epidermide fusco-maculato tectis, ostiolo prominulo punctiformi, ascis linearibus, sporidiis uniserialibus fuscis breviter cymbiformibus. (TaB. LXVIII. Fig. IV.)

Hab. Lord Auckland's group and Campbell's Island; on the dead leaves of Hierochloe Brunonis.

Gregaria, oeulo nudo maculas parras punetiformes bruuneolas exhibens, sub quaque macula peritheciun minns globosum ostiolo subpromimulo punctiformi latitat: 'Asei primum breves, sporidiis' pellueidis ellipticis biserialibus, demum lineares, sporidiis fuseis breviter eymbiformibns uniserialibus, nueleo magno globoso.

I know of no speeies at all resembling the preseut. The change in the form of the asei and sporidia is very instruetive and confirms me in my opinion, that Spheria herbarem and its aecompanying uniseptate state belong to the same speeies (vid. supra). It is worthy of observation, that the sporidia exhibit these ehanges whilst still colourless. Diplodia preseuts a somewhat analogons ease to this, septa being sometimes formed in that genus after the spores have aequired their colour.

Plate LXVIII, Fig. IV.-1, leaf and fungus of the natural size; 2, portion of the same, magnified; 3, au immature and mature aseus; 4 , sporidia:-all magnified.
5. Spherla (foliicolæ) depressa, Berk.; gregarea, minor, atra, perithecuis tectis subglobosis læribus callo destitutis siccitate depressis, sporidiis lanceolatis. (Tab. LNVIII. Fig. V.)

Hab. Campbell's Island ; on the dead leaves of Luzula crinita.
Gregaria, epidermide atro-punctato omnino tecta. Perithecia minora, subglobosa, callo destitnta, siccitate depressa. Asci lineares, paraphysibus tenuioribus immixti. Sporidia biseriata, lanceolata, endochromio bipartito sed non septato.

The only species with which the present can be compared are the S. duplex and S. saxifricola; from both these it will be found to differ by the external characters given above, and, from the latter in particular, by the simple pellucid and neither triseptate nor yellowish sporidia.

Plate LXVIII. Fig. V.-1, leaf and fungus of the natural size; 2, portion of the same, magnified; 3, asci and paraphyses; 4, sporidia, sherring the endochrome collected at either extremity; maynifed.

6. DOTHIDEA*, Fries.

1. Dothidea hemispherica, Berk.; hypogena, solitaria, erumpens, macula subeffusa epiphylla nigra, stromate hemispherico carbonaceo, cellulis ellipticis obtusiusculis, ascis breviusculis, sporidiis uniseptatis oblongis. (Tab. LXVII. Fig. II.

Hab. Lord Auckland's group; ou the leaves of Teronica odora.

[^16]Plate LXVIII. Fig. VI.-1, a brauch of Taccinium and fungus of the naturalsize; 2, a section, slightly magnified; 3, asci, slightly magnified; 4, sporidia, lighly magnified.
2. Dothidea bullata, Berk.; epiphylla, bullata, suborbicularis, nigra, superficialis, crassiuscula, rugosa, granulata, intus nigra, cellulis ellipticis, ostiolo papillæformi, ascis oblongis, sporidiis oblongis uniseptatis.

Hab. Peru; on the leares of a resinous shrub. (Mathews.)
Epiphylla, submarginalis, superficialis. Maculce $\frac{1}{4}$ unc. latæ, suborbiculares, crassiusculæ, depresso-bullatæ,

Hypogena, nigra, maculam migram subeffusam superne stromatis iudicem exhibens, ma tantum macula in singulo folio ut videtur evoluta. Strona $\frac{2}{3}-1$ lin. latum, hemisphericum, carbonaceum, extus scabriusculum, nec cvidenter papilhato-granulosum, demum fatiscens : intus carbonaceum, superne reticulatim cellulosum, sub leute atro-cæruleum vel demum viridi-fuscum constans, basi in floccos abeuute. Cellula fructiferce oblongo-ellipticæ, pcriphericæ, obtusiusculæ, vix apiculatre. Asci breviusculi. Sporidia octona, oblonga, uniscptata, medio coustricta.

This species has much more the habit of a Splucria than most Dothidece, being of a carbonaccous texture, like the Spheria fragiformis; but though, on making a delicate vertical section, a thin stratum of tissue, consisting of only a single layer of cells, occasionally appears, uo trace of this is seen on the sides of the cavities distinct from the neighbowing tissue. The specimens procured are not numerons, in no instance does more than one individual appear upon a single leaf, the latter being probably of too small a size to support more than a solitary stroma of such high organization. Like some other species iudicated by Montagne in his ' Fungi of Cuba,' this is probably originally' produced between the layers of the cuticle, for some of the latter is found beneath the stroma. The cells of the stroma pass at the base into a mass of reticulated filameuts, without any membrane being attached to the meshes.

Plate LXVII. Fig. II.-1, a sprig of Veronica odora, with the fungus of the naturalsize; 2, a section of the fungus; 3, a portion of the same, more highly magnified; 4, an ascus; 5, sporidia; 6, a section shewing the loose cellular tissuc of the centre, the pentagonal tissue about the base of the cells, and the elongated tissue between them :-all magnified.
2. Dothidea spilomea, Berk.; gregaria, bypophylla, maculis epiphyllis nullis v. obsoletissimis, subinnata, depressa, tenuis, orbicularis, sepe conflucus, minutissime granulosa, nitida, cellulis globosis, ascis clavatis, sporidüs oblongis uniseptatis medio constrictis. (Tab. LXVII. Fig. I.)

Hab. Lord Auckland's group and Campbell's Island; on the leaves of Veronica elliptica, Forst.
Hypogena, nigra, nitida; maculis $\frac{1}{2}-\frac{1}{6}$ lin. latis, gregariis, orbicularibus, ¢uandoque conflucntibus, depressis, subinnatis, tenuibus, minutissime granulatis. Stroma tenue, subtus cum parcnchynate coufusum. Cellula fructiferi globosæ, ostiolo punctiformi. Asci clavati. Sporidia oblouga, quandoque curvata, uniseptata, medio constricta.

In some leaves the spots are very numerous, in others they are lout few aud of a larger size. The species is most allied to the D. amplimelana, Mont., and D. Zollingeri, B. and M., although not very near either; it exlibits, also, some affimity with D. granulosa, Hook. et Arn. Externally it strongly resembles the punctiform variety of Rhytisma salicinum. The spots are of a shining black, and are very minutcly granulated under a lens.

Plate LXVII. Fig. I.-1, a sprig of Teronica elliptica, covered with the parasite, of the natural size; 2, a section, slightly magnified; 3, ditto, more higlly magnified; 4, asei; 5, sporidia : magnified.

7. ASTEROMA, Dec.

1. Asteroma dilatatum, Berk.; superficiale, maculis riceiæformibus, lobis dilatatis e filamentis serpentibus approximatis in membranam congestis. (Tab. LXVIII. Fig. VII.)
migra, non tamen nitidæ, rugosiusculæ, granulatæ, intus nigræ, substantia sub lente fusca. Cellula fruclifere ellipticæ, albo-farctæ, ostiolo papillæformi. Asci oblongi, basin versus latiores. Sporidia oblonga, uniseptata.

A rery fine species, allied to D. cimplimelana, Mont., D. Rutee and D. puccinioides. The first of these is more regular and innatc, besides having a spot on the under side opposite to that on the upper; whereas, in the present species, in consequence of the superficial mode of growth, there is no such spot. D. amplimelana has no crident border to the stroma. D. Rute has uniseptate sporidia, but they are short and brown; in which respect also D. bullata differs from D. puccinioides, and in several other characters from both, as its much larger size.

Hab. Lord Auckland's group; on the leaves of Panax simplex, Forst.

Macule omnino superficiales, orbiculares, epiphyllæ, 2 lin. latæ, opacæ, olivaceo-nigræ, Lichenem parvum Fucumve referentes, lobatæ, lobis apice dilatatis e filamentis approximatis constantibus.

This pretty species, which was unfortunately not found in fruit, resembles somewhat Rhytisma quercinum, Rudolph, for which I am indebted to Dr. Montagne. That specics, however, originates beneath the cuticle, while this is, I believe, entirely superficial. The ramification is different, the tips of the branches being dilated in a flabellate form. The stroma, also, consists of approximated threads, not of an irregular ccliular membrane. This structure is almost identical with that of Myrionema punctiforme, Harv., except that the filaments are there much branched, which I do not find to be the case here.

This species is accompanied with another in a very imperfect state, and which may be a species of Dothidea.
Plate LXVIII. Fig. VII.-1, leaf of Panax, with fungus, of the natural size; 2, portion of the same, magnified; 3, filaments, very highly magnified.

8. HYSTERIUM, Tod.

1. Hystericm breve, Berk.; peritheciis brevibus ellipticis nigris prominulis, rima angustissima, ascis linearibus elongatis. (Tab. LXVIII. Fig. VIII.)

Hab. Campbell's Island; on the dead leaves of Uncinia Hookeri, Boott.
Perithecia minuta, nigra, nitida, prominula, breviter elliptica, raro utrinque apiculata, rima angustissima. Asci elongati, lineares, paraphysibus filiformibus rectiusculis inmixti, sporidiis filiformibus.

This species is manifestly different from the small form of Π. culmigenum, and the nature of the asci and paraphyses are further distinct, being in the latter plant shorter and of a different form, with the apices of the paraphyses curved or curled. The apiculate extremities may not prove to be a constant character, though the probability is that it will, at least in full grown specimens.

Plate LXVIII. Fig. VIII.-1, leaf and fungus of the natural size; 2, portion of the same; 3, perithecium shewing the contained asci; 4, ascus; all more or less magnified.

9. AYLOGRAPHUM, Libert.

1. Aylographum Bromi, Berk.; perithcciis simplicibus filis arachnoideis comitatis, sporidiis oblongis uniseptatis medio constrictis. (Tab. LXVIII. Fig. IX.)

Hab. Lord Auckland's group; on the lcaves of Bromus antarcticus.
Mycelium arachnoideum, fuscum, quandoque abundantius et sterile, in maculis autem fertilibus parcum. Perithecia minima, oblonga, brevia, recta v. curvata, simplicia, atra, nitida. Asci brevissimi, obovati, tenerrimi. Sporce

- octonæ, oblongo-ellipticæ, medio constrictæ, uniseptatæ.

The species of this genus, which has principally been investigated by Madame Libert, resemble extremely minutc Opegraplice. The present individual approaches the A. jenceum, but differs from it and from all others by the septate sporidia. The perithccium casily breaks up into its elemental cells, and such I find to be also the case with some of Madame Libert's species; while, in others, the cellular strmeture is more permanent and forms a beautiful microscopic object.

Plate LXVIII. Fig. IX.-1, a portion of leaf and fungus, of the natural size; 2, perithecium, magnified, showing the contained asci ; 3, ascus; and 4, sporidia :-highly magnified.

10. ANTENNARTA, Link.

1. Antenvaria scoriadea, Berk.; spongiosa, floccis fasciculatis sursum lateraliter connexis, peridiis subellipticis irregularibus. (Tab. LXVII. Fig. III.)

Hab. Lord Auckland's group and Campbell's Island; on the branches and twigs of several shrubs and trees, but especially of Dracoplyllum longifolium.

Spongiosa, ramos incrustans. Flocci $\frac{1}{4}-\frac{1}{2}$ unc. longi, fasciculati, superne processibus brevibus lateralibus more Zygnematis connexi, subtus e membrana reticulata vel mycelio repente nascenti, filamentis tenuioribus immixti, erecti, irregulariter ramosi. Articuli moniliformes vel presertim in filamentis ultimis continui, ねeves, meleo glohoso solitario. Perithecia subelliptica, irregularia.

A very singular substance, which must strike the traveller through the woods especially of New Zealand or of Lord Auckland's group, in both which localities it is very abundant, resembling charcoal, and sometimes so widely diffused that the branches look as if burnt. The colonists of the former islands call it "the black moss." Distinguished from A. pannosa and A. Robinsonii by its long fasciculate threads, giving it exactly the habit of Scorias spongiosa. The finest specimens have a rigid bristly appearance, quite different from that of any other species of the genus. This has been also gathered in Valparaiso by Mr. Bridges, and at the Swan River by Mr. Drummond. I have not been able to trace the developement of the peridia in the Auckland Island specimens, but it would appear that, as in MF. Robinsonii, M. and B., they arise either from a swollen articulation or from a process given off by an articulation, in either case they are dependent on a simple metamorphosis of the latter.

Plate LXVII. Fig. III.-1, a plant of the natural size; 2, flocei from the hase of the tufts, with a portion of the cellular matrix ; 3, flocei from the summits of the tufts, laterally aggregated; 4, sporangia; 5, portions of the filaments in various statcs:-all more or less highly magnifed.

11. SCLEROTIUM, Tod.

1. Sclerotiuas durtm, Pers. Synops. Fung. p. 121.

Hab. Lord Auckland's group; on the capsules of Gentiana concinna.
This production is cummerated here becausc it has hitherto appeared in the works of Mycologists, but I an decidedly of Léveille's opinion that it should be expunged.

XXXVI. ALGE, L.

By W. H. Harvey, Esq., M.D., and J. D. Hooker.

1. MARGINARIA, A. Rich.

Radix ramosa. Frous plana, linearis, sursum flabellato-pinnata ; pinnis coriaceo-membranaceis, spimuloso-dentatis, enerviis, dichotome fissis; margine superiore vesiculas petiolatas reccptaculaque gerente. Conceptacula reccptaculis semi-immersa, globosa, poro pertusa. "Sporre magnæ, obovato-pyriformes, perisporio iuitio inclusie, mox nudx, c cellulis parietalibus oriundæ, paraphysibus immixtre, in M. Boryana vero e morphosi ultimi articuli filorum ut videtur ortæ, forsan hinc minute et tantum ut gemme labendæ."-Hont.

Obs. The genera Marginaria, A. Rich., Carpophyllum, Grev., Scytothalia, Grev., and Seirococcuss, Grev., are all very closely related to each other, and to Sargassum. From the latter they differ more by possessing a frondose, imperfectly leafy mode of growth, than by any very decided structural character; and habit alone will scarcely separate some of them from the decurrent species of that genus, S. decurrens, Peronii, Boryi, sc. These last have
lately been erected into a distinct gemus, by Kützing, under the name of Pterocaulon, and on grounds equally valid with those which separate some of the above groups. Seirococcus was distinguished from Scytothalia by Dr. Greville, by having moniliform instead of oblong or lanceolate receptacles; but the genera have been reunited by Montagne, who has added a new species (Scyt. Jacquinotii), and this last approximates so closely to Marginaria, as to reduce the clearly appreciable differences between Scytothalia, Mont., and Marginaria, to the former having entire and the latter spimuloso-dentate margins,-a circumstance of very minor importance, and perhaps of specific value only. Carpoplyllum may be distinguished by the position of its vesicles and the clustering of its receptacles from Fucus; on the other hand it approaches Sargassum through S. Boryi, Ag. Marginaria coutains but two species, of which Kützing in his late work constitntes as many genera. A. Richard, on the contrary, struck with the slight characters on which he had established Marginaria, afterwards combined it with Sargassum.

The paraphyses, so carefully described by Montagne in the generic character as occuring mixed with the spores, auswer well to the autheridia observed lately by MDI. Decaisue and Thuret in Fucus, whence this species would be regarded by these authors as hermaphrodite.

1. Marginarla Urvilleana, A. Rich.; Montagne Prodr. Phycear. in itin. ad Polum Antarct. p. 10. Toy. au Pole Sud, Bot. Crypt. p. 60. t. 3. f. 1. A. Rich. Fl. Nor. Zel. p. 10. t. 3. Sargassum Urvilleanum, A. Rich. Sert. Astrolab. p. 13S. A. Cunn. in Hook. Comp. to Bot. Mag. vol. ii. p. 327.

Hab. Lord Auckland's group; very abundant in shallow water.
Pinue 12-18 unc. longæ, $\frac{3}{4}-1$ unc. latæ, coriaceo-membranaceæ, uigro-fuscæ, planæ, læves, enerves, argute scrratæ, obtusæ, basi sensim attenuatæ, subpetiolatæ, irregulariter dichotome fissæ, ramis superioribus plerumque simplicibus, inferioribus divisis, simubus angustis rotundatis, laciniis erecto-patentibus. Vesicula sphæricæ, 4-8 lin. lata, muticæ, petiolo incouspicuo plano 1 lin. longo suffultæ, margine pinuularum superiori affixæ. Receptacula breviter pedunculata, $2-3$ lin. longa, ad basin frondis secus marginem snperiorem in serie elongata inserta, divaricata, lanceolata, obtusa, compressa, torulosa. Conceptacula globosa, receptaculis immersa, demum plns minusve conrexa, poro pertusa. Spore exemplaribus nostris immaturæ.

Dr. Montague enumerates Blosserillea retorta, Mont., and B. retroflexa, Kütz., as natives of Lord Auckland's group, and also the Carpophyllem nacrophyllum, Mont.
2. D'URVLLLEA, Bory.

1. D'Urvillea utilis, Bory in Duperrey Toy. Bot. Crypt. p. 65. t. 1 and 2. f.2. I' Urville, Fl. Ius. Mal. in Mém. Soc. Linn. Paris, vol. iv. p. 594. Montagne, Ciypt. Boliv. et in Toy. au Pole Sud, Bot. Crypt. p. 23. Decaisne in Archiv. Mus. vol. iv. p. 153. t.5. f. 1-6. Postels et Ruppr., Illust. Alg. t. 1. Fucus antarcticus, Chamisso in Choris, Toy. Pittor. t. 7.

Hab. Lord Auckland's group and Campbell's Island, and in the open sea for ten degrees southward of these groups.

The distribution of this species will be considered with that of the genus Macrocystis in the secoud portion of the Flora Antarctica.

3. XIPHOPHORA, Mont.

Frons olivacca, linearis, compresso-plana, coriacea, dichotome ramosa. Fesicule uullæ. Conceptacula per totam froudem sparsa, ramis immersa, tuberculiformia, poro pertusa, intus naturæ diversæ; altera sporas oboratas, nigrofuscas, demun quadripartitas, limbo hyalino cinctas, parietibus affixas, sessiles; altera fasciculos filorum ramosorum, articulatorum, apicibus turgidis et demum in corpuscula granulis repleta (antheridia vel gemmas) mutatos forentia.

We fully agree with our excellent friend Montagne in the propriety of establishing the present genus, and
for the several reasons adduced by him in his memoir, in the 'Amales des Sciences Naturelles,' Oet. I8t2. He must allow ns, however, to claim for La Billardière, not only the discovery of the plant, but that of its fruit also; for, though the description of that author be imperfeet, there can exist no doult that the tubercles immersed in the frond, which he notices, are what we now know to be fructification. We further enter our protest against the systen of changing the specific name from gladiatus, which is quite unexceptionable, to Billardieri. In the general eharaeter we have described the spores as finally divided into four, more or less unequal parts, when they resemble the tetraspores of several Floridece, which doubtless, as demonstrated by M. Deeaisne and Thuret in other Fucacere, form together but a single spore. loung, and even nearly mature, seeds exhibit no traees of this internal division; while those that are fully grown and have assumed a dark eolom, are divided by very elear lines and even spaces. " With regard to other organs in the Fucacece, which M. Montagne ealls gemma or acrosperms, we ineline to eonsider them analogous to what are termed anthcridia in some other families." *

1. Niphophora Billardieri, Mont. Proll. Nov. Phyc. in itin. ald Polum Antarct. p. 12. Toy. au Pole Sud, Bot. Crypt. p. 55. t. 7. f. 1. Fucus gladiatus, Labill. Pl. Nov. Holl. II. p. 3. t. 256. Encyct. Meth. Bot. Suppl. V. p. 439. Lamouroux in Mem. du Mus. d’Hist. Nat. XX. p. 36 . Turner, Mist. Fuc. t. 210. Berkeley in Aun. Nat. IIist. for 1843, p.57. Ctenodus, Kützing. (Tab. LNIX. Fig. III.)

Hab. Lord Auckland's group; on rocks in the sea, very abundant.
Conceptacula per totam frondis longitudinem præcipue apieem versus sparsa, immersa, tuberculiformia, leriter convexa, poro pertusa, externe consimilia, interne nucleis diversis instructa. Altera sporas obovatas v. pyriformes. Spore magnæ, sessiles, e cellulis parictalibus ortæ, perisporio hyalino circumdatæ, nueleo primum simplici demum quadripartito mgro-fuseo donatæ, cum paraphysibus simplicibus artieulatis filiformibus achromaticis commixtæ. Altera contra filis ramosissimis tenuibus lyalinis articulatis farciuntur, quorum externi turgidi materie gramulosa repleta evadunt.

Plate LXIX. Fig. IlI.—Divided spores of Xiphophora (called erroneously tetraspores on the plate).

4. LAMINARTA, $A g$.

1. Laminaria, (sp.)?

Hab. Campbell's Island. (Di. Lyall.)
A fragment of a young frond, too imperfect for description or determination of the species.

[^17]
5. MACROCYSTIS, $A g$.

1. Macrocystis pyrifera, Agardh, Sp. vol. i. p. 47. Nov. Act. Nat. Cur. vol. xix. p. 297. t. 26. 1. 1.

Hab. LordAuckland's group, Campbell's Island, and in the open sea to the south as far as the 65 th degree.
The observations on this genus and its distribation, are reserved for the Cryptogamic portion of the other Antarctic Islands.

6. DESMARESTIA, Lamour.

1. Desmarestia viridis, Lamour.; fronde cartilaginea basi subcompressa, supra cylindracea decompositopimnata, pimis pimnulisque exacte oppositis filiformibus ultimis capillaribus. D. viridis, Lamomr. in Anu. Mrus. xx. 25. Eull. Gen. Pl. Suppl. vol. iii. p. 2S. Kütz. Phye. Gen. p. 344. Dichloria viridis, Grev. Alg. Brit. p. 36. t. 6. Sporochnus viridis, Ag. Spec. Alg. vol. i. p. 154. Syst. p. 259. Fucus viridis, Fl. Deth. t. S86. Turn. IIist. Fuc. t. 97. Engl. Bot. t. 1669.

Hab. Lord Auckland's group. (Dr. Lyall.)
We defer our remarks on this plant, and on the genus Desmarestia in general, to a future portion of this work. The present species was found abondantly at Christmas Harbour in Kerguelen's Land, Berkeley Sound, aud Port William in the Falkland Islands, and at Cape Horn ; and will, therefore, come more properly along with some new species into the flora of those regions.

7. DHCTYOSIPHON, Grev.

Obs. The following species differs in some points from this gemus, being of a thicker substance and denser structure, and with the walls composed of a greater number of rows of cells, which are themselves very much smaller. The surface of the frond is, therefore, not in the least reticulated. Still the fructification is so identical with that of Dictyosiphon, that we are unwilling to separate it, especially since the habit is not dissimilar.

1. Dictiosiphon? fasciculatus, Hook. fil. et Harv.; canle filiformi subindiviso, ramis abbreviatis pluries ramosis quadrifariis raro oppositis sæpissime fasciculatis alternis vel secuudis omnibus ramulisque basi attenuatis acutis, sporis densissime per ramulos sparsis semi-immersis. (Tab. LXIX. Fig. 1.)

Hab. Lord Auckland's group; on rocks in the sea.
Rudix pusilla? Frondes circumscriptione lanceolatæ, crespitosæ, t-8 unc. longæ, fusco-olivaceee, membranacere, vix coriacex, cylindraceæ, v. subcompressx, primo filis articulatis laxe repletr, mox tubulose et care, e cellulis minutis coloratis rotundis $3-4$ serialibus interioribus majoribns formatæ. Cuulis indivisus rel basi in ramos elongatos simplices partitus, inferne setaceus, supra sensim latior, medio $\frac{1}{2}-1$ lin. latus, apicem versus attenuatus, per totan longitudinem ramis plurimis patentibus vestitus. Rami breves, 1-2 unc. longi, nunc brevissimi, utrinque attenuati, irregulariter inserti, uunc quadrifarii, nunc subdistichi, sxpissime fasciculati, alterni wel secundi, rarius oppositi ; ramulis conformibus setaceis, gracilibus, erectis, alternis, oppositis v. fasciculatis, simplicibus, basi attenuatis apice subulatis. Arillie acntre. Spore olivacce v . nigre, ovales, per totam frondem sparse, nec in soros aggregate, limbo tenui hyalino cinctæ, scmi-immerse, demum prominulx.

A single specimen of this plant, which secms to be common in Lord Auckland's group, was picked up ly Dr. Lyall in Berkeley Sound, Falkland Islands. It was more bushy than the Auckland 1sland specimen, with longer branches; the outline is ovate and not lanceolate; the main branches chiefly are crowded and fasciculate, the minor ones of the ramuli more frequently distichons, often opposite and rather patent. In fact, part of the plant exhibits the bushy aspect of Dictyosiplion and part resembles Striaria; the scattered frnit distinguishing it from the latter genus.

Plate LXIX. Fig. I.-1, a specimen of the natural size ; 2, branch; 3, section of ditto;-magnified.

8. CIIORDA, Stackh.

Frons tubulosa, filiformis, simplex, intus transversim septata, extus filis minutis clavatis horizontalibus omnino velata. Fructus : spore pyriformes filis periphericis immersæ.

1. Chorda lomentaria, Lyngb., Mydr. Dan. p. 74.t. 18. Grev. Alg. Brit. p. 48. Mook. Br. Fl. vol. ii. p. 276. Harv. Br. Alg. p. 35. Wyatt, Alg. Damm. no. 6. Scytosiphon Filum, var. , Ag. Sp. Alg. vol. i. p. 162. Ag. Syst. p. 257. C. rimosa, Mont.? Prod. Phyc. Antarct. p. 12. Foy. au Pole Sut, Bot. Crypt. p. 44.

Hab. Lord Auckland's group; on rocks in the sea.
Radix scutata. Frons (in exemplaribus Aucklandicis) pedalis, 2 lin. lata, basi temussima, longe setaceo-filiformis, sursum sensim latior, apicem versus subattenuata vel acuminata, remote septata, constricta, interdum sulscontinua et æqualis. Calor sordide badius v. fusco-olivaceus. Superficies tola filis clavatis minutissimis sporis immixtis velata.-Charte arcte adheret.

These specimens differ stightly from the European form of the species, in having the constrictions less obvious and at much wider intervals. In some individuals scarcely any constriction occurs, and then it is not easy at first sight to distinguish them from a common state of A sperococeus cohinatus. In others, again, they are evident, and microscopical examination proves that they do not belong to Asperococcus. At the Falkland Islands this plant was also found, and the specimens from that locality are identical with the common European appearance.

9. ADENOCYSTIS, Hook. fil. et Harv.

Radix scutata. Frons membranacea, saccata, intus cava, aqua repleta, foveis convexis opacis fila arachnoidea emittentibus conspersa, filis mimutis clavatis ommino velata. Fructus : spore pyriformes filis periphericis immersæ.

Obs. This genus differs from Asperococcus in having its fructification spread over the entire surfacc, as in Chorda, and not confined to distinct sori ; and from the latter in being destitute of septa, and in possessing innumerable pale depressions, composed of radiating filaments with very short coloured joints, emitting from their apices tults of colourless, long, jointed, byssoid fibres. These appear afterwards to fall away, leaving depressions and often puncturcs of the membrane in their place. The tufts of arachnoid fibres do not expand well after having been dried, though they may always be found in the damaged state, by carefully scraping away the surface of the frond.

1. Adenocystrs Lessoni, Hook. fil. et Harv. ; Asperococcus Lessoni, Bory, in Duperrey Toy. p. 199. t. 11. f. 2. Grev. Syn. p. xlii. Endl. Gen. Supp. vol. iii. p. 26. (Tab. LXIX. Fig. II.)

Hab. Lord Auckland's group; on rocks left by the tide, abundant.
Radix scutata, exigua. Frondes $1 \frac{1}{2}$ unc. longæ, $\frac{1}{2}$ latæ, cæspitosæ, e stipite sctaceo-filiformi 1 lin. longo orte, ellipticæ vel obovatæ, inflatæ, aqna semper repletæ, obtusissimæ, membranaceæ, vix reticulate, cellulis minutissimis constitute, glandulis superficiariis v. subimmersis convexis dense conspersæ. Glandulce hemisphærice, e filis minutis radiantibus brevissime articulatis atro-fuscis formatre, fibrillas penicillatas longe articulatas lyalinas arachnoideas apice gerentes, demum concavæ. Superficies frondis filis coloratis (endochromaticis) minutissime clavatis erectis in strato tenuissimo connexis induta. Spore obovate, nigro-fusce, limbo hyalino cincte, per totam frondem sparse, filis periphericis immersæ, sessiles. Color fusco-olivaceus, sordidus. Substantio mollis.-Chartæ adhæret.

Our plant strongly resembles the Fucus saccatus of Turner, (Dumontia saccata), especially specimens from Nontka Sound; a close microscopic examination being necessary to distinguish them. Possibly the plant, alluded to by Turner, in his description of F. saccatus, as having been sent to him from New Holland by Mr. Brown, and
which that author regarded as a species of A sperococcus, may be identical with the present, it being very abundant throughout the Antarctic Islands, cven so far as 64° south, where it inhabits the Iey Sea.

Plate LXIX. Fig.II.-1, a portion of the frond, in au old state, exhibiting a depression from which the filaments are given off; 2, 3, and 4 , spores which cover the whole surface of the frond; 5 , full formed spore :-all highly magnified.

10. ASPEROCOCCUS, Lamour.

1. Asperococces echinatus, Grev., Alg. Brit. p. 49. t. 9. A. rugosus, Lamour. Essai, p. 62. Encælium echinatum, Ag. Sp. Alg. vol. i. p. 145.

Hab. Lord Auckland's group; on rocks in the sea, very common.

11. CHORDARIA, Agardh.

1. Chordaria flagelliformis; Ag. Sp. Alg. vol. i. p. 166. Syst. p. 256. Lyngb. Mydr. Dan. t. 13. Hook. Br. Fl. vol. ii. p. 275. Grev. Alg. Brit. p. 45. t. 7. IIarv. Man. p. 45. IFyatt, Aly. Danm. no. 57. Fucus flagelliformis, Turner, Hist. Fuc. t. S5. Engl. Bot. t. 1222.

Hab. Campbell's Tsland. (Dr. Lyall.)
Apparently identical with the British plaut.

12. SPHACELARIA, Lyngb.

1. Sphacelarla funicularis, Mont.; fronde basi stuposa in ramis paucis crassis ramulis densissime vestitis apice flabellatim partitis divisa, ramis ultimis fasciculatis elongatis fastigiatis circumscriptione obovatis ramulis elongatis articulatis dichotome pinnatis obsessis. S. funicularis, Mont. Prodr. Phye., \&e., p. 13. Toy. au Pole Sud, Bot. Crypt. p. 38. t. 14. f. 1.

Hab. Lord Auckland's group; on rocks left by the tide, very abuudant.
Radix magna, filis brumeis ramosis intricatis vel stupa obtecta. Caulis $3-4$ me. longus, I lin. diam. subdichotome in ramos paucos divisus, totus densissime ramulis quadrifariis abbreviatis pinulatis vestitus. Rami apice Habellatim fastigiati; minores graciles, erecti, simplices, ramulis dimorphis quadrifariis obsiti, aliis abbreriatis subappressis simplicibus subulatis, alteris elongatis dichotome pimnatis, pinnulis alterne furcatis rel sulb-bipinnatis, piunis pinnulisque elongatis remotis. Apices nune acuti, nunc sphacelati, massam sporarum includentes. Color olivaceus. Substantia rigida, dura.

Nearly allied to S. scoparia, Lyngl.

12. RHODOMELA, Ag.

1. Rhodomela glomerulata, Mont. ; " fronde tereti filiformi siccitate longitrorsum striata ramosissima, ramis circumscriptione corymbosis iterum ramosis, ramentis lateralibus simplicibus aut bifidis corniformibus fasciculum sessilem stichidiorum oblongorum vel ovato-lanceolatorum sinu foventibus." Mont. Prodr. Phye. Antarct. p. 4. Toy. au Pole Sud, Bot. Crypt. p. 141.

Hab. Lord Auckland's group. (Admiral D' Urrille.)
The R. Gaimardi, Gaud.? of Montagne is certainly our Polysiphonia botryocarpa.
13. POLYZONLA, Sukr.

1. Polizonta cuneifolia, Mont.; surculo articulato polysiphonio repente, caulibus erectis filiformibus
articulatis alternatim ramosissimis, ramis ramulisque patentibus simplicibus elongatis, foliis distichis breve petiolatis trapeziformibus basi cuneatis apice abrupte truncatis, margine inferiore integerrimo superiore in-ciso-dentato v . lobato, sticlidiiis spicatis supra-axillaribus lanceolatis dentatis, ceramidiis axillaribus sessilibus solitariis ovatis v. suburceolatis. P. cuneifolia, Mont. Prodr. Phyc. Autarct. p. 4. Foy. au Pole Sud, Bot. Crypt. p. 143. (Tab. LXXVI.)

Hab. Lord Auckland's group and Campbell's Island; abundant on the stems of the larger Alge.
Frondes primordiales repentes, canlibus algarum radicibus disciformibus seriatim affixx, multistriatæ, foliis distichis ornatæ. Caules e surenlis repentibus orti, erecti, setacei, $4-5$ unc. longi, distiche foliosi, articulati, indivisi; ramis plurimis, patentibus, elongatis, simplicibus, distiche alternis vel secundis ; ramulis conformibus, alternis v . secundis. Folia patentia, disticha, 1. lin. longa, breve petiolata, sæpissime trapezoidea, rarius subrotundata, apice truncata, basi late cuneata v. deltoidea; margine inferiore stricto, integerrimo, superiore lacero-dentato, v. 4-5. lobato, lobis serratis. Ceramidia ovato-urceolata, in sinu folii profunde fissi sessilia, sporarum fasciculum pyriforme foveutia. Stichidia in spicis supra-axillaribus foliosis (r. bracteatis) ordinata, sessilia, lanceolata, dentata, sphærosporarum seriem solitariam iucludentia. Spherospore magne, atro-rubescentes. Color amæne roseus, siccitate vix et ne vix nigricaus. Substantia membranacea.-Chartæ laxe adhæret.

Most of the numerous specimens of this truly beautiful plant are covered with fructification, chiefly stichidia, the ceramidia being, as is the case with many of the Rhodomelee, much more rarely produced.

Plate LXXVI. Fig. 1, a leaf; 2, a branch bearing stichidia; 3, a stichidium ; 4, a branch with ccramidia; 5, a ceranidium; 6, spores from the same:-magnifed.

14. POLYSIPHONIA, Grev.

1. Polysiphonis botryocarpa, Hook. fil. et Harv.; caule inarticulato valido elongato flexuoso, ramis alterne ramosissimis, ramulis erecto-patentibus alternis secundis sensim attenuatis ultimis subulatis articulatis, articulis multistriatis diametro æquantibus, capsulis minutissimis ovatis in glomerulis parvis pedicellatis densissime congestis, stichidiis seriatim affixis lauceolatis. Rhodom. Gaimardi, Gaud.? Montagne, Voy. au Pole Sud, Bot. Crypt. p. 140. (Tab. LXX.)

Var. a, crassior ; caule alternatim et angulatim flexuoso, ramulis crebrioribus.
Var. β, tenvior; caule curvato, ramulis elongatis minus divisis.
Hab. Lord Auckland's group; both varieties abundant on the roots of large Alge, \&cc.
Radix scutella parva, fibris suppeditata. Caulis $8-14$ unc. longus, basi $\frac{1}{2}$ lin. diam. sursum attenuatus, cartilagineus, opacus, venis anastomosantibus reticulatus, alternatim flexuosus, nunc geniculatus, nunc curvatus v . alterne arcuatus, subsimplex vel c basi parce divisus. Rami alterni, cauli conformes, inter se circumscriptione late ovati, plus minusve decompositi, alterne v . secunde partiti, non vere dichotomi. Ramuli ultimi alterni v. dichotomi, subulati, erecti v. erecto-patentes, simplices, articulati, articulis $4-5$-striatis, diametro æquantibus. Siphones in ramis majoribus septem principales tubulum centralem augustum radiatim cingentes, cellulis irregularibus peripherianı versus sensim minoribus circumdati. Color atro-rubescens. Ceramidia minutissima, orata, in glonerulis perpusillis subterminalibus lateralibus \mathbf{v}. axillaribus aggregata, in quoque glomerulo numerosissima, pedicellata, sporarum pyriformium fasciculum includentia. Stichidia ramulis ultimis seriatin affixa, remotiuscula, sphrerosporas majusculas augulatas pluriscriatas includentia:-Chartæ laxe adhæret.

This species is of so large a size, such considerable diameter of filament, is so opaque and withal exhibits such slight external appearance of articulation, that it seems at first sight, to possess considerable affinity with Rhodomela, and further bears a strong resemblauce to R. subfusca, which it exceeds in size, while agreeing with it in ramification. A careful examination, however, induces us to place it in Polysiphonia, and in the section to which P. fruticulosa
belongs. The internal stricture of the stem is similar to that of P.fruticulosa, but there are fewer radiating fibres, and is quite unlike that of Rhod. subfusca. There are two varieties, one more robust, flexuous and densely branched than the other; but they do not appear specifically distinct. Both bear capsular fruit, of a peculiarly clustered character, different from that of any other Polysiphonia, and we regard it as the principal distinction on which the species rests. The capsules are farther remarkable for their minutcuess in proportion to the plant producing them. Their number, however, compensates for size, thirty or forty occupying a space not greater than that of a capsule of the dimensions usual in this genus.

Plate LXX. Fig. 1, portion of a stem of the natural size; 2, branch and ceramidia; 3, ceramidium ; 4, longitudiual section of the same; 5 , spores; 6 , branch and stichidia; 7 , stichidium; 8 , sphærospores:-magnified.
2. Polysiphonia Lyallii, Hook. fil. et Harv.; caule cartilagineo setaceo inarticulato alterne vel rage ramoso, ramis elongatis simplicibus inarticulatis ramulis brevibus articulatis quadrifariis multifidis densissime vestitis, ramulorum articulis diametro æqualibus $3-5$ venosis. (Tab. LXXIV. Fig. I.)

Hab. Lord Auckland's group. (Dr. Iyall.)
Cauluis crectus, $4-5$ unc. longus, validus, simplex v . basi divisus; ramis paucis, clongatis, alternis v . secundis, simplicibus; caulis et rami inarticulati, densissime e basi ad apicem ramulis brevibus 1 lin. longis obsiti. Ramuli articulati, quadrifarii, patentissimi irregulariter multifidi, nunc fere dichotomi, alterne \mathbf{v}. secunde partiti; ultimi subulati, acuti, patentes v. recurvi. Articuli 3-5̆-striati, diametro subæquales v. vix longiores. Color intense fusco-ruber. Fructus . . . ? Siphones in ramis majoribus quatuor, magni, tululum centralem angustum cruciatim cingentes, cellulis irregularibus peripheriam versus sensim minoribus circumdati.

We have much pleasure in naming this very distinctly marked and beautiful species after its discoverer, Dr. Lyall.
Plate LXXIV. Fig.I.-1, plant of the natural size ; 2, branch ; 3, portion of stem ; 4, ditto of branch:-magnified.
3. Polysipionia dumosa, Hook. fil. et Harv.; caule erecto rigido flabellatim ramoso inarticulato, ramis patentibus alternis ∇. subdichotomis elongatis, ramulis distantibus æqualibus brevibus patentissimis subdistichis laxe pinnatis subulatis, articulis ramulorum brevissimis. (Tab. LXXV. Fig. I.)

Hab. Campbell's Island; parasitic on the stems of large Alga.
Canles cæspitosi, 1-3 unc. longi, erecti, cylindracei, hasi simplices, sursum flabellatim ramosi v. irregulariter dichotome v . alterne divisi. Rami simplices v . divisi, per totam longitudinem ramulis 1-2 lin. longis, horizontalipatentibus subdistichis laxe pinnatis obsiti. Pinnula patentes, subulatæ, acutæ, strictæ, curvatæ v. tortæ. Articuli in ramulis tantum manifesti, brevissimi, $3-5$-striati. Siphones ramulini quatuor, magni, tubulum centralem angustum cruciatim cingeutes, cellulis irregularibus peripheriam versus sensim minoribus circumdati. Color badius, apices versus fusco-ruber. Substantia rigida.-Chartæ vix adhæret.

Allied to P. Lyallii, but much smaller in all its parts; of a duller colour and more rigid substance, differently branched and with less dense ramuli, which are uearly, though not strictly, distichous. In aspect, it somewhat resembles P. ceratoclada, though quite uulike that species in internal structure.

Plate LXXV. Fig. I.-1, portion of a branch; 2, stem and branch; 3, section of stem :—magnified.
4. Polysiphonia punicea, Mont. ; punicea, caule vage ramoso articulato setaceo flexuoso, ramis alternis v. secundis subremotis, ramulis alternis remotiusculis flabellato-dichotomis abbreviatis patentissimis ultimis subulatis recurvis, articulis ramorum diametro 3-4-plo longioribus 3-5-venosis ramulorum subquadratis biveniis pellucidis apicibus acutis, "capsulis subsessilibus ovato-acuminatis" (Mont.), stichidiis lanccolatis sphærosporas pluriseriatas includentibus, ceramidiis sessilibus solitariis urceolatis, ore contracto porrecto. P. punicea, Mont. Prodr. Pluye. Autarct. p. 6. Foy. au Pole Sud, Bot. Crypt. p. 128. t. 5. f. 3.

Нas. Lord Auckland's group; on the roots and stems of sea-weeds.
Caulis 4-8 unc. longus, setam porcinam diam. æquans, sursum attenuatus, subangulatim flexuosus, vage ramosus, nunc subsimplex, ramis lateralibus instructus, nunc e parte inferiore subdichotome divisus, articulatus, Rami inferiores longiores, superiores scusin abbreriati, simplices v. ramosi, patentes v. divaricati; ramulis abbreviatis, flabellatis, dichotomis, patentissimis, laxe quadrifariam insertis, ultimis subulatis divaricatis v. recurvis. Articuli caulis et ramorun majorum diam. 3-4-plo longiores, 4-5-striati, medio pellucide coccinei v. punicei, ad geniculos cellulis minutis superficialibus donati hinc opaci; ramulorum diam. vix lougiores v. æquales, 2-3-striati. Siphones iu ramis majoribus novem, tubulum centralem amplum radiatim cingentes, collulis externis nullis; caules hinc sulcati. Ceramidia non visa. Sticlidia lanceolata, sphærosporas magnas quadripartitas pluriseriatas iucludentia. Substantia tenera.-Chartæ adhæret.

Slightly rariable in some minor characters, yet a distinctly marked and easily recognized species. Main brauches irregular, being imperfectly dichotomous or having a simple stem furnished with lateral branches. The most striking specific character consists in the diehotomously multifid fan-like ramuli, which are set rather laxly along the branches. We have not seen ceramidia; seeveral of our specimens produce stichidia, of the slape described by Moutagne; but the spherospores are in a double and occasionally a triple row, as in Dasya. In one individual, the ceramidia are replaced (by disease) with a cluster of sphærical bodies, forming a mass which resembles the favella of a Catlithamnion, and, from which, fascicles of ramuli are given off in a proliferous manner. These call to mind the capsules of P. botryocarpa, aud though their structure be very irregular, they suggest a doubt whether the remarkable fructifcation of the latter plant is not abnormal.
5. Polysiphonta rudis, Hook. fil. et Harv. ; pusilla, filis cæspitosis rigidis tenacibus gracilibus subfastigiatis ramosis, ramis alternis apicem versus crebrioribus inferioribus filiformibus nudis elongatis superioribus basi nudis apice pinnatis, pinnulis subulatis elongatis erectis, articulis ramorum diametro $2-3$-plo ramulorum sesqui-longioribus $3-4$-striatis. (Tab. LXXIV. Fig. II.)
$H_{A B}$. Lord Auckland's group ; parasitic on larger Algae.
Caules dense cæspitosi, e filis intertextis orti, $1-1 \frac{1}{2}$ unc. longi, siccitate rigidi, madore tenaces, atro-fusci, rix rubesceutes, indivisi. Rami inferiores erecti, clongati, simplices, filiformes, nudi; superiores sensim breviores, apices versus breriores, inferne nudi, superne pinnati, pinnis subulatis erectis inferioribus longioribus, hinc ramulis corymbosis. Circumscriptio ramorum obovata. Articuli per totam plantam manifesti, ramorum diametro $2-3$-plo longioribus pauci-striatis, ramulorum sesqui-longioribus.

Plate LXXIV. Fig. II.-I, a specimen of the natural size ; 2, lower portion of branch and stichidia; 3, upper ditto; 4, a sticlidium ; 5, spherospores:-magnifed.
6. Polysiphonis ceratoclada, Mout.; filo primario repente, caulibus erectis compressis indivisis demum ramos alternos emittentibus, ramis ramulisque brevibus subulatis patentissimis v . recurvis restitis, ceramidiis sessilibus ovatis suburceolatisve, articulis brevissimis. P. ceratoclada, Mont. Prodr. Phyc. Ant. p. 6. Toy. au Pole Sud, Bot. Crypt. p. 130. t.5. f. 2. (Tab. LXXVI. Fig. II.)

Var. β, secundata; ramis incurvis, ramulis plerumque secundis.
Hab. Lord Auckland's group; both varieties generally parasitical on Laurencia pinnatifda.
Tota ramulis subulatis obsita. Caules e filis repentibus Alyas alias infestantibus, erecti, $1-4$ unc. alti, compressi, in excmplaribus minoribus simplices, in majoribus ramis alternis cauli similibus donati. Ceranidia solitaria, ovata, lateralia, sessilia. Stichidia subulata, attenuata, sphærosporas uniseriatas foventia. Substantia rigidula. Cotor fusco-ruber.-Chartæ laxe adhæret.

The habit of this plant is precisely that of a Potyzonia; Montagne's specimens are in a young state, in which
simple stems, destitute of branches, and merely clothed with patent subulate ramuli, rise from creeping filaments; such individuals are from $\frac{1}{2}-1$ inch high. But, when larger, lateral branches begin to be developed, in every respect similar to the main stem. In one specimen, $3 \frac{1}{2}$ inches long, which alone is in fructification, the branches are $1-1 \frac{1}{2}$ inch in length. The variety β is a remarkable one, and possibly a distinct species, it is smaller and slenderer, with the branches much curved and the ramuli very generally secund.

Plate LXXVI. Fig. II.-1, portion of a branch; 2, the same with ceramidia; 3, section of stem; 4, ceramidium; 5, spores: magnified.
7. Polysiphonia decipiens, Mont.; " cæspitosa, fragilissima, filis cylindraceis subcontinuis fusco-nigris irregulariter virgato-ramosissimis, ramulis erectis, spinis subulatis spiraliter alternis strictis, articulis diametro multoties brevioribus ex siccatione collapsis 3-5-venosis ; fructu . . . ? " Mont. Prodr. Phye. Antarct. p. 5. Foy. au Pole Sud, Bot. Crypt. p. 131.

Hab. Lord Auckland's group. (Admiral D'Urville.)
8. Polysiphonia cladostephus, Mont.; "filo primario articulato polysiphonio vage ramosissimo fuscopurpureo nigrescente, ramis conformibus e geniculis ramellos verticillatos dichotomos monosiphonios dense imbricatos emittentibus, fructu . . . ? " Mont. in Ann. des Sc. Nat. (Nov. 1843), p. 39. Foy. au Pole Sud, Bot. Crypt. p. 132. t. 13. f. 4.

Hab. Lord Aucklaud's group. (Admiral D' Urville.)
Apparently nearly related to P.byssoides, Grev., and still more closely to P. byssoclados, Harv. (Griffithsia australis, Ag.)

15. JANIA, Lamour.

1. Javia Hombronii, Mont., Foy. au Pole Sud, Bot. Crypt. p. 146.

Hab. Lord Auckland's group; on rocks in the sea, abundant.
What we take for Montagne's plant much resembles the Corallina officinalis, L.; we are not, however, well versed in these vegetables, which have only recently been skilfully investigated by Decaisne.

16. LAURENCIA, Lamour.

1. Laurencia pinnatifida, Lamour.; var. γ, angusta. Fucus Turn. Hist. Fuc. vol. i. p. 40.

Hab. Lord Auckland's group; on rocks in the sea.

17. DELESSERIA, Lamour.

1. Delesserla crassinervia, Mont.; caule alato ramoso, foliis lineari-lanceolatis e costa valida proliferis, capsulis in costa sessilibus, soris sphærosporarum linearibus costæ parallelis. D. crassinervia, Mont. Prodr. Phye. Ant. p. 1.

Hab. Lord Auckland's group and Campbell's Island.

We have some doubts as to the validity of this species, which differs from D. Hypogtossum only in the comparative breadth of its costa; a somewhat inconstant character, being, at times, excessively broad, covering nearly the whole lamina, at others, nearly, if not quite, as narrow as in D. Hypoglossum. These intermediate forms do not exist among our Campbell's Island individuals, bnt in those from the Falklands.
2. Delesseria dichotoma, Hook. fil. et Harv.; costa crassa dichotoma frondem cuneatam obtusam v. emarginatam demum bifido-laciniatam percurrente infra apicenn evanida, frondibus e costa denudata orien-
tibus oblongis cuneatis rariusve elliptico-lanceolatis costa furcata, soris rotundatis maculatis, coccidiis costalibus r. sparsis. (Tab. LXXI. Fig. II.)

Hab. Lord Auckland's group and Campbell's Island. (Dr. Lyall.)
Frons jumior, folium obovatum, obtusum r. enarginatum, demum bilobum; costa furcata, demum repetitodichotoma, deorsum crassa, sursum attenuata, sub apicem eranida. Frondes adulter caulis furcatus v. dichotomus, $2-3$ unc. longus, setæ porcinæ crassitie, nudus v. interruptius alatus, superne in frondes cureatas v. dichotomas abeuns; inferne denudatus v . frondibus novis primordiali couformilons sed angustioribus minusque cuneatis ornatus, hæ $1 \frac{1}{2}$ unc. longæ, costis supra medium furcatis fructiferis. Cocidia in lamiuan rarius in eostam sita, spherica, sparsa, granulis cumeatis repleta. Sori sphecrosporarum rotundati, supra laminam dispersi. Sulstentia membranaeea. Color purpureo-rosens \mathbf{v}. sanguineus.-Charte adhreret.

When fully gromn, this species resembles a very broad and luxuriant state of D. alata, found in the north of Ireland, but differs essentially from it in its mode of growth. Judging by young specimcns, it appears to origiuate in a broadly ovate or cuneate leaf, traversed by a forked, or, as the frond advanees, repeatedly dichotomous midrib, whieh, though gradually evanescent, is obvious for nearly the whole length of the lamiua, and thus differs from the imperfectly branching veins of the Nitophylla. In old and battered specimeus, however, this character can only be detected in the young parts; in them, the costa of the first formed leaf becomes denuded, considerably thickencd and converted into a dichotomons stem, irregularly winged in portions, and only preserving, on the upper part, the remains of its former character; while, all along its denuded portions, spring mumerous new fronds, narrower than that which forms the principal one, and less cumeate, hut in other respects similar.

Plate LXXI. Fig. IL.-1, 2, and 3, specimens in different states, of the natural size; 4 and 5 , coccidia; 6 and 7, sphærospores :-magnified.

18. NITOPHYLLUM, Girer.

1. Nitophylum crispatum, Hook, fil. et Harv; fronde basi nervosa cuncata latissime expansa v. oblouga dichotoma v. laciniata margine crispata, nervis ramosis, laciniis cuneatis apicibus axillisque obtusis, soris minutis rotundatis coccidiisque sparsis. (Tab. LXXI. Fig. I.)

Hab. Campbell's Island; dredged up in three fathoms water.
Two specimens, one with capsular, the other with granular fruit, we refer to this species. The capsuliferous specimen bears a very great resemblance to the north of Ireland variety of N. laceratum; the gramuliferous, again, has more the oblong form of N. punctatum. Both agree in being traversed, especially in the lower part, with obscure dichotomous nerves, in having the margin erisped, and exhibiting a tendency to dichotonous division. The seattered graunlar fructification essentially distinguishes it from N. laciniatum, and the form and size of the spots, from N. punctatum.

Plate LXNI. Fig. I. $-1,2$, and 3 , specimens of the natural size ; 4, coccidia ; 5, sphærospores:-magnifed.
2. Nitophyllum punctatum? Grev. Alg. Brit. p. 79. t. 12. Agardh, Species Alg. vol. i. p. 156. Aglaophyllum, Montagne in Plant Cell. Canar. p. 150.

Hab. Campbell's Island; with the former.
Decayed fragments, which appear to belong to this species, are all that were procured.

19. PLOCAMIUM, Lyngb.

Obs. The gencra Thamnophora and Plocamium appear to differ in no respect from each other, and so perfectly
do they agree in habit, that plants regarded by the elder Agardh as varieties of $P l$. coccineum (β and γ) are considered by his son as distinct species of Thamnophora*.

1. Plocamum coccineum, Lyngb.; Mydr. Dan. p. 39. t. 9. Grer. Alg. Brit. p. 12.t. 9s. Mook. Brit. F7. vol. ii. p. 293. P. vulgare, Lamour. Pl. coccineum, fenestratum, Lyngbyanum, et Binderianum, Kïtz. Phyc. Gen. p. 449 and 450.

Hab. Lord Auckland's group and Campbell's Island ; abundant.
This is the only species of the genus found in the northern hemisphere and is apparently common, cspecially in all temperate regions of the globe.

20. RHODOMENTA, Grev.

1. Rhodomenia Mombroniana, Mont.; "fronde cartilagineo-membranacea plana e basi substipitata dichotoma pinnatifissa, pinnis ob axillas obtusas patenti-erectis obtusis, margine fimbriato seu ramenta dentata conceptaculifera emittente, conceptaculis hemisphericis papillula instructis." Mont. Prodr. Phye. Antaret. p. 1. Toy. au Pole Sud, Bot. Crypt. p.157. t. 1. f. 2. (Tab. LXXII. Fig. II.)

Hab. Lord Auckland's group; on the stems of large Algce.
Our specimens of this plant are young, and as they differ from the more advanced state in form and in colour, we have added a figure; the colour in this state is of a beautiful red purple, sometimes inclining to violet. When fully developed, the species assumes the appearance represented by Dr_{1}. Montagne in the plate quoted above. We are indebted for maguificent specimens, collected at Akaroa, to MI. Raoul.

Plate LXXII. Fig. II.-1. a yomg specimen, of the nutural size; 2, 3 and 4 , marginal leaflets bearing the fructification; 5, section of the same :-magnified.
2. Rhodonexia ornatu, Mont.; "fronde carnoso-membranacea oblongo-lanceolata latissima plana vivide purpurea utrinque margine prolifera, foliis s. pinmulis obovatis substipitatis tandem cuneatis maximis palmatifissis, conceptaculis per totam frondem sparsis." Mont. Prodr. Phyc. Anturct. p. 1. Toy. an Pole Sud, Bot. Crypt. p. 160. t. 11.

Hab. Lord Auckland's group. (Admiral D'Urville.)
The plant, from which the magnificent plate given by Montague was executed, is marked by the lamented D'Urville as a native of Lord Auckland's Island, where, we regret to say, it was not collected by the Antarctic Expedition.
3. Rhodomesia dichotoma, Hook. fil. et Harv.; fronde membranacea rosea basi cuneata latissima dichotoma, axillis rotundatis, laciniis patentibus linearibus v. cuneatis obtusis demum emarginatis et bifidis. (Tab. LXXII. Fig. I.

Hab. Campbell's Island; on rocks in the sea.

[^18]Frons flabellatim expansa, $4-7$ unc. lata, basi cuncata, pluries dichotoma, laciniis linearibus cureatisre, $\frac{1}{4}-\frac{1}{2}$ unc. latis et ultra, patentilus, apicibus obtusis cmarginatis bifidisve. Substantia tenuis, membranacea, e celludis superficiem versus minimis coloratis formata, interioribus magnis hyalinis.-Chartæ non adheret.

Our specimens of this plant are unfortmately barren, it resembles in outline the Phyllophora obtusa, but is of a very different consistence. Its nearest ally is the R. Palmetta, to gigantic specimens of which it may be compared.

Plate LXXII. Fig. I.-1. a specimen of the nalural size; 2, lacinia of a specimen with narrower fronds, also of the natural size.

Dr. Montagne adds R. corallina, Grev., R. variegata (Halymenia, Bory), and R. bifida, Grev., as natives of Lord Anckland's group, but the specinens are imperfect and they may belong to some of the former.

21. HYPNEA, Lamour.

1. Hypaea multicornis, Mont.; "fronde filiformi tereti compressa inordiuate corymboso-ramosissima, ramis ultimis subdistichis alternis aut subsecundis furcatis, ramulis patenti-recurvis hamulosis, pluribus apice conformi incrassatis sporophoris." Mont. Toy. au Pole Sul, Bot. Crypt. p. 153. t. 9. f. 1. Rhodomela, Mont. Prodr. Pryc. Antarct. p. 4.

Hab. Lord Auckland's group. (Admiral D' Lrville.)

22. GRATELOUPIA, Agardh.

1. Grateloupla? Aucklandica, Mont.; "fronde cartilaginea filiformi tereti vage ramosissima, ramis ramentisque confertis fasciculatisquc subcompressis basi attenuatis sxpius ex insigni frondis tuberculo singulis pluribusvc enatis, fructu.... ?" Mont. Prodr. Phyc. Antarct. p. 7. Toy. au Pole Sud, Bot. Cigpt. p. 15. t. 10. f. 1.

Hib. Lord Auckland's group. (Almiral D' Urrille.)

23. PHILLOPHORA, Grev.

1. Pirllophora obfusa, Grev.; fronde corneo-membranacea stipitata basi longe cuneata enervi flabelli formi subdichotome laciniata, laciniis latissimis valde obtusis axillis acutis, coccidiis stipitatis sporophyllisque e froudis pagina ortis aggregatis. P. obtusa, Grev. in Trem. Trans.

Hab. Lord Auckland's group; on shells, \&c., in the sea.
Radix scutata, parva, parce fibrosa. Frondes aggregate, 6-14 unc. longæ, basi cuneate, in stipitem filiformem attenuate, $1-1 \frac{1}{2}$ unc. longæ, alterne dichotome fissæ v. palmatæ, simplices v . furcatæ, valdc obtusæ, axillis angustis acntis. Coccidia pedicellata, in soros clongatos laciniarum paginam occupantes aggrcgata, globosa, pedicello filiformi v. foliaceo. Sporophylla aggregata, rotundata, sphærosporas minutas forentia. Sulstantia siccitate rigide membranacea r . cornea, subtranslucens. Color amæne rosens.

The Auckland's group specimens are small and barren, but agree entirely with those of the Cape of Good Hope, from which in part the preceding description has bcen prepared.

24. GIGARTINA, Lamour.

1. Gigartina divaricata, Hook. fil. et Harv.; caule cartilagineo-carnoso compresso lineari subdichotome diviso, ramis distichis pinnatis subpinnatisve, ramulis patentissimis linearibus subattennatis.

Hab. Campbell's Island; thrown up on the beach.

Caulis 4-6 unc. longus, subdichotome divisus, 1-2 lin. latus, compressus, strictus, ramis sulbquadrifariis distichisve dense obsitus. Rami divaricati, stricti, compressi, rugulosi, nudi, parce pinnati v. subbipinnati, apicibus longe nudis. Pinmuld horizontales, breves, simplices v. furcatæ, lineares, acutæ, uunc abbreviate et spiniformes. Color lividus v. nigro-rubescens, ad apices ramulorum pallidior purpurascens. Substantia cartilagineo-carnosa, firma, clastica, siccitate valde contracta.-Chartæ non adhæret.

Our specimens are imperfect and barren, but snfficient to prove them to be a very distinct species of Gigartina The whole plant is very clastic, shrinking much in drying; intcrnally it is composed of a dense body of anastomosing filaments, radiating towards the circumference through a firm gelatine.
G. pistillata, Lam., is also enumcrated in Montagne's account of Lord Auckland's Island.

25. NOTHOGENIA, Mont.

1. Nothogenia variolosa, Mont. in Ann.Sc. Nat. Series 2. vol. xx. p. 302.t. 10. f. 3. Chondrus variolosus, Mont. Prodr. Phyc. Antarct. p. 6. Toy. au Pole Sul, Bot. Crypt. p. 110.

Hab. Lord Auckland's group; on rocks in the sea, abundant.
Frondes caspitosæ, 4-5-nnciales, angustc lineares, $1-1 \frac{1}{2}$ lin. late, compresse, planæ v. subcanaliculatæ, basi cuncate, superne pluries dichotomre, laciniis basi angustatis, ultimis clongatis obtusis v. emarginatis $\frac{1}{2}-1$ unc. longis. Conceptacuta per totam laciniarum supremarum, immersa, convexa, verrucæformia, poro pertusa, utraque frondis pagina sparsa. Substantia cartilaginea. Color fusco-ruber, purpurascens.-Chartæ laxe adhæret.

26. CHONDRUS, Stack.

1. Chondrus tuberculosus, Hook. fil. et Harv.; fronde cartilaginea basi cnneata late lineari furcata r. ter quaterve dichotoma plana v. canaliculata, laciniis patentibus obtusis, axillis rotundatis, verrucis sphæroideis pagina frondis superiore extantibus medio depressis demum pertusis massam densam sporarum rosearum includentibus.

Hab. Lord Auckland's group ; on rocks in the sca.
Frons 2-uncialis, basi simplex, superne plus minusve furcata, margine simplici pinnulisve ornata. Lacinice planæ v. pagina supcriore canaliculata, patentes v. divaricatæ, sursum latiores, obtusæ. Coccidia v. verruca numerosissima, magnitudine seminis Brassice, globosa, latere coneavo frondis sita, extantia, rarius pagina frondis immersa, basi constricta, apice depressa v. umbilicata, siccitate apotheciam Lichenis referentia, demum pertusa. Sporee minute. Substantia crassa, carnoso-cartilaginea, siccitate valde contracta. Color lividus.-Chartæ laxe adhæret.

Apparently a distinct species. Smaller than Noth. variolosa, but broader, less frequently dichotomous and with very differeut fructification. The coceidia? are situated on one side of the frond, prominent, constricted at the base and contain a large dense spherical mass of sporules, similar to those of the differently shaped warts of Chondrus crispus. The shape of the fruit is that of Iridea Radula or stiriata, and when dried under pressure it resembles the apothecia of a Collema.

27. IRIDEA, Bory.

1. Iridea Radula, Bory, in Duparrcy Foy. Bot. Crypt. p. 107. Grcv. Alg. Brit. p. 61. Sphærococcus Radula, Agardh, Sp. Alg. vol. i. 26s. Fucus Radula, Ilb. Banks, Esper, t. 113. Fucus bracteatus, Cmel., Turn. t. 25. Mastocarpus Radula, et Chondrodictyon Capense, Kütz. Phyc. Gen. p. 396 and 395.

Hab. Lord Auckland's group and Campbell's Island; very abundant on rocks in the sea.
Radix scutata, fibris comitata. Caulis 1-2 unc. longus, basi cylindraceus, crassitie penne corvinx, mox compressus, superne dilatatus, divisus r. ramosus. Frondes basi rotundatæ, cuneatæ v. attenuatr, ellipticæ lanceolatæve,

6-20 unc. lougæ, rarins bi-tripedales, crassæ, simplices v. fuccatæ v . ad basin bipartitæ, nune margine frondes accessorias emittentes, interdum poris perphuimis pertusæ. Superficies frondis lævis, lucida, adulta papillosa; papillis creberrimis, tandem totam frondem utrinque vestieutibus, apice froctiferis, favellidia immersa poro pertusa gerentibus. Spore minutæ, roseæ, deusissime aggregate. Spherospore frondibus papillarum destitutis immersé, substrato corticali site, in globulis minutis punctiformibus aggregatæ, totam frondem pustulautes. Substantia crassa, carnosa. Color lividus, mbescens purpurascensve, raro atro-sanguinens.

There is searcely a maritime rock on the Antarctic consts, that does not abound with this most protean speeies in all stages of growth, and bearimg fronds with every variety of outline. It is much eaten by marine aminals, and from this or other causes, amongst which may be reckoned the fall of the fructiferous papille, the plant is frequently found more or less perforated with round holes, sometimes so regularly as to resemble coarse lace: this state has been described by Kützing, under the uame of Choudrodictyon Capense, and by Decaisne as Iridea clathrata (Amm. Sc. Nat. Ser. 11I. vol. ii. p. 236). More puzzling is the form of the secondary fructification or sphærospores, which is so like a primary fruit, that had not both Mr. Harrey and myself seen this plant growing on its native rocks, we should have supposed the individuals producing them to belong to a different species. The secondary fruit of I. stiriata is of the same nature.

The I. micons, Bory, rolans, Grev., and laminarioides, Bory, emumerated by Montagne as natives of Lord Auckland's group, are probably states of this.

2s. HALYMENIA, Agardh.

1. Halrmexia latissima, Hook. fil. et Harv.; fronde plana tenui gelatinoso-membranacea latissime ovatolanceolata simplici bifida v. margine laciniato-pimatifida, laciniis ovato-lanceolatis acutis. (Tab, LXXIII.)

Var. β, bificla; fronde lauceolata basi attenuata bifida v. bifurcata, laciniis lanceolatis erectis.
Hab. Lord Auckland's group and Campbell's Island; both varieties abundant on rocks in the sea.
Frondes $2-14$ unc. longæ, $4-6$ latæ, temes, basi cuneatæ, late lanccolate v. ovato-oblongæ, acutæ, simplices v. fureate, margine plano simplici integerrimo v. lacinïs phurimis subpimatifido. Substantia gelatinosa. Favellidia numerosissima, per totam frondem sparsa, cellulis medullaribus immersa. Color anene roseus.

We offer this as a new species with some doubt, the rarieties of $I I$. ligulata approaching it. The fronds are so broad and thin, that the favellidia form convexities on its surface, whieh are more or less obliterated when moist.

Plate LXXLli. Fig. 1, portion of the surface of the frond; 2, section of the same; 3, spores:-all magniffed.

29. DUMONTLA, Lamour.

1. Dumoxtri filiformis, Grer., Alg. Brit. p. 165. t. 17. Halymenia, Agardh Spec. Alg. vol. i. p. 214. Hab. Campbell's Island. (Dr. Lyall.)
Identical with the Earopean plant. Found also at the Cape of Good Hope and in other widely separated localities.
2. Dumostin comutu, Hook. fil. et Harv. ; fronde tubulosa hic illic inflata divisa, parte inferiore nudiuscula superiore ramis confertis fasciculatisve quadrifariis vestita, ramis furcatis patentibus flexuosis alternatim ramulosis, ramulis recurvis utrinçue atteuuatis apicibus acutis.

Hab. Campbell's Island. (Dr, Lyall.)
Frondes cæspitosæ, 2-3 une. longæ, tubulosæ, irregulariter inflatæ, 2 lin. latæ, vage divisæ; ramis intricatis, patentilus, flexuosis, furcatis; ramulis fusiformibus, patentibus v. recmris. Color fuscatus, badius v. rubescens.

Our specimens of this phat are barren; we refer it to Dumontia from the tubular inflated frond, strueture, and habit.

30. BALLIA, Hart.

1. Ballia Brunonis, Harv., in Hook. Journ. of Bot. vol. ii. p. 191. Sphacelaria callitricha, Agardh Ic. Alg. Europ. t. 6. Ballia callitricha, Mont. Foy. au Pole Sud, Bot. Crypt. p. 94.

Var. β, Hombroniana. B. Hombroniana, Mont. Prodr. Phyc. Antarct. p. 9. Toy. au Pole Sud, Bot. Crypt. p. 95. t. 12. f. 1.

Caulis in exemplaribus Aucklandicis 2 une. altus, seta poreina duplo erassior, hirtus, rage ramosus, di-trichotomus; ramis primariis apiee flabellatim ramulosis, eircumseriptione rotundatis, fastigiatis, 3-5 lobatis. Ramuli bi-tripinnati, pimulis subremotis acutis. Articuli pimarum diametro duplo vix triplo lougiores, orato-oblongi, rarius cylindracei, apice angustati, pinnularum sesqui-longiores, orati. Substantia rigida, cornea. Color purpureo-rosens.

The Anckland's group speeimens appear to belong chiefly to the B. Hombroniana of Montagne, a uative of Akaroa*, on the middle island of New Zealand; they differ from thosc of Tasmana and the Falklands in being shorter and of a denser habit, in haring longer artieulations to the pimnæ and piunulæ, and in the latter being generally ouly twice pinnated, with the ultimate pinnules separated and remote, like the teeth of a comb. Kerguelen's Land individuals connect these forms. We have examined several hundreds of specimens, from seven or eight different loealities in the Antaretic Ocean, without being able to traee any eonstant specific distinction amongst them; the same individual often bears both bipimate and tripinnate fronds, with the segments remote or approximated; the length of the articulations and their form, and the outline of the branches from broadly ovate to linear-lanceolate are equally variable charaeters. We ean, however, well understand Montagne's drawing a different conclusion from an examination of but few speeimens of the extremes.

31. PTILOTA, Agarith.

1. Pinlota formosissima, Mont., caule ancipiti compresso costa articulata percurso vage ramoso decomposite pimnato, pimis valde inæqualibus pinmulisque alternis patentibus ultimis serratis, favellis sessilibus, involucri fohis pimnatifidis, sphærosporiis marginalibus pedicellatis. Pt. formosissima, Mont. Prodr. Phyc. Ant. p. S. Toy. au Pole Sut, Bot. Crypt. p. 98. t. 9. f. 3. (Tab. LXIVII.)

Hab. Lord Auckland's group; abundant.
Radix eallus exiguns. Frondes aggregatæ, 6-10 une. longæ, 4-6 latæ, flabelliformes. Cautis (jugamentun Ag.) basi teres, mox plano-compressus, linearis v. utrinque subattenuatus, $\frac{1}{2}-1 \frac{1}{2}$ lin. latns, distiehe ramosissimus. Pinnce $\frac{1}{4}$ une. longæ, alternæ, pinnatæ v. bipinnatæ ; pinnulis brevibus, alternis, patentibus, serratis v. peetinatis, apice subacutis. Favelle sessiles, involucro quadrifoliato peetinato einetæ, sphærieæ, sporis minutis angulatis farctæ. Spherospore marginales, pedicellatæ, globosæ, demum 4-partitæ. Cobor amæne punicens. Substantia eartilaginea, firma.-Chartæ laxe adhæret.

We have numerous specimens of this magnifieent plant in the most perfect state of fruetification. The favellæ, involucred with four regularly pectinated braetex, are striking objects under the lens. The stem is not strictly artieulate, in our specimens at least, but traversed by a strong raised artieulated mid-rib, most evident on the old frond and ocenpying one-third of the breadth of the stem. The surface cellules, like those of other parts of the frond, are minute, but internally divided by transrerse diaphragms into a series of cells full of gelatinc, whose walls are formed of jointed fibres.

* "Insula Leyden, Batavia," is also given as a habitat (in Voy. au Pole Sud) probably erroneously, for the genus has not hitherto been found to the northward of the 40 th degree of south latitudc.

Plate LXIVII. Fig. 1, favella in situ; 2, the same removed with the involucre laid open; 3, sphærospores: -magnified.

32. CERAMIUM, Aldans.

1. Ceramium rubrum, var. γ, secundatum, Agardh, Sp. Alg. p. 149. Cer. secundatum, Lyigb. IIydr. Dan. t. 37.

Tar. ϵ, temue, Agardh, S_{p}. Alg. vol. ï. p. 149.
Hab. Lord Auckland's group and Campbell's Islaud; both varieties abundant.
2. Ceramum diaphanum, Agardh, Sp. Alg. vol. ii. p. 150.

Var. β, Aucklandicum, proliferum, articulis brevibus.
Hab. Lord Auckland's group; not common.
Apparently a curious state of the C. diaphanum.
3. Ceramum cancellatum, Agardh, Sp. Alg. vol. ii. p. 145.

Hab. Lord Auckland's group; parasitic on other seaweeds, rare.
Our specimen entirely agrees with others collected at the Cape of Good Hope, and with the deseription of Agardh; it is doubtful, however, whether all may not be rarieties of C. obsoletum, Ag., from which they differ mainly in the more branched and less virgate babit. One of our South African specimens is so repeatedly branched, as eminently to justify Agardh's character, "ramis distichis multifidis quasi cancellatis;" that from Lord Auckland's group is taller and the extreme divisions alone retain that character; neither of these are more than four inehes long; we have, however, much larger examples, in which it is wholly lost. The station of Λ gardh's C. cancellatum is dubions, and his comparisou of it with a plant brought from the Cape of Good Hope by Gaudichand, renders it very probable that the Southern Ocean is its plaee of growth.

33. GRIFFITHSIA, Agardh.

1. Griffitisista setacea, Ag.? vol. ii. p. 129.

Hab. Lord Aucklaud's group.
Our young and mutilated specimens of what we refer to G. setacea are not sufficient for a satisfaetory determination of the species. The articulations are rather narrower than in the European plant, but they do not otherwise differ.

34. CALTTHAMNION, Lyngb.

1. Calithamnion gracilc, Hook. fil. et Harv.; filo primario repeute ramoso, caulibus erectis laxe hitripinnatis, pinnis remotis valde elougatis, pinnulis brevibus alternis erecto-patentibus simplicibus v. apice ramulosis, articulis primariis diametro 4-5-plo, secundariis sub 3-plo longioribus.

Hab. Campbell's Island; dredged up in four fathoms water.
Fila 1-2 unc. longa, gracillima, c fibrillis repentibus ranosis orta, laxe irregulariter alterne rarius opposite pinnatim divisa. Sphuerosporce sessiles, minutæ, sphæricæ. Favelle ignotæ. Articuli pellucidi. Color rosens. Substantia tencra.
2. Calithamnor pectinatum, Mont.; "microscopicum, filo primario repente pinnis pinnulisque oppo-
sitis patentibus, articulis cylindraceis diametro duplo longioribus aut cequalibus, spherosporis axillaribns." Mont. Prodr. Phyc. Aut. p.9. Toy, an Pole Sud, p. 90.

Hab. Lord Auckland's gronp ; creeping on other Algee. (Admiral lf Crrille.)
3. Calithansios hirtum, Ilook. fil. et Harv.; caulibus nigrescentibus intertextis, primariis robustis basi renosis coutinuis hirtis apice articulatis, secundariis elongatis ramulis pimatis quadrifaris densissime restitis, pimnulis simplicibus incurvis obtusis, articulis diametro sesqui-longioribns. (Tab. LXXVIII. Fig. II.)

Hab. Lord Auckland's group ; parasitic on other searreeds.
Caules exspitosi, fibris intertextis basi comitati, 2-3 une. longi, robusti, vage quadrifariam ramosi, per totam lougitudinem ramulis quadrifariis densissime velati. Rami cauli similes, longitudine varii ; ramuli inferiores breves caulibus habitum liirtum funalemve impertiunt, superiores longiores ct pinnati evadunt; secundarii (r. plumulæ) pinnati, pinnis alteruis ereeto-patentibus elongatis obtusis ineurvis, rachide flesuosa. Color atro- v. fuseo-ruber. Spherospore sphærice, solitaræ, latere interiore ramuli affixæ, pusillæ. Substantia rigidiuscula.-Charte adheret.

In habit this approaehes the C. tetricum, but after a careful comparison both with that and with C. Arbuscula, which it also resenbles, we are convineed that it is distinct from either. The plumules are very difierent from those of the former speeies and larger than in the latter. It is not likely to be confoundel with any other speeies.

Plate LXXVili. Fig. Il - 1 , a plant of the natural size; 2 , branch; 3, ultimate pinnule; 4, portion of the same:-magnifeed.
4. Cailthanisos micropterum, Hook. fil. et Harv.; parvum, erectum, caule articulato parce ramoso, ramis distichis alternis circumscriptione obovatis obtusis bi-tripimatis, pinnis alterne multifidis flexuosis, pinmulis erecto-patentibns obtusis, articulis caulis ramorumque diametro $2-3$-plove longioribus, ramulormn diametro aquantibus, sphærosporis sessilibus solitariis ellipticis.

Hab. Lord Auckland's group ; parasitical on Ptilota formosissima. (Dr. Lyall.)
Radir scutata. Cuutis subsolitarius, $2-3$ lin. longus, erectus, paree distiche et alterne divisus. Rami basi pinnis simplieibus ornati, superne bi-tripinnati, mune pimnulis alterne multifidis ut in C. tetragono. Ramuli alterni, inferiores simplices, superiores iterum divisi. Articuli pellucidi, rosei, venis destituti. Spherospore minutæ, ramulis sparsæ, appresse, elliptiex, massam quadrifidam ineludentes. Color pulcherrime roseus. Substantia tenera.

This does not belong to the parasitieal section of the genns typified by C. Dariesii, but rather resembles some of the larger speeies, as C. tetrayonum, to which, in the form of the joints, the disposition, shape and relative size of the splerospores, it is closely allied.

35. CONFERTA, Agardh.

1. Coxferva Pacifica, Mont., Prodi. Phyc. Antarct. p. 16. Toy, au Pole Sud, Bot. Crypt. p. 7.

Hab. Lord Auckland's group; on rocks in the sea, very abundant.
Ciespites $3-4$ une. longi, rage fumieulariodirisi, e filis graeilibus intricatis lete virentibus compositi. Fila ramosissima ; ramis inferioribus irregulariter ramosis, ramulos radieiformes hic illic emittentibus, superioribus rage ramosis diehotomis r. seeundis, ramulis crectis, supremis appressis elongatis strietis. Articuli partis inferioris breves, diametro 2-3-plove longiores, superiores sensim elongati, ramulonum supremorum longissimi. Color læte viridis, nitens.
Substoulia membranacea. - Chartæ adhæret.
This speeies is nearly related to the C. areta of Europe, to some varicties of which, espeeially that called C. centralis, it bears a rery elose resemblanee.

The C. virgata, Ag., is enumerated by Montagne in lis Flora of the 'Tor. au Pole Sud.'
2. Conferva terticillata, Hook. fil. et Harv.; crespitosa, filis gracillimis strictis parum divisis, ramis lateralibus simplicissimis longissimis erectis strictis oppositis ternis quaternisve, articulis fili primarii diametro multoties, ramorum quadruplo, longioribus pellucidis.

His. Lord Auckland's group; on rocks in the sea, very abuudant.
Fila tenuissima, 4 unc. longa, rigidula, simplicia v. parum divisa, erecta, stricta, ramis lateralibus ornata. Rauni sepius terni quaternive, vertieillati, rarius bini, rarissime alterni, longissimi, filo primario longiores, erecti, strictissimi, simplices, ramulis omnino destituti, apice sphacclati. Articuli fili primarii diametro $7-8$-plo longiores, clavati, geniculis uodosis, ramorum cylindracei diametro 3-4-plove longiores. Color siccitatc luride viridis, opaca; planta rivente pallida, subhyalina.-Charte laxc adheret.

Very nearly allied to C. Aagelliformis, Suhr, a native of the Cape of Good Hope, agreeing with that plant in the remarkable ramification, but differing in the more slender habit, not being one half the diameter, and in laving much larger articulations, especially on the main threads, which are singularly clarate with swollen joints, a character we do not observe in any states of C. fagelliformis. It camot be coufounded with any other species of the genns.

36. CODIUM, Stack.

1. Codies tomentosum, Stack., Grer. Alg. Brit. p. 185. t. 19. Hook. Br. Fl. vol. ii. p. 31s. Mont. in Toy. cu Pole Sud, Bot. Crypt. p. 35.

Hab. Lord Auckland's group; very abundaut.
Equally abundant in the Antarctic as in the Northern Seas. Montagnc gives the C. adharens, Ag., as a native of this group.
37. ULVA, L.

1. Uura lutissina, Linn., Flor. Suec. no. 1159. Mont. Toy, au Pole Sud, Bot. Crypt. p. 33.

Hab. Lord Auckland's group and Campbell's Island; most abundant.
The U. reticulata, Försk., is mentioned by Montagne as a native of this group.

33. PORPHYRA, Agardh.

1. Porphyra capensis, Kiutzing.

Hab. Lord Auckland's group and Campbell's Island; on rocks in the sea.
This differs from the European P. culgaris in the rigid texture of the frond, which is not always simple in the Cape of Good Hope specimens. The P. columbina, Mont., appears to be the sane plant.

39. SCHIZONEMA, Agardh.

1. Schzovena crispem, Mont.; " filis cespitosis viridibus crispatissimis apice penicillato-ramosis, ramis obtusis, cymbellis subparallelogrammis." Mont. Prodr. Phyc. Antarct. p. 16. Toy. au Pole Sud, Bot. Crypt. p. 2.

Hab. Lord Auckland's group; on the fronds of the smaller Alga.
We have obscrved what we take to be this species, together with an Aclinanthes and several other inpcrfect Diatomacee, upon Ptilota formosissina and some of the filamentous Alge, amongst which is probably the Achnanthes brecipes, Ag.

XXXVII. LICHENES,* L.

(By Dr. Thomas Taylor and J. D. Hooker.)

1. USNEA, Ack.

1. Usves plicata, Ach., Syn. Lich. p. 305. Engl. Bot. t. 25\%. Scharer Lich. ITelv. no. 401.

Var. β, hirta, Ach. l. c. Scherer, no. 399.
Hab. Lord Auckland's group and Campbell's Island; both varietics, abundant.
The variety β, in Lord Auckland's group, is evidently the original plant, from which the U. hirta varies, and both are undoubtedly forms of U.forida; the latter, in its ordinary fruiting state, does not attain a high northern or southern latitude, being replaced by the U. melaxantha, which almost reaches the limits of Antarctic vegetation. We lave little hesitation in affirming (with the author of the British Flora) that not only all the English species of Usnea are different aspects of one plant ; but also that it is the only individual of the gemus which we know to inhabit the temperate and warm parts of the globe.

2. Usvea barbata, Ach., Syn. Lich. p. 306.

Var. β, sulphurea; pallide straminea v. sulphurea.
Hab. Lord Auckland's group and Camplell's Island; the var. β only, but abundant.
This differs from the European plant in no respect but its pale sulphur or lemon colour ; it is plentiful throughout Tasmania, Fuegia, and the Falkland Islands, and is decidedly a state of U. hirta β, hardly distinguishable from U. hirta itself, as the most casual observation in these islands will prove. It is often detached from its original place of growth, and, being carried by the winds over the barren lidls, is found in great abundance, sticking to low bushes and even to the rigid shrubby thallus of U. metaxantha, in Fuegia and the Falklands. Some of the slendercst states are with difficulty to be discriminated from the genus Cornicularia, the filaments being brittle and the central thread not very apparent.

2. RAMLILINA, Ach.

1. Rimalina inflata, Hook. fil. et Tayl.; thallo in cespitem orbicularem congesto pallide flavo v. albido dichotome ramoso fistuloso turgido submembranaceo intus vacuo, lobis fistulosis intus stuppeis nunc foraminulosis ultimis acuminatis, apotheciis substipitatis concaris, disco concolore pruinoso, margine inflexo integerrimo. Cetraria inflata, nolis, in Mook. Lond. Journ. of Bot. vol. iii. p. 646. (Tab. LXXIX. Fig. I.)

Hab. Lord Auckland's group; on rocks near the sea.
Planta cæspitosa, albida, siccitate rigidiuscula, madore flaccida, membranacea, pellucida, brunneo picta. Thallus e basi subscutata ramosissima, 1-2-mincialis, cavus, inflatus, paulo compressus ; ramis erectis, sub 3-4 lin. latis, fistulosis, sublacmosis, raro pertusis, intus racuis v. parce stuppeis, extus læribus, ramulis alternis angustatis. Apothecia lateralia v. terminalia, oblique inserta, stipite brevi; disco planiusculo, sub 3 lin. lato, concolori v . fusco-pruinoso;

* In arranging these species of a most rariable Order of plants, the Synopsis of Acharius is followed, because it appears to us the more natural. That the precise plant referred to, under lus name, may be the better understood, we have cited two works, which seem particularly worthy of attention, from the discrimination which the authors have shewn in selecting a variety of forms; these are the 'Lichencs Helvetice' of M. Schærer, and the 'Stirpes Cryptogamice Voges. Rhenan.' of Mongeot and Nestler.
excipulo thallode crassiusculo ; margine integcrrimo, primm inflexo; sporis $4-8$ in quoque asco, oblongis, utrinque obtusis, linea transversa medio notatis.

Mr. Churchill Babington has pointed out to us the affinity of this species with the R. pusilla, Prev. (Fries, Lich. Eur. p. 29), a native of the Isles Hyères in the Mediterranean Sea. Of this plant we possess no specimens, and from the deseription the only points of difference seem to lie in the greater size of the present, which has the apothecia more separated from the thallus and are plane instead of concare. It is also a native of Tasmania.

The R. geniculata, nob. (in Lond. Journ. of Bot.), is allied to the present species in its fistulose thallus, but is much smaller and very differently branched. A third congener, or perhaps the true R.pusilla, is a native of Tasmania. The other species inhabiting the southern regions, are R. ocata, verrucosa, and terebrata, all allied to, and perhaps varieties of, R. scopulorum itself, in many cases almost undistinguishable from R. fraxinea and fastigiata.

Plate LiXXIX. Fig. 1, a specimen of the natural size; 2, an older state of the same; 3, portion of ramulus and apothecium; 4, section of apothccium; 5, portion of lamina proligera; 6, ascus; 7, spores:-more or less magnified.

3. SPHEROPHORON, Ach.

1. Spherophoros tenerm, Laurer, in Limna, vol. ii. p. 45. t. 1. f. 4. S. australe, nolis, in Hook. Lond. Journ. of Bot. vol. iii. p. 654.

Var. β, curtum; S. curtum, nobis, in Lond. Journ. of Bot. rol. iii. p. 654.
Hab. Lord Auckland's group and Campbell's Island; on the ground in turfy places; β, in more elevated situations.

Laurer's description of this species is very characteristic, though dramn up from a small state of the plant, the apotheeia not being always small, but sometimes even a line in diameter, they terminate in nearly erect, stout, solid, naked, terete branches, are hemispherical, broader than the branch which bears them; in the adult state margined only with the remains of a thallodal border, which afterwards falls away entrely. This is the decisire mark between all forms of S. tenerum and S. corallimm, for the colour varies from a rich brown to white aud pink. It is an abundant Australian and Fuegiau species.
2. Spherophoron australe, Laurer, in Linnaa, vol. ii. p. 44. S. insigne, Laurer, l. c.

Hab. Lord Auckland's group.

I am indebted to Mr. Churchill Babingtou for an authentic specimen of this beautiful species. Ir the normal state it differs widely from S. compressum, the whole frond being plaue, branched in a palnate mamer, repeatedly and dichotomously divided, with all the divisions divaricating and spread out like a fan, slightly convex above, there smooth but hardly shining, pale olive-green or yellowish; underneath, it is plane or slightly convex, more rugose and white ; the ramuli of the oldest states are often transversely cracked or articulate; others again, and especially the Tasmanian specimens, are membranaceous and buff-coloured, wholly unlike any other aspect hitherto observed in the geuus. In alpine specimens, growing with Leptostomum inclinatum, which bear fruit abundantly, the apothecia are large, covered with a thin, buff-coloured membrane, fixed wholly to the underside of the frond, which appears prostrate and branched beyond it. From Lord Auckland's group and Campbell's Island we have several varieties of this plant; 1. The thallus quite plaue, repeatedly diehotomously branched, grey abore, white beneath, powdered with minute black soredia (or abortive apothecia), the apothecia rare, small, nearly terminal on the under surface of the frond. 2. Thallus short, pale yellow, densely tufted, with the ultimate branches broader and truncate; always barren. 3. Thallus short, less divided especially below, white, pale grecuish-yellow or pink; ultimate branches very short, thin, their apices everywhere tipped with abortive apothccia. 4. Branches few, broader, stouter; apothecia large. This is the ordinary fruiting state of the plant in these islands, and some specimens cannot be distin-
guished from the figure in English Botany of S. fragile (t . 114.), S. compressum, Ach., whenee it comes to be a doubt whether if we consider this, the fruiting, as the ordinary state of the plant, all should not merge into S. compressum, itself a rariety of S. corallinum; against which it may be urged that the membranous Tasmanian specimens also produce fructification abundantly.
3. Spilerophoron compressum, Ach., Syn. Lich. p. 287. Liehen fragilis, Eng. Bot. t. 114.

Hab. Lord Auekland's group and Campbell's Island; on the trunks of trees.
Under S. australe, Laur., we have stated our impression that this is a state of that plant.

4. STEREOCAULON, Ack.

1. Stereocaulon ramulosum, Aclı, Syn. Lich. p. 254. A. Rich. Flor. Nov.Zel. p. 34. t. 9. f. 3. S. macrocarpum, A. Rich. l. e. t. 9. f. 4. Lichen Salazinns, Bory, Foy. vol. iii. p. 106.t.16. f. 3. (Tab. LXXX. Jig. 1.)

Hab. Lord Auekland's group and Campbell's Island; partieularly abundant in the latter locality.
Our specimens of this plant are truly magnificent, and this has induced us to add a figure, shewing the globose appendices (abortive apothecia) which are not represented in the works quoted above. Small speeimens of this speeies, both from New Zealand, Tasmania and the group now under consideration, so mueh resemble the S. paschate, as to be with difficulty diseriminated from it, whence we suspect the present plant may prove a remarkably husuriant state of that, for it is abundant throughont many warm latitudes, to the exclusion of the S. paschate, which reappears in the higher latitudes of Cape Horn and Kerguelen's Land.

Plate LXXX. Fig. I.-1, vertical section of an apotheeium; 2, portion of lamina proligera :-bothe magnifed.
2. Stereocaulon Argus, Hook. fil. et Tayl.; thallo crecto tereti-cylindraceo v. subeompresso fastigiatim ramoso albo-cincraseente, gemmis gramulatis ramosis, ramulis appendieibus globosis plerumque terminatis, apotheeiis terminalibus, excipulo thallode crasso extus rugoso, margine primum inflexo, disco brumeo concaro demum reflexo. (Tab. LXMIX. Fig. II.)

IIab. Camploell's Island; rocks on the mountains, abundant.
Thallus validus, $2-3$ unc. altus, primum strietus, ercetus, demum eurvatus, clongatus. Apothecia magnitudine raina, semper margine thallode crasso immersa; excipuli marginibus retate per reflexionem marginis apothecii omnino ocelusis; ascis oblongo-lanecolatis, granulis angulatis repletis, filamentis raris dilatatis transrerse septatis immixtis.

A rery distinct plant, well characterized by the thick cup into which its plane apothecia are immersed, the latter in age become much broader, their margins roll back carrying the border of the exeipulus inwards, when it requires a longitudinal section to shew the trie nature of the apothecium.

Plate LXXIX. Fig. II.-1, a specimen in the ordinary state; 2, the same mueh older, both of the netural size; 3 , section of young apothecium; 4 , section of ripe ditto; 5 , the same when old; 6 , portion of lamina proligera; 7, septate filament ; 8, asci :-all more or less magnified.

5. CENOMYCE, Ach.

1. Cenomyce rangiferina, Ach., Syn. Thich. p. 977. Engl. Bot.t. 173.

Hab. Lord Auekland's group and Campbell's Islaud; on the ground.
2. Cexonyce aggregatu, Ach., Syn. Lich. p. 275. C. terebrata, Laurer, in Limncea, rol. ii. p. 4.3. (fitl. cel. Montugne.) Dufourea collodes, nobis, in Lond. Journ. Bot. vol. iii. p. 650. (Tab. LXXX. Fig. II.)

Hab. Lord Anckland's group and Campbell's Island; on the gromed, abundant.
One of the most widely diffused species throughont the Southern Hemisphcre ; though variable, its limits are well defined. Its nearest ally is the beautiful C. retipora, Lab.

Plate LXXX. Fig. II.-1, a specimen in the ordinary state, natural size; 2, portion of the same, magnifeed; 3, large, and 4, small rariety, natural size ; $\mathbf{5}$, apothecium, magnifeed.
3. Cenonyce ecmocyna, var. gracilis, Ach. Syn. Lich. p. 261: Engl. Bot. t. 1284. Scherer, Lich. Helv. vol. lxv. C. sarmentosa, nolis, in Lond. Journ. Bot. rol. iii. p. 651.
$H_{A B}$. Lord Auckland's group; on dry ground on the hills.
4. Cexomyce pycidata, Ach., Syn. Lich. p. 252. Engl. Bot. t. 1393. Scharer, no. 68.

Var. rigida; olivaceo-cinerea tota gemmis grauulatis tecta, thallo foliaceo, podetiis brevibus inflatis rigidis scaberrimis. C. rigida, nobis, in Lond. Journ. of Bot. p. 65 .

ILab. Lord Auckland's group; in the woods; β, on dry turfy soil.
5. Cexomyce uncialis, Ach., Syn. Lich. p. 276. Engl. Bot. t. 174.

Hab. Lord Auckland's group. (Admiral D' Urrille.)

6. PELTIDEA, Ach.

1. Peliidea polydactyla, Ach., Syn. Lich. p. 240. Mougeot et Nestler, n. 633.

Hab. Campbell's Island; on the ground, abundant.

7. STICTA, Ach.

1. Sticta orygmea, Aclı., Syı. Lich. p. 233. Montagne in Voy. au Pole Sud, Bot. Crypt. t. 1s.. f. 1.

Hab. Lord Aucklaud's group and Campbell's Island ; on the brauches of slirubs, very abundaut.
Acharins cites "Staten Land" as the habitat of this species; we lave never seen specimens from the Ancrican Continent (the Cape Horn station quoted in the 'Lond. Jomrn. of Bot.' being erroneons), whence it is possible that the author may refer to another plant; we hare, howevcr, followed our frield Montagne, who gives this name to lis beautiful plate of our plant.
2. Sticta foreolata, Delise, Monogr. He Sticta, p.101. t. S. f. 30. Mont. in Toy, au Pole Sud, Bot. Crypt. ined. S. linearis, nolis (in part), Lond. Journ. of Bot. vol. iii. p. 647.

Hab. Lord Auckland's group; on the trunks of trees.
Except in being of a rather larger size, this does not differ from a copions suite of specimens which we have examined from Tasmania. The apotheeia are variable, generally with the disk flat, but sometimes concave, and in these specimens very mucli so. In both this and the S. Billardieri, which seems hardly distinct from it, the border of the apothecia is often eraueseent.
3. Sticta Freycinetii, Delise ; thallo flavo-cimamomeo rariusve olivaceo uudo glabro lævi plano v. concavo rimis albidis, subtus nudo v . velutino atro v. huide brumeo, lobis lincaribus concavis divaricatim ramosis, margimbus undulatis crenatis v. simuato-lobatis glaberrimis v. sorediatis, cyphellis albidis, apotheciis sparsis plerisque marginalibus breviter stipitatis concavis extus villosis pubcrulisve, disco plano rufo-fusco demum valde concavo, margine fimbriato crenato ætate involuto.-S. Freycinetii, Delise, Monogr. de Sticta, p. 124. t. 14. f. 45. S. glabra, nolis, in Lond. Joum. of Bot. vol. iii. p. 647.

Hab. Lord Auckland's group and Campbell's Island; on the trunks of trees and on rocks in momtainous places, very abmdant.

An excecdingly variable plant, of which we have added a charaeter, that of Delise being inperfect. The most obvious specific distinction lies in the pubescent apothecia with fimbriated margins to the cups, to which may be added, the pale colour, and the wrinkled margins of the lobes, which arc sometimes extremely concave. In alpine specimens the thallus is often quite smooth underneath, with the margins singularly crumpled. The colour varies, underneath it is of all shades, from black to a dirty yellow. Cape Horn and Falkland Island specimens are more plane, with the lobes and apothecia larger.
4. Sticta cellutifera, Hook. fil. et Tayl.; thallo stellatim expanso subdichotome ramoso fusco v. flavo olivaceo sæpe virescente glabro profunde reticulatim lacunoso rimis albidis, subtus fuliginoso tomentoso apicibus loborum flavescentibus, lobis latiusculis rotundatis angulatisve subacutis obtusis retusisve, cepphellis parvis flavis, apotheciis plurimis plerisque marginalibus, disco atro plano demum coucaro, marginibus integris crenulatisve inflexis.

Hab. Lord Auckland's group and Campbell's Island; on the trunks and branclies of trees, abundant, also on the mountain rocks.

We know of no single character by which this form, which is as variable as any of its congeners, may be recognized. In its normal state the whole frond is fully a span across, all parts of it rugosc with deep lacunæ ; specimens from the woods are of a lax habit, with lobes an inch broad, of a pale brown or yellow beneath; those from the mountains, again, are deep olive green and almost black beneath, with the lobes short and round, and the cyphellæ of a bright yellow. In many respects it is very closely allied to the S. carpoloma, Delise, which, according to Montaguc (whose authentically named collcction of Stictie is the completest I have scen), has the apothecia imvariably margimal. The present plant includes in part both S. impressa and S. cellutifera, of the 'London Journal of Botany.'
5. Sticta Menziesii, Hook. fil. et Tayl. ; thallo stipitato valde coriaceo obovato-cuneato ccostato flavofusco subtus brumneo, laciniis planiusculis lobatis retusis supra glaberrimis lævibus subtus puberulis, cypbellis immersis luteis margmibus elevatis, apotheciis sparsis atro-fuscis, disco plano demun concavo, marginibus temuiter inflexis.

Hab. Lord Auckland's group; on the trunks of old trees.
Discovered by Mr. Mcnzies in Dusky Bay, New Zcaland. Very distinct from S.flicina, of Acharius, in the ecostate frond, very thick texture, and dark coloured apothecia. Mr. Menzies' specimens have rathcr broader lobes, but do not otherwise differ from those gathered in Lord Auckland's gronp. The S. latifrons, A. Rich., is also costate, and of a different colour, with small pale yellow-red apothecia. The present is in New Zealand probably confined to the southern extremity.
6. Sticta Richardi, Mont., Toy.au Pole Sul, ined. S. carpoloma, A. Richarl, Flor. Nor.Zel.p.30.t.9.f. 1. Hab. Lord Auckland's gromp; on the tronks of trees.

Dr. Moutagne distinguishes this from the S. carpoloma, Delise, by its having the apothecia on the surface, as well as on the margins of the frond, and by its different under surfacc. Our specimens are in a rather imperfeet state.

The S. variabitis, Ach., is also enumerated by Montague as a native of Lord Auckland's group.

8. PARJIELIA, Ach.

1. Parmella ruLiginosa, Ach., Syn. Lich. p. 202. Lichen affinis, Engl. Bot. t. 983.

Hab. Lord Auckland's group and Campbell's Islaud; on the bark of living trees, also on the ground on the hills.

A most variable plant and a very abundant oue in New Zealaud and Tasmania; on the hills the thallus is reduced to a few imbricating scales, as in Squamaria, and the apothecia are strangely contorted and closcd, having the border closely inflexed; in this state we are inclined to suspect that it passes into the Lecanora Hypmortm of thesc islands.
2. Parmella sphinctrina, Mont. in Toy. au Pole Sud, Bot. Crypt. t. 15. f. 3.

Hab. Lord Auckland's group; on the bark of trees.
This, judging from our copious suites of Tasmauian and New Hollaud specimens, is hardly distinet from P, relbiginosa. Montague's figure of it is excellent.

9. LECANORA, Ack.

1. Lecanora Mypnorum, Ach., Sym. Lich. p. 193.

Hab. Campbell's Island ; upon tufts of Andread and other mosses.
The upright mode of growth and slender laciniæ of the thallus, distinguish the present from its allies; the specimens are of a dusky yellow colour.
2. Lecanora rersicolor, Hook. fil. et Tayl.; substrato adnato tenui atro, thalli squamulis subrotmedis planis crenulatis albidis demum flavis confertis lævibus, apothecïs majusculis sessilibus concavis, disco nigro-pruinoso, margine integerrimo subincurvo.

Hab. Lord Auckland's group; on bark.
Caspites 1 unc. latæ, nigro-limitatæ, substrato continuæ, fuscæ v. pallide virescentes. Apothecia squamis majora, disco nigra-pruinoso, margine thallode crassiusculo.

Allied to the L. varia, but marked by the scattered apothecia, dark discs and smooth thallodal border.
3. Lecanora tartarea, Ach., Syn. Lich. p. 172. Engl. Bot. t. 156 et 1634.

Hab. Lord Auckland's group; on the ground.
Specimens, apparently of this plant, are in a very imperfect state.
4. Lecanora Parella, Acli, Syn. Lich. p. 169. Engl. Bot. t. 727.

Hab. Lord Auckland's group; on the hills.
Also in a very rudimeutary statc.

10. LECIDEA, Ach.

1. Lecidea geomea, Taylor, in Flor. Hibern. p. 124. L. uliginosa, var. γ, Ach. Syn. Lich. p. 25. Hab. Lord Auckland's group; on the ground.
2. Lecidea incana, Hook., Br. F7. vol. ii. p. 151. Lichen incanus, Engl. Bot. t. 1653. Biatora pachycarpa, Fries, Lich. Europ. p. 259.

Hab. Lord Anckland's group; on the ground.
Mr. Clmurchill Babington informs ns, that he has prored the L. incana to be merely a deliquescent state of Fries's Biatora pachycarpa.

11. PORINA, Ack.

1. Porrsa granulata, Hook. fil. et Tayl. ; thallo tartareo granulato albido, granulis subrotundis rugosis confertis fertilibus majoribus, poris 1-5 pertusis, nucleis pellucidis pallide lutescentibus.

Hab. Lord Auckland's group; bare ground on the hills.
This plant grows mixed with young states of Lecanora Parella, from which it is with difficulty distinguished, it forms large pure white or pinkish patches, sometimes several inches in breadth, very convex, and often raised above the soil ; the apothecia are hemispherical, with a broad depression, in the centre of which again is often a conical mamilla; there appear to be no spores in the apotheeia, and the plant may be merely a rudimentary form of some more highly organized lichen. It is also abundant at Cape Horn and in the Falkland Islands.

12. THELOTREMA, Ach.

1. Thelotreala lepadinum, Ach., Syn. Lich. p. 115. Lichen inclusus, Engl. Bot. t. 67 s.

Hab. Lord Auckland's group; on the bark of trees, abondant.

13. OPEGRAPHA, Ach.

1. Opegrapha atra, Pers.; O. denigrata, Ach. Engl. Bot. t. 1753.

Hab. Campbell's Island; on the bark of Dracophyllum scoparium.

ALPHABETICAL INDEX

то

PARTI. OF THE FLORA ANTARCTICA,

contalning tile

BOTANY OF LORD AUCKLAND'S GROUP AND CAMPBELL'S ISLAND.

Acens adscendens, Tahl
Fage 10
-_Sanguisorbæ, Fall
Achuauthes brevipes, $A g$. 193
Acianthus rivularis, A. Cumn. 71
Adenocystis Lessomi, Hook. fil.et Harv. Tab. LXIX.
Fig. II. 179
Agalmanthus umbellatus, Hombr. et Jacq. 19
Agaricus pyxidatus, Bull. 169
——subrepaticus, Batsch ib.
Aglaoplyyllum punctatum, Mont. 185
Agrostis Ancklandica, Hook. fll. 96
_- foliata, Hook. fil. 95
—— leptostachys, Hook. fil. 94
-_multicaulis, Hook. fil. 95
-_ subulata, Hook. fil. Tab. III. ib.
Alsine media, L 8
Ancislrum anserinafolium, Forst 9
-_decumbens, Gært. il.
-_diandrum, Forst. il.

- humile, Pers. 10
-_Sanguisorbe, Linu. fil. 9
Andreæa acutifolia, Hook. fil. et Wils. 118
-_ mutabilis, Hook. fil. et Fils. Tab. LVII.
Fig. 11 .119
—— vitida, Hook. fil.et Wits. Tab.LTII. Fig. III. 118
—— subulata, Harv. Tab. LVII. Fig. I. 119
Androstoma erupetrifolia, Hook. fil. Tab. .LXI. 44
Anisotome antipoda, I ool. fil. Tab. IX.-X. 17
-_ latifolia, Hool. fil. TAb. YIII. 16
Anectangium Humboldti, Brid. 135
Autennaria scoriadea, Berk. Tab. LIVII. Fig. III. 175
Anthoceros punctatns, L.? 165
Aralia polaris, Hombr. et Jacq. 19
Ardisia frondosa, a, β, Banks et Sol. 49
Asperococcus Lessoni, Bory
Page(
-_ cchinatus, Grev 150
-_rugosus, Lam ib.
Aspidium venustum, Hombr. et Jacq. 106
—— Taikareuse, Colens., MS ib.
Asplenium apicidentatum, Hombr. et Jacq. 108
——chondropkyllum, Bert. 106
—— flaccidum, Forst. 109
-_obliquum, Forst. 105
- obtusatum, Forst. ib.
-_ scleroprium, Hombr. et Jacq. 109
Astclia linearis, Hook. fil. 76
Aster coriaceus, Forst. 36
- gracilentus, Banks et Sol. 35
——holosericens, Forst. 36
Asterome dilatatum, Berk. Tab. LXVIII. Fig. VII. 173
diena phleoides, D'Urv. 97
Aylographum Bromi, Berk. Tab, LXYIII. Fig. XI 174
Ballia Brunonis, Marv. 190
- Callitricha, Mout. il.
--Mombroniana, Mont. ib.
Bartramia patens, Brid. 133
-_ pendula, Hook. ib.
——robusta, Ilook. fil. el IFils. Tab.L1X. Fig. IV. ib.
- squarrosa, Turn $i b$.
Biatora paclycarpa, Frics 199
Bleclnum procerum, Sw. 110
Bromns Antarcticus, Hook. fil. Tab. LIV 97
Bryum annulatum, Mook. fil. et Wils. Tab. LX.$13 t$
——blandum, Mook fil. et IIils. Tab. LA. Fig. I. ib.
——nutans, Schreb. 134
- truncorum, Bricl. 134
—— Wahlenbergii, Schwagr. ib.

INDEX.

Bulliarda moschata, D^{\prime} Urv. Page

- Magellanica, D.C. $i b$.
Caladenia sp.? 70
Calithamnion gracile, Hook. fil. et Harv 191
—— lintum, Hook. fil. et IHarv. Tab. LXXVIII.
Fig. II 192
-_micropterum, Mook. fil. el Ilarv. ib.
- pectinatum, Mont. 191
Callitriche verna, D.C. 11
Campylopus flexnosus, Brid. 130
—— introflexus, Brid ib.
Cardamine corymbosa, Hook. fil. 6
- depressa, Ilook. fil ib.
- hirsuta, L 5
——stellata, Hook. fil. Тав. IV. A 7
Carex appressa, Br. 90
——aristate, D'Urv 89
- geminata, Schk ib.
——incrassata, Banks et Sol ib.
- ternaria, Forst. ib.
——trifida, Cav. ib.
Catalurosa Antarctica, Ilook. fil. Tab. LYI. 102
Catharinea Mayellanica, Brid. 132
Celmisia asteliefolia, Hook. fil. 35
-_ coriacca, IIvok, fll. 36
- gracilenta, Hook. fil. 35
- graminifolia, Ilook. fil. ib.
- holosericea, Hook. fil 36
- longifolia, Cass. 35
- spathulata, A. Cunn. ib.
- spectahilis, IIook. fil. ib.
—— rernicosa, Hook. fit. Tab. XXVl.-XXVII. 84
Cenomyee aggregata, Lch. Tab. LXXV1. Fig. II. 196
- ecmocyna, rar., Ack. ib.
- pyxidata, Aclu. 197
- ramgiferina, Ach. 196
- sarmentosa, Hook. fil. et Tayl. ib.
- terebrata, Laurcr ib.
- uncialis, Ach 197
Ceramium cancellatum, Agardh 191
- diaphanmn, Agardh ib.
- rubrum, $\gamma \cdot \wedge$ Ag. ib.
—— secundatum, Lyngb. ib.
Ceratella rosulata, Hook. fil. Tab. XVIII Pare
Ceratodon purpurens, Brid 131
Chicilanthes riscosa, Carm 110
- frogitis, Carm. $i b$.
Cheiloglottis cormuta, Hook. fil. 69
Cheiloscyphus coalitus, Gottsche 157
__fissistipus, Gottsche ib.
- sinuosus, Gottsche ib.
Chondrodictyon Capense, Kütz 188
Choudrus tuberculosus, Ilook. fll. et Harv 188
Chorda lomentaria, Lyngb. 179
--rimosa, Mont. $i b$.
Chordaria flagelliformis, $A g$. 180
Chyysobactron Rossii, Hook.fil. Tab. XLIV,-XLV. 78
Cladosporiun IIerbarum, Link. 170
Colobanthus Benthamianus, Fenzl, MSS 13
——Billardieri, Fenzl. 14
- muscoides, Hook. fil. ib.
- subulatus, Mook. fil. 13
Conferva Pacifica, Mont. 192
- verticillata, Ilook. fll. et Harv 193
Conostomum australe, Sic. 132
Coprosma affimis, Hook. fil. Tab. XIV 21
- ciliata, Hook. fil. 22
-- cuneata, Hook. fil. Tab. XV 21
- foctidissima, Forst. Tab. Xlll 20
——myrtillifolia, Hook. fil. 21
- repens, Hook. fil. Tab. XVI 22
Crassula moschata, Forst. 15
Cyathophormm pennatum, Brid. 143
Delcsscria crassinervis, Mont. 184
-- dichotoma, Ilook. fil. et Harr. Tab. LX. ib.
Desmarestia viridis, Lam. 178
Dichlora rividis, Grev. il.
Dicramm Billardieri, Schu. 129
- fteruosum, Hedw. 130
- introffexum, Hedw 130
——Mcnzicsii, Tayl. Tab. LVIlI. Fig. IV. 128
- pungens, Hook, fll. et IFils. Tab, LIN.
Fig. I. 129
- purpureum, Hedw 131—— setosum, Hook. fil. et Wils. Tab. LXVIII.Fig. V.129

INDEX.

Dictyosiphon? fasciculatus, IIook, fil. et Hare.Tab. LXXIX. Fig. I.178
Didymodon purpureus, Hook. et Tayl. 131
Dothidea circumscripta, Berk.Tıb.LXVIII.Fig.TI. 172
-bullata, Berk. ib.
_- hemisphærica, Berk. Tab. LXVII. Fig. II. ib.
—— Spilomæa, Berk. Tab. LXVII. Fig. I. 173
Dracophyllum affine, Hook. fil. 48
——atternalum, 1. Cumn. MS 49

- latifolinm, A. Cum. 45
—— Lessonianum, A. Rich. 49
- longifolium, Bi. Tab. XXXI. Fig. II. 45
-_ recurvmm, Hook. fil. 50
- robustun, Mook. fil. 49
- rosmarinifolinm, Br 50
- scoparium, Ilook. fil. Tab. XXXIII 46
- secundum, Br 47
- squarrosum, IIooz, fil. 48
—— strictum, Hook: fit. ib.
- subulatum, IIook. fil ib.
- verticillatum, $L a b$. ib.
-_Urille:mmm, A. Rich. 49
Drosera sp.?. s
Dryptodon crispulus, Hook fil.el Tils. Tab. LVII.124
Duforrea collodes, Hook. fil. et Tayl. 196
Dumontia comuta, Ilook: fil. et Grev. 159
___ filiformis, Greo ib.
D'Urvillea utilis, Bory 176
Epacris longifolin, Banks and Sol. 45
- longifolia, Forst. 45
- rosmarinifolia, Forst. 50
Epilobium confertifolium, Hook. fil. 10
—— linnæoides, Hook. fil. Тав. VI il.
-_ nerterioides, A. Cum. 11
Festuca foliosa, Hook. fil. Tab. LV. 99
-- scoparia, Itook: fil. 98
Forstera clarigera, Hook, fit. Тab. XXTIII. 38
Frullania ptychanthe, Mont 163
- scandens, Mont 165
Frous Antarcticus, Cham. 176
- braclealus, Gmel. 158
——Alugelliformis, Turn. 180
Fucres gladialus, Lab. Page Page
- Radula, Hb. Banks 188
- viridis, Fl. Dan. 178
Funaria hygrometrica, IIedo 135
Gaimardia ciliata, Hook: fil. S5
- pallida, IIook. fil. 86
Gentiana cerina, IIoor.fi. Tab, XXXVI. 54
-_ concima, Hook. fil. Tab. KXXV. 53
Geranium microphyllum, Mook.fil. Tab. V 8
Gigartina divaricata, IIook. fil. et Harv. 157
Gnaphalium sp.? 37
Goltscliea ciliigera, Hook. et Tayl. 147
- Hombroniana, Mont 146
Grammitis australis, $B r$. 111
——Billardieri, Willd ib.
- leleropleylla, Lab ib.
-Kumitis, Hombr. ct Jacq. ib.
——rigidu, Hombr. ct Jacq. ib.
Gratelorpia? Aucklandica, Mont. 157
Griffithsia setacen, Ay.? 191
Gymnostomam gracile, Hook 122
Halymenia latissima, Hook, fil. el Harv. 189
-_ fliformis, Agardh ib.
ILedwiyia IHumboldtii, Mook. 135
Helichrysum prostratum, Hook. fil. Tab. XXXI.. 30
Hendersonia microsticta, Berk. Tab. LXVfII.
Fig. I. 170
Merpelium intolutum, Mont. 159
Hicrochloe Baukisiana, Endl 92
-_ Brunonis, Mook: fil. Tab. LII 93
- redolens, Br 92
IIolcus rellolens, Sol. ib.
Itolomitrium perichatiale, Brid. 12S
Hookeria denticulata, Hoor, fl. et It its. 143
___ nervosa, Hook. fil. et $\|_{\text {ills. Tab. LXI. Fig.V. }}$ 142
- pemata, Sm. Tab. LXII. Fig. III. 143
_- pulchella, Ifook. fil. el IFils. Tab. LNII.Fig.I. 142
Ilygropila dilatata, IIook: fil. et Tayl. 168
Itymenophyllun demissum, So. 104
—— flabellatum, Lab. 10.
- minimum, A. Rich. 103
Hymenophyllum multifidum, Szo
Page 104
-nitens, Br 105
___ram, B. ib.

 - semibivalve, IIook. et Grev $i b$.
Hypuea multicornis, Mont. I87
Hypmun aciculare, Brid. 14.0
__ acutifolium, Mook.fil.et Fils. Tab.LA. Fig.V 138
- Arbuscula, Sw 139
- bifarium, Hook 137
—_ chlanydophyllum, Mook. fil. et Wils.
Tab. LXI. Fig. I. 139
- cochlearifolinm, Sclue ib.
-_ comosum, Lab. 140
_- consimile, Hook, fil.et Wils. Tab.LX. Fig. IV 137
- cupressiforme, L 141
- dcusum, Sio. 137
-Fig. III.$i b$.
-- filicinum, L 147
—fleaite, Hook. 139
- ? Alexile, Sw ib.
- fluitans, L. 141
—_gracile, $I l o o k$. fil. et Hils. TAb. LXI. Fig. III. ib
- 1 hispidum, Hook:fil.et Hils. Tab.LAI. Fig. 1I. 140
-_ leptorhynchum, Brid. 141
_-rutabulum, L. 138
_-s scabrifolium, Hook. fil. et IVils. TAB. LX.
Fig. VI. ib.
- serpens, L. it.
- spiniforme, L. 137
—— Terre Nove, Brid. Tab. LXI. Fig. IT 142
IIypopterygius, concinmum, Brid. 136
- tamariscinum, Bricl. ib.
Hysterium breve, Berk: Tab. LXVIII. Fig. VIII. 174
Lridea Radula, Bory 1SS
Isobolus Cuminyhami? Alph. D.C. 42
Isolepis Ancklandica, Hook.fil. Tab. L 88
Isothecium Arbuscula, Brid 140
——bifarium, Brid. 137
-_ comosum, Brid. 140
Jania Hombroniana, Mont. 18.1
Juncus Antareticus, Slook. fil. TaB. XLVI 79
- inconspicuus, D'Uro. 80
Juncus Magellanicus, Lam
Page 81- Scheuchzerioides, Gaudich.
Jungermanuia acinacifolia, Hook. fib et Tayl. Tab. LXII. Fig. V 144
-_ albovirens, Hook. fil. et Tayl. Tar. LXVI.Fig. IV.166
——albuła, IIook. fil. et Tayl. Tab. LIV. Fig.VI. 159
- allodonta, Hook: fil. et Tayl. 155
——allophylla, Hook. fil. et Tayl. Tab. LXT1.
Fig. I. 163
-Aquilegia, Hook. fil. et Tayl. 161
——argentea, Hook. fil. et Tayl. Tab. LXVI
Fig. VI.167
__ atcrrima, Hook. fil. et Tayl. Tab. LXV1.
Fig. III 164
——atrovireus, Hook. fll. et Tayl. 161
——australis, Hook. fll. et Tayl. Tab. LXV
Fig. III 156
Balfowiana, Tayl. 1 ± 7
- Billardieri, Schwey. 156
——bispinosa, Hook. fll. et Tayl. Tab. LXTV.
Fig. VII. I53
- curcinalis, Lehm. 148
- clavigera, Hook. 163
- coalita, Hook: 157
-_ cognata, Hook. Nil. et Tayl. Tab. LTIII.
Fig. III. 145
- colorata, Lehm 149
-_ congesta, Mook. fil. et Tayl. 164
- complanata, L. 161
-complanata, β, Hook. ib.
__ cymbalifera, Hook. fil. et Tayl. Tab. LXIT151
-_diplophylla, Ilook. fil. et Tayl. 'Tab. LXIV.
I52
Fig. IV.158
———elegantula, Mont. 162
__ fascicuLata, Lind. 147
-_fissistipa, Hook. fil. et Tayl. 157
- flabellata, Lab. 167
- furcata, L. ib.
- fuscella, Hook. fil. et Tay Tab. LAIII
Fig. V. 149

Jungermamia grisea, Mook. fll. et Tayl. Tab.LXIV.

Fig. VIII.
154
-_hemicardia, Hook. fil. el Tayl. Tab. LXIII.
Fig. II.
$14 S$
——hippurioides, Mook. fil. et Tayl. Tab. LXV.
Fig. VII. I59
——hirsuta, Nees . 160
__ implexicaulis, IIook. fil. et Tayl. 165
__ incisa, Hook. 167
__ intortifolia, Hook. fil. et Tayl. Tab. LXIV.
Fig. I. 150
__ involuta, Mont. 159
__ lacvifolia, Hook. fil. et Tayl. I57
- latitans, Hook. fil. et Tayl. 166
_L Lehmanniana, Lind. 146
—— lenta, MIook. fil. et Tayl. 153
__ lencophylla, Hook. fil. et Tayl. Tab. LNT.
Fig. IV. 157
__ Magellanica, Lam. 162
__ Mimosa, Mooñ. fil. et Tayl.. 165
—_minuta, Crantz . 152
__ mollissima, ILook. fil. et Tayl.. 160
__ multicuspidata, Hook. fil. et Tayl. 150
—— multifida, L. 167
_- multipenna, Hook. fil. et Tayl. 155
_- myosota, Hlook. fil. et Tayl. 163
-_ notophylla, Hook. fil. et Tayl. TAB. LMTV.
Fig. III.
151

- Novr-Mollandir, Nees 159
-_mutans, Hook. fil. el Tayl. Tab. LXV.
Fig. VIII. I60
-_occlusa, Hook, fli. et Tayl.TAB.LXII.Fig. VIII. 146
——ochrophylla, Mook. fil. et Tayl. Tab. LXII.
Fig. VI.
145
—— pachyphylla, Lehm. 147
——patentissima, Hook. fil. et Tayl. Tab. LXV.
Fig. V.
158
—— perigonialis, Hook. fil. et Tayl. Tab. LiII. Fig. VII.

145
——perpusilla, Mooí, fil. el Tayl. Tab. LIIV.
Fig. IX.
154
—_ Phyllanthus, Hook.. 167
-T physoloba, Mont.$16 I$

Jungermannia pinnatifolia, Ilook. Tab. LXIII.
Fig. I.
147
-_planinscula, Hook. fil. et Tayl. Tab. LXV.
Fig. II. 156
_-pleurota, IIook: fil.et Tayl. Tab.LAIII.Fig.IV. I49
-_ plicatiloba, Hook. fil. et Tuyl. I66
——polyacantha, Hook. fil. et Tayl. Tab. LXV.
Fig. IX.
161
__ primordialis, Hook. fil. et Tayl. 165
_— ptychantha, Mont. 163
——reticulata, Hook. fil. el Tayl. Tab. LXVI.
Fig. II. ib.
—_rostrata, Hook. fil. et Tayl. ib.
——saccata, Mook. 153
__ scandens, Mout. 165
—— schismoides, Mont.. 150
__ Scolopendra, Hook. 160
—_simuosa, Mook. 157
——spinifera, Hook. fil. et Tayl. Tab. LXV. Fig.I. 155
_— strongylophylla, Hook. fil. el Tayl. Tab.LXII.
Fig. 1X.
146
—— strigia, Hook. fil.el Tayl. TАв. LXII. Fig. IV, 1\&4
-_ tenacifolia, Ilook. fil. et Tayl. Tab. LXIV.
Fig. IT. 152
——teuax, Grev. 155
_-_tenella, Hook. fil. et Tayl. 153
——_tetradactyla, Mook. fil. et Tayl. 158
__turgescens, IIook. fil. et Tayl. Tab. LNIV.
Fig. II. 150
__ Urvilleana, Mont. 153
__uvifera, Hook. fil. et Tayl. I62
_- vertebralis, Gottsche 153
Laminaria, sp.? . 177
Laurencia pinnatifida, Lam. 184
Lecanora Hypnorum, Ach. I99
__ parella, Ack. ib.
—_tartarea, Ach.. ib.
__ versicolor, Hook. fil. et Tayl. ib. ib.
Lecidea geomæa, Tayl. ib.
- incana, Hook.. ib.
-_uliginosa, Ach.. ib.
Leptinella lanata, Hook.fil. Тав. XIX. 26
——plumosa, Ilook.fil. Tab. XX. 28
Leptinella propinqua, Hook.fil.

Page
Myosotis Antarctica, Hook.fil. Tab. XXXVIII.. 57

Leptostomum gracile, Br. 122122
Lichen affinis, Eng. Bot. 198
Ligusticum antipodum, Hombr. et Jacq 17
Leskea concima, Hook. 136

- flexilis, Hedro.. 139
- Nove Hollandiæ, Scluvagr. 136
—— Tamariscina, Hedlo. ib.
Leucodon Lagurus, Hook. ib.
Lobelia angulata, Forst. 43
- concolor, Br 42
- hederacea, $\boldsymbol{\beta}$. Hook. et Arn. 43
- imundata, A. Cumn. 42
——littoralis, R. Cumn. 43
- odorata, Grah $i b$.
Lomaria lanceolata, Spr 110
—— procera, $S p r$. ib.
__procera, var., Hombr. et Jacq. ib.
Lophiodon strictus, Hook. fll.et Wils. Tab. LLX.
Fig. II. 130
Lazula crinita, Hook. fil. Tab. XLVIII. 84
Lycopodium clavatum, L 113
- comans, Hook. fil. 112
__ filicaule, Hook. fil. $i b$.
_-Jussieui, Dess ib.
—— Magellanicum, Sw 113
_- pachystachyon, Desv. 115
-reptans, Banks et Sol., MS. 112
-_ scariosum, Forst. $i b$.
__ varium, Br 115
Macrocystis pyrifera, Ag. 177
Macromitrium acutifolium, Brid. 126
- longirostre, Seluecegr. 126
Madotheca elegantula, Mont 162
Marchantia polymorpha, L 168
Marginaria Urvilleana, A. Rich. 176
Mastocarpus Radula, Kïtz 188
Melalenca lucida, Forst. 12
Metrosideros Iucida, Menz. ib.
-umbellata, Cav. ib.
Mnium pendulum, Sm. 133
Montia fontana, L. 13
- lamprosperma, Cham. ib.
- capitata, Ilook. fll. Tab. XXXVII. 56
Myrsine? divaricata, A. Cunn. 51
Nertcra depressa, Banks 23
Nitophyllum erispatum, Hook. fll. et Harv. Tab. LXXI. Fig. I 185
- punctatum, Grev. ib.
Nothogenia variolosa, Mout. 188
Opegrapha atra, Pers. 200
- deniyrata, Ach. $i b$.
Oreobolus pectinatus, Hook. fil. Tab. XLIX. 87
Orthotrichum acutifolium, Hook. et Grev. 126
--_ augustifolium, Hook. fil. et IFils. Tab. LVII.
Fig. VIl125
_—crassifolinm, Mook. fil. et Wils. Tab. LVII.
Fig. VIlI. ib.
- longirostre, Hook. 126
Ozothamuus Vanvilliersii, Hombr, et Jacq. 29
Panax simplex, Forst. Tab. XII 18
Parmelia rubiginosa, Ach. 198
sphinctrina, Mont. 199
Peltidea polydactyla, Ach. 197
Philonot is pendulu, Brid. 133
Phyllophora oltusa, Grev. 187
Phymatodes Billardieri, Presl 111
Plantago Aucklandica, IIook. fil. Tab. XLII 64
- camosa, Br. Tab. NLlll. 65
- triantha, Spreng. $i b$.
Pleurophyllum criniferum, Hook.fl. Tab. XXIV.- XXV 32
— speciosum, Hook. fl. Tab. XXII.-XXIII 31
Plocamium Binderianum, Kütz 186
-- coccineum, Lyugb. ib.
- fenestratum, Kütz. ib.
—— Lyagbyanиan, Kütz. ib.
- vulgare, Lam. ib.
Poa aunua, L 101
——breviglumis, Hook. fil. ib.
——ramosissima, Hook, fil. ib.
Polypodium Billardieri, Br 111
-_ grammitidis, $B r$. ib.
——Phymalodes, Rich. ib.
- scandens, Lab ib.

INDEX.

Polypodium villoso-viscidum, Aub. Page 110- viscidum, Spr.Polysiphonia botryocarpa, Mook. fil. et Harv.Tab. LXX.181

- ceratochlada, Mont. Tab. LXXIV. Fig. II 183
- cladostephus, Mont. 184
——decipiens, Mout. $i b$.
- dumosa, Hook. fil. et IIarv. Tab. LXXV
Fig. I. 182
—— Lyallii, Hook. fll. et IIarv. Tab. LXXIV.
Fig. I.ib.
—— punicea, Mont. ib.
__rudis, Hook.fil.et Harv. Tab.L_XXIV. Fig. II. 193
Polytrichum Magellanicum, Hedw. Tab. LIX.Fig. III.132
Polyzonia cuneifolia, Mont. Tab. LXXVI 181
Porina gramulata, Hook. fil. et Tayl. 199
Porphyra Capensis, Kiitz. 193
- columbina, Mont. $i b$.
Pozoa reniformis, Hook. fil. Tab. XI. 15
Pratia angulata, Mook. fil. 43
——arenaria, Haok. fil. Tab. XXIX. 41
——? Boliviensis, Alph. D.C. 43
- Cuminghami, Hoak. fil. 42
_- elliptica, Hook. fil. 43
- erecta, Gaudich. 42
- hederacea, Cham 43
- hederacer, β, Alph. D.C. ib.
- repens, Goudich. 42
Pteris Vespertilionis, Lab. 110
Ptilota formosissima, Mont. Tab. LXXVII 190
Racomitrium lanuginosum, Brid. 124
Radulua plys solaba, Mont. 161
Ramalina inflata, Hook. fil. et Tayl. Tab. LXIX.Fig. I.194
Ranunculus acaulis, Banks et Sol. Tab. II. 4
- pinguis, Тав. I 3
- subscaposus, Hook. fil. 5
Rhizogonium Novæ Hollandiæ, Brid. 136
Rhodomela glomerulata, Mont. 180
- multicornis, Mont. 187
Rhodomenia dichotoma, Hook, fl. et Harv.
Tab. LXXII. Fig. I. 186
Rhodomenia Hombroniana, Mont. Tab. LXXII.
Fig. II. 186
ornata, Mont. il.
Riccia? cochleata, IIook. fil. et Tayl. Tab. LVI. Fig. V 168
Richea dracophylla, Br 50
- pandanifolia, Mook. fil. $i b$.
Rostkovia gracilis, Hook. fil. Tab. XLVII 83
- Magellanica, Haok. fil. 81
- sphacrocarpa, Desv. 81
Rumex cuneifolius, Campd. var. 67
Sagina muscosa, Sol. 13
-_ subulata, D'Urv $i b$.
Sargassum Urvillcanum, A. Rich. 176
Scapania Urvilleana, Mont. 153
Schisma Scolopendra, Nees. 160
Schizæa australis, Caudich. 111
- palmata, Hombr. et Jacq. ib.
Schizonema crispum, Hont. 193
Schlotheimia quadrifida, Brid. Tab. LVIII.
Fig. I. 186
Sclerotium durm, Pers. 175
Scytosiphon Filum, var., Ag. 179
Sicversia albiflora, Hook. fil. Tab. VII 9
Spergula apetala, Lab 14
Sphacelaria callitricha, Agardh 190
- funicularis, Mant. 180
Sphæria depressa, Berk. Tab. LNYIII. Fig. V. 172
—— Herbarum, Pers. Tab. LXVIII. Fig. III. 170
- nebulosa, Pers.? 171
—— nigrella, Fries? ib.
-_ phæosticta, Berk. Tab. LXVIII. Fig. IV. $i b$.
Sphrrocionium demissum, Presl 104
Spherophoron australe, Laurer 195
_- australe, Hook. fil. et Tayl. $i b$.
- compressum, Ack. ib.
-_ curtum, Hook. fil. et Tayl. ib.
-_ insigne, Laurcr ib.
- tenerum, Laurer. ib.
Sphagnum compactun, Brid. 122
——cymbifolimm, Tab. LVI. Fig. VI. 121
Splachnum octoblepharum, Hook. Tab. LVII.Fig. IV.123
Splachnum purpurascens, ITook. fil. et Trils. Page
Thelymitra? uniflora, Hook. fil. Page
Tab. LVII. Fig. V. 123
Sporoctunus viridis, Ag 178
Sprucea perichætialis, Hook. fil. et IFits 128
Stegania lanceolata, Br 110
- procera, Br ib.
Stellaria decipiens, Hook. fil. 7
——media, With s
—uniflora, Banks et Sol., MS. 14
Stereocaulon Argus, Ifook. fil.et Tayl. Tab.LXXIX.
Fig. II196
- macrocarpum, A. Rich. ib.
_- ramulosum, Ach. Tab. LXXX. Fig. I. 195
Sticta cellulifera, IIook. fll. et Tayl. 198
- faveolata, Delise 197
——Freycinctii, Delise ib.
- glabra, Hook. fil. et Tayl. ib.
- linearis, Hook. fil. et Tayl. ib.
- Menziesii, Hook. fll. et Tayl. 198
- orygmæa, Ach. 197
- Richardi, Mont 198
—— variabilis, Ack. ib.
Suttonia divaricata, Hook. fil. Tab. LXXXIY. 51
- temuifolia, Hook, fil. 52
Thamophora Plocamium, Ag 186
Thelotrema lepadinum, Ach. 200
Thelemitra stenopetala, Hook. fil 69
Tillaa moschata, D.C. 15
Torresia redolens, R. et S. 92
Trichostomum lanuginosun, Hedw. 124
- perichictiale, Hook 128
Trineuron spathulatum, IIook. fl. Tab. XXVII 24
Trisetum phlceoides, Kunth 97
-- subspicatum, Bearv. ib.
Ulva latissima, L. 193
——reticulata, Forsk. ib.
Uncinia Hookeri, Boott, Tab. LI 91
Uredo Antarctica, Berk, Tab. LXVIII. Fig. II. 170
Urtica Aucklandica, Hook. fil. 68
- australis, Hook. fil. $i b$.
Usnea barbata, Ack. 194
——hirta, Ach 193
- plicata, Ach. ib.
Yeronica Benthami, Тab. XXIIX.-XL 60
- decussata, Ait 58
- decussata, β, Banks et Sol. ib.
- elliptica, Forst. ib.
——odora, Hook. fll. Tab. XLI 62
Weissia contecta, Hook. fil. et Wils. Tab. LYIII.Fig. III127
- crispula, Ludw. Tab. LTIII. Fig. I. ib.
Niphophora Billardieri, Mont. Tab. LXIV.
Fig. III. 177

THE BOTANY
 OF

 THE ANTARCTIC VOYAGE

 THE ANTARCTIC VOYAGE
 OF
 > H.M. DISCOVERY SHIPS EREBUS AND TERROR, IN THE YEARS $1839-1843$.

 H.M. DISCOVERY SHIPS EREBUS AND TERROR,

 H.M. DISCOVERY SHIPS EREBUS AND TERROR, IN THE YEARS 1839—1843. IN THE YEARS 1839—1843.

 UNDER THE COMMAND OF

 UNDER THE COMMAND OF
 CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., T.R.S., \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND Botanist to THE EXPEDITION.

Ficloria Barrier and Land. Lat. 75 deg. S. Mount Erebus (active Volcano), and Mount Terror

LONDON:

REEVE, BROTHERS, KING WILLIAM STREET, STRAND.
1847.

Clye kight manourable

 THE EARLOF MINTO, G.C.B.,етC., हtc.

My Lord,

As First Lord of that Board of Admiralty by which the Antarctic Expedition was so admirably equipped;-as the steady patrou of its interests, not only during but subscquent to your administration of this high office;-and as the kind friend to whose encouragement and advice I am indebted for most of the facilities which have been granted me towards the publication of the Botany of the Antarctic Toyage; - I feel the excrcise of the privilege you have accorded me, of dedicating the present Volume to your Lordship, to be equally an honour and a pleasure.

Belicve me to remain,
With sentiments of the highest respect and esteem,
Your Lordship's truly obliged and grateful servant,
JOSEPH DALTON HOOKER.
hoyal Gardens, Kew, Sept. 6th, 1847.
I.

FLORA ANTARCTICA.

PART II.,

botany of fuegia, TIIE FALKLANDS, KERGUELEN'S LAND, ETC.

BOTANY

THE ANTARCTIC VOYAGE.

FLORA ANTARCTICA.

II. ANTarctic regions, (exclu'sive of Lord Auckland's Group and Campbell's Island).

The First Part of the Botany of the Antaretie Voyage is devoted to the regetation of a few islands, containing plants so peculiar, and differing so remarkably from those of the other South Polar Islands as to render it advisable that they should be described by themselves, and shoukd form a distinct and separate Flora. A review of this Flora, now completed, shows the vegetation of Lord Auckland's group and Campbell's Island to be, in some measure, a contimation of that of New Zealand. This faet might have been inferred from the geographical position of those islands, which are moreover the only comentries known where the peenliar features of the Polynesian Flora are represented by species characteristic of an Antaretic climate; such features being indieated chiefly by the pancity of Composite and predominance of some shrubly Rubiacere.

The pages of the present portion of the work are destined to contain deseriptions of all the plants ascertained to exist in what we may term the Antarctic regions, (Lord Auckland's and Campbell's Islands excepted), viz. Fuegia and some part of the south-west coast of Patagonia, the Falkland Islands, Palmer's Land, and the adjoining groups, as the Sonth Shetlands, South Georgia, \&c., and (proceeding eastward) Tristan d'Acunha and Kerguelen's Land. I shall preface the Flora of these widely severed, and in some cases very isolated spots, with a few remarks upon each, and on the general character of the whole as forming one great botanical region.

It may appear paradoxical, at first sight, to associate the plants of Kerguclen's Land with
those of Fuegia, separated by 140 degrees of longitude, rather than with those of Lord Anckland's group, which is nearer by about 50 degrees. But the features of the Flora of Kerguelen's Land are similar to, and many of the species identical with, those of the American continent, constraining me to follow the law of botanical affinity in preference to that of geographical position. Two alternatives presented themselves, each possessing some advantages over the course which is now adopted, of dividing the Antarctic Botany into two large sections: one, to consider each little island or group as a separate flora; but this would lead to much repetition, and is not warranted by the amount of novelty exhibited in any of the groups : the other, to unite all under one head; a plan certainly accompanied with many advantages, but counterbalanced by the consequent delay of the work, for it would have obliged the author to study the plants of two very different botanical regions at the same time. The remarkable beanty and novelty of the regetation in Lord Auckland's and the neighbouring Islands also merited particular consideration. As it is, some plants described in Part I. will re-appear in the present; very few, however ; so fow as to excite surprise, when it is remembered that lands, far more remote from Tierra del Fuego than those to the south of New Zealand, possess the characteristics of the Fuegian Flora.

A certain affinity in botanical productions has often been traced in widely severed comtries, and Professor E. Forbes* has lately brought geological canses to bear inmediately upon

[^19]this subject. In reference to this curions topic I would adduce, as corroborative perhaps of his speculations, the general geographical arrangement of those islands, whose botany I am about to deseribe as that of onc comutry. 'They stretch from Fuegia on the west, to Kerguelen's Land on the east, between the parallels 45° and 64° of sonth latitude. Thronghout this portion of the world the land exlibits a manifest tendeney castward, from the extreme south of the American continent ; for there are no fewer than five detached groups of islands between Fucgia and Kergnelen's Land, but none between the latter island and the longitude of Lord Anckland's group, nor between this last again and the westem shores of Fucgia and Patagonia.

T'ierra del Fuego and the neighbouring southern extremity of the American continent appear to be the region of whose botanical peculiarities all the other Antarctic Islands, except those in the vicinity of New Zealand, more or less evidently partake. It presents a Flora, characterizing isolated groups of islands extending for 5000 miles to the castward of its own position; some of these detached spots are much closer to the Afriean and Anstralian contiments, whose vegetation they do not assume, than to the American; and they are all situated in latitudes and moder circumstances eminently minaromable to the migration of species, save that their position relatively to Fuegia is in the same dircetion as that of the violent and prevailing westerly winds*.

Tierra del Fuego itself is a crowded archipelago, forming the sonthem extremity of
of geologieal or other feature. The river Obi, in Siberia, whose direetion is towards the north-west, from the latitude of 50° to 67°, affords a most remarkable instance of this phenomenon, first mentioned by Gmelin and afterwards by Humboldt. Some of the most conspicuous trces attain cither of its banks, but do not cross them, those of the regions to the west of this stream re-appearing only on the confines of China. I have received from Baron Ilumboldt much lighly interesting verbal information npon the distribution of organized beings in siberia; the disappearance of some animals and plants over a rast area, and their re-appearance in another, in obedience to no known law, are very striking facts. I must content myself with referring to the preface to Gmelin's ' Flora Sibirice,' for copious examples of these seeming anomalies in the distribution of regetables.

Many striking examples on the other hand may be instanced, of countries closely approximated in geographical position, but unlike in geological and other features, presenting widely different botanical aspects; such sudden changes in the vegetation we nay observe on the cast and west flanks of the Andes and on the Himalayah; in the Ftoras of St Helena and Ascension, and the coast of Afriea; or of Tristan d'Acumha and the Cape; of New Zealand and Australia; of Juan Fernandez and the Galapagos and the coast of Ameriea; of Madagascar and South Africa; but more espeeially in the disparity that precails between the Floras of the separate islands of the Galapagos and of the Sandwich group.

* The prevalence of certain winds in favouring the migration of plants must not be overlooked, though too much stress has been laid by some writers upon their influcnce. An element that will earry particles of dust for hondreds of miles through the apper regions of the air, must be a powerful agent in disseminating the sporules of the lower orders of plants; so much so indeed that I should muesitatingly deny the necessity of a double creation, to accomt for the same species of Moss or Lichen inhabiting any two spots on the globe, lowerer widely apart. That currents of air are not equally ctficacions in wafting the sceds of the ligher orders is proved by the absence in the British Isles of many common European plants; thongh when once introduced by other means they increase rapidly. We further see that the tide of vegctation (like the population) has, in the intertropieal Pacific Islands, set in a direction contray to the prevailing winds, namely, from the Asiatie and not from the Americau

America; it is of an irregularly four-sided figme, bounded on the north by the strait of Magalhaens, and on the east and west respectively by the South Atlantic and South Pacific Oceans, whilst its southern shores are washed by the Antarctic Sea; the main body of land lies between the 53 rd and 56 th parallels of latitude and the 64 th and 70 th degrees of west longitude, and its greatest extension is from east to west, indicated by a diagonal of 500 miles. The general appearance of the whole has been aptly compared, ly Mr. Darwin, to what would be presented by a partially submerged chain of momtains. These islands are, in fact, formed by the southern termination of the great Cordillera that traverses both Americas, which here trends to the eastward, and whose further extension is probably indicated by South Georgia in the same latitude ; and possibly also by Prince Edward's Island, the Crozets, and Kerguelen's Land still more to the east, situated though these be in another ocean. The natural features of Fuegia have been admirably described by rarious royagers, and more particularly by Cook, King, Fitzroy, and Darwin, to whose writings I wonld refer for more particular information. 'The exposed momntain-tops rise to a height of 7000 fect above the level of the sea, and the lower limit of perpetual snow is reckoned at $3500-4000$ feet.

The botanical features exhibited by this country are not circumscribed by its geographieal limits; along the north-east shores the very distinct Flora of East Patagonia accompanies the geological formation prolonged there from the Patagonian plains. On the south-west and south sides again, the vegetation is a contimuation of that of West Patagonia, and is characteristic of the western flank of the Cordillera, from South Chili to Cape IIorn. Thms it is that we find the Andes dividing two botanical regions from the North Polar almost to the Antarctic circle. The greater part of Fuegia is formed ly the Andes alone; but the plants of the northeast portion, where the granitic formation of Patagonia introduces a change in the regetation foreign to that of 'Tierra del Fuego, will be necessarily inchded in the present Flora.

The Deciduons Beech (Fagns antarctica), is the most distinguishing botanical production of this comntry. In company with the Evergreen Beech (F. Forsteri), it covers the land, especially on the west coasts, as far north as the Chonos Archipelago, in latitude 45° south. It is hardly seen in the north-east portions of Fnegia proper, northward of Staten Land, and thongh abmolant on the west flanks of the Andes, throngh fourteen degrees of latitude, is unknown on the Atlantic side of Patagoniat. I have assumed therefore the shores of the
shores: and again, that the botany of the North Atlautie Islauds, the Azores, Madeira, and the Canaries, though these groups are situated in the westerly winds, contain a large proportion of European species. The violenee of the peremial westerly gales to the southward of 45° is proverbial anougst sea-faring men; sueh winds earried HI.M.S. 'Chantieleer' from Cape Horn to the Cape of Good Hope, a distance of four thousand miles, in twenty-seven days, and have enabled an occanie fowl, the Cape pigeon, to maintain its position close to a ship during the whole of that distance; but still I am not inclined to attribute the prevalence of the Fuegion Flora over so vast an area to then intluenee, when exerted against many other opposing agents.
\dagger Trees allied to these seem to have characterized the ancient or fossil flora of Fuegia, for I owe to Mr. Darwin's kindness impressions of the leaves of three apparently distinct speeies of deciduous Beech, and which are mentioned in that gentleman's journal.
strait of Magathaens to be the northern limit of the Fuegian Flora castward of Port Famine, and have included in, or rather added to that Flora, all the known plants of the Pacific side of the Andes, reaching north to the Chonos Archipelago. The latter position is peculiar, in the Becel being there replaced, at the level of the sea, with other trees; by the sudden ehange in the aspect of the coast regetation that the flora of Chiloe, immediately to the northward, presents; and by its being only a few miles beyond the "glacier-bomed Gulf of Penas," where peremial ice descends to the level of the ocean in a latitude nearly midway between the Equator and the Antarctic Pole.

The snccessive labours of Commerson, Banks and Solander, and of Menzies, early called the attention of Botanists to the singular aspect of the Fuegian Flora, apparently incompatible in its luxuriance with the rigour of the climate. The subsequent exertions of Captain King and Mr. Anderson, and of Darwin, during the royages of Captain Fitzroy, of D'Urrille, and the officers of owr own late Antaretic Expedition, have nearly exhausted the Phenogamic productions. Mueh remains, however, to be done amongst the lower Orders, for the lastnamed expedition procured from a small island in the immediate vicinity of Cape Horn, more than twice as many Cryptogamic species as had been previonsly detected in the whole of Tierra del Fuego. These, however, hardly affect the general aspect of the regetation, which may now be considered as satisfactorily known.

The Falkland Islands rank next in botanical importance to Fuegia. Though lying to the northward of the main body of that country, their vegetation is so influenced by climate and by some other peculiarities common to these islands and the Patagonian plains, that they produce no tree whatever. They are sitnated betreen the parallels of 51° and 53°, and the meridians of $57 \frac{1}{2}^{\circ}$ and $61 \frac{1}{2}^{\circ}$ west, and consist of an eastern and western island, nearly equal in size, and together forming an oval, whose axis lies cast and west and extends about 160 miles. The general outline is jagged, like that of Fuegia, and similarly indented by deep inlets and ramifying bays ; but their level or undulating surface, never rising above 2000 feet, and the geological formation, bear no resemblance to an arehipelago formed by a submerged chain of momtains. Altogether, the Botanical and other characters of the Falklands are allied to the Atlantic coast of Patagonia, opposite to the strait of Magalhaens, from whence they are only 300 miles distant.

The most evident causes for the alsence of trees in the Falkland Islands are the dislocation or removal of that group from the main land; their comparatively plane surface, everywhere exposed to the violence of the westerly gales, and more especially to the rapid evaporation and sudden changes in temperature and in other metcorological phenomena. The southerly and westerly winds are violent, cold, and often accompanied by heavy snow-storms; the casterly and northerly arrive saturated with warmer sea vapours, which, quickly condensing over the already chilled surface of the soil, form fogs and mists that intercept the smn's rays; whilst the north-westerly winds are singularly dry and parching, from the inflnence of the Patagonian plains over which they blow. Sueh sudden alternations from heat to cold, and
from damp to dry, are particularly inimical to luxuriant vegetation, and no foliage but perhaps the coriaceous growth of Australia conkd cudure them. The characteristics both of Fnegia and Patagonia may be seen mingled in the Falklands, and except Feronica elliptica (Part I. p. 58), which is chiefly confined to the western coasts of the westem island, the plants of both these countries appear together, overspreading the whole surface of the islands. Few species are peenliar, and no genus or order predominates to any remarkable extent, muless it be the Graminece: the species themselves are well marked and do not rou much into varieties. Though the want of shade is unfaromable to the fruiting of Mosses and Hepatice, there are a consideralle number of species of those orders, and some are identieal with those of the American momtains and of Europe.

Bongainville was the first voyager and man of science who noticed the vegetable productions of the Falklands, the most remarkable of which are certainly the Tussac Grass and the Balsam-bog (Bolax glebaria). The first colleetion of importance was formed by M. Gaudichand, under the following rery peculiar circumstances.
M. Gandichand accompanied Admiral Lonis de Freyeinet, who sailed from Fifance in the year 1517, in command of an expedition, composed of two corvettes, the 'Uranie' and 'Physicieme.' The objects of the royage were entirely scientifie, and the chicf plaees visited were New Holland and the East ludian Islands to the north of that country, the South Sea Islauds, 'Tierra del Fuego, and the Falklands. The magnetical obserrations, chiefly by Admiral Freyeinct himself, were amongst the most valuable ever made in the Southern Hemisphere, previous to the voyage of the 'Erebus' and 'Terror,' and many other results of the expedition were of equal importance. After having nearly ciremmavigated the globe, the navigators donbled Cape Horn in 1S20, and regaining the Atlantic Ocean, maturally expected that the dangers ineident to such a royage were over. On preparing to enter Berkeley Somd, however, the ' Uranie' struek upon a hidden rock close to the shore, but on the lee-side of the island. If the nsual wind and weather had prevailed on that oceasion, the frigate umst have been blown out to sea and probably all hands lost; the violence of the gales and boisterons ocean incident to that latitude often rendering the boats mavailable when most recpuired. Providentially the elements allowed Admiral Freyemet's skill to be effectual in saving his ship, which he ran ashore in Berkeley Somnd. Amongst the losses oceasioncd by this calanity was that of the greater part of the collections of the entire voyage, made by the indefatigable Gaudichand ; 1500 species alone escaping destruction. The probable value of the rest we may estimate from the excellent botanieal notices of the varions islands visited, which show the materials to have been very considerable, or sueh knowledge could not have been displayed. Especially we must appland the perserering zeal with which this naturalist commenced forming a collection which constituted the fom dation upon which all other floras of the Falklands have been raised.

The results of MI. Gaudichand's labours were first published in the "Amales des Sciences Naturelles," and afterwards in the botanical portion of Admiral Freycinet's voyage. The
late Admiral D'Urville visited these islands during Admiral Duperrey's voyage in the French corvette 'Ia Coquille,' and added some additional species to those of Gandichand, and these were described in the "Amales de la Société Limèenne de Paris." More recently Mr. Darwin formed a small collection of Falkland Island plants, as did Mr. Wright, a mercantile gentleman, and Captain Sulivan, now commanding H. M. S. 'Philomel,' who had previonsly visited this group during Captain Fitzroy's royage*. The 'Erebus' and 'Terror' remained in Berkeley Sound for the five winter months of 1842 ; during which year almost all the previonsly known species were gathered, with mumerous others, especially Cryptogamia, by myself and Dr. Lyall, whose beantiful collection of the interesting Algee of this group of itself forms an important addition to Antarctic Botany.

Considering the distance of the Falkland Islands from the continent, their size, the extent of surface covered with regetation, and above all, their geological formation and the nature of their elimate, the mumber of peculime species is very insignificant ; such circumstances generally accompanying or being indicative of a concomitant change in botanical features, specific difference itself being by some attributed wholly to the operation of these causes, and the immutability of species thence called in (puestion. The Falkland Islands appear ill adapted to the more striking vegetation of Fuegia or of Patagonia, if we may judge from the absence of trees and eren of such bushes as Berberis, Escallonia, Fuchsia, Ribes, \&c., which grow in the former comentry and to all of which the changeable nature of the climate is injurious; while, on the other hand, the mean temperature is too low for the Legrminosa, IFalvacea, and other predominant Orders of Patagonia. It is more remarkalle that some of the plants of each are scen, composing together the whole regetation, yet appearing melhanged by a climate that is certainly unfavourable to the general flora of those distant regions where these very species most abomd. To conclude by an example, Sisyrinchizm and Oxalis emneaphylla will not associate themselres with the Tussac and Empetrum in Cape Horn, nor are Astelia and Caltha appendiculata to be fonnd in connmy with Nassanvia and Calceolaria Fotheryillii on the coast of Patagonia, though all these may be seen growing side by side in the Fatklands in the greatest profusion.

Immediately to the sonth of Cape IIorn are groups of islands, and possibly a larger body of land. Vegetation in the Southern Hemisphere reaches the northern shores of these inhospitable spots, where, at a distance of no less tham thirty-six degrees from the actual Pole and three degrees to the northward of the Antarctic circle, the flora of the south finds its extreme limit.

The South Shetlands have been visited by an American gentleman of scientific acquirements, Dr. Eights, who detected a small species of Grass, the Aira antarctica, Ilook., (Icon. Plant. vol. ii. t. 150), the most Antarctie flowering plant hitherto discovered. One of the group, Deception Island, was explored by Captain Foster in H. M. S. 'Chanticleer,' and we

* Whilst this sheet is passing through the press I have received a collection from the Falkland Islands, containing some highly interesting plants, from W. Chartres, Esq., Surgeon of II. M. S. 'Philomel'.
gather from the account of Mr. Webster, the surgeon to that ship, that "no phenogamic plants, only a few lichens and sea-weeds," inhahit that dreary islet, although the temperature of its soil is raised by subterranem heat; its latitude is $63 \frac{1}{2}^{\circ}$ south, and longitude 60° west.

In January 1843 I landed upon a small islet, close to the main portion of Pahmer's Land, in latitude $64^{\circ} 12^{\prime}$ south, and longitude 57° west. It appeared to be the " ultima 'llmule" of southern vegetation ; the soil hard frozen, except on the very surface where it was thawed by a sum-heat which raised the temperature to 46°, while the sea was cucumbered with pack-ice and hergs; no flowering plants were to be seen, and only eighteen belonging to the Orders Lichenes, Musci, and Alga. Beyond this latitude I believe there is no terrestrial vegetation.

The South Georgian group is situated about 1000 miles due cast of Cape IIom, and exhibits a wholly different aspect from that land, being covered with peremial snows, and the harbours blocked up with everlasting glaciers; still, Captain Cook found a seanty vegetation, consisting of "a coarse strong-bladed grass, growing in tufts, wild Burnet, and a plant like moss, which springs from the rocks;" (vide Cook's ind royage). The flora of South Georgia is probably intermediate in luxwiance (if such term may be used), between the Falklands and the South Shetlands, the proximity of the Antarctic Ice being influenced by that of the large bodies of land, it approaches nearer to South Georgia than to Fuegia, and renders that climate unsuited to support even a moderate regetation.

Sandwich Land, discovered by Captain Cook, lies further south than South Gcorgia, and, like Palmer's Land, is encroached upon by the peremnial ice of the Atlantic Ocen. 'That illustrious navigator mentions two hills clear of snow, and apparently covered with a green turf, but this is all we know of their productions.

Procceding westward from Antarctic America, the next island that recpuires notice, as exhibiting an Antarctic vegetation, is 'Thistan d'Acmha. Though only 1000 miles distant from the Cape of Good Hope, and 3000 from the Strait of Magalhaens, the Botany of this island is far more intmately allied to that of Fuegia than Africa. Captain Carmichael's list (Limn. Trans., vol. xii. p. 453), contains twenty-eight flowering plants (I exclude Sonchus oleraceus); only one species of Pliglica, and one Pelargomizm, amomeng to one-fourteenth of the whole, are Cape forms; whilst seren others, or one-fourth of the flora, are either natives of Fuegia or typical of South American Botany, and the Ferns and Iycoportia exhibit a still stronger affinity. There are some points in which the vegetation of Tristan d'Acmua resembles that of St. Helena and Ascension. Thongh these islands are separated from one another by nearly thirty degrees of latitude, they lie within eight degrees of longitude, and all are the exposed smmits of ancient volcanoes, such as the highest peaks of the Andes might present, if that mighty chain were partially submerged*. The relation between the floras of Ascension and St. Helenat is

[^20]evident, though to enumerate them would be out of place here ; those between the latter island and Tristan d'Acmha are indicated by the genera Plylica and Geranium, and also by some of the Ferns and Lycopodia: as, howerer, it is also through those genera that the botany of Tristan d'Acmuna resembles that of the Cape, it may fainly be doubted whether the apparent affinity with St. Helena is not imaginary. It is a very remarkable circumstance that while these three islands all possess some of the features of the African Flora, the predominant ones arc absent ; thens, whilst the St. IIelena Flora is allied, and exclusively so, to that of the Cape in Geranium, Mellaria, and Phylica, it has no representatives of entire Orders, namely Proteacer, Rutacere, Oxalidece, Ciassulacea, Ericece, Restiacea, and many others, far more characteristic of the African regetation than are any of the plants inhabiting St. Helcua.

The other islands whose plants will find a place in this division of the 'Antaretic Flora' are situated south of the Indian continent, widely apart from the American, and so far as geograplical position is concerned, belong to Africa or India ; these are, Prince Edward's and Marion Islands, the Crozets, Kerguelen's Land, and the Islands of Amsterdam and St. Paul.

Of the two first-mentioned groups the vegetation is wholly unknown ; the former, Prince Edward's and Marion, are small contiguous islets in the 47 th degree of latitude and 35 th of east longitude; they are of rather an undulating outline and evidently volcanic formation, from a little distance they appeared covered with grass. The Crozets are a group of muel larger islauds, situated in the 4 Sth degree of latitude and between the 47 th and 49 th meridian, east of London : they are bold rocky masses, rising to a height of 6000 feet; some, though of considerable size, are quite inaccessible, and others enveloped by eternal fogs, whence

[^21]the name of Hazy Island has been given to one of the largest, of which the rocky smmmit alone is seen standing out in bold relief above an almost peremial fog-bank. During our passage from the Cape of Good Hope to Kerguelen's Land, Sir James Ross endeavoured to effect a landing, first upon Marion Island and afterwards upon one of the Crozets, but most unfortunately for the interests especially of Botany, our efforts were frustrated by the tempestuous weather. In one night, during which the 'Erebus' was hove to for the purpose of landing upon Marion Island, she was blown sisty miles to leeward of it; she then bore up for the Crozets, to meet a similar mishap ; on this occasion, haring provisions to land for a party of miserable sealers, we again beat up to Possession Island, the eastermmost of the group, and after the detention of nearly a week in the most inclement season and tempestuous ocean, only arrived at the time of the brooding of another storm, which rendered it lighly imprudent for any boat to leave the ship in an open roadstead. The aspect of this island was, like all the others we sighted, dreary and inhospitable to the last degree; a narrow belt of green herbage skinted its shore, above a line of black basaltic cliffs, which formed the iron-bound coast; while higher again rose crater-shaped barren hills of bhe-grey or brick-red colomred rocks, utterly destitute of regetation and alike dismal to the eye and mind. These were the first Antarctic Islands we had secn, and few of us will forget the feelings to which their desolate aspect gave rise ; sensations, which for intensity afford the strongest contrast with those which an English naturalist never fails to experience during his first ramble on some tropical shore.
M. de Jussien had the kindness to show me a small pamphlet, containing a slight account of the Crozets, drawn up from information received through the captains of sealing ships. The regetation is described as most seanty. From the short interview which we held with a party of sealers who had been left upon one of the group, I gleaned but little information ; they told me the species were ferr, and the famous Cabbage of Kerguelen's Land not amongst them, though another "scurvy-grass" was abundant. The regetation that our glasses enabled us to detect, formed, apparently, a matted carpet, extending from the shores upwards for a short distance, very similar to what we afterwards saw in Kerguelen's Land, though different from the long grass that appeared to clothe Prince Edward's Island. These two groups are situated only 800 miles south-east from the Cape of Good Hope, but being placed to the sonthward of the 40 th degree of latitude they partake of the climate of the Antarctic Ocean. Their position between Fuegia and Kergnelen's Land and their formation being probably the same as the latter, I have little donbt their Flora, when known, will be found to prove characteristic of the extreme south of America and in no degree similar to that of Africa, with which they are even in closer proximity than is Tristan d'Acunha. Barren and inhospitable as are the shores of these islands, there are no spots on the surface of the globe whose botanical productions would be of greater interest to science, for their regetation is wholly umknown, and is wanting to complete ow otherwise pretty extensive aequaintance with the distribution of plants throughout the islands of the high southern latitudes.

Kerguelen's Land is the eastern limit to which the Fucgian Flora extends, and though placed within the 50th degree its desolate nature is proverbial. The Antarctic Expedition arrived there in May 1840, having been blown off its tempestuons coast twice, after approaehing the land so nearly as to distinguish almost the nature of the vegetation which skirts the shores of the bays. The island presents a black and rugged mass of sterile mountains, rising by parallel steppes one above mother in alternate slopes and precipices, terminating in frightful naked and froming cliffs, which dip perpendicularly into the sea. The snow lying upon these slopes between the black cliffs gave a most singularly striped or banded appearance to the whole comerty, each band indicating a flow of volcanic matter, for the island is covered with craters whose vents have given issue to stream upon stream of molten rock. These are worn all along the coasts into abrupt escarpments, rendering a landing impracticable, except at the heads of the sinuous bays. One bluff headland to the north end of the island is a precipice, 700 feet high, and exposes such numerous sections of horizontal deposits of red, black, and grey voleanic matter that it is difficult to count them, though overlaying one another with perfect regularity and uniformity. Sterile as Kerguelen's Land now is, it was not always so, vast beds of coal are covered by hundreds of consccutive layers of igneous and other rocks, piled to a height of one thousand feet and upwards, upon what was once a luxwiant forest. Throughout many of the lava streams are found prostrate trunks of fossil trees of no mean girth, and the incinerated remains of recent ones, which had becu swallowed up simultaneonsly with the fossil, and these occur in strata of various ages, so that it seems impossible to reckon the period of time that must have elapsed between the origin, growth, and destruction of the successive forests now buried in one hill. A section of such a hill would display coal-beds and shale resting upon a blne basalt, at the level of the sea, covered again with whinstone, whercon are deposited successive layers of volcanic sand, baked clay-stones, porphyries, and long lines of basaltic cliffs, formed of perpendicular prisms, regularly shaped like those of Staffa or the Giant's Canseway, and along which the traveller may walk even for a mile without ascending or descending fifty feet. To calculate the time required for the original formation and following silicification of one such forest, and to multiply that by the equal number of different superincumbent strata, containing remains similar to those displayed at the north end of Kerguelen's Land, would give a startling number of years, during which periods the island must have descrved a better name than that of "Desolation." And if to this be added the time requisite for the deposit of the arenaccons beds containing the impressions of Fuci, of the clays afterwards hardened by fire, and of the prismatic cliffs, which, with the arenaceons, indicate that the land was alternatcly submerged and exposed as often as these successive formations occur, such a sum would bespeak an antiquity for the flora of this isolated speck on the surface of our globe far beyond our powers of calculation. If from the narrow sphere of inquiry that a few miles in extent and 1000 feet of clevation in Kerguelen's Land afford we deduce such grand results, what must be expected from the investigation of whole contincuts, whose culminant peaks reach nearly 30,000 feet, surrounded by an ocean perhaps as elevated above
the land it rests upon, and presenting fossiliferons strata that we believe are deposited at even greater depths? On the other hand, referring to the island under consideration, as it now appears, we may regard it as the remains of some far more extended body of land. Position in longitude in the Southern Hemisphere appears to determine the amount of vegetation an island may possess. Of this we have an instance in South Georgia, and the reason is evident ; the extension of the great continents is in longitude, and the elimate and other features of the islands depend upon their proximity to the land, which modifies the desolating influence of the icy ocean. The time we have granted for the formation of the varions strata composing Kerguelen's Land and the forests that successively decorated them, is sufficient for the destruction of a large body of land to the northward of it, of which St. Paul's Island and Amsterdam Island may be the only remains, or for the subsidence of a chain of monntains rumning east and west, of which Prince Edward's Island, Marion, and the Crozets are the exposed peaks. With regard to the botanical characteristies of Kerguelen's Land, full notices of them have been prepared for Sir James Ross's narrative of the Antarctic voyage, and the subject will be further treated in a work devoted to the distribution of vegetation in the southern regions.

The Islands of St. Panl and Amsterdam, litherto ranked under no geographical or botanical regions, perlaps demand notice here. Though constantly sighted by outward-bound Indiamen and Anstralian ships, they have been rarely visited, and never by scientific persons, except those accompanying Lord Macartney's embassy to China, and very recently by my former companion and zealous cooperator in all scicntific pursuits, Lieut. A. Smith, R.N. Some confusion still exists with regard to the names of these two islands, which are situated north-west of Kerguelen's Land, in the longitude of 75°, and the respective latitudes of 38° and 39°. The names of St. Paul and Amsterdam have been applied indiseriminately by varions navigators, the latter I contimue to give to the southern island, in accordance with Sir George Staunton's and with the recent south circumpolar charts, where, however, the southernmost island is represented as the larger instead of the smaller of the two. Both are no doubt of volcanic origin, though only Amsterdam is in a state of activity. The latter alone has been visited by Sir G. Stamnton, who has published an excellent account of it, and by Lieut. Smith who had the kindness to forward me most interesting particulars regarding it, and a collection of all the plants he was enabled to detect there. No one reading Sir George Staunton's accomit, and especially after looking at his plans and sketches of Amsterdam Island, can fail to be struck with the similarity its most remarkable fcatures present to those of Deception Island, one of the South Shetlands. They are of the same size; both are anmular craters, open to the eastward, inclosing a deep lagoon with a conical hill on each side of the entrauce ; that at the northern end being the lighest, and both are nuclei of heated matter, with a thin covering of soil, through which eseape streams and springs of warm or boiling water. The general nature of the regetation of Amsterdam Island is described by Mr. Smith to be a coarse tuftect grass, which springing from a bed of fine black peat composed of decomposed fibrous vegetable
matter, everywhere covers a soil so heated that the roots camot descend beyond a few inches. Sir G. Staunton mentions that changes in the level of the laud at the mouth of the cove have occured since 1697 , when the island was landed upon by Van Vlaming, a Dutch commander. Since 1793, the period of Sir G. Staunton's visit to the island, half a century has elapsed, and the changes, if any, have been insignificant. The land may possibly be rising, though according to Van Vlaming it must have sunk since his time, when there was no commmication between the sea and the lagoon, the intermediate causeway being at least five feet high. Stamnton states the depth of water on the bar to be eight feet at high water, and Lieut. Smith as 7 ft .4 in . at the highest spring tides. Nor does the temperature of the hot springs appear to have altered materially during the last fifty years, it then averaged 190°, and Mr. Smith found one that he tried to be 182° (though there are others where the temperature rises to 212°) ; the latter gentleman boiled both fish and rice in one of these springs close to the ocean's edge and they were well cooked in twelve minntes, thms confirming Sir G. Staminton's aneedote, that a person who had caught fish in the cold water of the lagoon could, with a slight motion of his hand, let it drop into a hot adjoining spring, when it would be boiled in fifteen minutes fit for eating (McCartney's Embassy, vol. i. p. 212), an accom that has been treated as fabulous.

The island of St. Paul, only fifty miles farther north, has never been visited by a naturalist; it is mentioned by several authorities as low and undulating, covered with trees and shrubs, but with no traces of internal heat; Labillardiere, who passed this island in 1792, describes it as being in a state of combustion, but he doubts whether the fires were kindled by the hand of man, or were owing to subterranean heat. The former is most probably the case, for Mr. Smith, who lost no opportmity of gaining information about these curious islands, gives me the following statement, obtained from some sealers who had visited St. Paul's. "A variety of plants grow luxmiantly in the northern of these two islands, and trees several inches in diameter; there are no hot springs there, nor is its earth at all heated; vegetables may be cultivated with tolerable success; but this island is always most difficult to land upon." This precisely tallies with other seattered notices of St. Paul's that I have seen.

I shall conclude this long digression with a notice of the vegetable productions of Amsterdam Island. Sir G. Staunton mentions a Lycopodium, a Marchantia, and a long grass; to these I can now add mother species of grass, a Plantago, Colobanthus, an Azorella? (or Ranuenculus?) a Cenomyce, and several species of Mosses. The Colobanthus is typical of a southern or Antaretic Flora; but the grasses appear more characteristic of a warmer climate; from these materials I do not feel justified in referring the vegetation to any botamical region, but consider it probable that there may be a considerable proportion of forms indicative of a warm latitude, especially in St. Paul's.

The number of species in the present Part precludes the introduction of lengthened descriptions, even were these as requisite as I deemed them in the case of the more novel
productions of Lord Anckiand's group. For the future volumes of this work, I shall, in describing the species, follow where it is practicable the plan pursued by Mr. Bentham, the excelleney of whose specific descriptions is acknowledged.

Most of the materials in this Part were amassed by myself, with the kind aid of Captain Sir James Ross, Lienteuant Smith, Mr. Daries, and particularly of Dr. Lyall, to whose exertions I feel constrained throughout to acknowledge my obligations. For many important additions to the plants of Fuegia and particularly of the west coast of Patagonia, I am indebted to Captain King and Mr. Darwin*, both of whom most gencronsly confided their collections to me for the purpose of examination and description. Captain King's is certainly the most complete flora ever formed in those comtries, whether in mumber of species or specimens of the flowering plants. To Dr. Lemam I owe the use of another set of the same plants, gathered by Mr Anderson, the gardener who accompanied Captain King, and to Commodore Sulivan, a collection formed by his son, Captain Suliran, during Captain Fitzroy's voyage. With all these advantages the materials for a Fuegian flora would still be incomplete, without the plants discovered by Menzies during Vancouver's expedition ; and still more raluable is the access afforded by the kinduess of Mr. Brown and Mr. Bennett, to the specimens, drawings, and manuseripts of Banks and Solander, who preeeded all other botanists, except Commerson, in the inrestigation of Natural History in the high sonthern regions.

The collections of Banks and Solander, wherever formed and under whatever difficulties, are lasting proofs not only of the extraordinary zeal and ability of those distinguished individuals, but of the spirit which pervaded every member of the gallant band that Cook led in his path of diseovery. Our knowledge of the Botany of New Zealand is still mainly due to the labours of the compranous of Cook's first voyage, for no subseguent travellers or even residents in that eomitry have made equally extensive collections; and that their researches in Tierra del Fuego were no less eminently successful, the constant mention of their names in this volume will abuudantly prove. Valuable as the dried plants are, their utility is doubly increased by the excellent descriptions and by the beautiful coloured drawings executed on the spot, which accompany them, and were made at Sir Joseph Banks own expense. There are daily occurring instances, to the honour of the British nation be it mentioned, of individuals who undertake and conduct scientific expeditions on their own resources, and who return riehly laden to reap the honours that await themselves as the projectors and commanders of their sereral efforts ; but how few examples have we of men of birth and fortume, who like Banks will peril a life and spend a fortune as the zealous cooperator in an expedition not his own, and the main glory of which justly helongs to another. In scientific as in all other pursuits there are ever many to lead, but few who will stoop to be followers. This just tribute to the memory of Banks is peculiarly due from me, who owe so much to his labours in the Southern Ocean.

[^22]It was during Cook's second voyage that he was accompanied by the two Forsters, men whose names are inseparably comnected with the subject of Antarctic Botany. They visited New Zealand and Tierra del Fnego, making important collections at both, excellent drawings, and finally publishing two works, which as regards the plants of those countries, must ever be considered as classical ; these are the "Characteres Generum Plantarum Maris Australis," and the "Prodomus Florule insularum Australimm." Sets of the plants, the drawings, and collections are, as well as those of Cook's third voyage, deposited in the British Mnseum.

Cook's third royage was not accompanied by any professed naturalist; all that we know of the flora of South Georgia, and, previons to the visit of the Antarctic Expedition, of the plants of Kergnelen's Land, we owe to Mr. Anderson, the surgeon of that expedition.

My own Herbarium of Falkland Island plants is particularly rich, and has also received accessions from Mr. Darwin, Captain Sulivan, Mr. Wright, and within the last fer days from Mr. Chartres, Surgeon of H. M. S. 'Philomel,' now surveying these islands under the command of Captain Sulivan ; to all of whom I here tender my sincere thanks.

I. RANUNCULACE Æ, Juss.

1. ANEMONE, Maller.

1. Anemone decapetala, Limn. Mant. 79. DC. Syst. Teg. vol. i. p. 200. Prodiom. vol. i. p. 19. Mook. et Ar'n. Bot. Beechey, p. 3. t. 1. Delesscrt. Icones, t. 16. et t. 17. Mook. et Arn. in Bot. Misc. vol. iii. p. 133. A. multifida, Poiret, Suppl. vol. i. p. 64. DC. Syst. Teg. vol. i. p. 209. Prodr. vol. i. p. 21. Hook. Flor. Bor. Am. vol. i. p. 7. Torrey and Gray, Flora of North Am. vol. i. p. 13. A. trilobata, Juss. Ann. Mus. vol. iii. p. 247. t. 21. f. 3. A. macrorhiza, Dombey. (fid. DC.). A. triternata, Herl. Reg. Berol. (fid. Herb. Hook.) non Fahl. A. bicolor, Prppig. (fid. Walpers, vol. i. p. 22.).

Hab. Strait of Magalhaens; Port Famine; Capt. King. Cape Negro and Elizabeth Island; C. Darwin, Esq..

Pilosa v. snbsericea, spithamea ad $1 \frac{1}{2}$ ped. alta. Radix tuberosa. Folia 3-5-partita; segmentis linearibus v. cnneatis, crenatis incisis multifidisre. Pedicelli 1-3, mico mudo, cexteris inrolncellatis. Petala 5-10. Receptacúlum globosum, demum elongatnm, cylindraceum. Acheenia lanata, stylo laterali filiformi.

Rather a variable species and having a very extended range throughoit the American continent. I have no hesitation in referring to it all the species quoted above. Iu North America it abounds from the Arctic circle to the Colombia river on the west coast, and New York on the east. The specimens, especially those from the Rocky Mountains and from Lake Huron, differ from those of the strait of Magalhaens only in having rather larger and more deeply coloured flowers. In South America this plant re-appenrs in Peru (Dombey) and in Chili (Brotero) on the west side, and in South Brazil (Sellow) on the east, extending from each as far sonth as the Strait of Magalhaens. There are eight other South American species of Anemone described, which are-1. A. triternata, Vahl.; 2. A. hepaticifolia, Hook. Ic. Plant, t. 1; 3. A. Jamesoni, Hook. l. c. t. 670 ; 4. A. aquinoctialis, Peppig.; 5. A. Antucensis, Pœppig. ; 6. A. Sellocii, Pritzil ; 7. A. Helleborifolia, DC.; 8. A. splenophylla, Poppig.; the last is pro-
bably a variety of A. decapetala, judging from the description given in Walpers. As nearly allied to this genus I may here mention the IIamadryas andicolu, Hook. (Ic. Plant. t. 136), which is the Hepatica? integrifolia, H. B. K. 1 have examined specimens of this with ripe fruit: the carpels are few, large, and turgid, slightly hairy, the style long and filiform : the seed large, minutely punctate, and pendulous, by a short fuuiculus from a point a little below the apex of the cell, characters which will remove it from Hamadryas.

2. RANUNCULUS, C. Bauth.

* Irecatonia, glaberrima, foliis lobatis v. Iissectis.

1. Ranuxculus biternatus, Smith, in Rees Cycl. DC. Syst. Teg.vol. i. p. 236. Prodr. vol. i. p. 30. Deless. Icon. vol. i. t. 24. Mook. Icon. Plant. t. 497. R. exiguus, D'Urv. Mem. Soc. Linn. Paris, vol. iv. p. 615. Gaud. in Freyc. Toy. Bot. p. 136. R. flaccidus, Bants et Sol. MSS. in Mus. Banks.

Hab. Fuegia; Commerson, Banks, and Solander. Darwin. Hermite Island; J. D. H. Falkland Island; D'Urville, Mr. Mright, Capt. Sulitan, \&c.

Rather a variable species, especially in size, in the breadth of the segments of the leaves, and in the number of petals. The R. exiguus, D'Urr., is a small state of this plant, common in the Falklands. The hearls of carpels are rery large in proportion to the size of the foliage, and especially of the flower.
2. Rayuxculus crassipes, Hook. fil.; glaberrima, crassa et carnosa, caule repente, foliis longe petiolatis cordato-reniformibus trifidis trilobatis tripartitisve segmentis grosse inæqualiter 3-5-crenatis, pedunculis petiolo brevioribus, sepalis glaberrimis demum reflexis, petalis 4-6 obovato-spathulatis obtusis flaris, capitulo majnsculo, carpellis phurimis late ovatis turgidis, stylo brevi recto. An a R. bitemato distincta? (Tab. LXXXI.)

Hab. Kerguelen's Land; in moist places near the sea, abundant.
Caules spithamei, ad nodos radicantes, crassitie pennæ corvinæ. Petioli 1-4 unc. longi. Folia rarie secta, plerumque trifida v. tripartita, segmentis late cuneatis. Pedunculi axillares, validi, erecti. Flos solitarius, inconspicuns. Sepala ovata, obtusa, membranacea. Petala 4-5, calyce longiora, $1 \frac{1}{2}$ lin. louga, 3 -nervia, versus medium glandula opaca instructa. Capitula ut in R. biternato sed stylis strictis.

I advance this species with much hesitation, as it may prove only a variety of \boldsymbol{R}. biternatus, from the largest states of which it is to be distinguished by its still greater size, more succulent habit, and especially by the more entirc leares, witl much broadcr segments. These are, however, variable characters in both species, and some imperfect specimens of the former from Hermite Island assume a much larger size than others from the Falklands or from the northern parts of the Fuegia.

Plate LXXXI. Fig. 1, a flower; fig. 2, a petal; fig. 3, a stamen; fig. 4, an ovarium ; fig. 5, a ripe carpel; fig. 6 , the same cut open showing the seed:-all magnified.

> ** Hecatonia, pilosa, foliis dissectis.
3. Ravuxculus chilensis, DC. Syst. Tey. vol. i. p. 2s6. Prodr. vol. i. p. 3S. Cham. and Schlecht. Animadv. pt. 2. p. 27. Mook. and Arn. Bot. Beeckey, p. 4. t. 3. Bot. Miscell. vol. iii. p. 134.

Hab. Cape Tres Montes and Chonos Archipelago; C. Darwin, Esq.
A very variable plant in habit (being either erect or creeping) and in the state of pubescence, in the size of the leaf and flower, and also in length of the petioles and peduncles: it is abundant throughout Chili, and possibly assumes a different form in a warmer latitude. In Mr. Darwin's specimens the flowers are small, scarcely 3-4 lines in dia-
meter ; in others from Valdivia they are double that size, and even larger hare been gathered by Mr. Crückshanks near Valparaiso. It does not appear to imhabit the cast coast of Patagonia; lut I have cxamined what I take to be a mutilated specimen, collected by Mr. Darwin in the central regions of that country near the river Santa Cruz, which flows from the Andes to the Atlantic.
4. Ranuxculus peduncularis, Sm. in Rees Cyclop. DC. Syst. Teg. rol. i. p. 294. Prodr. vol. i. p. 41. Deless. Icon. vol. i. t. 42. Mook. and Am. in Bot. Miscell. vol. iii. p. 134.

Hab. Strait of Magallaens; in the margins of moods; Commerson. Cape Negro; C. Darwin, Esq.
Closely allied to the last species, from which it seems constantly to differ in the narrow segments of the leares, and the stonter and uniformly erect habit. The whole plant is more or less clothed with hairs, the Strait of Magalhaens specimens less so than those from more northern localitics. It appears to be common in Chili on the western flanks of the Cordilleras, whence Dr. Gillies procured it at an altitude of 5000 fcet, and Mr. Bridges upon the east slopes of that range, but it is not a native of the Atlantic side of South America. The R.polypetalus, Gillies MLS., is quoted in the Botanical Miscellany as a state of this species; it may be distinguished, perhaps specifically, by the smaller sizc of the leaves, which are all radical, and their segments so remote that the leaf is truly pinnate, the scape too is single-flowered, and it approaches more nearly to a Perurian species.
5. Rinuxculus Maclovianus, D'Urv. ; acaulis v. snbacaulis, appresse pilosus, foliis radicalibus longe petiolatis erectis reniformi-rotundatis trifidis trilobatisve segmentis grosse et acute dentatis, pedumeulis folio brevioribus e ramulis abbreviatis ortis, scpalis villosis, petalis flavis spathulatis, capitulo globoso, carpellis glabriusculis, stylo brevi subuncinato. R. Maclovianus, D' U're, in Mem. Soc. Lim. Paris, vol. iv, p. 615. Gaud. in Freyc. Toy. Bot. p. 136. R. parviflorus, Gaud. in Ann. Sc. Nat. vol. v. p. 105.
H.ıb. Falkland Islands; moist places, abundant; Gaudickaud, IP Urville, J. D. II. and Dr. Lyall.

Caulis nuilus v. abbreviatus. Folia fere omnia radicalia; petiok $2-6$ unc. longi, graciles, suberecti; lamina basi profunde cordata, $\frac{1}{2}-\frac{3}{4}$ unc. lata, pilis flavis sericeis utrinquc tecta. Pedunculi $3-5$, rarins solitarii, $\frac{1}{4}-\frac{1}{2}$ unc. longi, erecti, radicales r. e ramis abbreriatis orti. Sepala 5, ovata, obtusa, trinerria, demum subreflexa. Petala sepalis longiora, medio squama instructa. Carpella ovata, turgida, glabra v, laxe et sparse pilosa.

This plant is most nearly allied to the R. Chitensis, which I have noticed as a very rariable species, but the present is smaller and more slender in all its parts, the leares are all radical and it never creeps. Walpers (Repertor. vol. i. p. 44), erroneously quotes, as a varicty of this, the R. exiguus, D'Urt., which is, howerer, certainly a state of R. Viternatus, Sm.
6. Ranurcults sericocephalus, Hook. fil.; depressus, acaulis, totus pilis fulvis sericeis dense vestitus, foliis rarlicalibus stellatim patentibus orbiculari-reniformibus irregulariter 3-7-fidis lobis grosse crenato-dentatis, pedunculis brevissimis, floribus parris inconspicuis, carpellis dense sericeis. (Tab. LXXXIII.)

Hab. Falkland Islands; on moist banks with the former ; Mr. Chartres, J. D. H. and Dr. Iyall.
Planta pusilla, depressa, valde inconspicha, tota pilis flavis scriccis patentibus tecta. Cautes brerissimi v. nulli. Folia stcllatim patentia, petiolo $\frac{1}{2}$ unc. longo ; lamina basi cordata, plerunque 5 -fida, rarius trifida v. trilobata, subcoriacea, $\frac{1}{3}$ unc. lata. Flores inter folia subsessiles; pedicelli interdum e ramis brerissimis orti. Sepala late orata, intus 3 -nervia, patentia. Petala anguste spathulata, obtusa, flava, versus medium squama parva instructa. Carpella pilis patentibus obtecta; stylo brevi mencinato.

Though in many respects closely allied to the former, this seems to me quite a diffcrent species; while
often growing together, they do not appear to pass into onc another. The small size, depressed and stellate habit, densely fulvons silky clothing, and especially the hairy carpels always serve to distinguish the present.

Plate LXXXIII. Fig. 1, a flower; fig. 2, the same, laid open; fig. 3, front, and fig. 4, back view of a petal; $f i y .5$, young, and $f i g .6$, ripe carpel; $f i y .7$, the same cut open showing the seed:-all magnified.

* * * Hecatonia, foliis integris.

7. Ravuncules hydrophilus, Gaud.; totus glaberrimns, caule gracili repente, foliis longe petiolatis natantibus elliptico-ovatis integerrimis 3-5-nerviis, pednnculis axillaribus petiolo brevioribus, floribus parvis, petalis flavis spatlnuatis, carpellis paucis, stigmate subsessili. R. hydrophilus, Gaud. in Ann. Sc. Nat. vol. v. p. 105. Freycinet, Toy. Bot. p. 136 and 475. IP Urville in Mem. Soc. Linn. Paris, vol. iv. p. 515. (Tab. LXXXII. Fig. B.)

Hab. Falkland Tslands; in streams, lagoons, and pools of fresh water, abundant; Gaudickaud, D' D_{r} ville, J. D. II.

Caules 4-8 unc. longi, parce ramosi, ad axillas foliorum radicantes. Folia fasciculata, tcrna quinare, basi vaginantia; petioli 3-5 unc. longi, crecti, crassiusculi; lamina parva, $\frac{1}{3}$ unc. longa, plerumqne natans, plana, obtusa, nervis $3-7$ parallelis. Pedunculi ex axillis foliorum solitarii, petiolo multoties breviores, sub $\frac{1}{2}$ nne. longi. Sepala late orato-rotundata, membranacea. Petala calyce breviora, I lin. longa, flava, spathulata, infra medium squamifera, basin versus attenuata. Capitulum parvum, globosum. Carpella panca, pallide flava, oblique oblonga, obtusa, vix 1 lin. longa.

A rery distinct species, both in habit and in other characters, perhaps most resembing R. humilis, Hook. and Arn. (Bot. of Beechey's Toy. p.4.), which is a variety of R.trisepalus, Gillies; but the present is not branched njwards, the flowers are very different, and the carpels are not punctate. The leaves much resemble the upper floating ones of Potamogeton leterophyllus.

Plate LXXXII. Fig. B.-Fig. 1, flower; fig. 2, petal; fiy. 3, stamen ; fig. 4, young carpel ; fig. 5, ripe ditto; fig. 6 , the same cut open :-all magnified.
8. Ranuxculus trullifolius, Hook. fil. ; glaberrimus, caulibus brevissimis sarmentosis, foliis radicalibus natantibus obovato-cuneatis integernimis apicibus $3-5$-dentatis, petiolis elongatis incrassatis superne attenuatis, pedunculis petiolo brevioribus, floribus inconspicuis, sepalis late ovato-rotundatis, petalis brevibus. (Tab. LCXXII. Fig. A.)

Hab. Falkland Islands; St. Salvador Bay, in a fresh-water lagoon.
Radix fibrosa, fibris crassis clongatis, c collo sarmenta elongata radicantia cmittens. Folia ommia radicalia; petioli basi longe waginantes, 4-6 mec. longi, terctes, antice canaliculati, validi, crassiusculi, superne gradatim incrassati, infia laminam atteuuati ; lamina $\frac{1}{2}-\frac{2}{3}$ unc. longa, abrupte truncata, grosse et inæqualiter $3-5$-dentata, dentibus obtusis, $3-5$-nerviis, ncrris parallclis, luride viridis v. purpurascens. Flos fructusque ut in R. hydrophito sed paulo majores et pedunculo crassiore.

Certainly more nearly allied to the former than to any other species of the genus; but quite distinct, of a larger size and more succulent habit, with leares of a different form, abruptly truncate and lobed at the extremity.

Plate LİXIII. Fig. A.

3. HAMLDDRYAS, Commers.

Flores abortu dioici. Sepala 5-6. Petala 10-12, lineari-subulata, basi squama instructa.-Fl. Masc. Stamina plurima, filamentis filiformibus.-Fl. Fexs. Ovaria plurima, in capitulum globosum disposita, stylo uncinato terminata, unilocularia, umiorulata; orulo e basi loculi erecto, funiculo brevi. Carpella sicca, ossea, indehiscentia.Herbæ Antarctica, Ranunculo affines, plus minusve sericere. Scapi ad apices 1-3 fores, fore inferiore sessili. Sepala petalaque extus pilosa.

1. Hamadryas Magellanica, Lam.; plus minusve sericeo-pilosa, foliis rotundatis tripartitis lobis cmeatis inciso-partitis v. subintegris. H. Magellanica, Lamarch, Dict. vol, iii. p.67. DC. Syst. Veg. vol. i. p. 226. Prodr. vol. i. p. 25. Delessert, Icon. Select. vol. i. t. 22.

IIs. Strait of Magalhaens; Commerson. Mount Tarn, altitude 2000 feet; Capt. King, C. Darwin, Esq. Staten Land, half way up the mountains; A. Menzies, Esq.

Var. β, tomentosa; foliis argenteo-lanatis lobis cuncatis subintegris. H. tomentosa, DC. Syst. Feg. vol. i. p. 227. Prodr. vol. i. p. 25.

Statura et precipne pubescentia rariat, nunc tota lana molli sericea obtecta, nunc glabriuscula v .sparse pilosa. Scapus folio æquans v. bis longior. Sepala petalaque extus glabra v. sericea.

These two rarieties were found growing together both by Mr. Darwin and by Menzies, and are certainly not specifically distinct.

De Candolle places this genus doubtfully amongst the Anemoneca; the ovules are, however, truly crect, and the petals being furmished with a small nectariferons scale, it ought to rank very near Ranunculus, from which it only differs in habit and in the numcrous petals, and perhaps also in the persistent calys. The form of the leaves seems to me to afford the sole tangible specific character, for the species vary in the hairiness of all their parts.
2. Hamadryas argentea, Hook. fil.; dense argentco-lanata, foliis obovato-cuneatis basi attenuatis profunde trifidis lobis 3-5-fidis. (Tab. LXXIV.)

Hab. Falkland Islands; amongst grass; Captain Sulivan, Lieut. Robinson, J. D. II.
Radix fibrosa, fibris crassis descendentibus. Folia radicalia, basi fibris petiolorum vetustorum tecta; petioli graciles, erecti, 2-10 unc. longi, tomentosi ; lamina $1 \frac{1}{2}-2$ unc. longa, coriacea, utriuque tomento argenteo-nitente restita, segmentis obtusis. Scapus folio subæquilongus, crassitie pennæ corvinæ, plantæ masculæ gracilior et uniflorus, fœmineæ biflorus. Sepala ovata, acuta v. acuminata, cxtus villosa. Petala sepalis duplo longiora, sub 4 lin. longa, lineari-subulata, gradatim attenuata, basi subito contracta, quasi unguiculata, supra ungucm squamam appressam gerentia trinervia, membranacea, dorso hirsnta, pallide straminea. Stamina 8, filamentis filiformibus. Ovaria ovata, superne in stylum uncinatum attenuata. Carpella turgida, ossea.

To all appearance this is a distinct species from the former, and certainly a very beautiful one; both Mr. Darwin's and Mr. Menzies' specimens, however, of M. Magellanica, var. β, are so similarly covered with silky wool, that the form of the leaves alone serves to distinguish them. It is rare in the northern part of the islands, and a copions suite of specimens might exhibit rarieties still more like the Fuegian specics. I detected only one individual with male flowers, it was smaller than the females, and had slender, single-flowered peduncles.

Plate LXXXV. Fig. 1, a male plant, of the natural size; 2, a flower of the same; 3, a petal; 4 , a stamen : -magnified; 5 , a female plant of the raturab size; 6 , a flower of the same; 7 , an orarium; 8 , a carpel; 9 , the same cut open longitudinally showing the erect seed:-magnified.
3. Hamadryas Kingii, Hook. fil.; foliis rotundatis 5-7-fidis v. multilobatis, lobis crenatis utrinque arachnoideis.

Hab. Strait of Magalhaens; Mount Tarn; Capt. King.
I have seen but two speeimens of this very distinct species, they are male and female, the scape of the former, as in $I I$. argentea, is one-flowered, that of the female has two flowers; the root is clongated and tuberons, throwing out stout fibres.

4. CALTHA, Pers.

1. Caltira sagittata, Cavanilles Icon. t. 414. DC. Prodr. vol. i. p. 44. Gaud. in Ann. Se. Nat. vol. v. p. 105. et in Freyc. Toy. Bot. p.136. D'Uiv. in ILem. Soc. Lim. Paris, vol. jv. p. 615. Hook. fil. in Bot. Mag. t. 4056 . C. multicapsularis, Banks et Sol. MSS. in Bill. Banks. Forster, in Trans. Lim. Soc. vol. viii. p. 324.

Hab. Fuegia; Commerson, Banks and Solander. Port Famine; Capt. King and C. Darroin, Esq. Hermite Island ; J. D. II. Falkland Islands; Gaudichaud, D'Urville, J. D. II., \&e.

Although plaeed by De Candolle in a separate section of the genus from C. palustris, this mill rank more properly with that species than with the iwo folloming, especially as in its English representative there is an evident tendeney in the lobes of the leaf to become inflexed. The present varies exceedingly in size, according to the moistme of the situation where it grows; the flowers are pale yellow, as in the following, and have a faint honev-like smell; the apices of the petals are slightly incrassated. A small state of it has been gathered by Mr. Bridges in Chili, in rivulets on the east side of the Andes, near the Voleano of Peteroa; it appears to be a peculiarly southern species, not inhabiting the level of the sea in a lower latitude than the Strait of Magalhaens.
2. Camtha (Psychrophila, DC.) appendiculata, Pers.; humilis, dense cæspitosa, dioica, foliis breviter petiolatis cuncatis trifidis segmentis bifidis basi appendiculis a linearibus instructis, pedunculo brevissimo, sepalis linearibus gradatim attenuatis, carpellis paucis. C. appendiculata, Persoon, Ench. vol. ii. p. 107. DC. Syst. Tey. vol. i. p. 307. Prodl. vol. i. p. 44. D'Ureille et Gautlichaul, locis citatis. C. paradoxa, Soland. MSS. in Bibl. Bants. Forst. in Trans. Iinn. Soc. vol. viii. p. 324.

Hab. Fuegia; Banks and Solander. Port Famine; Capt. King and C. Davwin, Esq. Hermite Island, from the sea to an clevation of 1200 feet ; J.D.II. Falkland Islands; Gaudichaud, D'Urville, J. D. H.

Caules ralidi, deuse cespitosi, parec ramosi, subelongati, reliquïs vaginarum foliorum obteeti, hie illic fibras crassas emittentes. Folia erassa et carnosa; petiolo sub $\frac{1}{2}$ unc. longo; ragina latissima, membranacea, superne utrinque in auriculam seariosam dilatata; lamina basin versus biaurieulata, auriculis e pagina superiore ortis laminæ appressis linearibus emirginatis. Fl. Masc.-Peduaculus infra florem incrassatus, suleatus. Sepala 5, patentia, lanceolata, in eaudam membranaceam attenuata, pallide flara, pupwreo-margmata. Stcmina plerumque 9, quorum 4 breviora dintinsque maturata. Ocaria 5, abortiva. Fl. Fem.-Sepala ut in mare sed erecta. Stamina rudimentaria. Ocaria 5-9, compressa, extus papillosa. Ocula 7-8. Senina sub 3, testa pallide brunnea nitida.

A highly eurious plant and different, almost generically, from the former, in the diæcions flowers, the few stamcus and ovaria, the form of the sepals (which are thick and terminated by a long membranous apex), and especially in having the appendices of the learcs placed on the surface of the lamina. The flowers are rather pretty, though small, being pate yellow and bordered with purple, they exhale a faint sweetish odour. Both this and the following constitute a matcrial proportion of the bog-earth in some parts of Hermite Island, and the prescnt alone in the Falklands, sometimes covering the ground in broad hard green tufts. They are eminently southern plants, not being found to the northrard of Fuegia.
3. Caltia (Psychrophila, DC.) dioneafolia, Hook.; pumila, caulibus densissime cæspitosis ramosis, foliis orbiculari-ovatis bilobis lobis conduplicatis appendiculisque 2 appressis oblongis setoso-ciliatis papillosis, stipulis maximis concavis, sepalis 5 oblongo-oratis crassis apicibus obtusis membranaceis, staminibus 5-7, ovariis 2-3. C. dionerfolia, Mook. in Lond. Jouru. of Bot. vol. ii. p. 306. (Tab. LXIXIV.)

Hab. Fuegia; Forster and C. Darwin, Esq. Hermite Island, from the sea to an altitude of 1500 feet ; J. D. II.

Caules conferti, 2-4 unc. longi, stipulis scariosis foliorum delapsorum tecti, ramosi, hic illic fibras crassas simplices emittentes. Petioli breves, ralidi, in vaginam maximam concaram eymbiformem dilatati; foliorum lamina vagina minor, sub 2 lin. longa, coriacea, superne læte viridis, papillosa, subtus pallidio, margimbus instar Dionea ciliatis, appendiculis laminæ appressis, extus ciliatis. Pedunculi breves, crassi, subclarati, obtuse trigoni, $\frac{1}{3}$ unc. longi. Flores hermaphroditi?, stellati, straminei, extus flavi. Sepala 5, patentia, elliptico-orata, earnosa, apice obtuso membranaceo subappendiculato, nervis plurimis. Stamina plerumque 7, filamentis crassis purpureo-notatis, antheris majusculis. Ovaria $2-3$, sæpissime 2, oblique ovata, obtusa; ovvlis 2-5.

First detected, but never described, by Forster, from whose collections we have a very small speeimen, intermixed with Oxalis Magellanica. In the southern parts of Tiera del Fuego it is a very common plant, covering large tracts of ground with a carpet of deep but shining green, upon which the stellate flowers have a very pretty appearance. The similarity between the leaf of this and of the Dioncea muscipula, "American Fly-trap," is very striking.

Plate LiNXIT. Fig. 1, back riew, and 2, a side riew of the leaf, petiole, and stipule or vagina; 3, front view of lamina, showing the appendages; 4 , flower; 5 , the same when fully expanded :-all magnified.

II. MAGNOLIACE E, DC.

1. DRIMIS, Forst.

1. Drims IVinteri, Forst. Gen. p. S4. t. 42. Limu. Fil. Suppl. p. 269. Lamarck, Dict. vol. ii. p. 331. DC. Syst. Teg. vol. i. p.443. Prodr. vol. i. p. 78. D. punctata, Lam. Dict. vol. ii. p. 330. Illust. t. 494. f. 1. Winterana aromatica, Soland. Mecl. Ols. vol. v. p. 46. t. 1. Wintera aromatica, Murray, Syst. 507. App. Med. vol. iv. p. 557. Mumb. et Bonpl. vol. i. p. 209.

Hib. Strait of Magalhaens and Fuegia; first noticed by Jolm Tinter who accompanied Drake's royage in 1577 , and since by all voyagers and collectors.

A very abundant tree throughout the western and southern parts of Thegia, even in Hermite Island ascending to 1000 feet. The natives use the stems of the young trees, rudely fashioning them into handles sometimes ten feet long, for their harpoons; bnt the wood is too soft and supple. The bark has proved a most useful stomachic and antiscorbutic to various royagers, and especially to a portion of the crew of the 'Beagle' duning Capt. King's arduous surveying voyage (vide King's Voyage, vol. i. p. 234.).

After a careful examination of a very extensive suite of examples, I hare come to the conclusion that there is but one South American speeies of this genus. There is a dissimilarity in the form of the foliage, even between the North and South Fuegian states, the former having longer and more mcmbranous leaves, differing in no respect from specimens gathered near Valparaiso by Gillies, Cuming, and Bertero, which generally pass under the name of D. Chilensis, DC. From Juan Fernandez again, the plants collected by the two last-mentioned travellers belong to the same species: though the leaves are generally more linear, they are not so much so as in some of the continental states. In Brazil, the variety, ealled D. Granatensis, L. fil., is found over the whole of that rast empire, and equally occurs in New Grenada and the prorince of Santa Fé in Colombia. Mr. Garduer's number 5675 precisely accords
with the Juan Fernandez plant. St. Hilaire and Cambessèdes describe four and give figures of three varieties; herein they differ from Martius, who considers it the same as D. Winteri, but these authors do not state their reasons ('Plantes Usuelles de Brésil,' Tab. 26-28), and neither in the plates or descriptions do any characters appear which are not common to some of the Chilian and Fuegian speeimens: their var. sylcatica coincides with Juan Fernandez specimens; the var. montana has smaller leases than any found on the west coast of the continent. Chamisso and Schleehtendahl, in their notes upon the Mexican plant collected by Schiede and Deppe, refer it to D. Granatensis (Limæa, vol. v. p. 210 ; vol. ni. p. 417 ; and vol. x. p. 214.) ; it is identical with D. Mexicana, Mor. and Sesse, (Pl. Mex. in DC. Prodr.), and some of the Chilian examples agree with Mexican ones. The efluse panicle and larger flowers are more characteristic of the northern states of the tree, but these pcculiarities afford no specifie distinction. A singular state, with small narrow leaves, remarkably revolute at the margins, has been gathered in Brazil by Claussen. The variations in the foliage are too gradual to admit even of the forms being grouped into rarieties indieative of countries or of other peeuliarities, and the glaucous lute of the under sufface of the leares is equally apt to mislead.

I feel little doubt that this plant extends over no less than 86° of latitude, forming at the southern limit of its growth one of the three trees that advance the nearest to the Antarctic circle, and reaching as ligh a latitude as any flowering plant, save the solitary grass of the Sonth Shetland Islands. No vegetable production of its size affords a parallel case to this, either in America or any other country. Such an cxtraordinarily extended range is in part obviously due to some peculiarities in the form and surface of South Anerica, where moder every degree of latitude there are large areas either at the level of the ocean or at an elesation where such a tree can enjoy a climate that is equable. To the influence of the like canses I should attribute the specifie identity between some high northern and southern species, which like the Gentiana proslrata, Triselum subspicatum, and other plants mentioned in the former part of this work (Part i. p. 117), pass along the Andcs from the northern temperate or frigid point to the southern extreme of America.

The Drimys $/$ interi is one of those plants which is represented by two closely allied species in other quarters of the glohe, one in Tasnanna, the Tasmania aromalica, and the Drimys axillaris in New Zealand. There are many instances of genera having representatives in those three botanieal regions, the species being in general mutually more related than to any others, such are afforded by the genera Fayus, Astelia, Abrotanella, by shrubby Feronicas and many others. This similarity in some of the botanical productions of countries, otherwise unlike in vegetation, is far more remarkable than a total dissimilarity between lands so far separated, or even than a positive specifie identity would be at first sight ; because it argues the operation of some agent far above our powers of eomprehension, and far other from what we commonly observe to affect geographical distribution.

III. BERBERIDE.E. Tent.

1. BERBERIS, Lim.

1. Berberis ilicifolia, Forst.; erecta, spinis tripartitis, foliis obovatis grosse spinoso-dentatis, peduuculis folio brevioribus $4-6$-floris, pedicellis elongatis subcorymbosis, floribus majusculis, baccis late ovatis lagenæformibus. B. ilicifolia, Forst. Comm. vol. ix. p. 2S. Limn. Fit. Suppl. p. 210. DC. Syst. vol. li. p. 12. Prodr. vol. i. p. 107. B. lagenaria, Poir. Dict. vol. viii. p. 619. (Tab. LANXVI.)
$\mathrm{H}_{\Delta \mathrm{B}}$. Strait of Magalhaens on both sides and throughont Fucgia; Commerson, Forster, and all future collectors.

This is certainly the handsomest species of the genus, forming a straggling bush, eight fect high, with deep
green shining leaves and very conspicuons golden yellow flowers. The wood is pale yellow, affording a gamboge colomed dye, the berries of a deep steel blue colour, and few in comparison to the size of the flower.
l'late LXXXYI. Fig. 1, a flower; fig. 2, a petal and stamen removed from the flower; fig. 3, pistil:-all magnified.
2. Berberrs buxifolia, Lam.; erecta, ramosa, spinis tripartitis, foliis oblongo-lanceolatis obovatisve planta juniore majoribus petiolatis pungentibus hic illic spinoso-dentatis seniore minoribus plerumque integerrimis acutis post anthesin coriaceis, pedicellis 1-3-floris, bacca globosa. B. buxifolia, Lamarck, Illust. t. 253. f. 3. DC. Syst. Feg. vol. ii. p. 15. Prodl. vol. i. p. 107. Hook. et Arn. in Bot. Miscell. vol. iii. p. 136. B. microphylla, Forst. Comm. vol. ix. p. 29. B. dulcis, Sweet, ILort. Britann. and Series, vol. i. t. 100. B. incrmis, Pers.? Ench. vol. i. p. 357. DC. Prodr. vol. i. P. 107.

Hab. Strait of Magalhaens and thronghout Fuegia; Commerson, and all subsequent collectors.
This is a variable species, especially in the foliage, exhibiting a different aspect at different seasons of the year. In spring, when the flowering commences, faseicles of new leaves are produced, which are pale green, membranous, and entire ; at this period the leaves of the former season begin falling while those of the present year gradually become larger, stiffer, coriaccous, and generally mucronate or pungent at the apex. They are not fully developed till autum, when they are generally quite entire, attenuated at the base, and shortly petiolate, about half an ineh long, rigid and coriaceons, reticulated on the upper surface; during the following spring these in their turn fall away. In seedling plants the leaves are larger than at any future time, on long petioles, broader, and here and there furnished with spinous teeth. The flowers are generally in threes, but sometimes solitary, pale yellow. The berries, ahout the size of a sinall pea, were much used for tarts by the officers of the 'Beagle' and found excellent. The B. dulcis, of Sweet, agrees with the common form of this plant, except that the flowers are larger in that author's figure and the pubescence of the pedicels not visible in the wild speeimens. The B. inermis seems a variety, some of the specimens being quite marmed; indeed the spines of this genus afford but an inconstant character.

Plate LIXXYII. (Under the name of B. microphellat). Fig. 1, a flower; fig. 2, petal and stamen removed from the same; fig. 3, pistils:-all magnified.
3. Berberis empetrifolia, Lam. Illustr. t. 253. f. 4. DC. Syst. Teg. vol. ii. p. 16. Prolr. vol. i. p. 107. Hook. et Arn. in Bot. Miscell. vol. iii. p. 136.

Hab. Strait of Magalhaens ; common in alpinc woods; Commerson. Port Fomine; Capt. King.
This species is more characteristic of a dry climate than of the moist wooded country of Fnegia and Southwest Chili. The Strait seems to be its sonthern limit; it inhabits neither the east nor west coasts, but is confined to the Cordillera itself, from many elerated parts of which range we have received it, gathered by Gillies, Cuming, Macrae, and Bridges ; it very probably therefore is a native of the whole length of that range, from lat. 34° to lat. 54°, deseending to the level of the sea at Port Famine, to which point the mountains are continued in one mbroken chain.

IV. CRUCIFERÆ, Juss.

1. ARABIS, L.

1. Arabis Macloriana, Hook.; glaberrima, basi ramosa, foliis inferne dentato-serratis radicalibus longe petiolatis oblougis obtusis caulinis sensim minoribus, supremis sessilibns lineari-oblongis, floribus in corymbum deusum dispositis, sepalis obtusis extus hirsutis pedicellum æquantibus, petalis albis spathulatis, siliquis
racemosis erectis strictis linearibus stylo brevi valido terminatis, valvis concaris 3-costatis reticulation venosis, seminibus plurimis ovato-oblongis, testa atro-brumea grosse punctata. A. Macloviana, Hook. Ic. Plant. t. 498. Brassica Magellanica, Poiret? (fide Gaudichaud in Ann. Sc. Nat. vol. v. p. 105.), non Juss. Pers. DC. et Delessert. B. Macloriana, D'Urv. in Mem. Soc. Linn. Paris, vol. iv. p. 616. Erysimum Maclovianum, Gay in Freyc. Foy. Bot. p. 136.

Hab. Falkland Islands; abundant on the sea coast; Gaudichaud, D' Urville, \&c.
Herba basi lignosa, coriacea, spithamea ad tripedalem, interdum subglancescens. Folia radicalia 2-3 uncialia. Flores conferti, ampli. Silique 1 unc. longæ, subtetragonæ.

In the form of the pod this is intermediate between Barbarca and Arabis, the habit is however altogether that of the latter genus. The fact of a species of Brassica having been described as a native of the Strait of Magalhaens seems to have induced Gandichaud to refer his probably incomplete specimens of this plant to it. D'Urville afterwards retained the generic name, but constituted this a new species. That the specimens of the former, and possibly of the latter voyager also, were incomplete, is evident from M. Gay's referring it to the genus Erysimum, from which as from Brassica it is far removerl, though in the form of valves of the pods and habit it bears a similarity to some species of the first named genus.

2. CARDAMINE, L.

1. Cardamine hirsuta, Lim., Sp. Pl. $915 . \quad D$ Uiville in Mem. Soc. Linn. Paris, vol. iv. p. 616. Gantichazd in Freyc. Toy. Bot. p. 137. Hook. et Arn. in Bot. Miscell. vol. iii. p. 137. Fl. Antarct. part i. p. 5. C. antiscorbutica, Banks et Soland. MSS. in Bill. Banks. C. glacialis, DC. Syst. Teg. vol. ii. p. 264. Prodr. vol. i. p. 153. C. propinqua, Carmichael, in Linn. Trans. vol. xii. p. 507. Sisymbrium glaciale, Forst. Comm. Goett. vol. ix. p. 32.

Var. niralis; foliis majoribus, pedicellis siliquisque elongatis crectis, stigmate sessili. C. nivalis, Gill. MSS. Mook. et Arn. in Bot. Miscell. l. c.

Нав. Fuegia, the Falkland Islands, and Tristan d'Acunha; abundant, especially near the sea. Var. β, in various situations with the former ; Forster, Benks and Solander, Capt. Carmichael, \&c.

After what is said respecting this plant in the first part of the present work, it will not excite surprise that I now consider all the specics quoted above as states or varieties of the umiversally diffused C. hirsuta. I have in rain sought for specific characters amongst the numerous specinens now before me, gathered in many parts of Chili, Patagonia, and Fucgia, at different positions on the coast and various elerations on the mountains. The ordinary form, which bears generally the name of C. glacialis, is a small, glabrous or slightly hairy plant, from 2-6 inches high, sparingly branched, with the branches leafy or naked, sometimes of a robust habit. Leaves with 3-5 pair of sinuated leaflets, the terminal one larger, cordate or attenuated at the base. Siliquæ on pedicels from tro to threc-quarters of an inch long, erect, about an inch long, with acmminated or rather obtuse styles, which are sometimes so short that the stigmata are nearly sessile. From the same locality, howerer, different specimens vary much, and when growing in a sandy soil the roots become tuberous and the whole plant often liany. In moist situations the stems are leafy upwards and more succulent, resembling the Camplell's Island variety subcarnosa (rol. i. p. 5), and I have gathered individuals of a very small size on the hills of Hermite Island, with single pairs of leaflets, answering to the C.glacialis, β of DC., and to Buenos Ayres specimens in Herb. Hook. Mr. Darwin has collceted a form near Valparaiso, which is not distmguishable from a large state of the plant that inhahits the Island of Arran in Scotland; it is the C. sylvatica and also Sisymbrium Nasturtium var. Chitense, of Bertero. Some of the Falkland Island specimens again, are identical with others gathered in Iceland, and as is the case in the Northern Hemisphere, the flowers produced in the colder latitude are generally the largest. I am not prepared to say how far the C. debilis
of New Zealand and a Tasmanian species, may ultimately prove distinct from this plant, which, besides being universally distributed throughout Europe, is abundant in North Ameriea under the names of C. hirsuta, C. Pennsylvanica, C.ITirginica, Se., whenee it probably passes along the Andes into South America, for we have specimens from Colombia. It is likewise an inhahitant of the Pacific Islands, of Ceylon and the Indian Peminsula, and of the Island of Mauritius.

The other Chilian species of this genus are: 1. C. affinis, Hook. and Arn. (Bot. Miscell. vol. iii. p. 137), this has the general appearanee of C. hirsuta, but the flowers are considerably larger and the pods gradually acuminated into long styles, (a native of Conception) ; 2. C. tenuirostris, Hook. and Arn. l. c., similar to the last, but the pods are larger, the leaves more numerous and cut into many linear segments, (Coneeption) ; 3. C. tuberosa, DC. (Syst. vol. ï. p. 254 ; Deless. Icon. vol. ї. t. 29), this has simple large and orhicular leaves, cordate at the base ; the tuberous root in the genus frequently is owing to local causes (Yalparaiso) ; 4. C. Chilensis, DC., 1. c., has the leaves entire or with one small lobe at the base, elliptical, oborate, and obtuse, (Chili, Bertero) ; 5. C. chenopodiifolin, Pers. (DC. Prodr. vol. i. p. 149), it and the preceding belong to the entire-leared seetion; the present has the habit of Arabis Macloviana, but the ralves of the pods are plane and entirely nerveless (it grows near rivulets on the Andes, altitude $5000-10,000$ feet (Bridyes) ; 6. C.flaccida, Cham., Bertero's imperfect specimen bearing this name (Mus. Brit.) with the following note, "an nova species? C. nacrorniza, Bert., MSS." appears not to be a Carlamine at all.
2. Cardamine geraniifolia, DC.; glaberrima, v . parce pilosa, radice lignosa, caule erecto subramoso folioso, foliis radicalibus longe petiolatis bipinnatisectis pinnulis petiolulatis late ovatis trilobis tripartitisve segmentis grosse dentatis dentibus obtusis subacutisve, floribus majusenlis in corymbum pauciflorum dispositis, sepalis pedicellum requantibus, petalis amplis obovato-spathulatis albis v. pallide roseis, siliquis ? (Tab. LXXXVIII.) C.? geraniifolia, DC. Syst. Teg. vol. ii. p. 265. Prodr. vol. i. p. 153. Sisymbrium geraniifolium, Poiret, Dict. vol. vii. p. 21 s.

Hab. Strait of Magalhaens; Commersan. Port Famine; Capt. King. South part of Fuegia; C. Darwin, E'sq. Hermite Island ; J. D. M., MTi. Davis.

Spithamea et ultra, erecta, flaccida, subsucculenta, hic illic parce pilosa, rarius glaberrima. Radix majuscula, elongata, eylindracea. Folia radicalia 4-8 uncialia, petiolo gracili; lamina circumseriptione oblonga, pimnatiseeta, piunis plerumque $5-7$ patentibus iuferioribus pinnatisectis; pimulis ternatim sectis, membranaceis, 3-5 lin. longis, segmentis ultimis varie incisis dentatisre: folia caulina radicalibus similia, pro planta maxima. Flores magnitndine C. pratensis.

In Peru this rery distinct species is replaced by two or three similar, of which one grows at an elecation of 10,000-12,000 feet on the Andes. They are more nearly allied to the C. chelidonia, Tenore, of Italy, than to any other of the gems.

Plate LXXXIIII. Fig. 1, flower; fig. 2, petal ; fig. 3, stamen and pistil:-magnified.

3. DRABA, L.

1. Drabi incana, Linm., Sp.’Pl. S97. Sm. Engl. Bot. t. 359.

Var. Magellanica; foliis integris, siliculis planis velutinis in stylum brevem attenuatis. Draba Magellanica, Lam. Diet. vol. ii. p. 32s. DC. Syst. vol. ii. p. 349. Prodr. vol. i. p. 170.

Hab. Strait of Magallacns, by the margins of alpine moods; Commerson (in Herb. Hook.).
The only specimen of this plant that I have seen was derived from the Herbarium of M. Gonan, and is marked by him as received from Commerson; it is quite undistinguishable from D. incana, under which name, I, along with Torrey and Gray in the Flora of Nortl America, include D. confusa, Ehrh. The specimen is about 8 inches
long and consists of a single stem (probably one of screral from the same root) bearing linear, obtuse, and entire radical leares, scarcely an inch long; the asecnding portion is crect and scarcely branched, with three sessile, oratooblong leaves; the raceme 3 inches long; pods crect, 4 lines loug and less than one in breadth, borue upon stout pedicels shorter than themselves; sceds immature, small, pale red brown. In this genus, characters taken from a solitary though complete specimen are invalid, and since it is undistingnishable from some North American and European states of D. incona, I am obliged to unite it with them; for I cau find no reason to suppose that they will ceventually prove distinct.

It is rery singular that this plant, apparently identical with one so abnndant throughout the Arctic regions and the elevated mountains of the north temperate zone, should not have been seen in the southern by any collectors save Dr. Gillies, who is stated (Bot. Miscell. vol. iii. p. 138), to have found a solitary specimen on the Andes of Mendoza, and Commerson. It certainly docs not appear amongst the plants of the Colombian Andes that have been published by Humboldt, or more recently discovered by Col. Hall and Professor Jameson. Variable as the species of this genns are in the Northern Hemisphere, they are equally so in the Southern; still, as they seem to present tangible characters, I lave availed myself of them here in drawing up the snbjoined list of the South American species known to me*. With regard to the sections proposed for these twenty species, they are tolerably

* DRABA, L.

§ I. Racemo inter folia summa sessiti.

1. D. cryptantha, n. sp.; cæspitosa, ramosa, tota incano-tomentosa, foliis imbricatis oboratis obtusis, racemo foliaceo abbreriato inter folia suprema sessili pancifloro, floribus parvis brevissime pedicellatis, petalis spathulatis albis unguiculatis, siliculis longe pedicellatis oratis incanis stylo brevi terminatis.

Llab. Peru; Cerro Pasco; Matheres (v. 942).
Caules robusti $\frac{3}{4}-2$ me. longi. Folia $\frac{1}{4}$ meialia, ramis appressa. Flores inconspicui. Sepala $\frac{1}{2}$ lin. longa, oblonga, obtnsa. Petala sepalis vix longiora, apice emarginata. Silicula $2 \frac{1}{2}$ lin. longæ; seminibus parvis rufobrunneis.
§ 11. Subacaules v. caulibus ccaspitosis, pedunculo nudo, floribus corymbosis, stylo brevi.
2. D. aretioides, H. B. K. ; Noc. Gen. et Sp. Amer. vol. v. p. 77. t. 435.
H_{ab}. Andes of Colombia; Antisama, 10,800 feet; Ifumboldt and Bonpland. Pichincha, 15,000-16,000 feet ; Professor Jameson: Hartweg, in Herb. Hooker (n. S85.)
3. D. oborata, Bentl.; Plant. Hartweg. p. 159. n. 885.

Hab. Andes of Colombia; Antisana, 15,000 fect; Hartwey, (n. Ss5) in Herb. Benllam.
The species in the Hookerian Herbarium, reccived as n .885 , from M. Hartweg, is the same as Professor Jameson's D. aretioides and Humboldt's figure; but it is not the D. obovala, n. 885 , of MLr. Bentham's herbarium, apparently a very different species.
4. D. depressa, n. sp.; cespitosa, incano-tomentosa, caulibus brevibus prostratis ramosis foliosis, foliis confertis obovato-spathulatis apice rotundatis integerrimis, racemis abbreviatis folia summa paulo superantibus, sepalis late oblongis dorso pubescentibus, petalis tlavis, pedicellis frnctiferis elongatis, siliculis latissine ovato-rotundatis acutis, stylo brevi, valvis planinsculis incanis, seminibus majusculis late oboratis.

Hab. Colombia; Chimborazo, 17,000 feet; Col. LIall.
A D.cryptantha, cui proxima, differt statura, racemo elongato, floribusque ter majoribus; ad D. arelioidem statura accedit, sed folia incana obtusa patentia et laxius imbricata, siliculæ minores latiores caulesque prostrati.
natimal, the styles and foliation forming very evident and nearly constant characters; though D. cryptantha, in having the flowers entirely sessile amongst the leaves, stands aloue in the genus : unfortunately the specineus of this are not
5. D. siliquosa, u. sp.; caule brevissimo basi ramoso, folis versus apices ramorum rosulatis lineari-obovatis villoso-sericeis, pedunculo incano sursum pedicellis sepalisque dorso hirsutis, floribus in corymbum subcapitatum nudum dispositis parvis albidis, petalis elougato-spathulatis unguiculatis retusis, siliquis linearibus obtusis glaberrimis, stylo nullo.

Var. β, Antisana; foliis majoribus laxius confertis obtusis.
Hab. Colombia; Cotopaxi, 13,000 feet; Professor Jameson. Var. $\boldsymbol{\beta}$, ou walls at the Hacienda of Antisana, Professor Jameson (1. 28.).

Radix descendens, multiceps. Folia $\frac{1}{4}$ (in var. $\beta \frac{3}{4}$) unc. longa. Pedunculi $1 \frac{1}{2}$ unciales, simplices, nudi. Silique 4 lin. lougæ, lineares; valris planis, sæpe purpureis; seminibus oblongis, rufo-fuscis.
6. D. Macleani, u.sp.; incano-tomentosa, caule brevissino diviso, foliis confertis obovatooblongis obtusis, corymbo subcapitato nudo, floribus parvis breviter pedicellatis albidis, siliculis glaberrimis ovatis in stylum brevissimum atteuuatis, valvis planis.

Hab. Andes of Peru; J. Maclean, Esq.
A priori differt foliis incauo-tomentosis, formaque valde diversa silicularum atteunatarum.
7. D. affinis. n. sp.; caulc brevissimo diviso, foliis confertis pateutibus obovato-lauceolatis subacutis sericeohirsutis, pedunculo puberulo, floribus corymbosis subcapitatis parvis, siliculis pubesccutibus pedicellatis elliptico-oblongis stylo brerissimo terminatis, valvis subconvexis.

Hab. Colombia; Hacienda de Antisana, on old walls, at an elevation of 13,400 feet; Professor Jamesor.
D. sitiquose proxima siliculis latioribus brevioribus pubescentibusque præcipue differt. Hæc cum tribus præeedentibus habitu et statura omuino courenit.
8. D. Falklandica, u. sp.; vid. supra.

Нав. Falkland Islands; Lieut. Robinson, R.N.
Forma siliculæ D. affini prosima, sed magnitudiue, valvis convexis, stylo lougiore, siliculisque racemosis differt.
9. D. funiculosa, u.sp.; vid. supra.

Hab. Falklaud Islands; J. D. H.
Species nulli arcte affins.
10. D. australis, n.sp.; annua, gracilis, caule simpliciusculo patenti-piloso, foliis radicalibus pancis rosulatis oblongis oblongo-lanceolatisse plerumque integerrimis obtusis supra subsericeo-hirsutis subtus stellatim pubescentibus, pedunculis glaberrimis nudis paucifloris, floribus albis pedicellatis, pedicellis fructiferis filiformibus silicula glaberrima lineari-oblonga utriuque obtusiuscula $\frac{1}{2}$ brevioribus, valvis planis, seminibus plurimis parvis. D. australis, Brovn, MSS. in Herb. Banks.

Hab. Patagouia ; Mus. Banks. Bahia Blauca; C. Darwin, Esq.
Species D. lineari, Boiss., D. cuneifolice, Nutt., et D. wicranthe, Nutt. simillima.
in frnit. In the second group the scape is entirely naked and the flowers are more or less corymbose, all have short styles and the D. aretioides and D. siliquosa are similar to the D. Aizoon in general appearance. The plants included
§ III. Caulescentes; scapo foliato, racemis post anthesin elongatis, foliis radicalibus caulinis diversis.
11. D. radicata, $11 . \mathrm{sp}$.; incana, caule breri lignoso subdiffuse ramoso, foliis confertis lineari-obovatis v . spathulatis obtusis, scapo gracili nudo v . unifoliato, floribus subcorymbosis majusculis, petalis flavis calyce pubescente duplo longioribus, siliculis erecto-patentibus ellipticis utrinque attenuatis puberulis pedicello longioribus, stylo gracili.

Hab. Colombia; Andes of Quito, altitude 12,000 feet; Professor Jameson (n. 153).
Rudix clongata, lignosa, ramosa, multiceps. Caules 1-2 unciales, versus apices foliosi. Folia $\frac{1}{4}-\frac{1}{2}$ uncialia, patula, pube stellata. Scapi 1-2 unc. longi. Flores magnitudine rarii. Petala sub 3 lin. longa, unguiculata; lamina patente, rotundata. Siliculec $\frac{1}{4}-\frac{1}{3}$ lin. longæ; ralris planis; seminibus majusculis, late oboratis, atro-fuscis.
12. D. grandiffora, Hook. and Arn. ; incano-tomentosa, caulibus elongatis foliosis subramosis, foliis patentibus lineari-oblongis lanceolatisre integerrimis v. obscure dentatis, scapo nudo v. folioso, floribus amplis pedicellatis, petalis albis calyce plus duplo longioribus, siliculis ellipticis pubemlis plerumque tortis utrinque attenuatis pedicello brerioribus stylo elongato terminatis, seminibus 12-20 qnoque loculo. D. grandiflora, Hook. et Arm. in Bot. Misc. vol. iii. p. 137. sine descript.

Var. β; caule simpliciusculo, scapo nudo, siliculis glabriusculis snboltusatis pedicello breriorilhs. D. grandiflora, Hook. et Arn. ; Benth. in Plant. Harturey. 1]. 159. n. 883.

Hab. Colombia; Mr. Lobb. Chimborazo, 14,000 fcet; Professor Jameson. Var. β, Chimborazo; Professor Jomeson, Hartzely, n. 883.

Caules 3-4 unciales. Folia uncialia, in petiolum attenuata. Flores magnit. D. riolacece. Siliculce plerumque $\frac{1}{2}$ unc. lougæ. D. riolacece proxima sed ad hanc scetionem relata obscapum (precipuc in rar. β), elongatum, a caule distinctum, racemunque nudiusculum.
13. D. ineana, vid. supra.
$\mathrm{IH}_{\mathrm{ab}}$. Strait of Magallaens; Commerson.
14. D. Gilliesii, Hook. et Arn. in Bot. Misc. vol. iv. p. 137.

Hab. Chili; on the Andes; Gillies, Cuming, Reynolds, Bridges.
15. D. cheiranthoides, n. sp.; radice magna fusiformi, foliis radicalibus longissime lineari-lanceolatis simuatodentatis utrinque stellatim scaberulis caulinis multo minoribus, scapo ascendente puberulo subramoso, racemo elongato, floribus amplis aureis, pedicellis fructiferis elongatis patentibus, siliculis obovato-oblongis utrinque attenuatis in stylum elongatum desinentibus, ralris conrcxiusculis glabriusculis, seminibus paucis majusculis atro-fuscis.

Hab. New Grenada; Sierva Nevada, near the snow; Purdie.
Radix pollicem crassa, 3-4 unc. longa. Folia 3-5 uncialia, rix $\frac{1}{2}$ unc. lata, fasciculata, longe petiolata, flaccida. Rumi seu scapi pedales, foliosi, divisi. Flores magnitudine ct colore Cheiranthi ochroleuci. Pedicelli fructiferi stricti. Siliculce $\frac{1}{3}$ unc. longæ, pediccllo $\frac{1}{2}$ breviores, sub lente puberulæ. Semina pro genere maxima, 2 rel 3 quoque loculo, 1 lin. longa, compressa,-Habitu ad Tesicuriam utriculatam accedit, sed stamina omnia vere edentula, silicula elliptica et semina exalata.
16. D. valcanica, Benth. ; Plant. Martueeg. p. S2. n. 571.

Нab. Colombia; Volcan de Agua; Hartreeg, n. 571.
in the third group are scapigerons, but the peduncle is more or less leafy and the flowers racemose, the radical leares are distinct from the cauline. The last division differs from the former only in forming shrubs, the branches being leafy throughout their leugth, an artificial character, but sufficiently available so far as the included species are concerued.
17. D. Toluccensis, H. B. K., Nov. Gen. et Sp. Plant. Am. vol. v. p. 78.

Hab. Mexico; Humboldt and Bonpland. Oaxaca, 12,000-13,000 feet; Galeotti.
18. D. Jorullensis, H.B.K., 1. c.

Hab. Mexico; Jorullo; Humboldt and Bonpland.
An lujus sectionis?

> § IV. Fruticulosr, caute e basi ramoso, ramis foliosis, foliis radicalibus a caulinis non distinguendis.
19. D. violacea, DC.; D. Bonplandiana, H. B. K., l. c.

Hab. Colombia; Assuay, 13,000-14,000 feet; Humboldt and Bonpland, Professor Jameson.
Fruticulus pedalis. Flores subcorymbosi, magnitudine et colore variabiles. Pedicelli fructiferi silicula breviores. Siliculce lineari-ovatæ, incano-tomentosæ, iu stylum gracilem gradatim atteuuatæ. Semina plurima, oblonga, atrofusca.
20. D. alyssoides, H. B. K., 1. c. non Benth. Plant. Martweg. Hook. et Arn. Bot. Miscell. rol. i. p. 126. t. 32.

Hab. Colombia; Prorince of Pasto; Humboldt and Boupland. Summit of Pichincha and Pillzhum ; Professor Jameson.

Flores albi, ampli. Silicuta longiores stylique breviores quam in precedente. Semina parva.
I have retained the name given to this plant in the 'Botanical Niscellauy,' (vol. iii. p. 137), aud also so called by Professor Jameson. Mr. Beuthan has cousidered my D. Hallii as the D. alyssoides of Humboldt and Bonpland, whose specific character does not allow of my deciding the question.
21. D. IIallii, n. sp.; fruticulosa, ramosa, incano-pubesceus, foliis radicalibus mullis caulinis sessilibus linearioblougis oblongo-oboratisve remote dentatis supra sericco-hirsutis subtus stellatim tomentosis, racemis elongatis, floribus amplis albidis, pedicellis basi bracteatis finctiferis erecto-patentibus silicula brevioribus, siliculis lineari-oblongis in stylum brevem attenuatis, ralris planiusculis pubesceutibus, semimbus plurimis majusculis. D. alyssoides, Bentl. Plant. Hartwey. p. 159. n. 884.

Hab. Colombia; Chimborazo, Pichincha, and Antisana, near the snow limit; Col. Hall, Professor Jameson, Harticeg.

Pedalis et ultra, vage ramosa, caulibus basi nudis. Folia 1-2 uncialia. Siliculce forma variæ, pleræque $\frac{1}{2}$ unc. longæ, lineari- v._orato-oblongæ, glabriusculæ, interdum lineares et $\frac{3}{4}$ unc. longæ.
22. D. Arbuscula, u. sp.; fruticulosa, stellatim pubescens, ranosa, ramis adsceudentibus inferve lignosis nudis superne foliosis, foliis parris imbricatis obovatis obtusis, petiolis vaginautibus dilatatis glaberrimis, flonibus flavis, siliculis pedicello breviorbus adsceudentibus anguste elliptico-oratis in stylum brevem attenuatis, ralvis planis glabriusculis, seminibus plurimis majuseulis.

Hab. Caraccas; Liuden (n. 439).
Caulis basi crassitie penmæ anatinæ, superne in ramos plurimos adscendentes fastigiatos divisus. Rami basi nudi, foliis delapsis cicatricati; ramulis $2-3$ uncialibus, foliosis. Folia $\frac{1}{4}$ unc. longa, imbricata, orata, in petiolum
2. Draba Falklandica, Hook. fil.; cæspitosa, incano-pubescens, caule brevissimo foliis rosulatis obo-vato-spathulatis obtusis integerrimis, dense vestito, pedunculis plurimis robustis breviusculis pedicellisque patentim substellato-pilosis, siliculis corymbosis pedicellis ter longioribus elliptico-oblongis utrinque subobtusis in stylum non attenuatis, stylo brevi valido, valvis concavis stellatim pubescentibus, seminibus plurimis parvis, funiculis brevibus.

Hab. Falkland Islands ; Lieut. Rolinson, R.N.

Radix lignosa, descendens, ad apiccm fasciculum rosulatum dense aggregatum foliorum subcoriaceorum gerens. Folia $\frac{1}{2}$ unciakia, pubescenti-hirsuta, subtus pilis stellatis conspersa. Pedunculi $1 \frac{1}{2}-2$ unciales, validi, nudi v. ima basi unifoliati. Silicule $3-4$ lin. longæ, stigmate brevi crasso terminatæ.

The most prominent characters of this species are the densely leafy short stem, or more properly cluster of abbreviated stems, which immediately surmounts the root; the short stout scapes, with comparatively large corymbs of pods; the latter are obtuse at both ends, but not abrupt, and the seeds are small, placed close to the margins of the valves and the opposite series separated by a very broad dissepiment.
3. Draba funiculosa, Hook. fil. ; glaberrima, caule breviusculo ramoso, ramis foliosis, foliis limeari-lanceolatis interdum oppositis basique subconnatis margine argute ciliato-dentatis, scapis gracilibus ad apicem paucifloris, pedicellis fructiferis brevibus, siliculis linearibus utrinque obtusis, stigmate bilobo sessili, valvis planiusculis, seminibus plurimis oblongis, funiculis elongatis capillaceis. (Tab, LXXXIX.)

Radix sublignosa. Caules pluries divisi, ramis $\frac{1}{2}-\frac{3}{4}$ unc. longis. Folia erecto-patentia, rigida, $\frac{1}{4}-\frac{1}{2}$ unciahia, basi in petiolum subdilatata. Scapi $2-3 \mathrm{mmc}$. longi, floriferi breves. Flores parvi, 3-5, breviter pedicellati, albidi, inconspicui. Sepala ovata, obtusa. Petala calyce bis longiora, spathulata, ad apicem rotundata. Staminum filamentis gracilibus. Ovarium oblongo-ovatum. Silicula foliis subæquilonga, linearis, valvis ter quaterve longioribns quaus latis, medio obscure uninerviis.

A very peculiar specics and resembling the D. oligosperma, Hook., of Arctic Anerica, most in habit, and particularly D. lactea, Adams, a native of Siberia, in the form and ciliation of the leaves; it has no near ally on the South American continent.

Plate LXXXIX. Fig. 1, portion of a stem, with two leaves accidentally opposite and connate at the base; fig. 2, a flower; fig. 3, petal; fig. 4, flower, with sepals and petals removed; fig. 5, a pod; fig. 6, the same, with one valve removed; fig. 7, a seed and its funiculus; fig. 8, embryo:-all magnified.

4. PRINGLEA, Anders., MSS.

Petala nulla (Anders. MSS.). Staminum filamenta brevia, dilatata, edentula. Ovarium obovatum. Stylus subelongatus. Stigma capitatum. Semina plurima, biserialia, oblongo-cordata, in rostrum breve producta; testa crassa, subspongiosa, albida. Silicula oblonga, valvis convexis navicularibus, dissepimento mullo. Cotyledones accumbentcs.-Genus mulli arcte, afine Eutremie forma seminum dissepimentoque retracto accedens, sed potius Drabæ indole siliculce et structura embryonis relatum. Herba magnitudine varia, plerumque elata. Rhizoma elongatum, pro. strata. Folia in capitulum magnum congesta. Pedunculi infra folia orti, erecti, foliosi. Siliculæ plurimee majuscula. Pringlea et Diaphoranthus, Anderson in Herb. Bank's.
vaginantem dilatata, superne patentia, obtusa, vix dentata, utrinque pube stellata tecta. Racemi unciales. Flores magnitudine et colore D. aizoidis. Siliculce 4 lin. longæ.

Species tres sequentes verisimilitcr non hactenus descripte, sed exemplaria mala offerunt, nempe e collectione Lindeni n. 431, in Caraccas reperta, et n. 1341 Novæ Grenadæ (strips mira) et e coll. Galcotti n. 4669 e Tolucea in Mexico allata.

1. Privglea antiscorbutica, Brown, MLSS. in Herb. Bankis. (Tab. XC.-XCI.)

Radix (scu rhizoma) prostrata, longe repeus, 2-3 pedalis, crassa, diametro 1-2 unc., teres, transerse ammlata, sublignosa, sapore Cochlearice Armoracie, precipue versus basin filras crassas divisas ramosas emittens, ad apicem foliorum capitulum magnum scaposque 1-2 clongatos gereus. Folia imbricata, in capitulum, Brassice oleracee magnitudine formaque, referens disposita, 3-6 unc. longa, latissime obovato-spathulata, basi in petiolum latum attennata, carnoso-coriacea, coucava, margine integerrima, ciliata, interdum pubescentia, intus rasibus olco subtilissimo repletis percursa. Pedunculi infra folia e rhizomate orti, ascendentes, 2-3-pedales, foliosi, sulcati, crassitie digitis humanæ, intus spongiosi, foliis plurimis imbricatis late obovatis sessilibus tecti. Racemus fructiferus elongatus, 6 unc. ad pedalem, e siliculis perplurimis dense congestis subclavatus. Pedicelli clavati, erecti. Sepala oblonga, obtusa, dorso pilosa. Petala nulla! (Anderson MSS.). Slamina parva, filamentis dilatatis. Silicule $\frac{3}{4}-1$ unc. longe, oblongo-lanceolatæ, v. breviter oblongæ, erectæ, pubescentes v. pateutim pilosæ, pilis simplicibus, rarius glabre; ralvis coriaceis, dorso convexis, olscure uninerviis; replo gracili, persistente ; placentis biserialibus, e dissepimento retracto fungosis. Seninina perplurima, majuscula, 1 lin. longa, subimbricata, e fusiculo ralido arcuato pendula, orato-cordata, subcompressa, deorsum in rostrum breve obtusum producta ; testa crassa, spongiosa, alhida; cotyledonibus accumbentilus, radicula mediocri æquilonga.

This is perhaps the most interesting plant procured during the whole of the voyage performed in the Antarctic Seas, growing as it does upon an island the remotest of any from a continent, and yielding, besides this esculent, only serenteen other flowering plauts.

I am unable to point out any rery close affinity which this curions genus may hare with others of the same natural family, and shall therefore confine myself to enumerating its peculiarities, and how far these may be common to others of the order to which it belongs.

The long stout rhizoma is very similar to the root of the Cochlearia Armoracia (Horse-radish), and not altogether different from that of the common kail or cabbage, which is however an annual plant, whilst the root-stocks of Pringlea and of the Horse-radish are perenuial. In the form of the head of leaves, the resemblance to the common cablaage (Brassica oleracea) is most striking, and so is the use both are put to; but this analogy cannot be carried further ; our garden esculent bears its flowers on a branching stem, that rises from amongst the leares aud is a continuation of the axis of growth of the plant, and it is chiefly owing to a check in the development of the parts connected with the iuflorescence, or a completc suppression of those parts, that the annual leares are increased in unmber and assume the densely capitate form ; here, on the other hand, the aumual flower-stalks spring invariably from the base of the cluster of peremmial leaves aud are wholly independant of them, as occurs in the horse-radish, in various Drabas, in Arabis Macloviana, and in some other perenmial Crueiferce more frequently imhabitants of cold climates. But it is in the parts of the inflorescence that the most important botanical characters reside, and by them the position of this plant must be determined in the natural series. The flowers though carefully sought, escaped my observation, owing to the lateness of the season of our arrival. Broken sepals and small stamens, with short dilated filaments and oblong-lanceolate anthers, of a dark colour, were all I could detect ; the stigma is peltate and quite entire.

The silicula accords in form with that of several Alyssinee, to which group in De Candolle's arrangement Pringlea must be referred. There is no marked difference, cxcept size, betreen the valves in this genus and Cochlearia ; the septum, wholly absent here, is fenestrate in C.fenestrata, Br., a native of Arctic America, whidst the clavate peduncle, short style and broad peltate stigma, are very characteristic of other specics of that genus. The presence or absence of a dissepiment, at all times spurious in the order, and of which there is a partial suppression in a genus usually provided with a complete one, cammot be considered a character of the greatest importance though very conspicuons ; lor do we in any case find its absence in Crueifere with the more ordinary structure of seed-vessels to indicate any affinity between the plants thus characterized. In Cochlearia the septum is easily separable into the two plates of which it is composed, as obserred by Brown, and close to the septum the origins of these plates are remote, so
that the point of an instrument may be placed between them, each arises immediately from the insertion of the funiculi, separating the parallel rows of seeds, a space occupied in Pringlea by a distinct groove or channel. The form of the seed and the thick spongy testa produced at the apex into a short rostrum, are far more characteristic of cruciferous plants with an incumbent than with an accumbent radicle; but that organ is here, as in Cochlearia, distinctly accumbent.

The contemplation of a vegetable very unlike any other in botanical affinity and in general appearance, so eminently fitted for the food of man, and yet inhabiting one of the most desolate and inhospitable spots on the surface of the globe, must equally fill the mind of the scientific enquirer and common ohserver with wonder. The very fact of Kerguelen's Land being possessed of such a singularly luxuriant botauical feature, confers on that small island an importance far beyond what its volcanic origin or its dimensions would seem to claim; whilst the certainty that so conspicuons a plant can never have been overlooked in any larger continent, but that it was created in all probability near where it now grows, leads the mind back to an epoch far anterior to the present, when the vegetation of the Island of Desolation may have presented a fertility of which this is perhaps the only remaining trace. Many tons of coal and vast stores of now silicified wood (which I have mentioned in the introduction to this Part) are locked up in or buried under those successive geological formations which have many times destroyed the forests of this island, and as often thenselves supported a luxuriant vegetation. The fires that desolated Kergnelen's Land are long ago extinct, nor does the island show any signs of the recent exertion of those powers, that have at one time raised parts of it from the bed of the ocean with those submarine algæ which once carpetted its shores, but which now are some hundred feet above the present level of the sea. The Pringlea, in short, seems to have led an uninter'rupted and tranquil life for many ages; but however loth we may be to concede to any one vegetable production an antiquity greater than another, or to this island a position to other lands wholly different from what it now presents, the most casual inspection of the ground where the plant now grows, will force one of the two following conclusions upon the mind; either that it was created after the extinction of the now buried and for ever lost vegetation, over whose remains it abounds, or that it spread over the island from another and neighbouring region where it was mdisturbed during the devastation of this, but of whose existence no indication remains.

The illustrious Cook first discovered and drew attention to the "Kerguelen's Land Cabbage" during his first voyage, when accompanied by Mr. Anderson as surgeon and naturalist. The latter gentleman drew up an accomnt of some of the more remarkable plants which he collected there and in other islands, which are preserved in the Banksian library; the present he designated as Pringlea in honour of Sir John Pringle, who wrote a work upon Scurvy. The latter circumstance has induced me, at Mr. Brown's suggestion, to assign the trivial name of antiscorbutica. The Pringlea is exceedingly abundant orer all parts of the island, ascending the hills up to 1400 feet, but only attaining its usually large size close to the sea, where it is infariably the first plant to greet the voyager, like the Cochlearia or scurry-grass upon many northern coasts. Its long rhizomata, often 3 or 4 feet long, lie along the ground ; they are sometimes 2 inches in diameter, full of spongy and fibrous substance intermixed, of a half woody texture, and with the flarour of horse-radish, and bear at the extremity large heads of leaves, sometimes 18 inches across, so like those of the common cabbage that if growing in a garden with their namesakes in England they would not excite any particular attention ; the outer leaves are coarse, loosely placed and spreading, the inner form a dense white heart, that tastes like mustard and cress, but is much coarser. The whole foliage abounds with essential oil of a pale yellow colour, highly pungent, and confined in vessels that run parallel with the veins of the leaf, and which are very conspicuous on making a transverse section of the head.

Doring the whole stay of the 'Erebns' and 'Terror' in Christmas Harbour, daily use was made of this vegetable, either cooked by itself or boiled with the ships' beef, pork, or pea-soup; the essential oil gives a peculiar flavour which the majority of the officers and the crew did not dislike, and which rendered the herb even more wholesome than the common cabbage, for it never caused heart-burn, or any of the umpleasant symptoms which that plant sometimes produces. Invaluable as it is in its native place, it is very donbtful whether this plant will ever prove equally so in other situations. It is of such slow growth that it probably could not be cultivated to advantage, and I fear that, unlike the cow cabbage of Jersey, it would form no new heads after the old ones were removed,
eren if it would survire the decapitation. Growing spontaneously and in so great abundance where it does, it is likely to prove, for ages to come, an inestimable blessing to ships touching at this far-distant Islc ; whilst its hxuriance amidst surrounding desolation, its singular form and appearance, striking even the casual observer, and the feelings of loneliness and utter isolation from the rest of the world, that must more or less oppress every royager at first landing on its dreary and inhospitable locality, are circumstances likely to render the Kerguelen's Land cabbage, cabbage thongh it be, a cherished object in the recollicetion of the marincr: one never to be effaced by the brighter or luscious products of a tropical vegetation.

Plate XC.-XCI. Fig. 1,-a young seed-vessel; fig. 2, a side view of a mature silicula; fig. 3, front view of the same; fig. 4, the same with the valres remored, shewing the sceds; fig. 5, a seed removed; fig. 6, the same cut open vertically; fig. 7, embryo, removed from the seed:-all magnified.

5. THLASPI, Dill.

1. Thlaspi Magellanicum, Pcrs. Ench. vol.ii. p. 189. Poir. Dict. vol. vii. p.541. DC. Syst. Teg. vol. ii. p. 3s1. Prodr. vol. i. p. 176.

Hab. Straits of Magalhacns, in dry aud open places; "Baie Duclos" and "Baie Boucaut"; Commerson.
As far as I am aware, this exists in the Paris Museum only; from whence De Candolle drew up his description, according to which, it is sufficiently distinct from the only other South American species, T. Andicola, Hook. et Arn., a native of the Andes of Chili.

6. SENEBIERA, Poir.

1. Sevebiers australis Hook. fil. ; aunua? parce patentim pilosa, caulibus diffusis ascendentibus ramosis, foliis subbipinnatifidis lobis incisis, siliculis longius pedicellatis majoribus didymis leviter reticulatis.

Hab. Chonos Archipelago ; C. Darwin, Esq.

Omnia S. pimatifide, sed racemis pedicellisque longioribus, siliculis duplo majoribus leviterque reticulatis.
I lave examined specimens of S. pimatifida, from various parts both of North and South America, where it grows from Buenos Ayres in lat. 35° south, to Carolina in lat. 35° north; and others from the old world, from the Cape of Good Hope in the same southern latitude, as far north as Gothland in Sweden, (lat. 58°.N'). From whatever locality I have received it, and however much the leaves may vary, the size of the siliculæ and their form and reticulation are constant, through twenty specimens gathered in as many different parts of Europe, Africa, and America; they do not approach the size of S. australis, though, except in size and the less reticulated surface of the pods of Chilian specics, I can detect no difference of any importance.

The existence of another species so nearly allied to S.pinnatifita, from the Chonos Archipelago, where we cannot suppose it to have becn introduced, is an argument in farour of M. De Candolle's conjecture, that S. pinnatifida, though now abundantly diffused throughout the warm and cultivated parts of Europe, Africa, and both Americas, is probably a native of the new world alone. It is impossible to say how far the S. pimatifida may be naturalized, even in the new world; it seems remarkably plentiful at Buenos Ayres and along that coast to South Brazil and Rio; but I am not aware of its having been found on the western side of America, except at Valparaiso, and near Quito, whence Humboldt and Bompland's specimens are described by M. Kunth as S. pectinata.

On the East of North America, according to Torrey and Gray, S. australis inhabits only the Southern United States, growing in fields and along the banks of rivers. M•Fadyen mentions it in his Flora of Jamaica, as an abundant native of that Island, in common with many other cruciferous plants, whose recent introduction is far less equirocal.

The parts of the old world inhabited by the S. pimatifida, are strictly the Eastern, as is to be expected in an
immigrant from the westward. The sonth of Scotland and England, South Sweden, the western Pyrences, and Atlantic shores of Spain are its principal European habitats, but it is not found in the vast Russian dominions, in any portions of Asia, or of Sicily, the Eastern Archipelago, or other mediterranean regions. It inhabits all the Atlantic Isles, the Azores and Canaries, and I have gathered it in Madeira, Ascension and St. Helena. In the Tropics and south temperate zone it extends no further east than the Cape and Mauritius, but re-appears in New Holland, according to De Candolle, though it is not mentioned by Bromn, nor have I seen it in that country. From the above enumeration it would seem that this plant has, to a certain extent, been distributed by the agency of ships, bnt we are at a loss to conceive, why a species so readily transplanted to inhabitcd spots, as the Atlantic Islands, should have not been also introduced upon the much frequented coasts of Asia ; the disinclination it manifests to procecd by land further east than the shores of those countries which it has so readily gained, is another fact connected with the geographical distribution of the present and some other introduced plants, of which I am unable to offer an explanation.

The last peculiarity of S. pimnatifila to which I would allude, is the comparatively high northern latitude it attains in Europe to what it does in America, where its limit is 32° lower in latitude. This probably arises from the species being impatient of great cold, at any part of the year, the severity of the American winters being, even in North Carolina, very considerable. The same agent, cold, may check in some degree the casterly progress of the plant in the northern States of Emrope, lunt certainly not in the southern or mediterranean regions.

7. SISYMBRIUM, Lim.

1. Siscmbrium Sophia, Lim.; Sp. Pl. 922. DC. Syst. Teg. vol. i. p. 193. Smith, Engl. Bot.t. 963.

Var. canescens; siliquis latioribus plerumque brevioribus. S. canescens, auctorum.
Hab. Strait of Magalhaens, Cape Negro; C. Darwin, Esq.
These specimens agree in every particular with others gathered on the walls of the city of Norwich, except in the siliqua of the latter being rather longer and narrower.

There are two widely distrihuted, and, cspccially in the foliage and pubescence, highly variable species of the genus; both of which seem so remarkably to follow civilized man, that it becomes extremely difficult to assign the native place to either. The true S. Sophia is generally considered a European plant only; but it appears to be truly a native of Canada, according to Torrey and Gray, it ilso occurs in Mcxico, if Galeotti's (no. 4682) be, as I suspect, a mere variety, and I am mable to distinguish some of Dr. Gillics' Chilian specimens from the European. The variety, describcd ahove, is a very common American state of S. Sophia, having the siliquæ shorter and broader than the European state, to it I refor Mr. Darwin's plant, and that of Dr. Gillies. It also inhabits Valparaiso, Bucnos Ayres, and California, from whence howevcr, I have seen but one specimen, with immature fruit. S.canescens, Nutt., has still shorter pods, generally about half as long as the pedicels, and borne upon very long racemes. It is a native of the Andes of Mendoza, of Mexico, Califormia and the United States, and of Cape Farewell on the coast of Patagonia. Thongh very distinct at first sight, it is not so in reality. The pods are variable in leugth, particularly the pedicels, for, in both Mexican and Snake-country (Califormia) specimens, they are considcrahly shorter than the siliqure. The S. Sophioides, Fischer, which runs along the Arctic sea-shores of Asia and America, must 1 fear sink into a variety of S. Soplic, or probably a state of that species, altered by the rigorous climate. The pods arc certainly longer, but that is a variable character. The Cardanine Menziesii of De Candolle is identical with this. The Sisymbrium millefolium, Ait., of Teneriffe is closely allied to the above, hut is very distinct in its large flowers and remarkably woody habit: the leaves are divided into very minute segments, a character to which I do not attach any importance; Mr. Webb has describcd it in his admirable "Phytographia Canaricnsis" under the generic name of Descurainea, which includes also the present species and some other Sisymbria.
2. Sisymbrium Magellanicum, Hook. fil.; glaberrimum, erectum, superne ramosum, foliis ovato-oblongis acutis pinnatifido-lobatis basi pinnatifidis in petiolum attenuatis, lobis sinuato-dentatis acutis, racemis floreutibus corymbosis fructiferis elongatis, pedicellis ebracteatis patentibus, siliquis suberectis terctibus linearioblongis in stylum brevem attenuatis brevioribus, valvis pilosis, septo uninervi. Brassica Magellanica, Juss. ined. Pers. Ench. vol. ï. p. 207. DC. Syst. Ieg. vol. ii. p. 595. Prodr. vol. i. p. 215. Deless. Ic. Select. vol. ii. t . 85 .

Hab. Strait of Magalhacus; Commerson. Port Famine; Capt. King. Cape Negro; C. Darwin, Esq.
Caulis in exemplaribus nostris bipedalis, teres, glancescens. Folia (caulina solum mihi nota) $2 \frac{1}{2}$ unc. longa, $1 \frac{1}{2}$ lata, superiora inregulariter dentato-lobata, inferiora subpinnatifida, lobis divaricatis. Racemus fructiferus 6 -uncialis; pedicellis $\frac{1}{2}$ nuc. lougis. Sepala oblonga, obtnsa, dorso parce pilosa, pilis patentibus stellatis. Petalu pedicellis longiora, spathulata, flara. Stamimum filamenta filiformia. Siliquee vix $\frac{1}{2}$ unc. longæ, suberectre v. jatentes, utrinque attenuatæ, stylo brevi valido terminatæ. Stigmata subcapitata. Tralve $1 \frac{1}{2}$ unc. lata, juniores dorso inferne præcipue ot sepala pilis patentibus stcllatis barbate, medio nervo prominulo vix carinatæ. Septum uninerve, e membranis duabus ad septum solutis constans, nervo valido, areolis oblongis hexagonis. Semince oblonga, rufa, sulcata, sulcis punctatis, funiculis brevioribus, radicula obliqua incumbente.

I have no hesitation in referring this plant to Pcrsoon's Brassica Magellanica, Delessert's excellent figure being very characteristic, in all respects, save that the stellated hairs on the pods are not represented. It is apparently a little known species, Mr. Darwin's and Capt. King's specimens being all I have seen. De Candolle describes the pods as glabrous and torulose, bot he evidently has only seen them when young.

V. BIXINEA, Kunth.

1. AZ」RA, Ruiz et Pacon.

1. Azara lanceoluta, Hook. fil.; ramulis pubescentibus, foliis grosse inæqualiter subduplicato-serratis majoribus lanceolatis acuminatis, minoribus rotundatis ovatisque, corymbis $3-5$ floris interdum subpaniculatis, pedunculis folio minore æquilongis, pedicellis gracilibus, floribus polygamis, sepalis ovatis reflexis, staminibus perplurimis sterilibus paucis, placentis 4.

Hab. South Chili, Cape Tres Montes; C. Darvin, Esq.
Frutex sen Aibuscula 12 ad 18 ped. alta. Rami ramulique graciles, pube fusca obtecti. Folia subcoriacea, utrinque gradation et iuferue in petiolum brevem attenuata, glaberrima, $2-3$-uncialia, minora $\frac{3}{4}$ nnc. longa. Flores majusculi interdum in paniculam 1-1 $\frac{1}{2}$ unc. longan dispositi, seu corymbosi, corymbis solitariis paniculatisve, pedunculis pedicellisque gracilibus, puberulis, bracteis ad basin pedicellorum parvis. Stamimun filamenta $\frac{1}{4}$ unc. longa, ealyce ter longiora. Stylus primo visu simplex, sed in ramos 4 breves separabilis. Ocula perplurima, placeutis parietahibus 4 longitudinalibus funiculis brevibus adnexa. Semina plurima, immatura, compressa.

The most southern sjecies of the genus, and also found at Valdivia by Mr. Bridges (n. 560); it is closely allied to another undescribed plant, A. Chitoense,* mihi, differing in the much larger flowers and leaves, more slender peduncles and longer pedicels. The æestivation of the calyx in this genus is valvate, the segments 5 and of nearly equal size; the stamens generally indefnite, with some of the outer ones abortive, but in A. Celastrina, where they are few, and none are abortive, the onter series is replaced by five small thickencd glands. In A. micro-

* A. Chiloense, n. sp.; ramulis vclutino-pubescentibus, foliis ut in A. lanceolata sed dimidio minoribus, pedicellis flore æquilongis, staminibus sterilibus plurimis apice clavatis.

Нав. Chiloe; Cupt. King.
phylla*, mihi, (vid. infra) the stamens are definite and invariably four or five in number, alternating with as many conspicuous obcordate ficshy flattened glands, placed rather externally to them and alternating also with the segments of the calyx, to which the stamens are opposite. The filaments are flattened, and the anthers decidedly extrorse, an arrangement probably common to the other species, where, owing to the filiform and slender filaments, it escapes noticc. The ovary bas three lines of parietal placentæ: there are four in some other species, A. lanceolata, A. Chiloense, and A. serrala, whose ovaries I have examined.

VI. VIOLARIEE. $D C$.

1. VIOLA, Tourn.
2. Viola maculata, Cav. Icon. vol. vi. p.20.t.539. DC. Prodr. vol. i. p. 297. L' Urville in Mém. Soc. Linn. Paris. vol. 4. p. 617. Freyc. Foy. Bot. p. 137. Hook. Ic. Plant. t. 499. Hook. ct Am. in Bot. Miscell. vol. iii. p. 144. et Bot. Beechey Toy. p. 10. V. pyrolafolia, Poiret Dict. vol. viii. p. 636. Gaud. in Ann. Sc. Nat. vol. v. p. 102. (excl. syn. V. Magellanicæ, Forst.)

Hab. Strait of Magalhaens; Commerson. Falkland Islands; Née, Bougainville and all succeeding voyagers.

Petala latcralia glanduloso-barbata, supremo plerumque glaberrimo. Antherarum margines ciliati.
A native both of the cast and west sides of South America, in the former inhabiting the coast at Cape Farewell and the Falkland Islands, and on the west side re-appearing at Chiloe and Valdivia, and passing thence north to Conception; a singular distribution, for I have sceu no specimens from the Strait itself, which is Commerson's habitat, according to De Candolle. The two varieties, constituted by Poiret, are hardly of sufficient importance to be retained, thongh De Candolle has done so, under the names of a, megaphylla and β, microphylla.
2. Viola Magellanica, Forst.; subacaulis, foliis omnibus radicalibus longe petiolatis reniformi-rotundatis crenatis supra pilosiusculis, stipulis lanceolatis integris v . apice laceris, scapo solitario unifloro foliis bis longiore, bracteis lanceolatis, sepalis oblongo-lanceolatis obtusis, petalis obovatis lateralibus barbatis, inferiore in sacculum brevem obtusum producto, stylo arcuato, stigmate nudo. V. Magellanica, Forst. in Comm. Geett. vol. ix. p. 4l. t. 8. DC. Prodr. vol. i. p. 297.

Hab. Staten Land; Forster, Dr. Eights. Sonth part of Tierra del Fucgo; C. Darwin, Esq.
Rhizoma plus minusve elongatum, ad apicem folia pauca scapumque solitarium gerens. Petioli graciles, $2-5$ unc. longi, glaberrimi. Folia magnitudine varia, $\frac{2}{3}-1 \frac{1}{2} \mathrm{mc}$. longa, supra pilis paucis precipue versus margines instructa, infra glaberrima. Seapus gracilis, petiolis bis longior, superne puberulus, ad $\frac{3}{4}$ longitudinis bibracteatus, bracteis parvis. Flos magnitudine V. odorate, verosimiliter flavus, siccitate punctatus.

[^23]3. Viola Commersonii, DC ; humilis, foliis omnibus radicalibus petiolatis ovato-rotundatis obtusis crenatis supra parce pilosis, stijulis late ovatis membranaceis concavis integerrimis, scapo foliis bis longiore superne arcuato, bracteis floribus approximatis majusculis crectis lanceolatis acutis basi utrinque in auriculas dilatatis, flore pendulo, petalis obovato-spathulatis glaberrimis. V. Commersonii, DC. Prodr. vol. i. p. 297.

Hab. Strait of Magalhaens; Port Gallant, at the top of the mountains; Commerson. South part of $^{\text {a }}$ Tierra del Fuego; C. Darwin, Esq.

Prccedenti habitu simillima; sed statura, foliis basi uou cordatis, petalis glaberrimis et precipue bractearum forma distinctissima. Petioli $\frac{1}{2}$ pollicares, laminæ subæquilongi. Scapus petiolis bis longior, apicem versus arcuatus et ibi bibracteatus; bracter erecte, lineari-lanceolate, acutæ, $2 \frac{1}{2}$ lin. longx. Sepala lineari-oblonga, acuminata, petalis $\frac{1}{2}$ breriora. Petata flava, 4 lin. longa. Stytus stigmaque ut in priore.

A very distinct and probably rare species, allied to the last, but essentially different. The leaves are generally reticulated on the under surface.
4. Viola tridentata, Menz.; depressa, glaberrima, caule procumbente ramoso, foliis confertis coriaceis obovato-cuneatis apice tridentatis trifidisve plerumque basi utrinque umidentatis, petiolo brevi in stipulas vaginantes dilatato, scapo brevi valido arcuato basin versus bracteolato, bracteis oblongis obtusis, sepalis oblongo-lanceolatis basi deorsum productis, petalis oblongis obtusis glaberrimis, calcare nullo, stylo gracili apice oblique truncato, capsula globosa. V. tridentata, Menz. MLSS. in DC. Prodr. vol. i. p. 300.

Hab. Staten Land, at the tops of the mountains; Menzies. Port Famine; Capt. King. Hermite Island, ou the hills ; J. D. II. Falkland Isles, on the mountains, $1200-1500 \mathrm{ft}$; J. D. II.

Species pusilla, prima visu Caltham appendiculatan referens. Caules graciles, 1-2 mc. longi, vage ramosi, prostrati, superne foliosi. Folin valde coriacca, $\frac{1}{3}$ unc. longa, sublisticha, crecto-patentia, glaberrima, subnitida, venis inconspicuis. Scapus solitarius, crectus, apice arcuatus, folio $\frac{1}{2}$ longior, basi bracteatus, bracteis pro planta majusculis. Flores nutantes, parri, cerrulei. Sepala coriacea, sub $1 \frac{1}{2}$ lin. longa. Petala sepalis bis longiora, line-ari-oblonga. Anthere orbiculate, in laminam membranaceam producte, filamentis brevissimis. Stylus gracilis, arcuatus, apice oblique trumeatus, cavns, nec bilobus. Capsula magna, pendula, globosa, ralvis coriacees.

A rery singular little species, agreeing in the slape of the style and stigma with the V. Nagellanica and V. Commersonii, bnt of a totally different habit and foliage, which approach more nearly to some of the species of the A sterias group. It is probably a common mountain plant throughout Fuegia; but, from its small size and prostrate mode of growth, readily orerlooked.

VII. DROSERACEE, DC.

1. DROSERA, L.

1. Drosera uniflora, Willd.; perpusilla, acaulis, foliis omnibus radicalibus stellatimı patentibus spatlulatis lamina rotundata longe glanduloso-ciliata, scapo brevi valido unifloro. D. uniflora, Willd. Enum. Hort. Berol. p. 340. DC. Prodr. vol. i. p. 317. Guud. in Ann. Sc. Nat. vol. v. p. 105. et in Freyc. Toy. p. 137. D'Urville, in Mém. Soc. Linn. Paris, vol. iv. p. 617.

Hab. Strait of Magalbaens; Port Famine ; Capt. King. South part of Tierra del Fuego ; C.Darwin, Esq. Falkland Islands; Gaudichaud, D'Urville, J. D. II.

Radix fibrosa, fibris crassiusculis descendentibus. Cautis brevissimus. Folia $\frac{1}{2}$ unc. longa. Scapus validus, erectus, foliis vix longior. Flos pro planta conspicuus, sepalis inequalibus breviter obovato-spathulatis, petalis elongato-oboratis bis longioribns, filamentis breriusculis, stylis ad basin in ramos plurimos divisis.

A rery small and distinct specics, most nearly allied to that mentioned in the first part of the rolume, and of which I have, smec the publication of the portion alluded to, seen perfect specimens collected by M. Le Guillon, one of the officers of Admiral D'Urville's Expedition. It appears to me that these, with the D. Arcluri, Hook. (Ic. Plant. t. 56) are thrce single-flowered representative specics belonging to the extreme southern portions of New Zealand, Australia and America.

VIII. CARYOPHYLLE E, Juss.

1. LYCHNIS, $D C$.

1. Lychnis Magellanica, Lam.; pubescenti-tomentosa, caule stricto erecto plerumque unifloro, foliis linearibus gramineis glabriusculis, flore erecto, calyce late oroideo segmentis oblongis apicibus rotundatis membranaceis, petalis angustis calyce $\frac{1}{2}$ lougioribus. L. Magellanica, Lam. Dict. vol. iii. p. 641. DC. Prodr. vol. i. p. 386.

Hab. Strait of Magallanens; Commerson. Port Famine; Capt. King. Cape Negro; C. Damein, Esq.
Caules basi ramosi, cæspitosi, e radice fusiformi elongata orti. Folia radicalia I-1 $\frac{1}{2}$ unc. longa, conferta, basi ciliata, raginantia, supeme glaberrima, gradatim acuminata, coriacea, margimibus tenuiter cartdagincis integerrimis; caulina breviora, pube albida tomentosa. Rami florentes v. scapi plerumque unifiori, 6 unc. ad pedalem, graciles, teretes, $3-5$ nodosi, molliter pubescentes. Flos maguus, crectus v. paulo inclinatus. Caly.x $\frac{1}{3}$ unc. longus, $\frac{1}{4}$ latus, suburccolatus, pubescens, membranaceus, I0-nerrosus, nervis viridibus; dentibus 5, majusculis, oblongis, ad apicem rotundatis. Petala calyce sub $\frac{1}{3}$ longiom, ungue lineari, fance squama lata sublacera erecta instructa, lamina fere ad basin partita; laciniis divaricatis, late linearibns, retusis, basi extus deute majusculo auctis. Germen oblongum, anthophoro inconspicuo insidens ; stigmatibus 5. Capsula exserta, unilocularis, ad apicem 5-valvis. Semina?

The resemblance of this to the variable L. apetala, of Arctic Europe, Asia and America, is so very strong, that I hardly feel justified in retaining it as a distinct species. The only differential character of importance that I can point out, is the form of the petals, the lamina of which is here divided to the base into two linear segments. There may be peculiaritics also in the seeds, of which I am ignorant, for Ledebou (Flora Rossica, vol. i. p. 326) attaches great importance to these organs, as distinctive of all the rarieties of L. apetala. The present species has been brought by Dr. Gillies from the Audes of Chili, his specinens belong to a broad-leared rariety. All the species most closely allicd to the present are natives of rery cold regions, or of great clevations in warmer climates. In Europe and North Asia the L. apetala never, at the level of the sea, imhabits a lower latitude than the Arctic circle, approaching the Pole itself in Nowa Zembla and Spitzbergen. In North America it abound likewise chiefly to the morth of the polar circle, forming part of the scanty Flora of Melville Island; at a great elcration on the Rocky Mountains it occurs as low as $52^{\circ} \mathrm{N}$. latitude. It is not a native of the $\mathrm{Alps}_{\mathrm{p}}$, nor there replaced by any other species, thie lands lordering the Icy sea being its only European habitat. In Asia, as in North America, it descends to latitude 50° on the Altai range, and the Himalayah produces several represcntative species. The re-appearance of a plant, so tholy aretic, on the highest mountains of Chili, and again at the Strait of Magalhaeus, if the present be the same, is a very curious fact, to be classed with those allinded to under the Draba incana, vid. p. 233. On the Andes of Colombia the species is replaced by an allied but very distinct oue, L. llyssanodes*.

[^24]
2. SAGINA, Linn.

1. Sagiva procumbens, Limn. Sp. Pl. p. 185. DC. Prodi. vol. i. p. 389. Smith, Engl. Bot. t. 880 . Gaulichaud in Ann. Sc. Nat. vol. v. p. 105. et Toy. Freyc. Bot. p. 137. D'Urille in Mem. Soc. Limn. Paris, vol. iv. p. 617. Hook et Arn. in Bot. Misc. vol. iii. p. 147.

Hab. Falkland Ishands, abundant near the sea; Gaudichaud, D' Ureille, and all subsequent collectors.
These spccimens are undistinguishable from others of European growth, by any characters I can discover. I am not aware that this plant inhabits any other part of the southern hemisphere except the higher latitudes of South America. Dr. Gillies gathered it on the roofs of houses in Buenos Ayres, where it may possibly have been introduced, though in the Falkland Islands, I should have at first sight pronounced it, from its great abundance, certainly wild; these are its only South American habitats. I sought for it carefully, but in vain, in Fucgia. In North America it is much more widely diffused, from Providence to New Orleans on the east coast, but I have scen no west coast spccimens; those of Douglas (and hence possibly Scouler's quoted in Torrey and Gray's Flora, as coming from the Oregon), belonging to Spergula saginoides; in no other part of North America has the plant been found, save in the most highly cultivated districts, and not at all in the British possessions, and since it is one that increases and follows cultivation rapidly, I feel inclined to exclude it from the North American flora, especially as Torrey and Gray mark the other British species, S.decumbens, Ell. (Sperg. sayinoides, L.), S.apetala, L., and S.evecta, L., as having all been probably introduced. Its European range is widely different from the Americau, northward, it is found in Iceland and Lapland, North Russia and Siberia, in the latter countrics, however, avoiding the extreme rigour of the Siberian plains and confined to the mountains of the Altai and Baikal. Spain again seems its southern limit in the west of Europe, European Turkey in the middle, and the Caucasus on the cast. Spergula saginoides, though so very nearly allied in other respects, has a considerably different geographical range, and hence should, in questions of distribution, be carefully separated from this. In England it is rather a rare and mountain plant; we have well authenticated specimens from Greenland, Iceland, and Lapland, it also inlabits North Russia, and Siberia, (but not beyond the 50th. degree, Unalashka and the west coast of North Amcrica to the southward of the Arctic circle; thus, like the S. procumbens, this is also a plant of the old world, both Greenland and North-west America having more of the peculiarities of European and Asiatic botany respectively, than of American. Not only do Torrey and Gray remark that it is probably introduced in the United States, but their specimens eren appear to belong to a different species. In the south of Europe it is also an Alpine phant, having been found on the Pyrenès on the east, and on the Caucasus to the west, Aucher Eloy's, n. 6at, from Persia is probably the same, but his specimens are very imperfect.

3. COLOBANTHUS, Fenzl.

1. Colobinthus subulatus, Hook fil.; Fl. Antarct. part i. p. 13. (Tab. XCIII. sub nomine Sagine.) Var. β, Daruinii, apicibus foliorum segmentorumque perianthii muticis.
Hab. Good Success Bay ; Banks and Solander. Hermite Island, Cape IIorn, clefts of rocks, 12-1400 feet; J. D. II. Falkland Islands; near the sea and at the tops of the hills, 700-1000 feet; L'Urille, J. D. II. Yar. β, south part of Tierra del Fuego; C. Damein, Esq.

In the first part of this rolume I alluded to the singular fact, that all the Campbell Island specimens of C. subulata have 5 segments to the perianth, 5 stamens, 5 styles, and 5 valves to the capsule, while all those from Fuegia and the Falklands have only t, and this constantly and unaccompanied with any other appreciable differences. It may fairly be questioned whether the pentandrous state is not equally entitled to specific rank, as Spergula saginoides is to be separated from Sagina procumbens.

From the 4 stamens, of this state of C. subulatus and of all the other species, alternating with the segments of
the perianth, we may presume that they belong to that series of those organs, which are opposite the petals in decandrous Alsinere and generally suppressed in the pentandrous, and that the other series is represented by two thickened glands, placed between the bases of the stamens, rather externally to them, and opposite the two inner segments of the perianth; they are very conspicuous in S. muscoides, (part i. p. 14) and more or less evident in most species. Onc of my specimens was proviled with 5 stamens, the fifth being opposite one of the larger sepals. During my examination of the Campbell Island variety, I was led into an error. In it the secds germinate before leaving the capsule, and sending their radicles through the receptacle into the pedmele, and their cotyledonary leaves upwards between the valves of the seed-ressel, I described the axis of the capsule or the receptacle of the seeds as proliferous.

This genus, which I formerly arranged (following Fenzl.) with the Portulacee, I have now included in Alsineer proper, from its ncar affinity with Sagine and Spergula; the limits between these two orders are so confessedly undefineable, that I need searcely do more than indicate the most remarkable points of similarity between this genus and the majority of the Portulacea; which are, the distinctly perigynous stamina and their being alternate with the segments of the perianth. The perigynous insertion of the stamina can hardly be considered foreign to the Alsinere, for it is seen in Larbrea, a genus in all other respects nearly allied to Stellaria, also in Cherleria and some species of Arenaria itself, plants which by some have been remored to Portutacece, on no other ground than bccause the staminiferous disc, (so conspicuous in another form, as the anthophorus of Silenea), and which probably exists throughout the order, is more dilated in these plants. The close affinity of Colobanthus with Sagina may be perceived in the prevailing tetramerons arrangement, and in two of the segments of the perianth being always external and larger than the others, in the suppression of the petals, and in the perigynous insertion of the stamina, which equal the sepals in number; the chief difference between them lies in the stamens of the former being alternate with the calycine pieces, and those of the latter opposite to them. Colobanthus shews a further peculiarity in the valves of the capsule being opposite to the stamens and alternate with the sepals, whilst in Sagina and most other tetrandrous or pentandrous Alsineer, they are opposite both to the stamens and scpals. Here then the anomaly rests, either in the position of the valves of the capsule of Colobanthus, the stamens being still considered as belonging to the series opposite the petals, or in the situation of the segments of the perianth, which if opposite the stamens, would present an arrangement of parts exactly like Sagina, where stamens, sepals and valves are all opposite one to another.

Plate XCIII. Fig. 1, portion of stem and pair of leaves; fig. 2, flower; fig. 3, the same laid open; fig. 4, a flower of the Campbell Island vaiety ; fig. 5, ofarium of Falkland Island variety, cut open; fig. 6, capsule, and fig. 7, seed from the same; fig. 8, the same cut open, shewing the embryo:-all magnified.

Colobanthus crassifolius, Ilook. fil.; glaberrimus, cæspitosus, crassiusculus, caulibus plurimis erectis ramosis, foliis linearibus obtusis mucronatisve basi vaginantibus, pedunculis folio brevioribus post anthesin elongatis, floribus 4-5-meris, perianthii segmentis oratis v. ovato-lanccolatis obtusis capsulam apice 5 -valvem subærpuantibus v. longioribus. Sagina crassifolia, $D{ }^{\prime}$ Urville in Mém. Soc. Linn. Paris, vol. iv. p. 617. Gaud. in Freyc. Toy. p. 137. Colobanthus Quitensis, et C. saginoides, Bartling, et Prest, Reliq. ILank. vol. ii. p.]3. t. 49. f. 2.

Hab. Strait of Magalhaens, Port Famine ; Capt. King. Hermite Island, Cape Horn ; J. D. H. Falkland Islauds ; D'Urville, J. D. II.

The figure of this plant in the "Reliquiæ Hænkiamæ" is sufficient for the determination of the species, though I do not coincide with Bartling in considering it the Sagina Quitensis of Humboldt and Kunth, which is described as having filiform stems and four small bractex on the peduncles. I have little doubt that the latter plant is a Colobanthus, for the stamens are described to be alternate with the segments of the calyx, but probably a very different species. Specimens of C. crassifolius gathered on the Andes of Chili, have the capsule so much longer than the perianth, as
to entitle them to the rank of a separate variety ; in the more sonthern examples that organ is seldom much exserted. The segments of the calyx vary both in length and breadth, as the whole plant does in size. Judging from Bartling's description of Co saginoides, it is a state of this.

A very similar plant to the above is Galeotti's (n. 4404), from the Peak of Orizaba in Mexico, 12,900 feet; it differs only in haring the segments of the perianth laneeolate and aeuminate.
3. Colobanthus Kerguelensis, Hook. fil. ; glaberrimus, pulvinatim cæspitosus, caulibus ramosis foliosis, foliis imbricatis ovatis v. ovato-lauceolatis aeutis integerrimis coriaceis, pedunculis plurimis lateralibus e basi ramorum ortis interdum bilracteolatis, floribus majusculis folia rix superantibus tetrameris, capsula profunde 4 -valvi. (Tab. XCII.)

Hab. Kerguelen's Land; abundaut, eliefly near the sea.

Radix gracilis, descendens, subfusiformis, apice ramos perphurimos emittens. Rami validi, dense compacti, 1-2 une. longi, pluries divisi, basi vaginis seariosis foliorum obtecti. Folia plerumque versus apices ramorum inbricata, $\frac{1}{3}-\frac{1}{2}$ unc. longa, suberecta, lecte viridia, minervia, siccitate flavescentia, margine incrassato. Pedunculi $\frac{1}{2}-\frac{3}{4}$ mic. longi, ex axillis foliorum solitarii, crecti, ramo requilongi, superne incrassati, infra medium bibracteati, bracteis linearibus interdum infra-floralibus. Perianthium $\frac{1}{4}$ me. longım ; segmentis ovatis, acutis, concavis, biserialibus ; cxterioribus majoribns, sub 7-nerviis; interioribns angnstioribus. Slamina 4, disco carnoso inserta, valvis capsule opposita ; filamentis compressis, lineari-subulatis; antheris parris. Ovurimin in discum carnosum sessile, globoso-ovoidenm, obtuse angulatum, uniloculare, multiovulatum ; stylis 4, subulatis, divaricatis, intns stigmatiferis; ovulis cirea axin centralem placentiferam dispositis. Capsula globosa, perianthio requilonga, ad medium v. ad basin in valvas 4 obtusas periauthii laeiniis alternas fissa; seminibus phrimis, axi centrali demum libero adnexis; testa granulata, rufo-fusea.

In this specics, by far the finest of the genus, the relative position of the parts of the flower is very evident. The perianth is formed of form pieces, two of them outer, larger, and distinctly embracing the inner; altermating with these are the four stamens, analogrous to the inner and shorter series, or those opposite the petals in Sperguld and Sedun, and which are opposite the carpellary leaves in both those genera. Supposing then that the five petals and ten stamens of Sperguld form three alternating whorls of five organs eaeh, in this plant the two outer of these whorls are suppressed; in Sugina procumbers the inner alone, and in S. apetala the outer and inner.

Plate XCII. Fig. 1, peduncle, bractee, and flower; fiy. 2, a flower, haid open; fig. 3, ovarium ; fig. 4, receptacle and orules, taken from the same; fig. 6, a seed; fig. 7, the same, cut open, showing the embryo:-all magnified.
4. Colobastuus diffusus, Hook. fil. ; procumbens, diffusus, ramosus, ramis graeilibus, foliis radicalibus paneis eonfertis, caulinis oppositis ommibus earnosiusculis lineari-subulatis aeutis integerrimis, pechunculis plurimis filiformibus strictis plerisque axillaribus foliis bis lougioribns ebracteatis post anthesin elongatis, floribus parvis tetrameris, perianthii segmentis ovato-rotundatis marginibus subscariosis, eapsula periauthio bis longiore ad medium 4 -valvi.

Hab. Amsterdam Island; Sir G. Staunton, Lieut. A. J. Smith.
Radix fibrosa. Caules tenues, graciles, 3 unc. longi, diametro Sagince procumbentis. Folia viridia, 4 lin. longa, siccitate snlflexnosa, obscure uminervia. Flores parvi, 1-1 $\frac{1}{2}$ unc. longi. Capsula valvis obtusis coriaceo-membranaceis, segmentis perianthii oppositis.

This is quite a distinct speeies, its habit more like Sagina procumbens than any of the others. I have appended a description* of another new plant belonging to this genns, bnt of a very different mode of growth.

[^25]
4. STELLARIA, Linn.

1. Stellarla debilis, D’Urv. ; glaberrima, caulibus prostratis laxe cæspitosis gracilibus vage divaricatim ramosis, foliis flaccidis lineari-lanceolatis subacutis trinerviis marginibus tenuissime cartilagineis integerrimis, pedunculis axillaribus solitariis uniforis foliis brevioribus, petalis bipartitis calyce brevioribus, capsula exserta. S. debilis, D'Urv. in Mém. Soc. Lim. Paris, vol. iv. p. 61 S.

Hib. Staten Land; Mr. Eights. Falkland Islands; by the margins of rivulets near the sea, not uncommon ; D' Uritlle, J. D. II.

Planta gracilis, Callitrichem aulumalem referens. Caules 3-5 unc. longi, ramosi, ramis fere filiformibus. Folia patentia, late sed pallide viridia, $\frac{1}{2}-\frac{3}{4}$ unc. longa, $1 \frac{1}{2}-2$ lin. lata, nervis duobus marginalibns instructa. Pedunculi validi, florem solitarium pro planta majusculum gerentes.

A very delicate plant and common in the Falkland Islands, though from its inconspicuous nature often overlooked. It generally grows among grass by the margius of streams, forming pale green tufts, and is more allied to the solitary-flowered Tasmanian species with axillary peduncles than to any Europeau congener. Fuegian specimens are larger in all their parts than those from the Falkland lslands.
2. Stellarta lanceoluta, Poir. Dict. vol. vii. p. 416. DC. Prodr. vol. i. p. 396.

Hab. Strait of Magalhaens; Commerson.
3. Stellarla rotundifolia, Poir. l.c. DC. Prodr. l.c. p. 397.

Hab. Strait of Magalhaens; Commerson.
I know no more of these two species than is conveycd in Poiret's descriptions; Kunth, according to De Candolle, considers the latter a Drymaria.
4. Stellarla media, With.; Smith. Flor. Antarct. part i.p. S.

Hab. Falkland Islands ; abundant, but not indigenous. Amsterdam Island; Lieut. Smith, most probably introduced.

5. ARENARLA, Limn.

1. Arenarla media, Linn. Sp.p7. p. 606. DC. Prodr. vol. i. p. 401. Mook. ct Am. in Bot. Misc. vol. ini. p. 147. A. marina, Smith, Engl. Bot.t. 955.

Var. β, seminibus compressis, ala membranacea fere obsoleta cinctis.
Hab. Cape Tres Montes ; C. Dumein, Esq. Tor. B, Falkland Islands, St. Salvador Bay ; J. D. II.
Some of Mr. Darwin's spccimens hare a rery crident wing to their seeds, white in others it is not more conspicuous than in the Falkland Island plants, and never appears to afford a specific character.

Like some other littoral plants, the drenaria marina or media, (including C.rubra, in part at least), has a rery
imbricatis breviter oratis subacutis coriaceis basi in raginam latissimam comnatis marginibus subciliatis, pedunculis brerissimis, floribus inter folia summa sessilibns pentameris, periantlini segmentis late oratis obtusis, capsula ad medium fissa.

Hab. Chili; La Pusilla, on the east side of the Audes, 10,000 feet ; Bridyes, n. 1244.
Caules 2 unc. longi, ramis 2-3 lin. latis. Flores inconspicui.
wide range in the temperate, but not in the tropical regions; for, though found in the Azores, Madeira, and the Canarics, it is absent in Ascension, and St. Helena ; re-appearing in the Falklands; and while in the Pacific it inhabits New Zealand, and Juan Fernandez, it is not scen on the tropical South Sea Islands or the Galapagos. It abounds along the coasts of Europe, and shores of the Meditcrranean, attaining the latitude of Shetland in the British dominions, and even entering the Arctic circle in Lapland. In Africa it grows at the Cape of Good IIope; but not on any part of the coast between that point and the mouths of the Nilc. Furtber east, in Australia, this little plant commences in the parallel of 30°, thence extending to the extreme sonth of Tasmania. Aretic America presents it both on the east and west coasts, viz., Califorma on the Pacific side, and Texas on the Atlantic. In South America, again, its range commences at Valparaiso, and terminates at Cape Tres Montes on the west, and it also inhabits the country lying between South Brazil aud the Falklands on the east.

6. CERASTIUM, Limn.

1. Cerastium arvense, L.

Yar. strictum, erectum, strictum, floribus paniculatis.
Var. Fuegianum, humile, foliis imbricatis, pedicellis solitariis terminalibus, floribus amplis.
Hab. Tierra del Fuego, south part; C. Darwin, Esq. Falkland Islands, very abundant; Gaudichaud, J. D. II. Var. β, Strait of Magalhaens, Port Famine; Capt. King. Var. , Mount Tarn, 2000 feet; C. Darwin, Esq. Hermite Island, Cape Horn, on rocks and sand-banks near the sea ; J.D.II.

An abundant and exceedingly variable Falkland Island plant, especially in the comparative length of its capsule, which is sometimes only half the length of, and at others, longer than the calyx. It is also rery common in Chili, Patagonia, and in South Brazil.

2. Cerasticai velgatum, L.

Hab. Falkland Islands; plentiful near Port Louis, but certainly introduced.

IX. GERANIACE $A, D C$.

1. GERANIUM, L'Hérit.

Geranium Magellanicum, Hook. fil.; caule erecto? superne ramoso pilis retrorsum patentibus hirsuto, foliis canlinis pilosis longe petiolatis orbiculatis 5 -partitis lacinuis 3 - 5 -fidis segmentis lineari-oblongis obtusis apiculatis, pedunculis pedicellisque elongatis retrorsum hirsutis, floribus amplis, sepalis sericeo-pilosis oratis acutis breviter aristatis, petalis obovato-cuneatis retusis emarginatisve sepalis triplo longioribus, orariis sericeis.

IIab. Strait of Magalhaens, Elizabeth Island; C. Darwin, Esq.
Caulis gracilis, 6-7-uncialis, superne parce dichotome ramosus, ramis divaricatis, siccitate striatis. Folia radicalia ?, caulina $\frac{3}{4}$ muc. lata, fere ad basiu partita, sinubus acutis, laciniis cuneatis, scgmentis ultimis ad apices rotundatis apiculatis. Pedunculi $1 \frac{1}{2}-2$ unc. longi ; pedicellis fere meialibus. Flores magnitudine G. Pyrenaici.

Of this species there are but imperfect specimens in the herbanium of Mr. Darwim, by whom only it has been gathered; thongh without root-leaves and fruit, it may be recognized by the long peduncles, large flowers, and especially by the size of the petals.

The peduacle of one specimen is single-flowered.

2. Geranium intermedium, Bert.? Walpers Repert. Bot. Syst. vol. i. p. 450.

Hab. Chonos Arehipelago ; C. Darwin, Esq. $^{\text {a }}$
The single and most unsatisfactory specimen may possilly belong to this species, whieh is rery imperfectly defined in the work quoted. Upper portion of stem, eauline leaf, peduncle, pedicel and calyx, covered with appressed pubescence, retrorse on the peduncles and petioles, very dense upwards on these parts. Petuls cumeate, shorter than the sepals, which are attenuated into long ariste.
3. Geranium Patagonicum, Hook. fil. ; eanle ereeto pilis albilis patentibus hirsuto, foliis pilosis longe petiolatis orbieularibus 5-7-partitis laciniis obovato-cuneatis 3 -5-fidis segmentis oblongis obtusis subacutisve apieulatis, petiolis pedunculis pedieellisque elongatis retrorsum hispilis, sepalis ovatis in aristam aeuminatis serieeo-pilosis, petalis obovato-cuneatis retusis basi filamentisque ciliatis, carpellis lævibus aristisque patentim pilosis, seminibus oblongis piceis, testa reticulata.

Hab. Strait of Magalhaens, Port Famine ; Capt. King.
Species G. Caroliniano proxima, sed differt petalis calyce duplo longioribus. Caules 7 une. ad pedalem, inferne patentim superne retrorsum pilosi, ןarce ramosi. Folic $1 \frac{1}{2}$ une. lata, pilosa, rarius glabriuseula, segmentis ultimis apicilus rotundatis apieulatis acutisre; petiolis interdum 3 unc. longis. Pedenculi infimi petiolis longiores, interdum 4 une. longi, supremi breviores, omnes retrorsum pilosi. Flores magnitudine G. dissecti, sed petala calyce fere $\frac{1}{2}$ longiora. Fructus fere 1 unc. longus; earpellis fuscis, obovatis.

One of the most ordinary forms of the genus, the species composing which, are perlhaps more variable in all their parts and more widely diffused than is generally supposed. Except by the length of its petals, this is not distinguishable from the G. albicans, St. Hil., and the protean G. Caroliniamuan of North America: we have the same plant from Monte Video, and Port Desire, but not from the west coast of South Ameriea, and a very similar species from Australia.
4. Geranium sessiliforum, Cav.; subaeanle, radiee crasso apiee pluri-diviso, foliis radiealibus longe petiolatis appresse sericeo-pubeseentibns reniformi-rotundatis 5 - 7 -partitis laciuiis euneatis 4-7-fidis segmentis obtusis, petiolis retrorsum pilosis, peduneulis e ramis brevibus ortis petiolis multoties brevioribus 1-2 floris, pedicellis dense serieeis, sepalis ovatis subncutis, petalis obeordatis sepalis bis longioribus. G. sessiliflorum, Cav. Diss. vol. iv. p. 198. tab. 77. f. 2. DC. Proll. vol. i. p. 639.

Hab. Strait of Magalhaens; Commerson. Cape Negro ; C. Darwin, Esq.
Radix crassitie digitis humanæ, superne stipulis persistentibus foliorum delapsorum coronata. Caules breves prostrati, appresse retrorsun pilosi. Foliia $\frac{3}{3}$ une. lata, paree pulescentia, segmentis ultimis oltusis, apieulo nullo terninatis; petiolis 3 -uncialibus. Pedunculi erassi, pleramque vix $\frac{1}{2}$ unc. longi, sed interdum clongati, $1-2$-flori. Ftores diametro fere G. Columbini. Petala obcordata, sepalis bis longiora, basi (filamentaque lata) ciliata.

An easily recognized species in the state I hare examined, by its habit, the size of the root, and the short peduncles, and branches or stem, which are howerer characters very liable to vary. Though plaeed by authors in the single-flowered section as the peduneles often bear two flowers.

The genus Geranium, though so widely dispersed, hardly inhahits the coldest countries either of the Northeru or opposite Hemisphere, the Strait of Magallaens marking its southern limit in the New, and Lord Auekland's group, or latitude 50°, in the Old World. In Arctie America, no species crosses the parallel of 52° to the eastward of the rocky mountains, but one (G. erianthem) reaches Sitka latitude 59° on the west of that range. In Asia that plant minhabits the same latitude in Kamschatka. No European species, except G. sylzaticinan (the only Alpine Enghish one), erosses the Aretie cirele, while three are found in Teeland, the northern extremity of whiel strectches to
that parallel. One of the thirteen British species, G. molte, grows in the Shetland Islands. The Gerania abound on the lofty mountains of the tropics, at elevations where the climate is tcmperate, proceeding upwards to near the verge of perpetual suow. Professor Jameson states that three grow on the Andes of Columbia, between 12,000 and 14,000 feet, white on the Himalayah mountains only one species is seen below 5,000 feet, between which height and 12,000 the genus is limited.

X. OXALIDE $E, D C$.

1. ONALIS, L.

1. Oxalis Magellanica, Forst.; acaulis, pumila, radice crasso elongato squamoso, foliis trifoliolatis rotundato-obcordatis carnosiusculis subtus pallidioribus, scapo valido petiolis æquilongo infra florem bibracteolato, sepalis late oblougis obtusis petalis albidis $\frac{1}{3}$ brevioribus. O. Magellanica, Forst. Comm. Goett. vol. ix. p. 33. DC. Prodr. vol. i. p. 700.

Hab. Cape Tres Montes, Patch cove, 2000 feet; C. Darwin, Esq. Hermite Island, at the level of the sea ; J. D. II.

Radix seu rhizoma uneialis, erassa, descendens, squamis membranaceis dense obtecta, radiculas fibrosas hic illic emittens. Petioli $\frac{1}{2} \mathrm{mc}$. longi, glaberrimi v. parce pilosi, basi supra stipulam vaginantem articulati ; stipulis latiusculis, membranaceis, sursum in aurieulas duas productis. Foliota vix $\frac{1}{2}$ unc. longa, supra lete viridia, subtus pallidiora, glaucescentia, snb lente punctulata, utrinque lævia, glaberrima. Pedmeulus ereetus, petiolo æquilongus, bracteolis majusculis subulatis. Sepala glaberrima, retusa v . obscure triloba. Petala oborata, albida, $\frac{1}{4}$ unc. longa. Stamina 10. Styli 5.

A very pretty little species, one of the smallest of the genus, nearly allied to the eommon Wood-sorrel of England, O. Acetosella. The leaves, as in all the Oxalides, hare a very pleasant aeid taste, but are too small to be employed, $\mathrm{l}_{\text {ike }}$ those of the following, for any useful purpose.
2. Oxalis enneaphylla, Cav. ; acaulis, rhizomate crasso repeute bulbifero squamoso, foliis longe petiolatis $9-20$ foliolatis, foliolis radiantibus plus minusre pubescentibus cuneato-obcordatis bilobis, pedunculis petiolo æquilongis unifloris bibracteolatis, floribus amplis, sepalis scrieeis villosisve apice interdum bipunctatis, staminibus elongatis stylos hirsutos capitatos superantibus. O. enneaphylla, Cav. Ic. vol.v. p. 7.t.411. Gaud. in Ann. Sc. Nat. vol. v. p. 105. et in Freyc. Foy. p. 137. DP Urville, in Mém. Soc. Liun. Paris. vol. iv. p. 616. DC. Prodr. vol.i. p. 702. Hook. Icon. Plant.t. 404. Vinaigrette, Pernetty, Foy. vol. ii. p. 54.

Var. β, pumila; minor, tota pubescens. O. pumila, D'Urv. l. c. p. 616. Gaud. in Freyc. Toy.l. e.
Hab. Falkland Islands ; abundant, especially near the sea.
Rhizoma desceudens deinde horizoutale, 1-2-unciale, crassitie pollieis, simplex v. ramosum, bulbosum, basibus petiolorum stipulisque seariosis obtec̀tum, apieem rersus asceudens, deuse tomeutosum. Fotia plurima; petioli 4-6 unc. longi, glabriusculi v. parce pilosi, supra stipulam obscure articulati; stipula lineares, scariosæ, rufo-brunneæ, sæpe tomento marginatæ ; foliola horizontaliter radiautia, sæpissime scrie duplici inserta, pilis fulvis sericea v. glabriuseula, carnosiuscula. Pedunculi petiolis subsimiles, sed supra medium bracteolati, bracteolis seariosis v. interdum villosis. Sepala oblonga, obtusa r. subaenta, rarius apicem versus bipunctata. Petata sepalis ter longiora, fere uncialia, obovato-cureata, albida v. rosea, pulcherrime pmpureo-renosa. Stamina 10, alternis brevissimis. Styli 5, stigmatibus capitatis terminati. Capsula sericea.

The pride of the Falklands, and peculiar to that group of Islands, where it grows in such abundance on the
banks orerhanging the sea at Berkeley Sound, as to cover them with a mantle of snowy white during the spring month of Novcmber. The plant is an excellent antiscorbutie and agreeable pot-herb, though too aeid exeept in tarts and puddings.

XI. CELASTRINEE, $B r$.

1. MATTENUS, Feuill.

1. Maytenus ILagellanieus, Hook. fil. ; ramis teretibus pubescentibus, foliis alternis glaberrimis ellip-tico-ovatis utrinque attcuuatis serratis coriaceis, floribus subsolitariis brevissime pedunculatis, braeteolis fimbriatis, calycis segmentis rotuudatis, petalis ovato-oblongis obtusis, antheris ovato-cordatis, capsula compressa orbiculari-obcordata 2-loculari 2 -valvi Ω-sperma, seminibus basi arillo allido cupulari donatis, testa crustacea. Cassine Magellanica, Lam. Ill. n. 2590 . Encycl. Suppl. vol. ii. p. 130. Celastrus? Magellanicus, DC. Prodr. vol. ii. p. S. Celastrus Magcllanicus, Mook. Icon. Plant. t. 537. Euthalis lucida, Bankis et Sol. in Bibl. Bunts cum icone.

Hab. Strait of Magalhaens; Commerson. Port Famine; Capt. King.
A plant, in every respeet so nearly related to the Maytenus Chilensis, that I think it right to remore it to that genus from Celustrus. The only difference of structure lies in the cells of the capsnle of this, haring, as far as I can observe, no trace of a sceond ombe, which exists in the above mentioned specics, ripcning into a perfect secd. The characters that scparate Maytenus from Celastrus are the solitary ovule of the latter, and membranous testa of its secd ; in this plant the testa is nearly ernstaceons; while in M. Chilensis, though a Maytenus in habit and in other respects, it is membranous. The size of the arillus is not of mueh importance, in the present species it is short, and forms a small eup to the base of the seed, and in the Chilian onc it nearly envelopes that organ. Natural habit is perhaps most nseful in distinguishing some of these gencra from others; nothing ean be more unlike the trpe of the genus Celastrus (C. scandens, L.), than this; for it not only closely resembles the M. Chilensis (the original species), but others, equally inhabitants of extra-tropical South America.

2. MYGNDA, Jacq.

1. Myginda disticha, Hook. fil. ; ramis puberulis distichis divaricatis, foliis glaberrimis altermis distichis parris brevissime petiolatis lineari-oblongis subaeutis integerrimis marginibus tenuiter recurvis momullis apiculatis, floribus axillaribus solitariis brevissime pedicellatis unifloris, capsula coriacea abortu l-loculari 1 -sperma, arillo membranaeeo fere operto.

Hab. Strait of Magalhaens; Port Fumine ; Capt. King.
Frutex v. Arbuscula? Rami teretes, pube temi fuliginoso donati, hie illie eicatrieati. Folic perplurima, $\frac{1}{2}$ une. longa, ommia horizontaliter patentia, coriacca, minervia, supra medio suleata, cinereo-oliraeea, sub lente subtilissime uigro-punctata, subtus pallidiora, margine recurvo, suprema apiculo calloso terminata. Flores inconspicui ; pedicellis bibractcolatis ; braetcolis margine ciliatis. Calycis segmenta rotundata. Petala immatura calyce bis longiora, oratorotundata. Capsula 3-linearis, oblique oblonga, coriaeea, lineis atris notata, intus costis 2 oppositis elcratis pereursa, hine spurie hilocularis. Semen unieum, capsulam totam implens, fusco-brunneum, vix maturum, arillo membranaeeo undulato tere omnino indutum.

Of this plant I hare only the ripe fruit and very young buds: it appears a true Myginda, although with a coriaceons, instead of a bony capsule. The leares are constantly alternate, as they sometimes appear on the J. rhacoma and Mr. pallens.

XII. RHAMNEA, $B r$.

1. COLLETTA, Comn.

1. Colletla discolor, Hook.; glaberrima, ramis rigidis teretibus parce foliosis hic illic spinosis, foliis oppositis elliptico-oblongis obovatisve obtusis obscure serratis in petiolum brevem attennatis subtus pallidioribus, pednaculis axillaribus unifloris, calyee quadrifico, fructu 3-cocco, coccis pilosis monospermis, testa crustacea nitida. C. discolor, IIook. Icon. Plunt. t. 538.

Hab. Strait of Magallaens, Port Famine; Capt. King. $^{\text {a }}$
Truter spinescens, spiuis oppositis plerumque articulatis, rarins ad articulos foliiferis, ramis cortice leri obtectis. Folia $\frac{1}{2}$-uncialia, breve petiolata, subcoriacca, supra nigrescentia, subtus pallide virescentia, apice srepe emarginata. Pedicelli fioriferi sul) 2 lin. longi, fructiferi elougati, robusti, infia calycem gradatim incrassati. Caly, urecolatus. Frructus majusculus, calyee dilatato suffilus. Semina polita, castanea.

XIII. LEGUMINOSA, Juss.

1. ADESMLI, $D C$.

1. Adessira pumila, Hook. fil.; parce subviscide pubescens, caule brevi simplici v. ramoso herbaceo, stipulis late raginautibus sursum in auriculas latas obtusas productis, petiolis gracilibus, foliolis 3-5-jugis coriaceis obovato-cuueatis obscure ciliato-dentatis, pedunculis unifloris gracilibus petiolo aequilongis, calyce campanulato basi suberquali, vexillo calyce bis longiore dorso glabriusculo, stylo elongato, ovario pluriovulato, legumine pubescenti lineari-compresso ad articulos crenato.

Hab. Strait of Magallaens, Port Gregory ; Capt. King. Cape Negro ; C. Darwin, Esq.
IFerba pumila, 2-5-uncialis. Foliu $\frac{3}{4}-1$ nuc. longa; foliola $\frac{1}{4}$ uncialia, siccitate flavescentia, anguste obovatocumeata, apice rotundata, enervia. Flores solitarii, snberceti, pro planta majusculi, flavi, purpurascentes? Fexillum fere $\frac{1}{3}$ unc. longum. Legumen sub 10 -articulatum.
2. Adesman lotoides, 11 ook. fil. ; appresse sericea, caule basi diviso lignoso gracili ascendente rarius abbreviato, ramis terminalibus, stipulis late vaginantibus superne in auriculas breves divergentes productis, petioto nullo, foliolis 2 in stipulam sessilibus lanceolatis acuminatis ntrinque sericeis, pedicellis axillaribns unifloris folio bis terve longioribus, calycis basi æqualis dentibus ovatis subulatis, vexillo dorso glaberrimo marginibus sparse sericeo-ciliatis ungue brevi callo barbato ancto, alarum lamina lineari-oblonga, cariua dolabriformi marginibus subciliatis, stylo ascendente gracili elougato.

Hab. Strait of Magalhaens, Cape Gregory; Capt. King. Elizabeth Island; C. Darkin, Esq.
Canles graciles, interdum spithamrei, rarins abbreviati, sublignosi. Foliu pilis scriceis appressis cana, basi in stipulam vaginantem latinsculam dilatata, $\frac{1}{3}-\frac{1}{2}$ unc. longa, lauccolata v. clliptico-oblonga, acuta, integerrima. Pedmenculi clongati, pubescentes. Flores suberecti, calyce sericeo, petalis flavis, vexillo fere $\frac{1}{2}$ unc. longo.

The species of this genns are particularly numerons in Patagonia, considering the very scanty nature of its Flora, and are characteristic of a dry and warm climate, rather than of the Fuegian regetation. Thens we do not find them on the west coast of South America, southward of the parallel of Valdivia; but on the east, they descend to 52°, and eren enter the Strait of Magalhaens, inhabiting its shores so long as these partake of the character of the
plains of South-eastern America. Many of the Patagonan species being new, I have drawn up a list of them, with characters of those hitherto undescribed, which is added below.*

* Enumeration of the species of Adesmia, inhabiting the plains of Patagonia, between the latitudes of Bahia Blanca 42° south, and the Strait of Magalhaens, and between the Andes on the west, and shores of the South Atlantic on the east.

1. Inermes, floribus axillaribus solitariis, foliis $2-3$ foliolatis.

1. A. suffocata, n. sp.; pumila, argenteo-scricea, dense cæspitosa, caule lignoso ramoso, ramis robustis subtortis basi vestigiis foliorum tectis apicibus foliosis, folis confertis trifoliatis breviter petiolatis, foliolis erectis oboratis integerrimis, floribus inter folia sessilibus, calyce breviter campanulato scgmentis subacutis, vexillo late orbiculato dorso sericeo marginibus inflexis, alis longe unguiculatis lobulo intus barbato, carinæ petalis falcatis cymbiformibus longe unguiculatis dorso sericeis, stylo breviusculo.

Hab. Port Desire; C. Daroin, Esq.
Romi crassitie penme corvinæ, lignosi. Folia $\frac{1}{4}$-unc. longa, petiolo valido 2 lin. longo albido-villoso, foliolis conduplicatis utrinque dense sericeis. Pedunculi brevissimi. Calyx basi superne gibbosus. Vexillum majnsculum, coriaceum.
2. A. lotoides, n. sp. v. supra.

Var. β, vaginata; petiolo perbrevi foliolis longioribus, stipulis majoribus, vexillo extus sericeo basi callo barbato destituto, carina angustiore.

Hab. Strait of Magalhaens, Cape Gregory; Capt. King. Elizabeth Island; C. Darwin, Esq. Var. B, Port Desine ; C. Darwin, Esq.
2. Inermes, floribus axillaribus solitariis, foliis pinnatis.
3. A. pumila, n. sp. v. supra.

Hab. Strait of Magalhaens; Capt. King, C. Darvin, Esq. Cape Fairweather; Capt. King.
4. A. villosa, n. sp.; tota pilis molliter sericeis patentibus obtecta, caule herbaceo prostrato ascendente parce diviso, stipulis membranaceis majusculis sursum in auriculas breves obtusas productis, petiolis gracilibus, foliolis 5-7jugis obovato-cuneatis utrinque sericeis, pedunculis petiolo brevioribus, floribus amplis, calyce membranaceo segmentis elongatis lineari-subulatis, vexillo calycem paulo superante orbiculato extus piloso, stylo elongato, legumine 2-3-articulato ad artieulos constricto subsericeo, seminibus paucis.

Hab. Port Dcsire ; C. Darwin, Esq.
Herba $2-3$-uncialis, habitu Astragali. Folia patentia, 1-1 $\frac{1}{2}$ unc. longa, foliolis $\frac{1}{3}$ unc. stipulis vaginantibus æquilongis. Flores conspicui. Caly, superne gibbosus, laciniis gradatim acumimatis, pilis sericeis tectis, inferioribus reflexis. Corolla ut videtur flava.
5. A. lanata, n. sp. ; tota lanata, caule basi lignoso diviso, ramis diffusis snberectis gracilibus teretibns, stipulis subvaginautibus in amiculas acntas divergentes productis, foliolis parvis $3-5$-jngis lineari-oblongis obtusis, pedmenlis folio brerioribus, calyce elongato laciniis liueari-subulatis, vexillo calyce paulo supcrante elliptico-oblongo dorso tomentoso, alarum unguibus laminis æquilongis, stylo elongato, legnmine 3-articulato, seminibus latis.

ILab. Port Desire ; C. Darwin, Esq.
Radix lignosa. Rami 6 unc. longi, graciles, teretes, ut tota planta, pube molli lanata tecta. Stipulce $1 \frac{1}{2}$ lin. longæ. Petioti $1 \frac{1}{2}$ unc. longi, graciles. Foliola angusta, patentia, 2 lin. longa. Flores forma et magnitudine Viciee sativa, purpureæ? Alarun nervi medii trabeculis arcuatis connexi. Legumen ad articulos vix contractum.
2. VICLA, L.

1. Victa Magellanica, Hook. fil.; glabriuscula, caule gracili angulato flexuoso parce folioso apicibus solummodo puberulis, stipulis semisagitatis apice lobuloque acuminatis, petiolis elongatis, foliolis unijugis

3. Inermes, floribus racemosis, foliis pinnatis.

6. A. Smithice, DC. Prodi. vol. ii. p. 319.

Hab. Bahia Blanca; C. Darwin, Esq.
7. A. affinis, n. sp.; glanduloso-pubescens, caule decumbente (?) herbaceo ramoso, stipulis parvis, foliis imparipimnatis, foliolis 6-7-jugis petiolatis lineari-oblongis emarginato-truucatis obscure ciliato-dentatis, pedunculis axillaribus mudis elougatis, floribus parvis pedicellatis, calyce æquali basi 5 -fido segmentis acutis, vexillo calyce subduplo longiore.

Hab. Bahia Blanca ; C. Darwin, Esq.
Ab A. dentala cui proxima differt foliolis lineari-oblongis, et junioribus glabriusculis non subtomentosis; ab A. Smithice racemo nudo, calyceque vexillo breviore.
8. A. conferta, Hook. et Arn. in Bot. Beechey, p. 20. el in Miscell. vol. iii. p. 159.

Hab. Port St. Julian; C. Darkin, Esq.
Species ut videtm late diffusa, per utramque oram Americæ Meridionalis inter gradus lat. merid. 33° et 50° obria.
9. A. candida, n. sp.; frutescens, tota tomento tenui arcte appresso candida, ramis lignosis teretibus superne paniculation ramosis, foliis sparsis, stipulis parvis decidus, petiolo crassiusculo compresso superne canaliculato subarticulato, foliolis 3-5-jugis ovali-oblongis utrinque rotundatis coriaceis mategerrimis enerviis, racemis terminalibus laxis, floribus pendulis breviter pedicellatis, basi bracteolatis, calyce sericeo-pubescente vexillo glaberrimo $\frac{1}{2}$ breviore segmentis subacutis.

Hab. Patagonia, east coast ; Mri. Eights.
Rami validi, lignosi, crassitie pennæ anatinæ, teretes. Folia $\frac{3}{4}$-uncialia, foliolis $2-4$ lin. longis, marginibus subrecurvis. Flores parvi, $\frac{1}{4}$ unc. longi, pedicellis bis longioribus.-A. pedicellatee affinis, sed differt præcipue pedicellis brevibus. Ad sectionem Chalotricham, DC. pertinet.
10. A. grisea, n. sp. ; suffrutescens, incano-pubescens, ramis ramulisque gracilibus subflexuosis, stipulis parvis subulatis, petiolo gracili, foliolis $3-5$-jugis lineuri-obovatis obtusis apiculatis integerrimis utrinque appresse subsericeis, racemis subterminalibus elongatis paucifloris, pedicellis brevibus basi bracteolatis calyce brevioribus, segmentis calycims brevibus subulatis, rexillo dorso sericeo.

Hab. Patagonia, south latitude 40°; Mrr. Ticeedie.
Caulis prostratus? Rami teretes, crassitie pennæ passerinæ, spithamæi, grisei. Folia pollicaria, foliolis 2-3 lin. longis, $\frac{3}{4}$ lin. latis, nerro in mucronem bresem desinente percursis. Flores versus apices pedunculi gracilis pauci sub 5, flavi, $\frac{1}{2}$ unc. lougi, rexillo calyce bis longiore. A. incance, Vogel, affinis, sed rami non patentim pilosi, nec foliola acuminata.-Species altera simillima, A. angulata, mihi, ad flumen Uraguay a Treedie detecta, differt ramis ascendentibus angulatis, floribus majoribus, segmentisque calycinis elongatis.
11. A. boronioides, n. sp.; suffruticosa, glaberrima glandulis rerrucæformibus undique sparsa, canle ramisque ascendeutibus teretibus lignosis articulatis, foliis elongatis, stipulis inconspicuis, petiolo crasso, foliolis parvis alteruis
rarius bijugis lineari-elongatis acuminatis glaberrimis, pedieellis axillaribus solitariis unifloris folio brevioribus, ealyee brevi pubescente vexillo $\frac{1}{2}$ breviore dentibus subulatis.

Hab. Strait of Magalhaens, Elizabeth Island ; C. Darwin, Lsq.
Caulis spithamreus, paree ramosns, gracillimus, glaberrimus. Folia remota, patentia; stipute 3 lin. longæ, subulate ; petiolus $\frac{1}{2}-\frac{3}{4}-1$ nncialis, strictus, in cirrlum desiuens; foliola petiolo longiora, sub 1 lin. lata, enervia, integerrima, gradatim acuminata, viridia, juniora parce serieco-puberula. Pedicelli graciles, petiolum paulo superantes, pubernli supra modium bibracteolati, bracteolis minimis inconspieuis. F'ores maguitudine fere V. Bithynicere cui accedit. Caly 2 lin. longns, basi rotundatus.

The plants of this gemus, though widely diffused tluroughout the temperate regions of Soutl America, apparently reach no further south than the Strait of Magalhaens, and are more characteristic of the regetation of the west than the east coast. The present scems distinet from the highly variable species of Chili and Buenos Ayres, in its marginate leaflets and solitary large flowers; upon the former of thesc characters mucl stress canmot be laid, for the presence of bracteolæ on the pedicel indicates a tendeney to branch, and a plant from Cape Fairweather, so similar to this in all other respects that \mathbf{I} consider it a variety, has two and even three flowers ou the pedumele, which is clongated beyond the leares.
2. VıcLa Kingii, Hook. fil. ; parce pilosa, caule graeili ereeto simplici v. parce ranoso angulato, stipulis anguste semisagittatis lobnlo deflexo apice acuminato, petiolis elongatis eompressis in cirrhum ramosum desinentibus, foliolis 3-5-jugis oppositis alternisve utrinque pilosis liueari-obovato-oblongis elongatis integerrimis apieulatis apieibus obtusis bidentatisve, peduuculis axillaribus sericeis 1 -2-floris petiolo multoties brevioribus, calyce brevi appresse serieeo breviter quinquefido segmentis acutis.

Hab. Strait of Magallacns, Port Famine; Cupt. King. $^{\text {and }}$
Caules bipedales, graciles, parce ad nodos pilosi, 3-5-angulati. Folia remota, patenti-recurva; stipule parre, $1-1 \frac{1}{2}$ lin. longra ; petioli $1 \frac{1}{2}-2$-unciales, compressi, vix alati ; fotiola $\frac{1}{3}-\frac{3}{4}$ unc. longa, basi attenuata, dcinde linearia, apicibus rotumdatis mueronatis non raro dentibus duobus auctis, venis snbparallelis. Pedunculi $\frac{1}{2}$ petioli suberquantes. Flores suberecti, flavi? Catyx $1 \frac{1}{2}$ lin. longus. Fexillum calyce bis terve lougins. Legnmina immatura pendula, glaberrima, 8 -sperwa.

Allied to the V. bidentata, Hook., of Chilk, which is entirely smooth, with leaflets broader and shorter in proportion, stipules twiee as broad as in this plant and the cirrhi simple.
oppositisve $10-15$-jugis sessilibus late obovatis grossc dentatis eoriaceis, racemis lateratibus terminalibusque obtusis, pediccllis brevissimis bracteolatis, calyce late ovato breviter 5 -fido puberulo vexillo glaberrimo ter breviore.

Hab. Cape Fairwcather ; Capt. King. l'ort Desire ; C. Darwin, Esq.

Suffrutex, fragilis. Rami spithanrei, crassitie penne corvine, cortice pallide rufo tecti, obscure striati, glandulis majusculis verncosí, ad bascos foliorum articulati. Folia 3-4-uncialia, foliolis 2 lin. longis flavescentibus crassis coriaceis. Pednuculi 3-4-pollieares, multiflori, superne parec pilosi, bracteolis oblongis, pedicellis calyce brevioribus. Flores patentes, $\frac{1}{3}$-uncialcs, flavi. Legumen latc lineare, valde compressum, 3 -articulatum, articulis suldistautibus, glandulis grossis nigro-punctatum.

4. Spinescentes, floribus solitariis.

12. A. trijuga, Gill. MSS. Hook. et Arn. in Bot. Misc. vol. iii. p. 191.

Hab. Port Desire ; C. Daruin, Esq.
3. Vicla Patagonica, Hook. fil.; parce pilosa, caule erecto angulato vix alato parce ramoso, stipulis late semisagittatis interdum dentatis apicibus lobuloque deflexo acutis, petiolo breviusculo subangulato in cirrhum simplicen desiuente, foliolis 1-2-jugis alternis oppositisque obovato-oblongis integerrimis ad apices rotundatis retusis dentatisve utrinque subsericeo-pilosis, pedunculis petiolo longioribus sericeis axillaribus 1-2-floris, calyce sericeo breviter quinquefido vexillo erecto ter breviore.

Hab. Strait of Magalhaens, Port Famine ; Capt. King.
Caules spithamæi, quam in precedeutibus robustiores, substrieti. Folia suberecta; stipule $1 \frac{1}{3}$ lin. longæ, semisagittatæ v. triangulares, interdum grosse deutatæ, segmentis omnibus aeutis; petioli vix $\frac{1}{2}$ unc. longi, cirrho brevi; foliola $\frac{1}{2}-\frac{3}{4}$ unc. longa, Pedunculi longitudine varii, petiolo semper longiores. Ftores ut in preceedente.

This differs from the V.bidentata, Hook., not only in the same points, except the cirrhi, as the last species, but in the few leaflets. The broad leaflets, simple cirrlii and differently shaped stipules, short and ereet petioles, well distingush it from V. Kingii. Though thesc thrce plants have much affinity, I consider them distinet; haring compared them with extensive suites of the Chilian and Buenos Ayrean speeies, with none of which they aceord. Some of the latter again, are very widely dispersed, and it appears to me probable, that more than one Chilian species is common also to North America, and to the higher mountains of Mexico, Columbia and Pern.

3. LATHyRUS, Linn.

1. Lathyrus Mayellanicus, Lam.; glaberrimus, nigricans, caule subrecto angulato ramoso, stipulis late oblougo-ovatis, foliolis plerumque latioribus subacutis basi contractis costatis utrinque in lobulis 2 acutis divaricatis productis, cirrhis trifidis, foliolis elliptico-oblongis lanceolatisve plerumque apiculatis $3-5$-nerviis, pedurculis folio longioribus versus apices 3-1-floris. L. Magellaniens, Lam. Eneyelop. Meth. vol. ii. p. 70 . DC. Prodr. v. ii. p. 370. Sueet, Br. Fll. Gurl. 2nd Ser. t. 344.

Hab. Strait of Magalhaens ; Commerson.
Spithamæus ad pedalem, siceitate nigricans. Caulis ut videtur ereetus, parce ramosus. Folia pro planta magna; stipulæ magnitudine variæ, $\frac{1}{2}-\frac{3}{4}$ unc. longæ, integerrimæ ; petioli strieti, partc infra folium $\frac{1}{2}$ une. longa, in cirrhum strictum ad apicem ramosum desinentes; foliola 1-2 me. longa, integerrima, nervis parallelis 3-5. Pectunculi 6 -unciales, erecti. Flores pedicellati, maguitndine L. sylvestris. Calyx brevis, glaberrimus.

I have seen no specimens of this from the Strait of Magalhacns; those from which the foregoing deseription is drawn up having been gathered at Cape Fairweathcr, a few miles northward of Fuegia proper, on the east eoast of Patagonia, by Capt. King, in whose collection there exists a third species from the same loeality, perhaps only a variety of L. nervosus, Lam. (Hook. Bot. Mag. t. 3987.) The L. Magellanicus is hardly distinguishable from a probably undeseribed Pernriau species.
2. Lathyru's pubescens, Hook. et Aru.; glabriusculus v. molliter pubescens, caule angulato alato ramoso, stipulis scmisagittatis apice lobuloque deflexo acuminatis petiohon auguste alatum dimidio requantibus, foliolis uni- rarius bi-jugis oblongo-lanceolatis apiculatis multinerviis, pedunculis folio multo longioribus 5-7-floris, floribus breviter pedicellatis, calyce sericeo segmentis lanceolato-subulatis, rexillo calyce quadruplo longiore, legumine puhescente. L. pubescens, Hook. et Am. in Bot. of Beechey's Toyage, p. 21. Bot. Misc. vol. iii. p. 197. ILook. Bot. Mag. t. 3996. L. petiolaris, Fogel in Linncea, vol. xiii. p. 29. fid. Iterb. Reg. Berol.

Hab. Chonos Archipelago; C. Daruin, Esq.
The most southern habitat of L. pubescens, a handsone and widcly distributed species, inhabiting all the
country between Valparaiso and south latitude 45° on the west eoast of South America, and between South Brazil and Bahia Blanca on the east, also formd on the intervening Cordillera and shores of the river Parana.
3. Lathyrus maritimus, Big. Fl. Boston. vol. ii. p. 268. Hook. Brit. Fl. ed. 5. p. 90. Pisum maritimum, Lim. Sp. Pl. 1027. DC. Prodr. vol.ii. p.368. Engl. Bot. t. 1046. Lathyrus pisiformis, Hook. Flor. Bor. Am. vol. i. p. 158.

Hab. Cape Tres Montes; C. Darwin, Esq.

A most attentive comparison of Mr. Darwin's plant with European specimens of Lathyrus maritimus has forced upon me the conclusion, that this species, so rery common in many parts of the north temperate and frigid zone, only inhabits in the sonth one of the most remote and little-visited spots of the Ameriean eontinent. The nature of the vegetation in the Peninsula of Tres Montes with the absence of other introduced plants forbid the supposition that this could have been imported, esen were it in cominon cultivation either as an ornamental or eulinary herb. No one, indeed, can read the aceounts given by our voyagers of that wild and desolate portion of the trest coast of Patagonia, (well known from being the scene of the "Narrative of what befell the Anna Pink," *) without a conviction that it is the last place in the world where an introduced regetation may be expeeted. Mr. Dorwint remarks that the Indian race is extinct there, and such is the unfrequented appearance of the coast, that a piece of wood with a nail in it is picked up and studied as if covered with hieroglyphics; doubtless with feelings in whieh any one can participate who has unexpeetedly fallen in with a work of art on a hitherto untrolden shore, and which vividly reeall the page and the line of Defoe's umrivalled work, where the youthful reader is as startled to read of, as Robinson Crusoe was. to see, "the footstep of a man in the sand."

Cape Tres Montes is also deseribed by Capt. Fitzroy as another Tierra del Fuego, "a place swampy with rain, tormented by storms, withont even the interest of population, for hitherto we had neither found the traees nor heard the roice of natives," \ddagger Three deserters, whose open boat, their last remaining hope of reaching eivilization, had failed them, lived for thirteen months here on seal's flesh, wild celery and shell-fish, unable to pursue then joumey by land, so rugged are the shores and so imperrious the low forests. Such is the nature of the eoast where alone in the sonthern hemisphere this plant grows, though apparently not so abundantly as on the beach in some parts of England, else the sailors in question might have improved their daily fare, for Dr. Caius says, that Lathyrus maritimus, during the famine of 1556 , afforded nowrishment to thousands of the people upon the Suffolk coast, who had overlooked it while in then prosperity, and when drisen loy hugger to seek some mauna in the wilderness, deemed its appearanee miraeulous; so ready, as Sir James Smith observes, is man to remember his Maker when in distress, whilst at other times he neglects what, like the best gifts of Providence, is always within his reaeh.

Being very mneh a maritime plant and one of a quickly propagated tribe, it is not surprising that L. maritimus enjoys a widely extended range in the northern hemisphere. Still there are some peculiarities worthy of notice, even here, in its distribution. In Great Britain, though abundant wherever it does grow, the plant is singularly local ; a few spots on the east and south eoasts are its sole recorded habitats; the Shetland Islands, where an Arctic variety is scen, being its only Scottish, and Kerry its only Irish station. It is also a native of Iceland and Greenland. The English Channel seems its southern European limits, whence it passes along the shores of Belgium and up the Baltie Sea and inhabits the east coast of Norway as far as 70°, becoming more frequent beyond the parallel of 60°

[^26]the eastward of the north Cape again, it is plentiful throughout Lapland, to the Sea of Archangel ; but does not cross the longitude of the Ural mountains; thence to the sea of Okhotsk, that is all over the Siberian plains, it is replaced by the Lathyrus pisiformis*, L. (fide Ledebour), but re-appears to the extreme cast of the continent of Asia, in Okhotsk and Kamschatka, affording another of those singular features in the Siberian Flora to which I have alluder in the note at p. 211 of this volume. In North America, commencing on the west coast, it is to be found at the Oregon \dagger river in 46°, and north to Kotzebue's Sound under the Arctic circle; in central North America, it attains the same latitude and that of the Arctic Ocean, besides following the great rivers up to their sources in those inland seas, Lake Erie, \&c. Upon the east coast of America it extends from New York no further north than Labrador, in latitude 55°; a limit upwards of 11 degrees nearer the tropic than what it attains in Europe, eastern Asia, or western America. Lastly, in South America it re-appears in the latitude of 47°, or nearly that of the Oregon.

The geographical distribution of Lathyrus maritimus naturally leads to that of the rast and important natural family to which it belongs; but in the present case I shall confine my remarks on this subject to the tribe Papilionaceer, which alone extends into the frigid regions of the northern hemisphere. The prevalence of this group, to the almost total exclusion of the Mimosece, Soartziece, and Cesalpinece, in all latitudes north of the Mediterranean Sea in Europe, of the Caspian and Altai range in Asia, and of latitude 37° north, in the New World; or, in general terms, to the northward of the parallel of 40°; is an obvions fact : for the Papilionaceec constitute a large proportion of the flowering plants from those limits up to the evcrlasting ice of the Polar Ocean. In the opposite hemisphere, however, a wholly different state of things prevails with that tribe. In South Australia and Tasmania the Mimosece rival the Papitionacere in abundance. In New Zealand only five species of the Natural Order are foumd in the whole extent of the Islands, from 36° to 46° south, and none beyond, in Lord Auckland's group and Campbell's Island; whilst in Fuegia proper they are unknown. To the northward of the Strait of Nagalhaens they commence, accompanicd with the Mimosere. In both hemispheres the Order diminishes in the proportion of its species to those of Composite and Graminece, when proceeding beyond the temperate towards the frigid zone; in the northern accompanying those Orders to 75° in America, or six degrees below the extreme limit of vegetation; while, in the southern regions of the old world, it disappears at 46°, and in those of the new at 52°, or twelve degrees short of the latitude which some other terrestrial plants attain.

* The accurate Gmelin says of this plant, "omni per Siberia occurrit." Ledebour assigns to it all middle and southern Russia, from the Caucasus to St. Petersburgh in Europe, and all Asia, lying between the Caspian and latitude 60° north, and east to the Baikal sea. This range is enormons, when we consider that Lathyrus pisiformis is not an inluabitant of any other part of the globe, nor a littoral plant; hence, though scattered over an area included between twenty degrecs of latitude and $\mathbf{1 0 0}$ of longitude, it is, in comparison with the L. maritimus, a local species, and confimed by tolerably well marked geographical limits, namely by the polar circle in Arctic Russia and Siberia, by the Caucasus, Caspian and Aral seas and the Altai range on the south, by the Gulf of Bothnia and the Carpathians on the west, and the mountains of eastern Siberia in the opposite quarter. On the other hand, the specics with which I have compared it, acknowledges no fixed limits ; in Europe it as evidently seeks the Ocean as the other avoids it, whilst in North America it crosses a whole continent. Gmelin's fifth species of Lathyrus is very probably the L. maritimus, whose range he states to be from the river Aldan as far as Kamschatka, thus commencing where L. pisiformis terminates. His description tallies well with that plant.
+ I exclude the Californian locality, for it is doubtful whether the plant of that country be the same as the Ewropean.

XIV. ROSACEI, Juss.

1. GEUM, Limu.

1. Geum Magellanicum ; Commers., ex Pers. Ench. vol. ii. p. 57. DC. Prodr. vol. ii. p. 554. Don, Encyelop. vol. ii. p. 527. G. coccineum, Seringe, in DC. Prodl: vol. ii. p. 551. Smith, Sibthorpe, etc. Linulley, Bot. Reg. t. 10ss. G. Chiloense, Ballis, (fid. Ser. in DC. l. c.). Mook. et Arn. in Bot. Miscell. vol. iii. p. 305. Don, Encycl. vol. ii. p. 526. G. Chilense, Lindl. Bot. Reg. t. 1348. G. Quellyon, Sueet, Brit. F7. Gurden, Ser. 1. vol. iii. t. 292. Caryoplyyllata foliis alatis, \&c. Feuill. Per. et Chili, vol. i. p. 736. t. 27.

Hab. Strait of Magalhaeus, Commerson; Port Famine, Capt. King; Cape Negro, C. Darwin, Esq.
I have restored the trivial name of Afagellanicum, feeling conrinced that Conmerson, who collected more plants in the Strait of Magalhaens than any other person, could not have overlooked the present and only species of the genus that is abundant in that locality, and which agrees with the scanty description published by Persoon. Its very close affinity with the G. coccinemm, of the 'Flora Græea,' has led to much discussion. Seringe first published them as one plant, probably discrediting the Ameriean habitat assigned to it by Ballis, from whom he received garden specimens under the name of G. Chiloense. Dr. Lindley next described and figured the Chilian plant and also referred it to G. coccineum; but in a following nomber of the 'Botanical Register,' after an attentive comparison of the Chilian with Sibthorpe's specimens, he disunited them, on aecount of the terminal lobe of the leaf of the Chilian being smaller and the lateral larger than in the Greek plant. Sweet disregards Balbis' name of Chiloense, proposing that of Quellyon, affirming that the G. coccinerm is very different, and probably a Sieversia; he neither gives his reasons for separating them nor for considering the Greek plant a Sieversia, though possibly he judges from its resemblance to S. montana. Lastly, Don says of G. Magellanicum that his is perhaps a Sieversia, but neither does he state why.

Of G. Magellanicum I may remark, that it is an exceedingly variable speeies in stature, in the size of its petals, and form of the leaves, which have large or small lateral and terminal lobes indiflerently. Again, the flowers of the wild specimens are certainly very often yellow, and about twice as large as the calyx; while in the garden plant they are much larger and more or less red or scarlet. The flowering stems vary from three inches to nearly two fect high and the leaves from two inches to one foot long. The segments of the calyx are gencrally shortly ovate, but in one specimen from Mr. Macrae they are almost lanceolate. The whole plant varies in pubescence. Its range is from Yalparaiso to the strait of Magalhaens, whose northern shore it skirts, ascending on the east coast of Patagonia as far as Cape Fairweather. Inland it inlabits both flanks of the Audes, from whenee no doubt it has been transported eastward for some distance into the Patagonian plains, for Mr. Darwin collected it on the river Santa Cruz, 250 miles above the sea, where it was aeeompanied by some other plants foreign to the greater part of the east coast of South America. In Peru this speeies is replaced by another with small petals, more characteristic of the North Amcriean forms of the gemus.

The first plant with which I would compare the present is G. Capense, which has longer calycine segments than the ordinary states of G. Magellanicum, but does not otherwise differ except in the rather slenderer awns to the carpels. I have compared two African specimens with a large suite of the G. Magellanicwm, and have no reason to suppose them specifically distinct. Of the true G. coccineum of Sibthorpe's ' Flora Greca' we have three excellent specimens, from the eollections of Aucher-Eloy, gathered on Mount Olympus, and another from Rumelia nuder the name of G. Sadleri, Friv., which the aceurate Grisebach unites with G. coccinemm; but they do not enable me to detect any character different from the South American plant, nor even to retain them as separate varieties. The calycine segments of both vary in size, and in the same proportions, the incisions of the margins of the leaf of the European
are narrower and more acute than in the ordinary Chilian form, but are in this respeet uudistinguishable from some collected by Gillies; the carpels of the two are identieal. The G.elatum, of Kamaon, judging from Dr. Wallich's specimens, does not at first sight appear to differ from this, except in the comparatively smaller terminal and the sessile lateral lobes of the leaf. Dr. Royle has placed it in Sieversia, to which genus Mr. Edgeworth assures me that it belongs. The nearest, but evidently distinct, species allied to G. Magellanicum are G. Pyrenaicum, easily reeognised by the great size of its carpels, and G. sylvaticum of the South of France and Spain, which is a single-flowered plant.
2. Geum parviflorum, Commerson; velutino-pubescens, rhizomate crasso, foliis radicalibus interrupte pinnatisectis lobo terminali rotundato obscure 5-lobato crenato lateralibns a-3-jugis multoties minoribus, pedunculis folio brevioribns elongatisve pubescentibus folia 2-3 lyrato-pinnatifida gerentibus, floribus 4-5 ad apiccm pedunculi sessilibus nutantibus folio involucratis, petalis laciniis calycinis subæequantibus albis? ovarii stylo hamato, carpellis pilosis. G.? parvitlorum, Commerson ex Smith in Rees Cycl. vol.v. p. 16. DC. Prodr. vol. ï. p. 553. Don, Encycl. vol. ii. p. 527. G. involucratum, Juss. Herb. in Pers. Ench. vol. ii. p. 57. DC. et Don, l. c.

Hab. Strait of Magalhaens; Commerson. Port Famine; Capt. King.
Rhisoma pollicem crassum. Folia fere ommia radicalia, patentia, $1 \frac{1}{2}-2$ unc. longa, pilis fulvis deuse velutina, lobo terminah $\frac{3}{4}$ unc. lato, phicato, laterabibus irregulariter inciso-dentatis. Pedunculi 3, unico fohiis breviore, caeteris elongatis erectis ter longioribus, omnes basi nudi, apices versus folia 1-2 gerentes. Flores in capitulum aggregati, sub $\frac{1}{4}$ unc. diametro, albi (fid. Commerson). Culycis laciniæ 6, oblongæ, obtusæ, bracteolis lineari-oblongis. Petala late elliptico-spathulata, obtusa, glaberrima. Ocaria dense hirsuta, stylo curvato apiee hamato terminata.

A little known and probably very rare plant. I have seen but one specimen, in Capt. King's collection, which 1 have compared with that in the Limean Herbarium ; its general appearance resembles a small state of G. Magellanicum, but the leaves are densely velvetty on the surface and the flowers very different; Commorson says the latter are white, in which respect, as in their size, the form of the petals, \&c., there is a elose affinity with the Sieversia? allifflora (val. i. p. 9. t. vii.), a plant which may possibly in an older state have hooked awns to the carpels, which these decidedly are. I am iuclined to consider this the representative of the Auckland Island species, as the G. Magellaniczin is of a similar New Zealand one. Thongh the descriptions of G.incolucratum are very uusatisfactory, I have little doubt but that they refer to this plant as above described, which seems to lave been furst published in France and afterwards in England. The description of Smith being the fullest and his having adopted Commerson's own name induce me to retain that of G. parviflorum. In the flower I examined there were six divisions to the calyx.

3. RUBUS, Limn.

1. Rubus geoides; Smith, Icon. ined. t. 19. Hook. Icon. Plant. t. 495. R. antarcticus, Banks et Solander, MSS. et Icon. in Mus. Brit. Dalibarda geoides, Pers. Ench. vol. ii. p. 53. DC. Prodr. vol. ii. p. 56s. Gaur. in Anu. Sc. Nat. vol. iv. p. 106. et in Freyc. Foy. Bot. p. 138. D'Urville, in Mém. Soc. Linn. Paris. vol. iv. p. 620. Framboise, Pernetty, Foy. vol. ii. p. 58.

Hab. Strait of Magallaaens; Commerson. Port Famine; Capt. King. Good Success Bay; Bunks ant Solander. Falkland Islands ; abundaut on the hills.

There are few Rosacece in the temperate latitudes of the Southern Hemisphere. The gems Rubus, in particular, hardly exists in South America; a very remarkable circumstance, since Australia, New Zealaud, and the Cape of Good Hope possess more species than extra-tropieal South Ameriea, though those countries are more dis-
connected from the temperate regions of the North, in the case of Australia and New Zealand by water, and of the Cape by the deserts of Aficica. This absence of Rubi is certainly an anomaly in the Chilian, Fuegian, and Patagonian Floras, which more fully represent in other genera common forms of European vegetation than do any other countries in the same latitudes.

This plant takes the place of R. saxatilis of the northern hemisphere and of R. Gumniamus of Tasmania. It is one of the few esculents of Fuegia and the Falkland Islands; the berries being almost as large as raspberries, of the colour of the Scottish cloudberry, R. chamemorus, and with a very agreeable flavour.

4. FRAGARIA, Tourn.

1. Fragaria Chilensis; Ehr. Beitz. vol. vii. p. 26. Lam. Dict. vol. ii. p. 537. DC. Prodr. vol. ii. p. 571. Hlook. et Arn. in Bot. Miscell. vol. iii. p. 305.

Hab. Chonos Archipelago; C. Darwin, Esq.

I have seen only one specimen, which is stunted and has a very large rhizoma. The species inhabits the west coast of North America attaining the parallel of 45°. The leaflets arc frequently remote, and in an individual from the Saskatchaman river there is only a solitary leaflet to one of the petioles.

5. POTENTILLA, Nestl.

1. Potentilla anserina; Linn. Sp. Pl. 710. DC. Prodr. vol. ii. p.583. Engl. Bot.t. 861.

Hab. Chonos Archipelago ; C. Darwin, Esq.
A very widely diffused plant in the northern hemisphere, and perhaps not uncommon in the southern, being found both in Chiloe and Chili, though possibly introduced. It grows throughout Europe, from the shores of the Mediterranean to the Aretic Sca; over all Asia to the north of the Altai range ; in North America from latitude 40° to Whale-fish Island in 70° north latitude, and from the Oregon River to Kotzebue's Sound on the west coast. It is frequent in Tasmania, but is not indigenous there.

6. ACENA, Fahl.

1. Acena (Euacæua) pumila, Vahl; tota glaberrima, radice descendente, caule brevissimo simplici, foliolis parvis 10-12-jugis oblique ovatis obtusis grosse crenato-serratis valde coriaceis marginibus subrecurvis supra vernicosis subtus glaucis, pedunculo scapiformi, floribus parvis in spicam gracilem dispositis sessilibus, calyce elliptico aristis brevibus apice glochidiatis undique armato, petalis oblongis obtusis superne pilosis, staminibus 4 brevibus, stigmate depresso patelliformi marginibus fimbriatis. A. pumila, Tahl, Emum. vol. i. p. 298. DC. Prod. vol. ii. p. 593. Lasiocarpus humilis, Banks et Sol. MSS. in Mus. Banks. cum icone. (TAB. XIV.)

Hab. Strait of Magathaens ; Commerson. Port Famine; Capt. King. Good Success Bay ; Bantis and Solander. Hermite Island; J. D. H.

Radix 3-pollicaris, crassa, descendens. Cautis vix uncialis, vaginis castaneis foliorum tectus. Folia undique patentia, 3 unc. longa, petiolo basi vaginante; foliolis sub $\frac{1}{4}$ unc. longis, supra luride virescentibus sed nitentibus quasi vernicosis, impresso-lineatis, subtus pallidis venosis. Scapus gracilis, teres, erectus, foliis abbreviatis $2-3$ auctus superne pubescens. Spica post anthesin uncialis, floribus remotis brevissime petiolatis basi bracteolatis; bracteolis lobatis. Fructus 1 lin. longus, luride fusco-purpureus. Semen compressum ut in congeueribus.

A most distinct and pretty little species, certainly belonging to the group Euacona, though that, as now constituted, is very artificial. The present forms one of a small section in which the spike is truly elongated, the fruit compressed and covered with short glochidiate setæ, and which have a depressed stigma. To the same group belong A. latebrosa, Ait., A. elongata, Lim., A. lappacea, R. and P., and A. myriophylla, Lindl., with, amongst others, a new specics from Monte Video*.

Plate XCV. Fig. 1, portion of peducle, bracteola, and flower; fig. 2, stigma; fig. 3, ripe fruit cut open, showing the seed; fiy. 4 , embryo remored from the seed:-all magnified.
2. Acexa cuneata, Hook. et Arn.; argenteo-sericea, caule brevi? decumbente, foliolis 4-7-jugis oblique obovato-cmueatis superne grosse inciso-dentatis utrinque scriceis supremis basi supra petiolun deorsum productis, pedmuculo scapiformi valido, floribus paucis majusculis remotis v. subgloboso-spicatis, petalis dorso sericeis, staminibus \approx filamentis subelongatis, stigmate depresso, fructibus obovatis tetragonis monospermis v. latioribus compressis et dispermis undique spinis apice glochidiatis basi dilatatis armatis. R. cuneatr, Mook. et Aru. in Bot. Miscell. vol. iii. p. 307.

Hab. Strait of Magalhaens; Cape Gregory ; Capt. King.

Caulis validus, 2-3-uncialis, asceudens. Folia 3-5 unc. longa, foliolis $\frac{1}{3}-\frac{1}{2}$ uncialibus. Pedunculi pedales, foliis paucis abbreviatis instructi. Bracteola lineares. Flores exemplaribus Chilensibus virides, Patagonicis luride fusco-purpurei.

Capt. King's specimens exhibit ripe fruit only, whilst those from Chili, gathered by Bridges and Cuming, are in flower. The fruit is often formed of two carpels and then is compressed; the arming is different from that of the last species and consists of strong short spiues, very broad at the base, sometimes arrauged in rows, so as to gire a pectinated appearance. Both in the form of the fruit and in the nature of the glochidiate spincs, this is allied closely to A. pinnatifida, R. and P., and A. trifida, R. and P. The A. cylindristachya, R. and P., is figured by its describers as sometimes bearing two carpels; it is quite a distinct species, though nearly allied to a Carthagemian one, A. macrorhiza \dagger, mihi.
3. Acena (Ancistrum) multifida, Hook. fil.; tota pilis sparsis villosiuscula, caule gracili ascendentc simplici v. superne pluries diviso, foliis linearibus, petiolis gracilibus, foliolis varie profunde sectis ad costam

* A. Monte-Vidensis, n.sp. ; laxe villosa, pilis patentibus, foliolis oppositis altermisque 7-9-jugis hineari-oblongis inciso-pinnatifidis laciuiis plurimis obtusis supra glabris subtus sericeis, pedunculo villoso folioso, spica interrupta clongata cylindracea obtusa, floribus parvis sessilibus, petalis glabriusculis, staminibus 2-4, stylis plerumque 2, stigmatibus depressis plunosis, fructibus late oblongis compressis undique setis brevibus apice glochidiatis amatis.

Hab. Monte Video; Capt. King.
Species satis distincta, tota pilis mollibus patulis fulvis vestita.
Radix basisque caulis desunt. Folia 4 unc. longa, foliolis $\frac{1}{2}$-uncialibus sessilibus. Spica 2 unc. longa. Flores sub 1 lin. longi, petalis fusco-rubris.
\dagger A. macrorhiza, n. sp.; radice crassissimo descendente, caule subnullo, foliis lanceolatis, foliolis $15-20$-jugis lineari-lauceolatis subacutis sessilibus basi oblique subcordatis serratis segmentis peuicillatis supra pubescenti-pilosis subtus petiolisque pulcherrime argenteo-sericeis, pedunculis elougatis scapiformibus sericeis, spica florifera deusa cylindracea obtusa, staminibus 4 , stigmate depresso, fructibus oblongis tetragonis compressis glaberrimis spinis 4 inæquilongis armatis.

Hab. Carthagena; high morutains above St. Sebastian; Purdie.
A. cylindristachyce habitu foliisque simillima, sed fructu diversissima.
usque pinnatifidis v. 3-5-partitis laciniis omnibus linearibus obtusis marginibus recurvis supra glaberrimis nitidis subtus sericeis, pedunculis villosis subscapiformibus parce foliosis, floribus plerisque in capitulum globosum congestis, calyce hirsnto, petalis fusco-purpurcis dorso scriceis, staminibus 2 filamentis brevibus, stigmate depresso fimbriato, fructu tetragono glabriusculo supra medium spinis suberectis apice glochidiatis basi dilatatis armato.

Hab. Strait of Magalhacns; Port Gregory ; Capt. King.

Radix lignosa, descendens. Canles 2-3-unciales, vaginis pilosis foliorum tecti. Folia 3-5 unc. longa, petiolis gracilibus subsericeis; foliolis perplurimis, magnitudinc variis, 2 lin. ad $\frac{1}{4}$ unc. longis. Pedunculi pedales, validi, erecti, foliis 2-3 abbreviatis instructi. Flores parvi.

This species is so nearly allied in general habit to some states of A. pinnatifida, that I hesitated before separating them. That plant I find to differ in having the surface of the fruit invariably armed with many and much larger spincs. The A. pinnatifida also is a mative of Patagonia, having been found by Mr. Darwin at Port Desire, in fruit only, and his specimens are of a much smaller size than those from Chili, but not otherwise distinct. The present species connects the Euacena with the Ancistrum group, and is, too, the most nearly allied to the following, which, possessing no spines, setæ, or glochidiæ whatever, will not rank under either of those subgenera.
4. Acexa lucida, Vahl ; laxe pilosa, caule elongato decumbente ramoso, ramis plurimis ascendentibus foliosis, foliolis parvis $5-9$-partitis lacimis inequalibus lineari-oblongis obtusis marginibus revolutis supra glaberrimis subtus laxe patentim pilosis uninerviis, pedunculis scapiformibus breviusculis validis, floribus plerisque in capitulum globosum aggregatis paucis solitariis fasciculatisve, bracteolis scariosis ciliatis, petalis dorso barbatis, staminibus plerumque 2 filamentis brevibus, stigmate depresso patellæformi, fructu tetragono ad angulos superne tuberculato, spinis glochidiisve mullis. A. lucida, Tahl, Enum. vol. i. p. 296. Lamarck, Illust. vol. i. t. 22. f. 3. Encycl. vol. i. p. 346. Hort. Kew. vol. i. p. 67. DC. Prodr. vol. ii. p. 593. (Tab. XCIV.)

Hab. Falkland Islands; very abundant on rocks near the sea.
Canles elongati, 6 unc. ad pedalem, prostrati, curvati, crassitie pemæ anserinæ, vestigiis petiolorum delapsorum vaginati, apicibus ascendentibus. Folia ad apices ramorum conferta, 1-2-pollicaria; petioli basi late vaginantes, vagine margine ciliata; foliola pro genere minima, 1 lin. longa, pallide viridia, ad basin in lacinias $3-4$ fissa, phus minusve patentim pubescentia, apicibus interdum penicillatis. Pednnculi 3 unc. longi. Capitula villosa, $\frac{1}{3}$ unc. diametro. Flares 1 lin. longi. Fructus obovatus, sursum pilosus, angulis prominentibus.

A plant long known in cultivation in England, but very imperfectly described. I am not aware by whom it was first detected. Vahl describes it from a specimen in the Jussicuan herbarium, and states that he saw it growing in Dr. Piteain's garden near London, where the fruit was unarmed; this is always the case in native specimens, though Vahl asserts the contrary. It is not improbable that some of the varieties of A. trifida, from Patagonia, may have been mistaken for this.
l'late XCIV. Fig. 1, bracteola ; fig. 2, flower; fig. 3, the same, more advanced; fig. 4, longitudinal section of the same, showing the carpel, enclosed in the calyx ; fig. 5 , section of ripe fruit and carpel, showing the suspended seed; fig. 6, side, and fig. 7, frout view of seed; fig. 8, embryo renoved from seed:-all magnified.
5. Acena (Ancistrum) larigata, Ait. ; glabriuscula, cande decumbente ramoso, ramis ascendentibus foliosis, foliolis suboppositis oblongo-obovatis obtusis basi obliquis superne grosse crenato-dentatis coriaceis supra glaberrimis subtus parce pilosis, pedunculo scapiformi glaberrimo v. pubescente uudo v. basi folioso superne interdum diviso, floribus plerisque capitatis, calycibus glabris, staminibus 2 filamentis brevibus antheris ro-
tundatis, stigmate brevi dilatato fimbriato, fructu glaberrimo oblongo-cuneiforme compresso spinis 4 suberectis inæquilongis armato. A. lævigata, Hort. Kev. vol. i. p. 68. DC. Prodr. vol. ii. p. 592. A. Magellanica, Hook. et Arn. in Bot. Miscell. vol. iii. p. 30S, quoad exemplaria hortensia. A. Magellanica, B, Lamk. quoad IIerb. Mus. Brit.

Hab. Strait of Magalhaeus ; Commerson. Hermite Island ; J. D. H. Falkland Islands; Dr. Lyull, Mr. Chartres, J. D. II.

Species A. ascendenti habitu simillima, sed glabrior, foliis coriaceis, formaque stigmatis staminum frnetusque diversissima.

A species so elosely resembling -4. ascendens that, even in their native phace, the Falkland Islands, where both grow together, it is diffieult to discriminate them without examination, when the prescut may be distinguished particularly by the more coriaceous aud less hairy leaflets, the spikes more elongated, and bearing remote glomeruli of flowers, or sometimes branching, by the smooth calyx, broader and shorter stigma, and the form of the ripe fruit. This, with all the preceding species, and the following, differ in the form of the stigma from the remainder, in which that organ is much more elongated, and in which there is less tendency in the peduncles to bear flowers auywhere but at the apex.
6. Acexa Magellanica, Vahl; abortu dioica?, caule breviuseulo subramoso ascendente, foliis subcoriaceis parce pilosis subtus subsericeis, foliolis 3-7-jugis late obovato-oblongis obtusis sessilibus superioribus decurrentibus grosse et obtuse crenato-serratis interdum 3-5-fidis, pedicello scapiformi nudo v. rarins unifoliato pubescente, capitula parva post authesiu dilatata, calyce petalisque late oblongo-ovatis pilosis, staminibus elongatis filameutis gracilibus, autheris majusculis didymis, stylo subelongato latiusculo plumoso. A. Magellanica, Fahl, Enum, vol. i. p. 207. (non Hook. et Arn. in Bot. Miscell.). Lam. Illust. t. 29. f. … Suppl. vol. i. p. 346. DC. Prodt. vol. ii. p. 593.

Hab. Strait of Magallaens ; Commerson. Cape Gregory, Capt. King. $_{\text {L }}$
Very nearly allied to A. lavigata, and perhaps not specifically distinct; the capitula are smaller and never divided, the styles rather longer, the peduncles more hairy, and the whole plant less branehed than in that species. The hairy peduncles and broad styles at once distinguish this from A. ascendens.
7. Acena (Ancistrum) oralifolia, R. et P.; sericeo-pubescens, caule longe repente ramoso, ramis subcrectis foliosis, foliolis 3-4-jugis ovali-oblongis obtusis ad basin usque crenato-serratis supra glabriusculis subtus hirsutis scriceisve, pedunculis scapiformibus pubescentibus fere nudis, capitulis globosis, floribus minimis, calyce pilis elongatis sulrigidis dense obtecto, petalis obovato-spathulatis dorso sericeis, staminibus plerumque 2 filameutis gracilibus, antheris parvis didymis, stylo gracili, stigmate elongato unilaterali plumoso, fructibus villosis setis 2-3 rarius 4 gracilibus apice glochidiatis armato. A. ovalifolia, Ruiz et Pavon, Fl. Peruv. vol. i. p.67. t. 103. f. c. Vahl, Enum. vol. i. p. 295. DC. Prodr. vol. ii. p. 592. Ancistrum repens, Tentenat, IIort. Cels. t. 5. Lam. Encycl. Méth. vol. i. p. 345.

Hab. South Chili, and thronghout Fuegia; Banks and Solander, Se. $_{\text {a }}$
$\mathrm{Ab} A$. ascendente, cui proxima, differt floribus parvis, calycibus dense vestitis, autheris minimis didymis, setis fructus duobus tribusve, ct foliolis omnibus oljongis regulariter crenato-serratis.

Nearly allied to A. ascendens, but in the flower and fruit totally distinet, as I have proved from the examination of many specimens, gathered at various positions betwcen the Equator itsclf, where it inhahits a level of 12,000 feet, and Cape Horn.

Difficult of determination as the Acence at first sight appear, I feel quite satisfied that they are possessed of ample though overlooked specific characters. The present species bas more fully convinced me of this than any of
the former, its range being far wider and it being further closely allied to three or four Chilian congeners. I have diligently compared Professor Jameson's specimens both in flower and fruit, gathered on Pichincha, with those of Capt. King from Port Famine in an equally good state, without being enabled to detect even the differences of a rariety in the foliage or inflorescence of either. The oblong form of the leaflets similar at both extremities and regularly serrated along the whole margin is characteristic, but far more so is the calyx, densely clothed with stiff straight hairs, the slender filmeut, and small didymous anther; also the villous fruit, with generally tiro slender aristæ. The figure in Ventenat's 'Hortus Celsianus' is excellent.
8. Acena (Ancistrum) ascendens, Vall ; caule elongato prostrato ramoso, ramis glaberrimis ascendentibus foliosis, foliis plus minusve pilosis, foliolis $4-7$-jugis submembranaceis obovato-oblongis obtusis grosse serratis superioribus sæpe decurrentibus, pedunculo scapiformi basi folioso plerumque glaberrimo superne longo nudo v. rarissime folio unico glomeruloque florum aucto, capitulo globoso, bracteolis linearibus apice ciliatis, calyce glabriusculo, petalis late ovali-oblongis dorso apiceque pilosis, staminibus plerumque 4 petalis longioribus, stigmate elongato unilateraliter et brevitcr plumoso, fructu obconico aristis 4 elougatis apice glochidiatis. A. ascendens, Tahl, Enum. vol. i. p. 297. Lam. Suppl. vol. i. p. 347. DC. Prodr. vol. ii. p. 593. (non Hook. et Arn. in Bot. Miscell. vol. iii. p. 308). Ancistrum humile, Pers. Ench. vol. i. p. 30. A. lævightum, Lag. Spec. vol. vii. quoad DC. l. c. A. Magellauieum, B. Lamarck, Illust. vol. i. p. 76. (TAB. XCVI.)

Var. β; foliis minoribus subcoriaceis, caulibus strictioribus.
Hab. Strait of Magalhaens; Commerson, Thouin. Good Success Bay; C. Darwin, Esq. Falkland Islands, abudaut; Gaudichoud, IP Ureille, de. Sontll Georgia; Forster. Var. β, Cape Fairweather; Capl. King.

Caules elongati, plerumque 3-5 unc. longi, prostrati, ramosi. Folia nisi in var. β, flaccida, utrinque sed subtus precipue pilosa. Scapi glaberrimi, rarissime sparse pilosi. Capitula magnitudine varia, fioribus semper? hermaphroditis. Calyx pctalaque dorso parce pilosa. Stamina conspicua; filamentis elongatis, gracilibus; antheris globosis.

The chief points of distinction between this and the A. lexigata will be found in the notes upon that species. The present is the more common plant of the two in the Falkland Islands.

Plate XCTI. Fig. 1, flower and bractea; fig. 2, petal; fig. 3, stamen; fig. 4, calyx and stigma; fig. 5, capitulum of fruit:-all magnified.
9. Acena affinis, Hook. fil.; caule prostrato radicante ramoso, ramis ascendentibus foliosis, foliis utrinque plus minusve pilosis foliolis, 5-7-jugis subflaceidis obovato-oblongis obtusis grosse serratis basi subdecurrentibus v. in petiolum brevissimum attenuatis, pechunculo scapiformi glaberrimo, capitulo globoso, floribus hermaphroditis, calyce glabriusculo 4 -aristato iuter aristas attenuato et in lobis uncinato-recurvis producto, petalis elliptico-oblongis dorso apiceque ciliatis, filamentis brevissimis, antheris parvis inclusis didymis, stylo elongato plumoso, fructu elongato, aristis elongatis. Sphærula, Anderson MSS. in Bibl. Banks. Ancistrum inerme, Herb. Banks. (Tab. XCVI. B.)

Hab. Kerguelen's Land; marshy places near the sea, abundant ; Mi. Anderson, in Cook's third voyage, J. D. II. and Dr. Lyall.
A. ascendenti statura habitu formaque foliorum inflorescentiæque simillima, sed petala angustiora, stamina multo minora, filamenta brevissima inclusa, formaque calycis supra aristas diversa.

A plant so very similar to A. ascendens that I long considered it to be a variety peculiar to the remote locality it mhabits. Though the characters I have used to distinguish them are minute, they are very important. Besides
the narrowness of the fruit, the ealyx is attenuated between the aristre, and the mouth of its tube generally terminates in four recurved points; the petals are longer and narrower and the stamens very small, with filaments eren shorter than the anthers; the latter were invariably full of pollen and quite perfect.

Plate XCVI. B. Fig. 1, a flower; fig. 2, stamen; fig. 3, longitudinal section of flower, after the petals have fallen array; fig. 4 , carpel, removed from the tube of the ealyx : all magnifed; -fig. 5, head of mature fruit: of the natural size.
10. Acema Antaretica, Hook. fil.; pumila, caulibus brevibus robustis prostratis ascendentibus parce ramosis, foliis confertis foliolis $3-4$ late oblongis obtuse serratis medio canaliculatis supra dense pilis fulvis sericeo-villosis subcoriaceis infra pilosis, pedunculo scapiformi, capitulo -?

Mab. Fuegia, Staten Land ; A. Mensies, Esq. Hermite Island, Cape Horn; on the mountains, rare, 1000 feet.

Caulis 2-3-uncialis, vaginis membranaeeis glaberrimis foliorum teetus. Folia vix uneialia, petiolo gracili appresse sericeo. Folioln sub $\frac{1}{4}$ une. longa, dorso carinata, marginibus reeurvis.

I have not met with this small and very distinet species either in flower or fruit, nor does it exist in any other . collection of Fuegian plauts than my own and that of the late Mr. Menzies.

Below * are deseriptions of two additional dcence, which, with the above and four others in De Candolle's Prodromus, inelude all the South American plants of this genus, known to me.

NIV. ONAGRARIE, Juss.

1. Fuefsia, Plum.

1. Fuchsia coceinea, Ait. Hort. Kew. v. ii. p. 352.

Var. a, robustior, foliis summis sessilibus, petiolis omnibus brevioribus. F. coccinea, Ait. 1. c. Curt. Bot. Mag. t. 96. Willd. in Uster Annal. pt. 3. p. 37. t. 6. DC. Prodr. vol. iii. p. 38, in part. F. Magellanica, Lamk. Encyel. vol. ii. p. 565. Illust. Gen. t. 282. Thilco, Feuill. Obs. vol. iii. p. 6. t. 47.

[^27]Var. β, macrostema, R. et P.; gracilis, foliis omnibus petiolatis, petiolis gracilibus. F. macrostema, Ruiz et Paron, Fl. Per. vol. iii. p. SS. t. 324. f. b. Hook. et Arn. in Bot. Miscell. vol. iii. p. 308. DC. Prodr. vol. iii. p. 37. Lodd. Bot. Cab. t. 1062. F. discolor, Lindl. Bot. Reg. t. 1805. Hook. Bot. Mag. t. 3498. F. gracilis, Liudl. Bot. Reg. t. S 47 et, var. $\beta, 1052$. DC. Prodr. vol. iii. p. 37. F. decussata, Giraham in Elinh. Phil. Journ. vol. i. p. 401. Hook. Bot. Mag. t. 2507. non Ruiz et Paron.

Hab. Fuegia and South Chili. Var. a, mountain woods in the Strait of Magalhaens; Commerson. Var. β, Good Success Bay, Bunkis and Solander; Port Famine, Capt. King; Fuegin, C. Darvin, Esq.; Staten Island, Mr. IF clster.

The eommoner forms of Chilian Fuchsia are eertainly referable to the F. macrostena of R. and P. (as suggested by Dr . Liudley under F. (liscolor); it is the most abundant South Ameriean rariety, growing from the latitude of Yalparaiso to that of Fuegia, and is also now the general garden-plant in the neighbourhood of London. Of the original F. coccinea, Ait., on the other land, I have never seen wild specimens; it is probably rare in its native country, and though introdueed into England so long ago as 1788, by Capt. Firth, and universally cultivated for many suceeeding years, it has quite given plaee to the more graeful and paler-flowerel variety. The comparative length of the petioles appears to afford a very sufficient eharacter of the two states; they are short in the garlen specimens of var. a, robustior, and in Feuillés, Unger's, Lamarek's, and Curtis's plates of F. coccinea; but longer and slender in all the native samples of var. β, and in the published figures of F. macrostema.

While the climate of Fuegia bore the eharacter of being among the most rigorons in the world, its regetation was qnoted as presenting a truly singular anomaly, beeause there, Fuchsias and the Feronica decussata, aecompanying other half-hardy and greculonse plants, flourish in the open air. Now, however, it is well understood that the elimate is inelement and not rigorous; and boisterous and cold summers not being necessarily the indices of proportionatly severe winters, the faet is no longer doubted, or even wondered at. The differenee between the climates of Great Britain and Fuegia is only an exaggeration of what exists between the east and west coasts of England and Seotland, or still more remarkably between Suffolk and Devonshire.

2. EPILOBIUM, L.

1. Epilobium tetragonun, Lim.; Sp. Pl. 494. Engl. Bot. t. 1945.

Var. B, Antarcticum ; caule ascendente basi seppius procumbente ad angulos pubescente, foliis latioribus crassioribusque.

Hab. Tierra del Fucgo; C. Durwin, Esq. Falkland Islands; Mr. Chartres, J. D. II. Var. B, Port $^{\text {P }}$ Famine; Capt. King.

The speeies of Epilobium inhabiting the southern lemisphere are equally variable as those of the opposite oue, appearing indeed quite inextrieable. Some are undoubtedly allied to the plants of Europe, so that no deseription can be framed by which they may be recoguized, whilst others differ in what are confessedly unimportant and fallacious eharaeters.

What is here considered the E. tetragonum of Europe, has been the subject of repeated and most attentive examiuations by Mr. Watson and myself, without enabling us to detect any appreciahle difference between it and the copious suites of European, Asiatie, and North Ameriean speeimens, with which it was compared. Capt. King's plant, referred to a variety of it, is smaller and nearer E. alpinum of the northern regions, or E. confertifolium of Lord Auckland's group; its stems are simple and prostrate below, the leares oblong and obtuse. The stigmas of all the states are elarate and blunt.

After examinng the species of Epilobium whieh inhabit the Cordillera between Clili and North Ameriea, I find, iu all latitndes, states of one plant, whieh seems to prevail throughout the American continent from Canada to

Fuegia, and which 1 have little hesitation in referring to E. tetragonum, whilst varieties of it also occur, very similar to other European species. The Falkland Island plant is eertainly a native of the Andes of Chili, specimens from whence have been described under the name of E. pedicellare by Presl, and E. dentictlatun by Ruiz and Pavon. The same locality affords E. alpinum, of the Botanical Miscellany (rol. iii. p. 309.), which I can neither distinguish from the British nor from a Tasmanian plant, and which is possibly a state of the Port Famine rariety: in the latter loeality the E. alpinum, if it be that species, assumes a much larger and wholly different appearance. The E. Bomplendiamm, 11. B. K. of Peru (in Herb. llook.), seems only a very slight variety of E. tetragomum, allied to the E. alsinifolium of the Scottish Alps, whose claims to specific distinction have been donbted. From the Andes of Colombia Professor Jameson has sent a specimen quite similar to Capt. King's from Port Famine. The Chilian E. tetrayonum grows abundantly on the mountains of Mexico, and is the E. Bonplandiamm of Galeotti (n. 3018, 302 3, and 3050), and also apparently the E. Dexicanam of Linden (n. 633.). Further north, in America, the true E. tetragomum is rery eommon on the mountains of Carolina and the southern states, and probably throughout the low grounds of the same latitudes, under the name of E. coloratum, Muhl.; in the British possessions it is seen as far north as Lat. 64°.
E. confertifoliun, though very dissimilar in general appearance from E. tetragomm, is not so in reality. Mr. Watson remarks of it, that a more luxuriant growth of the stem, increasing the distanee between the leares, would bring it almost to Capt. King's specimens, and that gentleman has also cudtivated Scottish plants of E.alpinum, hardly distinguishable from E. confertifotiem. The latter, he adds, holds the same position between the Port Fanine and the British E. tetragomm, that E. origanifolium does in Europe between E. alpinum and E. tetragonum. When such parallel cases of difficulty occur in opposite hemispheres, and in a genns, some of whose species are common to and equally variable in both countries, and when it is further remembered that E. alpinmm and E. tetrayonum, with many intermediate states, are scen in Tasmania, we may well ask whether there really exist any limits betreen these and some other supposed species of this intricate genus.

Few persons, accustomed to the study of the British, or even the European Epilobia, are aware of the difficulty of recognizing certain aspects of the well-known species in Asia and America, and still less of the gradations that eomect, in the southero regions, what appear abundantly distinct in the northern. We are too apt to assume the well-marked form of a plant, occurring within the narrow sphere of onr own researches, as the standard for that species; neglecting the obvious truth, that the limits within which any organized production may vary, are more confined in one locality than in another. Before a native of so narrow an area as Great Britain ean be pronounced a species, it must be known under all the phases it assumes in every other part of the globe it inhabits, and its most closely allied congeners should be carcfully studied. This remark applies particularly to the Epilobia, which are equally abuadant in the southern quarters of the globe and in the northern, and some of whose species are alike conmon and variable in both.

XV. HALORAGE E, Br.

1. MYRIOPHYLLUM, Taill.

1. Myriophyllum elatinoides, Gaud.; monoicum v. dioicum, foliis $3-5$-natim rerticillatis inferioribus capillaceo-multifidis superioribus brevioribus lanceolatis ovatis v. late oblongis interdun oppositis integerrimis dentatis pinnatifidisve, floribus 8 -andris, carpellis breviusculis late oblongis dorso convexis glaberrimis. II. elatinoides, Gant. in Ann. Sc. Nat. vol. v. p. 105. et in Freyc. Toy. Bot. p. 4 S0. D' Ureitle in Mém. Soc. Limn. Paris, vol. iv. p. 6 [8. DC. Prodr. vol. iii. p. 68. M. termatum, Gand., IP Urv. et DC. 1. c. Hook. et Arn. Bot. Miscell. vol. iii. p. 314.

Hab. Falkland Islands; in fresh-water lagoons and running streams, abundant; Gaudichaut, $D^{\prime} U_{r}$ ville and J.D.II.

It is very difficult to decide upon the limits of species in this genus, which, like most aquatic plants, is sufficiently Protean. My own specimens are barren, but those of Dr. Gillies and Bridges, from the Andes and west coast of South America, are in flower and monœecious, and from them I have described the ripe carpels. Gaudichaud distinguishes M. elatinoides from M. ternatum, by the former being diœcious; but D'Urville, in re-describing it, asserts the contrary.

In its normal state, the upper leares of the present specics are much broader than those of any other; but at times, the whole foliage is uniformly capillaceo-multifid, when it can liardly be discriminated from some forms of the European M. verticillatum.

2. HIPPURIS, L.

1. Hippuris vulgaris, Limn. Sp. Pl. 3. Engl. Bot. t. 763.

IIab. Strait of Magalhaens; Port Famine, Capt. King.

These specimens, which are barren, do not seem to differ from others of European growth. Both Capt. King's and Mr. Anderson's collections contain the plant, so that although the above be the only reported station for it in the southern hemisphere, I have no reason to donbt its authenticity. The range of Hippuris vulgaris, in the temperate latitndes of the northern parts of the world, is very wide, extending from the arctic regions of Europe and Asia (Lapland 70°, Iceland 65°, Siberia and Kamschatka), south to Montpellier, lat. 43° in western Europe ; probably reaching 50° in the central, and the Caucasus, or 44° in the east parts of our continent. The late Dr. Griffith collected it in Affghanistan, lat. 32°, its only known habitat in Central Asia. In North America this species is equally diffused, from the latitudes of 55° and 70° on the west coast, and from New York, 41°, to Labrador and Greenland, lat. 70°, on the east. From the interior I have only seen specimens, gathered by Dr. Richardson near Hudson's Bay, between 55° and 60°.

Hippuris is very closely allied to Myrioplyllum, and differs chiefly in the rednction of the four carpels to a solitary one, with an accompanying solitary stamen, placed on one side of the carpel, within the obsolcte margin of the calyx.

3. CALLITRICHE, L.

1. Callitmine verna, L., cid. F7. Antaret. part i. p. 11. Anthapla, II. Anderson in Bibl. Bank. Var. β, terrestris ; Fl. Antarct. l. c.
Hab. Fnegia, the Falkland Islands, and Kerguelen's Land, abundant ; Anderson (in Cook's 3rd Vorage), J. II. II. Tar. β, Hermite Island and the Falkland Islands.

Callitriche differs from the typical genera of the Order Haloragece in having generally caducous bracts at the base of the flowers, in its 4 -carpellary ovarium with only two styles, in the entire absence of a limb to the calyx, of a corolla in the female, or of any perianth whatever in the male flower. The latter are truly achlanydeous, but not the former, the calyx being equally obsolete in the carpels of Myriophyllum and in the present genus; whilst the general symmetry of the parts, the structure of the seed and embryo, of the recurred strles, covered uniformly with stigmatic papillæ, and the form of the pollen, are alike in both, indicating a very close natural affinity. In the first part of this work, I alluded to the real form of the anthers in the sonthern specimens of C. cerna, as not differing from the ordinary structure of that organ in Phænogamic plants, even in appearance, before their dehiscence, and only presenting the lippocrepiform suture on the curling up of the valves, and the unon of the two laculi and their lines of dehiscence abore.

Callitriche rerna is universally diffused throughout the temperate regions of both hemispheres, even entering
the tropics in the East Indies, and skirting the Arctic circle both in Europe, Asia, and America. In the south, besides inhabiting all the Antarctic Islands, it grows in New Zealand and Tasmama.

4. GUNNERA, L.

1. Gunnera Chilensis, Lamk., Ene. Méth. vol. iii. p. 61. Illust. t. S01. f. 1. Brown et Bennett, Plant. Jav. Rar. pt. 1. p. 70. G. scabra, Ruiz et Pav. Fl. Peruv. vol. i. p. 29. t.44. f. a. Kunth Nov. Gen. Am. vol. ii. p. 35. "Panke" Feuill. Obs. ii. p. 74l. t. 30.

Hab. Chonos Archipelago; C. Darwin, Esq.

Apparently the southerm limit of a plant which is found along the whole eastern side of South America, from Caraccas, in lat. $10^{\circ} \mathrm{N}$. ., whence we have specimens gathered by Mr. Purdie, as far south as the 46 th degree.

After the elaborate and learned essay upon this genus by Mr. Bennett, in the 'Plantæ rariores Jave,' I have little to remark upon its history or structure, except that the embryo is very minute, heart-shaped, and placed at the opposite extremity of the seed from the hilum, towards mhich the cotyledons point. The albunen is smrounded with a delicate testa and attached by a very short funiculus to the osseous putamen, which (as Mr. Bemnett rightly concludes) is derived from the inner coat of the ovarium, and not, as Blume supposes, from the outer coat of the seed.

Some years ago, after referring a Tasmanian genus to Haloragece, Mr. Brown had the kindness to direct my attention to Gumera, a plant closely allied to the one I was then cxamiming; this led to the remark contained under the description of Miltigania in the 'Icones Plantarum ' (t. cexcix.) and the latter, probably, to Endlicher's removal of Cunnera from Crticece. The correctness of this view of their affinity admits of no donbt, although the alternate leaves separate Gunuera from all the genera of this order knomn to me.

The more obvious points of affinity between Gunnera and the IIaloragea proper, are the frequently unisexual flowers, the quaternary arrangement of their parts, the adherent tube of the calyx, the great similarity between the two petals of Gumera and Meionectes, the form of the stamina and pollen-grains, the styles covered throughout their length with stigmatic papillæ, and the solitary pendulous albuminous sect. I may add the rigid and more or less scabrid foliage, which is so conspicuous in Haloragis, the racemed and often pendulous tlowers, and the frequently long recmed styles.

The Gunnerce differ remarkably in haring their leaves, as I mentioned above, alternate; the oraria, though furnished with two styles, are one-celled, with a solitary ovule; and the embryo, instead of being cylindrical and axile, is very minute and placed at the opposite extremity of the seed from the hilum, and it is also merted, with the radicle turned away from the hilum. The stamens in Gumera are opposite the petals, and so are two of those of Meionectes. There is a tendency to inegularity in the form of the orarinm and its investing calyx, observable in some of the plants of this group, and most evident in the folloming species and in Milligania, where four unequal teeth of the calyx are developed, this and the presence of two styles indicate that the ovarium is probably two-celled at a very early period, one of which cells is suppressed. Lastly, in Milligania, a more intinate affuity is obserrable between Gunnerce and IIaloragece, for there are frequently in that genus four exident styles united at the base into two, indicating a normally four-celled orarium, or one formed of four carpellary leaves, placed like those of Callitriche, in pairs, but so intimately nnited as to appear more like the truly simple ovary of Ifippuris.

Next to Ifaloragea, Chloranthece is the order with which this genus has most in common, particularly through the Sandwich Island genus Ascarina, of Forster, where the flowers are spiked or racemed and unisexual, the male consisting of a solitary linear anther, sessile in the axil of a toothed bractea, and the female, when ripe, of a onecelled dmpe, very like that of Gumera, surmounted by a sessile obscurely 3 -lobed stigma. The secd is compressed, pendulons from the apex of the cell, corcred with a delicate membranous testa; the albumen copions and oily,
containing a very minute embryo, whose precise form and direction I have not been able to trace, and the endocarp is often loose within the sarcocarp, externally covered with bullate opaque glands, which are sometimes seen under the eutiele of the anther and in other parts of the plant. In the shrubby habit, articulated stems, and in the opposite glabrous leaves, Ascarina differs very conspicuously from Gunnera.

Datiscece is another order with whieh Gunera coineides in many important points, as in the often tetramerous structure of the flowers, their misexnal nature, the absence of a corolla, the form of the stamens, which are in Datisca attached to the lacinie of the ealyx, while these lacinir, in Gumera, appear like adnate braeteas, in the absence even of rudiments of an ovarium in the malc flower, especially in there being two styles to each carpel, in the albnminous seed and erect embryo, which is of a different shape and form from that of Gunnere, though similar to that of Halorayea proper. On the other hand, Datisca differs from this in many respects, most remarkably in the many ovuled parietal placente, in the form of the pollen, in the composition of the carpels and their dehisconce, and in the form of the seed and testa, which approaches to that of some Saxifragere.

In its native state, Cumera scabra must be a very noble plant, its foliage being amongst the largest of Dicotyledonons regetables. Mrr. Darwin * mentions having measured single leaves eight feet in diameter, or no less than twenty-four feet in circumfcrence. The stalks are more than a yard high and each bears four or five of these enormous leaves. I have no specimens from this locality, but introduce the plant on the authority of Mr. Darmin's Journal, where it is stated that "the 'Panke' inhabits sand-stone eliffs, and somewhat resembles Rhubarb on a gigantic scale. The inhabitants cnt the stalks, which are snbacid, tan leather from the roots, and procure a black dye from it."
2. Gunnera (Misandra) Magellanica, Lamk. Dict. vol. iii. p. 61. t. S01. f. 2. G. Falklandiea, Mook. Ic. Plant. t. 489. Misandra Magellaniea, Commerson in Jussieu Gen. 405. Gaurd. in Amu. Sc. Nat. vol.v. p. 89. Freyc. Toy. Bot. p.502. D'Ureille in Mcm. Soc. Limn. Paris, vol.iv. p.621. Dysemone integrifolia, Banks ct Sol. MSS. in Mus. Buntis cum icone. "Mauve," Pernetty Toy. vol. ii. p. 58.

Hab. South Chili, Fuegia and the Falkland Islands, very abundant; Commerson, Banks and Solander, Capt. King, and all subsequent voyagers.

I find in Fuegia the same variety, or rather state of this plant, which is called Falklandica in the 'Icones Plantarum,' and I have introduced that name as a synonyme.

The Misandra have been separated from the irue Gunnerce by their diocions flowers being destitute of a corolla, to which might be added their humble mode of growth, and male flowers consisting of a solitary stamen bracteolated at the base and collected into a dense paniele or arranged in a spike. The eharacters drawn from the inflorescence, are not however decisive; one New Zealand speeies, Ciunnera monoica, Raoul, is monœcions, and a second, G. prorepens, mihi, has petals. Generally speaking, Misandra is the more southern representative of Gmmera proper. Thus, whilst Java has G. macrophyllu, Blume, Tasıania possesses Milliyania; Otaleite G. petalvidea, Gauk., while New Zealand (whose flora partakes of that of the Pacifie Islands), has three species of Misandra; and lastly, Pern, Chili, and Juan Fernandez, have G. Chilensis and G.bracteata, and Fuegia, MK. Magellanica and M. Iobata.
G. Aayellanica is one of the most abundant of Antarctic Amcrican plants, from Valdivia to Cape Hlorn, and especially in the Falkland Islands, where it is caten by eattle. On the mountains near Cape Hom it ascends to 1,000 feet. Apparently the same species, without flower, has been collected by Professor Jameson on the Andes of Quito.
3. Gunnera (Misandra) lobata, Hook. fil.; dioica, canle repente radieante, petiolis rufo-pilosis, foliis rotundatis profunde $5-7$ lobis coriaceis nervis subtus pilosis lobis rotundatis obtusis integerrimis marginibus
obscure ciliatis, staminibus spicato-racemosis, antheris late oblongis. Dysemone lobata, Bankis et Solander, MSS. in Mus. Banks cum icone.

Hab. Fuegia ; Good Success Harbour, Banks and Solander; Hermite Island, Cape Horn, J. I. IH.
Caules simpliciuseuli, elongati, 3-6 unc. longi, validi, crassitie pennæ corvinæ, glaberrimi, subangulati, fibras plurimas crassas valde clougatas emittentes, versus apicen reliquis squamosis stipularum vetustarum obtecti. Petioli $\frac{1}{4}-1$ unc. longi, pilis ruffis subscariosis tecti, basi in stipulam vaginantem dilatati. Lanzina $\frac{1}{2}-\frac{1}{2}$ unc. lata, viridis, subtus pallidior. Pedunculus exemplare masecdo $\frac{1}{2}$ unc. longus, racemum parrun staminum gerens. Anthere lutex.

My specimens were gathered upon the mountains near Cape Horn, in carly spring, and are imperfect. I possess only a portion of a male spike of inflorescence, and borne upon a very stunted plant ; the bracter are probably caducous, they subtend the filaments and in G. AFagellanica may often be seen placed, one on either side of a contiguous pair of stamens; properly speaking, they are segments of a rudimentary calyx.

XVI. MRTACEA, Br.

1. METROSIDEROS, Br.

1. Metrosideros stipularis, Hook. fil.; glaberrima, ramis ramulosis acute tetragonis foliosis, foliis parvis breviter petiolatis disticlis ellipticis ovatisve subaculis grosse pellucido-pumetatis nervis subparallelis basi glandulis inflatis quasi stipulatis, pedunculis folio brevioribus 1-3-floris, calyce 5-dentato glaberrimo dentibus erectis breviter ovatis olbtusis, staminibus petalis ter longioribus, capsula obovato-turbinata coriacea 3-loculari, seminibus plarimis linearibus testa reticulata. Myrtus stipularis, IIook. et Arn, in Bot. Mise. vol. iii. p. 316. Eugenia leptospermoides, DC. Prodr. vol. iii. p. 266 ?

Hab. Chonos Archipelago ; C. Darwin, Esq. $^{\text {a }}$
Rami graciles, cortice cincreo tecti. Folia $\frac{1}{3}$ unc. longa, flavo-rirescentia, subtus pallidiora. Pedmancil $\frac{1}{2}$ longit. folii. Capsulde sulbercete, $\frac{1}{4}$ unc. longe, obscure pentagone, extus infra lobos calyeis poris 5 irrcgulariter rumpentes. Semina parva, bincaria, fugacia.

This plout is the only recorded Amcricau species, not only of Metrosideros, , but of the whole group or tribe of Myrtaceex, to which that genus belongs, and which is cliefly confined to Australia, where the Leptospermat form as conspicuous feature in the regetation ; they are also mumerous in New Zealand, and are found in the Indian Islands, eastward of the Malay peninsula. The group, in ruestion, contains upwards of 450 species, almost exclusively limited to an arca bounded by the equator on the north, New Zealand on the east, Tasmania on the south, and Sumatra on the west; to these points they, as it were, radiate from the principal parallel of New Holland, which Mr. Brown cousiders to contain their maximum. From Australia the tribe seems to extend castward rather than westward, more species inhalititing New Zealand, small though that country, comparatively speaking, is, than the East Indian Islands. They occur, though very sparingly, throughout the distant Isles of the Pacific Occan, as far east as Pitcairn's Islaud. The tribe has a few solitary species in very remote countries; and these I would term outlying species, for they are so typical of an Anstralian tlora as to appear foreigners among the vegetation of other comutries. Such are Beckia fruteseens of China, Metrosideros angustifolia of the Cape of Good Hope, and the Metrosideros stipularis of Chili. Each of these is the lone representative of a group, which, as it were, holds a more distingrished place amongst its fellow plants in anothicr part of the world, and to the eye of the botanist is a stranger and wandercr in the land it inhabits. Other matural orders, claracteristic of Australia, afford parallel cases to this, viz. Epacrider, Goodeniacere and Stytidee.

It is chiefly in the extrenc south and upon the west coast of America that the representatives of Australian

Orders, and those characteristic of the castern portions of the old world, are found; thes, the plant in question is confined to the west shores of Chili; Prionotes Americana, the only South Amcrican Epacridcons plant, to Fuegia and western Chili; Goodenia radicans to the Pacific coasts of Chili ; Forstera utiginosa, the only American Stylidia, to the mountains of Fuegia ; Astelia prmila, to the same localitics; Veronica elliptica (decussata, auct.), a New Zealand species, also to Fuegia. To these might be added many other instances, which, though individually not so conclusire, shew by their number that proximity in geographical position is accompanicd by a certain resemblance in some of the vegctable productions, even in countries whose flowers are in every other respect unlike; a similarity, seldom amounting to specific identity in the tropical and warmer latitudes, but frequently so in proportion as we approach the poles. For an instance, I would cite the Floras of Chili, between 40° and 45°, containing many of the features of New Zealand and Australian Botany, though few or no species are common to both; whilst Fuegia and the countries between 50° and 56°, contain far more representatives of south New Zealand and Tasmamian plants, and a very considerable proportion of specics found in those countries.

A native also of Valdivia and Chiloe and a very peculiar plant, especially in the presence of large glands on either side the base of the petiole of every leaf, which are formed of an inflation of the cuticle of the bark.

2. MYRTUS, L.

1. Myrtus Ugni, Molin., Chil. ed. Gall. p. 133. Feuill. Obs. vol. iii. p. 44. t. 31. Lamk. Encycl. vol. iv. p. 412. DC. Prodr. vol. iii. p. 239. Eugenia Ugni, Mook. et Arn. in Bot. Misc. vol. iii. p. 318. "Ugni" incolarum, et "Murtilla" Hispanorum.

Hab. Chonos Archipelago; C. Darwin, Esq.
The leaves of this species vary considerably, both in size and shape, the largest being at least an inch long, perfectly elliptical and attenuated at both cxtremities, while in other specimens they are much smaller, broadly ovate or even rotundate. Feuillés description of the seeds inclines me to refer this plant to the genus Myrtus; he says it is abundant in Chili, where the natives express the juice of the fruit, which, when mixed with watcr, affords a gratcful drink. The berries smell agreeably. Feuille's figure may possibly refer to some other plant and not the one he describes. The Myrtus Ugni appears to abound, from the latitude of Concepcion, south to the Chonos Archipclago.
2. Mxrtus N̦ummlaria, Poiret, Encycl. vol.iv. p.407. Gaudichaud in Ann. Sc. Nat. vol. v. p. 106. t. 2. f. 5. et in Freyc. Toy. Bot. p. 13S. D'Urville in Mém. Soc. Lim. Paris, vol. iv. p. 619. DC. Prodr. vol. iii. p. 238. "Lucet musqué," Pernetty Toy. vol. ii. p. 58.

Var. β, major; caule robustiore, foliis majoribus, pedicellis paulo longioribus, lobis calycinis petalisque angustioribus.

IIs. South Chili, Fuegia and the Falklaud Islands; Commerson and all subsequent voyagers. Var. β, Chiloe, Capt. King. Chonos Archipelago, C. Davwin, Esq.

One of the most common denizens of the conntries it inhabits, spreading over the ground amongst the roots and stems of other plants, like the Faccinium Osycoccos or crancberry of Britain. The berries have a sweet and agreeable flavour, they are red and rery fleshy. The leaves afforded a substitute for tea to the sealers who visited, and the first settlers in, the Falkland Islands; this beverage was so relished, that in spite of its diuretic properties, the Gauchoes in these Islands prefer it to Chinesc tca. Capt. King collected the species at Concepcion in Chili, its northern limit. The M. orycoccoides, Benth., of Colombia, is a very ncarly allied plant, but its leaves are generally smaller and always truly orate; here invariably oblong. It is possible that the var. β may prove distinct, though I am not inclined to consider it so. This creeping Sonth American Myrtus, together with
with some allied species from Peru, are pcrhaps the most insignificant plants of the whole natural order, and especially of the genus of Myytles; though the M. Nummularia, by contributing largely to the formation of peat, performs a higlly important function in the econony of nature. The leaves are often preserved quite entire some feet below the surface of the soil, and I was able to recoguizc earth, sent to the Royal Gardens at Elinburgh from New Zealand, as having come originally from the Falkland Islands or: South America, becausc of the abundance of leaves of this plant coutaiucd in it.

3. Eugenta, Mich.

1. Eugenia apiculata, DC. Prodr. vol. iii. p. 276. Mook. et Arn. in Bot. Misc. v. iii. p. 321.

Var. β, Arnyan, foliis glaberrimis $\frac{1}{2}-\frac{3}{4}$ polliearibus late ovalibus, pedieellis omnibus unifloris.
Hab. Var. β, Chonos Archipelago ; C. Darvin, Esq.
A very variable plant; apparcontly not uncommon in Cliili, betwecn the Andes and the sea-coast, and from Concepcion to the Chonos Archipelago. The pedieds are exceedingly various in length, when they are much elongated the plant becomes E. affinis, Gill., and I au inclined to consider the E. Gilliesii, H. and A., as another variety. The original species has leaves slightly hairy beneath, with a rufous pubescence. None of the numerous specimens that I hare seen are in fruit, and the genus therefore is doubtful.
2. Eugenil Darwinii, Hook. fil.; ramis teretibus, cortiee rimoso cinereo, junioribus pubescentibus, foliis petiolatis glaberrimis coriaceis elliptico-oblongis abrupte acuminatis subenerviis obscure punctatis margine incrassato, pedunculis terminalibus lateralibusque puberulis folio æquilongis erectis paueis unifloris aliisque racemosis pedicellis oppositis, floribus parvis, ealyee depresso quinquefido segmentis obtusis, staminibus plurimis petalis eucullatis bis longioribus.

Hab. South Chili, Cape Tres Montes; C. Darwin, Esq.

Frutex? Folia coriacea, $\frac{3}{4}$ mo. longa, $\frac{1}{3}$ lata, nervis lateralibus divaricatis. Pedunculi infra calycem articulati, minutissine bracteolati, pediccllis basi bracteolatis. Calyx 2 lin. latus, segmentis patentibus. Petala alba. Stylus elongatus, validus. Ocarium immaturum triloculare?, loculis bi-ovulatis.

Without the ripe frrit I am unable to refer this plant satisfactorily to its genus; it accords sufficiently with many Chilian species of Myrtacee which have been hithorto placed in Engenia.

A rery great number of shrulby Ayrtee inhabit the Chilian coast, between Chiloe and Concepciou; a singular encumstance when it is considered how suddenly they cease to the southward of Cape Tres Montes. Probably no less thau fourteen species oceur within these limits, whilst not one is to be found in the Strait of Magallacns, only three lundred miles further south, having a precisely similar climate, and where the features of soil and surface are almost identical. The predominance of the natural family iu the one case is remarkable, though not more than it is in New Zealand, where to a certain extent they abound also, but their sulden cessation appears inexplicable being unaccompanied by any complete suppression of other tribes equally numerous in Chili. Again, a casual observer, on examining a collection of Chiloean plants, would be apt to conclude that these shrubby Myrtere must afford a peculiar if not a predomiuant aspect to the vegetation, and yet we hardly see them alluded to in the excellent published accomits of Chiloe, whence it is evident that botanical regions, as now defined, afford insufficient criteria for obtaining a knowledge of the distribution of natural orders. That locality where a group is most fully developed, where the greatest number of its species grow, may not be the one where that group is most conspicuous or the individuals in greatest number. We may safely infer on this sulbject, that the law of native is to be learned from a kuowledge of the absolute numbers of different specics a country may possess, and the proportion the groups bear to one another, and when gained it will be found to harmonize with other circumstances: thus we find
that grasses increase in number, proportionally to other natural families, in proceeding from the tropical to the polar regions, though it is on the Savannahs of the warmer temperate zones that they form the most conspicuous traits in the landscape.

Again, New Zealand, Tasmania, and California must be considered the regions of the Pines, if the number of species in a given area were to determinc the point; but all the Conifere now growing in those three countries, amounting thongh they do to no less than forty kinds, would not, if planted together, cover the surface that the Scotch Fir does in Europe. The region of the pines is in the latitudes approaching the tropics; these trees diminish, in number of species and in the proportion they bear to other natural orders, when proceeding northwards from thence, and actually ceasc immodiately beyond that point, where, from the abumdance of one species, they appear to be most fully developed. It is interesting to every onc to know what vegetable production gives a country the peculiar features of its landscape; but attractive or wonderful though those featurcs be, they afford no clue to the botanist, who would nuderstand, not what the vegetation of a country appears to be, but what it really is.

XVII. PORTULACET, Juss.

1. MONTIA, L.

1. Moxtia fontana, L., DC. Prodr. vol. iii. p. 362. Flora Antarct. pt. 1. p. 13. M. linearifolia, D' Ure. in JIém. Soc. Linn. Paris, vol. iv. p. 619. M. lamprosperma, Chamisso in Linucea, vol. vi. p. 565. t. 7.

Hab. Falkland Islands; D'Urville, J. D. II. Kerguelen's Land; J. D. II.
In the first Part of this work I described the seeds of the varieties of Montia from these two localities, and expressed my opinion that the genus contains but one species, the secds of which are variable in size and in the surface of the testa. In the Kerguelen's Land individuals they also vary much in shape.
XVIII. CRASSULACEA, Juss.

1. BULLIARDA, DC.
2. Buldarda moschata, D’Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 61s. Gaul. in Freye. Toy. Bot. p. 138. Fl. Antarct. pt. 1. p. 15. B. Magellanica, DC. Bull. Philom. n. 49. Tilhea mosehata, DC.Proulr. vol. iii. p. 382. Mook. Icon. Plant. t. 535. Crassula mosclata, Forst. Act. Goett. 9. p. a6.

Hab. South Chili and Fucgia, from Cape Tres Montes to Cape Horn; Banks and Solander, Forster, Capt. King, C. Daruin, Esq., J. D. II. Falkland Islands, Gaudichaud, IP Urrille, Mr. IVright, J. I. II. Kerguelen's Land, J. D. II.

Invariably a sea-side plaut, very abundant on rocky beaches where fresh water enters the sea.
XIX. GROSSULARIE E, $D C$.

1. RIBES, l.
2. Rabes Magellanicum, Poir.; inerme, petiolis pedunculis ramisque junioribus puberulis, folïs petiolatis ovatis v . late ovato-rotundatis basi truncatis v . cordatis trilobis grosse duplicato-scrratis jumioribus glanduloso-punetatis senioribus impunctatis supra glabriuseulis subtus nervis puberulis, racemis multifloris florentibus pendulis fructiferis elongatis sxpe suberectis, pedicellis brevibus, bracteis ligulatis floribus xefui-
longis, calyce late campanulato lobis obtnsis, petalis minimis apice refexis, stylo bicruri. R. Magellanicum, Poiret, Encycl. Suppl. vol. ii. p. 856. DC. Prodr. vol. iii. p. 482.

Hıb. Strait of Magalhaens; Commerson. Port Famine, Capt. King. South part of Tierra del Fuego, C. Darwin, Esq. Cape Horn, Mr. Eights.

A strietly Fuegian species, apparently not met with to the northward of the Strait of Magalhaens. On the coast of Chili it is replaeed ly scereal others, and on the high mountains of Colombia a very similar plant grows, distinguishable howcerer, at first sight, by its less toothed and crenated leaves and subulate braetee. The berries of the prescont have a very agreeable thavour, and may be used for tarts, ©c. Another similar, but I think different plant, was colleeted ly Capt. King in Chiloe; his specimens are, however, too imperfect for determination.

XX. SAXIFRAGEA, Juss.

1. ESCALLONLA, Ifutis.
2. Escallonia serrata, Smith, Icon. ined. vol. ii. t. 31. DC. Prodr. vol. iv. p. 3. Hook. Ic. Plant. t. 540 . Homb. et Jacq. Foy. au Pole Sud, Plant. Phan. Dicot. t. 14. P. Stereoxylon serratum, Poir. Encycl. vol. vii. p. 435. Celastrus venustus, Banks et Sol. MSS. cum icone in Mus. Banks.

Hab. Fuegia and the Strait of Magalhaens; Commerson, Banks and Solander, and all succecding voyagers.

The most southern species of a genus peculiar to the Ameriean continent. It is found as far as Cape Horn, where, along with Teronica elliptica and Berberis ilicifolia, it iulabits the skirts of forests ncar the sen.
2. Escallovia maerantha, Mook. et Arn. Bot. Miscell. v. iii. p. 341.

Hab. South Chili; Chonos Archipelago; C. Darvin, Esq.
A very distinct spccies, whieh may be recoguized by the great size of the flowers, and by the large obtusely crenato-serrate leares. It is also a Valdiviau plaut, though confued to that portion of Chili which is near to Chiloe.

2. CORNIDLA, R. et P.

1. Corsidia integerrima, Hook. et Arn. in Bot. Miscell. vol. iii. p. 344. Poeppig et Endlicher, Tot. Gen. et Sp. Plunt. Am. p. 10. t. 17. Delessert, Icones Selecta, vol. iv. p.46. t. 79. Ifydrangea scandens, Poepp. in DC. Prodr. vol. iv. p. 666.

Hab. Sonth Chili; Chonos Archipelago; C. Darwin, Esq.
The fruit of Cornidia integerrima is a small coriaceous three-celled capsule, very similar to that of IIydrangen. The carpels separate from one another, and are loosely invested by the tube of the calyx, bearing a placenta on eaelh inflexed margin. The sceds are numerous, aseending, very small and linear-lanceolate, corered with a loose testit, whieh cxpands at the base into an irregularly cup-shaped funieulus, and is prolonged also at the otler extremity beyond the albumen, its surface is marked by parallel, sometimes anastomosing nerves or folds of the investing membrane, which melude eaeh a solitary spiral vessel. The albumen is fleshy. Embryo axile, eylindrical, with at stout large radicle and two small cotyledons; it is likewise of a curionsly reticulated structure : these characters of the testa and of the sulstance of the albumen also exist in Mydrangea restita, an East Indian plant. There are some other genera which agree with the present in the form and strueture of the seed and loosc testa, as Philadelphus, Deutzia, aud Decumaria. In all, the investiug membrane of the secd is highly reticulated, or rather cellular, that of Philadelphus tomentosus, in particular, so much resembling Corridia in all but the absence of the
spiral vessels, that I shoudd have been induced to suspect its affinity to IHydrangee, did not its other characters even more clearly indicate its true place in the natural system, which is, along with Deutzia and Decumaria, in the class Saxifragere. Datisca is another genus where the seed is of a very similar nature; the testa is formed of large cells so loosely connected that they may be separated without rupture of the walls, and though not so lax or produced at the apex, the funculns expands, leaving a little cup at the base of the seed when detached; the albumen and embryo are the same as in Saxifrager. Though in these respects, and in the adherent calyx, Dutiscere approach Ilydrangere, in others they agree with Gumera, as I have indicated under that genus.

In the figure of this plant, given by Poeppig, the æstivation of the corolla is imbricate, instead of valvate. Delessert's 'Icones' contain an excellent delineation, in which, however, the plicæ of the testa are omitted; and the stamens are quite different from those of the flowers I have examined, where they are very large and provided with stout and somewhat fleshy inflected filaments; possibly the flowers are unisexual. The pollen is globose, but obscurely three-lobed and rongh on the surface.

Cornidia integerrina is common in Yaldivia and Chiloe, where Mr. Bridges says that it is called "Coybo," and forms the largest tree of the country, being from $60-120$ feet in height; it is further interesting from being the only Chilian representative of Hydranger.

3. SAXIFRAGA, L.

1. Samifraga exarata, Vill. Dauph. vol. iii. p. 674.t.44. DC. Prodr. vol. iv. p. 27. S. Magellamica, I'oiret, Encycl. vol. vi. p. 686. Don, Saxifragece in Trans. Soc. Linn. vol. xiii. p. 432. Stemberg, Rev. Sax. p. 39. t. 11. f. 1. Muscaria Magellanica, ILuw. Emum. Sur. p. 38.

Varietates Antarctice sequentes sunt:-
Tar. β, integrifolia; folius superioribus integris.
Var. ν, laxa; foliis integris trifidisve laxius dispositis patentibus inferioribus reflexis.
Tar. of, breviscapa; dense cæspitosa, pedunculo brevissimo, flore inter folia summa sessili.
Hab. Strait of Magalhacns; Commerson. Port Famine; Capt. King. Mount Tarn, 2000 feet; C. Darwin, Esq.

Specimens, numerons and good, which I have examined, enable me unhesitatingly to refer this species to the S. eacarata of Tillars, as eharacterized by M. Seringe in De Candolle's Prodromus, and they entirely accord with examples gathered on Mount Olympus by Aucher-Eloy, and others from Iceland, labelled S. Groenlandica (in Herb. Hook.). In Capt. King's collection, is one exactly similar to S. sileniffora, Chamisso, of Arctic N. W. America. Count Sternberg has sent the same plant as the trifid-leaved state of var. β, from Tallesia under the name of S. lencantha, Thomas; and I am unable to distinguish the specimens specifically from S. uniffora, Br., of Melville Island, which has sometimes three-flowered peduncles. The S. cesspitosa approaches all the above very closely, but its leaves are not so strongly nerved.

This is, in the sonth, as Protcan a species as the S. hyproides of the opposite hemisphere, though a much rarer plant. Capt. King's specimens vary so materially that De Candolle's character of S. Magellanica is inapplicable to all the states. The leaves are cutire or trifid, very densely imbricated, or lax like those of S. Peruviana; the peduncles long or short, and one or many-flowered. The flowers are about the size of those of S. caspitosa, a species which the present very closely resembles. It is not improbable that, eventually, some of the Peruvian Saxifrages will merge into this, the Andes thus seeming to afford a direct communication between the northern and southern hemispheres, of which this plant has availed itself. It appears to be scarce in Fuegia, and to affect the mountains, having ouly been gathered at a considerable clevation on the Andes, on the north side of the Strait of Magalhaens. It is singular that a species occurring at this height, should not be also seen at lower clevations in cooler latitudes, such
being manifestly the case in the northern hemisphere with this species and its congeners. May we suppose its dispersion to be yet incouplete? and that, at some future period, it will spread further south and fully assume in those regions the position held by some of its congeners in the northern?
2. Saxifraga bicuspidata, Hook. fil.; laxe cespitosa, glaberrima, caulibus decumbentibus gracilibus parce ramosis foliosis, foliis anguste lineari-spathulatis uninerviis apice bicuspidatis marginibus cartilagineis, pedunculo axillari nudo unifloro, calycis lobis apice emarginato-bifidis, stamimbus 5 , calyce semisupero. (Tab. NCVII.)

Hab. South part of Ticrra del Fuego ; C. Daruin, Esq. Hermite Island, Cape Hom ; on the mountains, 1,200 feet; J.D.II.

Laxe cesplitosa, siccitate rufo-fusca et flaccida, apicibus ramulorum foliisque junioribus riridibus, tota glaberrima. Caules pollicares, graciles. Folia $\frac{1}{4}-\frac{1}{3}$ unc. longa, anguste lineari-spathulata, medio teuniter uninervi, apice bicuspidato, marginibus anguste cartilagineis. Pedunculi axillares, solitarii, nudi, folio subæquilongi, post anthesin elongati. Caly x basi conicns, profunde quinquelobus, lohis ad apices emarginato-bifidis, segmentis acutis. Petala? Stamina 5. Capsula semisupera, compressa, carpellis supra medium liberis deinde diraricatis, rima ventrali sursum spectante deliscentibus, stigmatibus simplicibus sessilibus. Semina pauca, testa brunea subcoriacea; albunine carnoso; embryone tereti.

A very singular species, hitherto detected only on the mountains at the extreme south part of the Ameriean continent. It exhibits little resemblance to its congeners, except in having somewhat of the habit of S. oppositifolic, which is highly rariable in the number of stamens. To the pentandrons S. ramenculifolia, Hook., of the Rocky Mountains, the present has but slight specific affinity.

Plate XCYII. Fig. 1, Branch and leaves; fig. 2, an old flowcr; fiy. 3, stamen; fig. 4, ripe capsule; fiy. 5, seed :-all maynified.

6. CIIRYSOSPLENIUM, Tourn.

1. Chrysosplenium macranthum, Hook.; glabcrimum, caule procumbente basi repente, foliis oppositis petiolatis ovato-cordatis obtusis grosse sinuato-crenatis in petiolum attenuatis, pedunculis terminalibus bracteatis trifloris, floribus di-trigynis intcrmedio sessili, ovulis placentis parietalibus affixis. C. macranthum, Hook. in Lond. Journ. of Bot. vol. i. p. 45S. t. 16. C. elevatum, Banks et Sol. in Mus. Bants. cum icone.

Hab. Strait of Magalhaens; Eagle Bay, Port Famine, Capt. King. Good Success Bay, Banks and Solander.
A very handsome species and much the largest-flowered of the genus. The seeds are atlached to parietal piacentre, having their origin upon auastomosing veins, which ultimately lead to the diverging styles.
2. Chrysosplenium Taldivicum, Hook.; ghaberrimum, caule repente, foliis oppositis petiolatis ob-longo-rotundatis obscure sinuatis basi subtruncatis. C. Valdivicum, Mook. in Lond. Journ. of Bot. vol. i. p.459.t. 17.

Hab. Hermite Island, Cape Horn ; in open places near the sea ; J. D. H.
My specimens are extremely imperfect, though sufficient to identify the species with that from Valdivia, which does not appear to have been found in any intermediate locality. The present is distinguished from C. macranthum by its more rounded and scarcely siunated leaves, somewhat truncate at the base. Some of Mr. Bridges' specimens have leares fully $1 \frac{1}{2}$ inches long.

7. DONATLA, Forst.

1. Donatia fusciculuris, Forst.; Char. Gen. t. 5. D. Magellanica, Lamk. Illust. vol. i. p. 217. t. 51.
DC. Prodr. vol. iv. p. 53. ILook. Ic. Plunt. t. 16. Polycarpon Magellanieum, Linn. fit. Suppl. p. 115. Forst. Comm. Goett. vol. ix. p. 23. t. 3. Orites depressa, Bunks ame Sol. in Mus. Banks. cunn icone.

Hab. South Chili and Fuegia; from the Chonos Archipelago to Cape Horn; Forster, Bunkis and Solauder, Capt. King, C. Darvin, Esq., J. D. II.

I have examined sereral specimens of this plant in the collections of Capt. King and Mr. Darwin, and find uniformly three stamens and three styles; the flowers scem occasionally incomplete, and then are scarcely half the size of the fertile ones, and with much shorter stamens and styles. Tube of the calyx conical, its limb irregularly cut into $\begin{gathered} \\ -7 \\ \text { segments of unequal length, there are also one or two bractex, so placed on the orarium that }\end{gathered}$ they are with diffeulty distinguishable from the calycine lobes. The petals are also inserted with the latter and they seem to pass the one into the other; they are white and of unequal size, mueh smaller in the incomplete than in the fertile flowers. Within the petals is a broad tlat disk, from the centre of whiel arise the stamcns, three in ummber, alternating with, but almost united at their base to, the three long diverging styles: the filanents are elongate and subulate ; the anthers extrorse; the pollen globular, rough, and containing an obseurely three-lobed mucleus. Orarium three-celled, each cell bearing at the upper portion of the inmer angle a somewhat flesily placenta, covered with many series of horizontal or aseending ordes. Apparently ouly a few seels ripeu in each cell.

Donutia is a very anomalous gemus of Saxifragere, thongh I entirely agree with M. St. Itilaire that it does belong to that Order. The gradual passage of the leaves into braets, of the bracts into calycine lobes, and of these again into the petals, together with the aduate tube of the ealyx, aud the extrorse authers, (a sufficiently obrions, but hitherto unnoticed elarater, foreign to Serifiragea), are what may be observed in Calycunthece. The analogy between this plant and Stylidec, through Forstere, is very striking, especially in the tufted hahit and linear leares, in the often aloortive flowers, the form of the infcrior ovary, and the irregular insertion of the calyeine lobes and of the bracts on the tube of the calyx, in the variable number of the unequal petals, which, though gamopetalous in Forstera and Stylider, are oceasionally separate in the allied Orders Lobeliurece and Coodenoriee, in the flat disk interveniug betweeu the base of the petals and the stamens, in the close application of the filaments to and their alternation with the three styles, altogether forming, as it were, one body in the centre of the flower, in the extrorse authers and somewhat too in the form of the pollen; in the axile placentation and numerous ascending onules, and in the form of the seed, so far as I can compare it with immature ones of Forstera clacigera, excepting that the raphe in Donatia is prominent.

The Donatia fascicularis is very alundant thronghout Fuegia and the western portions of South Chili, covering the surface of the ground in densely-matted and widely-extended, hard, bright-green pateles: composing, with a few other plants, such as Caltha appendichlata and particularly Lstectin punila, the greater proportion of the peat-earth in those countries. It is one of the few bog plants, charaeteristic of the South Fuegian Flora, that has not been deteeted in the Falkland Islands.

XXI. UMBELLIFER E, Juss.

1. AZORELLA, Gaud.

§ I. Cuntibus dense fustigiatis, foliis subsessilibus arcte imbricatis coriuceis, umbellis brevissime pedunculatis:-Chamitis, Banks et Sol.

1. Azorella caspitosa, Car.; dense erespitosa, folïs arcte imbricatis basi latioribus naginantibus patentibus snbrecurvis linearibus aculis integerrimis eoriaccis vagina filamentosa, umbella florente abbreviata inter folia summa sessili, calycis tubo piloso margine obtuse et brevissime 5-lobo, fructu immaturo oblongo snbquadrato dorso compresso. Azorella cespitosa, Cav. Ic. vol. v. p. 57. t. 4St. f. 2. Poivet, Encyel. Suppl. vol. i. p. 551. DC. Prolr. vol. iv. p. 77. A. gnmmifera, Poiret, 1. e. A. crassifolia, Persoon, Syn. vol. i.
p. 303. A. aretioides, Filld. Herb. A. caspitosa, γ, Willd. Sp. Pl. vol. i. p. 1366. IIulinum acaule, Pers. Syn. vol. i. p. 309. Bolax aretioides, Spreng. Spec. Unhell. vol. i. p. 11. 13. cespitosus, Spreng. in Remer et Schultes Syst. Feg. vol. vi. p. 359. (exclud. syn. Selini acaulis. Cav.) Bolax foliis ovato-acuminatis \&c.? Commerson, fit. Catanilles. Hydrocotyle gummifera, γ, Lamk. Encycl. vol. iii. p. 156.

Hab. Strait of Magalhaens; Port Gregory, Capt. King; West Falkland Island, Née, Capt. Sullican.
Caules plerique unciales, exemplaribus Falkiandicis $3-4$ policares, ramosi, rigidi, e foliis subrecurris squarrosi Folia $\frac{1}{3}$ unc. longa, late viridia, inferiora sxpe discolora. Uubella 6-8-flora. Pedicelli florum brevissimi, post anthesin verosimiiiter elongati, ut in ieone Cavanillesii. Petala oblonga, subobtusa. Stylopodia majuscula. Fructus inmmaturus ad suturam vix contractus, dorso planiuseulus.

It it exceedingly difficult to umravel the synonymy of the specics belouging to this genns. The name of Chamitis was applicd to A. flamentosa, Lam., and A. trifurcata, Hook., by Gaertner in 178s, adopted from the MSS. of Banks and Solander. These voyagers diseovered a third species, Chuminitis trifurcata, a name which Gaertner lias aceidentally affixed to lis plate of 4 . tricuspidata.

The Azorella caspitosa, aecording to a statement made by Cavanilles, l. e., was probally first detected by Commerson; the specimens figured ly the author just quoted are from the Cordillera of Chili, and Mr. Darwin haviug gathered it at Port Desire, and Capt. King at Cape Firiwcather, it is probably a very general plant throughout the southern parts of Patagonia.
2. Azorella filamentosa, Lamk.; laxe crespitosa, caulibus diffusis ramosis, ramis congestis iuterdum elongatis, foliis lineari-lanceolatis subspathulatis subeymbiformibus marginibus inflexis integerrimis in petiolun requilongum basi raginantem longe setoso-ciliatum desinentibus, umbellis breviter pedmenculatis 6-S-floris, fructu ovato subtereti, mericarpiis dorso convexis 5-jugis. A. filamentosa, Lamk. Encyct. vol. i. p. 344. Ill. Gen. 1. 189. f. 1. (pessime, e icone Guertneri imitutu). Tahl, Symbol. vol. iin. p. 47. DC. Prodr. vol. iv. p. 77. Hook. Ic. Plant. t. 511. Hombron et Jacq. Foy. an Pole Sul, Bot. Dicot. Phan. t. l5. B. A. Chamitis, Pers. Synops. vol, i. p. 303. D'Urville in Mém. Lìn. Soc. Puris, vol. iv. p. 614. Gaudichand in Freye. Toy. Bot. p. 136. Chamitis integrifolia, Guertaer de Fruct. vol. i. p. 94. t. 22 (e MLSS. Bauksii et Solundri in Mus. Banks. cum icone). Bolax filamentosa, Spreng. in Schult. Syst. I'eyet. vol. ri. p. 359.

Hab. Strait of Magathans, Commerson; Good Success Bay, Banks and Solander; Port Famine, Capt. King; Hermite Island, J. D. II; Falkland Islancls, D? Uirille, Mr. Chartres, J. D. H.

The genus Azorella was foumded upon this species and is probally a name of Commerson's; for Lamarek, who adopted it in 1783 , remarks that, not knoning the fruit, he cannot see how it differs from IIydrocotyle.

The present is a very common plant throughout Fuegia and the Falkland Islands. Gaertner mentions laving examined specimens in the Banksiau Herbarium, with three carpels.
3. Azorella trifurcata, Gaertn.; dense crspitosa, foliis arcte imbricatis patentim recurvis rigidis oblongis superne dilatatis in lacinias' 3 paulo divaricatas cuspidatas fissis basi raginaute margimbus olscure ciliatis pilis deciduis, umbella subsessili, inrolucri foliolis parvis subulatis subciliatis, fructibus late oratooblongis teretinsculis, mericarpiis $\check{3}$-jugis dorso couvexis, calycis limbo obtuse $\check{0}$-dentato. A. trifurcata, Hook. Ic. Plant. t, 539. A. tricuspidata, Zank. Illust. Gen. vol. ii. t.189. f. 4. Hombron et. Tucq. Toy. an Pole Sud, Bot. Dicot. Phan, t. 15. C. Chamitis trifurcata, Banks et Sol. MSS. in Mus. Bunks. cum ic. Gaertner de Fruct. vol. i. p. 95. C. tricuspidata, Gaestner, l.c. t. 22. f. 4 (non Bankis et Solander). Species ita cum sequente et Bolax ylebaria confusa ut snnonyma Lamarckii, Poiretii, Willdenoriique extricare nequeam.

Hab. Fuegia; Good Success Bay, Bankis and Solander. Cape Gregory and Port Famine, Capt. King.

Rather a scarce plant and perfectly distinct from the following, with which it has been strangely confounded, partly because Gaertner inadvertently applied the mane of A. tricuspidata to his figure of Banks' A. trifurcata, and partly owing to the confusion in which the whole group to which it belongs las long been involved, and the refereuce of many different umbelfiferous plants with a tufted habit and simple umbets, by Lamarck, to the Bolax glebaria of Commerson.
4. Azorella lycoporlioiles, Gaud.; cespitosa, caulibus ramosis dense fasciculatis, foliis arcte imbricatis erectiusculis profunde trifilis laciniis subulatis pungentibns petiolis concavis latis basi vaginantibus amplexicaulibus marginibus argute ciliato-serratis, umbeltis 3-4-floris fructiferis peduuculatis, pedunculo valido, involucri foliolis 2 late ovatis cymbiformibus argute et profunde inciso-serratis, pedicellis brevissimis, calycis limbo 5-dentato, fructu globoso, carpellis læribus dorso courexis ecostatis. A. lycopodioides, Gaudichaud in Ann. Sc. Nat. vol. v. p. 105. t. 3. f. 1. et in Freyc. Toy. Bot. p. 136. JP Urville in Mém. Soc. Linn. Paris, vol. iv. p. 614. DC. Prorli. vol. iv. p. 77. Chamitis tricuspidata, Bunks et Sol. MISS. in Mus. Banks. cum icone (non Gaertner).

Hab. Tierra del Fucgo; Port Famine, Capt. King; Good Success Bay, Banks and Solander; Hermite Island, J. D. II.; Falklaud Islauds, abundant, Guudichaud, IP Urrille, Se.

Found at all elevations, both in Fuegia and in the Falkland Islands, and so much resembling Colobanthus subulatus, that the two plants hare often been taken for each other and for the Mriarum fasciculatum, Forst., a New Holland and New Zealand plant, which is hence erroneously described as being also a native of the Strait of Magalhaens. The fruit of this species certainly differs from that of the two former, and they, again, from the carpels of A. crespitosa and the following; I have, however, brought them all under one genus, feeling assured that the details of the form of the mericarps do not afford the important characters in this group that they do in some other Umbellifere.
5. Azorelua Selago, Hook. fil.; dense cæspitosa, caulibus fastigiatis sepe elongatis ramosis compactis, foliis dense ct arcte imbricatis appressis petiolo cymbiformi late raginaute amplexicanli lamina dilatata coriacea concava 3 - 7 -fila intus longe setoso-ciliata segmentis oblongis subacutis integerrimis, umbella 3 -flora breviter pedunculata, involucri foliolis linearibus subacutis, dentibus calycinis acntis, frrictu ovato stylis elongatis terminato, mericarpiis dorso paulo convexo compressis 5-jugis ad suturam coutractis. (Tab. XCLX.) Cookia, Auterson's MSS. in Bill. Banks.

Hab. Tierra del Fuego, south part, C. Darwin, Esq. Port Famine, Capt. King. Hermite Islaud, towards the top of the mountains, J. D. II. Kergnclen's Land, covering the ground near the sea, Anderson, J. D. II.

Cunles longitudine varii, 1-5 unc. longi, plerumque crassitic pemnæ olorine, foliis imbrieatis dense tecti. Foliorum petioli suberosi ; lamina plerumque latior quam longa, concara, intus sctis elongatis sparsis aucta, segmentis 1-nerviis. Flores pallide rosei.

The fruit of this plaut is so dorsally compressed and contracted at the sutures, as abnost to justify its being remored from this genus and even group. The catycine teeth and the styles are rather longer than is usuat in Aiorelle; still, as mentioned above, the fruits of almost all the species that I have examined differ so widely from one another, that to separate this or either of the former would inrolve the complete dismemberment of a genus, of which oll the species, except the following, are very closely allied.

Azorella Selago is the most abundant plant in Kerguelen's Land, covering the rocky ground close to the sea with brown masses many fect in extent, and often so soft that the traveller plunges into or through them up to the middle. Like the cinious Bolax glebaria of the Falkland Islands, the living part of the plant forms a crust over a
rast mound of debris, the decaying remains of former years' growth, through which the roots descend into the ground. In Fuegia this plant is much scarcer, and only occurs on the mountains in small tufts. I have also seen specimens seut from M' Quarrie's Island by Mr. Frazer.

Plate MCLX. Fig. 1, a leaf; fig. 2, umbel with peduncle and involucre; fig. 3, a flower; fig. 4, a petal; fig. 5, ripe fruit; fig. 6, transverse section of the same :--all magnified.
§ II. Caule prostrato repente nodoso ad nodos folioso, foliis longe petiolatis, umbellis sullonge pedunculatis.
6. Azorella Ranunculus, D'Urv.; glaberrima, caule repente nodoso ad nodos radicante, foliis longe petiolatis rotundatis $4-5$-partitis laciniis cuneatis trifidis segmentis rotundatis, petiolis gracilibus basi vaginantibus vagiuis membranaceis, pedunculis axillaribus petiolo brevioribus, involucri foliolis linearibus subacutis pedicellis lougioribus basi ntrinque dente auctis, umbella 3 - 5 -flora, calycis limbo obtuse 5 -dentato, fructu breviter ovato subtereti ad commissuram contracto, mericarpiis dorso convexis obtuse 3-jugis. (Tab. XCVIII.) A. Ranunculus, D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 614. Gaud. in Freye. Foy. Bot. p. 136. DC. Prodr. vol. iv. p. 77.

Herba facie IHydrocotylis. Caules graciles, repentes, ad nodos foliosi radicesque fibrosas emittentes. Petioli erecti, unciales. Folia $\frac{1}{3}$ unc. diametro, luride viridia, subnitida. Flores parvi, pallide flavi scu albi. Fructus breviter pedicellatns.

This plant differs so materially in habit from those described above, that I have placed it in a separate section of the genus. The general aspect is altogether that of a Mydrocotyle, with the fruit of an Azorella, to which genns it was rightly referred by D'Urrille; it also very much resembles the Pozoa reniformis, in Part 1. p. 15. t. xi. where the carpels are however very different. The fruit represented in Plate XCVIII is immature ; when fully ripe, the mericarps are more contracted at the suture.

Plate XCVIII. Fig. 1, a leaf; fig. 2, a flower; fig. 3, petal; fig. 4, ripening ovarium; fig. 5, young fruit; fig. 6, transverse section of the same:-all magnifed.

2. BOLAX, Comm.

1. Bolax glebaria, Commerson, in Juss. Gen. p. 266. Gaudichaud in Ann. Sc. Nat. vol. r. p. 104. t. 3. f. 2. et in Freyc. Toy. Bot. p. 136. DC. Prodr. vol. iv. p. 78. D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 614. Hook. Icon. Plunt. t. 492. B. gummifera et B. complicata, Spreng. Spec. Umbell. p. 9, 10. B. gummifer, Spreng. in Roem. et Schultes Syst. Teg. vol. vi. p. 360. excl. pleraque synonym. Azorella cæspitosa, Tahl, Symb. vol. iii. p. 48. Willd. Sp. Pl. vol. i. p. 1365. non Cavanilles, et excl. syn. Chamitis trifurcatæ, Gaertn. A.tricuspidata, Lamk. Illust. Gen. t. 189. fig. 2 et 3 ? certe non f.4. Poir. Suppl. vol.i. p. 551 , in part. Hydrocotyle gummifera, Lamk. Encycl. vol. iii. p. 156. Chamitis complicata, Bankis et Sol. MSS. in Mus. Banks. cum icone. Gommier, Pernetty, vol. ii. p. 7 et 65.

Hab. Tierra del Fuego, Commerson; Good Success Bay, Banks and Solander; Hermite Island, growing in tufts on the high mountains, J. D. H.; Falkland Islands, very abundant, Guudichaud, D' Urrille, and all voyagers.

I have cndeavoured to unravel the synonymy of this highly curious and now well-known plant, but cannot ascertain what are the varions specics figured by Lamarck and partially described by Poiret, both these writers seeming to have had sereral in vier.

Long before the Falkland Islands were colonized from Britain, the present plant had excited considerable curiosity by the very remarkable mode of growth it there assumes and its forming a feature in the landscape that strikes the most casual observer. Now that these islands have been annexed formally to the British dominions, the Bolax or Balsam-bog is a production of still greater gencral interest. In whatever portion of this country the royager may land, he cannot proceed far along the beach without entering groves of Tussac, whose leaves often wave over his head; nor turn his steps inland without seeing, scattered over the ground, huge, perfectly hemispherical hillocks of a pale and dirty yellow green colour and uniform surface, so hard that one may break the knuckles on them. If the day be warm, a faint aromatic smell is perceived in their neighbourhood and drops or tears of a viscid white gum flow from various parts of these vegetable liflocks. They stand apart from one another, varying from 2-4 feet in height, anrl though often hemispherical, are, at times, much broader than high, and even eight or ten feet long. The very old ones begin to decay near the ground, where a crumbling away commences all round, and having but a narrow attachment, they resemble immense balls or spheres laid upon the earth. Upon close examination, each mass is found to be herbaceons throughout, the outer coat formed of innumerable little shoots rising to the same height, covered with imbricating leaves, and so densely packed tbat it is even difficult to cut out a portion with a knife, while the surface is of such uniformity that lichens sometimes spread over it, and other plants vegetate on its surface in the occasional holes or decayed places. If, at a very early period, a young plant of the Bolax be remored and examined, the origin of these great balls may be traced; for each of them, of whatever size, is the product of a single secd, and the result of many, perhaps hundreds of years' growth. In a young state the plant consists of a very long slender perpendicular root, like a whip-lash, that penetrates the soil. At its summit are borne two or three small, branching stems, each densely covered for its whole length with sheathing leaves. As the individual increases in size, the brauches divide more and more, radbating regularly from the rooting centre, instead of prolonging rapidly; these send out latcral short shoots from their apices, and in such numbers that the mass is rendered very dense, and by the time the plant las gained the diameter of a foot, it is quite smooth and convex on the surface. The solitary root has become evidently insufficient for the wants of the mass of individuals, which are nourished hy fibrous radicles, proceeding from below the leaves, and deriving nutriment from the quantity of vegetable matter which the decayed foliage of the lower part of the stems and older branches affords.

The B. glebaria yields a gum, which is white when oozing from the wounded stems and leaves, but soon turns red-brown on drying; it has been used as an application to cuts and other lesions with apparent effect, and for the cure of Gonorrhœea, with more doultful success.

From Mr. Webster's account it is abundant in Staten Land, and is, I believe, also found in perfection in Patagonia. In Itermite Island it never assumes the form it docs in the Falklands.

3. IIUANACA, Car.

1. IIvanaca Caranillesii, DC.; caulc scapiformi, foliis omnibus radicalibus longe petiolatis palmatim 7-8-sectis segmentis anguste lincaribus acutis integris trifidiste petiolo basi in vaginam ciliatam dilatato, caule seu scapo erecto simplici striato apice umbellam 3-madiatam gerente, foliolis involueralibns tripartitis basi ciliatis, umbellulis multi-radiatis lateralibus elongatis diutins florentibus intermedio sessili, floribns pedicellatis, fructu ovato, mericarpiis dorso valde compressis concavis lateraliter 3-jugis. H. Cavanillesii, DC. Proilr. vol. iv. p. 81. Poiret Encycl. Suppl. vol. iii. p. 6s. II. acaulis, Catanilles, Icon. vol. vi. p. 18. t. 52S. f. 2. (Emanthe Huanaca, Spreng. L'mbell. Spee. p. 37. et in Roem. et Schultes Syst. Veg. vol. vi. p. 428. Spananthe Huanaca, Iagasca Am. Nate vol. ii. p. 93.

IIab. Strait of Magalhaens; Cape Gregory, Capt. King.
Radix fusiformis, pro planta majuscula, 3-pollicaris. Folia longe petiolata ; petiolo gracil, erceto, 2-4 unc. longo, basi in vaginam brevem latan ciliatan dilatato; lamine segmentis $\frac{3}{4}-1$ unc. longis, sub 1 lin. latis, glaber-
rimis v. sparse pilosis. Caulis scapiformis, folia vix duplo superans, teres, ad apicem tripartitam umbellas 3 simplices foliaque 2 gerens; folis caulinis involucrum simulantibus trisectis, basi ciliatis. Umbella 2 latcrales pedunculatæ, intermedia sessili. Inrolucelli foliola lineari-oblonga, subacuta, ciliata. Pedicelli umbellæ intermediæ elongati, cæteri breviusculi. Flores parvi, pauci, steriles. Calycis limbus breviter et obtuse 5 -dentatus. Petala ovata, incurva, integra. Fructus ovatus, obtusus, sub 2 lin. longus, umbellæ intermediæ solummodo mihi notus. Mericarpia dorso concava, trijuga.

A rery littlc known Patagonian plant, remarkable for the resemblance its almost leafless stem bears to a scape, which induced De Candolle to substitute the name of its first describer for that of II. acaulis. Assuming the view here taken to be correct, the branching of this plant is trichotomous, for the three peduncles, bearing each a simple umbel, arise from one point, the terminal or central branch flowers first, and therefore cannot be considered as the intermediate division of a compound umbel, in which the external rays always open before those nearer the axis: the structure of the inflorescence is similar to Astrantia (vid. Brown in Limn. Trans. vol. xi. p. 92).

The Huanaca Cavanillesii was first discovered at Port Desirc by Née, who accompanied the Spanish royager Malaspinas; and again by Mr. Darwin in the same locality.

4. APIUM, L.

1. Apium graveolens, Lim. Sp. Pl. n. 369. DC. Prodr. vol. iv. p. 101. Gaud. in Ann. Sc. Nat. vol. v. p. 105. et in Freyc. Foy. Bot. p. 135. D'Urille in Mém. Soc. Iimn. Paris, vol. iv. p. 613. A. australe, Pet. Thouars Fl. Ins. Trist. d'Acun. p. 43. Carmichael in Limn. Soc. Trans. vol. xii. p. 506. A. prostratum, Labill. Nor. Holl. vol. i. p. 76. t. 103. Tent. Hort. Malm. t. S1. A. Antarcticum, Banks et Sol. MSS. in Mus. Banks. cum icone. Petroselinum prostratum, DC. Prodr. vol. iv. p. 102.

Hab. South Chili, Tierra del Fuego and the Falklaud Islands; abundant on the shores of the latter: also in Tristan d'Acunlia.

Apparently our common Celery, and even more abundant in the countries enumerated above, than in Europe. Except its often assuming a prostrate habit in the Antarctic regions, I perceive no external difference from the northern statc of the plant; its propertics are, homerce, very unlike, for the wild Antarctic specimens are always mild and wholesome, insomuch that the officers and crews of the Expedition made constant use of it, both raw and boiled like spinach. This absence of all injurious or eten disagreeable propertics may perhaps be owing, in some degree, to the want of the direct rays of the sun, which is seldom bright and clear, and often invisible for many days in the height of summer in these far southern regious. If this be so, we have a natural cause producing the same results which the skill of the gardener effects in our more favoured climate.

The Apium graveolens is also a native of Tasmania and the Cape of Good Hope.

5. CRANTZLA, Nult.

1. Crantzia lineata, Nuttall, Gen. Plant. Am. vol. i. p. 177. DC. Prodr. vol.iv. p. 70. Yorr. et Gray, F7. Am. Bor. vol. ii. p. 600. C. attemuata, Hook. ct Arw. in Bot. Miscell. vol. iv. p. 346. Hydrocotyle lineata, Mich. Fl. vol. i. p. 162. Richard, Monogr. Mydr. p. 77. f. 38. H. Chinensis, Spreng. in Roem. et Schulles Syst. Feg. vol. vi. p. 355. Elatine, foliis oppositis, Gronov. Iirgin. p. 62. (Tab. C.)

Hab. Falkland Islands; abundant near the streams communicating betreen fresl-water lagoons and the sea, generally buried in gravel.

I have no hesitation in referring this plant to the tribe Seselinea of Koch, where it ranks naturally between

Ottoa, H. B. K., and Enanthe, Lamk.; indeed it is to the latter genus alone that the present is allied in the fistulose leaves, while it resembles the former in the septate structure of the foliage, and has other points of affinity in the rank smell and taste, aquatic habit, vittate mericarps, and the longitudinal ridge in front of the seed itself.

The Falkland Island specimens are very constant in the form of their leaves; those from the Plate River, on the other hand, are exceedingly variable both in size and foliage, the latter sometimes measuring six inches long and expanding into a plane, linear-lanceolate, olstuse lamina.

In both Amerieas the Crantzia is confined to the east coast; in the northern hemisphere ranging from 30° to 42°, and in the south from 35° to 52°.

Plate C. Fig. 1, portion of a leaf; fig. 2, a flower; fig. 3, petal; fig. 4, ovarium and styles; fig. 5, ripe fruit ; fig. 6, transverse section of the same :-all magnified.

6. OREOMYRRHIS, Endl.

1. Oreoyyrrins Andicola, Endlicher. Caldasia Andicola, Lagasca in DC. Mém. p. 5. t. 2. DC.Prodr. vol. iv. p. 229. Myrrhis Andicola, Humb. Bonpl. et Kunth, Nov. Gen. et Sp. Plant. Am. vol. v. p.13. t.419. Azorella daucoides, D'Urv. Mém. Soc. Linn. Paris, vol. iv. p. 613. Gaud. in Freyc. Voy. Bot. p. 135. DC. Prodr. vol. iv. p. 77. (Tab. CI.)
$H_{A B}$. Falkland Islands; in grassy places, abundant; DY Urrille, J. D.H.
This, which is rather a rariable plant, appears to be altogether identical with that gathered on the Andes by Humboldt and Bonpland, and more lately by Linden, near the snow line on Orizaba, in Mexico, by Gondot in New Grenada, at the limit of perpetual snow, by Professor Jameson at an altitude of 14,700 feet, on the Andes of Quito, and by Mr. M'Lean in Peru: for I refer all the Caldasicic of these colleetors to the present species, whieh there, as in the Falklands, has the leaves more or less cut, their segments crowded or lax, and all the parts copiously hairy or nearly smooth. It is very singular that it should not have been hitherto found at any intermediate station between Peru and the Falkland Islands, where it grows as constantly at the level of the sea, as at the limit of eternal snow on the Cordillera under the line. Assuming 15,000 feet to be its station under the equator, it has descended that number of feet in 52 degrees, or nearly 300 feet for every degree of latitude. The labours of Humboldt and of Professor Jameson, who have determined with great accuracy the zones of elevation which many plants of the Cordillera affect, are daily proving of increased value; and now that many of the same species are found at far less elerations and even on the shores of the oeean in lower latitudes, they afford most essential data for comparing the efficets of latitude with those of elevation upon regetation, which, from various causes, are not what the difference of temperature would indicate. Thus, the parallel of the Straits of Magalhaens appears to be the point where plants, inhabiting the altitude of 15,000 feet under the equator, meet the ocean; but the snow-line itself is therc 4,000 feet higher and does not descend to that level for eight degrees further south.

Plate CI. (under the name of Caldasia daucoides, Hook. fil.) Fig. 1, umbel ; fig. 2, a flower; fiy. 3, petal; fig. 4, upper portion of germen, showing the stylopodia; fig. 5, ripe fruit ; fig. 6, trausverse section of the same :all magnified.

7. OSMORIIIZA, Raf.

1. Osmorhiza Chilensis, Hook. et Arn., Bot. Beechey Toy. p. 26, et in Bot. Miscel. vol. iii. p. 355. O. Bertcrii, DC. Prodr. vol. iv. p. 232. Schudia Chilensis, Molin. Chili, p. 125. Scandix clavata, Banks et Sol. MSS. Mus. Banks. cum icone. Chærophyllum Chilense, Poir. Encycl. vol. v. p. 105.

Hab. Tierra del Fuego, Commerson; Good Success Bay, Banks and Solander.
Also gathered by Capt. King, at Cape Fairweather, on the east coast of Patagonia ; and it is a native of Chili.

XXII. LORANTHACEÆ, Don.

1. MYZODENDRON, Bankis et Sol.

Char. Gen. Dioicum. Flores parvi, anentacei, spicati v. racemosi. Fl. Masc. Perianthium 0. Stamina 2-3, ad apicem pedicelli circa glandulam depressam disposita; anthere oroidex, uniloculares, v. septo incomplcto spurie biloculares, rima apicali dehiscentes. Fl. Fex. Calycis tuluus ovario adhærens. Corolla nulla. Ocarium trigonum, angulis longitudinaliter bilamellosis, rimis intus setam setasve plurimas foventibus, uniloculare, tri-ovulatum, disco angusto inconspicuo coronatum; stylus brevis, crassus, in ramos 3 breves obtusos apice papillosos fissus; ovula nuda, e apice columne libere centralis subpendula ; funiculus brevissimus. Fructus submembrauaceus, setis 3 elongatis auctus, rarius nudus, monospermus. Semen ex apice cohumnæ parietibus loculi appressæ pendulum ; testa nulla?; albumen subcarnosum, teres v. sulcatum; embryo hilo proximus, membrana tenui indutus; radicula supera, in discum dilatata v. capitata, exserta; cotyledones parvæ, conferruminatæ, intus cavæ, plumulam diphyllam foventes.-Herbæ v. potius suffrutices Autarcticæ et Chilenses plereque more Visci ramis generis Fagi parasitice. Rami teretes, alterni, artichlati, al nollos vaginati. Flores minimi. Fructus e maxima copia filorum plumosorum conspicui.

Subgen. Gymnophyton; aphyllum, bractex squamæformes, flores masculi in axillis bractearum solitarii, fominei bini ; stamina 2.

1. Myzodendron punctulatum, Banks et Sol.; aphyllum, ramis teretibus punctis prominulis apice depressis obsitis, floribus masculis in anenta dispositis. (Tab. CII. CIV. et CVI.) M. punctulatum, Banks et Sol. MLSS. in Mus. Bunks. cum icone. Misodendrum, DC. Coll. Mém. vol. vi. t. 11 et 12, Prodr. vol. iv. p. 286. Brown in T'ans. Linn. Soc. vol. xix. p. 232. in note. Viscum flavescens, Commerson, MSS.

Hab. Tierra del Fnego and South Chili, as far North as Taldivia; abundant on various species of Fagus; Commerson, Banks and Solander and all future voyagers.

Suffrutex ramosissimus, bipedalis. Carlis lignosus, basi dilatatus, crassitie digiti minoris, cortice pallide fusco. Rani ramulique e vagina brevi cupulæformi orti, ultimi diametro peunæ corvinæ, omues cortice flavovirescente siccitate aurautiaco tecti, tuberculis parvis apice depressis stomate instructis rugulosi. Iufforescentia ramos terminales amentacea. Amenta alterna, subcrecta, v. divaricata, cylindracea, superiora vacua. Squamue seu bractere dense inbricatre, late orbiculatee, concavæ, marginilus scariosis. Flores masculi solitarii, pedicellati; pelicello gradatimn incrassato, curvato, $\frac{1}{2}$ lin. longo, glandulam depressau (rudimentum orarii) antherasquc 2 ad apicem gerente. Anthere divaricatæ, miumiæ, cellulosæ, rima parva apicali sursum spectante deliscentes, uniloculares, loculo intus colnmna compressa erecta aucto. Pollen globosum, echinulatum, stramineum. Fl. feeminei in squamis lini, collateralcs, sessiles, vix $\frac{1}{2}$ lin. longi, anguste oblongi, trigoni. Achenium membranaceum ; setis clongatis achernio lougioribus plumosis, pilis apice capitellatis. Semen anguste elliptico-oblongum, loculum fere implens, ex apice columnæe centralis compresse pendulum ; funiculo brevissimo, basi ovulis 2 stcrilibus suffulto. Albumen ut videtur ommino nudum. Embryo membrana tenui ex apice fmniculi continua inclusus, extremitate superiore albumiuis fere immersus; parte radiculari dilatato, exserto; cotylcdonari tereti, cylindraceo, apice breriter fistuloso, indiviso.

As the genus Myzodendron is perhaps the most interesting, in a structural point of view, of any collected during the progress of the Antaretic Expedition, I shall offer some remarks upon the peculiarities of this and the following species.

The process, by which the germinating embryo attaches itself to, and derives sustenance from the Beeches
iufested by this genus, will be described under M. brachystachyum, where only I have becn able to watch that operation. The present spccies follows the same course, I presume, judging from the appearance of a fully established parasite.

The anatomy of the stem and branches of M. punctulatum not only differs widely from that of M. brachystachyum, but of most other Dicotyledonous plants; its axis beng wholly occupied by very dense fibres apparently of woody tissue, and presenting there no trace of the cellular tissue, which is constantly present in such plants as increase by anmual layers. The bark of the young branches is thick and spongy and a transrerse section presents the following structure. 1st. A very delicate but firm cuticle, striated externally with lines of extreme tenuity. 2nd. Immediately bencath this is a cellular tissue forming the epiphloum. 3rd. A series of cavities occupy the circumference of the bark; they are what have been called in other plants respiratory cavities, and correspond each to one of the tubercles on the surface of the stem ; the cuticle is depressed immediately over the centre, where a very cvident stoma is situated. 4th. The cellular tissue forming the mesophlœum is hexagonal, thick-sided, and very often full of a green chromule. I have seen no raphides in any of the species. 5th. The liber contains a scries of isolated bundles of delicate fibres (Plate CVII.f.9. a.) frequently, for some part of their length, protected by cells of great density, such as may be scen in the Lime and Antarctic Fagi. The proportion of fibrous tissue to the thickness of the bark is very small, and the fibres composing it exceedingly slender. Between this and the sealariform tissue lies a very thick layer of loose hexagonal cellular tissue, formed of membranous utricles, which are discoloured and compressed immediatcly around the annual layers. 6th. The greater portion of the old stem, all that part which, in Dicotyledonons wood, is usually occupied by pleurenchyma, is here wholly, or nearly, formed of elongated varionsly marked tubes, of almost equal diameter, they are white and diaphanons, dotted, ringed, transverscly barred, or contain a spiral vessel, more or less broken (Plate CVII. $f .8,9$ and 10, c.). I have not observed simple or thick-sided tubes of pleurenchyma, true tracheæ, or hothenchyma, cither in the inner portion of cach ammal layer, or in the usual position of the mednllary sheath. 7th. The axis of the stem is formed wholly of a dense tissue of woody fibres (Plate CVII. figs. 8, 9 and 10 .) the tubes all very small, inseparable, even after long maceration, and their walls so thick that it is difficult to trace the dark lougitudinal liue which indicates their cavity which contains granules, though a dot in the centre of the transverse section of each fibre is very evident. This axis suffers no change after the first year's growth, and at that period may be scen to project wedge-shaped plates in the manner of medullary rays, into the scalariform tissuc which it hardly divides.

The stems of this plant are, though hard in texture, very brittle, especially when dry, owing partly no doubt, to the fragile nature of the scalariform tissue, and probably still more to the very small quantity of parenchyma and the axis being formed of a denser substance than any other part.

The ramification of this plant is highly peculiar, and uniformly takes place in the following mamer. Each ultimate brauch, when fully formed, Plate CVII. bis, $f .1$, (aud the plant itself, when consistiug of a single unbranched stem) elongates no further in any succecding year, but gives origin, towards its cxtremity, to five or six lateral amenta; these arise from the centre of a depression, bounded by a low cup-shaped sheath (Plate CIV.f. 1). All but a few of the upper of these amenta are floniferous; they fall away after they have performed their functions, leaving a cicatrix on the ramulus, very visible even on the oldest stems, below every articulation. The upper empty amenta, however, (Plate CVII. bis, $f .1, \alpha$), clongate during the autumn, one or both of them, causing the ramification to be frequently either alternate or dichotomous; the bracteæ are separated during this elongation, become recurved,* fall off and leave a naked newly-formed branch (Plate CVII. bis, f. b.), fully developed by the month of Septeuber; toward the upper part of this, other amenta are formed and the process is repeated. The apex of the originally ultimate branch, now a stem, is reduced to a mere point (c), always discernible close to the articulation even of the oldest stems, though often very inconspicuous. Occasionally, three amenta are developed into branches, but this effecting a trichotomous ramification, is rare. The articulation of the stem in Myzodendron is therefore of a

[^28]very different nature from what occurs in plants, whose joints indicate an interruption of continuity in a rectilinear organ, as the stems of Equisetum, Casuarina, or Salicornia, or from those which imcrease by new matter being developed at certain intervals from the apex of the axis of growth, as the trunk of a Palm. In Fiscum album, the ranification is truly dichotomous, each internode giving off two opposite ramuli from its apex, between which is a third undeveloped bud; and in Γ. salicornioides and Arceutholobium oxycedri the branching is trichotomons, from both the lateral and terminal branches being developed. Another modification is observable in a singular new genus of Loranthacece, Eubrachion* mihi, (Fiscum ambigum, H. et A.). The ultimate ramuli of this plant are jointed on the stem and appear not to ramify further, but to bear amenta similar to the bracteate spikes of Mr. punctulatum, all of which are fertile and caducous, the ramulus elongating and producing year by year new amenta, as the old ones drop away.

The axis of the stem and branches of M. punctulatum is remarkably eccentric, the greater quantity of scalariform tissnc being deposited on the under side of these organs, a circumstance arising from the horizontal dircetion the whole plant assumes. An analogons eccentricity in the position of the medulla in the horizontal branches of roniferons trecs is very evident, though not so conspicuous, in other woody plants whose stems are as slender as those of Myzodendion. The truly amentaccous inflorescence of this plant is common also to Autidaphene, Fubraction, Lepeostegeres, Blume, Tupeia and others of its congeners, if examined at an early stage. The male flowers are abundant, and the females much rarer in Hermite Island, this preponderance of males was also very marked in the M. brachystachyum.

Mr. Brown \dagger first observed the singular position of the stomata in this species, which are placed one on the apex of each tubcrcle of the stem, and communcate with the cavity or chamber beneath, the respiratory cavity of some authors. The cells of which the cuticle is composed are so completely incorporated into a uniform integument, that the curred utricles, which bound the mouth of the stoma in most plants, are here hardly apparent, though it is to their presence that the ridge (Plate CVII. bis, f. 6, a) is due. The aperture itself, as seen in $f .5$ and 6 of the same Plate, is constricted in the middle, somewhat in the form of an hour-glass, but an opening is generally, perhaps always, left between the adjacent edges of this constriction or diaphragm. The stoma thus expands both outwardly and inwardly into a sort of cup, the outer of which is frequently filled with an opaque mass, and the chambers beneath traversed by flaments of a viscid substance stretching from one wall to the other ($f .5$). In the extermal cavity, when empty, parallel concentric lines may be observed, indicating the compound nature of the walls of the aperture. These stomata are abundant on all surfaces of the young stems and branches, but only on the lower surface of the older and horizontal stems.

Male flofers. These are of the most simple structure, consisting of a solitary curved subclavate pedumele in the axil of each bractea, bearing at its apex a large broad depressed gland, on each side of which an anther is seated, (Plate CIV. $f .3$, and 4). There are no traces of a floral envelope. The anther is ovoid, one-celled, opening by a small transverse shit at the apex, and containing a membranous columella, which is the remaining unelaborated tissue from which the pollen is formed, the indication of the anther being originally bilocular, as may

[^29]E. Arnottii. Viscum ambiguum, IHook. et Arn, in Bot. Misc. vol. iii. p. 356.

Hab. Uraguay; Treeedie.
\dagger Prodromus Floræ Nov. Holl. Supplementum, sub. Bunksia, p. 35.
be seen on examining a rery yonng anther. The tissue is peculiar and wholly cellular, except just at the base of the columella, whence some spiral vessels descend through the peduncle. A longitudinal section shews the walls of the anther to be remarkably stout and formed of two laycrs of cells (PLate CIV. $f .5$ and 6) ; the outer of these are thick-sided, rounded or hexagonal utricles, often filled with a yellow chromule (Plate CIV. $f .6$ and 7) ; the inner on the contrary, are very slender, prismatic, thin-sided cells, densely packed together and radiating from the inner wall of the anther which they line with their bases, and which has no further membrane intervening between thesc prismatic cells and the pollen. The latter is yellow, globose, and echinulate, like that of other Loranthacea.

The gland, on each side of which the anthers are seated, indicates the position of the undeveloped orarium in the male flowers ; it is very conspicuous in all the species, and in Antidaplene, Pæpp., which, in this respect, does not differ from Alyzodendron, although its author* has described the filaments as calycine pieces, antheriferous at the apex aud the three-lobed gland as a corolla. In Tupeia Antarctica, again, where the segments of the perianth are evidently articulated on the top of the pedicel, the male flowers bear an almost imperceptible prominence in their centre. In Eubrachion the rudimentary orarium, in the centre of the male flower, is much more fully formed.

In some respects the male flower of this genus resembles that of a species of Gnetum, where a solitary filament, similar to the peduncle of Myyodendron, arises frou a sheathing bract and bears at its apex two collateral adnate cells, opening by apical slits which are at right angles to the broad axis of the stamens, (as in Lemma), and contain a central free columella; and where a vascular bundle descends from the base of each anther down the filament. The terminal dehiscence is comparatively rare in one-celled anthers, though seen in Krameria, where the cells coalesce into one. The single-celled anther of M. punctulatum may be further compared with two of those couposing the multilocular anther of Iiscum albumt, in each of which loculi there is one point from which the pollengrains are developed; or to one half of the anther of most phænogamic plants, where the developement of the polleu takes place at two points \ddagger and in which a ridge is afterwards left in the cell, analogous to the columella in this genus. I moch regret not having the opportunity of comparing this with the Castrea falcata, St. Hil., a Brazilian plant, allied to Fiscum, but having its pollen developed in the apex of the segments of the perianth. § The spuriously one-celled anther of Tupeia? incana (Fiscum, Hook. Ic. Plant. t. 73.) is of an entirely different nature. There the two original cells, which are, as in ordinary stamens collateral, open by lateral slits, which becone confluent abore. This is exactly what happens in Callitriche and many other plants.

I know of no plant exhibiting a structure in the inner cells of the walls of its anther similar to Myzodendron, except perhaps, the Saprium Griffthsie, Br., a transverse section of whose anthcr, given by Mr. Griffiths, $\|$ appears to present radiating prismatic cells. The outer layer, again, is a portion of the same cuticle surrounding other more cellular parts of the plant.

Female flowers. I have only seen the orarium in Yaldivian specimens, apparently of this species, gathered by Mr. Bridges; figured at Plate CIV.f. 9 and 10. They are sessile, in pairs, in the axil of each bractea. The calyx is adherent with the ovarium and terminates in a thickened ring forming an entire, very short limb immediatcly below the insertion of the style. It is trigonous, and at each angle is a slit, leading to a longitudinal canal that encloses a stout filament, or scta. This seta ascends from the base of the orarium and gradually elongating, finally escapes from the earity where it was lodged (Plate CIV.f. 10); it is composed of elongated cells colering by their riscidity. The ovarium is one-celled; the cavity minute and wholly filled by an erect short column, that bears

[^30]three obliquely peudulous maked ovules at its apex, these are lodged each in a pouch in the wall of the ovariun at first, but the cell gradually dilates, and leaves the column and orules free, as represented at fig. 11 of Plate CIV. The orules are cellular and entirely naked, without any markings ou the surface.* In the depression at the apex of the ovainm, bounded by the almost obsolete limb of the calyx, is a very obscure depressed disc, from which projects a short stout style, terminating in three erect oblong stigmata, papillose externally. A transverse section of the young ovarim shews no distinction between the adherent calyx and ovarium ; further than that, as it will afterwards appear, the fissures penctrate the calyx only, the scta they contain lying against the walls of the orarium itself.

In its trigonous form, the orarium of Myzodendron resembles that of one specics of a new South American genus of Loranthacea, allied to Tupeia, which I have seen in fruit only and shall call Lepidocerast, from the curious, deciduous membranous scale that terminates the leaf. The genus Tupeia itself has also a similar trigonous orarium, but does not possess the oruliferous free column, which is very evident in this genns. T. Antaretica has also a highly conspicuous superior four-partite perianth to the female flower, which being decidnous and only visible at a rery early period, before the inflorescence quits its protecting scales, has escaped the notice of recent authors. MI. Korthals \ddagger refers the Tiscum umbellatum and Reinuardtianum of Blume, two Javanese plants, to Tupeia, from which Jiquel \S suggests their separation. That they do constitute a distinct genus is extremely probable, because of the presence of bracts at the base of the female flower, and (if we may judge from the somewhat incomprehensible figure given by M. Korthals) by some other characters of the flower and fruit. Until, however, the true nature of the placentation of the original species of Tupeia $\|$ is known, and this is not described by the anthors of the gems or any subsequent writer, its affinities cannot be fully determined. Korthals was the first to describe any plant of the Order Loranthacea to have a free central column in the orarium, and pendulous ovulcs; but laying too much stress upon this character he removed the plants in which he observed it, together with the genus to which he referred them (with whose typical species he was macquainted), to Santalaceer. Mr. Brown,** who has long been conversant with the structure of Myzodendron, points out its relation to Santalacea. This affinity between Santatacece and Loranthacece is perhaps most obvious in Myzodendron, from the comparative facility with which its orarium may be dissected, and the column and orules removed, and it equally shews the relation

[^31]- Chamisso et Schlechtendahl, in Limme, vol. iii. p. 203.
** Brown on Rafflesia, \&c., vid. Linn. Soc. Trans, vol. ix. p. 232 (in note).
all bear to Olacinece, as was also first indicated by Mr. Brown* and afterwards mell illustrated by M. Decaisue, after a comparison of the orules of Fiscum album, \dagger with those of Thesium. The ripe fruit of Mr.punctulatum forms an achenium, which generally dehisces longitadinally and allows of the partial or complete exsertion of the seed; but I am not aware whether germination takes place by the embryo becoming thus excluded, or whether, as in the following species, the radicle protrudes at the apex of the fruit, pushing the dise and style before it. The feathery filancuts (hereafter to be described) are not so long in this specics as in the following, or probally as in any of its congeners, except the M. imbricatum, ${ }_{\ddagger}^{\dagger}$ Popp., of South Chili; they are plamose with long hairs, which are capitate at the apex. The walls of the pericarp are more membranous here than in the other species, and, when fully ripe, the calycine portion looks like three plates, attached longitudinally by part of their surface to the endocarp; the filaments being lodged in the spaces formed by their contiguous non-adherent portion (Plate CIV.f. 16.). The stout central column of the ovarium is elongated in the fruit into a slender chord, pressed between the seed and walls of the cavity of the frnit, and resembles a funiculus; its edges are ragged from the rapid elongation of its substance. The true funiculus is extremely short, and bears at its base the two very minute unimpregnated ovules (PLate CIV. $f .18$ and 19). The seed is linear-oblong, narrow and obtuse at both extremities. The albumen is copions, formed of utricles that at first are readily separable; and thongh the outer ones adhere closcly, they do not seem corered with any distinct testa; a cavity in the upper part contains the greater portion of the cmbryo, which is of very highly orgamized tissuc, and the radicle which is not immersed in the albumen is covered with a membrane apparently continuous from the funiculus, which at an early period may be traced downwards, lining the cavity of the albumen (Plate CTV. f. 19 , where the membrane is represented as too thick in texture). At no time can I detect the lower portion of this membrane (first observed by Mr. Brown), except whilst the cells of the albumen are loosely held together and may be scraped by the knife from its surface, and then it appears homogenous and of a different texture from what covers the radicle, which is cellular (Plate CIV. f. 20). The embryo is very small, the radicular extremity capitate, with a depression at the top; the cotyledonary terete, abrupt, slightly curred and fistulose at the apex : the cotyledons are consolidated and present no trace of any line of union. The tissue of the radicle differs materially from that of the cotyledons, which may be sceu even before, but still more remarkably after, dissection (Plate ClV. f. 20). The upper portion of the capitulum, above the upper margin of the cavity of the albunen, is composed of delicate filiform cells of considerable length, enclosed in a cellular cuticle of great tenuity. The lower half and terete cotyledonary portion consists of closely-packed oblong cells, projecting in the form of a cone towards the radicular end. This stmeture, somewhat modified, exists in M. brachystachym (PLate CV. f. 20 and 21), the tissue of the radicle being much more lax than that of the cotyledons. The peculiar functions of the radicle donbtless demand this highly organized structure, both for rapid elongation and for the sudden spread of the membrane by which the following, and probably all the species, are first attached to the bark whercon they grow. In the prescnt, the true radicle which pierces the bark is probably the comical continuation of the cotyledonary portion.

The plumose pappi of the achcuium afford one of the great peculiarities of this genus; of their function there can be no doubt, though then origin and true nature are not quite so crident. De Candolle, § from an examination of very imperfect specimens, described them sufficiently accurately, as scalcs contained in the walls of the pericarp. Guillemin $\|$ also considers them to be pappiform appendices, contained in fissures of the achenia. Neither of these

* Brown, Prodromus Flor. Nov. Holl., p. 352.
+ Decaisne, Sur le pollen et l'ovule du Gui. Act. Acad. Roy. de Bruxclles, vol, xiii.
\ddagger This species I have never seen, nor are either the figures or descriptions satisfactory, vid. l'opplig et Endlicher, Nov. Gen. et Sp. \&c. vol. i. p. 2. t. 3.
§ De Candolle, sur la Famille des Loranthacées, p. 12.
${ }^{1}$ Pappig and Endlicher, Nor. Gen. et Sp. Plant. Per. et Chili, vol. i. p. l.
authors offers any explanation of their true nature. Poppig* describes several species, and, trusting more to a theoretical opinion of their origin, than to a careful analysis of the parts, or the definitions of De Candolle and Guillemin, he misapprehends the structure of the ovarium, considering it to be a compound body, made up of three carpels combined, and of the plumose filaments, which are described in the generic character as Setæ hypogynæ alternating with the ovaria, and in the obscrvations on the genus are donbtfully called Staminodia. Lastly, Endlicher \dagger regards the single ovarium as compounded of six, enclosed in a three-parted involucre, three of them fertile and three sterile, the latter being the plumose filaments.

The female flower of Myzodendron consisting of a solitary ovarium, enclosed in the adherent tube of the calyx, it is evident that the plumose sete must be a production of the calyx or ovarium. Their function and appearance resemble the pappus of Compositre, and particularly of Valeriana in being only fully developed during the ripening of the seed. They caunot be compared with the four stout woody nerves of Tupeia Antarctica, which ascending from the pedicel, terminate in the sarcocarp of its berry in four sharp points that arch over an opening in the upper end of the endocarp of that plant, for the setæ of Myzodendron contain no spiral vessels, and the true nerves of the calyx, though very obscure, may be traced in some of the species, as in M. brachystachyum, where they appear alternating with the position of the setæ (Plate CV. $f .11$).

The tissue of which thesc setæ are composed, is identical with what forms the sarcocarp of Tupeia and Viscum, namely, elongated viscid cells of great tenuity filled with a glutinons matter; in most Loranthacea this tissue surrounds the endocarp and at an early period deliquesces into a homogenous viscid fluid, like that of Jiscum. When looking over the plants of this order, in Dr. Lindley's herbarium, I remarked oue \ddagger whose ripe pericarp had burst during pressure and cmitted a cottony substance; that gentleman liberally gave me specimens for examination, which showed the sarcocarp to be intermediate in its nature betreen that of Tupeia and of Myzodendron, being feathery and neither so deliquescent as in the former, nor elaborated into such a peculiar organ as in the latter.

The elaboration of these setæ, from cellular tissue, caunot be regarded otherwise than a very singular phenomenou, and, so far as my obscrvations serve, it appears that it is merely the result of a rapid elongation of cellular tissue. The viscid substance, then, in this genus, instead of surrounding the endocarp, is confined within three fissures, and there collected into a terete or compressed body, which, escaping frou its confinement, rapidly elongates from the growth of the cells which compose it, more than from the addition of new matter. The plumose appearance is canscd by the separation of some of the utricles, which diverge on all sides in the species in which the setæ are terete, or in their opposite margins when the latter are compressed. Of all the species, the setre of MI. oblongifolium are the longest, and there are various gradations in length and tenuity betwen them and those of M. punctulatum. The M. linearifolium, § DC., has not only very long and slender filaments, but its whole endocarp is at times surrounded with a feathery substance, which is thus not, as in its congeners, confincd in loculi : when placed in water this feathery substance deliquesces. In M. imbricatum, Pcepp, the fissures of the pericarp are, according to the author of that species, filled with undivided stont obtuse filaments, collected together at the base, and never exserted.

I need scarcely allude to the fact, that the function performed by the gluten of V iscum and the feathery setre of Myzodendron is identical, though effected in a different way, and that it afforls a singular instance of nature's employing the same means in a very dissimilar manner to the attainment of the same end. The viscid matter of

[^32]the Misseltoe has been supposed to nourish the emlryo during the first stage of germination; which may be the case ; though from Mryzodendron requiring no such adrentitious assistance, it is more probable that it serves in both, merely as a means of attaching the seed to the plant it attacks. In most, or perhaps all Loranthacere, germination is continued up to a considerable period, before the albumen and pericarp are detached from the embryo. I have not seen its exsertion in this species, which takes place, probably, as in M. brachystachyum, through the apex of the pericarp, and not through a lateral fissure. In many plants of the order, there is a special provision for this; for instance, in Tupeia, where the upper extremity of the endocarp is open, and where the nerves of the pericarp do not anastomose above; and in Eubrachion, where there is a similar foramen, opening into a carity full of a viscid fluid, whence it secms likely that the radicular extremity in these two genera may carry out along with it some of this viscid matter, the locter to secure its adhesion to a particular spot. Lastly, I shall allude to the cellular tissue of the radicular extremity of M. brachystachyum being formed of viscid elongated utricles, which I cannot distinguish from those composing the gluten of the sarcocarp of other Loranthacere, and would hence suggest that we have in one species of this genus, where no medium exists in the sarcocarp for attaching the radicle to the bark, a perfectly similar substance supplied by the radicle itself.

Mr. Bromn, in his paper on Raffesia in the 19th volume of the Linnean Transactions so often alluded to, substitutes the original name of Myzodendron, given by Banks and Solander, for that of Misodendrum, which was probably inadvertently adopted by De Candolle. The latter author has also mistaken Staten Land in Fuegia, for Staten Island in the United States, and hence considered this to be a native of North as well as South America.

The yellow hue of Myzodendron prenctulatum renders it a conspicnous object, even from a considerable distance. It may be recognized, when coasting along the shorcs of Fnegia, from its contrasting so strongly with the otherwise lurid colour of the dusky forests. It grows indifferently upon the evergreen or deciduous-leared Beech.

Plate CII. An entire male plant of M. penctulatum, and a portion of a female plant with ripe fruit :-both of the natural size.

Plate CIV. Fig.1, portion of terminal ramulus with one of the upper neuter amenta or lcaf-buds; fig. 2, a male amentum or flower-bcaring ramulus; fig. 3, a scale from the same, containing a male fiower; fig. 4, male flower, with its pedicel, removed ; fig. 5 , vertical section of an anther and sessile gland, shewing the epidermis of stout cells, the prismatic cells lining the loculus, the pollen, and compressed colmmella; fig. 6 , a transrerse section of the same; fig. 7, a portion of the walls of the anther; fig. 8, pollen, one grain immature, with a triangular nucleus; fig. 9 , female amentum (from Mr. Bridges' Valdivian specimen); fig. 10, an orarium, taken from the same; fig.11, rertical section of the same, shewing the young sete lodged in the slits of the pericarp, the central free column and three ovules; fig. 12, column and ovules removed; fig. 13, female amentum, with ripe achenia; fig. 14 and 15, frout and back view of ripe achenium, cxhibiting the attachment of the three calycine pieces forming the epicarp, and the three scta, lodged in the spaces between their contiguous margins and the endocarp; fig. 16, transverse section of an achenium slewing the albumen of the seed cut across, and the column forced to one sile; fig. 17, vertical section of the same, shewing the column reduced to a filament, bearing two uminmregnated orulcs and a ripe seed at its apex ; fig. 18, column, umimpregnated orules and ripe sced ; fig. 19, vertical section of seed not fully ripe, shewing the albrmen, formed of utricles, each with a muclens, the sac (its walls are represented of too great density) continuous with the funiculus covering the embryo and passing between the latter and the albumen; fig. 20, embryo, remored from a ripe seed, having the upper cellular portion of its investing sac placed above it; fig. 21, vertical section of the embryo, shewing the cellular, upper, or radicular extremity, the firmer cotyledonary portion, sending a conical projection into the cellular portion, and the fistulose consolidated cotyledons:-all more or less highly magnified.

Plate CVII. Fig. 7, section of a middle-aged specimen of M. punctulatum, shewing its union with the Beech, which in this instance is excecdingly close; fiy. 8 , horizontal slice of a first year's ramulus of the same; immediately bencath the striated cuticle is a row of cells, the first of them forming the epiphoum, withon these are caritics corresponding to the tubercles on the stem, the whole tissue between these and the letter c, is the bark, traversed
at letter a by the fibrous tissue of the liber; the letter c points to the scalariform tissue, deposited in triangular wedges of a pale colow and the dark triangular mark beyond it is the alburnum : the lefter b indicates the axis of the stem, here formed of woody fibres, with no medulla or scalariform tissuc intermixed ; fiy. 9, a vertical section of the same, the letters corresponding ; fig. 10, more highly magnified ricw of a portion of the axis (b), the scalariform tissue (c), and the cellular tissne of the liber; all the above, except fig. 7, are rery highly magnified.
l'late CVII. bis, Fig. 1, mode of branching of M. punctulatum, of the natural size; a, newly formed ramuli, b, flowering amenta about to fall away; c, apex of the stem; fig. 2, portion of the stem showing the position of the stomata; fig. 3, stoma; fig. 4 , the same viewed from the cavity it corresponds to; fig. 5 , transverse section of cavity and stoma, the portion above the diaphragm filled with an opaque snbstance; fig. 6 , another stoma with its aperture mobstructed; all highly magnified.

Plate CVII. ter, Fig. \&, section of a branch in the first year of its growth, shewing (b) the ressels of the liber ; c, the alburnum ; d, the pleurenchyma deposited in the axis; fig. 9 , portion of a section of the stem from a branch three years old ; a, the cuticle ; b, the epiphlœum ; c, mesophlocum ; d, vessels of the liber ; e, alburnum ; f, layers of wood; g, rays of plenrenchyma; h, pleurenchynna deposited in the axis of the plant; fig. 10 , pleurenchyma spirally marked and scalariform vessels from the same; fig. 11, longitudinal section of tubes of pleurenchyma from the axis; fig. 12, portion of very old wood:-all very highly maynified.

Subgen. II. Eımyzodendron; rami foliosi ; bracteæ nullæ; flores racemosi v. secus ramos solitarii bini quaternive, stamina 3.
2. Myzodendron brachystachyum, DC.; ramis teretibus lævibus, ramulis grisco-puberulis, foliis anguste oblongis lineari-oblongisve subenervibus, floribus in racemos axillares basi folio suffultis dispositis masculis triandris setis plumosis pericarpio 6-tuplo lougioribus. M. brachystachyum, DC. Coll. Mém. VI. t. 12. f. 1. Prodr. vol. iv. p. 2S6. M. planifolium, Banks et Sol. MSS. in Bill. Banks. cum icone.

IIab. South Chili and Ticrra del Fuego; Bankis and Solander and all succeeding voyagers.
Suffrutex ramosus, bipedalis, ramulis junioribus tantum foliosis. Cautis brevis, basi dilatatus, alterne patentim ramosus. Rami divaricati, teretes, articulati, ad nodos vaginati et paulo constricti, internodiis uncialibus crassitie pennæ olorinæ ; cortice lævi, fusco-brunneo, griseo-punctulato, punctis rimosis, hic illic e lapsu ramulorum florentium cicatricato; raginis bilabiatis. Folia caulina in ramulis propriis demum clongatis disposita, subfasciculata, plana, obtusa r . subacuta, nervis $3-5$ valde obscuris percursa, luride viridia, utrinque stomatibus plurimis instructa. Inflorescentia ramulis foliosis post anthesin deciduis disposita, raccmosa. Racemi basi folio oborato obtuso apice piloso suffulti, breves, densiflori; floribus breviter pedicellatis. Flores Masc. Stamina 3, erecto-patentia, ad apicem pedicelli circa glandulam depressam disposita; filamento crasso, tereti, curvato, cum anthera parva M. punctulato simillima continuo. Flores Fem. Ovarium ut in precedente sed disco epigyno manifesto, stylo paulo longiore pedicelloque brevi pubescente instructum. Fructus ovatus, disco apice concavo terminatus, trigonus, obscure sulcatus, setis plumosis fructu sextuplo lougioribus, pilis apice attenuatis. Columna seminifera latinscula, plana, compressa, parieti loculi appressa. Semen loculum $\frac{1}{2}$ implens, peudulum, globoso-ovoideum, 3-4-sudeatum. Albumen carnosum ; embryo parte superiore albuminis scmi-inmersus, membrana tenui cum funculo continuo inclusus ; extremitate radiculari ultra albumen exserta, dilatata, concava ; cotyledonari tereti, apice obligne truncata, obscure emarginata, intus cava.

The important and conspicuous characters that separate this and the following from the M. punctulatum, and which have induced me to snbdivide the genus, are, the absence of tubercles on the stem and branches, the ramuli being foliaceous and not bracteate or scaly, the triandrous male flowers, the larger column in the ovarium, the deeply sulcate albumen, and especially the structure of the stem, which differs so remarkably in the two subgenera, that no one, from an examination of their wood alone, would hesitate in pronouncing them to be plants widely separated in a Natural System.

Anatomy of the stem. A branch of this species, after attaining the age of two ycars and upwards, consists principally of a soft white cellular tissuc, occupying the axis of the plant and communicating with the thick bark by means of broad medullary rays. The latter are separated by woody plates, disposed in two concentric series, and formed almost eutirely of sealariform tissue with sometimes pleurenchyma. Cuticle. This is very stout in texture: in a first developed branch it consists of only one row of small cells (Plate CVII. bis, f. 11) these must be rapidly added to, for after another year the cuticle of the same branch is of much greater density and formed of many series of cells, much blended together, though not so completely as to assume the appearance of a homogeneous tissue without any trace of cellularity, whieh it afterwards attains (Plate CVII. fig. 4, 5, and 6). The cuticle is deroid of stomata commonly so ealled, but furnished with numerous longitudinal prominences, each marked by a fissure. A transverse scetion of one of these is given at Plate CVII. $f .4$, where the appearance is as of several layers of eutiele superimposed and forming the prominence, becoming cellular towards the centre, and depressed, pushing the subjacent epiphleum before it. Therc is no aetual stoma or communieation between the external atmosphere and tissue of the bark, further than what may be supposed to be afforded by cellular tissue, which is a rapid conductor of moisture. These are very evident in the branches of the second year, no donbt answer to stomata, whether performing the same functions or no, and are an instance cither of the cuticle retaining its originally cellular organization at the point where they occur, or reverting to that structure.

Bark. This is eomposed almost entirely of a mass of cellular tissue, shrinking much when the stem is dry. The epiphloum is formed of scveral rows of transversely elongated thick-walled eclls, it occasionally contains aircavities, but these are not so numerous or conspicuons as in M. punctulatum. The vessels of the liber are disposed about half way between the cuticle and wood, are often very inconspicuous and formed of seattered bundles of fibres (Plate CVII. $f .5$ and 6 a.) protected by very thiek-walled cells, as in most, if not all, the Loranthacea, at other times they are in two serics or variously disposed. This tissue does not appear to pass from one internode to another, but to be interrupted at each articulation, as M. Decaisne found to be the ease in Tiscom.* The parenchyma between the vessels of the liber and wood is often dense, sometimes but rarely these vessels are seen to be immediately in contact with the wood as at Plate CVII. f. 5 and 6 b. Wood. Within the bark are arranged two concentric series of woody plates or wedges, these two scries are separated by a zone of cellular substance, and are generally arranged with tolerable precision: besides these the pith of the plant is intruded upon ly other wedges or bundles of vascular tissue, unsymmetrically disposed, one of them often occupying the axis itself. Each wedge or plate is composed principally of eoncentric layers of very large vasa scalariformia, becoming more densely paeked and much smaller in diameter towards the axis of each layer, where they are almost invariably furnished with a spiral filament. Between the layers of the first three or five years there is generally deposited two bundles of plenrenchyma similar to that of the liber, one on each side (Plate CVII. ter, $f .1 . f$) but between the more recent layers there intervenes only the more delicate vascular tissue ($f .1$ and 2.e) : as mentioned above, however, pleurenchyma is sometimes more copiously deposited betwcen every layer, as at Plate CVII. $f .5$ and 6, b. The narrow portion of each wedge invariably rests on a mass of pleurenchyma (Plate CVII. ter, $f .1 . g$) deposited at the same time as the fibres of the biber c, that is during the first year, as in the common Misseltoe. The wedges of wood belonging to the second series arc smaller than those of the first, but similarly formed in all respects, and consisting of as many laycrs, though the imer are very inconspicuons.

The pith consists of cellular tissue similar to that of the liber, and is very lax even in the older stems.
The transverse section of this stem, appears at first sight to differ very remarkably from that of most exogenous plants; this arises from the wood being deposited in two concentric series, separated by a broad zone of pareuchyma, from the great breadth of the medullary rays, the irregular distribution of the fibres of the liber

[^33]which are sometimes biserial, and the disproportionate amount of sealariform tissue. The strueture of M. punctulatum is howerer far more abnormal, fibres of pleurenchyma being depositcd in the axis of the stem, thas replaeing the pith, and forming very obsolete rays, and all future increment of the stem being effeeted by an addition of layers of varionsly marked sealariform tissue alone, as far as I have been able to observe.

Formation of wood. I shall next describe the course the vascular tissue pursues in the newly formed buds and branches, and thus attempt to explain the origin of the two series of woody plates whieh this species and M. quadriflorum DC. possess.

A transverse section of the stem of a flower- or leaf-bud made in the first year of its formation, (Plate CVII, bis, $f .10$ and 11), presents a mass of ghobular utrieles, covered with a delicate cuticle (a) formed of one moniliform row of cells, and traversed by one series of twenty or thirty vascular bundles (b). These bundles deseend from the base of cach leaf, traverse the branch and enter the stem. A transverse section of the stem again from which the bud or branch is given off, and below the point of attachment of the latter, presents two eoncentric series of vascular bundles (CVII. bis, $f .12 . b, c$), besides an imperfect third consisting of a few scattered promiseuously in the axis of the stem; the outer series was formed in the former, the iuner is derived from the buds and branehes of the present year.

A longitudinal section throngh the axis of the stem, so made as to pass also through the axis of the branch, elearly shews that it is due to the position in which the buds are developed that a second series of wedges of wood is deposited. The buds originate towards the axis of the stem, within the vaseular bundles of the previous year, (Plate CVII. bis, $f .10 . b$), and opposite the insertion of the petiole (f). The whole of the vascular tissue descending from a bnd is consequently deposited within the wood of the former year ($f .9$ e.) generally each bundle on entcring the stem from the branch divides, one portion joining the old wood, the other, remaining free and descending the stem, forms the second or inner plate of wood. The course of the bundles is however very uncertain, sometimes they do not divide, but either join the old vascular tissue, or continue free, and at others one portion erosses to the opposite side of the stem. Figures 9 and I0 of Plate CVII. bis, shew various modifications of the course these vessels pursue, the uniform result being, that in the internode of the second year all the wedges of wood are formed, though these become lower in the stem multiplied by division.

As each bud gives off thirty to forty bundles of vessels, and these being superadded to those of the braneh, such a plexus arises at the contracted junction of the second year's branch and that of the third year that their course ean no longer be followed. Each of the woody plates however, continues to receive accessions thronghout the life of the plant, those of the imner series containing as many layers as those of the outer. It is hence evident that the bundles first arranged in the branch of the second year ($f .10 \mathrm{~A}$), on entering that of the third ycar ($f .10, \mathrm{~B}$), must present a very complieated arrangement of tissucs. The increase of the stems in diameter being, however, effected throughout the length of the plant by an addition of matter to the outside of both coneentric series of wedges, it follows that the growth is in one sense at the same time Exogenons and Endogenous.

However complicated the nature and disposition of these tissues may cause the developement of the stems to appear, the order in which each wedge of wood and its layers of pleurenchyma are deposited in the first year is the same as in Fiscum; nor are the tissues themselves very different from those of that plant. This is seen by comparing the figure of a first year's braneh of Tiscum as given in M. Deeaisne's elaborate essay* pl. iii. f. 4, or in Link's superb ' Ieones't pars iv. t. 8. f. 1, with that of M. brackystachyum, (Plate CVII. bis, f. 13).

In both M. brachystachyum and Viscum album two bundles of pleurenehyma are first deposited, one anterior and

* Link, Ieones seleetæ Anatomico-Botanice.
\dagger Link, l. e. t. 8. f. 4. β.
the other posterior to the wood, the former constituting the fibres of the liber, between which and the wood all new layers of the latter are placed. The three or four succeeding layers of wood are accompanied in Myzodendron with bundles of pleurenchyma (Plate CVII. ter, $f .1, f$), and Link figures occasional fibres similar to those of the liber situated within the wood of Fiscum. In many other particulars the structure of the wood of this genus and Viscum is very similar, as in the form the alburnum assumes (f. 1, c); in the narrow tubes containing a spiral ressel that occurring at the inner margin of the layers, which they thus separate, forming in Tiscum, as here, an obscure medullary sheath. The tissue of the mood itself, (which is much modified in the different species of this genus, as I shall bereafter shew,) in the present species consists of longer tubes, whose walls, though very much more delicate than those of Viscum, probably are similarly perforated.

In some respects this disposition of tissues may be comparcd, though not strictly, with that of Menispermacece, so beautifully illustrated by M. Descaisne.* After the stem of Cocculus laurifolius has attained a certain age, a second deposit of wedges of wood is formed externally to the liber, but withont any additional biber. In Myzodendron the two wedges are deposited within one year of each other, the second within the first, and both are amually augmented by new matter ; in both medges however, the deposit of pleurenchyma similar to that of the liber, which accompanies every layer for the three or four first years, is withheld from all future layers.

Food of other species. The above-described structure of the wood is, with slight modifications, common to all the species of the group Eumyzodendron. Though I am quite unable to make so satisfactory dissections of that of M. punctulatum, from the very remarkable density and minuteness of its tissues, I still am inclined to consider that its greatest peculiarity, the occupation of the position of the medulla by pleurenchyma, is a modification of what occurs in many Loranthacea, and is owing to the existence of a second or inner deposit of pleurenchyma similar to that of the liver, which in this species instead of being arranged in separate concentric bundles, is collected into one in the axis of the stem. Hence in the section of the stem of a leaf or flower-bud (Plate CVII. ter, f. 8.), this tissue is seen to be present justead of the pith, and the great density of the wood of the older stems may, in a measure, be due to the incompressible nature of this tissue, and to the rays (which cannot be called medullary) being also formed, not of cellular tissue, but of pleurenchyma deposited with the scalariform in very small quantities.

Of the other Eumyzodendrons there are three whose tissues I have examined, and added figures of all, except M. oblongifotium, which hardly differs from M. brachystachyum.

In M. quadriforum, DC., (Plate CTII. ter, $f .6$ and 7,) there is generally but one series of wedges of wood, the second being reduced to a single redge, lying obliquely across the axis of the stem; the ressels of the liber are exceedingly inconspicuons ($f .6, b$) the cellular tissue, bark, and pith large and loose, and the tulues forming the wood very large and few in number; the smaller tissue interposed between the layers (e) is conspicuous. In the old stems I camot detect the inner layer of liber. The alburnum (c) has the appearance of compressed cellular tissue. I have not met with woody cells in this species.
ln M. linearifolium, DC., there is but one series of woody plates (Plate CVII. ter, f. 3, 4 and 5). The cellular tissue is large and loose, and contains both in the bark and medullary rays, numerous conspicuous masses of woody cells ($f .3$ and $4, a$). Both series of ressels of pleurenchyma ($f . b$ and g) are large. Those of the scalariform tissue are of a greater diameter than in any of its congeners, cylindrical, constricted, (as in bothrenchyma) and septate at intervals equal to their breadth ($f .5 . a$) : the tubes of the medullary sheath and those interposed between the layers of wood are of very mequal diameter and constricted here and there ($f .5 . b$).

Wood of Fagus. To Plate CVII. is added a sketch of the wood of Fagus Forsteri;-f. 11 represents a transrerse slice from a branch five years old, the letters denote the same tissues as in $f .5,6,8,9$ and 10 . From

[^34]$f .12$, which is taken from a branch of Fagus six years old, it will be seen that the ducts, dotted and otherwise marked ressels are large and abundant, and that the chief difference between $f .12$, and a similar section of one wedge of Myzodendron brachystachyum $f .6$, lies in the scalariform vessels being disproportionately abundant in the latter, and not beiug scattered amongst the pleurenchyma.

Ramification. In this, as in $M r$. punctulatum, the terminal internodes bear, towards their upper part several buds, each opposite the axil of a leaf; of these the leaf-buds elongate and become new, permanent internodes; the flowerbuds fall away. In the former species (Plate CVII. $b i s, f .1$) the flower-buds were near the apex of the internode, and two frequently becoming developed into branches, the ramification was consequently dichotomous. In M. brachystachyem (Plate CVII. bis, f. 7) the flower-buds are generally the upper, and the ramification hence alternate.

The vaginæ enclosing the unprotruded buds are vertically two-lipped, and formed from the bark which encloses a large carity communicating almost mith the axis of the stem where the bud is developed. The dehiscence is spontaneous, before the inchuded organ has adranced sufficiently to force a passage. The relation of these parts to those of a germinating embryo is clear ; the cavity in the internode containing the bud is analogous to that in the cotyledonary extremity of the embryo including the plumule, whose course in germination is thus imitated by the buds as often as the plant developes them.

Germination. I have been able to watch the progress of germination in this species and to follow the course of the radicle from the time of its learing the pericarp, till it has fully established itself upon the tree it affects.

Several of the ripened seeds, still enclosed in their pericarps, are generally detached together from the parent plant, they adhere by their viscid filaments and are carried by the birds, winds, or other natural causes, from one tree to anothcr, where they may often be seen hanging entangled amongst the leaves and twigs. The grain is placed almost in contact with the stem; it is immaterial to which swface. As I have not seen young Myzodendrons attached to old trunks and branches, I presume the young plant can only pierce a comparatively newly formed bark. The elongation of the caulicule pnshes before it the disk and style, which fall away, and the radicle always escapes at this point and protrudes beyond the pericarp, to which the embryo romains attached until the parasite has gained a firm lodgment on the tree. The embryo now generally becomes curved, the elongating caulicule seeking the nearest point of the beech, which it finally reaches. At this period the cotyledons, distinctly swollen, are still contained in the shrivelled albumen, and a very evident notch marks their point of umion (Plate CVI. f. 5). The radicle now expands like the mouth of a trumpet, is concarc and las become a compound body, consisting of three distinct parts, 1 st. a membrane continuons with the surface of the cauliculc, which expands horizontally over the cuticle, is glutinous, and is the first immediate cause of adhesion between the bark and the parasite. 2nd. A thick fleshy shcath, whose convex margins tonch the bark. 3rd. A cashion-shaped body in the axis of the radicle, which is pressed against the bark and is destined more immediately to convey nourishment from the tree to the future fuil-grown parasite. At Plate CYI. $f .4$, is a germinating seed, with the cotyledonary extremity still enclosed in the albumen, and the radicular expanded as it appears on reaching the bark; $f .5$ represents the same attached, with the albumen removed, shewing the notch of the cotyledons.

If a longitudinal section of the embyro be now made, (as at Plate CTI.f. 6) there will be seen, 1st, at the base of the cavity in the cotyledonary extremity, two excessively minute green bodies, which, at a later period, become developed into the first pair of leaves, are pointed upwards towards the notch at the union of the cotyledons, and escape by the rupture of the membranes that enclose them: 2nd. spiral ressels descending from the base of these which are lost in the cellular substance of the cushion-shaped body (Plate CVI. f. 7) : 3rd, a longitudinal line indicating a future separation of the cotyledons and outer substance of the embryo, the latter forming an integument that inclndes the plumule, cushion-shaped body and its smrounding sheath. This central mass, included between the plamule above and base of the cushion below, is the growing portion of the future plant, all
external to it being more or less accessory. The above may be considered the first stage of developement, when the pericarp and albumen have fallen away ; the outer coat of the radiele is expanded into a horizontal membrane, firmly attached to the enticle of the Fagus, and the enshion-shaped body is pressed against the stem or twig of the tree, at that point where the process of penetrating the integuments will begin.

The second period commences by the enshion destroying the cuticle beneath it and reaching the epiphlocum. Still pushing onwards, it raises the membranous cxpausion and causes the surrounding cutiele, with or without some of the subjacent tissue, to be also detached with this membrane, for a eonsiderable distance round the base of the radicle. The lesion to the plant is now extensive, and a diseased action, favourable to the progress of the parasite is induced, for the whole bark opposite the Myzodendron is raised from the wood (Plate CVI. f. 3). The cushion, which may now be called a trne root, is protruded rapidly, and the disorganization of the tissues it meets in its progress is equally rapid, a cavity is formed in the bark and the edges of the flesly sheath that surrounds the root commence generally to form a close adbesion with the lips of the wound, (Plate CVI. $f .10$ aud 11). At last the root, having penetrated the bark, arrives at the space left between the latter and the wood (Plate CVI. $f .9$), and, froin the perpendicular direction, assumes a horizontal onc. Previous to this there has been a deposition of much disorganized cellular tissue hetween the bark and the wood. The spiral vessels that descend from the plumule have followed the eourse of the root, which has gained the point where an abundance of nutritive matter is retained by the disorganized cellular tissue, and where a further supply is ensured for the use of the now fully established Myzodendron.

If at this time, the end of the second period, a vertieal section of the Myzodendron and Fagus together be made, the appearance will be that represented at Plate CTT. f. 10 , where the plumule is seen fully developed into two opposite leaves, ready for protrusion, and where also a large space is left that almost isolates the axis of the eaulicule from what remains as an investing membrane. The true root, or cushion-shaped body, at no tine appears to form an adhesion with the bark; that being effected by the thick and fleshy sheath through which the radicle is protruded.

The union between the sheath and bark is more or less complete in different specimens that I have examined, according to their stage of growth. At Plate CVI. $f .9$, though the radicle has pierced the bark, the sheath had hardly united with the edges of the wound, and the young Myzodendron was removed without force from the Fagus; at $f .10$ the uniou is complete, probably from the stem of the Beech being younger, and affording less resistance to the attack, and lastly, $f .11$ represents a still more close union, the circumference of the sheath passing along the inner walls of the bark and its revolute edges, thus completely enveloping all the diseased part.

The third period is marked by the exsertion of the plumule from a dehiscence of the two coherent cotyledons, the consequent elongation of the ascending axis or stem of the Myzodendron, and the deposition of the liber and scalariform tissues in their proper positions; a process I have never had the opportunity of following.

A branch attacked by the Myzodendron suffers no apparent change below their point of union, but all beyond it being insufficiently nourished, does not increase in proportion, and after a time dies from atrophy. The whole juices of the branch being suddenly arrested at its abrupt termination, this dilates into the form of a cup, which, from the turning of the Myzodendron towards the light assumes an erect position. This cup (Plate CV1. $f .12$) is more or less broad (sometimes three inches in diameter) and shallow, uniformly covered with cuticle and bark, and las inflexed, wrinkled edges. On a vertical section (Piate CVII. $f .1$) it is seen to present a shallow, conical hollor, in which the Myzodendron rests, and to be formed of as many layers of wood as years have elapsed since the germination of the parasite. The equally expanded base of the latter completely fills this cup in the form of a disk, whose edges overlap those of its support, and swell out into a prominent ridge at their point of union. At Plate CVII. $f .1$, a vertical section of the eup of the Beech and still attached disciform base of the Myzodendron is given. The union of the cellular tissues of the bark of the two is rery intimate, but in no case and no stage of their growth have I been enabled to trace any interlacing of their tissues, or any union of the one with the other.

The woody plates of the various brauches of the Myzodendron all meet in its expanded base, and are there strangely conroluted and contorted, enclosing masses of brown and dead cellular tissue, probably consisting in part of the alburnum of the beech deposited there, as well as of the decayed medullary rays of the Myzodendron. Lower down, the woody plates, much reduced in sizc, slightly converge and meet the layers of wood of the beech; these may perhaps come into actual contact, but generally, if not always, there is a deposit of disintegrated cellular tissue between then. The Alyzodendron, having finally arrived at its full growth, a time probably coincident with, if uot dependent upon, the period when the Fagus caunot supply it with sufficient nutriment, falls away and leaves a cup still attached to, or rather terminating the branch of a Beech (PLate CVI. $f .13$) whose imer surface is channclled with radiating fissures and these again crossed ly the concentric rings of the wood.

This process of germination is probably similar to what is pursued by many Loranthaceous plants, and is rudely represented by M. Korthals,* as occurring in some Javanese species of this Order.

The resemblance between the sheathed radicle of Loranthus and Fiscum and a coleorhiza was first pointed out by Mirbelt, but hardly admits of a strict comparison of this order with Endorhizea in this respect, any more than the conferruminated cotyledons of this species are to be compared with the one large cotyledon of the true Monocotyledones, for in Viscum the cotyledons equally enclose a cavity containing the plumule, though they are not combincd. The sheath of the root of Loranthacee appears a peculiar organ, especially adapted to the wants of the plants in which it occurs.

So very lighly organized a nature of the embryo renders it probable that germination takes place very soon after the fall of the seed, or perhaps even before. It is remarkable too, that the operation proceeds in summer and exposed to the full light of day, there being no viscous substance to protect the embryo. I have described the radicle as descending from the seed to its future point of attachment, but here, as in Tiscum, it is immaterial to which surface of the branch the embryo is approximated, the radicular extremity being invariably directed towards the axis. In a dried specimen of M. quadriftorum I have found a seedling plant fully established on its parent. The frequent curving of the caulicule also, immediately after the protrusion of the radicle, is lighly curious, the seed being loosely suspended by its filamentous appendages, and thus presenting no fulcrum or point of resistance, in attempting to overcome which, such a flexure might be induced. It is worthy of remark that both these functions, so closely resembling instinct in the lower animals, are characteristic of an embryo of more complex strueture than any with which I ann acquainted.

The absorption of nourishment from the albumen takes place through the cotyledonary extremity, which is retained in the perisperm, and by the time the radicle has gained the bark of the tree, the fecula of the albumen is wholly absorthed. This transfer of nourishment to such an extent, effected simply by the contact of two cellular membranes, only one of them being endowed with life, is a proof that in vegetables no very highly complicated tissues are required to conduct a very subtile chemical operation.

The bark of the Bcech becomes detached from the subjacent wood prior to its complete penetration by the Myzodendrou; the iutrusion itself is loy no means a mechanical operation, there can be little or no pressure cxerted by an embryo suspended as this is, it must be effected by the corrosion of the cortex which simultaneonsly produces a separation of the bark from the wood, materially facilitating the progress of the radicle.

I have mentioned that the duration or period of life allowed to the Myzodendron, is probably determined in some degree, by the effect it produces on the plant it infests; the latter being of slower growth, is sure at some period to rid itself of the intruder. Thus, the weight of the parasite being considerable, and exerted upon the branches

* Verhandeling over de op Java \&c. verzamelde Loranthaceæ door P. W. Korthals.
\dagger Anuales du Musćum d’Hist. Nat. vol. 16. p. 429. t. 21.
it weighs them down and checks the progress of the sap, upon a copious supply of which its own continued existence depends. This remark applies to many parasites which attaching themselves to the younger branches thus commence working out their own destruction almost from the earliest stage of their existence.

The open cups terminating the branches of Beech trees, similar to what is figured at Plate CVI. $f .13$, are frequently to be met with in the woods of Fuegia, and mark the spot where one of these curious vegetables flourished; by collecting water they soon decay, and the branch is killed below for some little distance, but the mischicf caused by so large a parasite is after all very insignificant, and what no healthy Fagus suffers from.

Myzodendron brachystachym is equally abumdant in 1Iermite Island with M. punctulatum, though from the colour of its leaves, resembling the common forest foliage, it is by no means so conspicuous an objcet. I met with the male plants much more frequently than the femalc.

Plate CIII. Fig. 1, a young female plant attached to Fagus Forsteri; fig. 2, portion of a female plant with ripe fruit; fig. 3, portion of a male stem with flowening and leaf-bearing branches :-of the natural size.

Plate. CV. Fig. 1, portion of a male raceme with bractea and spike of flowers; fig. 2, a malc flower remored; fig. 3, vertical section of a stamen; fig. 4, transverse section of an anther; fig. 5, very young pollen-grains enclosed in the pollinic utricle; fig. 6. the same more fully developed; fig. 7, an immature grain removed from the utricle; fig. 8, mature grain of pollen; fig. 9 , portion of a female raceme with bractea and spike; fig. 10, female flower; fig. 11 , transverse section of ovary, showing the three fissures containing each a seta; fig. 12, vertical section of the same; fig. 13, ovuliferous column removed from the cavity of the ovarium; fig. 14, a ripe fruit; fig. 15, vertical section of the same; fig. 16, column removed from the same with immature pendulous seed and two abortive ovula; fig. 17, ripe seed, the albumen sulcated, the broad radicular portion of the embryo enveloped in the transparent membrane; fig. 18, the same with the membranc and funiculus removed; fig. 19, vertical section of an immature seed to show the continuation of the membrane lining the cavity in the albumen in which the cotyledons are lodged; fig. 20, embrye removed; fig. 21, vertical section of embryo showing the cavity enclosed by the cotyledons:-all more or less highly magnified.

Plate CVI. Fig. 1, a twig of Evergreen Beech with attached germinated seed of M. brachystachym; fig. 2, twig of Deciduous-leaved Beech with the same; hoth of the natural size; fig. 3, magnified view of the latter; fig. 4, embryo on its first contact with the bark, the cotyledons still enclosed in the albumen; fig. 5, the same attached to the bark, with the albumen removed; fig. 6, vertical scetion of the same, shewing the outer coat which spreads over the bark, the sheath which attaches itself to the bark enclosing the cushion-shaped root, and at the upper extremity the cavity cnclosing the plumule; fig.7, plumule and vascular tissue descending along the axis of the embryo; fig. 8, longitudinal section of attached embryo and branch of Fagus, shewing the outer coat applied to the cuticle, the sheath to the corroded bark and the root penctrating the cellular tissue of mesophlocum; fiy. 9, the same more advanced, the radiclc having perforated the bark; fig. 10, a section of parasite and branch at right angles to the axis of the latter, shewing the margin of the sheath firmly attached to the lips of the wound and the radicle applied to the wood; fig. 11, similar scetion of another specimen, the edges of the bark revolute, the union of the parasite and Bcech very intimate; all more or less lighlly magnified; fig. 12, cup formed on the branch of a Beech filled by the expanded base of a fully grown Myzodendion, the branches of the latter cut off, thus showing the two series of woody plates; of the natural size; fig. 13, cup left on the Beech after the fall of a small specimen of Myzodendron:-also of the natural size.

Plate CVII. Fig. 1, longitudinal section through the axis of the branch of a Beech, the cup it forms and its contained parasitc; of the natural size; fig. 2, vertical section of branch of Myzodendron; fig. 3, transverse section of the same, showing the two serics of woody plates and papillæ on the epidermis; fig. 4 , transverse section of the cuticle and one of the papillæ, showing the cuticle to be thickened and cellular, pushing the epiphloum inwards before it; fig. 5 , transverse section of a portion of the stem, in which the scalariform tissue (c) is crossed by masses
of fibrous tissue (b) similar to that of the liber; at a other woody fibres are scen descending in the bark:-the more usual disposition of the tissnes in the stem of this plant is shewn at Plate CVII. ter, $f .1 ;-f i g .6$, a vertical section of the same through the axis of the stem, showing, at a, a bundle of woody fibres in the bark protected by very thick cells; at b, the vessels of the liber in immediate contact with the wood; at c, the scalariform tissuc forming the wood:-all more or less highly magnified.

Plate CVII. bis, Fig. 7, stem and branches of M. brachystaclyum; letter a, flowering branehes which fall away; b, leaf-bearing branch elongating; c, apex of the stem which suffers no further elongation; figs. 8 and 9 , vertical sections of stem and branches: letter A, internode of the third year; B, internode of the second year; a, apex of the stem; b, naseent bnds; c, branches; d, vascular bnudles of the stem ; e, vaseular bundles of the branches; f, scar left by the fill of the leaf of the previous year; g, lips of the vagine :-of the natural size: fig. 10, transverse section of leaf-bearing branch, showing the solitary series of vascular bundles; fiy. 11, the same, more lighly magnified; letter a, the cells originating the cuticle; b, vessets of liber; c, wood; d, pleurenchyma similar to that of the liber; fig. 12, transverse section of stem, two years old; letter b, the outer series of wedges of wood; c, inner ditto; d, wedges belonging to a third series, placed in the medulla ; x, cavity containing a bud:-more or less magnified.

Plate CVII. ter, Fig. 1, portion of a transverse section of the stem of M. brachystachyzm, five years old; letter a, woody cells in the bark; b, vessels of the liber; c, alburnum ; d, scalariform tissuc of the wood; e, slender spiral and other vessels between each layer of wood; f, plenrenchyma similar to that of the liber, deposited with the second and third layers of wood; g, pleurenclyma deposited during the first year at the same time as the first vessels of the liber; h, cellular tissuc between the concentric serics of wedges; the letters $c^{\prime}, d^{\prime \prime} \& c$., refer to the same tissues in the wedge of the inner series, and letter m indicates the pith; fig. 2 , a vertical slice from the same braneh, including the same tissnes viewed longitudinally; the letters indicate the same tissues as in fig. 1 .

In the following figures the letters indicate the same tissues; Fig.3, M. linearifolium, DC., a portion of a transverse, and fig. 4, a corresponding longitudinal sliee of a stem fow years old ; fig. $5, a$, constricted scalariform tissue of wood; b, spirally marked vessel from between the layers of wood; fig. 6, M. quadrifforum, DC., portion of a transverse, and fig. 7, portion of a longitudinal slice, from a stem four years old.
3. Myzodendron oblongifolium, DC.; foliis oblongo-v. lineari-lanceolatis, floribus in racemos axillares basi folio suffultos dispositis, setis plumosis pericarpio multoties longioribus. M. oblongifolium, DC. Prodr. vol. v. p. 671. Pepp. et Endlicher, Nov. Gen. et Sp. Am. p. 1. t. 2. Delessert, Icon. Select. vol. iii. p. 47. t. 80.

Hab. South Chili and Fuegia; Port Famine, Cupt. King.

Ommia M. brachyslachyi sed folia elongata ct angustiora, setæque pericarpii ter longiores.
Mr. Darwin's specinens of this have male flowers only, those eollected by Mr. Eights and Webster have ripe fruit ; all agree with the excellent figure given by M. Decaisne in Delessert's Icones, in which the position of the seed in the achrenium alone is inaccurate.
4. Mrzodendron quadrifforum, DC.; ramis florentibus elongatis ramulos alternos 3 -5-floros apice unifoliatos gerentibus, folis parvis late oblongis obtusis, achæniis linearibus, pericarpii setis gracillimis apicibus deuudatis. (Tab. CVII. ter, Fig. 6 and 7.) M. quadriflorum, DC. Coll. Mém. t. 12. f. 1. Prodr. vol. iv. p. 286.

Hab. Strait of Magalhaens, Port Famine, Capt. King; Staten Laud, Mr. Webster.

The flowering ramuli of this species are mnch elongated, the leaves small, and the filaments of the pericarp very slender, with brown naked apices. A description of the wood is given at p. 300 .

Plate CVII. ter, Fig. 6 and 7, wood of M. quadriforum; letter b, vessels of the liber; c, alburnum; d, seala-
riform tissne; e, slender tissue between the layers of scalariform tissue; c^{\prime}, e^{\prime} and d^{\prime}, refer to the same tissues of the inner wedge of wood:-all very highly maynified.

XXIII. RUBIACEA, Juss.

1. GALIUM, L.

1. Gillum Aparine, Limn.; DC. Protl. rol. iv. p. 60s. Engl. Bot. t. S16.

Hab. Strait of Magalhaens, Port Famine and Port Gregory, Capt. King; Good Success Bay, Bunks and Solander.

This, which is modoubtedly the common English "Clearers," appears truly wild in Fuegia, haring been found at three rery remote stations, two of them scarcely visited by Enropeans; it is also a native of the Island of Chiloe, of the Cape of Goorl Hope, and in North America it ranges betreen the latitudes of Fort Vancouver and the Mississippi Rirer.
2. Galuom Chilense, Hook.fil.; annuum, scaberulum, caule debili simpliciusculo, foliis quinis senisve patentibus oblongo-lanceolatis in aristam acuminatis super marginibns nervoque forso retrorsum scaberulis, pedunculis unifloris solitariis florentibus brevissimis fructiferis validis folio subrequilongis, fructibus hispidopilosis.

Hab. Chonos Archipelago; C. Darcin, Est.
Caules implexi, spithamæi, angulis scaberulis; ramis divaricatis. Folia subtlaccida, $\frac{1}{3}-\frac{1}{2}$ unc. longa, internodïs $\frac{1}{3}$ breviora.

This cannot be confounded with auy other of the ferw one-flowered species of this genus.
3. Galiux Fuegianum, Hook. fil.; ammum?, glabriusculum, caulibus suberectis ramosis glaberrimis, foliis quaternis elliptico-oblongis acutis obscure 3-nervibus marginibus scaberulis supremis hispidulis, pedmnculis terminalibus ternis unifloris llorentibns brevissimis fructiferis validis elongatis, fructibus hispidopilosis.

Hab. Strait of Magalhaens; Port Famine, Capt. King; Cape Negro and south part of Fuegia, C. Durwin, Esq..

Caules spithamæi, glabcrimi, ramosi ; ramis suberectis. Folia $\frac{1}{3}$ unc. longa, subcoriacea, iuterdum sed rarius parce pilosa.

This approacbes the G. trifform, Mich., of the northern hemispliere, but may readily be distingnished by the q_{1} naternate leares and the invariably simple peduncles.
4. Galum Magellunicum, llook. fil.; pereme?, caule subcrecto parce ramoso ad angulos miuutissime hispidulo, foliis quinis lineari-lanceolatis acutis glaberrimis margimibus re urvis scaberulis, peduneulis axillaribus plerisque solitariis bifioris rarims binis et unifloris, floribus majusculis, fructibus glaberrimis.

Hab. Strait of Magathaens; Cape Negro, C. Darmin, Esq.
Caules 3 -unciales, crecti, nitidi; ramis crecto-patentibus. Folia patentia, subcoriacea sed non rigida, margimibus vix ac ne vix scaberulis. Flores magnitudine G.borealis, straminei? Pedunculi fructiferi fobio subæquilongi.

The present is the largest-flowered of any of the Antaretic Galia, all which, except G. Aparine, appear pcculiar to the high southern latitudes.
5. Galium Chonoense, Hook. fil.; percme?, scabridum, caulc valido ad angulos retrorsum scabrido subfastigiatim ramoso, foliis senis rigidiusculis patentibus lanceolatis subobtusis pagina superiore marginibus recurvis nervoque dorso scabridis, pedunculis folio brevioribus solitariis fasciculatisve l-5-floris pleriscue foliatis, pedicellis simplicibus v . bifidis, floribus minimis, orariis glaberrimis.

Hab. Chonos Archipelago; C. Darwin, Esq.
Caulis spithamæus, diametro peunæ passerine, subnitens, foliosus, pluries ranosus; ramis erecto-patentibus. Folia $\frac{1}{3}$ unc. longa, patentia, siccitate nigrescentia. Flores valde inconspicui. Fructus?.
6. Galium Antarcticum, Hook. fil.; glabriusculum, caule decumbente tenui flaceido parce ramoso, foliis quaternis patenti-recurvis oblougis oblongo-lanceolatis lineari-lanceolatisve margimibus tenuissime scaberulis, floribus in axillis foliorum solitariis, pelunculis fructifcris validis folio brevioribus, fructibns glaberrimis lævibus. G. trifidum? IP Urv. in Ném. Soc. Limn. Paris, vol. vi. p. 612. Guud. in Freyc. Foy. Bot. p. 135. G. debile, Banks et Sol. ILSS. in Bibl. Banks. (non IIoffm.).

Hab. Tierra del Fnego; Good Success Bay, Banks and Solander; Staten Land, Dr. Eights; Hermite Island, J. D. II.; Falkland Islands, D'U'rcille, \&'c.; Kerguelen's Land, White Bay. Dr. Robertson.

Caules 3-s unc. longi, intertexti, subnitidi, ad angulos sub lente scaberuli. Folia flaceida, patentia, olftusa, 2 lin. ad $\frac{1}{2}$ mnc. longa, opaca, margiuibus recurvis. Flores sessiles, albi, trimeri; staninibus 3. Peducculi fructiferi arcuati; fructibus didymis glaberrimis.

A rery distinct little species, somewhat resembling the G. saxatile, L., of Europe. It abounds in the Falkland Islands, especially near frest-water lagoons.

2. NERTERA, Banks.

1. Nertera depressa, Bauks. I7. Antarct. pt. 1. p. 23.

Hab. Falkland Islands, Gaudichaud, D' Crrille, and all future collectors.
This curious little plant lias not hitherto been described as a native of Fucgia, though abundant in the Falklanul Islands and Tristan d'Acunha, also on the west coast of America, at Valdivia, and in other parts of Chili. . specimen, apparently of the same specics, has leen transmitted from the Andes of Columbia by Professor Jancson, but it bears neither flower nor fruit.

XXIV. VALERIANEE. $D C$.

1. Valeriana, Neck.

2. Valerunva lapathifolia, Vall; foliis radicalibus longe petiolatis oblongis acutis basi cordatis rotundatisve integris marginibus obscure siunatis caulinis oratis breve petiolatis supremis sepe sessilibus nervis super pilosiusculis, petiolis basi ciliatis, panicula composita late ovata, bracteis linearibus obtusis basi ciliato-dentatis, stamiuibus 3. V. lapathifolia, Fahl, Enum. Plant. vol. ii. p. 11. DC. Prodr. vol. iv. p. 635.

Hab. Strait of Magallaens, Commerson; Port Famine, Capt. King; Cape Tres Moutes, C. Darrein, Esq.
Rhizoma elongatum, horizoutale, crassitie digitis minoris, atrum, nodosum, ad nodos radiecs plurimos filmosos emittens. Folia caulina $1 \frac{1}{2}$ pedalia, subcarnosa; petiolo laminam superantc. Panicule termiuales, $1-2$ unc. longie. Fructus glaberrimus, compressus, 6 -nervis.
2. Valerlava carnosa, Smith; glaberrima, caule erecto herbaceo, foliis caulinis longe petiolatis obovatis obovato-lanceolatisve carnosis sinuatis serratis inciso-pimnatifidisve lobis siumbusque obtusis caulinis minoribus supremis sessilibus, panicula terminali elongata ramis suberectis, bracteis acuminatis basi connatis. V. carnosa, Smith, Icon. ined. fasc. 3. t. 52. Tahl, Enum. vol. ii. p. 12. DC. Prodr. vol. iv. p. 635. V. Magellanica, Lam. Illustr, vol. i. p.93. Duf. Val. p. 51.

Hab. Strait of Magalhaens, Commerson ; Port Famine, Capt. King; Cape Negro, C. Darwin, Esq.
Herba hipedalis, stricta, erecta. Caulis crassitie pennæ anserinæ. Folia varia, 2 unc. ad pedalem, interdum fcre integerrima. Pedunculi sæpe spithamæi. Flores ut in congeneribus. Fructus V. lapathifoliac.
3. Valertana sedifolia, D’Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 612. Gaud. in Freyc. Foy. Bot. p. 135. DC. Prodr. vol. iv. p. 633. IIomb. et Jacq. in Foy. an Pole Sud, Bot. Dicot. t. 16, A.

Hab. Strait of Magallaens, MMI. Honbron and Jacquinot; Falkland Islands, I' Urville. $_{\text {I }}$
4. Valeriana Magellanica, Homb. et Jacq. in Foy. au Polc Sul, Bot. Dicot. t. 16. B. sine descript. non Lamarck.

Hab. Strait of Magalhaens, MIf. Hombron and Jacquinot.
I have seen no specimens of either of the above curious little species, but M. Riocreux's figures in the work quoted, are excellent.

XXV. COMPOSITÆ, Juss.

1. Chiliotrichum, Cass.

§ I. Euchiliotrichum; capitulis radiatis.
1 Chliotricuus amelloides, Cass., Diet. vol. viii. p.576. Gaud. in Amı. Sc. Nat. vol. v. p. 104. et in Freyc. Toy. Bot. p. 135. D'Urville in Ilém. Soc. Limn. Paris, vol. iv. p. 612. DC. Prodr. vol. v. p. 216. Hook. Fc. Plant. t. 485. C. rosmariuifolium, Less. in Linnea, vol. vi. p. 109. Amellus diffusus, Forst. Comm. Gott. vol.ix. p.39. A. rosmarinifolius, Popp. MISS. Coll. 2. A. candidus, Banks et Sol. MSS. in Bibl. Banks. cum icone. Tropidolepis diffusa, Tausch. in Bot. Zeit. vol. xii. p. 67. Aster Magellanicus, Spreng. Syst. Teget. vol. iii. p. 526. "Arbuste à feuilles de romarin," Pernetty, Toy. vol. ii. p. 61. "Fasciue" colonorum.

Hab. South Chili, Fuegia, and the Falkland Islands; Commerson, Banks and Solander, and all succeeding voyagers.

In the first part of this work (p. 37 in obs.) I have mentioned low closely this gemns is allied to Eurybia and to Olearia, agreeing with the former in the oblong involucre and miseriate pappus, and with the latter in labit through Olearia oporina (O. semidentata, Decaisne in Voy. Veuus; Arnica oporina, Forst.). It differs from both in the presence of binear scalcs occasionally mixed with the flowers of the disc.

The present is the tallest dicotyledonous plant in the Falklaud Islands, except Teronica elliptica, which is exceedingly rare. It attains a height of about $4-5$ feet, and forms a brushwood along the banks of streams

> § II. Anactiuia; capitulis discoideis, homogamis.
2. Chiliotrichusi lumile, Hook.fil.; caule prostrato ramoso, ramis abbreviatis ascendentibus erectisve foliosis foliisque subter incano-tomentosis, foliis dense imbricatis lineari-oblongis obtusis recurvis coriaceis
marginibus incrassatis revolutis, capitulis solitariis terminalibus sessilibus, involucri squamis obtusiusculis, flosenlis tubulosis.

Hab. Strait of Magalhaens, Cape Gregory ; Capt. King. $_{\text {M }}$

Suffruticulus humilis, ramosus. Caules tortuosi, $3-5$ unc. longi, ramulis per totam longitudinem foliosis, $\frac{1}{2}-1$ uneialibus. Folia 2 lin. longa, $\frac{1}{2}$ lin. lata, super medio sulcata, arachnoidea v. glabrata, subter lana appressa iueanotomentosa. Capitula plurima, erecta, $\frac{1}{3}$ unc. longa, diseoidea, floseulis ommibus hermaplroditis. Involucrum campanulatum; squamis irregulariter 3 -scrialibus, concavis, ehartaceis, dorso araehnoideis, exterioribus brevibus late ovato-oblongis, interioribus longioribus, lineari-oblongis oblongo-lanceolatisve, disco paulo brevioribus. Receptaculunn augustum, subgloboso-eapitatum, uudum nisi squamæ paucæ lineares inter flosculos exteriores sparsæ. Corolle omnes tubulose, 5 -dentate, dentibas linearibus obtusis recurvis. Anthere lineares, basi bre̊vissime bisetose, filameutis superne paulo incrassatis. Styli rami lineares, majusculi, obtusi, exserti. Pappi setæ plurinæ, rigidæ, seabridæ, subflavescentes. Achreniunn lineari-obeomicum, subangulatum, hispidulum.

Though differing from the C. amelloides in labit, and especially in the absenee of ligulate florets, I am unable to point out any characters that will separate these two plants generically; for the structure of the involucre, the occasional linear paleæ on the receptaclc, the achenium, the pappus, stamina and styles, are essentially the same.

When deseribing the Antarctic species of Senecio I shall allude more partieularly to the radiate plants of that genns being natives of a damp, aud the diseoid of a dricr, climate. The same remark seems to hold good with Chitiotrichum, the C. amelloides being confined to the humid atmosphere and soil of the Falkland Islands and Fuegia; whilst the present, and two allied discoid species, (both, however, too nearly related to C. humile), of whieh I subjoin descriptions*, affect the arid plains of Patagonia.
C. Tumile is also a native of Cape Fairweather on the east eoast of Patagonia.

2. ASTER, L.

1. Aster Fallii, Hook. et Arn. in Comp. Bot. Mag. vol. ii. p. 49. Hook. Ic. Plant. t. 486. A. Gilliesii, Hook. et Amn. l.c. A. glabratus, Banks et Sol. MSS. in Murs. Bankis. cum icone. Erigeron Vahlii, Gaud. in Ann. Sc. Nat. vol. v. p. 103, et in Freye. Toy. Bot. p. 135. D'Urville in DLém. Soc. Linn. Paris, vol. iv. p. 611. DC. Prodr. vol. v. p. 295.

Hab. South Chili, Fuegia and the Falkland Islands, abuudant; Bankis and Solander, aud all succeeding voyagers.

A rery distinet species, particularly abundant in the moister parts of the Falkland Islands, and in Fuegia south of the Strait of Magalluaens on the eastern side, but ascending on the west coast of Ameriea as far as Conception

[^35]1Lab. Patagonia ; Port Desire, C. Darwin, Esq.
(lat. 37°) ; also found on the Andes by Dr. Gillies, in lat. 33°, and on the monntanns of Quito in Colombia, under the equator, by Professor Jameson, whose specimeus appear to differ in uo respect from those gathered in Fuegia.

The whole plant is generally perfectly glabrous, though not unfrequently a shight pubescence is observable ou the scales of the involucre in individuals collected in the Falklands and Fuegia. The A. Gilliesii is certainly not distinct from this; both have the flowers of the ray disposed in several series ; but otherwise, and especially in habit, they agree better with Aster than with the following genus.

3. ERIGERON, L.

1. Erigeron alpinus, L. Sp. Pl. E. Bot. t. 464. E. pauciflorus, Bankis et Sol. MSS. in Mus. Banks. cum icone.

Var. β. uniflorus, Ed. Cat. Brit. Fl. p. 193. E. uniflorus, L.; Hook. et Arn. in Comp. Bot. May. vol. ii. p. 50.

Tor. γ, myosotifolius; foliis caulinis sessilibus linearibus subobtusis appresse calo-pubescentibus, floribus solitariis v . ad apicem caulis aggregatis.

Hab. Strait of Magalhaens; Port Gregory, Capt. King and C. Darwin, Esq.; Cape Negro, C. Darwin, Esq.; Port Famine, Capt. King; Good Success Bay, Bantis and Solander. Var. β, Cape Negro and Elizabeth Island, C. Darwin, Esq. Var. y, Port Famine, Capt. King.

I quite beliere the \boldsymbol{E}. alpinus and var. uniflorus of Fuegia to be identical with the so-named species of Europe and North America, but whether they may not be in both countries varieties of another plant, is more than doubtful. Thus, in North America the E. alpinus passes at once and unequirocally into a species called E.glabratus, which is of a totally different habit and appearance, and unites the alpine plant with others of the United States. So, in Europe, E. alpinus of the Altai mountains becomes E. elongatus, in which the pappus is about one half longer than the achænium, and that again E.glabratus, whose pappus is twice as long as the achænium. Again, I have seen specimens of this species from the Sierra Nevada of Spain, alt. 8,000 feet, which are the common form of E. alpinus, and a variety gathered at 1,000 feet of lower elevation, apparently the same as E. acris; both are uamed E. alpinus by M. Boissier, a most accurate and learned European botauist. The individuals of this genus are apparently in the same predicament as those of Epilobium, a form from oue country often constituting the link that unites two allied ones of a remote region, insomuch that it is impossible to study the species properly without an examination of individuals from all parts of the globe. The rapidity with which an Erigeron may be dispersed and the consequent facility the genus affords for presenting varieties, are eridenced by the spread of E. Canadensis, L., throughout the warm countries of the old world, since the discovery of the new ; it is a plant which, requiring much summer heat, does not enter into the Antarctic regions, though abundant in Canada.

The variety γ is possibly a distinct species, but my specimens are very imperfect, and the E. alpimus itself is so variable in all the parts of the world it inhabits that this may be a state of it. Capt. King has what I consider an intermediate variety from Cape Fairweather, on the coast of Patagonia, which in hairiness and foliage resembles E. alpinus, but the capitula are, as in var. myosotifolius, aggregated at the apex of the stem.
2. Erigeron Sulivani, Hook. fil.; totus pilis appressis subhirsutus, caule brevissimo depresso bi-tricipiti folioso, foliis substellatim patentibus elliptico-ovatis subacutis integerrimis in petiolum attenuatis, scapo erecto monocephalo foliis liuearibus bracteolato, capitulo majusculo depresso, involucri squamis anguste linearibus hispido-lauatis. Hieracium? incertum, D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 60s. Gaud. in Freyc. Foy. Bot. p. 134.

Hab. Falkland Islands, on moist cliffs near the sea; D'Urville, Capt. Sulivan, J. D. I.

Omnia E. unifori, sed foliis latioribus, petiolo distincto, laminaque elliptico-ovata non spathulata.
I have ventured to separate this from the former because of its broad leaves and evident petioles, though I must confess to having seen specimens from Switzerland of E. grandiflorus, Hoppe, a variety of E. alpinus, in which the shape of the foliage very closely approaches this. It bears the name of Capt. Sulivan, R.N., who during his several visits to and survey of the coasts of the Falkland Islands, formed a very interesting botanical collection which he has liberally placed in my hands for examination.
3. Erigeron spiculosus, Hook. et Arn. in Bot. Beechey, p. 32, et in Comp. Bot. Mag. vol. ii. p. 49. (exclud. var. glabellus). DC. Prodr. vol. v. p. $2 S 9$.

Var. minor, capitulis minoribus. E. Canadensis, Hook. et Arn. l.c. in part.
Hab. Strait of Magalhaens, Port Famine, Capt. King. Var. minor, Cape Negro, C. Darwin, Esq.
An exccedingly variable species, allied to E. Canadensis, though with much larger capitula. The var. minor was referred in the work quoted (under that variety) to E. Canadensis, bnt I find no specimens of that species, either Enropean or North or South American, to vary much in the size of the capitula. The variety glabelles, of Hooker and Arnott, is, I think, certainly referable to E. alpinus.

4. LAGENOPHORA, Cass.

1. Lagenophora Commersonii, Cass. Dict. vol. xxv. p. 110. Lessing, Compos. p. 193. DC. Prodr. vol. v. p. 307. Mook. et Am. in Comp. Bot. Mag. vol. ii. p. 51. L. Magellanica, Cass. in Bull. Sc. 1S1G, p. 199. Carmichael in Trans. Soc. Limn. Lond. v. xii. p.507. Caleudula pumila, var. β, Forster, Comm. Gatt. vol. ix. p. 40. C. Magellanica, Willd. Sp. Pl. vol. iii. p. 2344. C. pusilla, Pet. Thouars, Fl. Trist. d'Ac. p. 40. t. 9 Aster nudicaulis, Commerson, Herb. Lam. Encycl. vol. i. p. 30s. Ill. Gen. t. 681. f. 4. Bellis Magellanica, DC. in Lam. Encycl. vol. v. p. 7. β, revoluta, Banks et Sol. MSS. in MLus. Bankis. cum iconc. (Tab. CVIII.)

Var. ß. hirsuta. L. hirsuta, Lessing, in Linnea, vol. vi. p. 131. Pappig et Endl. Nov. Gen. S.c. vol. i. p. 16. t. 26.

Hab. Soutl Chili and Fuegia; Commerson, Banks and Solander, and all succeeding voyagers. Falkland Islands, C. Darwin, Esq., Mr. Wright, J. D. II.

This little species varies a good deal in size, from one half to three inches long; the leaves are nearly entire or sinuatcd, smooth or more or less hairy, sometimes almost hirsnte. Mr. Darwin's specimens, from Wollaston Island near Cape Horn, have hairy scapes.

Plate CVIII. (left-hand figure), Fig. 1, receptacle and involucre; fig. 2, floret of the ray; fig. 3, floret of the dise; fig.4, style of a floret of the dise; fig. 6, achæuium :-all magnified.

5. BACCHARIS, L.

1. Bicciaris Magellanica, Pers. Ench. vol.ii. p. 425. DC. Prodr. vol. v. p. 405 . Hook. et Arm. in Bot. Journ. vol. iii. p. 26. B. tridentata, Gaud. in Ann. Sc. Nat. vol. v. p. 103, et in Freyc. Toy. Bot. p. 135. D'Urville in Mém. Soc. Lim. Paris, vol. iv. p. 610. B. cuneifolia, DC. Prodr. vol. v. p. 406. Mook. et Am. l. c. B. sessiliflora, Tahl, Symb. pt. 3. p. 97. Conyza cuneifolia and C. Magellanica, Lam. Encycl. vol. ii. p. 91. "Sapinette," Pernetty Voy. vol. ii. p. 63.

Hab. Fuegia and the Falkland Islands, most abundant; Née, Commerson, and all succeeding royagers.
Rather a variable plant in the size of the foliage, which is entire or toothed. Judging by De Candolle's
description of B. cuneifolia, there seems no doubt of its being the present plant, and that the habitats of Brazil and Monte Video are erroneous.

Onc of the most abundant plants in the Falkland Islands, growing with Empetrum rubrum. It appears to migrate northwards from the Strait of Magalhaens as far as Maldonado on the eastern, and Chiloe on the western coast of South America.
2. Baccharis Patagonica, Hook. et Arn. in Bot. Journ. vol. iii. p. 29.

Hab. Strait of Magalhaens; Port Famine, Capt. King, Capt. Sulivan; Cape Negro, C. Darvin, Esq. Staten Land, Mr. Welster.

Apparently a rare species, for I have seen it from no other part of Fuegia and Patagonia, or collected by any other naturalists but those mentioned above. The whole plant is much larger than B. Nagellanica, and not viscid, the leaves are sinuato-lobate towards the summit, opaque, and often turn black in drying; in other respects it is very near it.

> 6. MADIA, Mol.

1. Mad1a sativa, Molin. Mist. Chiti, p. 336. DC. Prodi. vol. v. p. 691. M. viscosa, Hook. et Arn. in Comp. Bot. Mag. vol. iii. p. 51. Cav. Ic. rol. iii. p. 50. t. 298.

IIab. Strait of Magalhaens, Cape Negro, C. Darwin, Esq.
This is the "Madi" and "Mclosa " of the Chilians, who extract an oil from the seed, for which purpose it is cultivated abundantly both in that country and in other parts of America.

7. ABROTANELLA, Cass.

1. Abrotavella emarginata, Cassimi, Dict. vol. xxxvi. p. 27. Opusc. Phyt. vol. ii. p. 42. Gaud.in Freyc. Toy. Bot. p. 465. DC. Prodr. vol. vi. p. 141. Fl. Ant. pt.1. p. 24 in olserv. Oligosporus emarginatus, Cass. in Amal. Sciences Nat. vol. v. p. 104. t. 3. f. 4. D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 644.

Hab. Strait of Magalhaens, Port Famine, Capt. King. Hermite Island, Cape Horn, J. D. II. Falkland Islands, abundant, Gaudichaud, J. D. 11.

A very inconspicnous plant, allicd to Ceratella aud Trineuron of the 'Flora Antarctica' (Pt. 1. p. 24.), and also to an umpublished Tasmanian genus. It is easily recognized by the curious scarions margins of the leaves, which are broad and bifid at the apex.

s. LEPTINELLA, Cass.

1. Leptinella plumosa, F1. Antaret. pt. 1. p. 26. t. xx.

Hab. Kerguelen's Land, abundant near the sea, Anderson in Cook's 3rd Toyage, J. D. II.
Some obscrvations on these specimens are in the work quoted abore. The species is found on the American coutinent, and is one of the few plants common to Lord Auckland's Group and Kerguelen's Land which do not exist in Fuegia.
2. Leptinella scariosa, Cass. Bull. Plit. 1822. p. 127. Dict. Sc. Nat. vol. xxvi. p.67. DC. Prodr. vol. vi. p. 141. Fl. Antarct. pt. 1. p. 28. in ols. L. (?) aernoides, Hook. et Arn. in Bot. Journ. vol. iii. p. 325. Cotula reptans, Banks et Sol. MSS. in Mus. Banks. cum icone.

Hab. Tierra del Fuego, from the Strait of Magalhaens to Cape Horn; Banks and Solander and all future voyagers.

Apparently abundant from Taldivia to Cape Horn; the specimens from the northern locality being much the largest.

9. GNAPHALIUNI, L.

1. Gyaphalium spicatum, Lam.; caule erecto v . ascendente simplici v. e basi ramoso pube arcte ap-presso-cano, foliis anguste oblongo-spathulatis inferioribus plerumque latioribus superioribus sub-decurrentibus super glabriusculis arachnoideisve, subter dense appresso-canis subargenteisve marginibus planis undulatocrispatulisve floralibus brevioribus linearibus. G. spicatum, Lam. Encycl. vol. iï. p. 757. DC. Prodr. vol. vi. 1. 232. Hook. et Arn. in Bot. Beechey, p. 31. Bot. Journ. vol. iii. p. 328. G. coarctatum, Willd. Sp. Pl. vol. iii. p. 1886. H. B. K. Nov. Gen. Am. vol. iv. p. S6. G. sphacelatum, H. B. K. Nov. Gen. An.1. c. Dill. Hort. Elth.f. 133. G. consanguineum, Gaud. in Ann. Sc. Nat. vol.v. p. 105 et in Freyc. Toy. Bot. p. 467. D' Ureille in Mlón. Soc. Limn. Paris, vol. iv. p. 610, non Homb. et Jacq. in Toy. au Pole Sud. (Tab. CXIII).

Var. β, Chonoticum, foliis omnibus in petiolum elongatum angustatis floralibus elongatis patentibus, floribus in capitulis subsessilibus aggregatis.

Hab. Falkland Islands; Gaudichaud, D'Urville and all succeeding royagers. Var. β, Chonos Archipelago; C. Darwin Esq.

Onc of the most variable and abundant of South American plants, from the latitude of Quito to the Falkland Islands, also occurring in Brazil.

I am inclined to consider the G. spicatum as the typical form of a species to which G. Americanum, G. purpureum, G. Pemssylanicumn (?), and probably sceeral other North American forms should be referred, and from which they differ no more than do G. strictum, Norregicum, \&c., from the G. sylcatiom of Europe. Authentic specimens of G. purpureum, wlich I have studied, are preserved in the British Museum, with Dillenius' hand-writing attached to them, and they accord perfcctly with the figure in 'Hortus Elthamensis.' The plant is common in the middle and southern states of North America, and is very evidently a variety of the following, G. Americanmm, which is generally more branched, with broader leaves and the inflorescence more elongated. It is a species of Califormia and the southern United States, whence I have examined indiriduals with the woolly substance as appressed to the stem and muder side of the leaves as in many Chilian ones of G. spicatum. Bertero's Chilian specimens of G. Berterianum are apparently G. purpureum, betwecn which and G. falcatum (through the rarieties of the latter plant enumerated in De Candolle's 'Prodromns') there seems very little tangible specific difference.

An examination of copious suites of specimens of De Candolle's spicate group of Gnaphatium certainly rather tends than otherwise to the union of about sixteen species which it contains (as conjectured by Hooker and Arnott i_{n} the 'Botauical Journal'), and to reduce them to perhaps two, one of them, G. sylbaticum, being European, and the other (of which G. spicatum is the type) American. Generally speaking, the two forms, of the old and new world, are sufficiently distiuguishable by the eye, though I should feel it difficult to give a definition of either that would include all states of one and exclude all of the other. If future observations confirm this supposition, a qucstion will arise respecting the specific name; the oldest, or Linnæan (G. purpureum) applying to the variety, if that be called rariety which is the less dexcloped state of a plant more widely diffused under another form. The trivial appellation of G. spicatum, again, though not botauically speaking strictly correct, is characteristic of all the aspects of both the European and American plants, and that of G. Anericanum appears even more suitable to a plant so particularly abundant in both divisions of the new world.

The variety β, Chonoticum, seems intermediate between this and the following, the woolliness being that of G. spicatum, while the capitate heads of flowers are similar to those of G. falcatum.

Plate CXIII. Fig. 1, receptacle and involueral leaves; fig. 2, a flower of the ray; fig. 3, a flower of the dise; fig. 4 , a seta of the pappus; fig. 5 , ripe achæninm:-all magnified.
2. Gnaphalium fulcatum, Lam.; Encycl. vol.ii. p. 75s. Lessing in Linnca, vol. vi. p. 229. DC. Prodr. vol. vi. p. 233. Hook. et Arn. in Bot. Journ. vol. iii. p. 32s. G. Chilense, Hook. et Arn. in Bot. Beeeh. p. 31. G. littorale, Bankis et Sol. in Mus. Bankis. cum icone.

Hab. Port Famine; Capt. King. Good Success Bay; Bantis and Solander.

I have refrained from uniting the present with the foregoing species, being unable to arrange the Chilian forms of this genus so as to follow the transition steps by which they pass one into another, without even a fuller series of speeimens than I have had the opportumity of consulting. I am fully satisfied however, that neither habit of growth, nor foliage, nor inflorescence affords any characters to separate them.
3. Gnaphaliun affine, D’Urv.; totum lana laxa molli vestitum, caule gracili herbacco basi procumbente valde ramoso folioso, ramis florentibus ascendentibus erectisve gracillimis parce foliatis, capitulis paucis terminalibns aggregatis anguste cylindraceis, squamis involucralibus lanccolatis acuminatis basi pedicellis foliisque bractciformibus lana immersis. G. affine, D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p. 610. Gaudichaud in Freyc. Foy. Bot.p. 134. DC. Prodr. vol. vi. p. 134. G. consanguineum, Homb. et Jacq. in Toy. au Pole Sud, Bot. Dicot. Phan. t. 11. T (?) non Gaudichaud.

Hab. Falkland Tslands; D'Urville, J.D.II. Pcckett Harbour, Strait of Magalhaens; Hombron and Jacquinot?

Caules basi sublignosi, prostrati, ramosi. Folia obovato-spathulata, utrinque molliter et laxe lanata, $\frac{1}{4}-\frac{1}{2}$ une. longa. Rami florentes graeiles, $2-3$ une. longi, folia $3-4$ gerentes, apiee emrati et floriferi. Capitula angusta, sub 2 lin. longa, pauciflora, involueri squamis nitidis supra medium subeastaneo-fuscis.

This appears to me a rery distinet species from G. spicatum and indeed from any of its congeners, and may readily be recognized by its small size, and sleuder nearly leafless flowering stems, whose drooping apices bear but two or three capitula. The latter are elongated, narrow, and their seales close together after the seeds have fallen, forming an acuminated point to the capitulum.

The figure of G.consanguineum, Gaud., given by Hombrou and Jaequinot, appears to belong to this plant, of which I have seen no specimens from the continent of South America or Fuegia.
4. Gnapiialiua Antareticum, Hook. fil.; pumilum glaberrimum, caule basi decumbente folioso sursum erecto gracili curvato parce foliato, capitulis subcapitatis majusculis, involucri foliolis lanccolatis acuminatis scariosis glaberrimis nitidis pallide brunneis, pappo basi subpiloso, achæniis glaberrimis. (Tab. CDIII. B.)

Hab. Falkland Islands; amongst grass \&ce. very sparingly ; J.D.IT.
Planta perpusilla l-2-poliearis, tota glaberrima. Coulis tenvis basi deeumbens foliosus. Folia sub $\frac{1}{3}$ une. longa, patentia, anguste obovato-spathulata, integerrima, subaenta, nervo medio super depresso, utrinque viridia, siccitate fuseo-brumea. Caulis floriferns subfiliformis, foliis 2-3 linearibus auctus. Capitula 2-5, rarius solitaria, pro planta majuscula, $\frac{1}{5}$ une. longa, subeylindracea. Inwolucri squamæ anguste lanceolatæ, aenminatæ, scariose. Flores albi?; apicibus dentium corollæ glandulosis. Achenium glaberrimum.

A rery minute species, which at one time I was inclined to consider a seedling state of G. spicatum, but the whole plaut is perfectly glabrons, the stems very slender, the capitula agoregated at the apex of the stem and mucl smaller than those of G. spicatum.

I regret having found but few specimens of this very minute Gnaphalium, they were quite concealed anongst the stems of grasses and other herbs.

Plale CXIII. B, Fig. 1, a flower of the dise; fig. 2, a flower of the ray:-both magnified.
5. Gnaphalidm luteo-album, Limm. Sp. Pl. 1196. Engl. Bot. t. 1002. G. inornatum, DC. Prodr. vol. vi. p. 225?

Hab. Chonos Archipclago ; C. Darwin, Esq.
This plant seems identical with Hartweg's n. 314 of Mexico, which Mr. Bentham has named G. inornatum, DC., but I can distinguish neither from European and N. Amcrican specimens of G. luteo-album, which is a rery frequent inhabitant of the warmer and temperate parts of the globe.

10. MELALEMA, Hook. fil.

Capitulum discoideum, multiflorum, heterogamum ; flosculis marginalibus pauciseriatis, tenuissimis, fomineis, ore oblique truncato; centralibus hermaphroditis, 5 -dentatis. Receptaculum nudum, planum, papillosum. Involucrum sublemisphæricum; squamis 2-3-scrialibus, linearibus, superne atro-sphacelatis, exterioribns brevioribus. Styli rami apice truncati, pennicillati. Achania breviter oblonga, striata, glaberrima. Pappus multiscrialis, pilis vix scaberulis.-Herba Fuegiana ramosa foliosa dense cespitosu; ramis foliosis; foliis imbricatis spathulatis sulter argenteo-lanatis; capitulis terminalibus solitariis inter folia sumna sessitibus; flosculis flavis.

1. Melalema humifusu, Hook. fil. Bacclaris humifusa, Banks et Solander MSS. in Mus. Banks. cum icone.

Hab. Tierra dcl Fuego, Good Success Bay ; Banks and Solander, C. Darwin, Esq.
Caulis prostratus, diametro pennæ corvinæ, basi descendentc, fibras plurimas elongatas emittente, superne e lapsu foliorum cicatricatus raginisque foliorum obtectus, pluries dirisus. Rami ascendentes v. erecti, 1-2-pollicares, dense foliosi. Folia 3-1 liu. longa, basi arcte imbricata, patentia, spathulata, obtusa, subter tomento appresso argenteo-candida, super nisi versus apices glabrata, coriacea, subencrria. Cupitula inter folia summa inconspicua, 3 hin. longa, late campanulata v. subhemisphærica. Involucri squamæ exteriores dorso arachnoideo-tomentosi, apicibus acuminatis atris. Flosculi plurimi. Pappus setis flexuosis.

In the sphacelated apices of the involucral scales, this genus approaches Senecio, from which it essentially differs in the form of the florets of the circumfcrence, which refers it to DeCandolle's second division Erectritere of the Senecionece. Its babit and foliage are different from other Antarctic plants, though it resembles some alpine Compositue of New Zealand.

11. CULCITIUM. I. $B . K$.

1. Culcirium Magellanicum, Homb. et Jacq.; totum sericeo-tomentosum, foliis radicalibus linearilanceolatis v . anguste linearibus elongatis acutis appresse sericeis super canaliculatis marginibus revolutis basi louge vaginatis scariosis glaberrimis, scapo elongato monocejhalo bracteolato, bracteolis linearibns, capitulo solitario hemisplærico nutante v. inclinato, iuvolucri squamis deuse lanatis linearibus disco
brevioribus apicibus sphacelatis. C. Magellanicum, Momb. et Jacq. in Toy. au Pole Sud, Bot. Dicot. t. 11. f. 10. Senecio Magellanicus, Mook. et Arn. in Bot. Journ. vol. iii. p. 343.

Hab. Strait of Magalhaens; Port Famine, Capt. King. Cape Negro; C. Darwin, Esq.
Statura rariabilis, 3 -pollicaris ad pedalem. Folia $1 \frac{1}{2}$ ad 4 unc. longa, l-3 lin. lata, plantis humilioribus latiora, fasciculata, crecta, substricta. Scapi dense lanati. Capitula $\frac{3}{4}$ ad 1 unc. diametro.

I quite agree with the authors of the Botany of the 'Voyage au Pole Sud', in referring this handsome plant to Culcitium, of which geuus it is the most southern species.

12. SENECIO, L.

§ I. Discoider, lanate.

1. Senecio candidans, DC., Prodr. vol. vi. p. 412. Cacalia candidans, Fahl, Symb. vol. iii. p. 91.t. 71. Gaud. in Ann. Sc. Nat. vol. v. p. 103, et in Freyc. Toy. Bot. p. 135. D'Urville in Mém. Soc. Limn. Paris, vol. iv. p. 610 (sub nomine candicans). Cacalia lanuginosa, Banks et Sol. MSS. in Bibl. Banks. cum icone. "Plante à feuilles de bouillon blanc", Pernetty Foy. vol. ii. p. 60. (Tab. CLX.)

Hab. Strait of Magalhaens, throughout Fuegia and the Falkland Islands; abundant, on sandy beaches.

This species is most allied to one of the radiate group, the S. Smithii, DC. It abounds wherever sandy beaches occur, from Cape Fairweather on the Patagonian coast, to the south part of Tierra dcl Fuego. In the Falkland Islands it forms a rank herbage about a yard high in such situations.

Plate CLX. Fig. 1, receptacle and portion of the involucre ; fig. 2, a flower; fig. 3, setæ of the pappus; fig. 4, stamens; fig. 5, ripc achænium :-all magnified.
2. Senecio Patagonicus, Hook. et Arn.; fruticosus, arachnoideo-tomentosus, foliis lineari-oblongis ob-longo-lanceolatisve subacutis integerrimis supra medio canaliculatis marginibus revolutis, capitulis corymbosis longius pedicellatis 5-7-cephalis, iuvolucri late campanulati calyculati foliosis lineari-oblongis subacutis fuscescentibus corollis brevioribus. S. Patagonicns, Hook. et Arn. in Bot. Journ. vol. iii. p. 344.

Var. a, foliis linearibus lineari-oblongisve.
Var. β, foliis oblongo-v. limeari-lanceolatis. S. Hookeri, Homb. et Jacq. Voy. au Pole Sud, Bot. Phan. Dicot.t. 13. A.

Hab. Var. a, Port Famine; Capt. King. Var. β, Strait of Magalhaens; MII. Hombron and Jacquinot.
Rami teretes, lana appressa vestiti. Folia omnia integerrima, uncialia, nuuquam exemplaribus meis fasciculata. Capitula $\frac{1}{2}$ unc. longa et lata.

This species may be recognized by the quite entire somewhat rigid and suberect leaves, by the elongated pedicels of the capitula, which are rather rounded at the base, half an inch long and equally broad. The leaves in MLM. Hombron and Jacquinot's figure of S. Hookeri are somewhat fasciculate; the same state was gathered at Cape Fairweather both by Capt. King and Mr. Darwin.
3. Senecio Andersoni, Hook. fil.; caule asceudente suffrutescente? laxe lanato, foliis suberectis patulisve anguste lineari-oblongis lineari-lanceolatisve subflaccidis acutis acuminatisve integris v. apicem versus lobatis marginibus recurvis laxe arachnoideo-lanatis, capitulis paucis majnsculis longe et graciliter pedicellatis, involucri latc campauulati foliolis linearibus arachnoideis glabriuscnlisve disco brerioribus.

Var. a, foliis latioribus inferioribus superne dilatatis lobatis.
Var. β, foliis anguste linearibus acuminatis integerrimis, involucri squamis glabriusculis angustioribus.
Hab. a and β, Strait of Magallhaens, Port Famine; Capt. King.
Folic $1 \frac{1}{2}-2$ unc. longa, integerrima v . versus apices dilatata et $2-4$-lobata, acuta v . acuminata, lana decidua. Pedicelli 2-3 unc. longi. Capitula $\frac{3}{3}$ unc. longa.

Distinguished from the foregoing, of which it may eventually prove a variety, by the larger and more flaccid foliage, by the very long and slender pedicels, the somewhat larger capitula, and narrower involucral scales.
4. Senecio Danyausii, Homb. et Jacq. ; caule suffrutescente gracili basi ramoso laxe lanato, foliis fasciculatis linearibus lineari-oblongisve subacutis integerrimis v . apice grosse dentatis marginibus revalutis subter preccipue lanatis, capitulis parvis corymbosis pedicellatis campanulatis medio constrictis, involucri squamis linearibus subacutis arachnoideis disco brevioribus. S. Dauyansï, Homb. et Jacq. 1. c. t. 13. B.

Var. a, folins integerrimis, capitulis majoribus.
Var. β, foliis apice dentatis lobatisve, capitulis minoribus.
Hab. Strait of Magallaens, var. a, Port Peckett; MMI. Hombron and Jacquinot. Var. β, Port Peckett; II. and J. Port Gregory; Capt. King.

Caules cxemplaribus meis varietatis β spithamei, foliosi. Folia $\frac{1}{2}-\frac{3}{3}$ unc. longa, superiora integerrima, pleraque apieem versus $1-3$-dentata v. lobata. Pedicelli unciales, graciles. Capitula $\frac{1}{3}$ unc. longa, medio ex involucri foliolis paulo inflexis constricta.

The figure of the rar. $\boldsymbol{\beta}$, given in the work quoted above, is very characteristic of Capt. King's specimens, but it may belong to a different species from the S. Danyansii, in which the capitula are represented larger and not constricted at the mouth of the involucre. A very extensive suite of the Magellanic Seneciones is required to settle the limits of the species, if they really are limited, for ceery different locality seems to furnish a form not found in another.
5. Sevecio foccidus, Homb. et Jacq. in Toy. au Pole Sud, Bot. Dicot. Phan. t. 12. ө.

Hab. Strait of Magalhaens, JIDI. Hombron and Jacquinot.
I do not recognize this species amongst those from South Chili, Fuegia and Patagonia that I have examined.
6. Sevecio exilis, Homb. et Jacq. l. c. t. 13. C.

Hab. Strait of Magalhaens, Port Peckett; MIM. Mombron and Jacquinot.
7. Senecio Lasèguei, Homb. et Jacq. 1. c. t. 13. D.

Hab. Strait of Magalhacns, Port Peckett ; MMI. Hombron and Jacquinot. $_{\text {I }}$
I am quite ignorant of these two species, which seem to belong to this section, but of which no descriptions have hitherto appeared.

§ II. Discoidex, glabrata v. glaberrime.

8. Sevecio vulgaris, Linn. Sp. Pl.n. 1216. Engl. Bot. t. 747.

Hab. Falkland Islands; abundant, but undoubtedly introduced.

This plant is certainly not indigenous to the Southern Hemisphere ; but carried to the Falkland Islands, where it is widely dispersed.
9. Sevecio Kingii, Hook. fil.; herbaceus, glaberrimus, caule simplici brevi decumbente folioso scapigero, foliis petiolatis ad apicem caulis fasciculatis carnosis lineari-spathulatis grosse dentatis, scapo erecto solitario l-cephalo foliis 2-3 subulatis aucto superne puberulo, capitulo late campanulato, involucri squamis glaberrimis lineari-lanceolatis disco brevioribus.

Hab. Strait of Magalhaens, Port Famine; Capt. King.
Caulis 1-2-pollicaris, tcres, crassitie pennæ corrinæ, basi decumbente nudo, apice ascendente folioso. Folia perplurima, fasciculata, basi vaginantia et imbricata, $1-1 \frac{1}{2}$-uncialia, gradatim dilatata, grosse serrato-dentata, plana. Scapus erectus, teres, siccitate sulcatus, $3-4$-pollicaris, foliis parvis subulatis filiformibusve anctus. Capitulum inclinatum, $\frac{1}{2}-\frac{2}{3}$ unc. longum, late campanulatum. Inwolucri squanæ lineari-lanceolatæ, glaberrimæ, sub 1 -seriales basi squamulis pancis subulatis suffulte, disco breviores.

Capt. King's specimens of this apparently distinct specics are the only ones I have ever seen, it is truly scapigerous, allied in habit to the S. trifurcatus, Less., which has radiate flowers, and still more nearly to S. crithmoides, H. and A., of Mendoza, which is suffirutescent and branched below.
10. Senecio Arnottii, Hook. fil.; glaberrimus r. obsolcte glanduloso-puberulus, erectus, suffrutescens, ramis erectis foliosis simplicibus, foliis solitariis subfasciculatisve coriaceis late linearibus v. oblongo-linearilanceolatis acutis integerrimis marginibus revolutis costa subter puberula, corymbis terminalibus 4-12ceplalis, pedicellis elongatis foliolis subulatis bracteatis, capitulis late campannlatis, involucri squamis anguste lineari-lanceolatis acuminatis. S. limbardioides, Hook. et Am. in Bot. Joum. vol. iii. p. 347.

Hab. Strait of Magalhaens, Port Pamine; Capt. King.
Rami stricti, crecti, petioli pedicellique sub lente pube sparsa obscure glandulosa operti. Folia $1-1 \frac{1}{2}$ unc. longa, 2-3 lin. lata, sessilia, coriacea v. subcarnosula, plana v. plerumque marginibus recurris, e ramulis axillaribus abbreviatis foliiferis quasi fasciculata. Pedicelli erecti, $1 \frac{1}{2}-2$-unciales, foliis subulatis linearibusve acuminatis bracteolati. Cupitula $\frac{1}{2}$ unc. longa, latiora quam longa.

Allied to S. liftoralis, Gaud., a radiate-flowered species. One specimen from Chiloe, collected by Mr. Darwin, has broadly linear leaves, a few of which shew a tendency to become toothed towards the apex. The name of S. limbardioides, having been through inadvertence twice used in the Botamical Journal (l. c.), I have changed that of this specics.
11. Sexecio longipes, Hook. fil.; glabriusculus v. superne præcipue glanduloso-pubescens, ramis erectis simplicibus strictiusculis, foliis plerisque fasciculatis anguste linearibus filiformibusve acntis basi attenuatis apicem versus serratis marginibus revolutis, corymbis $3-7$-cephalis, pedicellis valde elongatis, bracteolis subulato-filiformibus, capitulis late campanulatis, involucri squamis 1 -serialibus glandulosis disco brevioribus.

Hab. Strait of Magallhaens, Port Famine; Capt. King.
Priori affinis sed gracilior, foliis multoties angustioribus dentatis pedicellisquc valde elongatis.
All Capt. King's specimens agrce in possessing much narower leaves and longer pedicels than the former species, so that, though probably only varietics of onc plaut, I am mable to prove them so.
12. Senecio miser, Hook.fil.; suffruticosus, depressus, pubescenti-viscosus, caule ascendeute ramoso cicatricato, ramis suberectis breviusculis foliosis, foliis coriaceis subcrispatis anguste lineari-spathulatis irre-
gulariter simnato-dentatis subpinnatifidisve, marginibus reflexis, capitulis solitariis binis subcorymbosisve breriter pedicellatis late campanulatis, involucri squamis anguste lanceolatis disco paulo brevioribus.

Hab. Strait of Magalhaens, Port Gregory; Capt. King.

Caulis lignosus, crassitie pennæ passerinæ, uncialis. Rami 3-4-pollicares, teretes. Folia phnima, parva, $\frac{1}{2}-\frac{3}{4}$ une. longa, undulato-crispata, vix 2 lin. lata, inferne in petiolum angustata. Pedicelli $\frac{1}{2}-1$ unc. longi, foliolis bracteolati. Capitula $\frac{1}{3}$ unc. longa, $\frac{1}{2}$ unc. diametro.

Port Gregory is described as surromded by plains, which are covered with a short grass, and possess nothing but a herbaceous vegetation. These features are so different from those of Port Famine, that should the Senecio Arnottii be identical with S. longipes, and the latter be transported to this locality, the appearance it would probably assume is that of S. miser. That such may be the origin of the present plant is rendered still more likely, from an examination of Mr. Darwin's specimens of S. tricuspidatus, Hook., a discoid species, hitherto only gathered high up the river Santa Cruz in Patagonia. Mr. Darwin labels two very different looking individuals as belonging to this same species, the one large and leafy, with leaves broadly linear, dilated and deeply trifid at the apex, fully an inch or an inch and a quarter long, and the whole plant equally luxuriant with S. Amottii, the other, again, bas the squalid babit of S. miser, and foliage rery similar in size, shape and texture. Nor is it in habit and foliage alone that the Seneciones arc liable to vary. The difference between some of the discoid and radiate species is almost confined to the presence or absence of a ray, and this is so remarkably the case, that I bave fonnd an analogue to almost all the discoid specics described above, amongst the radiate, and MLM. Hombron and Jacquinot figure a Magellanic species bearing both radiate and discoid flowers on the same specimen. Now since the S. Jacobaca of England, and other European species, vary in haring or wanting the ligulate florets, so may these of Patagonia and Fuegia, and thus still further reduce the number of species.

It is worthy of observation that the discoid Seneciones are almost peculiar to the drier soil and climate of Eastern Patagonia and Fucgia, only one (S.candidans), an inhabitant of sandy places, being a Fuegian aud Falkland Island species. I am not prepared to say how far this farours the supposition that the absence of a ray may be due to canses now in operation, but the same remark applies to a certain extent to the Sereciones of other countries, and to the geuus Chiliotrichum in Antarctic America.

There are several points connected with this genns of a mnch more interesting nature than the variation of its Protean species; such as the absence of characters in the species indicating natural groups; the scarcity of the species in Australia, which contains scarcely seventy, contrasted with their abundance in the Cape which possesses nearly two hundred; their absence in the Antarctic Islands south of New Zealand, and their forming upwards of twice the largest genus of flowering plants in the flora of Fuegia and Patagonia. A still more singular fact is the confined range * of the individual species, though belonging to one of the very largest genera that has an miversal diffusion. Thus out of the twenty-one species to be enumerated in the present part, not one inhabits any other country but extra-tropical South America, except the introduced S. vulgaris. If the species are to be considered the offspring of variation, there must be allowed to Senecio what may be called a disposition to vary centrifugally, that causes the individuals to depart further and further from an original one in proportion as the genus sprcads over the earth's surface. There is not with Senecio, as with the equally widely dispersed Cnaphalimm, that tendency in the forms all comeries present, to revert to a few typical species. The fact of the species of Senecio in each separate country being aluost inextricable, may be cited in favour of variation as an agent producing what other naturalists suppose original creations. Against this hypothesis, however, it might be urged, that the S. vulyaris has shewn no tendency to vary during the eighty years which have, in all likelihood, clapsed since its first importatiou into the Falkland Islands.

* This is the more remarkable, for Senecio thus forms an exception to a very prevailing law in the animal and vegetable kingdoms, (first pointed out to me by my friend Mr. Darwin), that the individual species of large and widely diffused genera have generally themselves very wide ranges.

§ III. Radiatæ, lanate.

13. Senecio Smithii, DC.; caule herbaceo erecto cavo simplici superne corymboso foliisque subter r. utriuque laxe lanato, foliis radicalibus longe petiolatis oblougis basi cordatis subacutis dentatis petiolo basi vagiuante caulinis cordatis lanceolatisve sessilibus acuminatis crenato-dentatis, corymbo terminali 6 -polycephalo, capitulis amplis, involucris late campanulatis, ligulis $15-16$ interdum elongatis apice acutis dilatatisse, pappo achænio breviore. S. Smithii, DC. Prodr. vol. vi. p. 412. Senecio verbascifolius, Homb. et Jacq. in Foy. au Pole Sul, Bot. Dicot. Phan, t. 12, Δ. Cineraria gigantea, Sinith Exot. Bot. vol. ii. p. 11. t. 65. C. leucauthema, Banks et Sol. M1SS. in Mus. Banks. cum icone.

Hab. Strait of Magalhaens; Port Famine, Capt. King. Cape Negro, C. Darvin, Esq., MII. Hombron and Jacquinot. Good Success Bay, Banks and Solander.

Herba tripedabs, facie S. candidantis. Capitula 1-2 une. diametro. Jigulde longitudine variæ, apice aentæ rotundatæ v. truncatæ et 3 -5-fidæ. Pappus achænio maturo sulcato cylindraceo $\frac{1}{3}$ unc. longo brevior.

A handsome species, very uncertain in the length and form of its ligulx, which are in Capt. King's specimens an inch long, in Mr. Darwin's not half so much and according to the figure in the 'Voyage au Pole Sud' of a few-flowered specimen, sometimes shorter still. The cauline leaves also are variable in shape and in their woolliness. Capt. King gathered the same species (with several allied ones) in Chiloe, in fruit, the achenia are fully formed, but perhaps abortive, being slender, striatell and longer than the pappus. The colour of the ray is remarkably palc for the genus, like that of S. trifurcatus, DC. MIM. Hombron and Jacquinot assert that it is also a Cape of Good Hope species, which is exceedingly uulikely to be the case.
14. Sexecio Falklandicus, Hook.fil.; frutescens, ramis pedunculis foliisque subter lana molli dense vestitis, foliis lineari-oblongis oblongo-lanceolatis obovato-spathulatisve integerrimis repando-dentatisve apice callo subacuto terminatis marginibus revolutis super glabratis arachnoideisve, capitulis majusculis subsolitariis plerisque pedunculatis, pedumculis bracteatis, involucri late campanulati squamis sub 3 -serialibns linearibus basi extus lanatis. S. littoralis, var. a, lanatus, Gaud. in Amn. Sc. Nat. vol. v. p. 104, et in Frcyc. Toy. Bot. p. 468. D'Urville in Hém. Soc. Limn. Paris, vol. iv. p. 611. Honl. et Jacq. in Voy. aut Pole Sul, t. 10. R.? (Tab. CX.)

Нab. Falkland Islands, very abundant, Gaudichuud, C. Darwin, Esq., Capt. Sulivan, J. D. H.
Frutex 1-4-pedalis, e basi ramosus. Folia juniora latiora, spathulata, in petiolum gracilem attenuata, $1 \frac{1}{2}$ unc. longa, $\frac{3}{4}$ unc. lata, parcius lanata, margine tenuiter revolnta, ramis semioribus angustiora, marginibus interdum usque ad costan revolutis. Pedunculi floccosi, plerique $2-3$-unciales, monocephali. Capitula ampla, $1 \frac{1}{2}$ unc. diametro.

The present plant was supposed by both Gandichand and D'Urville to be a state of S. littoralis, from which it is however abundantly distinct, especially in its frutescent habit, and the broader, lanate and blunter leaves. Whether it be really different from the three following species is much more questionable; I am inclined to think it is not, however great their dissimilarity in habit. It differs again from the discoid S. Patagonicus, only in the presence of a ray and the peduncles being solitary. I am doubtful whether the figure of MM. Hombron and Jacquinot refers to this plant, their specimens are from the Strait of Magalhaens.

Plate CX. Fig. 1, receptacle; fig.2, floret of the ray; fig. 3, arms of the style of the same; fig. 4, seta of pappus; fig. 5, floret of the dise; fig. 6, stamen; fig. 7, arms of the style of the same; fig. 8, ripe achænium :-all magnified.
15. Seveclo Darwinii, Hook. et Arn. in Bot. Journ. vol. iii. p. 333. S. tricuspidatus, Banks et Sol. in Mus. Banks. cum icone.

Hab. Strait of Magalhaens, Capt. King. South part of Tierra del Fuego, C. Darwin, Esq. Good Success Bay, Bunkis and Solander. Hermite Island, Cape Horn, on the hills, J. D. II.

Humilis, caule lignoso, prostrato, valde et dense ramoso. Folia ut in priore, sed plerumquc cuneata et trifida v. trilobata repando-dentatavc. Pedunculi elongati v. inter folia stumna sessiles.

Oring probably to the exposed situations this plant inhabits, it is of low stature and much branched from the base; except in these respects and the generally, but not continually more divided leaves, I cannot see how it is distinguishable from S. Falklandicus. The ray varies much in size.
16. Sevecro Eightsii, Hook. et Arn. in Bot. Journ. vol. iii. p. 332.

Var. β, caule procumbente, ramis ascendentibus laxe foliatis, foliis 3 - 5 -fidis, capitulis breviter pedunculatis.

Mab. Tierra del Fuego, Staten Land; Mr. Eights, Mr. Welster. Var. β, Sonth part of Fuegia; C. Darwin, Esq.

A priore cui proximus differt, foliis minoribus angustioribus profunde trifidis, capitulisque parvis. Laciniæ foliormun latitudine variæ, interdum lineares.

The variety β secms in some measure intermediate between this species and the former. I have gathered, ou the barren momatain-sides of Cape Horn, a state of S. Darwinit very closcly approaching the present, but with flowers considerably larger than those of S. Eightsii.
17. Senecio Websteri, Hook. fil.; herbacens, caule suberecto v. basi prostrato folioso lanato, foliis petiolatis carnosis reniformi-rotundatis deltoideisve angulis obtusis integerrimis sinuato-crenatisve carnosis super glabratis subter laua molli obtectis, marginibus revolutis, capitulis paniculatis, pedunculis pedicellisque laxe arachmoidco-tomentosis, involucri late hemispherici squamis oblongo-lanceolatis acutis glabratis v. basi apiceque tantum lanatis, ligulis late ovatis tridentatis.

Hab. Staten Land; Mr. Welster.

Caulis exemplare a me viso manco 4 unc. longa, teres. Petioli unciales, uti folia subter caulisque laxe arach-noideo-lanati. Fotia basi truncata v. cordata, latiora quam louga, 1 unc. lata, nervis subter flabellatis. Pedunculi brevissimi, line panicula subsessilis, lanati. Capituta aggregata, $\frac{1}{2}$ mec. diametro. Involucri squamer non sphacelate.

The most distinct species of the genus, if, as I suppose it to be, a Senecio, but Mr. Webstcr's specimens are rery insufficient. The long petioles, singularly formed fleshy leaves and their revolute margins are decisive characters.

§ IV. Radiatre, glabriuscule v. glaberrima.

18. Sexecio trifurcatus, Less. Synops. Comp. p. 391. DC. Prodr. vol. vi. p.435. Hook. et Arn. in Bot. Jouru. p. 341. Cineraria trifurcata, Spreng. Syst. Teg.vol. iii. p. 551 . Tussilago trifurcata, Forst. Comm. Goett. vol. ix. p. 38. Aster trifurcatus, Banks et Solanter MSS. in Mus. Banks. cum icone. (Tab. CVIII).

Hab. Tierra del Fuego ; abundant in marshy places on the mountains from Port Famine to Cape Horn, Banks and Solonder, and all succeeding voyagers.

The very pale colour of the ray of this plant seems to have deceived the older authors in regard to its genus. In this respect it differs from the majonty of Seneciones, as also in the apices of the inrolucral scales not being splacelated. It is allied to the discoid S. Kingii, milii.

Plate CVIII. Fig. 1, receptacle; fig. 2, floret of ray ; fig. 3, arms of style, and fig. 4, pappus of ditto ; fig. 5, fioret of disc ; fig. 6, stamens, and fig. 7 , arms of style and ditto; fig. 8 , achæonium :--all magnifed.
19. Senecio acanthifolius, Homb. et Jacq. ; herbaceus, erectus, glabriusculus v. pubescens, caule simplici sulcato, foliis inferioribus longe petiolatis oblongo-ovatis basi cordatis secus margiues lobatis lobis grosse creuatis petiolis subalatis basi vaginantibus superioribus sessilibus semi-amplexicaulibus, capitulis corymbosis, involucri campanulati squamis glabriusculis sub 1 -seriatis. S. acantlifolius, Homb. et Jacq. Toy. au Pole Sud, Bot. Dicot. Phan. t. 11. S. Cineraria purpurascens et C. leucanthema, Banks ct Sol. MSS. in Mus. Banks. cum iconibus.

Hab. Strait of Magalhaeus; Hombron and Jacquinot. Port Famine, Capt. King; Good Success Bay ; Banks and Solander. South part of Fuegia, C. Daruin, Esq.; Hermite Islaud, Cape Horn, J. D. It.

Herba bipedalis, sylvicola, succulenta. Caulis subfistulosus. Folia inferiora una cum petiolo 6-8 unc. longa, lamina petiolo subæquilonga, lete viridis, subter sæpe discolor et purpurascens. Pedmenti unciales, bracteolis foliaceis subulatisquc aueti. Capitula $1-1 \frac{1}{2}$ unc. diametro, pallide straminea, disco intcusiore.

A very handsome species, abundant in the woods of Fuegia.
20. Sexecio cuneatus, Hook. fil.; herbacens, glaberrimus, caule ascendeute sulcato inferue folioso, foliis plerisque in ramis abbreviatis dispositis obovato-spathulatis basi culeatis in petiolum atteuuatis grosse et irregulariter deutatis subcoriaceis, caule superne longe undo apice corrmbifero, corymbo tricephalo, capitulis pedicellatis, pediccllis basi unifoliatis, iuvolucri campauulati squamis linearibus glaberrimis uniseriatis.

Hab. Strait of Magallacus ; Port Famine, Capt. King.
Caulis crassitie pennx anatinæ, herbaceus. Rami axillares, abbreviati, superiores elongati, floriferi. Folia patula, plana, subcoriacea, siceitate nigrescentia, $1 \frac{1}{2}$ unc. longa, $\frac{1}{2}$ lata. Pedunculus caule continuus, elongatus, nudus, 3 -uncialis, creetus, apice 3 -ceplalus. Pedicelli basi folio unico aucti, inferiorc unciali. Capitura $\frac{1}{2}$ unc. louga, $\frac{3}{4}$ lata, basi bracteolis paucis suffitu.

Apparently a most distinct species, of which I have but a very imperfect specimen, collected by Capt. King; it resembles the S. nigrescens H . and A ., of Sonth Chili, but the foliage is different.
21. Sexecio littoralis, (exclud. var. a, lanatus,) Gaud., in Ann. Sc. Nat. vol. v. p. 104, et in Freyc. Foy. Bot. p.468. D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 611. DC. Prodr. vol. vi. p. 412. Hook. Ic. Plant. t. 494. S. vaginatus, Hook. et Arn. in Bot. Journ. vol. iii. p. 331.

Hab. Falkland Islauls, very abundant ; Gcudichaud, and all subseqnent collectors.
As is stated under the S. Falklandicus, the rarieties a and β of S. littoralis belong to two very different species. The one for which I have retained the name, is generally a maritime plant, usually growing in marshy places and never altogether woolly, or more so in its youngest state than when older. The leares are extremely variable, straight or falcate, obtuse or generally acute, one line to nearly one third of an inch broad, strictly linear or oborato-lanceolate, sometimes, though rarely, obscurely simuato-dentate.

A fully grown plant of this is very handsome; I possess a specimeu only a foot high, and with a simple stem, thongh branching so copiously above as to bear upwards of a hundred flowers, all fully blown and each nearly an iuch and a half in diameter.

13. CIIEVREULTA, Cass.

1. Chetreulia lycopodioides, DC. Prodi. vol. vii. p. 45. Gnaphalium lycopodioides, D' Uville in Mém. Soc. Linn. Paris, vol. iv. p. 610. Gaud. in Freyc. Foy. Bot. p. 135.

Hab. Falkland Islands, on dry grassy places, rare; D'Ureille, J. D. II.
A scarce species, as far as I have observed iu the Falkland Islands, and excecdingly inconspicuous. My specimens are in an imperfect state.

14. NASSAUVIA, Comm.

1. Nassauvia suavcolens, Willd., Sp. Pl. vol. iii. p. 2396. Lam. Illust. Gen. t. 721. Brongu. in Duperrey Foy. Bot. Phan. t. 56. f. B. DC. Prodr. vol. vii. p. 49. N. Commersonii, Cass. Dict. Sc. Nat. vol. xxxviii. p. 457.

Hab. Strait of Magalliaens, Commerson; Port Famine, Capt. King.
2. Nassauvia serpens, D'Urville, in Mém. Soc. Limn. Paris, vol. iv. p. 610. Lessing in Linneer, vol. v. p. 4. Brongn. in Dıperrey Toy. Bot. Phan. t. 56. f. A. N. D'Urvillei, Cass. Dict. Sc. Nat. vol. xxxviii. p. 456. (Tab. CNIV.)

Hab. Falkland Islands, abundant, especially amongst loose quartz rocks on the hills; DP Uroille, Capt. Sulivan, Mi. Chartres, J. D. II.

A rery handsome and singular plant, almost eonfined to the "Streams of stones," which are those curious tracts of land covcred with loose blocks of quartz, abounding in some parts of the Falkland Islands. There the Nassuucia serpens grows, sending its brittle stems, sewcral fathoms long, down amongst the masses of rock, till they reach the soil, often at a considerable depth. The plant varies somewhat in the foliage, the leaves being suberect or recurved, and more or less silky.

Plate CXIV. Fig. 1, capitulum ; fig. 2, portion of receptacle and involucre; fig. 3, a floret; fig. 4, palea of the pappus; fig. 5 , stamens; fig. 6, achænium :-all magnified.
3. Nassauvia Gaudichaudii, Cassini, ex Gaulichaud in Amn. Sc. Nat. vol. vi, p. 103. D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 609. DC. Prodr. vol. vii. p. 50. Mastigophorus Gaudichaudii, Cassini, Dict. Sc. Nat. vol. xxxiv. p. 222. Gaud. in Freyc. Foy. Bot. p. 470. Homb. et Jacq. in Toy. au Pole Sud, Bot. Phan. Dicot. t. 16. f. G.

Hab. Strait of Magalhaens, MM. Hombron and Jacquinot. Falkland Islands, Gaudichaud, \&e.
A very ubundant species, cspecially in the Falkland Islands, on rocks near the sea. I have never seen Fucgian or Magellanic specimens.
4. Nassauvia pygmaa, Hook.fil. Triaclme pygmæa, Cass. Bull. Philom. 1818, p.48. Dict. Sc. Nat. vol. xxxiv. p. 291. et vol. lv. p. 182. Lessing Synops. p. 397. DC. Prodr. vol. vii. p. 50. Crymatea rigida, Banks et Sol. MSS. in Mrus. Banks. cum icone.

Hab. Strait of Magalhaens, Commerson; Port Famine, summit of Mount Tarn, Capt. King; Good Success Bay, Bantis and Solunder; south part of Tierra del Fuego, C. Daruin, Esq.

In general appcarance the present plant so closely resembles N. Gaudichaudiz, that at first sight it is difficult to distinguish them. Cassini describes the flowers as apparently yellow; but Mr. Anderson, who collected the plant during Capt. King's voyage, meutions that they are white. The genus Triachue, remarks De Candolle, hardly differs from Nassauvia, nor can I find any character by which to separate them.

15. PANARGIRUM, Lag.

1. Parargrruy Darwinii, Hook. ct Arm.; cæspitosum, basi ramosum appresse sericeum, ramis florentibus elongatis superne scapreformibus parce foliatis, foliis lineari-subulatis pungentibus integerrimis marginibns obscure revolutis, capitulis ad apices ramulorum capitato-congestis foliis subulatis bracteatis, pappo uniscriali plumoso. P. Darwinii, Hook. et Arn. in Comp. Bot. Mug. vol. ii. p. 43. an P. Lagasce, DC. Prodr. vol. vii. p. 54?

Hab. Strait of Magathaens; Port Gregory, Capt. King.
Caules basi hgnosi, ramis foliaceis $1-3$-uncialibus, tlorentibus bis longioribus. Folia $\frac{1}{2}-\frac{1}{3}$ unc. longa, sub $1-1 \frac{1}{2}$ lin. lata, erecta v. sub-patentia, utrinque scricea. Rami florentis pars superior stricta, crecta, teres, sublanuginosa. Capitulorum fasciculus $\frac{1}{2}-1$ unc. diametro. Corolle conspicuæ, albidæ?

A very distinct species, also found at Port Desire by Mr. Darwin. The woody group of Nassauria, to which the present plant belongs, is ncarly peculiar to South America, and to the drier parts of that contment, especially of South Chili and Patagonia; they do not cross the Strait of Magalhaens ou the western side, but on the east a few stretch down to Port Gregory, Staten Land, and the Falkland Islands. I have appended the description of an allied Patagonian plant, which forms a new genus.*
2. Pavargyrem abbreriatum, Hook. et Arn.; crespitosum, glabriusculum, basi ramosum, substoloniferum, foliis imbricatis rigidis patenti-recurvis linearibus acuminatis mucrouatis integerrimis glaberrimis basi vaginautibus axillis sericeis, capitulis ad apices ramorum congesto-capitatis sessilibus, pappo plumoso. P. abbreriatum, Hook. et Arn. in Comp. Bot. Mag. vol. ii. p. 43.

Hab. Strait of Magalhaens; Port Gregory, Capt. King.
Rami unciales, suberecti r. prostrati, foliosi. Folia $\frac{1}{2}$ unc. longa, planiuscula r. super concara, dorso medio costata, superiora interdum subspathulata, marginibus incrassatis, ragina basi subciliata. Cupitulorum fascicnlus hemisphæicus, 1 unc. diametro. Pappus involucrun superans plunosus.

I hase seen only one specimen of this species, gathered by Capt. King; it is very distinct from its congeners.

* TRLANTHUS, N. G.

Capitulun radiatiforme, compressum, æqualiflormm, sub3-florum. Inrolucrum biseriale; squamis paucis; exterionbns orato-lanccolatis, acuminatis, pungentibus, carinatis; interionibus l-2, planiusculis, lineari-oblongis, acuminatis. Receptaculum parrum, nudum, papillosum. Flores hermaphroditi. Corolla labio exteriore late oblongo, apice tridentato ; interiore linguæformi, revoluto, integerimo. Achenia ob-pyramidata, erostria, rillosa. Pappus 1-serialis, paleaceus, caducus: paleis 3-ǒ, linearibus, angustis, inferne gradatim attemuatis, apice acutis, marginibus ciliato-plumosis.-Herba lignosa, depressa, ramosa, glabriuscula, Triptilioni affinis. Folia subulata, patenti-recurca, pungentia, basi imbricata, late raginantia, coriacea. Capitula ad apices ramulorum solitaria, inter folia sessilia. Corollæ albide.

1. Trianthes ulicinus, Hook. fil.

Hab. Patagonia; Cape Fairweather, Capt. King.

16. CHABREA, $D C$.

1. Cifabrea purpurea, DC. ìn Ann. Mus. vol. xix. p. 65.t.5. Mém. Labiatifl. p. 13.t. 3. Lasiorrhiza purpurea, Lessing, in Linnaa, vol. v. p. 11. Homb. et.Jacq. in Toy. au Pole Sud, Bot. Monocot. t. 4. H. Lcuchreria purpurea, Hook. et Am. in Comp. Bot. Mag. vol. ii. p. 43. Perdicium purpureum, Tahl, in Skrict. Nat. Sclsk. vol. i. t. 3.

Hab. East coast of Tierra del Fuego, C. Darwin, Esq. Strait of Magalhaens, MM. Hombron and - Fucquinot.

This species is also found on the S.E. coast of Patagonia.
2. Chabrfa suaveolens, DC. Prodr. vol. vii. p. 59. Hook. Ic. Plant. t. 496. Perdicium suaveolens, D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p. 611. Gazu. in Freyc. Toy. Bot. p. 135. Lasiorrhiza ceterachifolia, Cassini, Dict. Sc. Nat. vol. ribii. p. S0. Lessing in Limncea, vol. v. p. 11. L. viscosa, Cass. l. c. p. 81. Leuchæria gossypina, Hook. et Arn. in Comp. Bot. Mag. vol. ii. p. 43. "Plante à odeur de Benjoin," Pernetty Tay. vol. ii. p. 57. (Tab. CXI.)

Hab. Falkland Islands, abundant; D'Ureille, and all succeeding voyagers.
The odour of this plant, which is a great ormament to the grassy hills of the Falkland Islands, is decidedly that of Benzoin. It varies rery much in stature and in woollincss or pubescence.

Plate CXI., right hand figure. Fig. 1, floret:-magnified.

17. MACRACIENTUM, Hook.fl.

Capitulum multiflorum, homogamum. Ineolucrum anguste campanulatum, squamis lineari-subulatis acuminatis sub-biserialibus exterioribus brevioribus. Receptuculum epaleaceum. Corolla omnes glaberrimæ, hermaphroditæ, gracillimæ, breviter bilabiatæ, lobo cxteriore 3-dentato 3-partitove, interiore bipartito, lobis revolutis. Anthere elongatæ, basi bisetosæ, apice appendiculatæ, filamento geniculato sensim incrassato. Stylus ramis elongatis apice obtusis non truncatis. Achcenium elongatum, cylindraceum, erostre, glaberrimum, striatum. Pappus setis subbiseriatis basi liberis longe plumosis.-Herba Magellanica, Chabrææ affinis, subacaulis, scapigera. Folia runcinato-pinnatifilla, subter lanata. Scapus erectus, elongatus, gracilis, monocepluatus.

1. Macrachentum gracile, Hook. fil.

Hab. Strait of Magalhaens; Port Famine, Capt. King.
Radix caulisque basis desunt. Folia longe petiolata, petiolo gracili, 2-3 unc. longo, alato, basi sensim in raginam lanceolatam dilatato; lamina oblonga, membranacea, 2 unc. longa, 1 lata, rumeinato-pinnatifida, lobis 4-6, hic illic grosse angulato-dentatis, super obscure puberulis, subter lana rufescente obtectis. Scapus 2 -perdalis, gracilis, erectus, nudus, r. bracteolis 1-2 subulatis auctus. Capitulum nutans, 1 unc. longum. Inwolucrum basi conicum, squamis lauatis. Corollce tubus $\frac{1}{2}$ unc. longìs, gracillimns, teres, glaberrimus, labiis vix 2 lin. longis valde inconspicuis. Authere breviter exsertæ. Pappi sette pallide rufescentes, patulæ. Achenium corollæ æquilongum.

I have seen only one specimen of this fine plant, which resembles a Chaptalia in habit, but appears most nearly related to Chabrea.

18. CLARIONEA, Lag.

1. Clarionea Magellanica, DC. Mém. Mus. vol. xix. p. 65. 1. 3. Clarionella Magellanica, Momb. et

Jacq. Foy. an Pole Sul, Bot. Dicot. t.10. f. T. Perezia Magellanica, Lagasc. Amen. vol. i. p. 31. Cassini, Opusc. vol. ii. p. 16t. Hook. et Arn. in Comp. Bot. Mag. vol. ii. p. 42. Perdicium Magellanicum, Limn. fil. Suppl. p. 376. Tahl, in Skriet. Nat. Selsk. vol. i. p. 10. t.4. P. sinuatum, Bankis et Sol. MSS. in Bibl. Banks. cum icone. (Tab. CXI.)

Hab. South Chili and Fuegia. Cape Tres Montes, alt. 2,000 fcet, C. Darwin, Esq. Port Fumine, Capt. King. Hermite Island, Cape Horn, J. D. II. Staten Land, Dr. Lights and Mr. Welster.

Very variable in size, from two inches to a span or npwards.
Plate CXI., left hand figure. Fig. 1, floret; fig. 2, seta of pappus; fig. 3, stamens ; fig.4, arms of style :all magnified.

19. HOMOIANTHUS, $D C$.

1. Homolanthus echimulatus, Cass. in Dict. Sc. Nat. vol. xxxviii. p. 45S. DC. Prodr. vol. vii. p. 65. Hook. Ic. Plant. t. 491. Homanthis echinulata, Homb. et Jucq. Toy. aut Pole Sud, Bot. Dicot. t. 10. f. S. Perezia recurvata, Lessing, in Linnaa, vol. v. p. 21. Synops. p. 412. P. Doniana, Less. Synops. p. 412. Perdicium recurvatum, Faht, in Skrirt. Nat. Selsh. vol.i. p. 13. t. 7. Gand. in. Ann. Sc. Nat. vol. vi. p. 103. et in Freye. Toy. Bot. p. 135. D'Urville in Mém. Soc. Limn. Paris, vol. iv. p. 611. non Don, et Pappig. Chretanthera recurvata, Spreng. Syst. Teg. vol. iii. p. 503. Clarionea recurvata, Don, in Linn. Soc. Trans. vol. xvi. p. 206.

Hab. Strait of Magalhaens, Commerson. Port Famine and Port Gregory, Capt. King. Falklaud Islands, very abundant, Gaudichaut, Cupt. Sutivan, and all succeeding voyagers.

Rather a variable plant in size, in the glandular pobescence, in the number and size of the spinule on the leaves, which are in a single or double row, in the sharpness or bluntness of the leaves, and somewhat also in the form of the involucral scales. It is one of the most interesting plants of the Falkland Islands from the very swect scent of its large pale-bluc flowers, which has been compared to Jessamine and to Violets; it generally grows near the sea in rocky places, and has also been found on the S.E. coast of Patagomia. The II. Beckii (Perezia, Hook. ct Arn.) of Patagonia is very nearly allied to this, but readily distinguished by the longer spinulose apex of the narrower leaves, and the recurved lower scales of the involucre. The leaves of the latter are exceedingly variable, sometimes wholly without marginal spinule, at others crested with white equidistant spinules much longer than those of $I I$. echinulatus.
2. Homoraxthus Magellaniers, DC., Prodr. vol. vii. p. 65. Aster Magellaniens, Lam. Illust. Gen. t. 681. f. 3. Perdicium lærigatum, Bantis et Sol. JISS. in Mus. Bunks. cum icone.

Var. β, lactucoides, duplo major, foliis panlo angustioribus. Perdicium lactucoides, Fahl, in Shrivt. Nat. Selsk. vol. i. p. 11. t. 5. Clarionea lactucoides, Don, in Lim. Soc. Trans. vol. xvi. p. 200. C. glaberrima, Cuss. Opusc. vol. ii. p. 165. Perezia lactucoiles, Lessing, Synops. p. 413.

Hab. Strait of Magalhacns, Commerson. Port Famine, Capt. King. Cape Negro, C. Darwin, Esq. Good Success Bay, Banks and Solander.

Two plants of very different stature have been brought together by De C'andolle under the name of II. Magellanicus; except however in size, I am unable to distingnish them. Lamarch's fignre is highly eharacteristic of the smaller varicty, and Cassini's and Lessing's deseriptions of the larger. The variety β alone is in Mr. Darwin's Herbarium, the other collections contain both. Sir J. Banks' specimen of the largest state is upwards of two feet high.
20. ACHYROPHORUS, Scop.

1. Achyrophonus temifolius, DC.; glabrinsculus v. subaraneosus, caule simplici, foliis gramineis ommibus radicalibus filiformibus v. angustissime lineari-spathulatis lineari-lanecolatisve integerrimis sinuatis piunatifidisve segmentis patentibus remotis linearibus, scapo monocephalo, involucri ovato-campanulati squamis linearibus lineari-lanceolatisve acuminatis plus minusve araneo-tomentosis basi sparse hispido-pilosis. A. tenuifolius, DC. Prodr. vol. vii. p. 94. Seriola tenuifolia, Hook. ct Ara. in Comp. Bot. Mag. vol. i. p. 31. S. incana, Hook. et Aru. l. c. vol. ii. p. 42. Oreophila tenuifolia, Don, MSS.

Hab. Strait of Magalhaens; Port Gregory, Capt. King. Elizabeth Island, C. Darvin, Esq.
A rery variable species in the foliage, which is narrow and grass-like. Mr. Darwin has gathered a variety at Port St. Julian on the Patagonian const, with rather larger eapitula, but which does not appear otherwise distinct ; it is Seriola incana, H. and A. It has also been collected by Capt. King at Cape Fairwenther.
2. Achynophorus arenarius, Gand.; parce hispido-pubescens v. glabriusculus, radice elongata collo 1-3-cephato, fohis omnibus radicalibus lineari-obovato-lanceolatis interdun anguste lineari-elongatis longe petiolatis obtusis acuminatisve sinuato-dentatis pimnatifidisve, scapo foliis longiore monocephalo modo foliisve 1-2 aucto, involucri campanulati squamis araneo-tomentosis glabratisve exterioribus parce hispido-pilosis. A. arenarius, DC. Prodi. vol. vii. p. 95. Hypochocris arenaria, Gaud. in Ann. Sc. Nut. vol. v. p. 103, et iut Freyc. Foy. Bot. p. 134 et 461. D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p.609. H. mimima? IFilld. D'Urv. l.c. Seriola apargioides, Less. Hook. et Arn. in Comp. Bot. Mug. vol. ii. p. 42. (Tab. CXII. Dissection.)

Hab. Strait of Magalhaens, Port Gregory, Capt. King. Falkland Islands, Gaudichaul, D'Uiville, C. Darwin, Esq., J. D. H.

This again is a highly variable plant, the majority of the Falkland Island specimens scarcely agreeing with Gaudichaud's description (as given in Freyeinet's Toyage), in which the peduncles are said to be clongated and branched, though in the notes on the species, M. Gaudichaud states that they are either branched or simple. Sinall specimens entirely coineide with D'Urville's character of $I I$. mimima? Willd. The other species of this genus, as $I I$. apargioides, and I. taraxacoides, are, however, so variable that the character of the single or many-flowered peduncle loses its value as a mark wherely to distinguish them.

Plate CXII., middle dissections. Fig. 1, plumose pappus; fig. 2, ripe achænium, transrersely rugose:-both magnified.

21. TARAXACUM, Hall.

1. Taraxacum dens-leonis, Desf.; Leontodon Taraxacum, Lina. Sp. Pl. n. I12a.

Var. lecrigatum. T. levigatum, DC. Cut. Mort. Monsp. p. 149. Prodr. vol. vii. p. 146. D'Ure. in Mém. Soc. Limn. Paris, vol. iv. p. 604. Gaud. in Freyc. Ioy. Bot. p. 131. Leontodon Lycodon, Bunks et Sol. MSS. in Mus. Bunks. cum icone. (Tab. CXII.)

Hab. Fuegia, Good Snccess Bay, Bunks and Solander. Falkland Islands, D'Urville, J. D. II.
This variety has also been colleeted at Port St. Julian on the Patagonian coast, by Mr. Darwin.
Plate CNII., right hand figure. Fig. l, floret; fig. 2, stamen; fig. 3. seta of pappus; fig. 4, ripe achæuium: -all magnified.

22. MaCRORHYNCIIUS, Less.

1. Macrorifynchus prmilus, DC.; parce rillo albido hirsutus, foliis anguste lineari-elongatis subgramiueis integerrimis sinuatis runcinato-pinnatifidisve, scapo folis longiore, involucri squamis linearilanceolatis foliaceis extus glanduloso-hispidis. M. pumilus? DC. Prodr. vol. vii. p. 152. Taraxacum pumilum ct T. coronopifolium, Gaul. in Ama. Sc. Nat. vol. v. p. 103, et in Freyc. Toy. Bot. p.461. D'Uro. in Mén. Soc. Linn. Paris, vol. iv. p. 609. Macrorlynchus Chilensis, Hook. et Arn. in Comp. Bot. Mag. mol. ii. p. 42. Ixeris monocephala, Cass. in Dict. Sc. Nat. vol. xxxix. p. 359. Leontodon pubescens, Bunhis et Sol. MISS. in Mus. Baniss cum icone. (Tab. CXII, sub nom. MI. coronopifolius.)
$H_{\Delta B}$. Falkland Tslands, grassy places near the sea; Gaudichaul, D' Urville, C. Darvin, Esq., J. D. I.
This, again, appears a rery Protean plant in the foliage, which is eutire, simato-piunatifid, or deeply pinnatifid with linear spreading segments. The plant varies from two to six iucles long, and bears one or many seapes, all the parts being more or less clothed with a soft subtomentose pubescence; it has also been form at Cape Fairweather ly Capt. King.

Plate CXII., left hand figure. Fily. 1, receptacle ; fig. 2, floret ; fig. 3, stamens; fiy. 4, achænium :-all magnified.

23. SONCHUS, L.

1. Soxchus oleraceus, Limn. Sp. Pl. n. 1116.

Hab. Chonos Arclipelago, C. Darvin, Esq.
Most probally migrated thither since the discovery of South America, from the adjacent coast. It is also naturalized in sereral parts of Patagonia.

24. HIERACIUM, L.

1. Hieracium Antarcticum, D’Urv.; stolonibus nullis, foliis radicalibus lanceolato-spathulatis obtusis subacutisve basi in petiolum attenuatis obscure sinuato-dentatis glaberrimis v. parcissime pubescentibus caulimis paucis linearibus dentatis, caule nudiusculo pratentim glanduloso-piloso superne subvilloso 2-3-floro, pedicellis obscure araneosis, involucri campanulati squamis linearibus pilis atris elongatis dense vestitis. II. Antarcticum, D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p. 60s. Gaud. in Freyc. Toy. Bot. p. 134.

Hab. Falkland Islants, $D^{\prime} C^{\prime}$ 'riville; rocky places near the sea, J. D. H.
Folia exemplaribus Falklandieis uncilia, Patagonieis 3-4-pollicaria. Cautis 4-6 unc. longus. Involucrumz $\frac{1}{2}$ unc. lougum.

I have deseribed this speeies partly from my orn specimens, which are rery imperfect, and partly from others gathered in Patagonia (Cape Fairweather) by Capt. King, where a seeond species occurs of which a diagnosis is suljoined.*

* Hieracium Patagonicum, Hook. fil.; totum pilis patentibus hirtum, stolonibus mullis, foliis radicalibus oblougolanceolatis subaeutis integerrimis in petiolum attenuatis eaulinis paucis sessilibus angustioribus obscure et remote dentatis, caule crecto snbuudo apiee panieulatim ramoso, peduneulis pedicellis squamisque iurohucri linearibus pilis atris rigidis patentibus subsetosis.

Hab. Patagomia; Cape Fairweather, Capt. King.
Plunta pedalis. Folia pauca, 6-uncialia. Panicula 6-8-flora. Involuera $\frac{1}{2}$ unc. longa.-H.gracili, Hook., Americe borealis, affiuis.

XXVI. STYLIDIEÆ, Juss.

1. FORSTERA, L.

1. Forstera muscifolia, Willd., Sp. Pl. vol. iv. p. 148. DC. Prodr. vol. vii. p. 338. F. uliginosa, Homb. et Jacq. in Toy. an Pole Sud, Bot. Phan. Dicot. t. 16 D. Phyllachne uliginosa, Forster, Comm. Goett. vol. ix. p. 24. Swartz in Schrad. Journ. vol. ii. p. 173. t. 1, et in Koenig and Sims Annals of Bot. vol. i. p. 286. t. 5. Lamarck Illust. Gen. t. 741. Journ. Hist. Nat. p. 190. t. 10. f. 2. Stibas, Commerson, MLSS.

Hab. Strait of Magalhaens, Commerson, MM. Hombron et Jacquinot; Fnegia, Good Success Bay, Banks and Solander, Forster, C. Darwin, Esq.; Port Famine, Capt. King; Hermite Island, Cape Horn, J. D. II.

For remarks upon this species, see Part 1. p. 39 of the present work. Like the Donatia, a plant which, from the nature of the soil, climate, and regetation of the Falklands, might be expected to have been met with there, accompanying the Cattha appendicutata and Astelia pumila.

XXVII. LOBELIACEE, Juss.

1. PRATIA, Gaud.

1. Pratia repens, Gaud. vid. ante Part 1. p. 42. in note.

Hab. Fuegia, Staten Land, Dr. Eights; Falkland Islands, Gaudichaud, D' Urville, and all succeeding $_{\text {a }}$ voyagers.

Since the publication of the synopsis of this genus, in the first part of the present work, I have examined a new species from the Straits of Magalhaens, also inhabiting the eastern side of the Andes of Chili, specimens of which, from the latter locality, were then considered to be the true P. repens, which, so far as I am aware, is a native of the Falkland Islands, Staten Land, and Valparaiso only.
2. Pr.ıtia longiflora, Hook. fil.; glaberrima, caule breviusculo repente subsimplici, foliis paucis erectis carnosis louge petiolatis ovatis obtusis integerrimis v . obscure sinuatis, pedunculis fere terminalibus folio æquilongis ebracteatis, calycis segmentis ovatis acntis, corollæ tubo cylindraceo elongato lobis patentibus triplo longiore.

Hab. Strait of Magalhaens; Cape Negro, C. Darwin, Esq.
Herba laxe cæspitosa. Coulis diametro pennæ passerinæ, 1 unc. longus, repens, nodosus, apice ascendente. Petioti basi raginantes, $\frac{1}{2}-1$ muc. longi, crassiusculi, erecti. Folia magnitudine raria, $\frac{1}{4}-\frac{3}{4}$ uncialia, subcoriacea, enervia. Pedunculi ex axillis supremis orti, validi, infra florem gradatim incrassati. Ovarium late oblongum, giblosum. Calycis dentes erecti sub $\frac{1}{2}$ lin. lougi.

Very nearly allied to the former, but differing in the short stems and much smaller and narrower foliage, and most materially in the narrow cylindrical tube of the corolla, which is far longer than the segments, and nearly four times as long as broad. Mr. Bridges has gathered specimens in the marshes of El Talle de las Cuevas, on the eastern side of the Andes of Chili.

XXVIII. GESNERIACE®, Nees.

1. MITRARLA, Car.
2. Mitraria coecinea, Cavanilles, Icones, vol. vi. p.67. t. 579. DC. Prodr. vol. vii. p. 537.

Hab. Chonos Archipelago, C. Darwin, Esq.

XXIX. ERICEE, Br.

1. PERNETTYA, Gaud.

1. Pervetty mucronata, Gaud. in Ann. Sc. Nat. vol. r. p. 102. in note. DC. Prodr. vol. vii. p. 557. Hombr. et Jacq. in Toy. au Pole Sud, Bot. Phan. Dicot. t. 2d. X. Y. Z. Arbutus mucronata, Jinn. fil. Suppl. 230. Forst. Comm. Goett. vol.ix. p. 31. Lamarck, Illust. t. 366. f. 7. Graham, in Bot. Mag. t. 3093. Lindlcy, Bot. Reg.t. 1675. Lodd. Bot. Cab. t. 1818. A. rigida, Banks ct Sol. MSS. in Bibl. Banks. cum icone.

Hab. Strait of Magalhaens, Commerson; Fuegia, Bantis and Solander, and found by all succeeding voyagers, throughout that country.

One of the most abmadant of Fuegian plants, exceedingly variable in the size of its foliage. Owing, apparently, to the puncture of an insect, the apices of the ramuli in the present and following species frequently assume the form of cones, being covered with densely imbricated leaves so metamorphosed as cxactly to resemble the scales of aul Abies.

Though Protean in its foliage, this species is very confined in its geographical limits, adranciug no further north than Cape Fairweather, on the east coast of Patagonia.
2. Pervettya mumila, Hook.; humilis, glaberrima, subcæspitosa, ramosa, caulibus prostratis vel suberectis, foliis imbricatis sessilibus oratis acutis obtusisve concavis subter carinatis marginibus subtilissime cartilagineo-serrulatis, pedicellis axillaribus arcuatis folio æquilongis longioribusve 1-floris basi bracteolatis.

Var. a, minor, foliis densius imbricatis obtusis. P. pumila, Hook. Ic. Plant. t. 9. DC. Prodr. vol. vii. p. 556. Homb. et Jacq. in Toy. au Pole Sud, Bot. Dicot. t. 2コ. S et T. Arbatus pumila, Limr. fil. Suppl. 11. 239. Forst. Comm. Goett. vol. ix. p. 32. Indromeda humilis, Banks et Sol. MSS. in Bibl. Banks. cum icone.

Tar. β, cmpetrifolia, foliis laxe imbricatis angustioribus subacutis obtusisve. P. empetrifolia, Gaud. in Ann. Sc. Nat. vol. v. p. 102. Freyc. Toy. Bot. p. 454. t. 67. D'Urrille in Mém. Soc. Linn. Paris, vol. iv. p. 607. DC. Prodt. vol. vii. p. 586. Audromeda empetrifolia, Lamk. Encycl. vol. i. p. 155. Arbutus empetrifolia, Linn.fil. Suppl. v. 239. Bruyère à feuilles pointues," Pernetty, Toy. t. 2. p. 64.

Hab. Var. a. From Cape Tres Montes (Tatch Cove, alt. 2,000 feet), on the west coast of South Chili to Cape Horn, and in the Falklaud Islands, Commerson, Bants and Solander, Forster, and all succeeding voyagers. Var. β. South part of Tierra del Fuego, Forster, C. Durwin, Esq., J. D. II. Falkland Islands, most abundaut.

The tro plants here united under one specific name are decidedly mere varieties. The β. empetrifolia is by far the most abundant, and its prostrate stems sometimes attain the length of two feet. Var. minor, in its smallest
state, appears, at first sight, sufficiently distinet; but it often runs out to a considerable length, when the leaves become muth more laxly imbricated.

Both pink and white berries are found on this species; also cones, similar to those described under P. mucronata, and diseased ramuli, densely eovered with minute, erect, linear leaves.

Dr. Gillies' Arbutus raccinioides, from the Andes of Chilh, whieh appears identical with Poeppig's A. leucocarpu (Perrettya, DC.), is most likely another form of this plant, the length of the pericels affording no character either in the flower or fruit.

2. GAULTHERLA, Kalm.

1. Gadlfheria microphylla, Hook.fil.; pumila, ramosa, ramis gracilibus setosis, foliis late oratis v. oblongis obtusis marginibus incrassatis obscure serratis, pedicellis axillaribus brevibns fasciculatis unifloris recurvis, fructibus globosis vel turbinatis. Pernettya serpyllifolia, DC. Prodi. vol. vii. p. 557. Arbutus serpyllifolia, Lam. Encyel. vol. i. p. 22s. A. microphylla, Forst. Comm. Goett. vol. ix. p. 32. (Tab. CXII. sub nom. G. Antarcticæ).

Hab. Strait of Magallhaens, Commerson ; Port Famine, Capt. King. Good Success Bay, Bankis and Solander; Staten Land, Webster ; Hermite Island and East Falkland Island. J. D. II.

Suffinticulus $3-4$-uneialis, vage ramosus, ramis gracilibus subfiliformibns rufo-brumneis paree setosis. Folia sparsa, brevissime petiolata, coriacea, glabenima, 2-3 lin. longa, lete virilia, nitida. Flores parvi; eorolla globosa, alba. Bacca pallide rosea, foliis æquilonga.

When figuring this species, I gave it the trivial appellation of Antarctica, not being aware of its identity with Pernettya serpyllifolia, DC., and Arbutus serpyllifolia, Lam., all which names must yield to that of G. microphylla, the plant being undoubtedly the little-known Arbutus microphylla of Forster.

The genera Gaultheria and Pernettya are the representatives, in the ligh sonthern latitudes, of the Arbuti, of the family of Ericeece in the northern and Aretic regions.

Plate CXIt. Fig. 1, apex of flowering branch; fig. 2, flower; fig. 3, the same laid open; fig. 4, germen, lypogynous glauds and stamen; fig. 5, stamen ; fig. 6, longitudinal seetion of germen; fig. 7, transrerse section of the same; fig. 8, ripe fruit; fig. 9 , lougitudinal section of the same; fiy. 10 , secd; $\mathrm{fig}^{2} .11$, longitudinal section of the same; fig. 12, seed with outer testa removed; fig. 13, longitudinal section of the same; fig. 14, embryo:all magnifeed.

XXX. EPACRIDEE, Br.

1. Lebetanthus, Endl.

1. Lebetanthus Americanus, Endl. MISS. in Enchirid. Bot. Allodape Americana, Endl. Gen. Plant. p. 749. Walpers Repert. Bot. Syst. vol. ii. p. 733. Prionotes Americana, Hook. Ic. Plant. t. 30 . DC. Prodr. vol. vii. p. 766 . Azalea bullata, Forst. MSS. in Mus. Banks. cum icone. Jacquinotia prostrata, Homb. et Jacq. Toy. au Pole Sud, But. Dicot. t. 22. R.
$H_{\text {AB. }}$. Strait of Magalhaens, Port Famine, Capt. King; and thence sonth throughout the wooded portion of Fuegia and Staten Land, Forster, C. Darvin, Esq., Mr. IFebster, Sce.

It is certainly very remarkable that the sole American representative hitherto notieed of the order Eppacridec, is also among the very few that so deriate from onc of the most important diagnostic characters of that orler, as to present a distiuctly two-celled antler. Labillardière rightly descriled the stamens of the Tasmanian Prionotes
cerinthoides, Br., as having this strueture, and it is a singular circumstanee that these two plants, which, through their biloeular anthers and hypogynous filaments, completely unite the Ericea of the northern hemisphere with their southern representatives in Australia, the Epacridea, are both natives of very humid climates and densely wooded regions, and not of such localities as the majority of cither Order (but especially the Epacridea) affect.

The subscandent habit of L. Americanus is very peculiar; it grows on the trunks of trees, and often creeps up them for some feet. This is also the case with some other distichous-leaved Antarctic plants, as Callixene, and Luzuriaga, and with the Prionotes and Decaspora of Tasmania.

XXXI. GENTIANE®, Juss.

1. GENTTANA, L.

1. Gentiana Magellanica, Gand. in Ann. Sc. Nat. vol. v. p. S9, et in Freyc. Toy. Bot. p. 134. D'Urville, in Mém. Soc. Lim. Paris, vol. iv. p. 607. Grisebach, Gen. et Sp. Gent. p. 237, et in DC. Prodr. vol. ix. p. 99.

Hab. Strait of Magalhaens; Port Famine, Cupt. King; south part of Euegia, C. Darwin, Esq. Falkland Islands, Gaudichaud, D'Urville, Mr. IFright, J. D. II.
2. Gentiana Patagonica, Grisebach, Gen. et Sp. Gent. p. 237, et in DC. Prodr. vol. ix. p. 99. (Tab. CXV. sub. nomine G. Magellanica).

Var. β, Darwinii, Griseb. l. c.
Hab. Strait of Magalhaens; Elizabeth Tsland, C. Darwin, Esq.
I can hardly consider Mr. Darwin's specimens to be even a variety of the plant eollected by Capt. King at Cape Fairweather (not Port Jamaica, vid. Griseb.), on the coast of Patagonia.

Except the rather broader and more obtuse segments of the less deeply divided calyx, there is nothing to distinguish this from the Tasmanian and New Zealand G. montana, Forst.

Plate CXV. (under the name of G. Mayellanica). Fig. 1, flower; fig. 2, stamen; fig. 3, germen; fig. 4, ripe fruit; fig. 5 , sced; fig. 6 , the same with the testa removed:-all magnified.
3. Gentiana prostrata, Haenk. in Jacq. Coll. vol. ii. p. 66. t. 17. f. 2. Griseb. Gen.et Sp. Gent. p. 271, et in DC. Prodi. vol. ix. p. 106.

Hab. Strait of Magalhaens; Cape Negro, C. Darwin, Esq.
For the widely extended gcographieal distribution of this little speeies, see Part 1. p. 56. of the present work.

XXXII. CONVOLVULACEE, Juss.

1. CALYSTEGLA, Br.

1. Calystegla sepium, Br., Prodr. p. 483. Engl. Bot. t. 313. Choisy in DC. Prodr. vol. ix. p. 433. Hab. Chonos Archipelago, C. Darwin, Esq.
This plant, the common English Bind-weed, is universally diffused throughout the temperate regions, both of the northern and southern hemispheres. In the latter it inhabits New Holland, New Zealand, and the Island of Jara, aecording to M. Choisy, in DC. Prodr. l. c.

XXXIII. BORAGINEE, Juss.

1. MYOSOTIS, L.

1. Mrosotis albiflora, Banks et Sol. MSS.; caulibus e rhizomate valido plurimis prostratis gracilibus foliisque parce appresse pilosis, foliis radicalibus spathulatis petiolatis caulinis obovato-oblongis, floribus pancis axillaribus breviter pedicellatis calycibusque campanulatis appresse pilosis, corollæ tubo calycem superante limbi lobis late oblongis brevinsculis. M. albiflora, Banks et Sol. MSS. in Bibl. Banks. cum icone.

Hab. Fuegia, Good Success Bay, Banks and Solander. South part of Tierra del Fuego, C. Darwin, Esq.
Rhizoma crassum, $\frac{1}{3}$ unc. longum, fibras plurimas atras emittens, apiceque caules $5-8$ gerens. Coules 2 -unciales, prostrati, apice ascendentes, parce foliosi. Folia $\frac{1}{3}-\frac{1}{2}$-uncialia, $3-4$ lin. lata, apice obtusa, utrinque sed super prexcipuc pilis albidis appressis sparsa. Flores axillares, non racemosi, inconspicni, pedicellati; pedicello calyce requilongo, sub $\frac{3}{4}$ lin. longo. Culyw 5 -fidus, laciniis orato-lanceolatis, acutis, corolle tubo $\frac{1}{3}$ brevioribus. Corolla tubus teres, fauce glandulis fornicatis superue medio emarginatis fere clausa. Stamina inclusa. Stylus stigmate clavato terminatus.

In size and habit this little species closely resembles the M. Antaretica (Part 1. p. 57. t. 38), but it is a much slonderer, less rigid, and comparatively glabrous plant, with larger, though still very inconspicuous, and white flowers. It eridently belongs, by its prostrate stems and axillary flowers, to the New Zealand group of the genus, which, under the species alluded to, I have noticed as very different from that including the majority of the genus.

XXXIV. SOLANEE. Juss.

1. SOLANUM, L.

1. Solanum tuberosum, Linn. Sp. Pl. 2S2. Dunal, Monogr. p. 135.

Hab. Chonos Archipelago, C. Darwin, Esq.
The true Potato plant reaches the bonudary to which the Antaretic Flora of South America is confined, and is described as particularly abundant in the localities whence Mr. Darwin's specimens were brought. The nature of the prescnt work forbids my dwelling on some of the peculiarities which mark the history and habitat of this plant ; and I leave the subject with the less reluctance, because Mr. Darwin's own history of its discovery in an indisputably native state is already published in one of the most interesting 'Jomuals of a Naturalist' that has ever becn written. The following remarks apply wholly to the botanical affinities of the individual species now universally cultivated in all temperate civilized countrics.

Therc are in Sonth America several Solana, so closely allied to the true Potato, that it is exceedingly difficult to distinguish them specifically. Though differing materially in the shape of their calycine lobes, they display such variation in these organs, that no specific ralue can be attached to them alonc. The fruit may afford better characters, but that of many is at present unknown. The following is an enumeration of those South American Solana, allied to, or varieties of, the trine S. tuberosum, which exist in the Hookerian Herbarium. I shall commence with the specimens most similar to the common cultivated form.

Stirps I. S. tuberosum, L.

Var. 1, vulgare, planta pubescens, caule robusto, foliis amplis, calycis majusculi lobis e basi late ovata in acumen subelongatum productis.

Hab. Chonos Archipelago, C. Darwin, Esq. Specimens very huxuriant, altogether rescmbling wellgrown cultivated plants. Hills about Lima, J. Mac Lean, Esq.; several sub-varicties, marked as "yellow, mottled, white, or purple Potato"; but none are so luxuriant as Mr. Darwin's specimens. Juan Fernandez, Bertero; no flower ;-Mr. Bertero remarks that it is possibly wild, the roots being bitter.

Var. 2, macranthum, foliolis multi-4-8-jugis ovato-lanceolatis glabratis, corymbis glabriusculis, laciniis calycinis subulatis, corollis amplis $1 \frac{1}{2}$ unc. diametro.

Hab. Serras of Amancaes, Peru, Mathews, n. S47.
Var. 3, puberulum, foliolo terminali maximo, lateralibus parvis multoties minoribus, corymbis glabratis, calycibus minoribus glabriusculis, corollis amplis.

Hab. Puruchuca, Peru ; Mathews, n. $772 .^{2}$
Var. 4, multijugum, totum ut iu precedente, sed glabratum, foliolis æqualibus, lateralibus multijugis lanceolatis basi cordatis petiolulatis.

Hab. cum priore, Mathews, n. 771.
Var. 5, polemoniifolium, foliis incano-pubescentibus, foliolis plurimis parvis, calycis paulo minoris glabrati lobis brevioribus acutis.

Hab. Andes of Chili and Mendoza, Dr. Gillies.
This and the four preceding are all large-flowered states probably of the true Solamum tuberosum, npon the pubescence, or form and number of the leaflets of which no reliance is to be placed. If so, its range is from an elevation near Lima in Peru, to the level of the sea at Chonos Archipelago, and inland to the Andes of Mendoza in Chili.

Stirps II. S. Commersonii, Poir.

Var. 1, glabriuscutum, foliolo terminali lateralibus paucijugis majore, floribus majusculis, calycibus pubescentibus.

Hab. Buenos Ayres, Ticeedie; Valparaiso, Bridges, n. 401.
Apparently the plant figured in Hort. Soc. Trans. vol. v., p. 249. t. 9, 10, 11, from Commerson's own specimens.
Var. 2, pilosiusculum, foliis amplis, foliolis multijugis requalibus, floribus majusculis, calycibus pubescentibus.

Hab. Mountains of Mendoza, Dr. Gillies; "cult. ad Buenos Ayres sub nom. S. tuberosi," Merb. Mook.
Hardly different from the former variety. Apparently the S. tuberosum of Hort. Soc. Trans., the experiments upon which are there detailed.

Var. 3, glanduloso-pubescens, foliolis parvis ovatis basi cordatis petiolulatis.
Hab. Foot of the momntains of Mendoza, Dr. Gillies.
A smaller plant than either of the foregoing.
Var. 4, glabratum, foliolis paucijugis terminali majore, corymbo paucifloro, floribus minoribus:-an sp. distincta?

Buenos Ayres, in hedges, Dr. Gillies.

1 think there can hardly be a doubt that the largest-flowered plant, whose varieties I have included under the Stirps I., is the true cultivated Potato, a species, in its wild state, confined to the west of the Andes. Whether the S. Commersonii, which chiefly differs in the size of the flowers, be really distinct or not, is another question. Ranging as as it does from one side of the continent to the other, it may perhaps have some claims to be considered the type of the lotato, of which the large-flowered variety, now commonly cultivated with us, is confined, as just observed, to the Pacific side of South America.

That both produce tubers, called "Papas" and "Maglia," is evident, for the specimen from which the tubers were reared to the size of ordinary Potatos, in the Horticultual Society's Gardens, is certainly referable to the small-flowered Valparaiso plant, also collected by Bridges; and the large-flowered species of Lima presents the ordinary rarieties of the well-known regetable, as does the Chonos Archipelago and Mendoza one.

To show how little evidence is to be derived from the mere fact of the species producing tuberous roots, I may mention that there is a third plant, allied to both the former, and found over a great part of extra-tropical South America, bearing tubers, altogether similar to those of the two foregoing Solana. This I refrain from naming, though umable to ascertain that it is previonsly described, but it may readily be recognized by its great general resemblance to S. Commersonii, from which it dificrs in the small fruit, and in the short cupuliform or hemispherical calyx, whose lobes are short, broad, and rounded; while in other respects, as regards pubescence and size and form of the leaflets, it is as variable as the two former. I have seen specimens from Antuco (Reynolds), Valdivia (Bridges, 7 I9), Valparaiso (Cuming, 555), and Uraguay (Tweedie), to the last of which the collector has added on the ticket, "This bears a considerable quantity of nasty soft watcry Potatos at its root, called Papas Amargas, in consequence of their bitter tastc."

With regard to Mr. Darwin's specimeus, in producing an abundance of tubers they only follow the habit of Cardamine hirsuta and many other plants, when inhabiting such a soil as a shingly beach. In the absence of a bitter principle, evident in the wild tubers of the "Maglia" of the drier parts of South America, the Chonos Archipelago Potato may be compared with the Celery mentioned at p . 287 , whose insipidity I attribute partly to the dampness of the climate, and still more to the absence of the direct rays of the sun.

Professor Ilenslow, who has investigated the subject of the native Potato with his usual care and skill, agrees with me in cousidering this of Mr. Darwin's to be quite ideutical with the common cultivated Potato; and he further remarks the differcuces betwcen it and the "Maglia" of Chili, without, howerer, pronouucing them specifically distinct.

Thus, from the information I have been able to obtain, it appears very possible that the plant experimented upon in the Horticultural Society's Gardens, is cren specifically distinct from the common cultivated Potato, for it is certainly the small-flowered "Maglia" of Chili, and not the large-blossomed "Aquinas" of Chiloe and the Chonos Archipelago. It would be very interesting to introduce the tubers of Mr. Darwin's S. tuberosum, and the S. Commersonii (the latter both from the cast and west coasts), into our gardens; along with, if possible, the short-calyxed species, which is also stated by Mr. Tweedie to produce tubers.

Though I have spoken of these three Solana as all tuberous-rooted, it is more than probable that they are not always or necessarily so, and that the abscnce of those hybernacula does not indicate specific distinction. Mr. Cruikshanks, who has studied one of the above species in its cultivated state in Chili (probably the S. Commersonii), says of it, that the "Papas Amarillas," or lellow Potato of Peru, which was grown in the Horticultural Society's Gardens, is a variety of the Solanum tuberosum, differing from all other known rarieties of that species in its partiality for a particnlar climatc. Mr. Cruikshanks also remarks, "that it will not produce bulbs near the coast in Peru, nor at Valparaiso, but only on the higher parts and in a very few spots; but that further south in Chili, as near Valdivia, it is very productive." The explanation seems to be, that this yellow Potato, whether a species or variety, is dependent upon a moist and cool climate for the formation of tubers, or, as the inhabitants of Peru express
it, on the "tiemperamento de la Sierra". Hence, too, may arise their absence on Dr. Lindley's S. etuberosum, which is intermediate between two of Mr. Mathers' Pemrian states of S. tuberosum, having the foliage and colour of the flowers of his No. 817, which I have made the second variety of S. tuberosum, and the smooth panicle and small calyx of Matherrs' No. 771, or my fourth rariety of the same species.

Genus SOLANEIS relatum.

1. Desfontalnea spinosa, Ruiz et Pavon, Fl. Per. vol. ii. p. 47. t. 186. Don, in Ed. Journ. of Sc. 1531. p. 275. Hook. Ic. Plant. t. 33. D. splendens, M. B. K. Plant. EEquinoct. vol. i. p. 157.t.45.

Hib. Staten Land; Mr. Welster.
Much has been written regarding the affinities of this curions genus; for several reasons, I retain it near Sotanea, to which Order it was doubtfully refcrred by the authors of the "Plantes Equinoctiales," and more recently by M. Endicher. M. Kuuth afterwards suggested its relationship with Theophrastece, which Mr. Don had also suspected. The last-mentioned author has more recently arranged it in Gentianea, and is followed by Dr. Lindley, in 'The Vegetable Kingdom', who had previously placed it in Aquifoliacere (Nat. Syst. of Bot.). My omin impression is that its proper place is nearer to the order Ericece, an hypothesis strengthened by the observations of my friend M. Plauchon, who has studied this plant most attentively, and who pointed out its affinity with the anomalous genus Gatax, and particularly with the Arctic Emropean and American Diapensia Lapponica, in the position of the auther and some other points.

Capt. King's collection contains a very curions plant from Port Famine, which, from the nature of the fruit and testa of the umipe seeds, I presume, approaches Ericece, though wholly differing in habit and in some other points which ally it to Diapensia. Unfortunately all the specimens are out of flower, which I exceedingly regret, for it may aflord characters which will throw a light upou these and other obscure genera of Monopetalea. Its seeds are enclosed in a double testa, a structure which occurs, though rarely, in several orders of monopetalous Dicotyledons.

The geographical distribution of this curious genus is, like that of Gunera, very extended, from the Andes under the equator, alt. 12,000 feet, to the level of the sea at Staten Island, in lat. 53° south.

XXXV. SCROPHULARINEÆ, Juss.

1. CALCEOLARIA, L.

1. Calceolarla Fothergillii, Sol. in Ait. Hort. Kew. vol. i. p. 30. t. 1. Car. Ic. vol. v. t. 442. f. I. Bot. Mag. t. 315 . Benth. in LIC. Prodr. vol. x. p. 20s. C. Neeana, Spreng. Syst. Teget. vol. i. p. 44. (Tab. CXVIl., left-hand figure).

Hab. Strait of Magalhaens; Port Famine, Capt. King. Falkland Islands, very abondant.
Though very inferior in stature and beauty to most of its congeners, this is among the pretticst of the wild flowers of the Falkland Islands, and the attention of the royager who is familiar with the genus Calceolaria only in the conservatories of Britain, must be attracted by its appearance on the exposed shores of these inhospitable Islands. I have already mentioned several decidedly English plants, which are natives of this portion of the opposite hemisphere; iuteresting in themselves, they become still more so when contrasted with snch foreign-looking associates as the present, or the nodding bells of the Sisyrinchium, which sometimes whiten the plains, or the deeporange blossoms of the Falkland Island violet, invariably seen growing with this Calceolaria.

Plate CXVII., left hand figure. Fig. 1, ripe eapsules; fig. 2, transrerse section of the same; fig. 3, sced ; fig. 4, longitudiaal section of the same :-all magnified.
2. Calceolaria nana, Sm.; herbacea, glabra v. tenuissime viscoso-tomentella, caule brevissimo, foliis
petiolatis ovatis obtusis basi louge angustatis integerrimis crenulatisve, pedunculis scapiformibus unifloris, calycis minute viscoso-tomentelli laciniis late ovatis obtusis, corollæ labio superiore calyce parum breviore inferiore dependente obovato basi longe contracto ultra medium aperto. Benth. in DC. Prodr. vol. x. p. 208. Smith, Icon. ined. rol. i. p.1. t. 1. C. uniflora, Lam. Illust. Gen. t. 15. f. 3.

Hab. Strait of Magalhaens, Commerson. Port Gregory, Capt. King. $_{\text {a }}$
Caules $\frac{1}{2}-1$-pollicares, apice pedicellos $1-2$-snbtripollicares ferunt. Staminuen filamenta quam in affinibus longiora. Benth. l.c.

The foliage alone is insuffcient to distinguish this species from a small state of C. Fothergillii, but they are very dissimilar in the calyx and size of the corolla, the sepals of the former being very broad and almost cuenllate, covered extermally with a viscid yellow tomentum, while in C. nana, they are smallcr, narrower, and simply pubescent. The corolla of C. nana almost equals that of C. Darroiuii, to which, in every respect, it is nearly allied.

This species has been also fomend at Cape Fairweather by Capt. King.
3. Calceolaria Daroinui, Benth.; glabra, caule brevi, foliis late oblongis integerrimis vel remote paucidentatis in petiolum longe angustatis, pedunculis scapiformibus 1 - 3 -floris, calycis minute puberuli laciuiis late ovatis obtusis, corollæ labio superiore calycem subrequante inferiore dependente maximo late obovato basi longe contracto ultra medium aperto, antherarum loculis ovatis. Benthum, in DC.Prodr. vol.x. p. 207. (Tab. CXVII., right-kand figure).

Hab. Strait of Magalhaens; Elizabeth Island, C. Darwin, Esq.
Habitus C. polyrlizee, corollæ is C. Fothergillii forma similes sed majores, speciosx, maculatæ. Benth. l.c.
Much the handsomest species of the small section "Scapose," to which all the Antaretic Calceolarie belong. Though very distinct at frist sight froon the former, the individual parts are so liable to vary that it becomes almost impossible to draw up an absolute distinctive claracter. For instance, the leaves in one specimen have the same form as in a Cape Fairweather indiridual of C. nara, and, though more glabrous than in most states of the later plant, they are not univcrsally so ; the corollæa are quite alike in the two, and the difference in the length of the filaments is hardly appreciable. The calys of C. Darvoinii varies exceedingly in the size and form of its segments, they are sometimes large, broad, and obtnse, as in C. Fothergillii, or small and narrow like those of C. nana.

Plate CXTII., right hand figure. C. Daveinii, the natural size.
4. Calceolaria polyrhiza, Cav. Ic. Rar. vol. v. p. 25. t. 441. Benth. in DC. Prodr. vol. x. p. 207.

Hab. Falkland Islands; Neé.
Of this plant I have scen no Falkland Island specimens. It is also a native of Port Desire on the coast of Patagonia, where Mr. Darwin gathered it.
5. Calceolaria plantaginea, Smith, Icon. ined. vol. i. p. 2. t. 2. Hook. in Bot. Jlag. t. 2505. Lodd. Bot. Cat. t. 1402. Benth. in DC. Prodr. vol. x. p. 205. C. biflora, Lam. Eucycl. vol. i. p.556. Bea plantaginea, Persoon, Synops. vol.i.. p. 15.

Hab. Strait of Magallaens, Conmerson; Elizabeth Island, C. Darwin, Esq.
Very abuudant between the latitude of Valparaiso and the Strait of Magallaens, tlough confued to a marrow belt, which runs obliquely across the continent of South Amcrica, from lat. 33°, to lat. 53°. In the northern half of its range, between the parallels of Valparaiso and Chiloe, it is chiefly confined to the west of the Andes; in the southern half, between the latter locality and the Strait of Magalhaens, it crosses to the east side of South America; thus avoiding equally the wet, cold, and stormy latitudes of South-west Chili and Fuegia, and the aid plains of Patagonia.

2. LIMOSELLA, Linn.

1. Limosella aquatica, Linn. Sp. Pl. p. SS1. Engl. Bot. t. 357. Benth. in DC. Prodr. vol. x. p. 427.

Var. ß, tenuifolia. L. tenuifolia, Nutt. Gen. N. Am. vol. ii. p. 43. Gaudichaud, in Ann. Sc. Nat. vol. v. p. 102, et in Freyc. Foy. Bot. p. 133. D'Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 607. Benth. in DC. Prodr. vol. x. p. 427. L. australis, Brown, Prodr. p. 443.

Hab. Falkland Islands, Gaudichaud, J. D. II. Kerguelen's Land, J. D. II. $_{\text {I }}$
I am convinced there is no specific distinction between the Limosella aquatica, L., and L. temuiforia, Nutt., and have consequently nited them. In the specimens from the southern hemisphere which I have cxamined, the leaves do not attain the breadth which those of the northern temperate regions generally present ; though, on the other hand, both European, Asiatic, and North American plants of the L. aquatica have the foliage narrow as that of L. tenuifolia, to which variety some Arctic individuals of L. aquatica are quite similar.

The range of this species is nearly identical with that of Callitriche equatica and Montia fontana, and there is also a considerable resemblance in the mode and extent of their variation between these three plants. This is not remarkable with regard to Callitriche and Montia, which are very frequently scen associated together, invariably so in Kerguelen's Land, in the Falkland Islands, in Lord Auckland's Group and Campbell's Island, and thus are infuenced in common by every fluctuation of climate and temperature, and ly the depth or rapidity of the current, when growing in the water; but the Limosella does not occur mixed with these two genera, even though inhabiting the same islands.

In Kcrgueln's Land the Limosella is found in the muddy botiom of a lake, and probably flowers all the year round. I gathered it in the month of July (mid-winter), beneath two feet of water, covered with two inches of ice; even then it had fully-formed flowers, whose closely imbricating petals retained a bubble of air, the anthers were full of pollen and the oviles apparently impregnated. The climatc of Kerguelen's Land being such, that this lake is perhaps never dried, it follows that the plant has here the power of impregnation when ent off from a free communieation with the atmosphere, and supplied with a very small portion of atnospheric air generated by itself. My Falkland Island specimens are in a very poor state. Gaudichaud, who first detected it in that Island, considers it identical with the European plant.

3. TERONICA, L.

1. Teronica elliptica, Forst.; Fl. Ant. part 1. p. 58. V. deeussata, Ait. ct auctor.

Hab. Strait of Magalhaens to Cape Horn in Fuegia, Commerson, Banks and Solunder, and all succeeding vovagers. West Falkland Island, ehiefly on the southern and western coasts.
2. Teroxica serpyllifolia, Limi. Sp. Pl. p. 15. Engl. Bot. t. 1075. Goud. in Ann. Sc. Nat. vol. v. p. 102, et in Frcy. Foy. Bot. p. 133. D' Urv. in Mém. Soc. Liun. Paris, vol. iv. p. 607.

Hab. Falkland Islands, abuudant near the eolonized parts of the Islands; l^{\prime} Urville, Sc.
This species, in affecting principally the vicinity of the settlements and ground much frequented by cattle, was probably introduced originally from Europe into the Falkland Islands. It is found no where clse in the sonthern hemispherc, except the neighbourhood of Quito, where Mr. Kunth doubts its being indigenous, or in cqually equivocal situations.

4. OURISIA, Comm.

1. Ourisis Magellanica, Juss.; canle repente, foliis subradicalibus longe petiolatis cordato-oratis
orbiculatisve obtusis erenatis floralibus orbiculatis semiamplexicaulibus, pedunculis dissitis, calycis laciniis ovatis obtusiusculis ciliatis subbilabiatim connatis. Benth. in DC. Prodr. vol.x. p.492. Gertner, fil. de Fruct. vol. iii. p. 44, non Poepp. et Endl. Chelone ruelloides, Linn. fil. Suppl. p. 271.

Hab. Strait of Magalhaeus, Commerson; Good Suecess Bay, Banks and Solander; Staten Land, Mi. Welster.

Caules breves, erassiusenli uti petioli nervi foliorum et calycis margo pilis nonnullis patentibus ciliati; planta caterum glabra. Petioli $3-4$ poll. longi. Folia erassinscula, majora 2-21 pollicaria, cremis inæqualibus; floralia semi-pollicem lata. Racemus fere a basi scapi florifer. Pedicelli fructiferi ultra pollicares. Calycis lacinie 2-2 $\frac{1}{2}$ lin. late. Corolla 7-8 hin, longa, tubo amplo incurvo, limbi laciniis retusis. Capsula late orbiculata, compressiuscula. Benth.l.c.

This, of which I have seeu but a single specimen, must be one of the handsomest Fuegian plants; it is apparently very searce, for it does not cxist in the eollections of Capt. King or Mr. Darwin, nor have I nuyself gathered it.
2. Ourisia breriflora, Benth.; humilis, pilosa, caule ascendente foliato 2-4-floro, foliis petiolatis ovatoorbiculatis basi trucato-subcordatis tloralibus sessilibus ovatis, calyeis segmentis liueari-oblongis tubo corolle longioribus. Benth. in DC. Prodr. vol. x. p. 493. (Tab. CXVIII. sub nomine O. Antarctice).

Hab. Strait of Magalhaens, Port Famiue, Capt. King ; South part of Tierra del Fuego, C. Darwin, Esq. Hermite Islaud, in elefts of rocks on the mountains, J. D. II.

Caules basi ramosi, 2-3-pollicares. Folia vix semi-pollicaria. Culycis segmenta fere 3 lin. longa, angusta, obtısa. Corolle limbus ralde obliquus, lacuiis emarginatis, infima quam tubus paulo longior.

A pretty little species, probably not rare in Fuegia, though readily overlooked from its very diminntive size. Wheu the aecompanying plate was prepared and the name O. Antarctica applied to it, I was not aware of Mr. Bentham having named the plant in the then unpulbished volume of De Candolle's Prodromus.

The genus Ourisia is highly interesting, from being among those peenliar to the Antarctic or higher latitudes of the southern regions, which have no analogue in the northern, but which, though most abundant in Antarctic America, have representative species in the temperatc portions of Terra Australis (O. integrifolia, Sm.), and in New Zealand or temperate Polynesia (O. macrophylla, Hook.).

Plate CXIIII. (under the name of O. Antarctica). Fig. 1, flower; fig. 2, corolla laid open; fig. 3, ovarium; fig. 4, transserse section of the same; fig. 5, ripe fruit; fig. 6, transverse section of the same; fig. 7, seed; fig. 8, longitudinal section of the same:-all magnified.

5. EUPHRASLA, L.

Euphrasia Antarctica, Bentlı.; minima, subsiuplex, pubescens, foliis euncato-trifidis lobis obtusis brevibus, corollæ tubo exserto limbi lobis brevibus subintegris, capsula orata obtusa. Benth. in DC. Prodr. vol. v. p. 555.

IIab. Strait of Magalliaens; Cape Negro, C. Darkin, Esq.
Herba perpusilla, vix pollicaris, glanduloso-puberula. Caulis crectus, simplex v. divisus, foliosus. Folia 1-3 lin. longa, cuneata, in lacimas 3 lineares obtusas ad medium fissa. Flores inter folia summa sessiles, pro planta magnæ. Calyx tubuloso-campanulatus, glabriusculus, breviter 5 -fidus, lobis obtusis, apice puberulis, marginibus siccitate atratis. Corolte tubus ealyeem superans, lobis oblongis oblique emarginato-truncatis, galea vix sub lobis concara. Stamina corollam subæquantia, autheris basi bi-aristatis.

A very minute species; also found at Coquimbo in Chili, by M. Gay. It is the southern representative of
its Luropean ally，E．officinalis，L．，and is still more nearly allied to a Himalayan plant，detected by my friend Mr．Edgeworth，whose researches in the Indian Alps have bcen rewarded with the discovery of some well－marked types of an American Floza，occuring together where they might have been least expected．

XXXVI．LABIAT®，Juss．

1．SCUTELLARIA，I ．

1．Scutellaria nummutariœfolia，Hook．fil．；parvula，glanduloso－puberula，caulibns gracilibus basi prostratis ascendentibus，foliis breviter petiolatis late elliptico－oblongis rotundatisve obtusis integerrimis sub－ enerviis floralibus conformibus，floribus sparsis axillaribus breviter pedicellatis．

Hab．East coast of Tierra del Fuego，C．Darwin，Esq．
Caules graciles，diamctro pennæ passerinæ，basi ramosi；ramis diffusis，simplicinsculis，elongatis，2－4－uncialibus tenuiter puberulis．Folia $\frac{1}{3}-\frac{1}{2}$ unc．longa，subcoriacea，utrinque subglanduloso－puberula，apice rotundata，basi in petiolum brevem 1－1 $\frac{1}{2}$ lin．longum angustata．Flores pauci，majusculi，foliis longiores，breviter pedicellati，pedicello calyce puberulo æquilongo．Corolla calyce ter longior，e basi sensim ampliata，rosea（？），pubescens，v．glabrata， lobis superioribus lateralibusque liheris brevibus obtusis，inferiore subpendulo，fance piloso．Ackenia immatura læ⿰亻⿱丶⿻工二十凵人，

Allied to the North American S．antirlinoides，Beath．，bat much smaller，and vcry different in the size of the flowers．A variety，also gathered by Mr．Darwin at Port St．Julian on the Patagonian coast，is more stunted，densely pubescent，with shorter leaves，and the lower lip of the corolla bcarded internally．The discoverer of this species remarks that the climate and productions of the particular locality which it inhabits，are intermediate in character between those of Patagonia and Fuegia．

2．STACHIS，l ．

1．Stachys Chonotica，Hook．fil．；leerbacea，erecta，lispilo－pilosa，foliis petiolatis oblongo－lanceolatis ovato－oblongisve obtusis acutisve basi cordatis obtuse crenato－serratis floralibus bractereformibus inferioribus calyce longioribus，verticillastris 4 － 8 －floris remotis，calycis hispidi campanulati dentibus ovatis aristatis， corollæ glabriusculæ tubo calyce longiore．

IIab．Chonos Archipelago；C．Darwin，Esq．
Species S．syluatice simillima，sed folia angustiora，brevins petiolata et obtusiora creuisque obtusioribus； labium inferius corolle minus profinde secta．S．Mucreei，Benth．，（planta adnodum variabili）quoque approximat habitu formaque foliorum，sed tnbo corollo elongato exserto lobisque latioribus labii inferioris sat differt．

A plant，so very closely resembling the S．syloatica，L．，of Great Britain，that I long hesitated on the propriety of erecting it into a new species，but do so in concurrence with the opinion of Mr．Bentham．Mr．Watson，also， upon whose thorough kuowledge of British plants，in all their exotic forms to which he has had acecss，the greatest reliance may be placed，has，with his usual kindness，given much attention to the present plant，and sums up the differcuces between it and European S．sylratica，in the leaves of the latter not being so obtuse nor so obtusely serrate，and in the lateral lobes of the lower lip of the corollie being more decply divided．The leares of the European S．palustris，L．，however，he adds，vary from very acntely to quite as obtusely serrate．

Not being versed in the whole genus Stachys，which contains upwards of one hundred species，I was inclined to regard this plaut as possibly intermediate between the S．sylvatica of Europe，and S．Macrai of Chili．Mr．Bentham， however，entirely dissents from such an opinion after a most careful review of its characters，and，I need hardly add， that on his knowledge and expericnce we may rely for the validity of the species．

XXXVII. PRIMULACEA, Juss.

1. PRIMULA, L.

1. Primula furinosa, Linn. Sp. Pl. p. 205. Engl. Bot. t. 6. Duby in DC. Prodr. vol. x. p. 44. Gaud. in Am. Sc. Nat. vol. iv. p. 102, ct in Freyc. Toy. Bot. p. 133. D'Urville in Mém. Soc. Linn. Paris, vol. iv. p. 60 .

Var. β, Magellanica. P. Magellanica, Lehm. Monogr. Prim. p. 62. t. 6. Duby, in DC. Prodr. vol. xp. 45. P. decipiens, Dudy, in DC.l.c. (Tab. CXX.)

Нab. Strait of Magalhaens to Cape Horn, Commerson, Capt. King, C. Darwin, Esq., J. D. II. Falkland Islands, most abmidant, Goutichaud, \&c.

The excellent plate, executed for this work by Mr. Fitch, enables the British botanist to form a just idea of the Antarctic state or variety of P.farinosa, L.; which, it will be seen, differs from the majority of those of Britain in the short peduncles of the white flower, in the position of the stamens, in the tube of the corolla, and in the colour of the flowers. The first of these characters is constant in all the Falkland Island and Magellanic specimens of this species, but is also scen in an individual of P.farinosa, gathered near Settle in Yorkshire by Mr. Tatham, for which I am indebted to my friend Mr. Watson, who not content with examining this plant with me, had the kindness to collate a suite of Antarctic specimens with many lundreds of British growth. The result of this examimation has been, that except, perhaps, the colowr of the flower, there is no constant character to distinguish the races of the opposite hemispheres, weither the length of the pedicels, of the calyeine segnents, of the tube of the corolla, nor the position of the stamens in the latter. If, again, we grant (with M. Duby) that the P. Scotica, Hook., is not even a variety of P.farinosa, the length of the pedicel is of still less valuc, for the North Scottish individuals are undistinguishable, except ly the colour of the corolla, from specimens of var. β, gathered at Cape Horn by myself, and on Mount Tarn on the north shore of the Strait of Magalhacns, by Mr. Darwin, these localities being the northern and southern extremes of its range in the Southern Hemisphere.

Lastly, on comparing var. β with foreign examples of P. farinose, their identity is still more evident; for the latter attain the same great size in Austria that the var. β ofteu docs in the Falkland Islands, whilst Arctic American specimens of the two are entriely alike.

One argument which militates against the common origin of the individuals from the opposite hemispheres, must not be overlooked; it is the absence of the plant, and, indeed, of the whole genus, in any part of the Andes south of 39° north lat.; a circumstance which makes it very difficult to account for its appearance in the two opposite temperate zones, if all the individuals of both hemispheres are supposed to have sprung from one parent.

Plate CXX. Fig. 1, flower; fig. 2 , the same; fig. 3, the same laid open; fig. 4, ripe capsule; fig. 5, seed; fig. 6 , longitudinal section of the same:-all magnified.

2. ANAGALLIS, Tourn.

1. Anagallis altemifolia, Cav. Icones, vol. vi. p.3. t.50G. f. 2. Duby in DC. Prodr. vol. x. p. 71.

Var. densifolia, Lysimachia repens, D'Urville, in Mém. Soc. Limn. Paris, vol. iv. p. 606. Guud. in Freyc. Toy. Bot. p. 133. Hook. Ic. Plant. t. 536.

Hab. Strait of Magalhanns; Port Famine, Capt. King; Wollaston Island, C. Durwin, Esq.; Falklaud Islands, D'Urville, Mr. Iright, J. D. II.

It appears to me that two very distinct species of this genus have been confounded, partly together, and partly with the A. tenella, L., of Europe. The first is confined to the damp western portions of middle and southern Chili, Fuegia, and the Falkland Islands, and there are two or perhaps three varieties of it; 1 take it to be the A. altermifolia of Cavanilles, a variable plant, with the peduncles of the same length as, or not much exceeding, the leaves, and the capsule shorter than the calyx. The figure of that author is very inaccurate and at variance with his description ; for the plant is represented erect, instead of creeping, and the leaves scattered, though said to be, approximate. Supposing Cavanilles' plant to form one variety of A. alternifolia, a second is larger and also creeping, with prostrate branches, $8-10$ inches long, bearing broadcr, rounded and more acute leaves; it has been collected in Valparaiso by Mr. Cuming and Mr. Bridges. A third, intermediate between this and the Fucgian form, has the leaves more crowded, ovate-oblong; and smaller; it is possibly the state figured by Cavanilles, and has been gathered at Concepcion by Capt. King, at Valdivia by Mr. Bridges, and on the Andes of Mendoza by Dr. Gillies (Ruellia respitosa, Gill. MSS. ; and Anagallis herpestoides, Gill. MSS.). The fourth rariety is what I have called densifolia; its leaves and stem are much smaller and crowded, and the whole plant is succulent.

Another extra-tropical Sonth American Anagallis is the A.filiformis, Link, (A. tenella, B. filiformis, St. Hil.), which approaches A. tenella so very closely, that M. St. Hilaire has united them specifically. It differs from A. alternifolia in the leaves being opposite, the stem slender, the peduncles longer, the calycine pieces narrower and twice as long as the capsule, and the whole plant not so suceulent; from the European A. tenella in the leaves never being so broad, in the longer peduncles and rigid stems.

The variety densifolia has a large capsule, always equalling the calyx in length, thns differing from the plant figured by Cavanilles. The capsule, though described by D'Urville as having the dehiscence of a Lysimaclia, evidently opens transrersely in the specimens I have examined, though it is sometimes, from pressure, split at the top also. lts habit resembles the Abyssinian A. serpens, Hochst.

3. SAMOLUS, L.

1. Samolus littoralis, Brown, Prodr. p.428. Duby in DC. Prodr. vol. x. p. 73. Scheffieldia repens, Forst. Nov. Gen. p. 18. t. 9.

Hab. Chonos Archipelago and Cape Tres Montes, C. Darwin, Esq.
A plant common to New Holland, New Zealand, and South Chili, and very variable in the size of its parts in all these countries. I have not seen Chilian specimens from a lower latitude than Valdivia, between which and Cape Tres Montes it seems limited.
2. Samolus spathulatus, Duby, in DC. Prodi. vol. x. p.74. Androsæa spathulata, Caranilles Icones, vol. v. p. 56. t. 484. f. 1.

Hab. Strait of Magalhaens; Port Gregory, Capt. King. Elizabcth Island, C. Darwin, Esq.
The raceme, in most of Capt. King's specimens, is so much ablreviated that the flowers are almost capitate. The range of the species, between Port Desire and the Strait of Magalhaens, is remarkably limited.

XXXVIII. LENTIBULARIEE, Rich.

1. PN゙GUICULA, Linn.

1. Pinguicula Antarctica, Vahl, Enum. p. 192. Alph. DC. Prodr. vol. x. p. 31. P. obtusa, Bankis et Sol. MSS. in Bill. Banks. (Tab. CXIX.)

Нab. Strait of Magalhaens; Port Famine, Capt. King; Good Success Bay, Banks und Solander: south part of Fuegia, C. Darwin, Esq.; Hermite Island, Cape Horn, J. D. H.

A very pretty little plant, the representative of the British Pinguicula Lusitanica, L., from which it differs in the narrower segments of the corolla and shorter spur. It is not uncommon on moist rocks in Fuegia.

Plate CXIX. Fig. 1, lateral, and fig. 2, front view of tlower ; fig. 3, calyx, germen, and stamens; fig. 4, stamen ; fig. 5, germen; fig. 6, trauswerse section of the ovarium ; fig. 7, ripe fruit; fig. 8 , seed; fig. 9 , embryo :-all magnified.

XXXIX. PLUMBAGINEA, Juss.

1. S'MATICE, Toum.

Statice Armeria, Limn., Sp. Pl. p.394. Engl. Bot. t. 226. S. cæspitosa, Poiret, Encycl. p. 235. Gaud. in Ann. Sc. Nat. vol. v. p. 102. D'Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 606.

Var. β, alpina; Ed.Cat. p. 2. Mook. Brit. Fl. p. 270.
Hab. Yar. a, Strait of Magalhaens, Commerson; Port Famine, Capt. King; Falkland Islands, most abundant near the sea; Gaudichaul, δc. Var. β, on the mountains of Fuegia, C. Derwin, Esq., J. D.II.

There can, I think, be no question as to this being identieal with the S. Armeria of the northern hemisphere ; if any specific or other distinetion exists, it has eluded Mr. Watson's and my examination. Both as an alpine and especially as a sea-side plant, its habits are those of the common Sca-Pink.

XL. PLANTAGINEA, Fenten.

1. PLANTLGO, Limn.
2. Plaxtago maritima, Lim., Sp. Pl. p. 165. Engl. Bot. t. 175. P. juncoides, Lam. Illust. Gen. n. 1683.

Hab. Strait of Magalhaens; Port Famine and Port Gregory, Capt. King.

I am not aware of any South Amcrican stations for this plant except those mentioned above; it is also a native of the Cape of Good Hope, but not of Australia or New Zealand.
2. Plantago barbata, Forst.; laxe cæspitosa simplex v. ramosa, foliis erectis stellatim patentibus recurvisve lineari-lanceolatis anguste lineari-elongatisve subacutis camosis remote dentatis basi scariosis barbatis glabratisve, pedunculis folio subæquantibus, spicis 1 -3-floris, capsulæ late obovatæ medio circumscisse parte inferiore calycem vix excedente. P. barbata, Forst. Comm. Goett. vol.ix. t.4. P. pauciflora, Lam. Illust. Gen. n. 1684. P. pancillora, β, parva, Bameoul. Monogr. Plantay. p.17. P. polymorpha, Bantis et Sol. MSS. in Bibl. Bank's. cum icone.

Var. a, barbata; foliis stellatim patentibus spathulato-lanceolatis dentatis basi barbatis.
Var. β, elongata; caule simpliciusculo, foliis erectis anguste et longissime lineari-spathulatis obtusis remote sinuato-dentatis basi barbatis.

Tar. $\boldsymbol{\gamma}$, imberbis; caule ramoso, foliis patulis lanceolatis obtusis remote dentatis basi sub-barbatis. P. imberbis, Hook. fil. MSS. in Part 1. p. 66.

Hab. Var.a, Strait of Magalhaens, Commerson; Tierra del Fuego, Banks and Solander, Forster. Var. β, Port Gregory, Capt. King. Var. γ, Port Famine, Capt. King.

A highly variable plant; always, however, in all the specimens which I have examined, retaining the characters of a short capsule dehiscing across the middle, the broad lower half of which is as long as, or very little longer than the calyx, and of a different form from the narrow obconical elongated analogous organ of P. monanthos,

D'Urr. The nearest allies of this plant are its Australian and New Zealand representative, the P. carnosa, Br. (vid. Flor. Antaret. Pt. 1. p. 65), and the P. Andicola, Gill. MSS.; the former of these differs in its shorter eapsule, differently shaped seeds, erowded, more fleshy foliage; the latter in its eurious root and broader leaves, which are, however, very unimportant characters.

The Port Gregory specimeus, of which I have made variety β, are perhaps drawn up, for the leaves are six inehes long, whieh is at least four times the length of those of the ordinary state of the species.
3. Plantago monanthos, D’Urv.; canlibus ramosis dense cæspitosis, foliis perplurimis basi arcte vaginautibus erectis subsquarrosis stellatim patentibusve anguste lineari-elongatis obtusis obscure dentatis marginibus cartilagineis pedunculis multoties longioribus basi glaberrimis, spiculis 1-4-floris, capsula anguste clavata infra medium circumscissa parte inferiore calyce bis terve longiore. P. monanthos, $D^{\prime} U r r$. in Mém. Soc. Linn. Paris, vol. iv. p. 606. Gaud. in Freye. Toy. Bot. p. 133. Barneoud, Monogr. Plantay. p. 17. exclud. syn. P. carnose, Br. (Tab. CXXI.)

Var. a, foliis erectis subsquarrosisve lineari-elongatis flaccidis.
Var. β, albreviata; caulibus cæspitosis, foliis brevioribus substellatim patenti-recurvis.
Var. γ, muscoides; caulibus densissime cæspitosis, foliis brevibus arcte imbricatis marginibus cartilagineis albis.

Hab. Var. a, Falkland Islands, D' Urville, J. D. II.; Hermite Island, Cape Horu, in moist places, J.D.II. Var. β, Hermite Island, amongst rocks; var. γ, the same locality, in clefts of exposed rocks, J. D. $I T$.

A very different plant from the P.carnosa, Br., monder whieh M. Barneoud has ineluded it, especially in the habit, stems, foliage, comparative length of the peduncle, shape of the capsule and form of the seeds.

Plate CXXI. Fig. 1, flower aud braeteæ; fig. 2, germen; fig. 3, ripe fruit; fig. 4, transverse seetion of ditto; fig. 5 , upper half of ditto, with disscpiment and seeds; fiy. 6 and 7, dissepiment and seeds; fig. 8 and 9 , front and back view of seeds; fig. 10, longitudinal seetion of seed:-all magmified.

Plantago hirtellu, H. B. K., Nov. Gen. et Spp. vol. x. p. 187.t.127. Barneoud, Monogr. Plantag. p. 18. Hab. South Chili; Cape Tres Montes, C. Darwin, Esq.
Not at all an uneommou Chilian and Buenos Ayrean plant, exceedingly variable in the breadth and pubescence of the leaves, and also in the size of the flowers, which in these specimens are larger than in the figure quoted. It is also a Brazilian species, and occurs on the mountains of Peru and Columbia, and is very nearly allied to the Pl. Firginica, L. The character of the segments of the corolla being patent or conniving is seareely tenable in this plant and its allies.

XLI. POLYGONEE, Juss.

1. POLYGONUM, L.

1. Polygonum maritimum, Linn. Sp. Pl. p. 519. Engl. Bot. Suppl. t. 2s04. Meisner, Monogr. Polyg. p. 59.

Hab. South Chili ; Cape Tres Montes, C. Darwin, Esq.; Strait of Magalhaens; Port Famine, Capt. King.
There appears no difference between these speeimens and those of British growth. In the southern hemisphere the speeies occurs only at the Cape of Good Hope and in South Chili.

2. RUMEX, L.

1. Rumex cuneifolius, Campd., Monogr. des Rum. p. 95. Fl. Antarct. pt. 1. p. 67.

Hab. South Chili; Chonos Archipelago, C. Darwin, Esq.
2. Rumex crispus, Limn., Sp. Pl. p. 476. Eagl. Bot. t. 1998. R. Patientia (?), Gaudichaud in Ann. Sc. Nat. vol. vi. p. 101. D'Urv. in Mém. Soc. Limn. Puris, vol. iv. p. 605.

Hab. Falkland Islands ; Berkeley Sound, undoubtedly introduced.
My specimens, though imperfect, are, I think, referable to this species.
3. Rumex Acetosella, Linn., Sp. Pl. p. 481. Engl. Bot. t. 1674. Gaudichaud and D'Urville, l.c.

Hab. Falkland Islands; abundant ncar the settlements and on the mountains; Gaudichaud, δc.
This, and the R. Acetosa, L., included in Gaudichaud's list, I consider undoubtedly as introduced plants, of which the seeds, being caten by the birds, are by their ageney transported to otherwise inaccessible cliffs.

XLII. CHENOPODIACEÆ, Juss.

1. CHENOPODIUM, L.

1. Chenofodium glaucum, Lim., Sp. Pl. p. 320. Engl. Bot.t. 1454.

Var. β, divaricatum; prostratum, ramosum, ramis gracilibus divaricatis.
Hab. Var. β, Chonos Archipelago ; C. Durwin, Esq.
Evidently the C. glaucum of Great Britain, though the stem is more diffusely branched than in most English individuals. A precisely similar variety inhabits British North Amcrica, but I have seen no specimens from any part of the New World betwcen that country and South Chili.
2. Chenopodium macrospermum, Hook. fil.; glaberrimum, non glancescens, caulibus validis succulentis basi divarication ramosis, foliis petiolatis deltoidco-oblongis obtusis sinuatis camosis, racemis compositis densifloris aphyllis bracteatis, scminibus majusculis erectis subtilissime reticulatis.

IIab. Falkland Islands; Berkeley Sound and St. Salvador Bay, near the sea; C. Darwin, Esq., J. D. II.
Caules e radice descendentc fnsiformi solitarii v. plurimi, prostrati, 3-5-unciales, canaliculati v. angulati, crassi, diametro pemæ anserinæ. Folia longe petiolata, petiolo $\frac{1}{2}-\frac{3}{4}$ unc. longo, lamina æquilonga carnosa, utrinque opaca, siccitate flavo-virescentia. Flores fructusque multoties majores quam in affuibns.

This very distinct species has been used as a pot-herb by the colonists of the Falkland Islands, and was described to me as excellent. The great size of the seed at once distinguishes it from its nearest European allies, C. rubrum, L., and C. polyspermum, L. I have not included these two species under the genus Blitum because the seeds of C.glaucum are more frequently horizontal than erect, and neither of them possesses a calyx which is materially thickened after flowering.

XLIII. PROTEACE A, Juss.

1. Embothrium, Forst.
2. Embothrium coceincum, Forst., Gen. Plant.t. S. Comm. Soc. Reg. Goett. vol. ix. p. 24. Lamarck, Encycl. vol. ii. p. 351. Illust. Gen. n. 1284. t. 55. f. 2. Brown, in Linn. Soc. Trans. vol. x. p. 196.

Нab. Strait of Magalhaens, Commerson; Port Famine, Capt. King; Fuegia, Bankis and Solander, Forster, $\&$ e.

This very handsome plant seems confined to the cxtreme southern part of South America, without, however, reaching Cape Horn itself; it is very nearly allicd to the Chilian E. lanceolatum, R. and P., but differs in the nervation of the leares.

2. LOMATIA, Brown.

1. Lomatia ferruginea, Bromn, in Limn. Soc. Trans. vol. x. p. 200. Embothrium ferrugineun, Cavanilles, Icones, vol. iv. p. 59. t. 355.

Hab. Chomos Arclipeclago, C. Darvein, Esq.
Like the former, this species has a very confined range, inhabiting the country between Valdiria and the Chonos Archipelago, including Chiloe, on the west side of the Andes only; and, according to Caranilles, it is limited to places oceasionally orerflowed by the sea. Mr. Bridges states that the native name is "Romarilla".

NLIV. SANTALACEE, Br.

1. NANODEA, Gartner, fil.

1. Naxodea museasa, Grrtner, de Fruct. vol. iii. p. 251. t. 225 . Gaud. in Ann. Sc. Nat. vol. r. p. 101. t. 2. f. 3, et in Freyc. Toy. Bot. p. 442. D' Ure. in Mém. Soc. Linn. Paris, vol. iv. p. 605. Banks et Sol. MSSS. in Bibl. Bunks. cum icone. Balexerda muscosa, Commerson, MSS.

11ab. Strait of Magalhaens, Commerson; Port Famine, Capt. King; Fuegia, Good Success Bay, Banks and Solander; Hermite Island, J. D.II.; Falkland Islands, very common ; Gaudichaud, \&e.

2. ARJOONA, Cur.

1. Arsoona Putagonica, Homb. et Jacq.; stricta, erecta, ramosa, ramis simplicibus glaberrimis, foliis sparsis patulis breviter subulatis rigidis glaberrimis nerrosis, inflorescentia sericeo-tomentosa capitata, bracteis concavis acutis tubo perianthii $\frac{1}{2}$ brevioribus. A. Patagonica, Homb. et Jacq. in Toy. au Pole Sud, Bot. Dicot. t. 15. A. sine descript.

IIab. Strait of Magallaens; Port Peckett, Messrs. Mombron and Jacquinot.
This plant, of which I have examincd specinens gathered by Capt. King on the Patagonian const, is very probably only a variety of the A. tuberosa, Cav., of the same country, which varies in the size of the leaves, and in their being smooth, pubescent, or tomentose. In Capt. King's specimens they vary from $1-4$ lines long.
2. Arfoova pusillu, Hook. fil.; caule erecto gracili simplici v. diviso, foliis flaccidis seppius recurvis elongato-linearibus acuminatis marginibus glaberrimis subenerviis, floribus paucis, bractea exteriore majnscula cymbiformi obtusa glabrata, corolla extus sericeo-tomentosa fance ampliata inter stamina fascienlis inconspicnis pilorum articulatorum ancta, stigmatibus 3 breribus.

Hab. Strait of Magallhaens; Port Gregory, Capt. King; Cape Negro, C. Daruin, Esq.
Herba bi-tri-pollicaris. Cantis gracilis, erectus, simplex r. basi bis terve divisus. Folia flaceida, suberceta, $\frac{1}{2}-\frac{3}{3}$ unc. longa, sub 1 lin. lata, medio uminervia, apicibus acuminatis marginibus plcrumque recurvis. Bractea $2 \frac{1}{2}$ lin. longa, dorso glabrata, marginibns ciliatis, bractolis interioribus in tubum apice inæqualiter 3-4-fidum ovario
 gracili superne ampliato, laciniis ovato-oblongis, fance inter stamina barbata, pilis brevibus flaccidis articulatis creberrimeque transversim striatis. Stamina filanentis brevinsculis, antherarum apicibus exsertis. Stigmata 3 parra, inter tubum corollæ retraeta.

A very distinct species from the former, in the foliage especially. Hitherto it has been found in the Straits of Magalhacus only.

NLV. THYMELE E, Juss.

1. DRAPETES, Lam.

1. Drapetes muscosa, Lamarck, Joum. d'Hist. Nat. vol. i. p. 186. t. 10. f. 1. Gertner, de Fruct. vol. iii. p. 199. t. 215. Juss. in Annales du Mus. vol. vii. p. 479. Poiret, Encycl. Suppl. vol. ii. p. 523. t. 915. f. 1. D'Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 605. Banks et Sol. MSS. in Bibl. Banks. cum icone.

Hab. Strait of Magallıaens, Commerson; and throughout Fuegia, on the mountains, Bantis and Solander, Capt. King, scc. Falkland Tslands, D'trville, J. D.II.

A curious bittle plant, confued in its geograplnical range to the mountains of Antaretic Ameriea, and represented in New Zealand by a rery similar one, forming its only congener, the D. Dieffenbachii, Hook. (Lond. Joum of Bot. vol. ii. p. 497. t. 17). Homerer similar the two plants are in habit and in their more important struetural characters, differenees exist which some botanists may deem of generic ralne; these are, the eylindrieal continuous base of the perigonium, thickencd faux and capitate glandular stigma of the New Zealand species, contrasted with the jointed angulated tube of the perigonium in the Antarctie American plant, which has an eglandulose fanx and plumose stigma. The thiekeuing of the throat of the perianth in D. Dieffenbachiit, which almost causes the faux to be closed with seales, is effeetell by the three nerves of caeh segment being there joined by anastomosing venulcs, whilst in D. muscose they run free to the apex of the segment.

XLVI. URTICEE, Juss.

1. URTICA, L.

1. Uktica Darwinii, Hook. fil.; caule gracili erecto sparsissime piloso v. glaberrimo, folis membranaceis oppositis petiolatis oratis acmminatis grosse æqualiter crenato-serratis basi rotundatis 3-nerviis utrinque subtilissime punctatis tenuiter puberulis, petiolo gracili, stipulis lineari-oblongis subacutis, floribns glomeratis glomerulis setosis in spicas graciles interruptas petiolo longiores dispositis.

Hab. Chonos Archipclago, C. Darwin, Esq.
Caulis penna corvina tenvior, flaccida, glaberrima, v. pilis raris albidis valde ineonspicuis sparsa, internodüs $1 \frac{1}{2}$ uneialibus. Stipula 3 lin. longæ, subacntæ. Petioli $\frac{1}{2}-\frac{3}{4}$ unc. longi, graciles paree puberuli. Folia $2-3$ unc. longa, $1 \frac{1}{4}-1 \frac{1}{2}$ lata, grossc crenato-serrata, scgmentis simubusque latis acutis. Pedicelli axillares, subquaterni, patuli, penduli, petiolo $\frac{1}{2}$ v. his longiores. Flores in glomerulos sparsos eongesti; glomerulis setosis, paucis inferioribus masculis ceteris fœomineis.

In appearance this very closely resembles the Pilea pumila of North Amcrica, though it is more nearly relaterl to the Crtica gracilis of the United States. Both this latter plant and the U. Dartinii differ from U^{-}. dioica, L_{1}, in the much larger fiowers aud achænia.
2. Urtica Magellanica, Poir.; caule valido crecto hispido-setoso, foliis subcoriaceis rugosis oppositis petiolatis ovatis ovato-lauceolatisve acuminatis basi cordatis argute serrato-dentatis, utrinque setosis subter leviter puberulis, stipulis lineari-oblongis acutis, floribus glomeratis, glomerulis setosis in spicas interruptas petiolo breviores r. clongatas dispositis. U. Magellanica, Poiret, Encycl. Suppl. vol. iv, p. 323.
$\mathrm{H}_{\text {ab. }}$ Strait of Magallhaens, Commerson; Port Famine, Capt. King.
Caulis 2 -pedalis crcetus, validus, setis phrimis patentibus obtectus. Petioli $\frac{1}{4}-\mathrm{I}$ unc. longi. Folia $2 \frac{1}{2}-3 \frac{1}{2}$ uncialia, latitudiue varia, basi plus minusve cordata rarius rotundata. Racemi sen spice penduli, monoici v. dioici, petiolo longiores rarius albreviati. Flores majusenli, femmei compressi, orbicuares, achenio conformes.
Not au uncommon species from Valparaiso to the Strait of Magallaens, differing from the preceding in its robust habit, different texture of the leaves, and setose stem and foliage, all, I fear, very umimportant characters in this genus, but whose validity in the present species I have not sufficient materials for ascertaining. The characters drawn from the length of the racemes is a variable one, those bearing male flowers especially being the shortest, and sometimes, as descriled by Poiret, shorter than the petioles. The present appears very closely allied indeed to a South African species, and it may ceen be considered doubtful whether both are not states of U. dioica, with unusually large tlowers.

One of Anson's vessels, when detached from lis squadron, put into a Bay near the western eutrance of the Strait of Magalhaens, and recruited her crew, who were paralyzed by scurvy, by means of Nettle tops, most probably the produce of this or the former species.

The Urtica laurifolia, Poiret, stated to have been brought from the Strait of Magallanens by Commerson, does not appear to belong to this genus. I an wholly unacquainted with the U. gigantea, of the same author, also from the Strait of Magallhacns.

2. PILEA, Lindl.

1. Pilea clliptica, Hook. fil.; suberecta, caule debili herbaceo parce ramoso, foliis longe et graciliter petiolatis membrauaceis ellipticis utrinque subobtusis grosse crenato-serralis trinerviis super subterque pilis appressis minimis conspersis, floribus masculis in umbellam capitatam longe pedicellatam congestis, foemineis ad basin pedunculi sessilibus glomeratis, achænio orbiculari compresso apice oblique emarginato.

Hab. Chonos Archipelago ; C. Darwin, Esq.
Caules uni-bipedales, crassitie pennæ corvinæ, rufescentes, punctis albidis elongatis notati. Petioli longitudine varii folio longiores v. breviores. Stiputio membranacer, late ovatx. Fotia laete viridia, membranacea, exacte elliptica, imo basi obscure cordata, magnitudine varia, $\frac{1}{3}-2$ unc. longa, grosse sed iequaliter crenato-serrata; parenchyma corpusculis fusiformibus e epidermide translucida oculo nudo manifestis pilos appressos simulantibus farctum. Pedunculi petiolo æquilongi v. longiores, apice umbellulam simplicem florum mascidorum gerentes, basi glomerulo florum fomineorun aucti. Fl. Mssc. Perianthium 4-partitum, laciniis late ovatis acuminatis inflexis, Fl. Fem. Perianthiunn valde compressum, 3-partitum, lacinia postica cucullata lateralibus oblongis multoties longiorc. Achanium planum.

A very distinct specics, confincd to the S.W. portions of Chili between Valdivia and the Chonos Archipclago, a tract which may be considered as partaking of the Chilotean botany, the latter itself being a division of the Chilian Flora, only separable by the amount of specific difference from the other extra-tropical regions of western South America.

The appearance of the so-called pubescence of this species and many other Urticee is curious, and caused by the presence of numerous white fusiform raphides attenuated at both ends, which are seattered abundantly thronghout
the parenchyma of the leaves and immediately beneath the surface of the stem; from the tenuity of the epidermis, and transparency of the leaves when dried, they form prominenees on the euticle of a white eolour, closely simulating the laterally attached hairs of Cruciferre.

XLLVII. EALPETRACE E, Nutt.

1. EMPETRLM, L.

1. Enperlium rubrun, Tahl, MS. et Hilld. Sp. Pl. vol. iv. p. 7183 , ex Bunke et Sol. MS. in Bial. Buntis. ctur icone. Gaud. in Ann. S'c. A'tut. vol. v. p. 103, et in Freye. Foy. Bot. p. 134. LP Uru. in Mém. Soe. Limn. Puris, vol. iv. p. 605. "Bruỳre à Heurs d'un rert blanchatre," Pernetty, Voy. vol. ii. p. 64.

Hab. Sonth Chili, F'uegia, and the Falkland Islands, most abundant, Commerson, Banks aut Solander, and all future voyagers.

I am unable to detect auy characters to separate the Empetrum rubrun from E. nigrum, beyond what is afforded by the eolour ol the berries. Though many of the northern speeimens of E. nigrum are perfectly simitar to Fuegian speeimens of E. rubrm in evcry other respeet, yet almost all the Falkland individuals, and many of those of Cape Horn, are more tomentose than any speeimens of the Northern species that I have examined, Under these circumstances, the plants from the opposite hemispheres may be regarded as representative species, or varieties of the same; but, since all the specimens trom the southeru hemisphere present one constant character, distinguishing them from those of the northern, and since neither is known to ocenr in any part of the New Workd between the parallels of $45^{\circ} \mathrm{N}$. and $33^{\circ} \mathrm{s}$., I leel myself obliged to attach specific importance to the otherwise very trifling diffcrences in the colour of the fruit.

The limpetrum rubrum is a very abundant western extra-tropical South American plant, from the latitude of Concepeion on the I'acifie eoast, and Mendoza on the Andes, to Cape IIorn. In the latter eountry, as in the Falkland Islands, this species altogether simulates E. nigrum in the localities it affects, in its habit and mode of growth, stature, in the forms its varieties assume, and in the eeonomy of nature, affording food to wild-geese, and, in Fuegia, to a bind allied to the gronse. The stems and leafy branches are much nsed for fuel in the Falklands, where the plaut is called "Diddle-dee", they are especially employed in kindling fire, for even when sodilen with rain, they speedily jguite, and burn with a bright and hot flame.

The atlinities of this genus, or rather order, are yet undefimed. I am inelined to adopt the opinion of Jussieu in allying it to Ericece, from the habit, foliage, the bractex, ealys, and texture of the corolla and anthers and some other characters.

SLVIII. CUPULIFER E, Rich.

1. FAGUS, L.

1. Fagus Antarctica, Forst., ex Banks et Sol. MS. in Mus. Bunks. cum icone. Mook. Bot. Journ. vol. ii. p. 15. t. VI. Calucechinus Intarctica, Homb. et Jucq. in Toy. au Pole Sur, Bot. Dicot. t. 14. Z. et Bot. Monocot. Phan. t. 6. Ө. C. Montagni, Momb, et Jacq. l. c. Bot. Dicot. t. S. ח. (Tab. CXXIll.)

Hab. South Chili and throughout Fuegia, very abundant, Commerson, Bunks amb Soltuder, and all succecding royagers.

This species and the following, form together so predominant a feature in the Fuegian landscape, that, though accurately deseribed by several voyagers, espeeially Cook, King, and Fitzroy, and in the graphic narrative of my
friend Mr. Darwin, it is advisable to sum up the prineipal facts eonnected with their history, adding some little from personal observation. These remarks will be the more appropriately introduced here, from the two principal speeies having been first imported into England by the Antaretic Expedition, aud now promising to become useful and ornamental additions to our forests; as, also, from their geographical ramge having been used as an indication of the limits of the Antaretic Flora.

The Fagus Antaretica has always been recognized as a true Becel, from the very marked resemblanee its deeiduous foliage bears to that of the European F. sylvatica. The other common Fucgian species, F. betuloides, with coriaemous leares of a decp green hue very similar to those of the Scottish Birch, was, up to the diseovery of its flowers, considered to be a Betula. The habit of both species, however, is essentially that of the Becelh, and so are the form of trunk, smooth bark, and especially the spreading ramification and horizontal divarieating ramuli; whilst their flowers and fruit resemble so closely in all but size, those of the European Fagus sylcatica, that I consider them as undoubted congeners of that plant.

I have elsewhere (rid. ante p. 277) alluded to the rery common envor of holding the locality in which a certain speeies particnlarly abounds, to be the principal habitat of the order or genus to which it belongs; this often arises from attaching a greater importance to the spread of the species that that of the gemis. Naturalists unaequainted with the range of the Beeches, will be surprised to hear that they are more charaeteristie of the temperate and cold latitules of the southern, than of the northern hemisphere, even in the proportion of five to one. Thus, one species alone is European, and one Ameriean; two are found on the mountains of Jara; one is characteristic of the Alps of Tasmania, where the only Antaretie representatives of the Australian Flora are found ; four inhabit the ligh mountains of the northern or lower levels in the middle and sonthern Islands of New Zealand; and, lastly, as many as seven * have been described from Cliti and Fuegia.

Of the seven so called Chilian and Fuegian species, three are well marked, and afford instruetive examples of the suecession of speeies in procecding northward from Cape Hom; they are the F. Anturctica, betuloides, and obliqua; the others, whieh may be varictics of the above, though from the want of copious suites of good specimens I advance this opinion with much hesitation, are F. Prmilio, Poepp. and Eudl., F. procera, P. and E., F. Dombeyi, Mirb., and F. atpina, P. and E.

The Fugus Antarctica, justly so mamed, ascends even at Cape Ilorn mueh higher than F. betuloides, and nearly to the summits of the mountains, which are perhaps 1000 feet Lelow the assumed level of perpetual snow in that latitude, while at the sea it forms much the larger tree of the two. Supposing the continent of Ameriea to have been produced indefinitely to the sonthward, in a free ocean, the F. Antarctica would be found extending to as high a parallel as $62^{\circ} \mathrm{S}$., whilst the F. betuloides would cease at the 60th degree: assuming that both speeies followed the same ratio of aseent that very many other Corlillera plants do, which ascend from the level of the sea in Fuegia to a considerable elevation in a lower latitude.

Fagus betuloides, though by far the most prevalent speeies in Hermite Island, and, indeed, throughout Fuegia, has its prineipal parallel about the Strait of Magalhaens, where it becomes a rery large tree. It forms the prevailing feature in the seenery of Tierra del Fuego, espeeially in winter time, from haring persistent, evergreen leares, and from its upper limit being sharply defined and contrasting with the dazzling snow that covers the matted but naked branches of the F. Auturetica, whieh immediately succeeds it. Its upper limit at Cape llorn (lat. 56°) is about S00 feet; in the northem parts of Tierra del Fuego it reaehes 1,400 feet; and, if the F. alpina, P. and E., be a state of the same species in its most northerm locality, its level in lat. 36° is between 5,000 and 8,000 feet.

The following motice of the dimension the Evergreen Beech attains in the Strait of Magalhaens, is extracted from Capt. King's excellent " Yoyage of the Adrenture and Bcagle" (p.576). "At Port Famine and in the neigh-

* An cighth, F. glutinosa, Poepp., is no Fagus at all, but, as my friend Mr. Miers assures me (and he has examined authentie specimens in M. Delessert's 1l(rbarium), a species of Encryphia.
bourhood, the Evergreen Beeel grows in the greatest abmolanee and reaches a very large size. Trees of this speeies three feet in diameter, are abmolant; of four feet there are many; and there is one tree (perhaps the very same noticed by Commodore lyron), which measures seveu feet in diameter for seventeen feet above the roots, and then divides into three large hranches, eaeh of wheh is three feet through. This renerable tree seemed to be sound, but from our expericnee of several others that were cut down, might be expected to prove rotten in the eentre. This tendency to decaying in the heart may be attributed to the coldness of the sehistose sub-soil upon which the trees are rooted, as well as the perpetnal moisture of the elinate."

The wood of these trees Capt. King describes as being heavy and far too brittle for masts, or even boat-hook staves; hut it euts up into tolerable planks, whieh, if seasoned, might serve for ship-building. During our sojourn i:n Hermite Island, Capt. Ross eaused several thousand small trees, of both speeies, to be felled and barked; these we transported to the Falkland Islands, in which tree-less country they were highly prized for roofing houses, \&e. The deciduons speeies appeared to afford the better wood of the two.

A more striking contrast between two so very elosely allied plants, eamot well be imagined, than between F. Antarcticu and F. betuloides, arising from the evergreen foliage of the latter being of a totally different texture and aspect from that of the former. Surely so strongly marked a diflerence between otherwise very nearly allied species, growing side by side under perfeetly similar eonditions, is a strong argument in facour of their being originally separate creations. We see, too, how the adaptation of particular forms of vegetation to entain elimates, even in this remote quarter of the globe, is exemplified in these trees; though both do grow together abundintly, they still have their preferenees, the evergreen glossy foliage prevailing on the western coast, where the climate is damp and equable, whilst the deciduons-leaved plaut seeks the heights more exposed to the vieissitudes of the weather, or the drier eastern parts of Fuegia, where the F. betuloides will not suceeed. So it is with us in Great Britain; our glossy-leaved evergreens, whether native or introduced, thrive best in the elimate of the west poast, where the summers are eolder, the winters warmer, and all the seasons more humid than they are on the east.

The third specics of Fagus, the F. obliqua, replaces F. Autaretica in South Chili, occupying the flanks of the Andes, between the altitudes of 1,000 and 5,000 fect, where it is the prevailing forest-tree. It appears to iuhabit the level of the sea in the parallel of the Strait of Magalhacns, and is probably the third species of Beech alluded to by Capt. King (1.e. p. 576), for that voyager docs not seem to have distinguished the F. Pumilio as a species.

The aceompanying eut will explain better than words, the order of suceession in latitude and in eleyation that south Ameriean Fogi follow. Their southern ranges may be aseertained with tolerable precision, the exaet altitude they attain in the two northern positions is more doubtful. The positions taken are, commeneing frou the southward, 1st, Hermite Islaur, lat. 56°; 2ud, Strait of Magalhaens, lat. 54°; 3rd, Antnco in Chili, lat. $36^{\circ} 40^{\circ}$. The upper enrve indieates the lower level of perpetual snow; the others, the upper limit of the tree whose name is found immediately under.

From the want of a suite of specimens I eamot speak with mueh confidence of the Chilian speeies, F. alpina and F. Pumilio, the first appears, from the phate and deseription, a variety of F. betuloides, and, from ocenpying the position that F. betuloides would hold relatively to the others in South Chili, I have introdneed it as sueh into the cut. The F. Pumitio is even more probably a variety of F. Antarctica. Both are said to ocenpy great heights in South Chili, the latter indeed only existing there as a stmuted tree. There are still two other South Chilian speeies, F. procera, P. and E., and F. Dombeyi,* Mirb.; they inhabit the level of the sea in the parallel of 41°. The first 1 am inclined to regard as a variety of F. obliqua, or rather a large-leaved state of that plant deseending to the coast ; the second is a similar form of F. betuloides. If my supposition prove correct, both species afford examples

[^36]of mountain plants, having the upper limit in elevation which they attain sharply defined, throughout several degrees of latitude, but which descend and assume other aspects in a warmer climate. This, also, I have attempted to express on paper by dotted lines drawn down to the sea-level, from the Chilian positions of F. betuloides and F. obliqua. The abrupt termination of all the Beeches at about lat. 35°, occurs where the equally sudden change in the climate of northern and southern Chili takes place. These trees, like all extra-tropical plants, require a certain degree of cold, and in pursuing their range towards the warmer parallels, they aseend the mountains. They are, however, even more dependent upou humidity and an equable elimate than on temperature; and being further impatient of vicissitudes and dryness, they will not pass beyond the influence of those S.W. winds which drench all parts of western South America, alpine and lowland, sonth of the parallel of 37°.

One of the few attractions of spring in Antaretic America, is the bursting of the leaf and flower buds of the deciduous-leaved Beech from their resinous gummy scales; when a delightfully fragrant odour pervades the woods. The unfolding of the plaited foliage was watehed with great interest, for we bad not witnessed for years any process so closely rescmbling that of an English spring. It recalled Linnæus' enthusiastic description of the first burst of the birch leaf in Lapland.
best in the island, for ground-frames of houses, planks for vessels, and beams. The piraguas are built eliefty of this wood. There are two sorts, one an evergreen, and the other a deciduous-leaved trec. It is evidently a liecech, and the same that grows in all parts of the Strait of Magalhaens; the smooth-leavel sort is F. obliqua, Mirb. Capt. King attaches the name of "Roble" to his speeimen of F ". Dombeyi.

Plate CXXII. Fig. 1, male flower; fig. 2, involucre and female flower; fig. 3, transverse section of ditto, more adranced; fig. 4, ripe achæuium ; fig. 5, the same; fig. 6 , involucre after the achænia have fallen away :- all magnified.
2. Fagus obliqua, Mirb., Mém. Mus. Mist. Nat. vol. xiv. p. 465. t. 4. Hook. Bot. Journ. vol. ii. p. 15 3.

Hab. Strait of Magalhaens; Port Famine, Capt. King.
This I take to be the third kind of Becch alluded to by Capt. King as a native of Port Famine, in his collections, howcver, no specimen of the present species occurs. It is distinguishable from the formet chiefly by the larger, narrower, rhomboidal, more acute lcaves.
3. Fagus Pumilio, Poepp. et Endlicher, Nor. Gen. et Sp. Plant. Per. et Chili, vol. ii. p. 68. t. 195. Hook. in Jourin. Bot. vol. ii. p. 154. Calusparassus Pumilio (?), Momb. et Jacq. in Voy. au Pole Sud, Bot. Dicot. t. 8. Ψ.

Hab. Strait of Magalhaens; Port Famine (?), Capt. King.

I have alluded to this Beech (under F. Autarctica) as perhaps only a state of that plant, differing in the leaves being pubescent on both surfaces and more closely and deepiy serrated. The figure of Poeppig and Endlicher is excellent; that of MMM. Hombron and Jacquinot, in the 'Yoy. au Pole Sud', represents a narrower and smallerleaved, perhaps, alpine state; or morc probably a different species, those authors having included it in their not ret described genus Calusparassus. Judging from their figures of other Antarctic Fagi, also called Calusparassi, the genus appears to include only those evergreen species of which the leaves are not plicate in remation, which those of the F. Pumilio decidedly are, both in our specimens and those described and figured by Poeppig.

The latter author states this to be a short prostrate tree, eight and twelve feet long, with a mode of growth not unlike that of Pinus Pumilio. It marks (in Chili) the transition zone, from the crect trees, whose superior limit is indicated by the F. alpina, to the frigid region, where snow lies for eight months of the year, and where the shrubly Composite, and the Violets that grow in dense capitate tufts, and other handsome plants, abound.

I have marked the habitat assigned to Capt. King's speeineen with a query, the label attached to it bearing "Cape Fairweather", where it is exceedingly improbable that any Fagus should exist.
3. Fagus betuloides, Mirb., Mém. du Mus. vol. xiv. p. 465. t. 4. Hook. Journ. Bot. vol. ii. p. 153. F. dubia, Mirb. et Hook. l. c. F. Forsteri, Hoor. l. c. p. 156. t. viii. Calusparassus Forsteri, Homl. et Jacq. in Toy. au Pole Sud, Bot. Joonocot. Phan. t. 6. £. C. betuloides, Homb. et Jacq. l. c. Bot. Dicot. t. 7. f. r. Betula Antarctica, Forst. Comm. Goett. vol. ix. p. 45. Willd. Sp. Pl. vọl. iv. p. 466. Banks et Sol. in Bibl. Banks. cum icone. (Tab. CXXIV.)

Hab. South Chili to Cape Horn, very abundant; Commerson, Banks and Solender, Forster, and all succeeding voyagers.

The synonyms above emmmerated certainly all belong to one species, the common Evergreen Beech of Fuegia, and I incline to add the F. alpina, loepp. and Endlicher, as stated at p. 347.

Plate CXXIV. Fig. 1, male flower; fig. 2, involucre with female flowers; fig. 3 and 4 , female flowers removed from ditto; fig. 5 and 6, longitudinal sections of the same, showing the ovnles; fig. 7 , involucre, after the achænia have fallen away :-all magnified.

XLIX. CONIFERE, Juss.

1. THUJA, Tourn.

1. Thusa tetragona, Hook., in Lond. Journ. of Bot. rol. iii. p. 144. t. 4.

Hab. South Chili and Strait of Magalhaens; Port Famine, Capt. King. $_{\text {S }}$

This species has been described, on the authority of Mr. Bridges, as the true "Alerse " of Chili. Upon showing my specimens, however, to M. Clande Gay, the celebrated Chilian traveller, he assured me that the "Alerse" was a totally different plant, and not a Thuja at all; a statement the more probable, from Capt. King's description of the Alerse leaves, which, he says, resemble those of a Pine in colow, but are ouly half an inch long; though the difference may arise from the young and old states of this, as of other Coniferce, often bearing leaves of a very different appearance. When enumerating the woods in use in the 1sland of Chiloe, Capt. King mentions in one place (p. 281) the "Alerse" and "Cypress", which are thus usually cousidered as different plants, and says that the "Cypress" is brought to that Island in "tablones" (or planks), seven or eight feet long, two inches thick, and nine or twelve inches wide, as is also the "Alerse"; but the latter, from the facility in which it splits, is brought in boards also. The same royager observes (p.183) that, though the "Cypress" is thought to be a different tree from the "Alerse", he considers it only a variety, the wood being white, whilst that of the "Alerse" is deep red. Naturalists who are aware how uncertain are the limits of the acknowledged species and varieties of Ewopean Conifere, will readily appreciate the difficulty that attends the determination of those of an opposite hemisphere, only known to us through insuffieient specimens, rague reports, and incorrect information. Capt. King evidently believes the "Cypress" and "Alerse" to be identical, for he affirms that the former grows commonly in the Strait of Magallhaens, in all parts west of Cape Forrard, but that there, from the porerty of the soil, the mood is of very stunted growth (p. 283) ; and this description tallies with the specimens of Thuja tetragona in his Herbarinm.

Thuja tetragona is apparently a rare Magellamic plant. Capt. King says it is found on the north shore of the Strait between Cape Forward and Port Gallant, but not to the eastward, except on the sides of Mount Tarn, where it only reaches the height of three or four feet (King's Voy. p. 131). The same author elserthere states that the natives make their spears of its wood (p. 568). In Hermite Island where the Thuja does not exist Drimys Winteri is used for that purpose.

L. ORCHIDEE, Juss.

1. CHLOR EA, Lindl.

1. Cinlorea Gaudichaudii, Brongn., in Duperrey Toy. Bot. p. 1S9. t. 44. A. Lindl. Gen. et Sp. Orchid. p. 405. Arethusa lutea, Gaud. in Ann. Sc. Nat. vol. v. p. 101, et in Freyc. Toy. Bot. t. 133. D'Lrv. in Mém. Soc. Limn. Paris, vol. iv. p. 604. "Satyriou," Pernetty, Foy. vol. ii. p. 54. t. 8. f. 5.

Hab. Falkland Islauds, Gaudichaud, D'Ureille, Mr. Iright, J. D. II.
Not uncommon in moist pastures of the Falkland Islands, varying a good deal in size and in the breadth of its leaves. It differs from the C. alpina, Poepp., of South Chili, by the flowers being very much smaller, and the sepals, petals, and labellum differently formed. Both the figure and description of Brongniart, are very good.
2. Chlorea Magellunica, Hook. fil.; labello ovato-cordato obsolete trikobo breviter unguiculato marginibus inflexis glaudulis grossis elongatis stipitatis cristato axi sub-lamellato, lobis lateralibus sub-laceris
iutermedio producto apice subdilatato obtuso incrassato nudiusculo, sepalis lateralibus linearibus ultra medinm incrassatis apice obtusis carnosis marginibus inflexis, petalis ovatis obtusis sepalis $\frac{1}{3}$ brevioribus, spica triflora, scapo foliato.

Hab. Strait of Magallhaens; Elizabeth Island, C. Darwin, Esq.

Planta 1-1 $\frac{1}{2}$ pedalis. Folia basi longe vaginantia; lanina ovato-lanccolata, sub-recurva. Bractea ovatolanceolatæ, acuminatæ, membranaceæ, concavæ. Flores crecti, majusculi, speciosi. Sepala oblongo-lanceolata, omnino nuda, snperiore obtuso, lateralibus linearibus, supra medium siccitate nigrescentibus, omnia petalaque venosa et transrersim venulosa. Labellum coriaceum, recursum, marginibus involutis, petalis æquilongum. Columua petalis paulo brevior, arcuata.

A perfectly distinct and very handsone species, ennfined in its habitat to that eastern portion of the Straits of Magalhacns, where, as Mr. Darwin remarks, the Floras of Fuegia and Patagonia are blended.

2. ASARCA, Poepp.

1. Asarca Commersonii, Lindley, Gen. et Sp. Orchid. p. 405, sub Chloræa.

Hab. Strait of Magalhaens, Commerson ; Falkland Islands (Western Island ?); Mr. Mright, Mr. Chartres.
Brongniart's description and figure are very characteristic of the Falkland Island specimens of this plant, which is quite distinct from the following. I have seen no Magellanic or Fuegian individuals, Capt. King's Port Famine Chlorea or Asarca being a totally different species. Mr. Wright and Mr. Chartres having gathered it in the Western of the two Falkland Islands, and no other collectors having met with it in the Eastern, I am inclined to consider this plant as one of the Fnegian species which has not spread to the eastern parts of the group, as is the case with the Veronica elliptica.
2. Asarca odoratissima, Poepp., Nov. Gen. et Sp. Plant. Per. et Chil. vol. ii. p. 13. t. 118. Lindley, Gen. et Sp. Orchid. p. 407.

Hab. Falkland Islands (Western Island?), Mr. Wright.
Mr. Wright's specimen of a spike of this plant, preserved in spirits, entirely accords with the figure of Poeppig.
3. Asarca (?) Kingii, Hook. fil.; labello breviter unguiculato oblongo obtuso indiviso integerrimo nudo membranaceo nervis mediis vix incrassatis, sepalis lateralibus lanceolatis acuminatis apicibus simplicibus. petalis oblongo-obovatis obtusis sepalis labclloque paulo brevioribus, spica 6-8-flora.

Hab. Strait of Magalhaens; woods of Port Famine, Capt. King.
Herba pedalis. Folia radicalia 6-uncialia, lanceolata, acuminata. Scapus foliatus. Spica 2-4 unc. longa. Bractece ovato-lanceolatæ, aeuminatæ, membranaceæ, concavæ. Fores pro genere parvi, flavi. Sepala vix $\frac{1}{2}$ unc. longa, membranacea, renosa, lanceolata, lateralibus basi angustioribus. Petala sepalis paulo breviora. Labellum sepalis æquilongum, omnino indivisum. Columna brevissima.

The short column has induced me to refer this very distinct plant to the genus Asarca, for in a dried state it is almost impossible to determine whether the petals are patent or conniving.

3. CODONORCHIS, Lindl.

1. Codonorchis Lessonit, Lindl., Gen. et Sp. Orchid. p. 411. C. Poeppigii, Lindl. l.e. Calopogon Lessonii, Brongn. in Duperiey Foy. Bot. p. 188. t. 37. f. 1. Pogonia tetraphylla, Poepp. et Endl. Nov. Gen. \&c. vol.ii. p.16.t.122. Eipipactis Lessonii, D'Urv. in Mém. Soc. Lim. Paris, vol.iv. p.605. (Tab. CXIT.)

Hab. Strait of Magalhaens, and thronghout Fuegia, Commerson, Banks and Solander, and all sncceeding royagers. Falkland Islands, D'Urville, \& c.

The leares of this plant vary from two to four, three being the prevailing number. The flowers, also, are very much larger in some specimens than others, and dissimilar in colour and spotting. Poeppig's Pogonia tetraphylla, from South Chili, is decidedly only a state of Codonorchis Lessonii, the glands ou the labellum affording no more constant charaeter in this plant than in the beautiful Chiloglottis of Tasmania.

Plate CXXY. Fig. 1, ovarium, column, and labellum; fig. 2, labellum; fig. 3, colnmn; fig.4, anther-case ; fig. 5, pollen-masses:-all magnificed.

LI. IRIDEE, Juss.

1. SISIRINCHIUM, Tourn.

1. Sisyrixchium filifolium, Gaud.; caule simplici tereti striato basi folioso, foliis radicalibus filiformibus scapum requantibus brevioribnsre, scapo ultra bracteas in spatham elongatan producto, fasciculis florum scssilibus rarius pedumeulatis solitariis v. rarissime geminis bibracteatis 2-S-floris, perianthii segmentis subrequalibus albis purpureo-venosis. S. filifohinm, Gaud. in Am. Sc. Nat. vol. v. p. 101, et in Freyc. Toy. Bot. p.133. D'Ure. in Mém. Soc. Linn. Puris, vol.iv. p.604. S. Gaudichandii, Dietrich. Sp. Pl. vol.ii. p.505. (Tab. CXIVI.)

Hab. Strait of Magalhaens; Cape Gregory, Capt. King; Falkland Islands, Gaudichaud, and all succeeding voyagers.

Herbet elegans, 4 -unc. ad bipedalem. Rudtix e fibris plurimis horizontalibus earnosis. Caulis basi reliquiis fibrosis foliorum emortuorum obteetus. Folia pauca, pleraque radicalia, filiformia, scapo breriora v. elongata. Scapus gracilis, teres. Spathe 2-5-unc. longa, basi vagimans, superne in folium filiformem desinens. Pedunculi floriferi plerumque solitarii, rarius bini, brevissimi v, raro elougati, apiee braeteas duas lanecolatas requilongas unciales gerentes. Pedicelli filiformes, exserti, strieti \imath. flexnosi. Flores magnitudine varii, Galanthi nixalis æruantes V. dimidio terre minores, late campauulati, albi. Perianthii segmenta subæqualia, obovata, apiculata, membranacea, venis sxpius flexnosis purpureis ornata. Stamina fere ommino libera, antheris versatilibus brevibus. Stytus apiee incrassatus, trifidus, ramis divaricatis. Capsula membranacea-coriacea. Semina obovata, lævia; testa reticulata, hrunnea.

Onc of the most abuudant and elegant plants in the Falkland lslands, where the grassy plains are, in the spring month of November, almost whitened by the profusion of its pendulous snowy bells.

A very similar species, if not the same, seems to be common in Chili, from Valparaiso to Concepcion ; but its flowers are smaller than in the majority of the Falkland Island specimens.

Plate CXXY1. Fig. 1, segment of the perianth ; fig. 2, ovarium, stamens, style, and stigmata; fig. 3, transrerse section of ovarium ; fig. 4, ovule; fig. 5, ripe fruit; $f i g .6$, transverse section of the same; $f y$. 7 , seed; fig. 8, the same, cut longitudinally:-all maynified.
2. Sisyrifchiem laxum, Link., in Mook. in Bot. Mag. t. 2312.

Tar. major; caule bifido foliisque latioribus, spatha bracteisque apices versus scaberulis, perianthii segmentis latioribus.

Var. minor ; caule simplici foliisque angustioribus, spatla bracteisque glaberrimis, perianthii segmentis angustioribus.

Hab. Var. major, Chonos Archipelago, C. Darwin, Esq. Var. , Strait of Magalhaens; Port Famine. Cupt. King; Cape Negro, C. Darwin, Esq.

A species thich has been erroneously included by Sprengel in the terete stemmed group, and even considered by Lindley and Dietrich to be synonymons with S. iridifolium, Kunth, (Marica iridifolia, Bot. Reg. t. 646). Such may be the case, but I have seen no specimens decidedly connecting these two species, and therefore hesitate before adopting a conclusion which would give this plant a geographical range from the equator to the Strait of Magalhaens. Still, the var. major is so decidedly scaberulons, so much larger, and so much more resembling the S. ividifolium than the var. minor, that there is nothing improbable in the supposition that both are rarieties of one tropical species. S. laxum is also a native of Valparaiso.

3. Sisyrinchicm (?) sp.

Hab. Strait of Magalhaens; Capt. King.

A curions plant, unfortunatcly too imperfect for description, but with rery much the habit, foliage, and fruit of a Sisyrinchium. Root consisting of clongated fleshy fibres, $3-4$ inches long. Rhizoma very short, fibrous, giving off at its apex a terete scape and short leafy stem. Leares abont three, with scariose sheaths at the base, filiform, terete, six or seven inches long. Scape shorter than the leares, furmished at the middle with two leaf-like opposite bractere sheathing at the base. Peduncle solitary, one-flowercd, shorter than the bractex, erect. Fruit immature, globose, trigonous (?), the size of a small pea, three-locular (?), each cell containing several sceds on parietal (?) placentr.

The above diagnosis may serve to distinguish this curious plant, which differs chicfly from Sisyrinchium in the scape not springing from between the uppermost leares, but from the base of the outer one, and in there being no spatha to any of the specimens; though the scape in one instance bears the scar of a fallen leaf, half-way between the insertion of the bractex and the rhizoma.

2. SIMPHYOSTEMON, Miers.

1. Symphyostemon narcissoides, Miers, in Linn. Soc. Trans. v. xis. p. 97. Sisyrinchium marcissoides, Car., Diss. vol.vi. p. 347.t.191. f. 3. S. odoratissimum, Lindl. Bot. Reg. t. 12S3. Galaxia narcissoides, IFilld. Sp. Pl. vol. iii. p. 5S3. Gladiolus biflorus, Thunberg, Diss.Glad. n. 5.

Hab. Strait of Magalhaens, Commerson; Port Famine, Capt. King; Elizabeth Island, C. Darwin, Esq.
I quite agree with Mr. Miers in remoring this plant from Sisyrinchium. Thunberg's habitat of the Strait of Magalhaens, from whence he originally described this plant as Gladiolus biforus, has been replaced by that of the Cape in most sncceeding authors, except Tahl (En. Plant. vol. ii. p. 97), and Willdenow (Sp. Pl. vol. i. p. 209).

3. TAPELNLA, Juss.

Perigonium corollinum, superum, hexaphyllo-partitum; laciniis basi connatis, subcarnosis, patentibus, apiculatis, 3 exterioribus majoribus, Stamiza 3 , ino perigonii inserta; flamentis in tubum trigonum connatis, supra medium liberis; antheris extrorsis, lineari-ovatis, basi profunde emarginatis. Ocarium lineari-obovatum, 3-loculare. Ovula plurima, basi anguli centralis loculi affixa. Stylus validus, supra medium in stigmata 3 erecta subulata apice dilatata papillosa fissus. Capsula coriacea, globosa, triloba, trilocularis, apice loculicido-trivalvis. Semina plurima, obovata, teretia; testa subcoriacea, grosse cellulosa; rhaphe indistincta; chalaza atra; embryo parvus, elongatoobconicus, basi albuminis duri immersus.-Tapeinia, Juss. Gen. p. 59, e schedis Commersonii.
I. Tapelnia Magellanica, Juss., l.c. Titsenia pumila, Tahl, Enum. vol. ii. p. 48. Rem. et Sch. Syst. Teg. vol. i. p. 371. Spreng. Syst. Teg. vol. i. p. 147. Dietrich. Sp. Pl. vol. ii. p. 559. W. Magel-
lanica, Pers. Synops. vol. i. p. 42. Lxia pumila, Forst. Comm. Goett. vol. ix. p. 20. t. S. I. Nagellanica, Lam. Ill. vol. i. p. 109. Moræa Magellanica, Willd. Sp. Pl. vol. i. p. 241. Galaxia obscura, Cav. Diss. vol. ni. p. 341. t. 159. f. 4. (Sisyrinchium pumilum, Tab. CXIIX.)

Hab. Strait of Magalhaens and throughout Fuegia, on the mountains, Commerson, Banks and Solander, and all succeeding royagers.

The accompanying plate and analysis of this curions little plant represent all its characters, and especially those which have induced me to retain the genus which the illustrions Jussieu formed, but which has not been adopted by any succeeding author. It is to be distinguished from Sisyrinchium by its very remarkable habit, coriaceous perianth, and, more especially, by the capsule dehiscing at the apex, and the ovales and seeds occapying only the lomer half of each placentiferous dissepiment. To the southward of the Strait of Magalhaens, where Sisyrinchia do not extend, this little plant represents that genns, and is also the analogue of the Libertice of New Zealand.

The curions and beautiful distichous arrangement of the foliage, is characteristic of this and of some other especially alpine Antarctic plants, belonging to several natural orders, amongst the majority of the species of which such a foliation is foreign or very rare. Thus, in Cyperacees it is seen in Oreobolus pectinatus (pt. 1. t.49); amongst Restiacere, in Gaimardia pallida (p. 86); amongst Alismacere, in Tetroncium Magellanicum (t. 12s); and amongst Juncece, in the Peruvian Distichya muscoides, Nees and Meyen (Nov. Act. Acad. Cæs. vol. xix. Suppl. p. 77), which is probably the Goudotia Tolimensis, Decaisne (Ann. Sc. Nat. ser. 3. vol. iv. p. 83. t. 4). This tendency to assume a certain habit, which these otherwise wholly dissimilar plants present, is perfectly analogons to what occurs even more conspicnously in the regetation of the Cape of Good Hope and Anstralia; and one of the most singular phenomena of the regetable kingdom.

Plate CXXIX. Fig. 1, bracteæ and flower; fig. 2, cxpanded flower; fig. 3, stamens, styles and stigmata; fig. 4, ripe capsule; fig. 5 , the same burst open ; fig. 6 , one valve of the same, showing the insertion of the seeds; fig. 7, a seed removed; fig. 8, vertical sectiou of the same; fig. 9 , embryo (the figures 8 and 9 are inadvertently transposed) :-magnified.

LII. SMILLACEE, Br .

1. CALLITENE, Comm.

1. Callixexe marginata, Commersou, ex Juss. Gen. n. 41. Lam. Illust. Gen. t. 248. Gaud. in Aun. Sc. Nat. vol. v. p. 101. t.2. f.2, et in Freyc. Toy. Bot. p. 133. D'Ure. in Mém. Soc. Limn. Paris, vol. iv. p. 604. Enargea marginata, Banks et Sol. MSS. in Bibl. Banks. cum icone, et in Gertner de Fruct. vol. i. p. 283. t. 59. f. 3.

Hab. Strait of Magalhaens and throughout Fuegia, Commerson, Bankis and Solander, \&c. Falkland Islands, most abundant, Gaudickaud, and all succeeding voyagers.

A very elegant little plant, remarkable, especially in the Falkland Islands, for its very sweet-scented flowers.
The extrorse anthers of this genus have been hitherto overlooked, from the versatile uature of their attachment. The embryo, described as amphitropal, at first is nearly atropal ; but apparently during the maturation of the orarium the seed becomes partially inverted, so as to be placed at right angles with the fumiculus, and the embryo is consequently hetcrotropal.

Callixene is an Antarctic-Amcricau, and New Zealand geuns. From the latter country Mr. Colenso has sent the C.pareiflora, Hook. fil. (Hook. Ic. Plant. t. 632), which grows at the foot of large Beech trees, lying prostrate
against their tnonks in the mountain forests, as the C marginata does at Cape Hom. Their Australian representative is the Drymoplila cyanocarpa, Br., a subalpine Tasmanian plant, very similar to them in habit.

2. Callixene polyphylla, Hook. Ic. Plant. t. 674.

Mab. Cape Tres Montes, C. Darwin, Esq.
The C.marginata does not attain a lower latitude in South America than the Strait of Magalhaens, but is replaced in South Chili by the present species, which is mueh handsomer ; this, again, is represented in Peru by the geuus Luzuriaga of Ruiz and Pavon.

2. PHILESIA, Comm.

Flores hermaphroditi. Perigonium corollinum, campannlatum, sexpartitum, laciniæ exteriores iuterioribus multoties breviores. Stamina 6, imo perigonii inscrta; filamenta filiformia, infra medium in tubum connata ; antherce inclusæ, lineares, extrorsæ. Ovarium parvum, uniloeulare. Ovula plurima, sul)-biserialia, orthotropa, funiculis brevibus, placeutis parietalibus elongatis adnexa. Stylus elongatus, simplex. Stigma exsertum, capitatum, plumosum, obscure 3-lobum. Bacca uniloeularis, polysperma. Semina pulpo glutinoso nidulantia, ascendeutia, ovoidea, rugosa; testa tenus, flavida; albumen corneun; embryo cavitate axili albuminis lente arcuatus, extremitate cotyledonari hilo oppositus.-Suffrutex Chileusis suberectus. Rami teretes, stricti v. flexuosi. Folia alterua, coriacea. Pedunculi ramis terminales. Flores magni, speciosi, basi bracteati. Philesia, Commerson, ex Juss. Gen. p. 41.

1. Philesla Zuxifolia, Lam., Illust. Gen. t. 24S. Poiret, Encych. vol. v. p. 269. Rcem. et Sch. vol. rii. p. 314. Lindl. Teg. Kïngl. p. 217.
H.ı. Strait of Magalhaens, Commerson; Port Famine, Capt. King; Good Suecess Bay, Banks and Solander.

Except by the parietal placentation, the genera Philesia and Lapayeria (themselves very closely allied), differ in no important points from Callixene and Luzuriagn, and simce placentation does not afford characters of the importanee amongst Monocotyledonous that it does in Dicotyledonous Orders, I see no objeetion whaterer to arranging these two genera under Sinilaceer proper and next to Callixene.

In Asteliacea, as I have mentioned elserrhere, the placente are axile, parietal or pendulous; in Juncee, parietal or basal; in Amaryllidea, axile or parietal; in Lilinceec, the same; and other orders equally display a very considerable amount of variation in the consolidation of the carpels, and consequent disposition of the plaeentæ, unaeeompanied, howerer, with any other characters of more than generic value.

In all other respeets, Philesia is eren generically very nearly related indeed to Callixene, through Lusuriayn, which has the three inner segments of the perianth still larger in proportion than in Callixene; and on the other hand, through Lapageria, in which they are all equal in size. The habit, texture, distiehous insertion of the leares, whieh are all on the same plane with the ramuli; the texture, nervation, margination, and even form of the leares, which are glaucous beneath, are alike in Callixene and Philesia; so are the terminal, large, solitary, bracteate flowers, the texture of the periantl, extrorse anthers, baccate fruit, the numerous orules in two series on three rows of placente, the many oroid seeds, delieate testa, dense albumen, and axile embryo which is of similar form in the tro. The only difference in the orules is, that those of the Callixene are heterotropal, those of Philesia nearly straight or atropal, charaeters rather indicating close affinity than the coutrary.

With regard to the genus Lapageria, R. and P., it is so elosely allied to Philesia that I doubt its ralidity, the ehief differenees being the uearly equally divided perianth of Lapayeria, its more distinetly three-lobed stigma, oblong
berry, twining branches, and differently nerved leaves, in all which respects it is more evidently a genus of Smilacece, than either Callixene or Philesia. There is no reason for supposing Dombey's Capia to be other than Lapageria rosea.

It appears to me to be through these Antarctic and extra-tropical American genera, together with the Callixene of New Zealand and Drymophilu of Tasmania, that the Smitacere, Lindl., are inseparably connected with the Tribe Asparageer, Lindl., of Liliacere; groups which Dr. Lindley has placed in separate natural classes, on the ground chiefly of anatomical differences in their stems: and it further appears that all modifications of a stem typical of Endogens and one equally characteristic of Dictjogens may be traced amongst these plants.

My own obserrations on the wood of Philesia do not exactly lead to the conclusions that the learned author of ${ }^{*}$ the 'Vegetable Kingdom' has formed; what appears to be bark is at no period separable from the subjacent wood, and the pith is of undefined form. There is a resemblance between the bark of Philesia and that of an exogenous stem, but it is apparent and not real: the stem consists of one mass of cellular tissue, through which bundles of vascular tissue descend, between the axis and the cuticle; abundantly towards the latter, where they all coalesce, though always at a little distance within the circumference; more sparingly towards the axis, where a space is often left wholly unoccupied with woody fibres. A transverse section of such a stem thus presents, 1st, a cuticle; 2nd, a zone of cellular tissue, often formed of thick walled cells; 3rd, a zone of wood, dense and defined externally, gradnally laser towards the axis and separating into bundles which irregularly surround a central column of pith. The only difference, in short, betreen this and any other Endogenous stem, consists in the first-formed or outer bundles being disposed more symmetrically, and being combincd into one zone.

If a branch of Luzuriaga radicans be examinerl, the same pecnliarity will be perceived, with only this difference, that the zone of wood is narrower and the pith broader. In Callixene polyphylla, the woody zone, thongh still continuous, is narrower still. In C. parviflora both its edges (both inner and outer circumference) are elearly defined ; and in C.marginata it is sometimes interrupted.

The Callixene marginata thus shows this disposition of the outer vascular bundles to unite in the lowest degree of these South American Smilaceer, but in Lapageria the same tendency will be found in its highest, for the stem if that plant is almost wholly composed of woorly matter, concentrated externally into a well-defined zone, rather looser towards the centre, and enclosing large tracheæ with rery little cellular tissue intermixed. Esternally to the woud is a very narrow layer of condensed parenchyma. In the first year's twig of this plant, the cellular tissue is proportionably abundant, with separate vascular bumdles scattered through it, but is absorbed or obliterated afterwards. Nor is it in the genera of South America alone that thesc woorly bundles are thns arranged, it is so in the Geitonoplesium (Luzuriaga cymosa, Br.) of New Holland, and in Drymophita, Br.; and even nearer home in Convallaria and probably in many Comallariece. To the last mentioned group the above named gencra most assuredly belong; whether the renation be parallel as in Callixene, parallel and retose between the costre as in Lapageria, or wholly retose as that of Philesia appcars to be, from the two lateral of the three parallel costæ forming the thickened margin of the leaf.

On the other land, if we turn to the Smilacece proper, as limited by Dr. Lindley, even they display no more deviation from the common Endogenous structure than do the Convallariec. A young shoot of Rhipogonum shors the same disposition of the woody and cellular tissue as Callixene polyphylla, with rather a broader zone of cellular tissue surrounding the wood; but in an older stem of the same, the wood so predominates over the parenchyma, that the zone of cellular tissue is only distinguished with difficulty. In the Smilax excelsa, L., of Europe, the woody zonc of the young branch is neither so continuons nor regular, but it becomes so in the older state of the plant. Tamus communis presents the same arrangement. In the young stem of Testudinaria elephantipes I do not find the medullary plates described by Dr. Lindley; there appears to me to be a broad and perfectly continuons zone of rood, sending six or eight prolongations towards the axis, where there are further a fer irrcgularly disposed bundles. I shall conclude this long digression by instancing the genus Juncus as of the furthest removed from

Dictyogens in every point of riew, except that it possesses an equally continuous and defined zone of woody tissue, within the cuticle, separated from the latter by a zone of parenchyma, and enclosing a mass of pure pith.

The Philesia buxifolia is among the handsomest plants of the Antarctic Amcrican Flora; it occurs along the coast from the Strait of Magalhaens to Valdivia; to the northward of which, between Valdivia and Concepcion, it is replaced by the Lapageria rosea.

LIII. ASTELIE®, Brongniart.

1. ASTELIA, Banks et Sol.

1. Astelia pumila, Bromn, Prodr. p. 291. Gaud. in Ann. Se. Nat. vol. v. p. 100. et in Freyc. Toy. Bot. p. 132. D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p. 603. Fl. Antarct. vol. i. p. 76. Melanthium pumilun, Forst. Comm. Goett. vol. ix. p. 30. t. 6. Banks et Sol. MSS. in Mus. Banks. cum icone. Funkia Magellanica, Willd. May. Naturf. Fr. vol. ii. p.19. (Tab. CXXVII).

Hab. Sonth Chili, from the Chonos Archipelago to Cape Horn, very abundant on the hills and in exposed places, Commerson, and all future royagers;-Falkland Islands, Gaudichuud, sc.

Under the description of \mathcal{A}. linearis, in the first part of this volume, I mentioned that the placentation varies in the different species of this genus. In the majority, the orules are numerous and arranged in two lines upon parietal placentr ; in one the secds arc numerous and pendent from the summit of a one-celled berry, whose dissepiments have probably becn absorbed; a third form presents a three-celled ovarium, with several orules pendulons from the summit of cach cell; a fourth has a three- to six-celled subcapsular fruit, with a few pendulous seeds in each cell; while the present plant offers a fifth modification, for its placentation is decidedly axile, and the orvles are arranged in two rows along the inner angle of each of the three cells. This arises from the perfect consolidation of the carpels in a young state, when the edges of each carpellary leaf are so inflected as to meet in the axis of the pistil, where a triangular longitndinal cavity is often left (see fig. 5 of Plate CXXVII.). At an early period the carity of each capsule is not apparent, the orules being imbedled in a cellular mass, which in this species retires from between and around the ripening seeds, learing a distinct cavity as the frnit adrances to maturity, but in some others remains, partly attached to the placentæ and seeds, as a mucilaginous or gummy mass. At no time is the fruit of this plant truly ceen sub-capsular, its walls are always flesly, and no trace of dehiscence can be seen along the furrows of each carpel, from which the seeds escape by the decay of the pericarp.

I have followed M. Brongniart in placing this genus by itself in a natural group, whose nearest affinities I lave indirated in the first part of this work.

The Astelia pumila is a most abundant Fuegian and Falkland Island plant, forming, with the Caltha appendiculata especially, a large proportion of the peat in those countrics. Its flowers are inconspicuous, and have a faintly sweet smell.

Plate CXXVII. Fig. 1, three-flowered peduncle, bract and flower; fig. 2, flower removed; fig. 3, pollen; fig. 4, ovarium ; fig. 5, transversc section of the same; fig. 6 and 7, ovules; fig. 8, ripe fruit ; fig. 9, transverse scetion of ditto ; fig. 10, ripe seed; fig. 11, the same with the outer osseous integument removed; fig. 12 , the same, cut lougitudinally; fig. 13, embryo :-all magnifeed.

LIV. JUNCE E, $D C$.

1. ROSTKOVLA, Dest.

1. Rosthovia grandiflora, Hook. fil.; in F7. Antarct. vol. i. p. S2. Marsippospermum calyculatum, Desr. Bot. Journ. vol. i. p. 330. M. grandiflorum, ILook. Ic. Plant. t. 533. Juncus granditlorns, Linn. fil.

Suppl. p. 209. Forst. Comm. Goett. vol. ix. p. 27. t. 3. Gaud. in Ann. Sc. Nat. vol. v. p. 100, et in Freyc. Toy. Bot. p. 132. D'Urv. in Mém. Soc. Lim. Paris, vol. iv. p. 603.

Hab. Strait of Magalhaens and throughout Fuegia, Commerson, Banks and Solander, \&c. Falkland Islands, very abundant, Gaudichaud, and all sueceeding voyagers.

The miserable natives of Fuegia weave the stems of this rush into baskets, and in doing so seem to exhaust their cunning, for such baskets appeared to us to be the only article they possessed, exhibiting any attempt at such handy-craft as demands the shightest ingenuity, except, perhaps, the moveable heads of their sealing spears.

2. Rostкovia Magellanica, Hook. fil. l.c.

Hab. Strait of Magallhaens, Commerson; Hermite Island, Cape Horn, J.D.II.; Falkland Islands, very abundant, Gaudichaud, \&c.

I am not aware of this specics having been gathered in Fuegia since Commerson's time, except by myself'; and though abundant in Hermitc Island, it is probably scarce and alpine to the north of that locality, as it is also in Camplocll's Island.

2. JUNCUS, L.

1. Juncus scheuchzerioides, Gand.; Fl. Antarct. p. 79.

Hab. Strait of Magalhaeus; Port Famine, Capt. King; Hermite Island, Cape IIorn, J. D. H.; Falkland Islands, very abundant, Gaudichaud, sc.; Kerguelen's Land, J. D. II.

Decidedly the most Antarctic Juncus, and excecdingly abundant at Cape Horn, the Falkland Islands, aud Kcrguelen's Land, where no other species of the gemus exists. It is also a native of Campbell's Island and Lord Auckland's group.
2. Juncus planifolius, Brown, Prodr. p. 259. E. Meyer, Junci, n. 36, ct in Linnaa, vol. iii. p. 370. La IIarpe, in Mém. Soc. Nat. Mist. Paris, vol. ii. p. 55. Kuntl, En. Plant. vol. iii. p. 344.

Hab. Chonos Archipelago, C. Darwin, Esq.
These, and other specimens gathered at Valdivia by Mr. Bridges, are the only extra-Australian individuals of this species that I have seen. Meyer remarks (Herb. Hook.), that there is no specific difference between the specimens of the New and Old World.
3. Juncus graminifolius, E. Meyer, in Rel. Mcenk. vol. ii. p. 144. Cephaloxys graminifolia, Nees et Meyer, in Nov. Act. Acad. Cres. vol. xix. Suppl. p. 125. J. rivularis, Poeppig, fud. Meyer in Herl. Hook.

Hab. Chonos Archipelago, C. Darwin, Esq.
The present species, like the former, can scarcely be considered truly Antarctic, merely entering the northern limits which I have assigned to the Fuegian Flora. It ranges on the coast from Valparaiso to the latitude of Chonos Archipelago and is also found ou the Cordillera of Perv.

Meyer (Hook. Herb.) remarks that this hardly belongs to the genus Cephaloxys, on account of the structure of its capsule.

3. LUZULA, $D C$.

1. Luzula Alopecurus, Desv. Bot. Joum. vol. i. p. 159. E. Meyer, in Reliq. Meenk. vol. ii. 1). 145. Syn. Luzul. n. 5. La Harpe, in Mém. Soc. Ifist. Nat. Paris, vol. ii. 1p. 177.

Hab. Strait of Magallaens, Commerson, Capt. King; Falkland Islands, very abundant, Gaudichaul, , e.
I have seen but an imperfeet speeinuen of the L. Peruviana, Desv., to which the present is manifestly very closely related. E. Meyer (Herb. Hook.) observes, that thongh so mueh alike in the young state, when older they are very distinet speeies. The present is the most Antaretie of the genus, exeept the following, and is the South Ameriean representative of the L. crinita (Tab . XLVIII.) of Lord Auekland's group.

2. Luzula sp.?

Hab. Hermite Island, Cape Horn, on the tops of the mountains, alt. 1,600 feet, J. D. If.
My specimens are only snfficient to prove this plant to be a Luzula; they are seareely two inehes high, with a slender stem, and nodding small paniele; the whole somewhat resembling the L.arcuata of Aretie Europe, whose Autaretie representative it probably is.

LV. ALISMACEN, Br.

1. TETRONCIUM, Willd.

Flores dioiei. Fl. Mas. Perigonium obliquum, tetraphylhum, coloratum, foliolis coneavis inæqualibus, late ovatis, superioribus altius insertis, supremo majore. Stamina 4, foliormom perigonii basi inserta ; flamenta brevissima : anthere extrorsæ, late didymæ, basi fixæ. Ovarii rudimentum nullmm. Fl. Fem. Perigonium ut in mase., sed foliolis angustioribus. Stamina 0. Carpella 4, subulata, basi in ovarinm ineomplete t-loeulare eoalita, supra medinm libera; styli subulati, divergentes, imo apiee ineonspieue stigmatiferi ; ocnla quovis loeulo solitaria, ereeta, anatropa, foramine late aperto. Frnetus indeliscens, 4-loenlaris, nomospermns. Semen erectum, lineari-oblongum, compressum; testa tenuissima; albumen farinaceum ; embryo axilis, trigonus, longitudine albuminis, extremitate radieulari attemuata.-Herba Fnegiana et Falklandiea cespitosa, perennis. Caulis basi radicans, squamis nitidis tectus, divisus. Folia plana, disticha, equitantin, lineari-ensiformia. Seapns terminalis, erectus. Flores spicati. Perigonium flarescens, rufo-fuseo maculatum. Stamina antheris magnis. Fructus deflexus, aborth monospermus, 4-cornutus. Tetroneinm, Filld.

1. Tetrosclum Magellanicum, Willd., in Berl. Mag. vol. ii. p. 17. Hook. Ic. Plant. t. 534. Kunth. En. Plant. vol. iii. p. 142. Trigloclin reflexum, Tahl, ined. (fid. Willd.). T. Magellauiecum, Fahl, in Herb. Muss. Paris. Cathanthes, Richo in Mém. Mus. vol. i. p. 365.

Hab. Strait of Magalhaens, Commerson; Port Famine, Capt. Kïng. Good Suceess Bay, Banks and Solander, Forster ; Hermite Island, Cape Horn, J. D. IL.; Falkland Island, IIr. Wright, J. D. II.

The arrangement of all parts of the flower are quaternary in the speeimens of this curions plant that I have examined; in whieh respeet it differs from the majority of, and in the albuminous seeds from all the order, Alismacece; withont, however, shewing àny further affinity with the Naiadacea, in whieh order Dr. Lindley has placed it.

The habit of Tetroncium is preeisely that of Narthecium, but in most other points its alliance to Trigzochion is evident, partienlarly in the spieate infloreseenee, eoneave segments of the periauth, whieh are obliquely placed, the upper being larger and inserted above the rest; in the extrorse, nearly sessile anthers; the solitary, basal, anatropal ovules; and the ereet seed, which, being albuminous, indientes an affinity with Juncece.

Plate CXXVIII. Fig. 1, male flower; fig. 2, segment of perianth and stamen; fig. 3, female flower; fig. 1, earpel eut open; fig. 5, ovnle; fiy. 6, the same, with the primine partly removed; fig. 7, ripe fruit; fig. 8, transrerse seetion of the same; fig. 9 , the same, longitudinally divided; fig. 10, seed; fig. 11, embryo:-all magnifed.

2. TRIGLOCHIN, Linn.

1. Triglochin Monte-Tidense, Spreng., Syst. Teg. vol. ï. p. 145. Roem. et Sch. Syst. vol. vii. p. 1586. Kunth, En. Plant. vol. iii. p. 144. T. capense, Thunb. Prodr. p. 67. T. maritimum, Drege, in Herb. Hook. T. striatum, Cham. et Schlecht. fid. Kunth, l. c.

Hab. Cape Tres Montes, C. Daroin, Esq.
Sariat magnitudine, scapoque foliis nunc longiore nunc multoties breviore.
Probably a very widely diffuscd, and certainly in size a variable plant, common to both coasts of extra-tropical south Aruerica, and to the Cape of Good Hope. To this may also belong the T. Chilense, of Meyer, of which a wholly insufficient character is given in a foot-note to that traveller's journey (Reise un die Erde. vol. i. p. 35). Its nearest ally is the T. decipiens, Br., of Australia, of which T. filifolium, Sieb. (inaccurately described as wanting the abortive carpels), is a synonym; indeed, the Anstralian differs from the South American plant only in the larger fruit, so far as my only specimen cnables me to judge.

LVI. RESTIACE A, Br.

1. GALMARDLA, Gaud.

1. Gamardia australis, Gaud., in Ann. Sc. Nat. vol. v. p. 100, et in Freyc. Foy. Bot. p. 419. t. 3. Kunth, En. Plant. vol. iii. p. 491.

Hab. Fuegia; Hermite Island, Cape Horn, J. D. TI.; Falkland Islands, very abundant, Gaudichaud, D' Urille, J. D. H.

A particularly abundant plant on the hills of the Falkland Islands, forming, in boggy places, hard, extensive green patches, often seccral yards across, and contributing matcrially to the formation of peat-bog. It has representatives on Lord Auekland's Group and probably likerise in Tasmania.

LVII. CIPERACEA, DC.

1. OREOBOLLS, Br.

1. Oreobolus obtusangulus, Gaud., in Amr. Sc. Nut. vol. v. p. 99. t. 2. f. 1, et in Freyc. Foy. Bot. p. 417. Kunth, En. Plant. vol. ii. p. 367.

Hab. Fuegia; Hermite Island, Cape Horn, J. D. II.; Falkland Islands, abundant, Gaudichaud, D' Urcille, J. D. II.

It is difficult to suppose that a plant, so abundant in the Falkland Islands, should be rare on the mountains of the adjacent continent, where, however, it has only been gathered near Cape Horn, unless a speeies collected by 1I. Gondot full 4,000 miles further north, on the peak of Tolima in Colombia, should prove to be the same plant, as, judging from a barren specimen, it very likely may.

2. ELEOCHARIS, $B r$.

1. Eleochams pulustris, Br., Prodr. p. 244. Engl. Bot. t. 131. Scirpus melanostachys, D'Ure. in Mém. Soc. Lim. Puris, vol. iv. p. 603. Fimbristylis melanostachys, Brong. in Duperrey, Toy. Bot. p. 181.

H$_{\perp \mathrm{b}}$. Falkland Islands, D'Urrille, J. D. II.

Evidently the Ewropean E. palustris, which is also a native of Patagonia, and very widely diffnsed throughout the temperate regions of both the northern and southern hemispheres. Hypogynous setæ are generally present, though those of my specimens vary in size; Kunth says, "setr plane abortientes in Scirpo melanostachyo," and D'Urville and Brongniart have, from their oceasional absence, inclnded this species in Fimbristylis.

3. ISOLEPIS, Br .

1. Isolepis pygmau, Kunth, En. Plant. vol. ii. p. 191.

Tar. brevis. Isolepis brevis, Brong. in Duperrcy, Toy. Bot. p. 1S0. I. Magellanica, Gaud. in Dupervey, Ioy. Bot. p. 414. I. Mcyeuiana, Nees, in Nov. Act. Acad. Ces. vol. xix. Suppl. p. 87.

Yar. clongata. I. pygmæa, var. β, Kunth, l. c. I. trigona, Kunze, in Poeppig, Coll. n. 1. p. 27 (?).
Hab. Var. brevis, Fakland Islands, D'Urville, J. D. II. Var. elongatu, Cape Tres Montes, C. Darwin, Esq.

The rariations in the size, form, and markings on the surface of the achænia of the othervise almost identical forms of Isolepis seem really endless. Falkland Istand specimens are short, with small spikes, and small fuscous achæmia, which are broader than long and punctulate, but the puncta not in parallel lines. Mr. Darwin's plant is much longer, and has rather longer spikes, with elliptical orate larger achænia, which are longer than broad and similarly punctulate, its culms are often ten inches long. The I. lepida, Nees (in Linnea, rol. iv. p. 291), judging by Cuming's Valparaiso specimens (in Herl. Hook.), resembles the plant of Mr. Darwiu, its achænia are precisely similar to those of the Falkland Island varicty in form, colour and surface, but scarcely half as large.

The Cape of Good Hope I.pygmaa, so called by Kunth, has the achænium of I. lepida, but pale coloured and smaller still; while the Auckland Island I. Aucklundica (p. 88. t. L) has larger fruit than auy.

All of the above differ from the European I. Sacii, Seb. and Maur., in the achænia not being so deeply punctate or striate. In size and form the pericarp of I. Savii resembles that of the Falkland Island plant.

4. CHETOSPORA, Br.

1. Chetospora Antarctica, Hook. fil.; culmis dense caspitosis teretibus basi foliosis, foliis culmum vix æquantibus anguste lineari-elongatis rigidis semiteretibus super caualiculatis glaberrimis, spiculis sub 6 in paniculam brevem coarctatam involucro 5-phyllo breviorem aggregatis 1 -loris, squamis distichis carimatis imberbibus, setis lyypogynis 6 capillaribns nucem superantibus. (Tab CDLVII.)

Hab. Cape Tres Montes ; Patclı Cove, alt. 2,000 feet, C. Darwin, Esq.

Radix e fibris crassis descendentibus. Rhizoma breve, inclinatum. Culmi dense cæspitosi, rigidi, erecti. Folia 6 -pollicaria, basi in vaginam castaneam chartaceam 1 unc. longam dilatata; lamina vix $\frac{1}{2}$ lin. lata, apice acuminata. Panicula sub 1 unc. longa, coarctata, involucro basi vaginante $\frac{1}{2}$ brevior. Spicula erectæ, pedicellatæ, inferiorcs involucratæ, $\frac{1}{2}$ unc. longæ, lineari-oblongæ, uniflores. Squame sub 5, pallide flavo-fuscæ, nitidæ, linearioblongæ, acuminatæ, lorso carinatæ, inferiores supremaque vacuæ. Stamina 3. Sete hypogynæ 6, squamis breviores, graciles, scaberule. Nux elliptico-oblonga, angulis costatis, glaberrima, polita, pallide fusca. Stylus gracilis, elongatus, apice stigmataque filiformia exserta.

Plate CXLVII. Fig. 1, spikelet; fig. 2, flower with the anthers fallen away:-both magnified.
2. Chstospora laxa, Hook. fil.; culmis dense cæspitosis teretibus basi foliosis, foliis culmo brevioribus anguste lineari-elongatis rigidis semiteretibus super canaliculatis glaberrimis, spiculis plurimis in paniculam
laxam subeffusam involucratam involucris breviorem dispositis 2-floris, squamis distichis carinatis exterioribus dorso scaberulis, setis hypogynis 4-6 rigidis scabridis nuce $\frac{1}{2}$ longioribus. (Tab. CNLVI.)

Hab. South Chili; Cape Tres Montes, C. Darwin, Esq.

Culmi pedales. Folia ut in priore sed duplo longiora. Panicula 2-3 une. longa, parce ramosa. Involucri foliola 2 eæteris longiora, panieulam superantia. Spicule $\frac{1}{4}$ unc. longæ, ovato-oblongæ, compressæ, biforæ, inferiores longius et graciliter pedicellatæ. Squame sub 6, atro-eastaneæ, coneavæ, ovate, aeutæ v. snb-acıminate, nitidæ, inferiores vacuæ. Stamina 3. Setce hypogynce 4-6, rigidæ, sealridæ. Nux breviter stipitata, late elliptiea, angulis costatis, stylo elongato stigmatibus 3 capillaribus exsertis terminato.

One of these two species of Chetospora may be considered the Antarctie representative of the Schoenus nigricans of Europe. Neither of them appears to inhabit a high south latitnde, though the C. Antarctica, aseending to an elevation of 2,000 feet in South Chili, might have been expected to grow at the level of the sea in Fuegia.

Plate CXLVI. Fig. 1, spikelet; fig. 2, the same with the lower scales removed; fig. 3, achæenium:-all magnified.

5. CARPHA, Banks et Sol.

1. Carpha schonoides, Banks et Sol. MS.; culmis cæspitosis teretibus lævibus, foliis breviusculis culmo $\frac{1}{2}$ brevioribus semiteretibus, spicnlis sub 2 -floris in paniculam paucifloram involucratam dispositis, setis hypogynis 6 ad apicem plumosis. C. schonoides, Banks et Sol. MS. in Bibl. Bankis. cum icone. (Tab. CXLVIII.)

Hab. Southern parts of Tierra del Fuego; Good Success Bay, Banks and Solander; Hermite Island, Cape Horn, J. D. II.

Cumi 6-8-unciales, exspitosi, basi foliati, radiees plurimas filrosas erassas demittentes. Folia plurima, basi vaginantia, lævia, vaginis pallidis, lamina lineari-subulata, acuta, semiterete, super anguste canaliculata. Paniculu involucro $\frac{1}{3}$ brevior. Spicula sub 3, pedicellatre, pedieello compresso infra squamas aneipiti. Squamce sub $5, \frac{1}{3}$ unc. longæ, lineari-oblongæ, acuminatæ, 2 inferiores vacuæ, dorso cainatæ, carina obseure seaberuda, superiores dorso convexæ, floriferæ, supremo minore vaeuo. Seta hypogynce 6, planæ, lineares, utrinque eiliato-phumosæ, longitudine squamas æquantes, basi in tubum brevem cyathiformemi comnatæ. Stamina 3, fauce tubi perigonï insertæ. Nu, oborato-oblonga, stipitata, 3 -costata angulis incrassatis, stylo coronata. Stylus persistens, trigomus, angulis scrratis, inferne attematus, apice acuminatus, validus, rigidus. Semen solitarium, erectum, nuei conforme ; raphe et chalaza prominentes; cmbryo parvus, octohædrns, basi albumine inclusus, extremitate cotyledonari attenuata.

The Carpha schomoides of the hills of Fuegia, and the C. alpina, Br., of the loftier mountains of Tasmania, are two closely-allied representative species, both apparently very rare and loeal plants. C. alpina is replaced further north, in Anstrabia, by the C. deusta, Br., a native of the colony of Port Jackson, but hitherto no South American species except the one here described has been notieed. These three form together a very distinet group, as Mr. Brown has indicated (Prodr. p. 230).

Plate CXLVili. Fig. 1, spikelet; fig. 2, floriferous and empty seale; fig, 3, achæmium, filaments, and setæ; fig. 4, base of setæ and filaments; fig. 5 and 6 , aehænium; fig. 7, seed; fig. 8, same, cut open ; fig. 9, embryo:-all magnificed.

$$
\text { 6. CAREX,* } L \text {. }
$$

1. Carex ovalis, Goorl. in Limn. Trans. vol. ii. p. 14S. Eugl. Bot. t. 306.

Var. β, minor, Brongn. in Duperrey, Foy. Bot. p. 149. C. Macloviana, D'Urv. in Mém. Soc. Limu. Paris, vol. v. p. 599.

* The species of this genus, and of Uncinia, have been determined and described by my kind friend Dr Boott.

${ }^{1}$ ab. Falkland Islands; D^{\prime} Urville.

I have seen no Falkland Island specimens of this plant; can it be the C. festiva ?
2. Carex festiva, Dewey ; spica composita e spiculis pluribus androgynis basi masculis in capitulum ovato-suborbiculatum arcte congestis, stigmatibus 2, perigyniis ovatis acuminato-rostratis bifidis ore autice oblique fisso nervosis marginatis denticulato-serratis squamam lanceolatam acutam æquantibus vel ea longioribus. Boott. C. festiva, Dewey, in Sill. Journ. vol. xxix p. 446. C. propinqua (?), Nees et Meyen.

Hab. Strait of Magalhaens; Port Gregory and Port Famine, Capt. King.
Ciulmus subpedalis, strictus, inferne glaber, foliis vaginantilus, rudimentisque foliorum pallide castaneis tectus, supernc nudus, acutangulus, serrato-scaber. Folia 2 lin. lata, culmum æquantia vel breviora, margine seabra. Spica S-9 lin. longa, 7-8 lin lata, nuda, vel braetea brevi subfoliacea basi suffulta. Spicule 8-12, vel phures, subrotundre, arctissime congestæ, ferrngincex, concolores. Squama lanceolatæ, aeutæ, apice membranaceo-pallidæ. Autherce hispido-apiculatæ. Stylus exsertus. Stigmata 2 , longa. Perigynium 2 lin. longum, lineam latum, utrinque nervosum, ferrugineum, marginibus alatis, e medio sursum dentieulato-serratis. Achenium 8-9 lin. long., 5-9 lin. latum, oblongum, compressum, ferrugineum, basi styli abrupte apiculatum. Boott.

A C. ovali, Good., solum, spieulis pluribus, subrotudis, in capitulum arcte eongestis, perigyniis paululum brevioribus, differt. Boott.

Dr. Boott has kindly faroured me with the range of this speeies, which is so wide in the northern hemisphere that we should quite expect that it will lereafter be found along the chain of the Cordillera. Commencing in Grecnland on the cast, it crosses to Unalaschka on the west by Cumberland House on Bear Lake, and thence runs south along the Rocky Mouutains. In Europe it has hitherto been found in Lapland only.
3. Carex curta, Good., in Linn. Trans. vol. ii. p. 145. Engl. Bot. t. 3S6, C. spicata, Bankis et Sol. MSS. in Mus. Banks. cum icone. C. similis, D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p. 599. Kunth, En. Plant. vol. ii. p. 403.

Hab. Strait of Magalliaens; Port Famine, Capt. King; Good Success Bay, Banks and Solender; Falkland Islands, abuuldant, IP'Urville, J. D. II.

The present, Dr. Boott remarks, is decidedly the European C. curta, one Falkland Island specimen alone, out of very many, differing from the others in laving ten spicule, the average number being six to cight.

The geographical distribution of this species is very wide, for it inhabits all Europe from the latitude of Lapland, where, aecording to Wahlenberg, it is excessively common, to the Mediterranean region, which it docs not enter. In Aretic America again it is abundant, extending in the United States as far south as New York.
4. Carex acaulis, D'Urv., in Mém. Soc. Linn. Paris, vol. iv. p.599. Brong. in Duperrey, Foy. Bot. p. 153. t. 28 A.

$H_{a b}$. Falklaud Islands, D'Urville.

A species wholly unknown to mé, except through the figure and description of M. Brongniart.
5. Carex decidua, Boott; spicis 4-7 atro-purpureis erectis, suprema masenla vel audrogyna basi wel apice et basi mascula, reliquis formineis, superioribus sessilibus contignis oblongis, inferioribus cylindraceis bracteatis evaginatis rarius geminatis, infima brevi pedunculata subremota, stigmatibus 2 , perigyniis oblongoovatis rostellatis ore integro utrinque nervosis stipitatis pallidis deciduis squama oblonga obtusa atropurpurea nervo pallido decidua longioribus latioribusque. Boott. C. cespitosa, Banks ot Sol. MLSS, in Mus. Banks, cum icone.

Hab. Tierra del Fuego; Good Success Bay, Bankis and Solander ; Falkland Islands, J. D. II.

Rudix stolonifera. Culmus $1-1 \frac{1}{2}$ pedalis, triqueter, glaber, pars spicas gerens $2-3$ poll. longa. Folia $1-1 \frac{1}{2}$ lin. lata, culmo longiora, flaccida, marginibus scabridis. Bractece foliaccæ, evaginatæ, inferiores culmum superautes; auriculis 2 subrotundis, ferrugineis. Spica terminalis, subpollicaris, sæpius androgyna, basi, vel apice et basi mascula; sterilis $1-1 \frac{1}{2}$ lin lata; androgyna 3 lin. lata; spica femineą $8-15$ lin. longx, $3-4$ lin. latæ, inferiores interdum geminatæ, vel basi spicula minori anctæ ; infima rarius l-2 pollices remota. Squame omnes obtusæ, atro-purpureæ, nerro pallido infra apicem evanescente ; fœmineæ perigynio breviores. Pedunculus ivfimas 3-6 lin. longus. Perigynium (cum stipite) $1 \frac{1}{9}-1 \frac{7}{9}$ lin. longum, $\frac{7}{9}$ lin. latum, rarins ad margines superne denticulato-serratum, plus minus nervosnm. Achonium $\frac{8}{9}$ lin. longum, $\frac{7}{9}$ lin. latnm, orbiculatum, lenticulare, fuscum, impresso-punctulatum, basi styli æquali apiculatum.

Habitus C. Goodenorii, Gay, et forsan ejus nil nisi forma aberrans. Differt spica terminali seepius androgyna; focmineis rarius geminatis vel compositis, perigyniisque margine scabris, culmo glabro.
6. Carex Andersoni, Boott; spicis 7-9 atro-purpurcis ercctis, terminali mascnla, fœmineis $6-8$ oblongis cylindraceisque superioribus gemiuatis ternatisque sessilibus iuferioribus simplicibus pedunculatis omnibus interdum apice masculis, stigmatibus 2, perigyniis ellipticis brevi-rostratis ore integro valide uervosis stipitatis pallidis squama orata obtusa vel lanceolata acuta atro-purpurea nervo pallido brevioribus. Boott.

ILab. Strait of Magalhaens; Port Famine, Capt. King.
Culmus sesquipedalis, firmus, superne acutangulus, scaber, basi vagimis foliorum tectus, pars spicas gerens $3-5$ poll. longa. Folia $2-3$ lin. lata, margine scabra, culmo lougiora; vagina intus albo-membranacea, longa, cylindracea; ligula ad foliam alligata, ferruginea, oltusa. Bractece evaginatæ, suprema setacea, reliquæ latæ, foliaccæ, culmum longe superantes : auricula indivisa, amplectente, ferruginea. Spica mascula solitaria, 12-14 lin. longa, 2 lin. lata, vel exemplare unico spicâ alterâ minimê (3 lin. longa) ad basin aucta. Squame latæ, obtusæ, atro-purpurex, nerro siridi in inferioribus infra apicem evanescente; spica formineæ 6-8, contiguæ, $6-17$ lin. longæ, 2-3 lin. latre, inferiores longiores, simplices, cylindraceæ, brevi-pedunculatæ: superiores geminatæ vel ternatæ, inæquales, sessiles: omnes fomineæ vel apice masculæ. Squame atro-purpurex, oratæ, vel inferiores lanceolatæ, nuticæ, nerro pallido. Stylus inclusus. Stigmata 2, longa. Pedunculus infimus 2-8 lin. longus. Perigynium (floriferum) $1 \frac{7}{8}$ lin. longum, lineam latum, stipitatum, brese cylindracco-rostratum, ntrinque crebre et valide nervosum, pallidum, papillosum, superne marginilus parce serrato-scabriusculum, ore integro. Achenium suborbiculatum, compressum. Boott.

A C. decidua differt culmo ralidiori, firmo, acutangulo, scabro; foliis bracteisque latiorbus; auricula indivisa, amplectente; spicis longioribus; terminali mascula, fœmineis sæpe apice maseulis, mediis geminatis ternatisque; perigyniis paululum latioribus, squama interdum lanceolata acuta breviorilus. Boott.
7. Carex Darwinii, Boott; spicis 8-12 ferrugineis cylindraceis longe pedunculatis nutantibus 2 terminalibus masculis, fomineis $6-10$ remotis geminatis ternatisque foliaceo-bracteatis evaginatis basi laxifloris rarius infima simplici, stigmatibus 2, perigyniis cllipticis brevi-rostratis ore integro nervosis stipitatis papillosis squamâ lanceolatâ acuminatâ hispido-cuspidata ferruginca latioribus brevioribusque. Boott. (Tab. CNLV.)

Hab. Chonos Archipelago, C. Darwin, Esq.
Culmus tripedalis, validus, triqueter, glaber, sulcatus, basi foliatus, apice gracillimus, pars spicas gerens 12 poll. longa. Folia bipedalia et ultra, 3-4 lin. lata, nervosa : margine carina apiceque serrato-scabra, supra nerris 2 prominentibus notata, iufra ad interstitia nervorum squamato-punctata. Bractece emarginatr, foliaceæ, inferiores culmum longe superantes, auricula oblonga, ferruginea. Pedunculi triquetri, scabri, inrequales, $\frac{1}{2}-3$ poll. longi. Spice fœminere $\frac{1}{2}-3$ poll. longæ, 3 lin. latæ, cylindraceæ, basi laxiflore, intervallis $2-4$-pollicaribus remotr, inferiores geminatre, superiores ternatæ (spica interdum unica abbreriata sessili), exemplare solitario spica infima simplici,
nonnullisque apice masculis. Squame ferrugineæ, nerro pallido, inferiores hispido-cuspidate; (spicarum terminalium basis solum unius inferioris mascula sessilis adest, ceteræ disruptæ.) Perigynium $1 \frac{2}{3}$ lin. longum, $\frac{8}{9}$ lin. latum, ellipticum, breve acuminato-rostratum, ore integro, utrinque $4-5$-nervatun, papilloso-asperatum, maculis ferrugincis notatum, stramineo-pallidum. Achenium 7-9 lin. longum, $\frac{5}{9}$ lin. latum, orbiculato-obovatun, lenticulare, castaneum, basi styli æquali terminatum. Boott.

A C. decidua et C. Andersono spicis ferrugineis, elongatis, longe pedunculatis, nutantibus, remotis; squamis acutis, hispido-cuspidatis; perigyniis glabris, squamâ duplo brevioribus, satis distincta! Boott.

Plate CXLV. Fig. 1, scale and stamens of male spike; fig. 2, scale and fcmale flower ; fig. 3, perigyuium ; fig. 4, the same cut open, showing the achæuium :-all magnified.
8. Carex Magellanica, Lamk.; spicis 3-4 androgynis basi masculis atro-purpureis concoloribus oblongis pedunculatis nutantibus bracteatis approximatis vel infima subradicali vaginata, stigmatibus 3 , perigyniis suborbiculatis stipitatis rostellatis ore integro papillosis squama lanceolata apice acuminata involuta vix duplo brevioribus. Boott. C. Magellanica, Lam. Encycl. vol. iii. p. 3S5. Schkuhr, Caric. vol. i. p. 52. vol. ii p. 42. t. N. f. 51. Kunth, En. Plant. vol. ï. p. 435. C. atrata, B. Magellanica, Taht, Act. Hafu. 1503. (Tab. CXLIII.)

Hab. Strait of Magalhaens, Commerson; Port Famine, Capt. King; Good Success Bay, Banks and Solander.

Radix e fibris lutescente-lanatis. Culmus 6-9-poll., acnte triqueter, gracilis, firmus, apice scabriusculus, filiformis, pars spicas gerens plerumque $2-2 \frac{1}{2}$ poll. longa. Folia $1-1 \frac{1}{2}$ lin. lata, culmo breviora vel æquantia, margive carinaque scabra. Bractea infima foliacea, culmum æquans, reliquæ angustæ, spicis suis breviores, demum setaceæ, basi ligula ferruginea amplecteute. Spice 6-9 lin. longæ, 5 lin. latæ, basi flosculis masculis paucis instructæ. Squame lanceolatæ, acuminatæ, apice involntæ, atro-purpureæ, coucolores vel ad margines rufæ, eximie papillosæ, dorso trinerves. Pedunculi 8-14 lin. longi, capillares, apice infra spicam clavati, scabrinsculi. Perigynium $1 \frac{4}{9}$ lin. long., 1 lin. latum, suborbiculatum, basi productum vel latiuscule stipitatum, minime rostellatum, ore integro, obsolete vel atrinque leviter 4 -5-nervatnm, stramineo-pallidum, superue atro-pnrpureo tinctum, papillosum; stylo persistente porrecto. Achonium lineam longum, $\frac{5}{9}$ lin. latum, oblongo-triqnetrum (uno specimine rarius 4 -angulum).

Affinis C. limosa, L., et congeneribus, præsertim C.irrigue, Sm.
Plate CXLIII. Fig. 1, scale and stamen of male spike; fig. 2, scale and female flower; fig. 3, perigynium ; fig. 4 , achænium :-all magnified.
9. Carex Bantisii, Boott; spicis 3-5 atro-purpureis oblongis basi cuneatis crassis exserte pedunculatis mutautibus terminali androgyna basi mascula reliquis fœmineis infima remota, stigmatibus 3, perigynïs hyalino-tenuissimis albidis compressis nervosis late ovatis cylindraceo-rostratis ore obliquo bifido glabris squama atro-purpurea oblongo-spathulata emarginata aristata brevioribus latioribusque. Boott. (Tab.CXLII.)

Hab. Tierra del Fuego; Good Success Bay, Banks and Solander, C. Darwin, Esq.
Culmus sesquipedalis, acute triqueter, glaber, basi foliatus, pars spicas gerens $4-7$ poll. louga. Folia 2-3 lin. lata, carinata, culmo breviora, apice triquetro-acuminata, nervo marginibusque tuberculato-scabra. Bractece foliaceæ, raginautes, infima culmum subæquans, supremæ squamæformes. Ligula elongata. Vagince 7 lin. $-1 \frac{1}{3}$ poll. longæ. Spice 3-5, omnes pedunculatæ, 7-14 lin. longæ, 4-5 lin. latæ, superiores approximatæ, infima intervallo $1 \frac{1}{2}-4$ poll. longo remota. Squame omues atro-purpureæ, nervo pallidiori, laxiuscule imbricatæ. Perigynium brevissime stipitatum, $3 \frac{4}{9}-\frac{7}{9}$ lin. longum, $1 \frac{5}{9}-\frac{8}{9}$ lin. latum, album, tenuissimum, nervis teuuibus, rostro angusto, cylindraceo, fusco, oblique bifido. Achenium longe stipitatum, $\frac{2}{3}$ lin. longum (cum stipite $1 \frac{2}{9}$ lin. longum), $\frac{1}{2}$ lin. latum, castaneum, acute triquetrum, lateribus concavis. Boott.

In Herb. Banksiano sunt specimina plura (cel. Banks et Solander in Tierra del Fuego lecta) sub nominibus C. atrate et C. Magellanice, quarum omnia spicam terminalem androgynam basi masculam habent, sed spicæ cylindraceæ evadunt, et hinc ad C.germanam tendunt. Boott.

Affinis C. Mertensio, Prescott.
Plate CXLII. Fig. 1, scale and stamens of male flower ; fig. 2, female flower; fig. 3, perigynium ; fig. 4, ovarium, style, and stigmata; fig. 5, ovule; fig. 6, ripe perigynium ; fig. 7, ripe achænium : fig. 8, seed; fig. 9, longitudinal section of the same :-all magnified.
10. Carex germana, Boott; spicis 4-6 fusco-ferrugineis 1 v. 2 terminalibus masculis, fœmineis 3-5 crassis cylindraceis densifloris superioribus sessilibus contiguis erectis inferioribus subnutantibus exserte pedunculatis infima interdum remota, stigmatibus 3 , perigyniis ellipticis hyalino-tenuissimis albidis compressis brevi cylindraceo-rostratis ore obliquo bidentato nervosis squamam oblongam fusco-ferrugineam emarginatam aristatam subæquautibus. Boott.

Hab. Cape Tres Montes, C. Darwin, Esq.
Culmus 12-15-pollicaris, obtusangulus, glaber, foliis 2-3 vaginantibus instructus, apicem culmi attingentibus, basi foliatus, pars spicas gerens $4-10$ pollices longa. Folia $2-3$ lin. lata, glanco-viridia, apice triquetro-acuminata, nervis carina margimibusque tuberculato-scabra. Bractece vaginautes, superiores setaceæ, inferiores foliaceæ, culmum superantes. Vagince 3 lin.-2 $\frac{1}{2}$ poll. longæ, basi purpureo-tinctæ. Spica mascula (uno specimine spicula altera minori basi aucta), 8-12 lin. longa, 2 lin. lata, squamis serrato-mucronatis. Spice femineæ 12-17 liu. lougæ, 4 lin. latæ, cylindraceæ, densifforæ, obtusæ, superiores sessiles vel brevi exserte pedunculatæ (uno specimine), infima remota pedunculo tres pollices extra vaginam bipollicarem exserto iustructa. Squame arcte imbricatæ, fuscoferrugineæ, oblongo-spathulatæ, emarginatæ, obtusæ, nervo pallido serrato aristatæ. Perigynium $2 \frac{7}{9}-3$ lin. longum, $1 \frac{1}{9}$ lin. latum, albun, nervis subnosenis pallide ferrugineis teneribus notatum, ellipticum, apice acuminatum, rostro brevi cylindraceo fusco-purpureo, ore obliquo bidentato. Achenium longe stipitatum, $\frac{2}{3}$ lin. longum (cum stipite 1_{9}^{2} lin. longum , $\frac{4}{9}$ lin. latum, pallide castaneum, acute triquetrum, lateribus concavis. Boott.

Affimis C. Bankisio, et quoad fructum non distinguenda. Differt spica terminali mascula, femmineis cyliudraceis densifloris, superioribus sessilibus nee basi cuneatis; squamis fusco-ferrugineis, arcte imbricatis; pedmeculis validioribus; culmo obtusangulo foliisque glauco-viridibus. Boott.

I append the description of two new species of extra-tropical South Amcrican Carices; which, with those enumerated in the body of this work, include all that I know to exist in western Chili and Fuegia *.

1. Carex acutata, Boott; spicis 5-6 erectis cylindraceis fuscis masculis 1-2 sessilibus rebiquis 4 femineis sape apice subulato-acutatis masculis densifloris sessilibus vel pedonculatis longe foliaceo-bracteatis altcrnatim contiguis, stigmatibus 3, perigyniis elliptico-lanceolatis subinflatis nerrosis glabris uitidis squama purpureo-ferruginea concolori vel apice hyidina ciliata hispido-aristata longioribus. Boott. C. plysocarpa, Nees, in Herb. Hooker (non Presl.)

Hab. In America merid. Ins. Chiloe, Cuming, u. 43. In Mont. Pilzhum, Columbia, ad alt. 12,000 ped., Jameson, (Hcrb. Hooker.)

Culmus acutangulus, validus, scabriusculus, pars spicas gerens 3-6 poll. longa. Folia 4 lin. lata, culmo longiora. Bractere foliaceæ, infima 3 lin. lata, culmum longe superans, nunc brevissime vaginata. Spice mascule sessiles, 1-1 $\frac{1}{2}$ poll. longæ, $1 \frac{1}{2}$ lin. latæ. Squama ferrugineæ, concolores, vel apice hyalino-albidæ, ciliatæ, breri hispidomucronatæ. Spice fremincæ 4, (pars suprema plerumque tertia omnium sæpius subulato-acutata, mascula vel sterilis) $1 \frac{3}{4}$ poll. longæ, 4 lin. latæ, deusifloræ, superiores sesstes, approximatæ, infcriores plus minus longe pedunculatæ, intervallis $1 \frac{1}{2}-2$ poll. longis, remotæ, tamen omnes ob longitudinem pedunculorum contiguæ. Squame purpurex,
11. Carex indecora, Kunth; spicis $3-5$ oblongis erectis terminali mascula clavata subsessili reliquis foemineis bracteatis sessilibus contiguis vel infima subremota exserte pedunculata, stigmatibus 3, perigyniis oblongo-ovatis acuminato-rostratis bidentatis demum ore integro utrinque leviter nervosis stramineis lucidis squama æquilata purpurea trinervi obtusa vel emarginata hispido-cuspidata longioribus. Boott.

Var. β, Iumilis. C. fuscula, D'Urville, in Mém. Soc. Limn. Paris, vol. iv. p. 599. Brongn. in Duperrey, Voy. Bot. p. 154. t. 28 l.

Hab. Falkland Islands, D'Urville, J. D. II.

Culmus 4-12 poll., obtusangulus, levis, basi foliatus, versus medium folio vagiuante instructus, pars spicas gerens $\frac{1}{2}-5$ poll. longa. Folia $1 \frac{1}{2}-2$ lin. lata, plana, culmo breviora, rigidiuscula, flavescente-viridia. Bractere erectæ, infinæ cuhnum superantes, vaginatæ, superiores angustæ, vaginæ 2-7 lin. longæ. Spicce $3-5$, omnes interdum congestæ, sessiles; spica mascula 3-6 lin. longa, lineam lata, clavata, sessilis rel brevi-pedunculata. Squame uminerves, obtusæ, cuspidatæ. Spice fœmineæ 4-7 lin. lougæ, 2-3 lin. latæ, contiguæ, vel infima intervallo l-5 poll. longo remota, exserte (rel binæ inferiores plus miuus longe exserte) pedunculata. Squamue purpurex, trinerves, obtuse vel emarginatæ, valide hispido-cuspidatæ. Pedunculi 6-12 lin. longi, glabri, nunc vix exserti. Stylus inclusus. Perigynium $\frac{73}{9}$ lin. long., $\frac{7}{3}$ lin. latum, oblongo-ovatum, sensim acuminato-rostratum, bidentatum, demum ore integro, stramineum, punctis ferrugineis notatum, lucidum, punctulatum, glabrum, vel rarius superne ad margines serrato-scabrum, leviter (luci subjectum) utrinque nervosum. Achenium $\frac{7}{9} \mathrm{lin}$. long., $\frac{5}{9}$ lin. latum, pallidum, subrotundo-triquetrum, punctulatum, basi styli æquali apiculatum. Boott.
concolores vel apice hyalino-allhidæ, ciliatæ, nervo lato viridi in aristam latam hispidam producto. Pedunculi validi, crecti, infimus $\frac{1}{2}-2$ poll, longus, evaginatus vel e vagina 4 lin. longa exsertus. Perigynium $1 \frac{8}{9}$ lin. lougum, $\frac{5}{9}$ lin. latum, nitidum, crebre nervosum, pallide viride, basi purpureo tinctum, pellucido-punctatum. Achenium (vix maturum) $\frac{8}{g}$ lin. longum, oblongo-triquetrum, pallide stramineum, basi styli incrassato terminatum. Boott.

Affinis C.paludose, Good.
2. Carex paleata, Boott ; spicis 7-10 cylindraceis maseulis 2-4 sessilibus contiguis extremis lougioribus intima longe bracteata fomincis $3-7$ remotis exserte bigulato-pedunculatis longissime bracteatis densifforis basi attenuatis inferioribus nutantibus, stigmatibus $2-3$, perigyniis obovatis rostellatis bifidis nervatis nervisque 2 marginalibus pallidis scabris cinctis olivaceis purpureo-maculatis squama orata paleacea obtusa vel acuta trinerri late hispidocuspidata brevioribus longioribusque. Boott.

Hab. In Ins. Juan Fernandez, Dr. Scouler. (Herb. Hooker et Fieldiug.) Cuming, n. 1341. (Herb. Boott.)

Culmi pars superior solum adest, triquetra, lævis, inter spicas scabriuscula, pars spicas gerens 10 poll. ad 2 ped. louga. Folia desuut. Bractere omnes culmum superantes, infima 2 lin. lata, superiores sensim augustiores. Spice mascule 2-4, sessiles, contiguæ, 7-20 lin. longæ, $1-1 \frac{1}{2}$ lin. latæ, castaneer, extremæ longiores, infima longe bracteata. Spice fomineæ $5-7$, interrallis $2 \frac{1}{2}-3 \frac{1}{2}$ poll. remotie, $1 \frac{1}{2}-2 \frac{1}{2}$-poll. longr, 2 lin. latæ, cylindraceæ, densiflore, basi attenuate, dure superiores nunc apice masculæ, suprema interdum inclusa, pedunculata. Pedunculi ligulato-compressi, inferiores $2-2 \frac{1}{2}$, poll. longi, glabri, supremus iuterdum abbreviatus, infinusque rersus apicem squamas alteruas steriles louge cuspidatas ferens. Fagince 3 kn. -2 poll. longre, glabre. Perigynium $1 \frac{3}{9}$ bin. longum, $\frac{7}{9}$ hin. latum, obovatum, rostellatum, bifidum, laciuiis serratis, nervatum, nervisque 2 margiualibus prominentibus pallidis superne scahris ciuctuu, pallide olivaceum, purpureo-maculatum, plano-convexum vel triquetrum, coriaceum. Acherium $\frac{8}{9}$ lin. longum, $\frac{5}{8}$ lin. latum, obovatum, plano-triquetrum, atro-olivaceum, cavitatem perigynii implens. Squame omnes ovatæ, acutæ vel obtusæ, trinerves, late hispido-cuspidatæ; masculæ castanere; feeminee mem-branaceo-pallide. Boott.

Affinis C. lucide, Boott.

Affuis C. extensc, Good., quæ perigyniis costato-nerrosis, glancis, squamis masculis muticis, fohiis, bracteisque patentibus rel recurris, sæpe involutis, differt. Boott.

12. Carex trificla, Cav., rid. Fl. Antarct. Pt. 1. p. S9.

Hab. Cape Tres Montes, C. Darwin, Esq.; Falkland Islands, abundant, D'Uritle, Capt. Suliran, J. D. II.

A very noble species, abundant in the Falkland Islands, growing with, and emulating in size, young Tussock grass. Mr. Darwin alone has gathered it on the American continent, and he only at Cape Tres Montes. Its coufined range is very singular, for it can scarcely have been overlooked in Fuegia or the Strait of Magalhaens, had it existed there; and it is also probably the only plant common to New Zealand and the Falklaud Islands, not found abundantly in Tierra del Fucgo.

Carex trifida affords a remarkable instance of apparent caprice in its choice of habitat; for though common in the Falklands, along with the Dactylis caspitosa (Tussock grass), and thongh there these grow in company, and under precisely the same conditions, yet the Tussock grass in America only appears in the sonthern extreme of Fuegia, where it is unaccompanied by Carex trifita; whilst the latter is confined to a latitude eight humdred miles north of Cape Horn. There is nothing whatever in the climate or soil of any part of western Sonth Chili, or Fuegia, that can be pronounced unfarourable to the growth of this Carex, whose absence there naturally leads to the question, how is its presence in Cape Tres Montes and the Falkland Islands to be accounted for? did it originate in cach of these two isolated localities? was the seed transported over the intervening land, by an agent whose operations were limited to the eastern, and western extremes only of Antarctic America? or, have the individuals that once tenanted the intervening land, been destroyed? Any one of these hypotheses is at first sight plausible, and the first, perhaps, the most so, New Zealand being a third, and far more remote, habitat for this same species, which may thus be supposed to have had three separate origins. Such a question should not be discussed with reference to a single species, but as one which concerns all organized nature, whose phenomena are amenable to general laws. Hypotheses, adopted to account for exceptional cases, if not vierred in reference to the general rule from which these cxceptions deviate, are generally fallacious; and howerer much so, they still are apt to be magnified into laws. If we knew only such plants as are sporadic (the term given to species which inhabit unconnected and remote localities) we might, perhaps, be justified in assuming it as an axiom, that individuals of a species have sprung, at isolated localities, from as many similar parents: the cases which appear to demand this solution are, howerer, exceptions in Botanical Geography.

The study of the distribution of any one species or genus, or of the Flora of any one country, does not afford scope enough for investigating satisfactorily such a subject as the origin of the individnals of plants. If species, genera, and small natural orders were sporadic, recuring wherever climate and soil presented similar couditions, several points of origin for the same species might be assumed. But it is not so : species, geuera, and orders are distributed within geographical limits, according to their extent : the great mass of individual plants in the one case, and of forms in the other, appear to have sprung from single centres, in the former case from a common parent, and to have radiated from one point to greater or less distances around it, in proportion to the facilities for migration and absence of checks to diffusion. The explanation of exceptions to this prevailing role must then be sought in some natural cause, capable of counteracting the general law, and not what, if adopted for the case of one species, must be conceded with respect to all, and consequently force us to conclude that two classes of agents are required to effect one object, namely, the dispersion of regetables.

7. UNCINIA, Pers.

1. Uncinia tenuis, Poepp., Synops. Plant. Am. Austr. vol. iii. n. 240. Kunze, Synops. der Reidgr. t. 21. Kunth, En. Plant. vol. ii. 1. 525.

Hab. Strait of Magalhaens; Port Famine, Capt. King; Hermite Island ; Cape Horn, J. D. II.

A species entirely confined to South Chili, between Concepcion and Cape Horn.
The four species enumerated in this work, together with U.erinacea, Pers. (a native of Valdivia and Chili) and two new ones *, diagnoses of which Dr. Boott has kindly given, include all the extra-tropical American Uncinice known to me.
2. Uxcinla phleoides, Persoon, Synops. vol. ii. p. 534. Brongn. in Duperrey, Toy. Bot. p. 158 (excl. syn. U. Maelovianæ). Hook. et Am. in Bot. Toy. Beechey, p. 50. Carex phleoides, Cav. Icon. vol. v. p. 40. t. 464. f. 1 .

Hab. Chonos Archipelago; C. Darwin, Esq.
On several occasions I have alluded to the change which occurs in the regetation of the western coast of South America, at, or about, the latitude of the Chonos Archipelago. This arises from many species extending to but not crossing) that limit, both from much lower and higher latitudes, of which the present plant affords an example. U. phleoides inhabits the plain of Quito, under the equator, at an elevation of 8,000 fcet; it grows also at

[^37]Hab. Chiloe, Cuming (1. 4t. Herb. Hooker.)
Culmus subbipedalis, triqueter, firmus, lævis, inferne foliatus. Folia 3-4 lin. lata, culmo longiora vel æquantia, glaucescentia, margine versus apicem facicque scabra, supremum angustum. Spica $2 \frac{1}{2}$ poll. longa, superne 6 lin. vel aristis divaricatis mensurata 10 lin. lata, basi attenuata, (1 lin . lata), nuda; apice couico, (4 lin. longo), mascula. Squamce oblongæ, obtusæ, pallidæ, demum fuscæ, apice ciliolatæ, albo-membranaceæ, infra apicenı ferrugineo-zonatæ, nerro dorsabi vix prominente; masculæ breviores. Perigynium $3 \frac{3}{9}-\frac{3}{9}$ lin. longum, $\frac{1}{2}$ lin. latum, biconvexum, superwe precipue scabrum, margine ciliatum, pilis sursum longioribus dcmum fasciculatis, ore truncato ciliolato, arista 2 lin. extra os exserta, 5 lin. longa, divaricata, imo basi torta. Achenium 2 bn. longum. $\frac{4}{9}$ lin. latum, triquetrum, utrinque sursum convexum, fuscum, impresso-puuctulatum, apice et basi attenuatum. Stylus basi subincrassatus. Stigmata 3, non plumosa. Boott.

Ab U. erinacea, Pers., perigyniis linearibus diversa.
2. U. Donglasii, Boott ; spica clongata lincari nuda apice mascula conformi, stigmatibus 3, perigyniis (arista $\frac{1}{3}$ brevioribus) lanceolatis convexo-concaviusculis basi obconico attenuatis ore truncato phurinerviis margine scabris supcrne pilis appressis utrinque exasperatis pallidis squama amplectente ovata acuminata obtusa flavescenti-riridi angustioribus sublongioribusque. Boott.

Hab. Ins. Juan Fernandez. David Douglas. (ILerb. Hooker.)
Culmus bipedalis, gracilis, læris, nudus, basi foliatus. Folia $1-1 \frac{1}{2}$ lin. lata, culmo longiora, utrinque marginibusque scabra. Spica $5 \frac{1}{2}-6$ poll. longa, lincam lata, pars suprema mascula, sulpollicaris, conformis. Squame ovatæ, acuminatæ, obtusæ, amplectentes, flavescenti-virides, striatæ, margine pallide-fcrugineæ, perigynio vix longiores, omnes conformes. Perigynium $2 \frac{7}{9}-3$ lin. longum, $\frac{1}{2}$ lin. latum, lineare, hinc convexum, inde concaviusculum, basi obconico-attenuatum, dorso plurincrvium, marginibus e basi scabrum, pilis sursum longioribus, superne pilis brevioribus appressis utrinque exasperatum, pallidum, lineolis fenvugineis maculatum, ore truncatum. Achenium $1 \frac{8}{9}$ lin. longum, $\frac{3}{9}$ hn. latum, lineare, convexo-concaviusculum, facie dorsali limea centrali (augnlo) notatum, castaneum, impresso-punctulatum. Arista $3-\frac{3}{9}$ lin. longa, pallida, filiformis, apice ferruginea, perigynio $\frac{1}{3}$ longior. Stylus inclusus. Stigmatibus 3. Boott.

Talparaiso, and Concepcion, again at Valdivia, finally disappeaing at the Chonos Arclipclago. Though we are now fairly acquainted with the botany of America south of lat. 33°, a more complete collection from the coast and monntains between the southern extreme of Chiloe and Cape Tres Montes is wanting; the proportion of new species would probably be small, but the investigation would exlibit the range of many Taldirian and Fuegian plants, not contained in the invaluable Herbarium of Mr. Darwin, the only naturalist whose good fortune it has been to risit and explore that unfrequented line of coast.
3. Ureint Macloriana, Gaud., in Ann. Se. Mat. vol. v. p. 90, et in Freye. Toy. Bot. p. 412. Fenth, En. Plant. vol. ii. p. 526.

Hab. Falkland Islands; Guudichaud.

When botanizing in the Falkland Islands early in the winter of 1841 , I found what I considered to be this plant, growing amongst grass in wet sjougy bogs; it was, however, in a very bad state, and the specimens, unfortumately, lost.

Brongniart unites this with U. plleoides, Pers.; but M. Kunth has kept it distinct.
4. Uscinia Kingiz, Boott ; spica capitata fusca nuda apice mascula, stigmatibus 3, perigyniis (arista $\frac{1}{3}$ brevioribus) lanceolatis superne angustiori cylindraceis ore truncato oblique fisso ferrugineis glabris squama lanceolata fusco-ferruginea nervo pallido angustioribus longioribusque. Boott. (Tab. CALT.)

Hab. Strait of Magalhaens; Port Famine, Capt. King.
Cæspitosa. Radix repens, fibroso-lanatus. Culmus 2-4 poll., lærissimus, sudcatus, basi vaginis foliornm castaneis laceratis tectus. Folia angusta, involuta, hinc filiformia, culmo breviora, apice margineque scabra. Spica 5-7 lin. longa, $3-6 \mathrm{hin}$. lata, congesto-capitata, apice flosculis masculis paucis inconspicuis, basi fœmineis $9-16$ instructa. Squame foemineæ lanceolatæ, infima mucronulata. Perigyniun (cum arista, stipiteque) $4 \frac{1}{2}-5$ bin. longum, $\frac{5}{9}$ (ad basin) latum, superne cylindraceo-attenuatum, ore oblique fisso, fusco-fermgineum, basi pallidum. Acherium 1 lin . long., $\frac{1}{2}$ lin. latum, oblongo-triquetrum, pallidum, basi styli incrassato apiculatum. Arista $4-1 \frac{1}{2}$ lin. longa, canaliculata, pallida, superue ferruginea, imo apice dilatata. Stytus inclusus. Stigmata 3, brevia. Boott.

Plate C.ILT. Fig. 1, scale and male flower; fig. 2, scale and female flower; fig. 3, female flower, remored from the perigynium :-all magnified.

L. GRAMINE.E,

1. ALOPECURUS, L.

1. Alopecures alpinus, Smith, Engl. Bot.t. 1126. Kunth, En. Plant. vol.i. p. 25.

Var. β, aristutus. A. alpinus, Trinius, Ic. Gram. vol. i. t. 3S. A. pratensis, Bunks et Sol. in Mus. Banks. A. pratensis, rar. spica ovata; Lenebour, in Merb. Hook. A. Baicalensis, Turz. in Merb. Mook. A. Antarcticus, Fahl, Symb. vol. ii. p. 18. Brongn. in Dupervey, Foy. Bot. p. 16. Kunth, Agrost. p. 25. A. Magellanicus, Lamk. Illust. Gen. vol. i. p. 168. Gaudichaut, in Ann. Sc. Tat. vol. v. p. 100, et in Freye. Foy. Bot. p. 131. D'Cruille, in Mém. Soc. Linn. Puris, vol. iv. p. 600. (Tab. CXXX.)

Tar. γ, gracilior; spica angustiore.
Hab. From the Strait of Magalhaens to Cape IIorn, and throughout Fuegia and the Falkland Islauds, abundant, Commerson, Banks and Solander, and all succceding voyagers. Var. β, Port Gregory, Capt. Kiny.

This plant I beliere to be specifically the same with the North-European and American A. alpinus, of which smith considered it to be a rariety. What appeared specific differences, were pointed out by Mr. Brown (in Appendix
to Parry's lst Foyage, p. 184.). Since the publication of the last mentioned work it has been universally looked as an Autaretie speeies alone, and its close affinity with the A . pratensis, of the Northern IIemisphere was never alluded to. The ordinary states of the latter plant have a longer and less hairy spike; but amongst the varieties of it which ocenr in North Western Asia, and N. Eastern Ameriea, there is one wholly undistinguishable from Antaretie individuals; and how far these may be constantly distinet appears very doubtful to me. Mr. Brown, in drawing up the elaraters of A. alpinus, alludes to his having gathered Scotel speeimens with an arista twice as long as the glumes, sueh is the ease with all the Antaretie ones, and in Trinius's figure of A. alpinus; but is at variance with Smith's speeific eharaeter, (founded on Mr. Brown's speeimens) and with the ordinary state of the Scoteh plant. Mr. Witson, however, has gathered the same aristate variety of . $\mathcal{\text { . alpinus in Seotland, and has eultivated both forms }}$ in his garten. His gardeu speeimens of both states are now before me, the long awned one retaining its eharaeters, and the amms of the common form deeidedly elongating under cultivation. The comparative length of the lamina and vagina of the uppermost leaf, is also very variable, even in A. alpimus, these being sometimes of equal length, while in the Antaretie plant the lamina is sometimes eonsiderably the shorter; and, agaim, I have examined an European specimen of A. pratensis, in which the lamina is even longer than the vagina. The other characters of A. prutensis, used by Mr. Brown, are those of the glumes beiug acute, and villous only at the sides; this is the ease with the British examples that I have studied, but not with the Siberian, whieh certainly present intermediate forms between this speeies, and its Fuegian congener. The Intaretic speeimens vary exeeedingly in size, from four inches, to tro and even three feet high; the eulms are generally tumid above the upper leaf and eoutract gradually towards the paniele ; or they are slender, cylindieal and terete: the lamina of the upper leaf is occasionally far shorter than at other times, equal in length to, or mneh longer than its ragina. Spikes nearly eylindrieal, 2-3 to $1 \frac{1}{2}$ inches long, generally rather more than twice as long as broad, but now and then mueh narrower. Glumes always more or less villous all over.

Admitting the foliage to afford no specific character between A. alpinus, A. pratensis, and A. Antarcticus, and the length of the arista to be very variable in the first of these, there remains no constant eharater to distinguish these three; for between A. Antarcticus and A. pratensis the only apparent distinctions lie in the villosity of the glumes, and the form of the spike, differenees which do not hold in Siberian specimens of the latter. I have adder a plate of the common Falkland Island state of this speeies.

Plate CXXX. Fig. 1, glumes and floret; fig. 2, floret removed from the glumes; fig. 3, pistil:-all magnified.

2. PHLEUM, L.

1. Phleum alpinum, Linn. Sp. Pl. p. S5. Banks et Sol. in Bibl. Banks. Engl. Bot. t.519. P. Hrnkeanum, Presl, Rel. Henk. vol. i. p. 245. Nees, in Nov. Act. Acad. vol. xix. Suppl. p. 140.

Hab. Strait of Magalhaens; Port Tamine and Port Gregory, Capt. King. Good Success Bay, Bankis and Solander.

This species, which is assoeiated in the momatains of Scotland with Alopecurus alpinus, also aeeompanies that plant in the sonthern regions. It has been gathered by Mr. Bridges, on the east side of the Andes of Chili, at an elevation of $6-7,000$ feet; and also on the Cordillera of Mexico by Lindeu, and by Galeotti on the Peak of Orizaba, at an elevation of between 10 and 12,000 feet.

3. MÜHLENBERGIA, Schreb.

1. Mühlenbergid rariflora, Ifook. fil.; rigida, glaberrima, panieula eflusa pauci- sub I0-flora, glomis subrequabibus enervibus flosculo paulo brevioribus, palea inferiore lanceolata coriacea basi glaberrima in aristam longissimam rigidam scaberulam desimente supcriorem breviorem ampleclante, culmo foliato, folis rigidis sctaceis marginibus involutis. (TAB. CXXXI.)

Hab. Cape Tres Montes ; Patch Cove, 2,000 feet, C. Darwin, Esq.

Gramen rigidum, cæspitosum, 4-6 pollicare. Culmi basi ascendentcs, pluries divisi, vaginis coriaceis nitidis striatis foliorum vetustorum obtecti, parte superiore usque ad paniculam vaginati. Foliorum ragina 1-2 unc. longa, teres, glaberrima, profunde striata; ligula brevis; lamina vagima brevior v. superans, erecta, culmo brevior, rigida, auguste setacea, apice pungens, folii superioris paniculam fere superans. Panicula $1 \frac{1}{2}$ unc. longa, pedunculo pedicellisque flexuosis, elongatis, lævissimis. Spicule purpureæ, nitidæ, vix 2 lin. longæ. Gluma membranaceæ, lanceolatæ, flosculo paulo breciores, inferiore paulo majore. Flosculus brevissime pedicellatus, pedicello barbato. Palea inferior in aristam desinens; arista $1-1 \frac{1}{2}$ unc. longa, siccitate curvata, madore recta, rigida, sab lente scaberula, apice gradatim attenuata, basi obscure articulata, haud r. vix torta, angulata. Squamule 2 , lineari-oblongx, obtusæ. Stamina 3. Ocarium stipitatum, supra medium constrictum.

Allied to M. capillaris of North America, in the form of the locustæ; but a very different species, and, I think, decidedly of the genus Miihlenbergia. The rigidity of the arista is quite like that of Stipa, as is the harsh foliage, while in other respects the plant has more affinity with the Agrostidece.

Plate CxXXI. Fig. 1, locusta; fig. 2, floret with portion of the awn removed; fig.3, squamula; fig. 4, ovarium :-all magnified.

4. AGROSTIS, L.

1. Agrostis tenuifolia, Bieb., Flor. Taur. Cauc. vol. i. p. 56. Trinius, Ic. vol. iii. t. 35. Kunth, En. Plant. vol, i. p. 220.

Tar. Fretensis; locustis paulo majoribus.
Hab. Var. Fretensis, Strait of Magalhaens; Port Famine, Capt. King.
I have compared this grass most carefully with authentic specimens of A. tenuifolia from Persia and the Caucasus, without being able to detect any further difference than in the size of the locustæ, which in the Antaretic plant are $\frac{1}{8}$ of an inclu long, the Caucasian scarcely $\frac{1}{10}$. Intermediate between them is a common Rocky Mountain species, collected by Douglas, and described as A.exaratu, β., in the 'Flora Boreali-Americana' (vol. 2. p. 239). There are, however, two forms of \mathcal{A}. exarata β., one from the east side of the Rocky Mountains, which has the scabrid broader leaves of the true A. exaratu, and a distinct upper palea (this is the A. Drummondi, Torrey MS.), the other (or Douglas's), from the west side of the dividing ridge, is smaller, more slender, with small locustæ, and no upper palea; it agrces closely with the Magellanic plant in size and foliage, and bears the name of A. temifolia? Bieb., appended to it by Dr. Torrey.

The culms of A. temuifolia β. are 15 inches to $2 \frac{1}{2}$ feet long, smooth, erect, and very slender. Leaves subsetaceous, obscurely scabrid. Lower palea truncate, 4 -toothed and 4 -ncrved, with or without a short dorsal awn. Upper palea none, or when present extremely short.
2. Agrostis alba, Linn., Sp. Pl. p. 93. Engl. Bot. t. 1189. A. cæspitosa, Gaud. in Ann. Sc. Nat. val. v. p. 100, et in Freyc. Foy. Bot. p. 131. Kunth, Agrost. p. 219.

Var. β, stolonifera. A. stolonifera, Limu. \&c.
Hab. Falkland Islands, both varieties abundant, but possibly introdaced; Gaudichaud, Mr. Wright, J. D. H.

The lower palea in my specimens is obscurely 4-nerved, or, in var. β., 5 -nerved, with occasioually a very short awn, never projecting beyond the glumes. The upper palea is one third shorter than the lower. This grass forms a very good pasturage, both in the upland and lowland districts about Port Louis, but is not very abundant, which it may become if it be an introduced plant. The var. stotonifera is the famous 'Fiorin grass,' or 'Squitch' of Dr. Richardson and the Irish agriculturists.
3. Agrostis prostrata, Hook. fil.; culmo longe procumbente geniculato stolonifero, panicula erecta contraeta lineari-oblonga deusiflora, glumis latiusculis aeuminatis carina seabrida flosculum basi glaberrimum superantibus, palea inferiore trumeata apice erosa enervi superiore bis longiore, arista nulla, foliis breviusculis planis glaberrimis v. obscure scaberulis.

Hab. Falklaud Islands; boggy ground on Hog Island, Berkeley Sound, rare, J. D. II.
Gramen humile, glaberrimum, repens. Culani prostrati, 3-4 unc. longi, parte ascendente bi-tri-pollicare, nodosi, stoloniferi, foliosi, glaberrimi, internodo terminali solummodo erecto, uwifoliato. Foliorum vagina elongata, profunde striata, glaberrima; ligula breriuscula, late ovata, membranacea; ; lamina vagina brevior, patens, snb 1 unc. longa, plana, striata, e basi latiuscula ad apicem acuminatum gradation angustata. Panicula uncialis, $\frac{1}{3}$ unc. lata, interrupta, densiflora, ramis ramulisque brevibns, fastigiatis. Locusta glaberrimæ, $1 \frac{1}{2}$ lin. longæ, mitidæ.

To all appearance a very distinct species, allied to A. alba, var. stolonifera, but differing in the much smaller size, coarctate pauicle, smaller locuste and florets, absence of an arista, \&c.
4. Agrostis Falklandica, Hook. fil.; dense cespitosa, glaberrima, panicula gracili ramis erectis, glumis æqualibus ovato-lanceolatis acuminatis glabratis carina scaberula flosculis basi nudis $\frac{1}{2}$ longioribus, palea inferiore apiee erosa truncata obscure 5 -nervi nervo medio infra medium evanido, arista glumis breviore v. nulla, palea superiore nulla, foliis radicalibns filiformibus culmo graeili erecto longioribus.

Var. a, culmo folia bis terve superante.
Var. β, culmo folia vix superante.
Hab. Falkland Islands; var. a and β in marsly plaees, on rocks near the sea, and on the hills, abundant.

Gramers dense cerspitosum, gracile, 3 unc. ad pedalem. Cumi e basi crecti, foliis interdum duplo triplove longiores, basi foliati, superue exemplaribus elatioribus longe nudi, læves, obscure striati, glaberrimi, Folioruan inferiorum ragina breviuscula, gracilis, striata, 1 unc. longa, superiornm elongata profundius striata, 2-3 unc. longa; ligula membranacea, truncata; lamina augustissima, filiformis, erecta, herbacea, glaberriva, 3-5 unc. longa, apiee gradatim angustata. Panienla $\frac{3}{4}-1 \frac{1}{2}$ unc. longa, ramis erectis elongatis paucifloris, in rar. β brerioribus. Locuste sub $1 \frac{1}{2}$ lin. longæ, juniores pubcrulæ, demum glabratæ.

Apparently a rarialle plant, its very narrow filiform leares are characteristic of this species amongst its Antarctic allies.
5. Agrostis Magellanica, Lamk. (?); glaberrima, crspitosa, panicula elongata laxiflora nutante v. inclinata, ramis pedicellisque scabridis, glumis majusculis requilougis glaberrimis nitidis carina scabridis Hosculo basi barbato fere triplo longioribus, palea inferiore apice truncata 4 -dentata obscure 5 -nervi, nervo intermedio ad medium in aristam recurvan glumas superanten desineute, palea superiore inferiore $\frac{1}{2}$ breviore, foliis planis longe lineari-lanceolatis gradatim angustatis, culmis cespitosis vaginatis. A. Ma gellanica, Lanzk. Illust. Gen. n. S07. Poiret, Encyel. Méth. Suppl. vol.i. p.207. Kunth, Agrost. p.221.

Hab. Strait of Magalhaens; Port Famine, Capt. King.
Culmi erecti, basi cespitosi, $1-1 \frac{1}{2}$ pedales, glaberrimi, nutidi, herbacei, foliis vaginati, stricti, infra pariculam scaberuli. Folia panca; ragina elongata, 3-5 umc. longa, profunde striata, glaberrima; ligula membranacea, oblonga, obtusa; lamina suberecta v. patens, plaua, linearis, striata, gradatim acuminata, herbacea, vagiuæ suæ subequilonga. Panicula subcontracta, elougata, 3-5-pollicaris, mutans v. inclinata; ramis verticillatis, erectis, divisis pedicellisque scaberulis. Locuste sub 2 lin. longæ, micantes. Glumarum valve subæquales, compressere, dorso scaberulx, acuminatæ, flosculo fere ter longiores. Floseuli basi barbati. Palea inferior membranacea,
nervis obscuris, dorso arista basi recurva deinde incurva instructa. Arista glumas superans, gracilis, scaberula. Palea superior latiuscula, membranacea, obscure bifida,

I have presumed this to be the A. Magellanica of Lamarck, for it agrees with his insufficient description, aud also with the longer one given by Poiret, except that the awn is not terminal, though so described (possibly through inadvertence) by that author. As a species it is very nearly allied to the following, but may be distinguished by the larger glumes, greater size, and conspicuous upper palea.
6. Agrostis Antarctica, Hook. fil.; erecta, cæspitosa, pamicula elongata nutante v. inclinata subdensiflora, ramis subverticillatis pedicellisque scabridis, glumis æqualibus pilosiusculis glabratisve carina scabridis flosculum basi glaberrimum bis longioribus, palea inferiore apice truncata 4-cuspidata 5-nervi, nervo intermedio ad medium in aristam glumas superantem desinente, superiore parva, squamulis oblongoacinaciformibus subacntis. A. Magellanica, Gaud. in Ann. Sc. Nat. vol. v. p. 100, et in Freyc. Foy. Bot. p. 131 (?). (Tab. CXXXII.)

Hab. South Chili and Fuegia, from the Chonos Archipelago to Cape Horn, the Falklaud Islauds and Kerguelen's Land, very abuudant.

Statura variabilis. Culmi 2 unc. ad bipedalem, graciles, superne nudiv. vaginis foliorum tecti. Folia et inflorescentia A. Antarcticce, sed foliorum vagiuæ plerumque latiores, panicula densior, locustæ minores, arista paulo longior, paleaque superior multoties minor.

Agrostis Antarctica is one of the most abundant of grasses in the regions it inhabits, especially in swampy grounds, which seem particularly favourable to its growth. It is also a very elegaut plant, from its graceful habit and the form of its nodding panicle. It may be the true \mathcal{A}. Magellanica of Lamarek, and judging trom its abundance, appears natural to suppose so; but the very short upper palea is not alluded to in that author's descriptiou, aud Poiret's observatiou that the upper is the longest, would imply that there is no remarkable difference in their length. Consideriug the invalid nature of the characters afforded by the comparative length of the palea in this genus, it is probable that this and the preceding are but varieties of one and the same plant.

Kerguelen's Laud specimens are frequently monstrous; the lower glume being theu provided with two parallel distiuct nerves, and in other cases I have seen three distant valves, two outer and one inner. The lower palea again has the arista sometimes placed ou one side of its base.

Plate CXXXII. Fig. l, locusta; fig. 2, floret; fig. 3, squamulæ and pistil; fig. 4, squamula :-all magnified.

5. POLYPOGON, Desf.

1. Polypogon Chonoticus, Hook. fil.; panicula ampla oblonga subeffusa lobata densiflora, ramis glabriusculis pedicellisque scaberulis, glumis pubcsceutibus apice oblique truncatis aristis valvis bis longioribus, palca inferiore superne 5 -nervi truncata 5 -aristata aristis a lateralibus subelongatis intermedio palea triplo longiore, culmo vaginato, foliis planis scaberulis striatis vagimis brevioribus.

Hab. Chouos Archipelago and Cape Tres Montes, C. Darwin, Esq.
Gramen pulchrum, bipedale. Culmi validi, erecti, per totam longitudinem raginati. Folia radicalia breve vaginautia, superiorum vagina internodos fere requans, glaberrima, levis, profunde striata; ligula breviuscula; lamina 5 -pollicaris, lanceolato-subulata, e basi latiuscula gradatim angustata, super præcipue scaberula. Panicula $4-5$ unc. longa, 1-1 $\frac{1}{2}$ lata, lobata, sericea, ramis e copia locustarum velatis. Clume $1 \frac{1}{2}$ lin. longx, pubesceutiscaberulæ, carina scabrida, apice oblique truncata, vix acuta, in aristam pallidam v. purpuream desinentes, flosculos longiores. Palea inferior membranacea, basi enervis, supeme 5-nervis, nervis 2 lateralibus in aristas paleæ
æquilongas productis, nervo intermedio in aristam terminalem tenuissimam aristis glumarum breviorem producto; palea superior brevior, apice bidentata.

The four-aristate lower palea of this species distinguishes it at once from any of its congeners. Mr. Darwin's, and one gathered in Chiloe by Capt. King, are the only specimens I have seen.

6. ARUNDO, L.

1. Arundo pilosa, D’Urville, in Mém. Soc. Limn. Paris, vol. iv. p. 600. Kunth, Agrost. p. 247. Ampelodesmos anstralis, Brongniart, in Duperrey Voy. Bot. p.31. t. 6 .

Hab. Falkland Islands, abundant; D'Urville, Mr. Wright. Capt. Sulivan, J. D. II.
A fine species and first pointed out to me by my friend Governor Moodie, as forming, next to the Tussock, the most useful grass in the Falkland Islands, for fodder. It abounds both in wet and dry places, in the upland and low grounds, affording excellent pasturage, and even when cut and dried it is eaten with aridity by horses, sheep, and cattle. A very similar congener inhabits the lofty peak of Tolima, in New Grenada, north of the Equator.

7. HIEROCHLOE, Gmel.

1. Hierochloe Magellanica, Hook. fil. Torresia Magellanica, Pal. Beawv. Agrost. p. 63. Roem. et Schultes, Syst. Teg. vol. ii. p. 516. H. Antarctica, var. redolens, Brongn. in Duperrey, Foy. Bot. p. 144. t. 23. optime. Avena redolens, D'Urv. in Mém. Soc. Linn. Paris, vol. iv. p. 601.

Hab. Strait of Magalhaens and throughout Fuegia and the Falkland Islands, very abundant, Banks and Solander, and all succeeding voyagers.

Under II. redolens, in the first part of this work, I have pointed ont the very slight distinctions that separate this plant both from it and from the Tasmanian H. Antarctica, Br . : I consider them scarcely valid, though constant in specimens from the three widely separated localities they inhabit. In the Falkland Islands this grass is particularly abundant, forming large tufts and often beds, especially near running water and on wet rocks close to the sea, and is much frequented by sea-birds, as a building place. The scent is very strong, and retained in the dried specimens. Living plants introduced, by mcans of Ward's cases, into the Kew Gardens, have flourished luxuriantly, hitherto without flowering.

8. AIRA, L.

1. Aira flexuosa, Limi., Sp. Pl. p. 96. Engl. Bot. t. 1519. Gaud. in Ann. Sc. Nat. vol. v. p. 100. et in Freyc. Toy. Bot. p. 100. D'Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 600.

Hab. Strait of Magalhaens; Port Famine and Port Gregory, Capt. King; Falkland Islands, Gaudichaud, and all succeeding voyagers.

An exceedingly abondant Falkland Island grass, and a great ornament to the black peat bogs, which are frequently clothed with its elegant purple pancles. The foliage is too scanty and of too rigid a texture to afford good pasturage.

I do not detect any difference between Falkland Island aud European specimens. Mr. Watson remarks that this is, perhaps, the \mathcal{A}. uliginosa, Weihe ; a plant I do not know, but quoted by Kunth as synonymous with A. flexuosa.
2. Aira caryophyllea, Linn., Sp. Pl. 97. Engl. Bot. t. 812.

Hab. Falkland Islauds, Mr. Mright. J. D. I. ; probably introduced. 2
There are specimens of this species in the Hookerian Herbarinm, marked as collected in the Falkland Islands by Admiral D'Urrille, and others sent from Taldivia by Mr. Bridges. The plant is unquestionably the common European "Silver Hair Grass", and accidentally introduced, for, as Mr. Curtis remarks, "so insignificant an annual can hardly be worth cultivating."
3. Aira Kingii, Hook. fil.; glaberrima, elata, panicula elongata effusa, ramis gracilibus subverticillatis, glumis lanceolatis acuminatis albidis nitidis vix puberulis flosculis pedicellatis ter longioribus, palea inferiore basi longe et deuse sericeo-barbata apice truncata vix bifida irregulariter 4-dentata puberula obscure 3-1hervi, nervo intermedio supra medium in aristam rectam palea paulo longiorem desinente superiore bifido, foliis lineari-elongatis culmo brevioribus vagimis profunde striatis duplo brevioribus. (Tab. CXXXV.)

Hab. Strait of Magalhaens ; Port Famine, Capt. King; South part of Tierra del Fuego, C. Darwin. Esq.
Gramen elatum, 2-4-pedale, perenne, glaberrimum, nitens. Culmi cæspitosi, erecti, simplices, 2-3-nodosi, crassitie pennæ anatinæ, obscure striati, internodiis 4 unc. ad spithamæum et ultra. Foliorum radicalium ragina t-5 unc. longa, lamina brevior, canlinorum internodỉs brevior, profunde striata, fere ad basin hians; ligula oblonga, scariosa, alba; lamina angusta, herbacea v. subcoriacea, binearis, glaberrima, striata, marginibus siccitate involutis. Panicula 6-10 unc. longa, inclinata, effusa, ramis fasciculatis verticillatisre, gracillimis, divisis, inferioribus $\frac{3}{4}$ paniculæ æquantibus, glaberrimis, supcrioribus pedicellisque scaberulis. Spicula lineari-oblongæ, fere $\frac{1}{3}$ unc. longæ, albidæ, basi purpurascentes, scariosæ, nitidæ. Glumae 1-ncrres, angustæ, acuminatæ. Flosculi parvi, sub-longe pediccllati, inclusi, glumis ter breviores, pedicello ciliato. Palee pubcrulæ, albidæ, micantes, scariosæ, subæquilonge. Slamina sub-inclusa, autheris breviusculis. Squamulae oblique lanccolato-oratæ, actminate. Ovarium compressum, obovato-oblongum, stylis basi discretis.

A very handsome grass, somewhat resembling the British A. cespilosa, but with very different locustre and florets.
Plate CXXXV. Fig. 1, locustæ; fig. 2, floret; fig. 3, stamens and pistil ; fig. 4, squamula:-all magnified.
4. Aira Magellanica, Hook. fil.; puberula, panicula effusa pauciflora rachi ramisque elongatis gracilibus pubescenti-scaberulis, glumis ovato-lanccolatis acuminatis subæqualibus pubescentibus dorso scabridis flosculis stipitatis longionibus superiore basi 3-nervi, palea inferior late ovata basi sericco-barbata puberula 5 -nervi, nervo intermedio iufra apicem irregulariter 4-dentatum in aristam strictam glumis inclusam desinente, foliis planis latiusculis super pubescentibus. (Tab. CXXXIV.)

Hab. Strait of Magalhaens; Port Famine, Capt. King.
Species parvula, erecta, 6-8-uncialis. Cubni erecti, basi ceespitosi, simplices, foliati. Foliorum vagina teres, striata, hians, glabrata v . glaberrima; ligula brevis, ovata, obtusa; laminu ragina plerumque brevior, 1-1 $\frac{1}{2}$ unc. longa, flaccida, lineari-lanceolata, acuminata, plana, striata, super pilis sparsis puberula, subter glabecrima. Panicula excmplaribus verosimiliter immaturis basi vagine inclusa, gracilis, inclinata, effusa; ramis filiformibus, fasciculatis vertieillatisre, divisis, flexuosis. Glumne sub $\frac{1}{5}$ unc. longæ, subæquales, compressæ, ovato-lauceolatie, acuminate, pubcrule, herbaceæ, virides et purpurasceutes, opacæ. Flosculi glumis ter breviores, cum arista omnino inclusi. Palea subæquilongæ, inferior latiuscula. Stomina inclusa, antheris latiusculis. Squamulce lineares, acuminatæ, Ovarium breviter stipitatum.

Capt. King's specimens of this pretty dira are scarcely mature, though sufficiently developed for examination ; the species ranks very near a Rocky Mountaiu one, cliefly differing in its smaller size, and in the pubescent upper surface of its leaves and glumes.

Plate CXXXIV. Fig. 1, locusta; fig. 2, floret ; fig. 3, stamens and pistil ; fig. 4, squamula:-all magnifed.
5. Arra Antarctica, Hook.; panicula effusissima ramis fasciculatis capillaribus pedicellisque elongatis, spiculis lanceolatis 1-2-floris setulaque flosculi secundi tertiive anctis, flosculis puberulis pedicellatis basi sericeis, palea inferiore profunde bifida basi aristata, arista glumas superante, culmo brevi, foliis subulatis longe raginantibus. A. Antarctica, Hook. Ic. Plant. t. 150. (Tab. CXITIII.)

Hab. Hermite Island, Cape Horn, the Falkland Islands, and Kerguelen's Land, abundantly, J.D.II.; New South Shetlands, Dr. Eights.

Planta phænogamica ante omnia Antarctica. Culmi dense cæspitosi, breves, 1-3-unciales, erecti procumbentesve, foliosi. Folia glaberrima, herbacea, longe vagimantia; ragina $\frac{1}{2}-1 \frac{1}{2}$ unc. longa, teres, striata; ligula linearis, $\frac{1}{4}$ unc. longa; lamina anguste lineari-subulata, margiuibus involutis, vaginæ æquilonga v. longior. Panicula pro planta maxima, 4-6 unc. longa, effiusa, 3-6 unc. lata, v. ob ramos appressos angustior; ramis l-5 unc. longis pcdicellisque scaberulis, capillaribus. Spiculce angustæ, fere $\frac{1}{4}$ unc. longæ, 1-2 flores, uniflores semper biflores sæpissime pedicello ciliato floris alterins auctæ. Glume lanceolatæ, carina scabrida marginibus sub lente ciliatis, apicibns acutis, flosculis pedicellatis inclusis bis longiores. Palea inferior ciliata, oblongo-lanceolata, scarioso-membranacea, bifida v. fere bicuspidata, sinu quadrato bidentato, dorso basi aristata; arista recta, scabernla, paulo ultra glmmas exserta. Stamina exserta, antheris brevibus. Squamulce oblique ovatæ acuminatre. Ovarium breviter stipitatum, sty lis basi discretis divaricatis.

This elcgant grass, appropriately named A. Antarctica, attains a higher southern latitude thau any other flowering plant, being the only phænogamic species that inhabits the South Shetland Tslands. Kerguelen's Land in latitude 48° is its uorthern limit; but that Island being situated in a lougitude where the rigour of the Antaretic climate catends further north than in any other, this grass is even there more typical of the frigid zone than the latitude would indicate, and always seeks the most sheltered places. In the Falklaud Islands again, the most temperate region it inhabits, it invariably aroids shelter, being found chiefly in opeu marshy places near the sea, fully exposed to the violence of the winds.

Plate CXXXIII. Fig. 1, two locuste and portion of panicle ; fig. 2, a floret from the same; fig. 3, squamula; fig. 4, single-flowered locusta; fig. 5, floret from the same:-all magnified.
6. Arra parrula, Hook. fil. ; cæspitosa, puberula v. glabrata, panicula erecta contracta subsimplici pauciflora ramis brevibus locustisque erectis, ghmis lanceolatis acuminatis flosculis pcdicellatis triplo longioribus, palea inferiore late ovata basi barbata apice bifida inter segmentos acutos bidentata dorso supra basin aristata, arista geniculata glumas vix excedente, foliis setaceis culmo brevioribus.

Hab. Hermite Island, Cape IIorn ; rocks near the mountain tops, J. D. H.

Gramen 3-5-unciale, foliosum, dense cæspitosum, rigidiusculum. Culmi erecti, basi fibrosi et pluries divisi, foliis perplmimis vaginati. Folia 2 unc. longa, stricta, erecta, anguste subulata, glabrata v. pilis patulis puberula, subcoriacea, marginibus involutis; vagina latiuscula, membranacca; ligula valde elongata, scariosa, linearis, acuminata. Panicula 1-1 $\frac{1}{2}$-uncialis, stricta, erecta; ramis paucis, brevibus, I-floris, paniculæ appressis. Locustre $\frac{1}{5}$ unc. longæ. Glumœ æquales, glabriusculæ. Flosculorum pedicelli sericeo-barbati ; flosculi superioris palea superior setula aucta. Squamula oratæ, acuminatæ. Ovarium obtusum, stylis discretis, lateralibus.

A remarkably distinct little species, most nearly allied to A. Antarctica, but distinct in the foliage, the very different panicle, and shorter florets.

9. TRISETUMI, Kunth.

1. Trisetuy sulspicatum, Beaur., Agrost. p. 88. Fl. Antarct. Pt. 1. p. 97. T. andinum, Benth. Plant. Ilartweg. p. 261. n. 1449.
$H_{A B}$. Strait of Magalhaens; Port Famine, Capt. Kinig; IIcrmite Island, on sandy beaches near the sea, J. D. H. Falkland Islands, most abundant, D'Urville, J. D. H.

In the first part of this work I have given the geographical range of the Trisetum subspicatum, when noticing it as a native of Campbell's Islaud; at which time I was not aware of any other South American station for it than the Andes of l'ern. Since then 1 have seen sereral specimens collected both in the Cordillera of Columbia and in Mexico, whence it is evident that this plant, like many common to the opposite temperate zones, has availed itself of the direct communication afforded by the Andes of the American continent for migrating from the Northern to the Southern Hemisphere. Its great abundance in the New World and especially in the extreme South of America, coupled with its rarity in the southern regions of the Old World, where it is only known on the tops of the momtains of Campbell's Island, seem to indicate its having been transmitted from east to west, or against the course of the prevailing winds in the Antarctic regions.

10. AVENA, L.

1. Avena leptostachys, Hook. fil.; glaberrima, nitida, panicula gracillima flexuosa uutante ramis breviusculis subverticillatis capillaribus paucifloris, glumis inæqualibus inferiore flosculo $\frac{1}{2}$ breviorc, palea inferiore lanceolata basi barbata bicuspidata inter segmenta aristata, arista gracili reflexa locusta bis longiore, culmis gracilibus, foliis planis elongatis.

Hab. Strait of Magalhaens; Port Famine, Capt. King.
Cutmus exemplare incompleto pedalis, gracilis, erectus, debilis, foliis vagimatus, nitens. Folia caulina longe raginantia; vagina teres, striata, 5-unc. longa; ligula membranacea, orata, fimbriata; lamina 6-8-pollicaris, $\frac{1}{3}$ unc. lata, flaccida, membranacea, striata. Panicula 6 unc. longa; ramis capillaribus, $\frac{1}{2}-1$-uncialibus, glaberrimis. Locustee $\frac{1}{4}$ unc. longæ, biflores; flosculis pedicellatis; superiore longius pedicellato, setuda ciliata aucto. Glume ovatolanceolatæ, acuminatæ, glaberrimæ; inferiore $\frac{1}{3}$-minore, 1-nervi; superiore 3-nervi. Palea inferior lanceolata, puberula, 1-nervis, nervo dorso scaberulo; superior brevior, apice bicuspidata. Squamule 2, oblougæ, laceræ. Ovarium obovatum, breviter stipitatum, apice barbatum; styljs lateralibns, basi paulo discretis.

A very elegant species, of which I regret having seen but onc cnlm, which wants the rooting portion. It is nearly allied to the United States Avena palustris, Mich.; from which it may readily be distinguished by the smaller locustæ, more exserted florets, and unequal glumes.

11. POA, L.

1. Poa scaberula, Hook. fil.; erecta, gracilis, scabrida, panicula subsecunda coarctata densiflora, glumis 3 -floris subæqualibus 1 -nerviis puberulis dorso scabridis, flosculis pubescentibus basi lanatis breviter pedicellatis, palea inferiore subcarinata 3-nervi, nervis lateralibus tenuissimis inconspicuis, carina dorso superne scabrida inferne ciliato-plumosa, superiore $\frac{1}{3}$ breciore apice 2-dentata, foliis lineari-setaceis scabcrulis fulmo gracili erecto scabrido multoties brevioribus.

Hab. Strait of Magalhaens; Port Tamine, Capt. King.

Radix fibrosa. Culmi erecti v. basi ascendentes, pedales et ultra, graciles, striati, scaberuli. Folia pauca, longe vaginantia; ragina scaberula, profunde striata; lamina 3-5-nncialis, setacea, involuta; ligula ovata, obtusa, membranacea. Penicula 2-3-pollicans, coarctata, basi interrupta, mnilateraliter secunda, $\frac{1}{2}-\frac{3}{4}$ mnc. lata. Locustre parve, $\frac{1}{8}$ unc. longæ, puberulæ, pupureo-pictæ, late ovatæ, sub 3 -flores. Glume virescentes, compressx, locusta $\frac{1}{3}$ breviores, acntæ. Flosculi basi longe arachnoidco-lanati. Pulea superior acuta, membranaceo-marginata. Squamulce parræ, ovatæ, acuminatæ.

I know of no species with which the present can be confounded. The scabridity, coarctate panicle, dense locustr, and other characters at once distinguish it from its congeners.
2. Poa nenoralis, Linn., Sp. Pl. 102. Engl. Bot. t. 1265.

Hab. Strait of Magallaaens ; Port Gregory, Capt. King.
Most distinctly the P. nemoralis of Ben-Lawers, whose flowers are slightly webbed at the base. It is also a Rocky-Mountain plant, but has not hitherto been found on the Cordillera of South America.
3. Pos pratensis, Lim., Sp. Pl. 99. Banks et Sol. in Mlus. Banks. Engl. Bot. t. 1073. P. compressa, var. viresceus, D'Urv. in MÉmin. Soc. Linn. Paris, vol. iv. p. 600. P. alpina, Brongn. in Duperrey, Toy. Bot. p. 44, non Linn.

Var. 1, ligula folii superioris oblonga, panicula laxa, glumis 4 -floris paleisque angustioribus.
Var. 2, panicula subcoarctata, glumis latioribus brevioribusque 2-3-fioris.
Var. 3, panicula effusa, glumis 3-5-floris.
Var. 4, panicula coarctata, glumis sub 4-floris paleisque angustioribns, flosculis basi fere nudis.
Var. 5, 6 -uncialis, locustis minoribus 2-3-floris.
Hab. Strait of Magalhaens; Port Famine, Capt. King (vars. 1, 3, and 4), Good Success Bay, Banks and Solander; Falkland Islands, abundant (vars. 2 and 5).

I cannot ascertain the identity of this species with the European P. pratensix, so satisfactorily as that of the former with P. nemoratis; nevertheless, the more the present grass is studied, the more difficult it appears to detect specific characters. The five rarieties enumerated, appear all to belong to one plant ; except, perhaps, the var: 1, in which the ligula of the upper leaf is oblong as in the European P. alpina, to a North American state of which I should have referred that variety, had its florets not been webbed, a character, which, though of triffing importance, (perhaps even less than the form of the ligula) does not exist in any of the numerous individuals of P. alpina that I have examined.

In British, and, indeed, in European examples of P. alpina, we are accustomed to see a small panicle of short and broad flowers, with a different aspect to that of P. pratensis; but North American individuals are subject to great variations in the size and outline of the panicle, so great that withont counecting forms it would be very difficult to recognize them. Mr. Watson is equally persuaded with myself of the close affinity between this Antarctic Poa and P. alpina, though neither of us can adduce a tangible character beyond the webbed florets to separate the plants of Arctic and Antarctic America. I have not seen any of these species frow the intervening Cordillera, a circumstance of little importance, the Graminere of these regions having been very much neglected by all collectors since the period of the travels of the illustrious Humboldt.

12. TRIODIA, Br .

1. Triodia Kerguelensis, Hook. fil.; parvula, dense cespitosa, panicula simplici pauciflora scaberula, glumis inæqualibus acutis 3 -nerviis 2 -floris, flosculis breviter pedicellatis glumis inclusis basi nudis, paleis æquilongis inferiore dorso convexa obscure 5 -nervi, superiore æquilonga bifida, foliis setaceis, culmis brevibus basi foliosis. (Tab. CXXXVIII. sub nomine Poæ).

Нав. Kerguelen's Land; rocky places, at an elevation of 300-1200 feet.
Gramen parvulum, dense cæspitosum, 2-4-unciale. Folia glaberrima, brevia, recta sed vix rigida, setacea, marginibus involutis; lamina vix pollicaris vagina tumida longior; ligula ovata, subacuta. Panicula seu racemus simplex, $3-5$ lin. longus, erectus; rachi fexnosa, scaberula. Locuste pedunculatæ, $1 \frac{1}{2}$ lin. longx, orato-oblonge, virides. Glume margine dorso nerrisque scaberule, concaræ, coriaceo-chartaceæ; superior longior, paulo angustior ; inferior oblique acuminata. Floseuli glumas vix superantes, inferior subsessilis, superior breviter
pedieellatus. Paleæ æquilongæ; inferior 3-nervis, dorso basi serieeo, acuto v. obscure et oblique truncato; superior bicarinata, apice bifida. Antherce parvæ, late oblongæ. Caryopsis ovoidea, glaberrima.

I was long donbtful whether to refer this curions little species to Poa, Festuca, or Triodia, to all which genera (like some other grasses) it has nearly equal affinity; to Poa in the form of the locustre and florets, and to Festuca in the acute ghmes and palea; hut eertainly most to Triodia, in habit, form of panicle, included florets and obscurely 3 -dentate lower palea.

Plate CXXXVIII. Fig. 1, portion of culm with vagina, base of lamina of leaf, and ligula; fig. 2, loeusta; fig. 3, glume; fig. 4, floret; fig. 5, do with ripe caryopsis; fig. 6, caryopsis:-all magnified.
2. Triodia Antaretica, Hook. fil.; parvula, dense eæspitosa, glaberrima, panicula subsimplici coarctata, locustis breviter pedunculatis, glumis subæqualibus lauceolatis 3 -floris, flosculis basi nudis paleis subæquantibus inferiore 5 -nervi acuta obscure 3 -dentata fohiis basi longe membranaceis vaginantibus culmum fere æquantibus, lamina setacea. Festuca pusilla, Banks et Sol. in Mfus. Banks.

Hab. Tierra del Fuego; C. Darwin, Esq. Rocks near the tops of the montains of Hermite Island. J. D. II.

Cumi dense fastigiati, basi inclinati, valde foliosi, 4-pollicares. Folia plurima, erecta, substriata sed non rigida; vagina elongata, striata; lamina pollicaris, setacea, marginibus involutis; ligula ovata, aemminata. Panicula fere uneialis, simplex v. basi ramosa, erecta. Locustex parvæ, 3 -flores, glabriusculæ. Gluma subæquales, flosculis breviores, lanceolatæ, concavæ, 3 -nerves. Flosculi 2 superiores pedicellati, basi omnino nudi. Palea inferior late ovata, concava, apice breviter truneata et tridentata, dente intermedio paululum elongato, מ̆-nervis; nervis dorso obscure scaberulis; superior æquilonga, biearinata, apice bifida. Antherce parvæ, late oblongæ.

A peculiar species, allied to the last and to no other with which I am acquainted. The obliquely truneated apex of the lower palea in the T. Kerguelensis, is hcre, as it were, exaggerated by that organ beeoming decidedly though mimutely trifid at the apex, as in the European Triodia decumbens, a genus to which both speeies ought from this circumstance be referred, and from their peculiar panicle and locustæ.

In habit the similarity between this plant and the former is very great, and apparent in the size, foliage, and locality they both affect, in their respective Islands; the differences in the details of the florets, are, on the other hand, sufficiently wide.

13. FESTUCA, L.

1. Festuca Fuegiana, Hook. fil.; erecta, elata, culmis basi preceipue foliosis scaberulis glaberrimisve, panicula effusa v. subcoarctata, glumis ovato-lanceolatis acuminatis subcarinatis, flosculis breviter pedicellatis basi araneosis, superioribus viviparis, palea inferiore acuminata puberula 5 -nervi nervis dorso sericeis superiore æquilonga bifida, foliis breviusculis subacutis marginibus involutis, ligula oblonga. (Tab. CXLI.)

Var. a, panicula contracta, culmo superne precipue scabrido. Aira cæspitosa. Banks et Sol. in Mus. Banks. (in part).

Var. 乃. panicula effusa, magis vivipara, culmis glaberrimis. Poa alpina, var. vivipara, Banks et Sol. in Mus. Banks.

Hab. Strait of Magalhaens, Port Famine and Port Gregory, Capt. King. South part of Fuegia, C. Darwin, Esq.

Gramen erectum, 1- ad 2-pedale. Culmi dense fastigiati, basi valde foliosi, superne glaberrimi v. scabridi. Folia breviuscula, 3-4-uncialia, glabenima, substricta sed non rigida, late linearia, acuta, marginibus involutis,
vaginis striatis breviora; ligula late elongata, oblonga, apice fimbriata. Panicula 3-5 mne. longa, contractar. effusa, ramis scaberulis. Locustre $4-5 \mathrm{lin}$. longæ, viviparæ, pollieares et ultra. Glume chartacer, æquales, acuminatæ, superiore 3 -nervi, subcarinata, carina scaberula. Flosculi sub 5, basi appresse araneosi, lana albida. Palea inferior flosculorum superiorum sæpissime in folium apice uncinatum lignla et vagina 5 -nervi instructum desinens. Antherce lineares. Ovarium late oboratum, supra basin contractum, basi squamulis acinaciformibus instructum. Styli breviusculi, ad basin plumosi.

A very handsome grass, which, perhaps, properly belongs to Poa, though the paleæ are so decidedly acuminate that I prefer retaining it under Festuca. The tro varieties enumerated are not always constant to the characters assigned to them.

In general appearance this species resembles the British Aira caspitosa, which is frequently similarly viviparous on the mountains, and the modifications the palea consequently undergo both in these and some other grasses, is a subjeet well worthy of study. When the inflorescence beeomes foliaceous, the palea itself, whieh is distinetly 5 -nerved is represented ly the (equally 5 -nerred) vagina of the leaf; the ligula of the latter holds the position of the membranous and often divided apex of such a palea as that of Aira, whilst the lamina answers to a dorsal awn; or rather, in the case of Festuca Fuegiana, to five awns (such as those of Polypogon Chonoticus, p. 374), united by parenchyma. That the arista of the lower palea in grasses is the produced mid-rib of a modified leaf, is perhaps generally admitted, but the exact relation of the apex of the palea to a ligula is not so evident in all aristate florets, as it is in those where the middle nerre is not percurrent but separates from the palea in the form of an awn. One apparent objection to this view may be adduced in the distinctly articulate awn of Corynephorus and Stipa, which may further be supposed favourable to M. Raspail's theory, that the mid-rib of the palca is an axis of developement in cohesion with the bracts; such articulations are, however, exceptional, and their position 1 am inclined to consider as indicating the point of union of the leaf with the vagina, where an angle is always observable. Viriparous grasses, too, would be expected to produce constantly additional organs from the portion of the transformed palea beyond the ligula, if M. Raspail's view were correct, but, this, on the contrary, is seldom the case. There is a similarity betreen the palea of a viviparous grass and the upper bract of each spikelet in some Marisci: for in them the dilated lower portion of the bract, or the true contimuation of the raehis, somewhat resembles, without however being strictly analogous to, the lower palea of a locusta, and the uppermost flower is borne in a position, similar to the axle of the ligula on the leaf of a grass.

Plate CXLL. Fig. 1, locusta; fig. 2, floret; fig. 3, orary ; fig. 4, squamula ; fig. 5 and 6, viviparous portions of a spikelet; fig. 7, palea trausformed into a leaf:-all mamified.
2. Festuca Arundo, Hook. fil. F. Alopecurus, D'Urville in Dém. Soc. Linn. Paris, vol. iv. p. 604. Brong. in Duperrey Toy. Bot. p. 32. Poa (?) Alopecurus, Kunth, En. Plant. vol. i. p. 256. Aruado Alopecurus, Gaud. in Amn. Sc. Nat. vol. v. p. 100., et in Freyc. Toy. Bot. p. 409.

Var. β. minor, foliis angustioribus culmo brevioribus.
Var. γ. pedalis, glumis et paleis latioribus brevioribusque.
Var. δ. culmo graciliore, panicula sub-nutante, flosculis-sæpius basi parce lanatis.
$H_{a b}$. Falkland Islands, all the varieties forming very large tufts; on the sea-sand abundant ; D'Ureille, J.D.II. Var. γ. Strait of Magalhaens; Port Gregory, Capt. King.

Next to the Tussock, the present is the largest grass in the Falkland Islands, though, like that plant, it is very variable in size. The largest specimens are three or even four feet high, the smaller scarcely one. Though a conspicuous object, its varieties are not always easily recognizable; for the most prominent characters of the typical state, which are the great size of the locustr, and the narrow paleæ and glumes with slender attenuated apices, are quite fallacious. All my large specimens of var. a have either a minute turbinate ovarium or a small
caryopsis, and are never staminiferous; thus it is very possible that some of the varieties enumerated may be the males of this, the largest form.
M. Brongniart has suggested the propriety of erecting the present plaut, together with the F. Antarctica, into a new genns, and they certainly are more nearly allied to one another than to any of their congeners; still I doubt the possibility of finding any character of gencric value common to them both. They also resemble some South Brazilian and Patagomian grasses, as the Poa lanuginosa, Nees, and other undescribcd species.

If I had seen only single specimens of the different varieties, I should certainly have considered three of them to be as many species; but a very large collection of individuals, from rarious parts of the Island, has convinced me, that neither the comparative length, breadth, or attenuation of the apices of the glumes and palex, nor the woolliness of the base of the florets, or length of the leaves, afford any grounds for a further subdivision; at least I have been unable to effect such, either when examining the fresh specimens, or, more latcly, when comparing the dried ones. Dissimilar as the following plant appears, I am not at all positive of its claims to the rank of a separate species; for some of its characters may be due to the different locality it generally affects; and specimens of the var. δ. approaching the N. Arundo far too nearly.

Though a large and very handsome grass, the Festuca Arundo is so harsh and rigid as to be quite unpalateable to cattle; this is the more obvious from its often growing side by side with the nntritious Tussock, ont of the same sand-heap.
3. Festuca Antarctica, Kunth, Gram. vol. i. p. 132. En. Plant. vol. 1. p. 405. Arundo Antarctica, D' Urv. in Mém. Soc. Linn. Paris. vol. iv. p. 602.

Tar. a, culmo pedali, foliis strictis rigidis, panicula erecta, flosculis basi fasciculis pilorum instructis. Arundo Antarctica, Brong. l. c.

Var. β. culmo pedali et ultra, foliis elongatis flexuosis, panicula nutante, fasciculis pilorum rarissimis.
Var. γ. omnia varietatis β., sed flosculis omnino nudis.
Var. δ. habitu varietatis a. fiosculisque varietatis γ.
$H_{A B}$. Falkland Islands, most abundant ; vars. a. and δ. on sandy shores; vars. β. and γ. in rocky places, both near the sea and upon the hills, sometimes also on the sandy shores.

Few botanists would, I think, venture to separate any of the vareties enumcrated above from F. Antarctica, and very many others would unite all with the preceding species, and perhaps correctly. M. Kunth describes a specimen of this grass (received from D'Urrille) as having the flosculi naked at the base, cxactly as in my varieties γ. and δ. (En. Plant. Suppl. p. 340). The locustre vary in my specimens, being from two- to four-flowered.
4. Festuca aicnaria, Lank., Encycl. vol. i. p. 191. D'Urv. in Mém. Soc. Limn. Paris, vol. iv. p. 602. Brongniart, in Duperrey Toy. Bot. p. 35. Kunth, En. Plant. vol. i. p. 408.

Нав. Strait of Magalhaens, Commerson; Port Famine, Capt. King; Falkland Islands, marshy and sandy places, Gaudichaud, \&•C.

The lower palere of this species are frequcutly notched on each side, below the apex, as in a genuine Dactylis, and in the following plant. Fuegian specimens are often viviparous.
5. Festuca Cookii, Hook. fil.; panicula elougata erecta contracta fastigiatim v. verticillatim ramosa, glumis subæqualibus ovato-lanceolatis acuminatis glaberrimis 4-foris superiore 3-nervi, flosculis basi uudiusculis palea inferiore puberula 5 -nervi dorso basi sericeo-barbata, apice acuminata integra v. 3-dentata, culmo diviso folioso basi radicante, foliis disticlis culmum superantibus. (Tab. CTIXIX.)

Hab. Kerguelen's Land, abundant; Auderson (in Cook's Voyage), J. D. IF.

Gramen foliosum, 3 unc. ad bipedale. Culmi robusti, basi pluries divisi, prostrati v. repentes; pars repeus ralidus, sæpe pedalis; pars erectus per totam longitudinem foliosus, compressus. Folia plurima, distiche inserta, elongata, coriacea sed non rigida; vagina aperta, folio brevior, compressa, striata; ligula brevis, fimbriata; lamina culmum paniculamque superans, plana v . dorso subcarinata, ntrinque lavis, 2-4-lin. lata, gradatim in apicem acuminatam angustata. Panicula 2 ad 8 unc. longa, erecta v. paulo inclinata, $\frac{3}{4}$ unc. lata, subcontinua v. verticillatim interrupta. Locuste late ovato-oblongæ, 3 - 4 -flores, sub 8 -lin. longæ. Gluma superior 3 -nervis, inferiore 1 -nervi longior, flosculis breviter pedicellatis brevior. Palea inferior ovato-lanceolata, acuminata, concara, vix carinata; nervo medio dorso snperne ciliato, inferne barbato; flosculo superiore infimoque apice acmminato, integerrimo, duobus intermediis apiccm versus utrinque uni-dentatis; palea superior inferiore $\frac{1}{3}$ brevior, bifida. Anthere lineares. Caryopsis oblonga, cylindracea.

The commonest grass in Kerguelen's Land and a very valuable one, affording a rich and abmondant fodder. The tendency in the palea to become toothed on each side towards the apex, and the distichous, long, and particularly rich foliage, show its affinity with the Tussock and with the Festuca foliosa of Lord Auckland's group, which chiefly differs from this in its larger panicle. These three grasses are certainly representatives of one another, and all typical of moist Insnlar climates; their northern analogues are evidently the F. Donax, Lowe, of Madeira, and F. albida, Lowe, of the same island.

Plate CXXXIX. Fig. 1, locusta; fig. 2, floret; fig. 3, squamula; fig. 4, caryopsis:-all magnified.

§ 2. Flosculis arista terminatis.

6. Eestuca purpurascens, Banks et Sol. MSS.; elata, panicula laxa ramis elongatis apicibus paucifloris, locustis oblongis multi- 8 -floris, glumis trinerviis lanceolatis superiore ter majore, flosculis glabriusculis, paleis 5 -nerviis apice 3 -dentatis dente intermedio in aristam producto, foliis planis culmo brevioribus. (Tab. CKL.)

Hab. Strait of Magalhaens; Port Famine, Capt. King; Fuegia; Good Success Bay, Bankis and Solander, C. Darmin, Esq.

Radix stolonifera. Culmi 2-4-pelales, graciles, erecti, glaberrimi, striati, politi, remote nodosi. Folia pauca, culmum vagimantia, patentia, flexuosa; vagince pedales, teretes, superne hiantes; ligula brevis, transversa; lamina plana, utrinque lævis, vagina brevior longiorve, gradatim supra medium acumiuata. Panicula 6 unc. longa, laxa, inclinata; ramis paucis, elongatis, filiformibus, versus apices divisis. Locushe fere $\frac{1}{2}$-nnc. longæ. Glumæ flosculis pedicellatis basi nudis breviores. Patea inferior dorso convexa, superne precipue pilosiuscula, superiorem bifidam paulo breviorcm amplectans, nitida, purpureo-picta, 5-nervis, nervis scaberulis. Squamula 2, profunde bifide. Ocarium obovatum, superne pilosum; styli basi discreti.

A tall and handsome grass, allied to the South Brazilian F.fimbriata, Nees, in which the paleæ are not anmed, and the leaves are convolute. In general habit it resembles somewhat the European F. elatior.

Plate CXL. Fig. 1, locusta; fig. 2, floret; fig. 3, pistil and squamulæ; fig. 4, squamulæ:-all magnified.

7. Festuca duriuscula, Limn., Sp. Pl. 10s. Engl. Bot. t. 470.

Hab. Strait of Magalhaens; Port F'amine, Capt. King.
Capt. King's specimens are nearly two feet high, in which respect only they differ from ordinary forms of those of British growth. The leaves are erect and involute.
8. Festuca gracillima, Hook. fil.; elata, glaberrima, panicula simplici elongata pauciflora inclinata, locustis majusculis pedunculis compressis longioribus multi-7-9-floris, glumis inæqualibus lineari-oblongis
late scarioso-marginatis superiore latiore 3 -nervi, flosculis basi remotiusculis, palea inferiore obscure puberula in aristam brevem producta, culmis gracillimis folium lineari-filiforme involutum superantibus.

Hab. Strait of Magalhaens; Port Famine, Capt. King.
Radix fibrosa, nunc repens? Culmi 3 -pedales, gracillimi, erecti, lieves, nitidi. Folia $1-1 \frac{1}{2}$-pedalia. Panicula sub 5-unc. longa, 6-8-flora. Locuster $\frac{1}{2}$ ad $\frac{3}{4}$ pollicares. Glumce latiusculæ, concavæ, non carinatæ, inferior 1-nervis, superior latior, 3 -nerris. Palea lineares, inferior sursum puberula, arista breviuscula recta aucte; superior æquilonga, bifida.-Species elongata, gracillima, priori simillima, sed elatior, foliis longioribus, locustis majoribus, glumis plurifloris latioribusque differt.

A very elegant species, allied to the former ; but, judging from my specimens, distinct, especially in the form of its glumes; althougl in British examples of F. rubra that organ varies much in breadth and the locustæ in sizc.
9. Festuca bromoides, Linn., Sp. Pl. 109. Engl. Bot. t. 1412. D'Urville, in Mém. Soc. Linn. Paris, vol. iv. p. 601.

Hab. Falkland Islands, found only near the settlement, D' Urville, J. D. H.
Apparently identical with the European plant, and most probably introduced.
10. Festuca Magellanica, Lamk., Illust. vol. i. p. 119. Encycl. vol. ii. p. 461. D'Urville, in Mém. Soc. Linn. Paris, vol. iv. p. 601. Brong. in Duperrey, Foy. Bot. p. 35. Kunth, En. Plant. vol. i. p. 396.

Var. β. culmo elongato, foliis glaberrimis.
Hab. Strait of Magalhaens, Commerson; Falkland Islands, on rocks near the sea, D'Urville, J. D. H. Var. β. Port Faminc, Capt. King.

The var. β., from Port Famine, is almost identical with Austrian specimens of F. pallens, Host., and it comes very near some British states of F. duriuscula, apparently differing chiefly by the membranous margins of the sheaths of the leaves. Falkland Island specimens vary considerably in stature and in the size of their locustr; the folinge is very rigid in all, though more or less pubescent in different specimens.
11. Festuca erecta, D'Urville, in Mém. Soc. Linn. Paris, vol. iv. p. 601. Brongniart, in Duperrey Foy. Bot. p. 37. t. 7. Kunth, En. Plant. vol. i. p. 39 S.

Hab. Tierra del Fucgo; Hermite Island, J.D.H.; Falkland Islands, D'Ureille, J.D.II.; Kerguelen's Land, R. M'Cormick, Esq.

Variable in the comparative length of the leares and stem, as also in size, but otherwise a well-marked species.

14. DACTYLIS, L.

1. Dactylis cerspitosa, Forst., in Comm. Goctt. vol. ix. p. 22. Willd. Sp. Pl. vol. i. p. 407. Hook., fil. in Lond. Journ. of Bot. vol. ii. p. 298. t. 9 and 10. Festuca cæspitosa, Roem. et Sch. Syst. Teg. vol.ii. p. 732. Kunth, En. Plant. vol. i. p.408. F. flabellata, Lamk. Encycl. vol. ii. p. 462. Gaud. in Ann. Sc. Nat. vol. v. p. 100, et in Freyc. Toy. Bot. p. 409. D'Urv. in Móm. Soc. Lim. Paris, vol. iv. p. 603. Brongniart in Duperrey Voy. Bot. p. 36. "Glayeux," Pernetty, Voy. vol. i. p. 343. (Tab. CXXXVI.-CXXXVII.)

Hab. Strait of Magalhaeus, Commerson; and throughout Fuegia; Staten Land, Forster; Hermite Island, Cape Horn, J. D. H.; Falkland Islands, most abundant, Gautichaud, and all subsequent voyagers.

Though much has lately been written in the 'Journal of Botany' upon this plant, the famous Tussoek Grass of the Falkland Islands, it appears advisable to sum up here the prineipal facts eonneeted with its history.

Commerson was doubtless the diseoverer of it in the Strait of Magalhaens, in 1767, and it bas been gathered in Fuegia by several suecceding royagers; but as it nowhere forms so conspicnons a feature as in the Falkland Islands, it is most appropriately considered in reference to them alone.

A French colony was established on the Falklands, by Admiral Bougainville, in 1766, when cattle and horses were lauded, which, no doubt, soon manifested a predilection for this noble grass. Pernetty, the historiographer of the Voyage, in describing the remarkable plants of those lslands, alludes partieularly to it under the uame of "Glayeul"; but it was not until the recent colonization of the Falklands by the British that attention was particularly directed to the Tussock, in consequence of aceomit's forwarded to the Colonial Office by Governor Moody, and to the Admiralty by the Autaretie Expedition.

The peculiar mode of growth of Dactylis caspitosa enables it to thrive in pure sand, and near the sen, where it has the benefit of an atmosphere loaded with moisture, of soil emriched by decaying sea-weeds, of manure, which is composed in the Falkland Islands of an abundant supply of animal matter in the form of Guano, and of the excrements of varions birds, who deposit their eggs, rear their young, and find a labitation amongst the groves of Tussoek. Its general locality is on the edges of those peat-bogs which approach the shore, when it contributes eonsiderably to the formation of peat. Though not universal along the coast of these Tslands, the quantity is still prodigious, for it is almays a grecgarions grass, extending in patehes sometimes for nearly a mile, but seldom seen except within the influence of the sea air. This predilection for the ocean does not arise from an ineapaeity to grow and thrive except close to the salt water, but bceause other plants, not suited to the sea-shore, already cover the gronnd in more inland localities, and prevail over it : I have seen the Tussock on inaccessible cliffs in the interior, having been brought there by the birds and afterwards manured by them; and, when cultivated, it thrises both in the Falklands and in England, far from the sea.

I know of no grass likely to yield nearly so great an amount of nomishment as the Tussock, when thoroughly established; in proof of which I quote my frieur Governor Moody's printed report, for the truth of which I ean rouch, both from my own experience and from lis having kindly given me ample means for judging of the correctness of his interesting and useful observations, when drawing up the report from which the following extract is made.
"During several long rides into the country I have always found the Tussock flourishing most vigorously in spots exposed to the sea, and on soil unfit for any other plant, riz. the rankest peat-bog, lulack or red. It is wonderful to observe the beaten foot-paths of the wild cattle and horses, marked like a foot-track aeross fields in England, extending for miles over barren moor-land, but always terminating in some point or peninsula covered with this favourite fodder ; amid which, one is almost eertain to meet with solitary old bulls, or perhaps a lierd of cattle; very likely, a troop of wild horses, just trotting off as they scent the coming stranger from afar. To cultivate the Tussock grass I should recommend that its sceds be sown in patelics, just below the surface of the earth and at distances of about two feet apart ; it must afterwards be weeded out, for it grows very luxuriantly, frequently attaining a height of six or seven feet. It should not be grazed, but cut or reaped in lundles. If cut, it quickly shoots again; but is much injured by grazing; for all animals, especially pigs, tear it up to get at the sweet nutty-flavoured roots. I have not tried how it would be relished if made into hay, but cattle will eat the dry thatch off the roof of a house in winter; their preference to Tussock grass being so great that they seent it a considerable distanee and use every effort to get at it. Some bundles, which had been stacked in the yard at the back of Government House, were quickly deteeted, and the eattle in the village made, every night, repeated attempts to reach then, which oecasioned great trouble to the sentry on duty."

Sinee the above was written, the Tussoek has been used abundantly when made into hay, being preferred by cattle even to the green state of any of the other excellent grasses in the Falklands. Governor Moody informs me that in his garden it grows rapidly and improves by eutting.

There is, however, one draw-back to the value of the Tussock; it is a perennial grass, of slow growth, and some disappointment las already been experienced in England from this cause. Each Tussock consists of many hundreds of culns, springing together from a mass of roots, which have required a long series of years to attain their great and productive size. Our cultivated specinens in the Royal Gardens of Kew, now nearly three vears old, are in a fair way of becoming good Tussocks; for the quantity of stems from eith root, the produce of one seed, is incalculably more than any other grass throws np, and these are abready forming a ball of root-fibres which in time will form a mound; but this ball, now scarcely six inches across and not two in height, must have grown to six or eight feet high, with a diameter of three or four feet; instead of forty culms there must be four hundred; and the leares, now three feet long, must attain seven; ere the Tussock of England can compete with its parent in the Falklands. Though, however, the stoles (if 1 may so call the matted roots of this grass) in the most rigorous native specimens attain a height of seven feet, it is certain that they are very productive before they have reached two or three. By the timc the leaves have gained their great size, the bases of the culms are nearly as broad as the thumb, aud when pulled out young, they yield an inch or two of a soft, white, and sweet sulbstance, of the flavour of a uut, and so nutritions, that two American sealers, who deserted a vessel in an unfrequented part of the Falklands, sulsisted on little else for fourtecu months.

Again, the Tussock-grass field, when fully established, must not be grazed indiscriminately by cattle. These creatures and the pigs have already diminished its abundance in the Falklands; for, after devomring the foliage, they cat down the stumps of the cuhns, greedily following them into the heart of the mass of roots from which they spring, for the sake of the white core just described; the rain-water lodges in the cavity thus formed, and decay so surcly follows, that I have seen nearly half a mile of Tussock-grass plants entirely destroyed by no other means.

Although in the Falklands this plant will grow on pure sand near the sea, and there reach as great a size as on any other soil, it is not likely to do so in the drier climate of Britain, where the absence of an equally humid atnoaphere must be artificially remedied. I wet, light, peaty soil has in England been found to favour its growth; sca-weed manure might probably be added with advantage, and certainly gnano. Slow its progress assuredly is, but it may be hastencd by such stimulants. In the mean time the cultivator has no just canse for complaint; the plant is already increasing unusually at the base, and thence seuding up many more culms than other grasses, though, springing from one small base, they do not make such a show, but form a compact mass of living roots which in the case of other Graruineæ would spread orer ten times the area that this occupies, and they annually increase in rigour and productiveness. And, lastly, it must be borne in mind that the farmer here obtains an enormous crop from a very small surface. Dach great Tussock is the produce of one secd and is an isolated individual plaut, whieh, though standing upon perhaps only two square yards of ground, yields anmally a produce equal to that of a much greater surface of land, if cropped with hay or clover. The number of seeds required to stock an acre in Tussock and one in grass is in the proportion of tens to thousands; and we may be well content to know that the number of months required to ensure a profitable retwen is not in the same ratio.

There are few plants which from perfect obscurity have become objects of such interest as this grass. The Tussock in its mative state scems of almost no service in the animal economy. A little insect, and only one that I observed, depends on it for sustenauce; and a bind, no bigger than the sparrow, robs it of its seeds; a few sealfowl build amongst the slccter of its leaves: penguins and petrel scek hiding-places amongst the roots, because they are soft and casily penetrated, and sea-lions cower beneath its luxuriant foliage: still, except the insect, I knor no animal or plant whose extinction could follow the absence of this, the largest vegetable production in the Falklands, which does not even support a parasitical fungus. These same sea-birds breed and burrow where no 'fussock grows; rocks elsewhere suit the Sea-lion's habits equally well ; and the sparrow, which subsists on other food eleven months of the year, could surely make slift without this for a twelfth. Certain it is, that the Tussock might yet be unknown and unprized amongst plants, if cattle had not becn introduced to its locality by man;
who thus hecame, first the injurer, and then the protector and propagator of the existence of this noble grass; for the herbivorons quadrupeds which he carried to the Falklands and left there, were surely extirpating the Tussock, when man returned, and, by protecting, perpetnating, and transporting it to other comntries, he has widely dispersed it. It appears singular that so striking a grass should abound where there is no native herbivorous animal to profit by its luxuriance; but it is no less certain that had not civilization interfered, the Tussock might have waved its green leaves undisturbed over the waters of the stormy Antarctic Ocean, for ever perhaps, or until some fish, fowl, or seal, should be so far tempted by the luxuriance of the foliage as to trausgress the laws of nature, and to adapt its organs to the digestion and enjoyment of this long-neglected gift of a bounteous Providence.

It must appear strange to all who know grasses only in the pastures of England, that the patches of Tussock resemble nothing so much as groves of small low Palm-trees! This similarity arises from the matted roots of the individual plants springing in cylindrical masses, always separated down to the very base, and throwing out a waving head of foliage from each summit. Bogs and damp woods in Britain very frequently produce a Sedge (Care, paniculata), whose mode of growth is, on a small scale, identical with that of the Tussock-Grass, and to which the name of Tussock is applied. I have seen them two to three feet above the ground, in South Wales; and if they were higher, larger, and placed closer together, the general resemblance woukd be complete. The effect in walking through a large Tussock grove is, very singular, from the uniformity in height of these masses, and the narrow spaces left between them, which form an effectual lithyrinth; leares and sky are all that can be seen overhead, and their curious boles of roots and decayed regetable matter on both sides, before and behind; except now and then, where a penguin peeps forth from his hole, or the traveller stumbles orer a huge Sea-lion, stretched along the ground, blocking up his path.

Plate CXXXYI.-CXXXYII. Fig. 1, locusta; fig. 2, floret; fig, 3, squamulæ, stamens, and pistil; fig. 4, squamula; fig. , pollen; fig. 6, caryopsis:-all magnified.

15. CATABROSA, Beauv.

1. Citabrosa Magellanica, Hook. fil.; glaberrima, panicula elongata laxe ramosa, ramis apice floriferis elongatis, glumis intequalibus apice erosis 1-6-Horis superiore majore 3-nervi, palea inferiore ovato-oblonga obtusa 5 -nervi glaberrima vix costata, culno erecto foliorum vaginis tecto, foliorum lamina involuta vagina breviore.

Hab. Strait of Magalhaens; Port Fomine, Capt. King.
Gramen pedale, erectum, glaberrimum. Cumi basi prostrati, divisi. Foliorum vagina latiuscula, 3-5 une. longa, striata, hians; ligula ovata, acuta; lamina $2-3$-uncialis, anguste lineari-subulata, superne scaberula, margiuibus involutis. Panicula $5-7$ unc. longa, erecta; ramis gracilibus verticillatis r. fastigiatis, inferioribus 4 unc. longis, filiformibus, glaberrimis, Hexuosis, apices rersus divisis et floriferis. Locustre $\frac{1}{3}$ unc. longæ, sub 4 -flora. Gluma inferior lanceolata, acuta v. truncato-crosa; superiore oblongo-lanccolata 3 -nervi obtusa erosa $\frac{1}{2}$ breviore. Flosculi basi dissiti, glaberrimi, cylindracei. Palea inferior oblongo-ovata, obtusa, sul-erosa, obscure 5-nervis, pcostata, marginibus subciliatis, superior brevior, apice bidentata. Antheree parve, late oblongæ.

Quite a distinct species, and differing from the typical plants of the genus in having many florets contained in each locusta.

16. BROMUS, L.

1. Bromes pictus, Hook. fil.; strictus, ercetus, simplex, puberulus, panicula simplici, locustis sub 4 magnis pedunculis longioribus, glumis lineari-oblongis subacutis medio nervosis tloseulisque purpureo-pictis
sub 5 -floris, palea inferiore lineari-ovata obtusa iufra apicem arista brevi capillacea instructa 7 -nervi inferne sericco-puberula.

Hab. Strait of Magalhaens; Port Gregory, Capt. King.

Gramen pedale. Culmus simplex, basi geniculatus, erectus, gracilis, strictus, puberulus. Folia pauca, culmo breviora; vagina striata; ligula ovata, lacera; lamina vagina brevior, pilosa, involuta. Panicula a une. longa. Locustre fere pollieares, $\frac{1}{3}$ unc. latæ. Flosculi nervosi, superne glaberrimi, nitidi, iuferne dorso serieei; arista $\frac{1}{3}$ floseuli ærquans, seaberula. Palea superior inferiori æquilonga, sed $\frac{1}{2}$ angustior.

A very distinet little species, only fomd in the eastern parts of the Strait of Magalhaens, and more characteristic of the grassy plains of Patagonia than of an Antaretie vegetation.

17. ELYMUS, L.

1. Elymus Anturcticus, Hook.fil.; crectus, glaberrimus, panicula spicæformi lineari-oblonga, spiculis binis collateralibus 2-floris, glumis subæequalibus lanceolatis aristato-acuminatis integris v. bifidis nervosis, flosculis brevissime pedicellatis, palea inferiore lanccolata in aristam gluma brevioren desinente 5 -nervi superne puberula, superiore brevissime bidentata, foliis planis vaginis brevioribus.

Hab. Strait of Magalhaens; Port Famine, Cupt. King.

Culmi ereeti, bipedales, subvalidi, foliosi, glaberrimi. Folia coriacea sed non rigida, culno breviora; ragina teres, striata, 5 unc. longa; ligula brevissima; lamina lincari-subulata, utrinque lævis, basi plana, superne marginibus involutis, gradatim aeuminata, 3-4 une. longa. Paniculu $3-4$-uncialis, strieta, creeta, continua, $\frac{1}{2}$ une. lata. Locustre crectæ, imbricatæ, appressæ, seaberule. Glume liberæ, ad basiu eujussis artieulationis quaterıæ, quarum exterior lateris unici sæpe ad medium fissa evadit, fere $\frac{1}{2}$ une. longæ, aristatie. Flosculi eum aristis $\frac{2}{3}$ unc. longi, inferior vix, superior longius, pedieellatus; arista paleis paulo brevior.

This a good deal resembles a Chilian species, which possesses longer arista to the glumes and palea, and is otherwise different. One glume ont of the four at each articulation is often bifid, this is always the outer, and all such are on one side of the panicle only. The general appearance is not dissimilar to that of Elymus Europeus, from which the present species may be distinguished at once by the glumes being free to the base.

18. HORDEUM, L.

1. Hordeum jubatum, Linn., Sp. Pl. 126. Kuuth, En. Plant. vol. i. p. 457.

Hab. Strait of Magalliaens; Port Fmine, Capt. King.

North American specimens do not appear to differ from the Magellanic, or from others gathered at Cape Fairweather. I find the sheaths of the (old) leaves sometimes pilose, whenee it seems very probable that the Chilian II. cornosum, Presl, is only a state of this plant which varies a good deal in size, in the stoutness of the culm, and length of its paniele. II. jubatum had been considered as confmed to North Ameriea, where it ranges from the Nissour to the Saskatehewan, and from Boston to the Colombia river.
2. Hordeum pabiforum, Hook. fil.; spicis oblongis, glumis requilongis omnibus setaceis basi pubescentibus superne scabridis, flosculis lateralibus neutris, intermedio basi setula ancto, palea inferiore scabridopalois lanceolata arista glumis æ倓onga terminata, foliis caulinis longe vaginantibus radicalibus subsetaceis.

Mab. Strait of Magalliaens; Port Famine, Capt. King.

Radix fibrosa, subrepens. Culmi 8-10 unc. alti, basi inclinati, glaberrimi. Folia radicalia, panea; vagina uncialis glaberrima v. obscure pilosa; lamina subulata, involuta, 2-pollicaris; caulinorum vaginze elongatæ, tumidæ, striatæ; lamina brevissima, subulata. Spica $1 \frac{1}{2}$-uncialis, fusco-purpurea. Glumee $\frac{3}{4}$-meiales, recurvæ, basi flosculique pube scabrida, pilis brevibus intermixtis restita.

Very distinct from the former (than which it is a good deal smaller) and from any other species, and may be recognized by the pubescence of the florets; its general appearance resembles the European H. maritimum.

19. TRITICUM, L.

1. Triticum repens, Linu., Sp. Pl. 12S. Engl. Bot. t. 909.

Tar. palea superiore semper pubescente floribusque plernmque majoribus. T. repens, var. pungens, Brongniart in Duperrey, Voy. Bot. p. 57. T. glaucum, Lamk. (?) D'Urville in Mém. Soc. Iinn. Paris, vol. iv. p. 601.

Sub-var. 1, spiculis majoribus $\frac{2}{3}$-uncialibus, glumis paleisque angustioribus, palea inferiore breviter aristata apice trifida v. integra.

Sub-var. 2, spiculis majoribus, glumis paleisque latioribus, palea inferiore apice mueronata subaristata integra v. obseure trifida.

Sub-var. 3, spiculis apice majoribus, palea inferiore acuminata pungente trifida.
Sub-var. 4, spiculis minoribus, glumis angustioribus, palea inferiore apiee 3 -dentata breviter aristata r. mutica.

Sub-var. 5, spiculis minoribus, glumis latioribus, palca inferiore apiee 3-dentata uunquam aristata.
Hab. Strait of Magalhaens; Port Famine, Capt. Kïng (sub-vars. 4 aud 5) ; South Fuegia, Good Success Bay, and Hermite Island, Banks and Solander, C. Darwin, Esq., J. D. II. (sub-vars. 2 and 3); Falkland Islands, abundant, D'Urville, \&e. (sub-vars. 1, 2, and 3).

A very variable plant, and all the more perplexing from some of the larger varieties differing more in appearance than they do in reality from the common European T. repens. The lower palea is generally, but not constantly tridentate at the apex, with the middle tooth sometimes produced into a short awn; it is, however, always hairy, as may be seen in Siberian, Arctic American, and Rocky Mountain plants, which latter, indeed, are sometimes villous. The North American spccimens are generally larger than the European. This species is also a native of Cape Fairweather on the Patagonian const, and excecdingly abundant throughout Fuegia and the Falkland Islands.

20. LOLIUM, L.

1. Lolium perenne, Linn., Sp. Pl. 122. D'Lruille, in Mém. Soc. Limn. Paris, vol. iv. p.601. Brongn. in Duperrey, Foy. Bot. p. 57.

Hab. Falkland Islauds, on the sandy sea-shores, frequent; D^{\prime} Urville.
The habitat assigned by D'Urville to this plant renders its being indigenous very probable,

LI. FILICES, Juss.

1. HYMENOPIIYLLUM, Sw.

1. Hymenophyllum cruentum, Cav., Pral. 1501, n.684. Swartz, Syn. Fil. p. 145. Hook. Sp. Fil. vol. i. p. S7. t. xxxi. A.

Hab. Chonos Archipelago; C. Darwin, Esq.
Even amongst the Ferns we have much peculiarity attending the Flora of S.IV. Chili and Fuegia. I have elsewhere alluded to the botamical division of that line of coast into a northern and southern portion, differing specifically in their productions, but not generically to any very great amount. These two divisions are, 1st, the Valdivian or Chilotian, which stretches from Concepcion to Cape Tres Montes; and, 2nd, the Magellanic or Fuegian, commencing at Cape Tres Montes and terminating at Cape Horu. From the lower latitude and consequently higher temperature of the northern of these two countries, and from its greater surface, containing also mountains that reach the limits of perpetual snow, its Flora is by very far the richest, including a larger proportion of the Fuegian plants than Fuegia does of the Chilotian. There are also many species, which, though conspicuons in the southern Flora, are either miknomi even on the Alps of the northern, or appear there only under very different aspects.

Many more species common to both these divisions, Fuegian plants especially, prevail through the whole line of coast, than its great extcnt would lead us to expect. This proceeds from a mutual interchange of individuals between two countries whose Floras may be supposed to have been originally quite distinct. The inosculation of the Floras is most conspicuous at Cape Tres Montes and the Chonos Archipclago, and is not accompanied by any tendency in those species, which there come iuto juxta-position, to change, each into that which represcnts it in the other. The umion or mingling is complete, but there is no blending of two species, no obliteration of specific characters, nothing to indicate either that the peculiar plants of one country have originated from what pre-existed in the other under a different form; or, still less, that all hare sprung from one common source, lower in the scale of organization.
2. Hymenophyllum pectinatum, Cav., Prel. 1801, n. 687. Swartz, Syn. Fil. p. 146. Willd. Sp. Pl. vol. v. p. 425. Hook. Sp. Fil. vol. i. p. 96. t. 34. D.

Hab. Chonos Archipelago, C. Darwin, Esq.
3. Hymenophyllum Milsoni, Hook., Brit. Flor. ed. 5. p.446. Witson, in Engl. Bot. Suppl. t. 2656. Var. γ. Mook. Sp. Fil. vol. i. p. 96.
Hab. South part of Tierra del Fuego, C. Darwin, Esq.; Hermite Island, Cape Horn, J.D. II. Falkland Islands, quartz rocks on the hills, J. D. II.

Found in all the four quarters of the globe, also in Australia and New Zealand.
4. Hymenophyllum Chiloense, Hook., Sp. Fil. vol. i. p. 90. t. 32. B.

Hab. Chonos Archipelago; C. Daruin, Esq.
The specimen in Mr. Darwin's herbarium is very small, but I think referable to this species; certainly to no other published oue.
5. Hymexophillum caudiculatum, Martius, Pl. Crypt. Bras. p. 102. t. 67

Var. s. Hook. Sp. Fil. vol. i. p. 102.
Hab. Chonos Archipelago ; C. Darwin, Esq.
6. Hymenophylum tortuosum, Banks et Sol., MSS. Hook. et Grev. Ic. Fit. t. 129. Ilook. Sp. Fil. vol. i. p. 99.

Hab. Chonos Archipelago, C. Darwin, Esq.; and throughout Fuegia, Banks and Solander, \&c.
One of the most common Antarctic American ferns, from the latitude of Valdivia to Cape Horn.
7. Hymexophyllum secundum, Hook. et Grev., Ic. Fil. t. 133. Hook. Sp. Fil. vol. i. p. 100.

Hab. Staten Land, Menzies; Hermite Island, Cape Horn, J. D. II.
Decidedly the most Antarctic of Ferns, occurring ouly at the very extremity of the American continent, where it is tolerably abundant in the woods.
8. Hymexophyllus rarum, Brown, Prodi. p. 159. Fl. Antaret. p. 10j. H. semibivalve, IIook. et frrev. Ic. Fil. t. 83.

Var. 乃. Hook. Sp. Fil. l.c. H. imbricatum, Colenso, in Tusm. Phil. Joum. vol. ii. p. 157.
IIab. Var. β. South part of Tierra del Fuego, C. Darwin, Esq.; Hermite Island, Cape Horn, J. D. II.
A species exhibiting a singular predilection for those insular and peniusular localities, which terminate the continents in the Southern Ocean. Thus it occurs only at the very southern extremity of America and Africa; at Ceylon, which is nearly the southernmost land of the vast Indian empire ; in Tasmania, which is an analogous position in Australasia; and in New Zealaud and Lord Anckland's group, which bear the same geographical relation to Polynesia. As it also inlabits Bourbon and the Mauritius, it appears to exist all round the world, resting on the highest southern lands of eael longitude.

2. TRICHOMANES, Sm.

1. Trichomaxes flabellatum, Bory, in Duperrey Foy. Bot. Crypt. p. 281. Hook. Sp. Fil. vol. i. p. 119. 'T. flabellula, D'Urv. in Hém. Soc. Linn. Paris, vol. iv. p. 597.

Hab. Falkland Islands; Gaudichaud, D'Urville.
A plant which I have ncver seen, though I diligently songht for it in the Falkland Islands. It is remarkable that both the French Naturalists who met with it, should have failed to notice the Hymerophyllum Wilsoni, which is sufficiently abundaut, and generally accompanies the following species.
2. Trichomanes caspitosum, Hook., Sp. Fit. vol. i. p. 132. t. 40 B. Hymenophyllum cæspitosum, Gaud. in Ann. Sc. Nat. vol. v. p. 908, et in Freyc. Toy. Bot. p. 374. t. 5. f. 2. D'Urvo in Mén. Soc. Linn. Paris, vol. iv. p. 597.

Hab. Southern parts of Fuegia; Staten Land, Menzies; Hermite Island, Cape Horn, abundant on $^{\text {a }}$ trunks of trees, J. D. II.; Falkland Isliands, clothing the quartz rocks on the hills; Gaudichaud, D' Urville, J..D. II.

This singular little species was discovered by the lamented Menzies, in Staten Land. Cape Horu is its sonthern limit, and Chiloe its northern. It las been probably overlooked in the intervening latitudes.

3. CISTOPTERIS, Bernh.

1. Cistopteris fragilis, Bernh., Neu Journ. Bot. vol. ii. p. 27. Engl. Bot. t. 1587. Hook. Sp. Fil. vol. i. p. 197.

Нab. Strait of Magalhaens; Port Famine, Capt. King; Falkland Islands (West Island ?), Capt.Sulictun.
One of the most extensively diffused of all vegetables, or even Ferns, though avoiding such hot and equable elimates as the low lands of the Tropics. In America, it ranges along the Cordillera, from the Aretic Sea and Greenland to the Strait of Magalhaens; in Emrope, from Ieeland and Lapland to the Mediterranean ; in Asia, between Kantsclatka and the Himalaya Mountains; but in Africa it is confined to the Canary Islands and the Cape
of Good Hope. Its aversion to danp or uniform heat is conspicuously displayed in its not being a native of New Zealand or Fuegia proper on the one hand, or of India or tropical Africa on the other.

4. ASPIDIUM, L.

1. Aspidum (Polystichum) Mohrioides, Bory, in Mém. Soc. Linn. Paris, vol. iv. p. 597, et in Duperrey, Foy. Bot. Crypt. p. 267.t. 35. f. 1. (Tab. CXLLX.)

Hab. Strait of Magalhaens; Port Famine, Capt. King; Falkland Islands, D'Urrille, Sec.
The Magellanic specimens are larger, and hare longer and more laxly imbricating pinnæ, than those from the Falkland Islands; which are characteristic of a climate less favourable to Ferns.

Plate CXLIN. Fig. 1, fertile pinna; fig. 2, sterile ditto; fig. 3, sorus and involuere:-magnified.
2. Aspidiem (Polystichum) coriaceum, Swartz, Syn. Fil. p. 57.

Hab. Chonos Archipelago; C. Darwin, Esq.
A species apparently impatient of cold, for though inhabiting the damp west coast of Chili, as far south as the Chonos Archipelage and the dry climate of Patagonia, reaching there the latitude of Port St. Elena, it neither enters the Strait of Magalhaens, nor occurs in the Falkland Islands or Fuegia. It is almost universally diffused throughont the Tropics, and the temperate regions of the southern hemisphere.
3. Aspidius (Polystichum) restitum, Swartz, Syn. Fil. p.53. Polypodium, Forster, Prodr. n. 445.

Var. pimulis profundins sectis apicibus acutis.
Hab. Var. Tierra del Fuego, sonth part, C. Darwin, Esq.
The only specimen which I have seen is imperfect, but appears merely a variety of the A. vestitum, with rather narrower and more deeply cut pimules, which are acute, but not pungent or spinulose; the segments of the pinnules also are narrower, and the whole frond smaller. In other respects, and particularly in the clothing of the stipes, rachis, \&c., it exlibits all the characters of the species I have referred it to, which is a native of Juan Fermandez and Chiloe. I am not prepared to say how far all may be distinct from the British A. aculeatum, the incisions of the breader mucronate pinnules in the European plant are closer, and all aculeate, whieh is not the case with the typical states of A. vestitum; and the clothing, too, is different.

This species is represented by the A. renustum, Homb. and Jacq., in Lord Anckland's group, and by A. prolifertur, Br., in Tasmania.

5. ASPLENIUM, L.

1. Asplentuy Magcllaniczm, Kaulf. En. Fil. p. 175. Hook. et Grev. Ic. Fil. t. 180.

Hab. Strait of Magalhaens, Commerson ; Port Famine, Cupt. King; Hermite Island, Cape Horn, J.D.H. $_{\text {I }}$
A rery pretty and distinct little species; prebably not uncommon between the latitudes of Concepcion and Cape Hom, on the west coast of South America. It has a very nearly allied representative in New Zealand; and anether, the Asplenium laxum, Br., in Tasmania.

6. LOMARIA, IFilld.

1. Lomarla alpina; Stegania, Brown, Prodr. p. 152. S. alpina, ß. latinseula, Bory, fid. D'Urrille, in Mém. Soc. Linn. Paris, vol. iv. p. 597. Lomaria polypodioides, Gaud. in Ann. Sc. Nat. vol. v. p. 90 S.
et in Freyc. Foy. Bot. p. 374. L. australis, Kunze, Coll. Plant. Poeppig, p. 57 (ful. sp. in Herb. Hook.). L. decurrens, Kunze, MSS. L. blechnoides, Bory (?), in Duperrey, Toy. Bot. Crypt. p. 273. L. Sellowiana, Presl, in Herb. Reg. Berol. p. 100 (fid. sp. in ILerb. Hook.). L. Antarctica, Carmichael, in Linn. Soc. Trans. vol. xii. p. 512. L. linearis, Colcnso, in Tasman. Phil. Journ. vol. ii. p. 176. Polypodium Pinna-marina, Poiret, Encycl. (Tab. CL.)

Hab. South Chili, Fuegia, and the Falkland Islands, most abundant ; Kerguelen's Land, very scarce, J. D. $I I$.

One of the commonest Ferns between the latitudes of Concepcion and Cape Horn on the west coast of South America, and also in the Falkland Islands, ofteu covering the ground for many yards. It has also been collected in South Brazil by Sellow, and in Tristan d'Acunha, Kerguelen's Land, New Zealand, and in Tasmania; throughout all which comutries it retains its characters very markedly, and is altogether a most distinct species. The Blechnum horeale is evidently its representative in the northern hemisphere, and is very similar in size, form, and habit, though abundantly distinct in the nature of its involucre.

Plate CL. Fig. 1, portion of sterile pinnæ; fig. 2, fertile pimar ; fy. 3, transverse scetion of the same.
2. Lomaria Magellanica, Desvaux, in Mag. Nat. Berlin, 1811, p. 330, ct in Mém. Soc. Limn. Paris, vol. vi. 1. 289. L. Magellanica, β. angustiseta, Bory, in Mém. Soc. Linn. Paris, vol. iv. p. 597. L. setigera, Gaud. in Ann. Sc. Nat. vol. v. p. 98, et in Freyc. Toy. Bot. p. 130. L. robusta, Carm. in Trans. Linn. Soc. vol. xii. p. 512. L. zamioides, Gardner, MSSS. in Merb. Hook. Pteris palmaformis, Petit Thouars, Flore de Tristan d'Acunka, p. 30. "Cetcrach," Pernetty, Voy. vol. ii. p. 56.

Hab. South Chili, Fuegia, and the Falkland Islands, very abundant.
This species is more confined in longitude but has a much wider range in latitude than L. alpina. I have examined what appears to be the same from British Guiana (possibly a distinct species), from Brazil, and La Plata, on the cast coast of South America; and from Peru, Juan Fernandez, and Chili, on the west; it also inhabits Tristan d'Acunha. Its New Holland representative is the L. procera, Br.

Mr. Gardner's name of zamioides is peculiarly applicable both to his Brazilian and my Falkland Island specimens, they singularly resemble a Zamia in habit and general appearance.

7. GRAMIITIS, $S w$.

1. Grammitis australis, Brown, Prodr. p. 146. FV. Ant. p. 111.

Hab. Strait of Magalhaens; Port Famine, Capt. King. Hermite Island, Cape Horn, abundant in the woods and on the rocks upon hills, J. D. II.

This, again, is a Fern of the Sonthern Ocean, bcing found in Tasmamia, New Zcaland, Lord Auckland's group and Camplell's Island, the west coast of Sonth America, from Cape Horn probably all the way north to Lima, and on Tristan d'Acmha. I have seen no Ancrican specimens but Capt. King's, my own, and Cuming's (n. 1052). Its tropical representative is the beantiful little G. marginella.

8. GLEICHENTA, $S m$.

1. Gleichenia acutifolia, Hook., Sp. Fil. vol. i. p. 7. t. 7. A.

Hab. Stroit of Magalhaens; Port Famine, Capt. King.
Like all the pedate, erect, sonthern species of Gleichenia, this has a very narrow range, and is probably confined to the coast between the Strait of Magalhaens and Chiloe, whence the specimens quoted as Patagonian in Species

Filicum were brought by Capt. King. It is represented in New Zealand by the G. Cunninghamii, Hook.; in Tasmania by G.tenera, Brown, and Gr. fabellata, Br.; and in Chili, north of Valdivia, it appears to be in a great measure replaced by the G. pedalis, Kaulf.

2. Gleichenla cryptocarpa, Hook., Sp. Fil. vol. i. p.7.t. 6 A.

Hab. Falkland Islands (West Island?); Lieut. Robinson, Capt. Sulivan, Mr. Chartres.
Very nearly allied to the G.acutifolia, but readily distinguislable by the revolute margins of the pinne covering the sori ; this character, together with the stont, rigid, and very coriaceons habit, appear to indicate its being a native of drier places than the former. It has hitherto been found ouly in the Falklands, in plains of Valdivia, and on the Island of Chiloe.

9. SCHIZEA, Sm.

1. Schizea australis, Gaud., in Ann. Sc. Nat. vol. v. p. 98. Fl. Antaret. p. 111. Hab. Falkland Islands; Gaudichaud.
I hare scen no Falkland Island specimens except those collected by M. Gaudichand, which are identical with others gathered by myself in Lord Anckland's group and Campbell's Island.

LII. LYCOPODIACE E, Swartz.

1. LYCOPODIUM, $B r$.

1. Licopodiun Selago, Linn., Sp. Pl. p. 1565. Engl. Bot. t. 233.

Tar. Saururus. L. Saururus, Lam. Encycl. Bot. vol. iii. p. 625. Bory, Foy. aux quatre Iles, se. vol. i. p. 344. t. 1G. f. i. L. crassum, II. B. K. Tov. Gen. vol. i. p. 33. Hook. et Grev. Ic. Fit. t. cexxiv. L. insulare, Carm. in Trans. Limn. Soc. vol. xii. p. 509. L. elongatum, Swartz, Syn. Fil. p. 175. L. carinatum, Desv. Monogr. n. 5. Poiret, Encycl. Bot. vol. iii. p. 555. Selago etc. Dillenius, Mist. Musc. t. S4. f. 3.

Hab. Falkland Islands, Gaudichaul, sc. Var. Saururus, Kcrguelen's Land, J.D.II.
The Falkland Island specimens are perfectly identical with others of British growth, but the rar. Saururus is so different from any aspect of L. Selago found in Europe, that it requires the most perfect suite of specimens, showing the gradual passage of the one into the other, to prove their common origin. Such, however, exist, especially in volcanic islands, which seem peculiarly favourable to the production of this variety.

In its largest and handsomest form, the var. Saururus inhabits the Andes of Peru, the Island of Bourbon, and Kerguelen's Land. A more slender state, but not slenderer than what occurs amongst Audes specimens, is found in Tristan d'Acunha, St. Helena, and in some of the West Indian Islands.

The narrow form of var. Saururus was brought from St. Helena as carly as 1702, and given to Dillenius, who figured it. On the Andes, and there alone, the Selago division of Lycopodia assume a deep brick-red colour, which, however, affords no specific character, for the Saururus is as often wholly green as red, and at other times is only tinged with the latter colour at the apices of the leaves; and this is the case with the Kerguelen's Land specimens. It is difficult to imagine the cause for this tint of plants. On the gloomy Island of Desolation, it cannot be due to the tropical sun, nor to colouring matter contained in the soil, for it also occurs in two species which I believe are always parasitical.
2. Licopodiun clavatum, Linn., Sp. Pl. p. 1564. Engl. Bot. t. 224.

Yar. Magellanicum, foliis apice muticis. Fl. Ant. p. 133.

Var. fastigiatum, ramis erectis fastigiato-paniculatis.
Hab. Var. Magellanicun, Strait of Magalhaens and throughout Fuegia, the Falkland Islands, very abuudant ; Kergueleu's Land, J. D. IF. Var. fustigiatum, Port Famine, Capt. King.

I have in the former part of this work given my reasons at length for assigniug these varieties to L. clavatum. The rar. fastigiatum is a plant of a warmer climate than the var. Magellanicun, which inhabits not ouly the low-lands of Fuegia, the Falklands, and Kerguelen's Land, but also the lofty heighits of the Cordillera of Peru and Colounbia, and the monntains of New Zealand, Tasmania, and Lord Auckland's group.

LIII. Marsileacea, Br.

1. AZOLLA, Lam.
2. Azolla Magellanica, Willd., Sp. Pl. vol. v. p. 541. A. filiculoides, Lam. Encycl. vol. i. p. 340.
$H_{\text {sb }}$. Strait of Magalhaens, Commerson; Falkland Islands, Gaudichaud.
I an quite unacquainted with this species, either as a Falkland Island or Magellauic plant.

LIV. CHARACEE,

1. Chara, L.
2. Chara flexilis, Linn., Sp. Pl. 1624. Suith, Engl. Bot. t. 1070.
$H_{A B}$ Kerguelen's Land, in the fresh-water lake above Christmas Harbour, abundant, J. D. II.
After a careful comparison of this plant with Euglish specimens of C. fexilis, I cousider then to be the same species, and an confirmed in this opinion by my friend Mr. Wilson, who has studied the British species of this difficult genus very carefully; he says, that the points at the apices of the branches are, perhaps, longer than common in the Antarctic specimens. It is probably not an unfrequent plant in the southern temperate zone.

LV. MUSCI, L.

By W. Wilson, Esq., and J.D. Hooker.

1. ANDREEA,* Ehrr.

1. Andreea alpina, Liun.; caule ramoso elongato, foliis undique imbricatis patentibus apice incurvis obovatis acumiuatis concavis infra medium contractis siccitate appressis. A. alpina, Dill. Hist. Muse. t. 73. f. 39. Hook. et Tayl. Musc. Brit. ed. 2. p.2. t. 8.

Var. l. foliis inferioribus squarrosis subrectis.
Var. 2. caulibus gracilioribus, foliis confertis.
Hab. Var. 1 aud 2, Hermite Island, Cape Horn; Kerguelen's Land, var. 1, on alpine rocks.
This species has in Enrope frequently been confounded with A. rupestris, and we cannot assent to the remark in the 'MLuscologia Britannica, tlat Dr. Molir was the first to distinguish it accurately; since neither the description of Weber and Moln (Bot. Tasch. p. 383), nor their citation of Dillenius (Hist. Muse. t. 73. f. 40), as a synouym for A. rupestris instead of A. Rothii, tends to prove that these anthors understood the species. The illustrative figures

[^38]and observations show that A. alpina of Weber and Mohr (Bot. Tasch. t. 11. f. 3, 5), is only a state of A. rupestris, with leaves spreading in all directions. This is confirmed by the fact that A. alpina of Mougeot and Nestler (Stirp. Crypt. Toyes. no. 115), is that very form of A. rupestris to which we allude. The figures of Dillemins doubtless refer to 1 . alpina; but the absence of a separate figure of A. rupestris, and the remark, " in rupibus surculi e fusco rufescmint" (p.507), prove that this author considered both these as varieties of one species. The true A. alpina may always be known from A. rupestris by its obovate dark glossy leares, and its longer and more robust stems.
2. Andreea marginata, Hook.fil. et Wils.; caulibus laxe cespitosis subramosis, foliis erecto-patentibus incurvis ovatis longe acuminatis infra medium contractis enerviis marginibus inferne pallidis caulinis majoribus superioribus confertis, perichætialibus longioribus elongatis late lanceolatis convolutis, theca exserta. (Tab. CLI. Fig. I.)

Hab. Hermite Island, Cape Horn, frequent on rocks ou the mountains; J. D. II.
Caules unciales. Folia e basi ovata longe acuminata, concava, superiora in caule fertili sensim majora, laxiora et magis erecta, omuia punceo-atra, nitentia, areolis minutis, oblongis, margiualibus inferne minoribus, pallidioribus.

With some hesitation we venture to separate this from A. alpina, on account of the more gradual acumination of its leaves, which are full twice as long. It differs from A. acntifolia in laving the leaves considerably larger, the lower part more suddenly dilated, and the base not gibbous; also in their dark colour and glossiness, and in the more evident perichætium. It is easily recognized by its habit.

Plate CLI. Fig. I.-1, a specimen:-natural size; fig. 2 and 3, leaves; fig. 4, theca :-magnified.
3. Avdreefa acutifolia, Hook. fil. et Wils., cid. Part 1. p. 118.

Tar. β. rufescens, ramis fastigiatis. (Tab. CLI. Fig. II. 2.)
Yar. γ. foliis latioribus.
Var. ó. foliis superioribus subsecundis. (Tab. CLI. Fig. II. 1.)
Tar. є. foliis superioribus erectis elongatis.
Var. ζ. foliis erectis obtusiusculis atro-sanguineis.
Hab. Var. a, β, and ϵ, Hermite Island, Cape Horn. Var. δ and ζ, Falkland Islands. Var. γ, Kerguelen's Land.

All these varieties differ somewhat, though slightly, from that gathered in Campbell's Island.
Plate CLl. Fig. II.-1, specimen of var. δ, and 2, specimen of var. β :-natural size; fig. 3, perichætium and theca; fig. 4 , perichretial leaves; fig.5, cauline leaf of var. $\delta ;$ fig. 6 , leaf, and fig. 7 , theca of var. β :-magnified.
4. Andrefa rupestris, Linn.; canle humili subramoso, foliis e basi vaginante patentibus (interdum secundis) ovato-lanceolatis vel ovatis superne attenuatis acutinsculis enervilus supcrioribus siccitate appressis, perichetialibus longioribus ovato-lanceolatis convolutis, theca exserta. A. rupestris, Hook. et Tayl. Musc. Brit. p. A. t. viii.

Hab. Hermite Island, Cape Morn, frequent on maritime rocks.
Slightly differing from British specimens in its wider, less evidently papillose leaves, which are more suddenly dilated near the middle. Bridel (Bryol. Univ.) cites with doubt, Dillenius (Musc. p. 507. t. 73. f. 40) as a synonym for this species, but the description of Dillenius distinctly mentions the nerved leaves which are characteristic of A. Rothii, to which specics even the description of Limmæus (as Bridel properly remarks) scems to refer. The sccund foliage, gencrally ascribed to A. rupestris, is not a constant character, even in specimens gathered in the same locality.
5. Andreea mutabilis, Hook. fil. et Wils., cid. Part 1. p. 119. pl. Ivii. f. ii.

Var. γ, sulsscunda ; foliis laxioribus inferioribus sccundis.
Var. δ. uncinata; foliis dissitis falcato-secundis.
Hab. Falkland Tslands; botlı varieties, abundant.
The var. β. of this species is a Lord Auckland's group and Campbell Island plant.
6. Andrefa laxifolia, Itook. fil. et Wils; caulibus laxe cespitosis parce ramosis, foliis lanceolatosubulatis obtusinsculis concavis enerviis ramulinis falcato-secundis caulinis erectis subsecundis laxe imbrieatis, perichretialibus elongatis ovato-lanceolatis convolutis, theca exserta ovato-oblonga. (Tab. CLI. fig.IT.)

Var. β. minor ; theca subesserta.
Hab. Hermite Island, Cape Horn; not rare, on moist rocks in the ligher parts of the lsland. Var. β. on rocks near the sea.

Caulis vix uncialis. Folia ramulorum conferta, falcato-secunda, luteo-viridia; caulina dissita, majora, rix secunda, subamplexicaulia. Florescentic monoica: flos masconlus primo terminalis, folia perigonialia rotundo-orata, acutinscula, concava. Autheridia 6. Paraphyses numerose, duplo longiores. Theca siccitate turbinata, basi pallida.

Plate CLI. Fig. IV.-1, a tuft of the natural size ; 2, 3, 4, and 5, leaves; 6, theca:-nuctgnifeed.
7. Avdrees sululata, Harvey ; vid. Part 1. p. 119. pl. 1vii. f. i.

Var. β. rigida; foliis minus falcatis crassioribus luridis.
Hab. Hernite Island, Cape Horn, and the Falkland Islands; not uncommon.
The Auckland and Campleell Island variety differs slightly from the above.
Subgen. Acroschisma, Hook.fil. et Wils. (Theca cylindracea, e busi dal medium et ultra indehiscens, apicem rersus tantum in raloulis 4 rel 8 fissa; -an genns proprium?)
8. Andreea (Acroschisma) IFilsoni, Hook. fil.; caule laxe cæspitoso elongato ramoso, foliis ramulorum undique pateutibus squarrosis spathulato-lanceolatis obtusiusculis caulinis ercetis laxe imbricatis ovatolanceolatis basi angustatis amplexicanlibus omnibus enervibus concavis marginibus inllexis, perichretialibus elongntis elliptico-oblongis convolutis, theca exserta cylindracea apicem versus fissa. (Tab. CLI. fig. IIT.)
$H_{\Delta b}$. Hermite Island, Cape IIorn; on maritime rocks near the spray of rivulets, rare.
Caules sesquiunciales, graciles, erecti, per intervallos breves innovantes, subdichotomi, steriles vage ramosi, rami patentes. Fotia ramulorum lanceolata, basi subamplexicaulia, erceta, deinde patula, squarrosa, apice subincurva, obtusiuseula, lateribus inflexis, luteo-viridia, caulina majora, erecta, infra medium repente angnstata, flavescentia, cnervia, areolis majusculis elongatis. Florescentia monoiea: antheridia circiter 11, paraphysibus numcrosis Iongissimis. Theca elongata, maxima, inferne integra, badia, apice in valvulis 4 vel 8 fissa.

Allied to Andreca laxifolia, but differing in the remarkable capsule and also in the form of the leaves, which do not taper gradually from the base, but are widened near the middle.

Plate CLI. Tig. III.-1, a plant of the natural size; 2, branches; 3, young theea, \&c.; 4, leaf; 5, mature theea; 6 , perichætial leaf:-all magnified.

2. SPILIGNUM, L.

In addition to the former remarks on the structure of Syhagnum, we would observe, that the spirally lined fellules of the leaves do not constitute the proper parenclyma. The cellules, which contain the chlorophyll, are
those which are interposed between the larger utricles, and which form the network of the leaf. This is well explaned by the cauline leaves of Sphaymum fimbriatum (Wils. MSS.), a very curious British and Antarctic species, long confounded with S. acutifolium; in them the spirally lined cells are altogether absent. Spirally lined cells comnunicate with each other by pores, as we have ourselves witnessed the passage of animalcules (vibrio) from one cell into another.

1. Spiagnum cymlifulium, Dill.; caule elongato, ramis crassis, foliis imbricatis patentibus onatis obtusis concavis superne deuticulatis cellulis ramulorum spiraliter lineatis. S. cymbifolium, Nees et IIornsch. Bryol. Germ. vol. i. p. 6. t. 1. f. 1. S. obtusifolium, Hook. et Tayl. Muse. Brit. ed. 2. p. 13. t. 4 (ex parte).

Sar. 2. condensutum, Hook. fil. et Wils.; caule humili, ramulis brevissimis undique dense confertis. S. condensatum, Brid. Bryol. Unir. vol. i. p. 18 (?).

Hab. Falkland lslands; common in streams, bogs, aud peat-ponds. Var. 2. Strait of Magalhaens, Port Famine, Capt. King.

In general aspect excecdingly like the more compact form of S. compactum, Bridel, but presering the true character of the species to which we refer it, in the shape of the leaves, and in the markings of the ramuline cellules. Our specimens are all fertile, the stems not two inches in length. An example occurs where two capsules are produced upon the same pseudopodium.

Mr. Valentine was the first to point out (in the 'Muscologia Nottinghanensis') the structure of the cells of the ramuli, which, from oft-repeated observation, we consider a valid specific character, distinguishing this species from all others. On the other hand, the characters derived from the length of the peduncle and the disposition of the branches appear to be fallacions.
2. Sphagyum fimbriatum, Wils. MSS.; caule longinsculo gracili subramoso, foliis dimorphis, caulinis oborato-subroturdis obtusissimis fimbriatis, rameis ovato-lanceolatis acuminatis concaris acutis, periclæt ialibus oboratis obtusis valde concaris, theea brevi-peduuculata.

Hab. Hermite Island, Cape Horn, and the Falkland Islands.

Caulis plerumque gracilis. Rami 3 -nati subinde $\frac{1}{4}$-n-nati, longiusculi, apice attenuati. Folia caulina erecta, subrotunda, obtusissima, fimbriata!, cellulis propriis (chlorophyllo farctis) reticulum formantibus, interstitiis (e defectu utriculormm linea spirali notatorum) vacuis, folia ramorum conferta, crecto-patentia, apice subrecurva, concara, acuta, perichretialia subcucullata, subretusa, oltusissima, concara, thecam immaturam arete amplectentia. Thece matura globosa, pedicello breviusculo exserto.

From Sphagnme acutifolium, Ehrlu, this species may be reudily known by its more slender habit, and is essentially distinguished lyy the peculiar cauline leares, which consist of an open net-work of parenchymatous cells without any intermediate ones lined with spiral filaments; the perichætial leaves are also very different in shape, and those of the branches are more acute, their reticulation also is, especially at the summit, considerably smaller.

The specimens here described are not so slender as others gathered in Britain; but possess all their essential rharacters; the S.acutifotio of Montagne (Voy au Pole Sud, Bot. Crypt. p. 2S2) is probably the same plant.
3. Sphagnea cuspidatzm, Ehrlı; ramulis attenuatis laxis, foliis lanceolato-subulatis laxis patulis siccitate undulatis marginibus reflexis perichætialibus acutis. S. cuspidatum, Nees et IIornsch. Bryol. Germ. vol. i. p. 13. t. 4. f. 9. Ilook. et Tuyl. Muse. Brit. p. 15. t. iv.

Hab. ITeruite Island, Cape Horn, and the Falkland Islands; common.
Neither this, nor any of the other sonthern Sphugna, are so miversal in the Antarctic bogs as they are in the European and Arctic.

3. SCHISTIDIUM, Bridel.

Stoma nudum. Calyptra mitreformis s. campanulato-conica, in lacinias plures subæquales basi fissa, rarius integra. Theca æqualis, exapoplysata.

1. Schistidiuy marginatum, Hook. fil. et Wils.; caule erecto, foliis erecto-patentibus lanceolatis subapiculatis marginatis solidi-nerviis subdeuticulatis, theca immersa subrotunda, operculo conico-rostrato crecto. (Tab. CLI. fig. VI.).

Hab. Kerguelen's Laud; not uncommon on moist banks, alt. 500 feet, forming large patches on wet rocks, and on the debris of precipices.

Caules crecti, vix ramosi, 4 lin. longi, cespitosi, pallide rubri, succulenti. Folia imbricata, erecto-patentia, siccitate paulo tortilia, lanceolato-oblonga, subundulata, inferiora spathulato-lingulata, nervo valido rufo subexcurrente instructa, rufo-viridia, areolis subquadratis, minntis; perichectiatia paulo longiora, angustiora, erecta. Sete theca brevior, erceta, fusco-lutea. Theca ovato-cyathiformis, badia, basi rotundata, ore aperto. Ammulus persistens, inconspicurs. Opercutum conico-subulatum, capsula paulo longius. Calyptra campanulata, apice rufo-brumea, basi pallida, membranacea, demum lacera. Spore minimæ, lutescentes. Species dioica?

Very distinct from all other described species.
Plate CLI. Fig. VI.-1, a tuft of the natural size; 2 and 3, leaves; 4 , theca; 5, calyptra: -mannified.

4. GYMNOSTOMUM, Hedw.

Stoma nudum. Calyptra cuculliformis vel rentricoso-subulata, latere fissa. Theca æqualis, exammiata.

1. Gymostonum Heimii, Hedwig; foliis patentibus oblongo-lanceolatis subconcavis npice denticulatis nervo subcontinuo, theca truncato-oborata et oblonga, operculo oblique rostellato columellæ insidente. G. Heimii, Medwig, Stirp. Crypt. vol. i. p. S4. t. 30. Mook. et Tayl. Musc. Brit. p. 22. t. vii. Pottia Heimii, Bruch et Schimper, Bryol. Europaa.*

Var. 1, foliis angustis apice vix serrulatis.
Var. 2, foliis subovato-acuminatis margine pellucidioribus, theca turbinata brevi.
Var. 3, foliis latioribus obovatis concavis.
Hab. Falkland Islands, var. 1 and var. 3 (imperfect) perhaps a distinct species, found near the sea, in sandy places. Hermite Island, Cape Horn ; rar. 1, on maritime rocks ; var. 2, on sandy banks.

Subgenus Physcomitriums, Bridel.

2. Grmostomim (Plyscomitrium) larum, Hook. fil et Wils.; cæspitosum, canle simpliciusculo, foliis erecto-patentibus lase imbricatis elliptico-lanceolatis acutis concavinsculis integerrimis reticulatis siccitate vix crispatis, uervo sul, apice evanido. (Tab. CLI. fig. V.)
[^39]Hab. Kerguelen's Land, not uncommon on moist sandy lanks (barren).
Closely allied to the British Physcomitrium pyriforme, of which it may be a varicty.
Plate CLI. Fig. V.-1, a tuft of the natural size ; 2 and 3 , leaves; 4, apex of ditto:-magnified.

5. LEPTOSTOMUM, Br.

1. Leptostomom Menziesii, Brown ; caule subsimplici, foliis oblongo-ovatis apice denticulatis nervosis piliferis, theca oblongo-clavata subrecurva horizontaliter inclinata, operculo conico, rostro brevi obliquo. Gymnostomum Menziesii, IIook. Musc. Exot. t. 6.

Hab. Hermite Island, Cape Horn; very common from the sea coast to the top of the hills, alt. 1700 ft ., on trees, rocks and banks, forming large noble tufts. Strait of Magalhaens, D'Uritle.

6. SPLACHNUM, L.

1. Splacinvar Magellanicum, Brid.; caule crecto subdiviso, foliis oblongo-lanccolatis acuminatis serratis evanidinerviis, pedunculis aggregatis, thece oblongæ ovata apophysi obconica, operculo convexo. S. Magellanicum, Schwaegr. Suppl. I. pt. 4. p. 47. t. 14. Eremodon Magellanicus, Brid. Bryol. Ľuiu. vol. i. p. 236.

Mar. Hermite Island, Cape Horn, on the horizontal limbs and dead stumps of old trees in the woords, growing in large tufts.

Culyptra conico-mitræformis, basi appendiculata, demum lacera, pallida, apice flavescens.
Our specimens, though not in the best state for the examination of the capsnles, all possess apparently a peristome of eight teeth; neverthcless we do not consider it nccessary to remove this moss from Splachmum. Bridel's genns Eremodon. is not adopted by Bruch and Schimper, and is indeed untenable. Our moss has characters which induce us to doubt whether it should be referred to Tayloria or to Splaclmem of Broch and Schimper. Its affluity with the European Tayloria serrata and Rudolphiana is too striking to be overlooked; but the palc apophysis, thongh not wider than the capsule, is evidently that of a true Spluchmum; while the peristome connects it with Dissodon, Br. and Scl.

7. GRLМГМIA, Ehth。

Pcristomium simplex. Dentes sedecim, pyramidati, pertusi, rarius imperforati, reflexiles. Calyptra mitreformis. Thece requalis.

1. Grimma tortuosa, Hook. fil. et Wils.; caule pulcinato, foliis erecto-patentibus lineari-lanccolatis acuminatis piliferis siccitate tortuosis, theca immersa subscssili urceolata, operculo convexo apiculato. (TAb. CLI. fig. VII.)

Hab. Falkland Islauds; dry quartz rocks on Mount Vernet, alt. 1,000 fcet, very scarce.
Caules 3-t-linearcs, pulvinati, subramosi. Folia confcrta, erccto-patentia, subflexuosa, lineari-lanceolata, acuminata, pilifera, carinata, margine paulo incrassata, subplana, nervo valido, dorso prominente, excurrente, siccitate tortilia, subcrispata, opaca, atroviridia, areolis minutissimis, punctatis, basi majoribns, reticulatis, pellucidis; perichetialic similia. Seta brevissima, vix ulla. Theca immersa, subrotunda, erecta, fusca, ore patulo. Anmulus nullus. Peristomii dentes comniventes, siccitate crecti, subreflexi, pyramidati, integri, rubri. Operculum planiusculum, subrostellatum. Sporce minimæ, ferrugineæ. Calyptra brevis, basi lacera, fusca, apice brumnea.

Apparently a distinct species, somewhat allicd to G. apocarpa, as to the fruit; but in the foliage, more nearlyto G. trichophylla.

Plate CLI. Fig. V1I.-1, a tuft of the natural size; 2, 3, and 4, leaves; 5, theca and calyptra; 6, teeth :magnified.
2. Grimma fulcata, Hook. fil. et Wils.; caulibus laxe caspitosis pendulis, foliis falcato-sccundis lanceolato-subulatis crassinerviis canaliculatis integerrimis, theca immersa subsessili turbinata, operculo rostellato. (Tab. CLI. fig. VIII.)

Нав. Kerguelen's Land; on rocks and stoncs near a small waterfall.
Caules laxe cæspitosi, $1-3$-uncialcs, penduli, flexuosi, ramosi, rami subincurri. Folia imbricata, falcato-secunda, lanceolato-subulata, carnosa, integerrima, canaliculata, lateribus iuflexis, nervo lato crasso excurrente, lurido-viridia, inferiora sæpe aqua destructa, nervo solo residuo, areolis minutis subquadratis. Perichetiulia ovato-lanceolata, acuminata, thecam superantia. Tagiunla conica. Theca subscssilis, subrotunda, ore patulo, brunnca. Aunutus nullus? Peristomii deates magni, apice subperforati, incurvi, dorso trabeculati, rubri, siccitate recurvi. Operculum hemispharicum, rostellatum, capsula brevius. Calyptra fusca, mitrælormis, brevis, Flos masculus in axillis ramulorum ad basin ramuli fructiferi. Antheridio plurima, eparaphysata.

Allied to Grimmia apocarpa, var. rivularis, but very distinct in its falcate leares, and broad thick nerve. As in that species, the columella generally falls away with the operculum. The short fertile brauches are often clustered two or three together.

Plate CLI. Fig. VIII.-1 and 2, plants of the natural size; 3, apex of brauch; 4, leaf; 5, perichætial ditto: 6 , theca; 7, operculum :-magnified.
3. Grimmla maritina, Turner, Musc. Mib. p. 23. t. 3. f. 2. Mook. et Tayl. Musc. Brit. p. 66. t. xiii. Schistidium maritimum, Bruch et Schimper, Bryol. Europ. fasc. 25-28. p. 10.

Hab. Ilcrmite Island, Cape Horn; ou granite rocks near the sea at St. Joachim's Bay.
Ab cxemplis Britannicis his notis differt: cautibus longioribus pluries ramosis; foliis magis patulis, subreauris, perichatialibus apice diaphanis, nervo angustiore; capsula majore.

This moss affects the same localities in the Antarctic regions that it does in England.
4. Grinnma apocarpa, Limn.; Helw. Musc. Frond. vol. i. p. 104. t. 39. Hook. et Tayl. Musc. Brit. p. 65. t. xiii. Scbistilium apocarpum, Bruch et Schimper, l. c. p. 7.

Tar. 1, foliis subpiliferis suberectis.
Yar. 2, foliis obtusinsculis subpatentibus, perichæetialibus obtusis.
Tal. 3, foliis caulinis augustioribus, perichætialibns pregrandis obtusis.
Var. 1, foliis lineari-lanceolatis longioribus.
Hab. Falkland Islands; var. 1, slate rocks near the sea. Yar. 2 and 3, Kerguclen's Land, on rocks, alt. 500 feet. Hermite Island, Cape Horn; on trap rocks near the sea.

The most striking feature of the three last named rarieties is the large oltuse perichretial leares. The labit and place of growth are similar to what this moss inhabits in Britain.

8. DRIPTODON, Brid.

This Bridelian genus appears to have been properly recluced to a section of Racomitriun, in the 'Bryologia Europra' of Bruch and Schimper.

1. Dryptodon rupestris, Hook. fil. et Wils.; caule gracili fastigiato-ramoso, foliis patentibus ovatolanceolatis carinatis margine recurvo nervo subcontinno, seta brevi, theca elliptico-oblonga erecta, operculo rostrato. (Tab. CLII.fig. I.)

ILab. Hermite Island, Cape Hom ; moist rocks on the northern slope of Mount Foster, alt. 600 fect.
Caules 1-2-unciales, dense crespitosi, gracilescentes, fastigiato-ramosi. Folia dense imbricata, patentia, ovatolanceolata vel ovato-acuminata, inferiora subsquarrosa, superiora recurva, aeutiuscula, carinata, margine subrecurvi, nervo rubello, siccitate appresso-incurva, plus minusve spiraliter contorta, hrido-viridia. Perichetialia latiora, elliptico-oblonga, obtusa. Seta brevis, $1 \frac{1}{2}$ lin. longa, recta, siccitate tortilis. Theca erecta, clliptico-oblonga, sub)pyriformis, parvula, subcoriacea, rufo-brumea, ore contraeto. Peristomii dentes subsimplices, rubri, conniventes, siccitate patentcs. Operculum rostro aciculari, theca paulo brevius. Calyptra non visa.

A more robust species than D. crispulus (nobis), with the leares shorter, not piliferous, and the thece larger.
Plate CLII. Fig. I.-1, plaut of the natural size; 2 and 3, leaves; 4 and 5, thecæ; 6, tecth of peristome:magnified.
?. Dryptodon crispulus, Hook. fil. et Wils.; vid. Part 1. p. 124. pl. Ivii. f. ix.
Yar. β. foliis siccitate patulis rigidioribus.
Hab. Kerguelen's Land, in gravelly beds of rivulets.
Also a native of Campleell's Island, but not seen at Cape Ilorn or the Falkland Islands.

9. R.LCOMITRIUI, Brid.

I. Raconitrium protensum, Al. Braun; Bruch et Schimper, Bryol. Europ. fasc. 25-28. 1ab. Drypt. 2. R. aquaticum, Brid. Bryol. Ľuie. vol. i. p. 222. R. cataractarum, Braum, Brid. l. c. Suppl. p. 776.

Tar. 1, subacquaticum, foliis acutis subsecundis.
Var. 2, caule lumili, thecis minoribus.
Var. 3, caule robustiore, foliis longioribus secnudis.
Hab. Hermite Island, Cape Horn; all the varieties. Falkland Islands; var. 2 (barren) and vär. 3 . Kerguclen's Land, also barren).

The last variety much resembles R. aciculare, Dill., but has acute leaves and the teeth of the peristome are longer and more slonder. It is perhaps still more nearly allied to Trichostomum subsecuudum, Ilook and Grev., (Hook. le. Pl. t. 17. P. 5), chielly dillering in its more robust habit and shorter setze.
2. Pacomirrium fusciculare, Dill., Bridel, Br. Univ. vol. i. p. 218. Bruch et Schimp. Bryol. Eurap. Thichostomum fasciculare, Schecacyr. Supph. I. pt. 1. p. 155. t. 38.

Tar. . , caule gracili, ramulis brevissimis, foliis subsecundis luteo-viridibus, calyptra pallida.
Var. 3, caule gracili subsimplici, foliis acutiusculis siccitate subappressis, seta breviorc, calyptra pallida.
Hab. Llemite Island, Cape IIorn ; all the varieties.
The last variety has some resemblauce to R. heterostichum, var. γ. gracilescens, (Bruch and Schimper), but differs in laving the leaves more acute and the teeth of the peristome larger and more regularly formerl.
3. Racomitrium heterostichum, Brid.; Bryol. Unie. vol. i. 1. 214. Bruch et Schimper, Bryul. Europ. hasc. 25-2. p. 9. t. 1. Trichostomum heterostichum, Melu. Musc. Frond. vol. ii. t. 25.

Hab. Falkland Islands; on moist rocks on the hills, barren and stunted.
4. Racomitrida lanuyinosum, Brid.; Bryol. Univ. vol. i. p. 215. Flor. Antaret. pt. 1. p. 124. Bruch et Schimper, Bryol. Europ. l. c. p. 11. t. 6. Trichostomum lanugiuosum, Hedu. Musc. Frond. vol. iii. t. . . .

Hab. Falkland Islands; common on the hills, barren. Hermite Island, Cape Horn; also barren. Strait of Magallhaens; D'Urville.

This moss is very common throughout the Antarctic regions. The specimens from Hermite Island have the leaves more obseurely toothed than British examples, and the branches very short. It may be R. Borbomicum, Brid. (Br. Univ. vol. i. p. 21s).

10. ORTHOTRICHUM, Herlu:

1. Orthotrichum crassifolium, Hook. fil. et Wils.; see Part 1. p. 125. pl. 1vii. f. viii.

Var. γ, foliis superioribns ovato-lanceolatis acutiusculis.
Var. δ, foliis subsecundis.
ilab. Hermite Island, Cape Horn; vars. 1 and 3, very common on maritime rocks of granite and trap. Falkland Islands; var. 1 , also on clay-slate. Kerguelen's Land; vars. 1 and 3 common.

Both these varieties differ from the Camphell's Island state of the moss.
2. Orthotrichuar luteolum, Ilook. fil. et Wils.; caule erecto ramoso, foliis erecto-patentibus siccitate crispulis anguste lineari-lanceolatis basi dilatatis uargiue planis, theca exserta ovali-oblonga siccitate sulcita, calyptra pilosa. Orthotrichum coarctatum, Scheuegr. Suppl. I. 2. p. 20. t. 52 (excl. syn. Belvisian.?). Hook. et Grev.! in Brewst. Journ. vol. i. p. 125 (ner. Orth. coarctatum, Br. el Schimp. Bryol. Europ.) (Tab. CLII. fig. II.)

Var. β. calyptra glabra.
Hab. Hermite Island, Cape Horn; var. a. and β. ons stems of shrubs, especially of Berberis iticifolia, from the sea to alt. 1,000 feet, abundant, forming round soft tufts, rare on rocks. South part of Tierra del Fuego, C. Duruin, Esq., n. 140.

Caules laxe pulrinati, luteoli, subunciales, ramosi. Folia conferta, erecto-patentia, cursula, anguste linearilanceolati, basi dilatata, orata, utringue laxe et pellucile reticulata, margine plana, nervo rubello, areolis laxe punctatis, luteola, siecitate parum erispula. Faginula sulpilosa, ovata, miunta. Setu longitucline varia folia perichætialia plerumque æequans vel superans, siecitate striata, in collum eapsulare scnsim dilatata. Theca subpyriformis, parra, pallide luteo-fusca, S-striata, sicca et racua cylindracea, vix sulcata, ore haud constrieto. Peristomii externi dentes 8, ligeminati, siceitate reflexi; interni eilia. Calyptrac campanulata, pilosa, straminea, in var. β. glabra, brumma. Floressentia monoica.

It will be seeu how closely the description corresponds with that of O. coarctaturn, Br. and Sehinp.; but oul comparing authentie speeimens, we find the leaves in the later muel wider and carinate, less dilated at the base, more crisped when dry, the raginula twiec as long, eapsule larger, and the habit considerably different. Our moss, unlike that, has very little resemblance to O.crispmen, and is remarkalle for its pale yellowish colour; it varics in the lengtlo of the seta. An original specimen of O. coarctatum (from P. de Beaurois in Professor Arnott :

Herbarium), as also the description (in Etheog. p. 80), prove it to be identical with O. Ludwigii, Schwacgr., which therefore ought to have bcen named O. coarctatum.

Plate CLII. Fig. II.-1, plant of the natural size; 2 and 3, leaves; 4, seta, theca, \&e.; 5, calyptra; 6, theca; 7, teeth of peristome:-magnified.
3. Orthotricheas crispum, Hedw.; Musc. Fronl. vol. ii. t. 35. Hook. et Tayl. Musc. Brit. p. 133. t. xxi. Bruch et Schimper, Bryol. Europ. fasc. 2-3. p. 23. t. 12.

Hab. Hermite Island, Cape Horn ; on rocks and brauches of trees near the sea, alwars barren. This species often bears, at Hermite Island, jointed conferva-like gemmæ among the young leaves.
4. Orthotrichem Magellanicum, Mont., in Voy. au Pole Sud, Bot. Crypt. p. 290. t. 20. f. 2.

Hab. Strait of Magalhaens; M.Jacquinot.

11. MACROMITRIUM, Brid.

1. Macromitrium longipes, Schwaegr.; Suppl. II. 2. p. 181.? Orthotrichum longipes, Hook. Muse. Exot. t. 24.

Yar. ramis gracilioribus elongatis, foliis luridis erectis lineari-oblongis plicato-carinatis nervo excurrente. Hab. Hermite Island, Cape Horn, Mr. Davis; barren.
Perhaps a distinct species; but though different in aspect, obvious characters are wanting to distinguish it from the Hookerian specimens.

12. TEEISSIA, Hedw.

1. Weissla crispulu, Ludw.; viel. Part 1. p.127. t. lviï. f. ii. Dicranum interruptum, Brid. Bryol. Univ. vol. i. p. 438. Bryım pilosum interruptum, Dill. Muse. p. 376. t. 47. f. 35.

Hab. Hermite Island, Cape Horn ; rocks on Kater's Peak, alt. 1,000-1700 feet, groming in tufts.
Apparently identical with the Enropean plant, and also found in Campbell's Island.
2. Weissia contecta, Hook. fil. et Wils.; rid. Part. 1. p. 127. t. lxiii. f. iii.

IIAb. Kergnelen's Land ; barren, on rocks.
Also a native of Camplbell's Island.
3. Weissid acuta, Herlw.; Musc. Frond. vol. iii. t. 35. Mook. et Tayl. Musc. Brit. p. 57. t. 14.

Tar. β. theca subrotunda, seta breviore arcuata, peristomii dentibus latioribus cribroso-pertusis.
Hab. Falkland Islands; at Port Lous, barren. Hermite Island, Cape Horu; var. β. on wet rocks in and near water-courses, in St. Martin's Cove ; wet sandy banks on Mount Foster.

We have no specimen of W^{-}eissia acuta β., Wahlenb. (Fl. Lapp.), which seems to differ, according to the description very little from our moss. The capsule of ours is turbinate when dry, with a very wide mouth. The seta is sometimes cqually short in British specimens.
4. Weissia stricta, Hook. fil. et Wils.; caule ramoso, foliis snbfalcatis lanceolato-setaceis rigidis canaliculatis integerriuis crassinerviis nervo longe excurente, theca subrotunda, operculo rostrato. (Tab, CLII. fig. IV.)

Hab. Kerguelen's $^{\text {Land ; on rocks near the sea, not uncommon. }}$
Caules unciales, laxe crespitosi, ramosi. Folia suberecta, conferta, rigida, siccitate vix crispata, nervo lato crasso longe excurrente instructa, luteo-rividia; perichætialia longiora, basi latiora, crecta, convoluta. Seta 3-linearis, erecta vix iortilis, pallide rufa. Theca suberecta, subrotunda, ore contracta, rufo-brumuea, demum atrorubens, vernicosa. Peristomii dentes 16 , parvuli, commiveutes, pyramidati, obtusiusculi, binea media notati. Operculun couico-rostratum, eapsulæ longitudine, rostro currato acuto. Calyptra dimidiata, subventricosa, fusco-lutea. Florescentia monoica.

We know of no described species wifl which this can be confounded. It is somewhat allied to the European $\Pi_{\text {. acuta, but the capsules are larger, of a firm texture, retaining their shape when dry. In Dr. Lyall's specimens the }}$ leares are more falcate and the seta shorter.

Plate CLII. Fig. IT.-1, tufts of the natural size; 2, leaf; 3, young scta; 4, capsule ; 5, the same before the fall of the calyptra:-all magnifeed.
5. Werss1a tortifolia, Hook. fil. et Wils; canle ramoso, foliis patentibus flexnosis siccitate crispatis lineari-subulatis canaliculatis integerrimis nervo excurrente, perichetialibus brevioribus convolutis, seta brevi, theca subrotunda, operculo rostrato. (Tab. CLII. fig. V.)

Hab. Kerguelcn's Land, common on gravelly banks, from the sea to 1,000 feet.
Coules subunciales, dense cexspitosi, rauosi. Folia patentia, rarie flexnosa, siccitate crispata vel tortuosa, nervo gracili excurrente instructa, lutescenti-viridia, inferiora fuscescentia; perichætialia breriora, orata, acuminata, convoluta. Seta rix 2-linearis, crassinscula, fusco-brumea. Theca erecta, subrotunda, rufo-brumea, vernicosa, demum indurata. Peristomii dentes 16, pyramidati, comiventes. Operculum conico-rostratum, capsulæ longitudine, rostro obliquo. Calyptra cucullata, capsulam æquans illauque obtegcus, brumea. Floresentic monoica.

Very closely allied to Weissia stricta (nobis), but differing in the crisped wilely spreading leaves, which are only half as long as in that species.

Plate CLII. Fig. V.--1, tuft of the natural size ; 2and 3, leaves ; 4 and 5 , cippules:-all mayniffed.

13. DICRANUMI, Hedre:

1. Dicravum aciphyllum, Hook. fil. et Wils.; caule ramoso, foliis erecto-patcntibus strictis rigidis lineari-lanceolatis integerrimis canaliculatis, nervo latissimo contiuno, theca subeclindracea erecta, peristomii deutibus angustis subintegris, operculo longirostro. (Tab. CLII. fig. III.)

Var. 2. foliis secnudis.
Yar. 3. caule graciliore, foliis brevioribus siccitate subflexnosis, nervo tenuiore.
Hab. Staten-Land, A. Menzies, Esq., (1757). Hermite Island, Cape Horn, on rocks aud on branches of trees on the hills, alt. 700 feet. Falkland Islands, on rocky ground among the liills, rave in fruit. Patch Cove, Cape Tres Montes, C. Darvin, Esq. Vars. 2 and 3, Hermite Island; var. 3 forming small tufts from the sea-side to the tops of the hills, alt. 1,740 feet.

Caules biunciales, parce ramosi, cespitosi, siccitate parum fragiles. Folia erecto-patentia, vix secunda, siccitate erecta, lateribus inflexis, canaliculata, integerrima, luteo-riridia, nervo latissimo ultra laminam in aeumen longum rigidum subulatum producto; perichæetialia ovato-lancolata, vaginantia, caulinis breviora. Seta uncialis, tortilis, fusco-lutea, superne pallida. Theca subeylindracea, erecta, subæqualis, basi attenuata, fusca, demum siceitate substriata. Peristomii denles 16, breves, augnsti, trabeculati, perforati, rix apice fissi, siccitatc erecti, rubri. Spore minute, virides. Operculuin conico-rostratum, thece longitudine, rostro olliquo. Calyptra luteola.

Nearly allied to D. Tongisetum, Hook. (Musc. Exot. t. 139), but differs in the more robust habit, leaves longer, wider, more rigid, less setaceons above, withont serratures, the nerve broader and thicker, capsule longer, peristome smaller, the teeth not divided to the base as in that moss.

Plate CLII. Fig. ILI.-1, tuft of the natural size; 2, leaf; 3, perichætial ditto; 4, theca; 5, calyptra; 6, theca and peristome; 7, teeth :-all magnified.

2 Dicranum? imponens, Mont.; in Toy. au Pole Sud, Bot. Crypt. p. 298.

Hab. Strait of Magalhaens, MIM. Hombron et Jaequinot. Hermite Island, Cape Horn; on the hills (barren).

Not having seen original specimens, it is necessary to mention that in the plant we refer to this species, the leaves are subsecund and entire; while in other respects they agree with the description quoted. D.penicillatum, Hornsch., to which Dr. Montague compares his moss, belongs to the gemus Campylopus, Brid.
3. Dicranuar robustum, Hook.fil.et Wils.; caule elongato subramoso, foliis falcato-secundis longissimis lineari-lanceolatis setaceo-attenuatis convolutis spinuloso-serrulatis, nervo latiusculo excurrente, perichætialibus intimis obtusis enerviis, theca cylindraeea inehinata curvula strumulosa, opereulo longirostro. D. scoparinm, ß. reflectens, Mont. in Toy. au Pole Sud, Bot. Crypt. p. 297 ? (Tab. CLII. fig. VIII.)

Hab. Hermite [sland, Cape Horn; in moods, on the trunks and roots of trees, and in the open country, growing in large tufts, very abundant. Kerguelen's Land, Dr. Lyall.

Caules 4-unciales et ultra, robusti, parce ramosi, subinde incurvi, siccitate parum fragiles. Folia conferta, 6-7 limeas longa, apice setacea, inferue convoluta, superue carinata; margine dorsoque spinuloso-serrulata, riridia, inferiora squalida, perichætialia exteriora squarrosa, basi rotundato-ovata, acuminata, interiora erecta, conroluta, 3-linearia, elliptico-oblonga, obtusa cum mucrone lineari longinsculo, enervia. Taginuta linearis, elongata. Setu 7-8 lin. longa, crassiuscula, siccitate rix tortilis, rubclla. Thece cylindracea, inclinata, curvula, rufo-brunnea, strumulosa. Peristomii dentes bifidi, rubri. Operculum theca paulo longius. Calyptra straminea, apice fusca.

A larger and more robnst moss than D. pungens, nobis, which it much resembles, differing in its longer leares, which are more decidedly serrated, less convolute, nerve broader and excurrent, the perichætial ones much shorter, and wholly different in shape, capsule longer and strumose, peristome larger. In general aspect it is not unlike the British D. majus, Turn., but is distunguished by the very long and attenuated leaves.

Plate CLII. Fig. VIII.-1, moss, natural size; 2 and 3 , leares; 4 and 5 , thecæ:-all maynified.
4. Dicranum pangens, llook. fil. et Wils.; vich. Pt. 1. p. 129. t. 59. f. 1.

Yar. 2. foliis vix secundis.
Yar. 3. foliis minoribus, vix secundis.
Var. 4. lucidum; foliis aureo-nitentibus falcato-secundis.
Hab. Hermite 1slanl, Cape Horn. Yars. 1 and 4 (barren) on rocks, trunks of trees, and the ground, very abundant. Kergnelen's Land; Tars. 2 and 4, Cumberland Bay, R. M'Cormick, Esq.

The var. 4 is a very clegant moss, differing in aspect from the other varieties, but we are unable to detect sufficient characters to establish it as a species.
5. Dicraxty Boryanum, Schwaegr., Suppl. It. vol.i. p. 71. t.121. Cecalyphom dichotomum, P.Beauv. Prodi. p.41. Oncophorus dichotomus, Brid. Br. Unit. vol. i. p. 401.

Hab. Kerguelen's Land, common on the hills in large dense tufts, barren.

Falkilands, elc.]

Our speeimens agree precisely with an original one from P. de Betuvois himself. The leaves are more faleate and wider at the base than those of D. Billardieri, to which this moss is rery closely allied.
6. Dicranum Billardieri, Schwaegr., Suppl. I1. vol. i. p. 170. t. 121. Fl. Antarct. p. 119.

Tar. caulibus apice ramosis, ramis brevibus confertis flagelliformibus.
Hab. Falkland Islands, amongst stones on Mount Vernct, not common, and always barren.
This peenliar coindition of the moss is probably the result of its exposure to a dry atmosphere. Similar appearanees oceur in such British species as Campylopus flexuosus.
7. Dicranum Starkii, Web. et Mohr, Bot. Tasch. p. 189, 471. Hook. et Tayl. Musc. Brit. t.xvii. p. 97. Var. 2. foliis vix secundis.
Hab. Hermite Island, Cape Horu, both varieties, the first in clefts of rocks, common, but rare in fruit.
Theex smaller and more ereet than in European specimens. Intermediate between the usual form and D. Sphaymi, Wahl.
S. Dicranun tenuifolium, Hook. fil. et Wils.; canle ramoso, foliis circinatim falcatis basi lanccolatis longissime capillaceis integerrimis nervo lato percursis, theca turbinata, operenlo longirostro. (Tab. CLII. fig. VII.)

Hab. Hcrmite Islaud ; moist shelving rocks on Momt Foster, above Deep-water Bay, scarce.
Caules uneiales, parce ramosi, cæspitosi, curvuli, luridi. Folia longissima, angustissima, conferta, eleganter circinato-folcata, lurido-viridia, inferiora atrata; perichæetialia basi latiora, raginantia. Seta 3-4 lineas metiens, crassiuseula, pallide lutescens. Theca parra, suberecta, turbinata, ore patulo, senior fusca. Perislomii dentes rubri. Operculum oblique lougirostrum. Calyptra dimidiata, scariosa, fuseo-lutea.

Our specimens are not in a rery good state, being too far advaneed. Allied to the Ewropean D. falcatum, from whieh it differs in having uarrower and longer leaves, and a very small nearly erect eapsule destitute of a struma.

Plate CLII. Fig. VII.-1, moss, natural size; 2 and 3, leaves; 4-6, thecæ; 7, peristome:-all magnified.

9. Dicranom raginatum, Hook., Musc. Exot. t. 141.

Hab. Hermite Island, on moist banks of sea-sand in St. Joachim's Bay, rare.
Our moss differs from original specimens gathered by Humboldt on the Andes of New Grenada, in the following particulars: teeth of the peristome broader ; eapsule ereet, short and turbinate; seta shorter and thicker ; leaves entirc, acute.

14. CAMPILOPUS, Bridel.

1. Campylopus introflexus, Bridel; Br. Univ. vol. i. p. 472 . Fr. Autarct. pt.1. p. 130. Dicranum introflexum, Hcdwo.Sp. Musc. p. 147. t. 29.

Hab. Falkland Islauds, commou on the ground, especially in peaty situatious.
Also a native of Lord Auckland's group and Campell's Island.
2. Campylopes flexuosus, Bridel ; Bi. Unie. vol. i. p. 46!. Fl. Antaret. l. c.

Tar. foliis piliferis. Dicranum clavatum, Schwaegr. Suppl. t. 255?
$H_{\text {ab. Amsterdam Island, South Indian Ocean, Lieut. Smith, R.N. }}^{\text {. }}$
Found also in Campbell's Island.

15. DIDYMODON, Hedwe

1. Didymodon capillaceus, Web. et Mohr, Bot. Tasch. p. 155. Hook. et Tayl. Musc. Brit. p. 119. t. 20. Swartzia capillacea, Hedw. Alusc. Frond. vol. ii. p. 26.

Нab. Hermite Island, Cape Horn ; on sandy banks near the sca, St. Joachin's Bay.
2. Didynodos longifolius. Trichostomum longifolium, Brid. Br. Univ. vol. i. p. 496. Trichostomum pallidum, β. strictum, Schwouegr. Suppl. II. vol. i. p. 77. t. 123?

Var. 2. tenuifolius; foliis basi magis dilatatis membrauaceis, nervo duplo latiore.
Var. 3. penicillatus; canle fastigiato-ramoso, foliis longioribus crectis subquadrifariam inbricatis, nervo erassiore.

Var. 4. curvifolius; foliis subfalcatis sceundis, e basi latiore sensim angustatis.
Hab. Staten Land, A. Menzies, Esq. (1787). Hermite Island, Cape Horn, vars. 1 and 4, abundant. South part of Fuegia, C. Darwin, Esq. Falkland Islands, var. 2, on the ground, rare in fruit ; var. 3, on stones in streams, (barren).

From Trichostomun pallidun our moss differs cssentially in the inflorescence, in the dilated base of the leaf, stronger nerve, cylindrical capsule, and also in the structure of the peristonc. The var. 2 has at times an clliptical theea.
3. Didymodon? glacialis, Hook. fil. et Wils.; caule ramoso fastigiato-crespitoso, foliis erecto-patentibus apice incurvis fragilibus ovato-lanceolatis lineari-acuminatis solidinerviis. (Tab. CLII. fig. VI.)

Hab. Cockburn Island, lat. $64^{\circ} \mathrm{S} .57^{\circ} \mathrm{W}$. (barren).
Canles 4 lin. longi, ramis erectis. Folia e basi concariuscula, repente in acumen linearc producta, vel nervo crasso longe excurrente, margine hand reflexa, arcolis minimis, subrotundis, inferioribus majoribus pellucidis, e fusco lurido-viridia.

Onc of the only three mosses which have hitherto been detected in a higher latitude than that of Cape Horn.
Plate CLII. Fig. VI.-1, tuft of the natural size ; 2, branch; 3, 4 and 5, leares:-all magnifed.

16. CERATODON, Brid.

1. Ceratodox purpureus, Brid., Br. Univ. vol. i. p.450. Fl. Antarct. pt.1. p.131. Didymodon, ILook. et Tayl. Musc. Bot. p. 113. t. 20.

Hab. Strait of Magalliaens, MI. Jacquinot (in D'Urville's Voyage). Falkland Islands, common on clay soil and on the sand-hills about Port Louis. Not seen on Hermite Island.

A very abundant Antaretic plant in many situations.

17. TORTULA, Hedu.

We retain this name, instead of Barbula, for the following reasons: Schreber is the first authority for the union of the two Hodwigian genera Tortula and Barbulu in the year 1791 (Gen. Plant.). He adopted the name Tortula which stands first in Hedwig's arraugement for both. This fact is overlooked by Bruch aul Sclimper, who in their history
of this gemus (Bryol. Europ.), rely chiefly on the authority of Bridel in support of Barbula. But Bridel's authority is in favomr of Tortula, for he adopted it in his earlier work. It was discontinued by him in 1819 (Mantissa) under the erroneous impression that the name had been legitimately given to a phenogamous genns; whereas Barbula had been applied nine years before by Loureiro to designate a Chincse shrub. Hence Schrader, Sibthorpe, Swartz, Roth, and all British writers ou Mosses, retained Tortula, a name whieh would be at present unoccupicd if not employed in conformity with the views of Hedwig and Schreber.

1. Tortula densifolia, Hook. fil. et Wils.; caule humili subdiviso, foliis patentibus confertis lanccolatoacuminatis acutis marginatis apice serratis solidinerviis, theca oblonga, peristomii dentibus contortis, membrana basilari breviuscula, operculo subulato. (Tab. CLIII. fig. I.)

Hab. Falkland Islands, on clayey rocks near the sea at Port Louis, scarce.
Dioica? Caules 4-6 lin. longi, lase cæspitosi, subdivisi. Folia dense conferta, basi erecta, dein patentia, stricta, lanccolato-subulata, acuta, subcarinata, rigidiuscula, marginc cartilaginea vix incrassata, apice dentato-serrata, nervo valido rubello, lutescenti-viidia, areolis opacis minimis, basi majoribus subdiaphanis; perichætialia minora crecta. Seta 6-8 lin. longa, tortilis, fusea. Theca oblonga, erecta, fusea. Peristomii dentes basi membrana latiuscula conjuncti, rubelli. Opercutum subulatum, capsulæ longitudine. Calyptra dimidiata, fusca.

The only described species with which this cau be compared is Barbula marginata, Bruch and Schimp. (Bryol. Europ.) ; but that is a smaller moss, having leaves not at all acuminatcd, and au excurcut nerve.

Plate CLIII. Fig. I.-1, tuft of the matural size; 2, leaf; 3, apex of ditto; 4, thecre:-magnified.
2. Tortula rolusta, Hook. et Grev.; caule clongato subramoso, foliis patulo-rccurvis lanceolatis subcarinatis acutis apice serratis solidinerviis, theca cylindracea curvula, peristomii dentibus contortis tubo ad tertiam partem producto, operculo subnlato. T. robusta, Hook. et Grev. in Brewst. Ed. Journ. vol. i. p. 299. t. 12. (Tab. CLIII. fig. II.)

Var. β. foliis laxioribus viridibus.
Hab. Hermite Island, on sandy ground amongst grass at the head of St. Joachim's Bay, forming large patches. Var. β. Falklaud Tslands, common in moist saudy places (barren).

Dioica, cæspitosa. Caules sesquimciales, robusti, ramosinseuli. Folia lanceolata, vix acuminata, patentia, reeurra, subcarinata, acuta, apice servata, margine recurva, Havescentia, nervo tenui saturatius colorato percursa, siccitate erceta, incurva, subtortilia, areolis subrotundis, basi majoribus diaphanis, perichætialia similia erecta. Seta uncialis, sinistrorsum tortilis, mbella. Theca cylindracea, suberceta, curvila, rufo-fusca, ore rubello. Annulus persistens, albidus. Peristomii tubus basilaris dentium tertiam longitudinis partem æquans, albidus, dentes contorti, pdehre rubelli. Operculum subulatum capsula dimidio longius, tlavescens. Catyptra dimidiata, castanea.

From all the European Syntrichice this species is distinguished by the servated leaves. In size and general aspect it is not unlike Barbula Mulleri, Br. and Sehimp.

After careful examination of the original specimens of Tortula robusta and T. serrulata, we have reason to believe that one, if not both, of these mosses is the same species as our Antarctic plants, differing only in the narrow leaves; but they are in too imperfect a state to determine very satisfactorily. The figure of T. robusta represents the leaves mnch too widely spreading, and they are also scrrulate at the apex, just as in T. serrulatu.

Plate CLIII. Fig. I.-1, plant of the natural size; 2, leaf; 3, theca; 4, apex of theca and peristome:-all magnified.
3. Tortula Mulleri. Barbula Mulleri, Bruch et Schimp. Bryol. Europ. fasc. 13-15. p. 44. t. 2 S.

Hab. Falkland Islands, on sand-hills near the Lagoon at Uranie Bay.

In our specimens the inflorescence is variable, even on the same stem; in some the antheridia and paraphyses are abundant, in others entirely wanting.
4. Tortula levipila, (Barbula), Bruch et Schimp. l.c. p. 40. t. 25.

Var. 1. foliis erecto-patentibus dorso margineque papillosis, florescentia monoica (interdum hermaphrodita).

Var. 2. foliis ovalibus suberectis dorso lævibus.
Var. 3. caule gracili ramoso, foliis brevioribus snberectis elliptico-oblongis apice pilo brevi instructis margine subincurvis.

Tar. 4, foliis obtusis areolis majuscnlis subrotundis.
Hab. Falkland Islauds, vars. 1 and 2, on sandy soil ncar the sea; vars. 3 and 4, Cockborn Island, lat. $64^{\circ} \mathrm{S}$., long. $57^{\circ} \mathrm{W}$., both barren.
5. Tontula gracilis. Barbula gracilis, Bruch et Schimp. l.c. p. 22. t. S. (Tab. CLIII. fig. III.)

Hab. Cockburn Island, (barren).
Our specimens differ from authentic cxamples in having the leaves more crowded, more pellucid at the base and less acuminated; the nerve also is wider.

Plate CLIII. Fig. III.-1, tuft of the natural size; 2 aud 3, leaves ; 4, areole :-magnified.
6. Tortula hyperborea, Mont. in Toy. an Pole Sud, Bot. Crypt. p. 302. t. 20. f. 4. Syntrichia hyperborea, Brid. Bryol. Univ. vol. i. p. 553. S. mucronifolia, Br. in Parry's 1 st Toy. App. p.198. exel. synonym.

Mab. Strait of Magalhacns ; M. Jacquinot.

18. POLY'TRICHUM, Lim.

1. Polytrichum compressum, Hook. fil. et Wils.; caule subsimplici, foliis suberectis subulatis concavis subserratis, theca inclinata ovata compressa microstoma, operculo conico-rostrato, calyptra apice subpilosa. (Tab. CLIII. fig. IV.)

Hab. Hermite Island, in varions situations, chiefly on wet rocks, from the sea to the tops of the lills, rare in fruit.

Dioieum. Caules plus minus dense cæspitosi, vix ramosi, nume luridi, nunc rufo-forvoginei, subinde luteovirides. Folia erecto-patentia, imbricata, lanceolato-subulata; in caule masculo ovato-lanceolata, breviora; apice incurva, obtusiuscula, concava, mollia, subcarnosa, obscure serrata, nervo angusto hand lamellato instructa, areolis minutis subrotundis, opacis; perichætialia lougiora, erecta. Seta uncialis, crassa. Theca inclinata, subinde horizontalis, orata, obliqua, compressa, microstoma, luxido-fusca. Columella compressa. Peristomii dentes circiter 32, irregulares, albidi. Sporce miuntr, ferrugineæ. Operculum conico-rostratum, capsula duplo brevius. Calyptra apice subpilosa, latere fissa, parrula, fusca.

Allied to the Icelandic P. lerigatum, Hook., but abundantly distinct in its compressed theca and narrower leaves.
Plate CLIII. Fig. IV.—1, plant of the natural size; 2 and 3, leaves; 4 and 5, thece; 6, calyptra:-all magnifited.
2. Polytrichum juniperimm, Hedw., Sp. Musc. p. S9. t. 2S. Mook. et Tayl. Musc. Brit. p.45.t.10. Var. foliis confertis suberectis strictis.
$H_{a b}$. Falkland Islands, on the moors, (barren). Hermite Island, Cape Horn, (barren).
Evidently the British speeies, and a very widely dispersed one.
3. Polytricium alpestre, Hoppe; Bridel, Br. Univ. vol.ii. p.140. P. jumiperinum, var. Hook. et Kayl. l.c. p. 45.
$\mathrm{H}_{\triangle \mathrm{b}}$. Strait of Magalhaens, Port Famine, Capt. King.
This, which is also a British species, las been colleeted by Capt. King ouly.
4. Polytrichum piliferun, Selıreb.; Schwaegr. Suppl. I. vol. ii. p. 313. t. 153. Hook. et Tayl. l. c. p. 44. t. 10 .

Hab. Falkland Islands, not uncommon on the moors, rare in fruit.
Affecting the same loeality and habit in the Falklands that it does in England.
5. Polytrichua dendroides, Schwaegr. Suppl. II. vol. ii. p. 2. t. 151.

Hab. Strait of Magallnaens, D^{\prime} Urville. Hermite Island, in the woods, on steep banks by rivulets, not uncommon, but rare in fruit.

In fertile specimens the branches are arranged at intervals around a common axis, the lower ones usually subdivided. The peristome has some analogy to that of Lyellia, the teeth being rery small and the comeeting base remarkably thick and prominent. The calyptra is quite glabrons. Columella apparently winged. In habit this moss belongs to Pogonatum of Bruch and Schimper, but its other characters do not correspond.
6. Polytrichum squamosum, Hook. fil. ct Wils.; caule elongato squamoso fastigiato-ramoso, ramis patentibus brevibus densis curvatis, foliis dense imbricatis crecto-patentibus lanccolato-subulatis strictis serratis. (Tab. CLIII, fig. VIII.)
$H_{A B}$. Hermite Island, on the hills at an altitude of $1,000-1,500$ feet, scarce and scaitered, always barren.

Caulis subspithamens, ascendens, firmus, subflexuosus, atro-purpurens, maxima ex parte humo sepultus, triqueter, superne squamis appressis luteo-fuscis scariosis nitidis in folia caulina gradatim abeuntibus restitus, apice dendroideoramosus ; rami vix semiunciales, subsimplices, patentes, fastigiati. Folia dense conferta, suberecta, ad apices ramorum subsecunda, siccitate appressa, e basi membranacca pellucida semiamplexicauli lanceolato-subulata, vix trilinearia, superne lamellata, dorso carinaque seabra.

Althongh this moss is very different in aspect from P. dendioides, the claraeters seem scarecly sufficient to distinguish it. The short straight leaves are only half as long as in that specics.

Plate CLIII. Fig. VIII.-1, plant of the natural size; 2 and 3 , leaves:-magnifeed.
7. Polxtricium Dagellanicum, Hedw., Sp. Musc. p. 101. t. 20. Fl. Antaret. pt. 1. p. 132. t.lix.

Hab. Strait of Magalhaens; D'Urville, IIombron. Hermite Island, on fallen trunks of old trees, \&c., in the woods; also on alpine rocks, in clefts. Falkland Islands, not uncommon on the ground and in clefts of quartz rocks on the hills, (alwaỳs barren).

19. CONOSTOMUM, $S v$.

1. Conostomum australe, Swartz, Schoucgr. Suppl. II. vol. i. p. 108. t. 130. Fl. Antaret. pt. 1. p. 182.

Hab. Ifermite Island, on open rocky ground on the hills, occupying the same sitnations as C. boreale in Europe. Falkland Islands, in similar localities, bearing fruit in November.

Entirely the representative of the British and Arctic C. boreale. Also found in Lord Aucklaud's group.

20. BARTRAMIA, Hedw.

1. Bartramla patens, Schwaegr., Suppl. I. vol. i. p. 55. t. 62. Fl. Antarct. pt. 1. p. 133. Var. 乃. intermerlia; caule minore.
Hab. Hermite Island, common in the woods, from the sea to the tops of the hills, in crevices of rocks, growing in dense soft tufts. Falkland Islands, common on wet clay-slate rocks near the sea, not found on the hills, abundant in fruit. Yar. β. on clayey ground and rocks near the sea.

The variety β. differs only in its smaller size and in the general aspect, which resembles that of the British B. ithyphylla.
2. Bartrayla pendula, Hook.; Musc. Exot. t. 21. Fl. Antarct. pt. 1. p. 133.

Var. 1. foliis e basi crecta patulo-squarrosis, margine evidentius recurvis parcius denticulatis.
Var. 2. caule longiore robustiore vix tomentoso, foliis latioribus subsecandis.
Hab. Hermite Island, in rocky places ncar the tops of the hills, scarce, abundant in fruit near the spray of a waterfall on the south side of St. Martin's Cove, forming large patches. Yar. 2, always barren.

In some respects our moss resembles B. tomentosa, Hook. (Musc. Exot. t. 19), which we scarcely consider to be a distinct species, but the capsule is oblong and pendulous.

The rar. 2 may be distinct. It resembles IHypnum elongatum, nobis. We have seen only the male inflorescence, which is truly that of Bartramia.
3. Bartramia pomiformis, Hedw.; var. crispa. B. crispa, Suartz. Mont. in Foy. au Pole Sud, Bot. Crypt. p. 307.

Hab. Strait of Magallaens; Admiral IP Urville et M. Jacquinot.

21. BRACHYMENIUM, Hook.

1. Brachymenium? oratum, Hook. fil. et Wils.; caule humili, foliis laxe imbricatis erecto-patentibus quinquefariis ovato-oblongis ucrvo valido apiculatis. (Tab. CLIII. fig. IV.)
$H_{A B}$. Falkland Islands, amongst dry quartz rocks on the hills, (barren).
Caules cespitosi, inferne dense radiculosi, spongiosi, 1-2-unciales, parce ramosi. Folia erecto-patentia, 5 -faria, orato-oblonga, planiuscula, integerrima, luteo-viridia, siccitate subincurva, nervo valido excurrente apiculata, areolis minimis, rotundis. In axillis foliorum fasciculi corporum fascormu confervæ instar evadunt.

This moss resembles Tetraphis pellucida, but differs in the excurrent nerve and in the disposition and texture of the leares.

Plate CLIII. Fig. IT.-1, tuft of the natural size; 2 and 3, leaves:-magnified.

22. ORTHODONTIUNI, Schwaegr.

1. Orthodoxtium australe, Hook. fil. et Wils.; caule ramoso fastigiato humili, foliis erecto-patentibus subrecurvis anguste linearibus subflexuosis, nervo subcontinuo, theca suberceta oblonga brericolla, operculo brevirostro. (Tab. CLIH. fig. T.)

Hab. Falkland Islands, alt. 900 fcet, upon the fibrous roots of the Tussac grass; observed in one spot only. Hermite Island, in clefts of rocks on the liills and on wet banks, not uncommon.

Caules cespitosi, 2-3 lin. longi, ramis brevibus apice coma incrassatis. Folia densa, e basi lincari longissime attenuata, subfiexuosa, carmata, integerrima, viridia, nervo conspicuo sub apicem evanido, ecllulis elongatis : perichætialia longiora, similia, antheridiis in axillis eorum positis, paraphysibus paulo longiorihus immixtis. 'Seta 4-5 lin. longa, gracilis, rubra, siccitate tortilis. Faginuld angusta, oblonga. Theca lanceolato-oblonga, inclinata, subinde erecta, orc angustato, demum rufescens, siccitate substriata. Sporangium internum paulo brevius. Ammulus obscurus, operculo adhærens. Operculum basi conicum, rostello breri obliquo, interdum conicum, acnminatum, rectum. Peristomium breve; dentes externi hyalini, transserse trabeculati, siccitate inflexi; interni processus 16 longiorcs, carimati, linca media notati, membrana basilari comnexi, siccitate ercti, subincurvi. Spore minimæ, luteæ. Calyptra laterc fissa, pallida, apice brumnea.

This differs from Orthodontium lineare, Schwaegr. (Suppl. t. 188), in the oblong subcrect capsule, and in the absence of terminal male flowers, thus deriating from the generic character proposed by Schwaegrichen. In the infloresconce it agrees with the British Orthodontium gracile, Bruch and Schimper, but differs in the form of the capsule and the stronger nerve of the leaf.

Plate CLIII. Fig. V.-1, plant of the natural size; 2, leaf; 3 and 4 , thecæ; 5, peristome :-all magnifed.

23. BRYUM, Dill.

1. Bryum mutans, Schreb.; Mook. et Tayl. Musc. Brit. p. 203. t. 29. Fl. Antarct. pt. 1. p. 134.

Hab. Falkland Islands; from the sea to the liill-tops, varying in size and habit. Hermite Island, Cape Horn; in clefts of rocks in the roods, and on lard soil by streams.

A common Antarctic moss; also a native of Lord Auckland's group.
2. Bryuar lacustre, Brid.; Bruch et Sckimp. Bryol. Europ. Monogr. p. 16.t.2.

Hab. Hermite Island; on sandy banks close to the brushwood a little above high water mark, $_{\text {m }}$, St. Joachim's Bay.
3. Bryum bimum, Schreb.; Bruch et Schimp. l. c. p. 50. t. 21.

Hab. Kergnelen's Land (barren).
4. Beyum Billardieri, Schwaegr.; Suppl. I.vol.ii. p. 115. t. 76 (non Bruch et Schimp. l. c. p. 58. t. 26.)

Hab. Falkland Islands ; on clay-slate rocks at Port Louis, rare and barren.
The European spccimens, describcd by Bruch and Schimper, belong to B. Canariense, Schrraegr. (Suppl. t.214b); we do not however contend for that moss being a really distiuct specics.
5. Bryom argenteum, Limn.; Hook. et Tayl. Musc. Brit. p.199.t. 29. Bruch et Schimp. l.c. 1. 7 S. t.41. Var. foliis arcte imbricatis angustioribus acuminatis.
Hab. Falkland Islands; in sandy places near the sea, common. Cockburn Island, (barren).
This variety is connected mith the ordinary states of the species by intermediate forms which Mathews gathered at Casapi (Peru). The Hookerian Herbarium contains a Bryum, collectcd by Humboldt in South America, with muticous convolute leares, allied to this, but probably a distinct species.
6. Bryus caspititium, Limn.; Hook.et Tayl.Musc.Brit. p.201.t. 29. Bruchet Schimp. l.c. p.70. t. 34.

Var. β. gracilescens, Bruch et Schimp.
Hab. Strait of Magalhaens, M. Jacquinot. Falkland Islands, with umripe fruit. Var. B. Falkland Islands (barren).
7. Bryum pallescens, Schwaegr.; Suppl.I. vol.ii. p.67. t. 74. Bruch et Schimp. l.e.p.51. t. 22.

Hab. Falkland Islands, on sand-hills at Uranie Bay. Hermite Island, Cape Horn.
8. Bryus Antarcticum, Hook. fil. et Wils.; monoicum, caulibus ramosis cæspitosis, foliis confertis imbricatis erecto-patentibus ovatis acuminatis concavis reticulatis evanidinerviis margine planis. (Tab.CLIII. fig. VI.)

Hab. Cockburn Island, lat. $64^{\circ} \mathrm{S}$., long. $57^{\circ} \mathrm{W}$., with young setæ.
Caules 2 lin. longi, rubelli, inferne radiculosi. Folia late ovata, acumine brevi, apice diaphana, subdenticulata, rufescentia, nervo latiusculo rubello sub apice evanido, areolis subquadratis; perichætialia majora, acumine longiore. Seta vix $1 \frac{1}{2}$ lin. longa, crassiuscuda, rubra. Calyptra rubra. Fios masculus in ramulis brevibus per innorationes lateralis floribus fœmineis alternans; antheridia cum paraphysibus longioribus subelaratis; archegomia paraphysibus brevioribus filiformibus immixta.

Nearly allied to the British B. Zierii, Dicks., but differing essentially in the inflorescence. The leaves are more crowded and have smaller areolæ.

Plate CLIII. Fig. VI.-1, tuft of the natural size; 2, stelu and 3, leaf, both magnified.
9. Bryum Wahlenbergii, Schwaegr.; Bruch et Schimper, 1. c. p. 44. t. 17., Fl. Ant. pt. 1. p. 134.

Var. 1. caule rubro, foliis ovatis rubellis.
Var. 2. foliis ovato-lanceolatis laxis viridibus.
Var. 3. caule elongato 2-3-unciali ramoso, foliis rubescentibus ovato-lanceolatis secundis.
Var. 4. foliis ovatis secundis minoribus nigro-viridibus.
Hab. Hermite Island, Cape Horn ; var. 1, sand near the sea. Falkland Islands; var. 3, slate rocks near the sea (barren) ; Kerguclen's Land; var. 1, 2, and 4, all abundant.

The var. 1 is very similar to British specimens, differing in the colour of the leaves and in their being less acnte. This moss also inhabits Lord Auckland's group.
10. Bryum vagans, Hook. fil. et Wils.; canle vage ramoso, foliis patentibus secundis ovato-lanceolatis apicudatis submarginatis apice serratis, nervo subcontinuo. (Tab. CLIV. fig. 1.)

Hab. Hermite Island ; marshy places in the woods, especially on slopes, frequent, (barren.)
Caulis basi procumbens, fere repens, biuncialis, apice ascendens, sæpe incurvus, vage ramosus, rami crecti, apice curvati. Folia laxe imbricata, patentia, secunda, mollia, ovato-lanceolata, apiculata, concaviuscula, submarginata; nempe areolis marginalibus angustioribus, confertis, cæteris majusculis, subrhomboideis, apice sermlata, basi haud decurrentia, nervo tenui subcontinuo instructa, jwniora pallide viridia, retustiora luteo-viridia. Flos masculus discoideus, terminalis ; folia perigomalia late ovata, basi erceta, concava, superne patula, serruata ; antheridia mumerosa, cylindracea, paraphysibus filiformibus immixta.

Allied to B. Wahlenbergii, but larger, the leaves twice as long, less succulent, not decurrent at the base, margined, apiculate, the nerve extending higher. During the winter months, owing to shifting of the watercourses, the banks on which this moss grows become inundated, and the varieties that eusue are very puzzling. The original plant is gradually covered by a carpet of young branches of a bright green colour, the whole forming a soft spongy and treacherous covering to the bogs.

Plate CLIV. Fig. I.-1, plant of the natural size ; 2, leaf; 3, areole of ditto,-maynified.
11. Bryum lavigatum, Hook. fil. et Wils; caule ramoso, foliis erecto-patentibus imbricatis ovatis concavis integerrimis siccitate erectis, nerro subcontinuo, theca pendula ovato-oblonga, operculo conico obtuso. (Tab. CLIV. fig. III.).

Var. β. foliis angustioribus minus concavis.
Hab. Hermite Island ; wet rocks on Mount Foster, (barren); Falkland Islands; common in bogs, (always barren.) Var. β. Kerguelen's Land (barren).

Dioicum? Caules unciales-triunciales, steriles longiores, inferne radiculis tomentosis nigricantibus intertexti, ramosi. Folia imbricata, subpatentia, ovata vel elliptico-oblonga, subcallosa, concava, integerrima, nervo valido vix sub apice evanido instructa, læte viridia, nitentia, inferiora e fusco-purpurascentia, siccitate subappressa. Seta 7-8 lin. longa, rufa, nitida, haud tortilis. Theca pendula, subpyriformis, oblonga, ore subpatulo, rufo, nitido. Peristomii externi dentes ferruginei, siceitate erecti; interui cilia perforata ciliolis singulis interjectis. Operculum breve, conieum, oltusum.

Our deseription and figure are drawn up in part from specimens gathered in Van Diemen's Land, by Mr. Lawrencc. A very distinct species, characterised by its concave shiuing subcoriaceons leaves, retaining their shape when dry, intermixed with clark purple radieles.

Plate CLIV. Fig. III.-1 and 3, stems of two states, from Hermite Island; 2, a third state, from Van Diemen's Land, of the natural size: 4 and 5 , leaves; 6 , thece ;-magnifeed.
12. Bryusi truncorum, Bridel, Bryol. Univ. vol. 1. p. 699.

Hab. Falkland Islands; with fruit rare, Dr. Lyall ; and a taller barren state in marshy places, not $^{\text {a }}$ uncommon.

24. MNIUM, Bruch et Schimper.

1. Mnium rastratum, Bruch et Schimper; Bryol. Europ. Monagr. p. 27. t. 7. Bryum rostratum, Ifook. et Tayl. Musc. Brit. p. 208. t. xxx.

Hab. Strait of Magallhaens, Port Famine ; Capt. King, (barren). $_{\text {a }}$

25. FUNARIA, Schreb.

1. Fuvaria hygrometrica, Hedw.; Fl. Antaret. pt. 1. p. 135., Hook. et Tayl. Musc. Brit. p. 171. t. xx. Hab. Falkland Islands ; common at Port Louis, on burnt ground.
Not litherto found in Fuegia, but a native of Campbell's Island.

26. ANECTANGIUM, Brid.

1. Anectangium Mumboldti, Brid. Hedwigia Humboldti, Mook. Misc. Exot. t. 137; Fl. Anturct. pt. 1. p. 135.

Var. β. anstrale.
Hab. Hermite Island; on a moist sloping rock exposed to the north, on Mount Foster, alt. 1000 ft ; in large barren patches resembling a discoloured mass of Sphaynum.

These specimens are intermediate between the typical form aud that of Lord Auckland's aud Campleell Island.

2\%. LEUCODON, Schwaegr.

1. Leucodon Lagurus, Hook; MTusc. Erot. t. 126. Fl. Antarct. pt. 1. p. 136.

Hab. Strait of Magalhaens; Port Famiue ; D' Urville et Jacquinot. Hermite Island; on trees in the forest and on rocks from the sea to an altitude of 1200 feet in large tufts.

Larger than the specimen figured iu the 'Musci Exotici'; the capsules inclined, substrumose, the tecth of the peristome muited regularly in pairs by trausverse bars, pale ycllow, leaves nerved half-way.

28. LESKIA, IIedwig.

1. Leskia nitida, Hook. fil. et Wils.; canle vage ramoso, ramis longiusculis subsimplicibns teretibus, foliis imbricatis suberectis ovato-oblongis acuminatis concaris integerrimis basi binerviis, seta levi, theca eylindracea suberecta curvula, operculo brevirostri. (Tab. CLIV. fig. VI).

Hab. Staten Land; A. Menzies, Esq. (1787). Hermite Island; Cape Horn ; barren.
Coules sesquiunciales, steriles longiores, molles, virides; ramiteretes, filiformes, apice e foliis convolutis cuspidati. Folia dense inloricata, erecto-patentia, ovato-oblonga, acuminata, acumine vix tertiam partem folii æquante, concava, subconvoluta, integerrima, nervis basilarbus duobus instructa, lutescenti-viridia, sericeo-nitentia, temuissime elongato-areolata; perichætialia longiora, subsquarrosa. Seta meialis, tortilis, gracilis, rubra. Theca cylindracea, subcrecta, curvula, iuterdum subcernua, basi attenuata, brumea. Operculum basi conicum, rostello obliquo, capsula dimidio brevius, badium. Amnulus operculo adherens. Peristomii exterui dentes lutei, linea media notati, acuminati ; interni processus breviores, angusti, carinati, ciliolis nullis.

This moss has cousiderable rescmblance to IIypmun stramineum, but differs in having the leaves almost piliferous, in the rostrate operculum and in the stracture of the peristome. It is also allied to Hypnum crinitum, nobis, from Van Diemen's Land.

Plate CLIV. Fig. V1.-1, fruiting, and 2, barren specimen, of the natural size : 3 and 4, leaves; 5, thece:magnified.

29. HYPNUM, Dill.

a. Foliis distichis.

1. Hypnum politum, Hook. fil et Wils.; caule ramoso compresso, foliis distichis patentibus oblongis compresso-carinatis subpiliferis integerrimis cuerviis, seta lævi, theca suberecta oblonga. (Tab.CLIV. fig. II.)

Hab. Hermite Island; common in woods near the sea. Kerguelen's Land; in rocky places (barren).
Caules unciales et ultra, cæspitosi, subramosi, complanati, distiche ramosi; rami compressi. Folia arcte imbricata, patcutia, disticha, elliptico-oblonga, scaphreformia vel compresso-carinata, apice cucullata, subpilifera, integerrima, enervia, læte viridia, sericco-nitentia, tenuissime arcolata; perichætialia ovata, longe acuminata, crecta, integerroma, caulinis duplo breviora. Seta vix uncialis, læv $\mathrm{i}_{\text {s, }}$ mfo-fusca. Theca oblonga, suberecta, sub-apophysata, ore patulo. Peristomii externi dentes lutci, incurvi, linea media notati; interni cilia ciliolis interpositis. Calyptra dimidiata, straminea. Operculum non visum.

A beautiful species, unlike any hitherto deseribed.
Plate CLIV. Fig. II.-Specimen of the natural size: 2 and 3, leaves; 4, thecæ; 5, peristome; all magnified.
2. Hypnum denticulatum, Dill. Linn. ; Medw. Musc. Frond. vol. 4. t. 31. Mook. et Tayl. Muse. Brit. p. 153. t. xxiv.

Hab. Hermite Island; on moist banks, wet rocks, \&ce, not nucommon, (barren).
3. Hypnum reticulatum, Hook. fil. et Wils.; caule erecto simpliciusculo, foliis distichis patentibus ovato-lanceolatis acuminatis vix piliferis submarginatis reticulatis apice serrulatis, nervo tenni subcxcurrente. (Tab. CLIV. Fig. V.)

Hab. Hermite Island ; on the ground in damp woods, rare (barren).
Caules laxe crespitosi, unciales, subelongati, erecti, plerumque simplices, complanati, molles. Folia disticha, patentia, subobliqua, acutissima, fere pilifcra, areolis marginalibus angustioribus confertis, cæteris majusculis subrhomboideis, recentiora læte vividia, nitentia.

The many points of correspondence betwecn this moss and Bryum vagans, nobis, have not escaped our notice. The specimens being few and barren, we are unable to prononnce with confidence on the validity of the species. It differs from I. subbasilare in the acuminated distichous leaves and almost excurrent nerve. In habit it much resembles II. denticulatum.

Plate ClIV. Fig. V.-1, plant of the natural size; 2, leaf; 3, apex of ditto:-magnifed.
4. Hipnum riparium, Dill. Liun. ; Hedlo. Musc. Frond. vol. 4. t. 3. Hook. et Tayl. Musc. Brit. p. 152. t. xxir.

Var. 2. canle elongato rigido, foliis dissitis minoribus rigidulis.
Hab. Kerguelen's Land; both varieties, in the lake near Cluistmas Harbour (barren).
With the habit of Fontinalis; probably a distinct species, but the specimens are not in a state to be determined satisfactorily.

b. Folies imbricatis, seta radicali.

5. Iypnum mnioides, Hook.; Musc. Exot. t. 77. Mont. in Toy. au Pole Sud, Bot. Crypt. p. 329. H. subbasiline (ex errore), Schwaegr. Suppl. t. 256.

Hab. Strait of Magalhaens, D' Urville. Hermite Island; abundant everywhere in the woods.
Closely allied to II. spiniforme, from which it chiefly differs in its broader leaves.
6. Hypnum subbasilare, Hook. ; Musc. E.rot.t.10. H. mmioides (ex crrore), Schwaegr. Suppl.t. 257. Hab. Hermite Island; in moist woods, at the roots of trees, very common, growing in tufts.
This species so much resembles $I I$. muioides, as to be scarcely distinguishable from it until gathered ${ }_{\varepsilon}$.
In our specimens the leaves are by no mcans bifarions, as stated in the Musci Exotici, and are compressed only when dry. The perichætial leaves are erect, alnost piliferous, and uerved to the apex ; young calyptra coriaceous, slightly ventricose, not subulate, at length dimidiate. The operculum is absent from all our specimens.
c. Foliis imbricatis ruptinerviis, seta laterali.
7. Hypxum rutabulum, Dill. Linn. ; Hedw. Musc. Frond. vol. 4. t. 12. Hook. et Tayl. Musc. Brit. p. 176. t. xxvi. Fl. Antaret. pt. 1. p. 13 S .

Var. 1. foliis apice atteuuatis, perichectialibus erectis.
Var. 2. foliis majoribus læte viridibus.

Var. 3. caulibus 2-3-pollicaribus, foliis angustioribus luteo-viridibus nitentibus inferioribus fuscis.
Var. 4. caule clongato graciliore.
Var. 5. caule elongato, foliis subcirrhosis brevinerviis.
Har. Hermite Island, Cape Horn; var. 1. wet rocks in the woods; var. 2, roots of trees (barren). Falkland Islands; var. 5. springy placcs, forming large green masses. Kerguelen's Land; var. 3. wet places on the hills (barren) ; var. 4. wet bogs (barren).

The second of these varieties resembles very closely the European plant.
8. Hypnum subpilosum, Hook. fil. et Wils.; caule fastigiato-ramoso, foliis cordato-ovatis imbricatis suberectis acuminatis subpiliferis concavis striatis serrulatis ruptinerviis. (Tab. CLIV. Fig. IV.)

ILab. Hermite Island, Cape Horn ; in moist earth, near the tops of the hills, altitude 1500 feet.
Monoicum. Caules laxe cæspitosi, sesquiunciales, vage ramosi, subfastigiati; rami patentes, subrecurvi. Folia arcte imbricata, suberecta, cordato-ovata, repente acuminata, acumine fere piliformi, reflcxiuscula, concava, subplicata, serrulata, nervo crasso medio exarata, læte viridia, iuferiora squalida, areolis angustis. Seta inferne lævis, superne scabriuscula. (Cætera desunt).

Closely allied to H. rutabulum, but smaller and more rigid, the leaves more closely imbricated and almost piliferous.

Plate. CLIV. Fig. IV.-1, plant of the uatural size; 2, leaf:-magnified.
9. Hxpnum allicans, Dill. Neck. ; Hedw. Musc. Frond. vol. 4. t. 5. Hook. et Tayl. Musc. Brit. p. 167. t. xxv.

Var. caule elongato, foliis luteo-viridibus.
Hab. Hermite Island; in moist places and streams, not nncommon (barren).
'This resembles Var. 4. of II. rutabulum, but has more distinctly striated leaves.
10. Hypnum serpens, Dill. Linn.; Medw. Musc. Frond. vol. iv. t. 18. Mook et Tayl. Musc. Brit. p. 153.t. xxiv.

Var. 1. foliis subsecundis subsolidinerviis.
Var. 2. foliis ovatis brevioribus latioribus.
Hab. Kerguclen's Land; both varieties on the rhizomata of the "Cabbage", Pringlea, (barren).

> d. Foliis imbricatis subencrviis, seta laterali.
11. Hypnum chlamydophyllum, Hook. fil. et Wils.; Fl. Antarct. pt. 1. p. 139. t. lix. fig. i.

Hab. Hermite Island; moist rocks on the hill-tops, altitude 1400 ft ., rare.
Also a native of Tasmania and Campell's Island.
12. Hypnum auriculatum; Montagne in Voy. au Pole Sud, Bot. Crypt.p.331. t. 20.f. 3.

Hab. Strait of Magalhaens, M. Jacquinot.
13. Hypnum lucidulum, Hook. fil. et Wils.; caule ramoso humili, foliis erecto-patentibus ovato-acmininatis apice attenuatis integerrimis margine reflexis basi 1-2-nerviis, seta lævi, theca cernua ovato-oblonga. (Tab. CLV. Fig. I.)

Hab. Hermite Island; on banks and moist rocks in the evergreen beech-woods, abundant ; also in crevices of rocks on the hills.

Caules seminuciales et ultra, cespitosi, ramosi, molles, fragiles. Folia conferta, imbricata, erecto-patentia vix secunda, orato-acuminata, concavinscula, apice attenuata, subpilifera, tenera, margine reflexa, basi 1-2-nervia, pallide viridia, uitida, tenuissime arcolata; perichætialia ovata, breviter acuninata, erecta, integerrima. Seta 7-8 lin. longa, læris, apice incurvata, rubra. Theca ovato-oblonga, basi attenuata, cnrvula, e sete apice curvata cernna, brumea. Peristomiun externum luteum, internum albescens, ciliolis binis.

This moss bears some resemblance to H. Silesianum, Sclwaegr., but is quite distinct in claracter, and allied also to H. adnatum, Hedw., from which it differs in the flaceid leaves, recurved at the margin.

Plate CLV. Fig. I.—1, plant of the natural size ; 2 and 3, leaves ; 4 and 5, thece: :-magnified.

e. Foliis patulis squarrosis.

14. Hypsum aciculare, Brid. ; Schwaegr. Suppl. I. vol. ii. p. 280. t. 92. Fl. Antarct. pt. 1. p. 140.

Hab. Staten Land, A. Menzies, Esq. Hermite Island; in woods near the sea, not uncommon.
A rery abundant plant in the South temperate and colder regions.

f. Foliis secundis uerrasis.

15. Hypyons conspissatum, Hook. fil. et Wils.; caulc elougato ramoso, foliis patentibus secundis ovatolanceolatis acuminatis integerrimis margine incrassatis solidinerviis. (Tab. CLV. Fig. III.)

Var. 2. caule longiore, foliis latioribus.
Yar. 3. foliis longioribus magis acuminatis.
Hab. Kerguelen's Land ; var. 1, boggy places, common (barren). Falkland 1slands; var. 2, (barren), $_{\text {a }}$ Dr. Lyall; var. 3, growing in waters (barren).

Caules fluitantes, biunciales ad semipedales, ramosi, fastigiati; rami simplices, ascendentes. Folia laxe imbricata, plus misus falcato-secunda, rigidula, crassiuscula, opaca, margine valde incrassata, nervo continuo exarata, $j^{\text {uniora intense viridia, cetera lurido-viridia, interdum fuscescentia, inferiora nisi nervus margoque incrassata plerum- }}$ que tabescentia. (Cætera desunt.)

In the leaves this moss has a close affinity with Cinclidotus, but the aspect is that of Hypnum ruscifolium.
Plate CLV. Fily. III.—1, plant of the natural size ; 2 and 3 , leaves; 4, apex of ditto:-magnifed.
16. Hypsum filicinum, Dill. Linn.; Hedw. Sp. Musc. p. 258. t. 76. Hook. et Tayl. Muse. Brit. p. 183. t. xxvi. Fl. Antarct. pt. 1. p. 141.

Var. 2. robustins, foliis elliptico-lanceolatis angustioribus.
Var. 3. omnia var. 2, sed foliis vix secundis.
Var. 4. foliis vix secundis latioribus erectis acuminatis.
Hab. Falkland Islands; var. 1, rocky fresh-water streams, and wet sandy places; var. 3, Dr. Lyall. $_{\text {a }}$ Hermite Island; Cape Horn ; var. 4, wet rocks and sandy places. Kerguelen's Land; var. 2, boggy places. (barren).

These rarieties are all very similar to the plant mentioned in the first part of this work.
17. Hypncar paradoxum, Hook. fil et Wils.; caule repente subpinuato, foliis faleato-secundis ovatolanceolatis acuminatis striatis serrulatis ruptinerviis, seta scabra, theca cernua obovato-oblonga. (TAB. CLV. Fig. II.)

Var. β. foliis laxe imbricatis substriatis, theca ovata, operculo conico.
Hab. Hermite Island, Cape Horn; var. β. on moist rocks and at the roots of trees ; scarce. $_{\text {a }}$
Caules 2-3-unciales, rami asceudentes. Folia falcato-secunda, plicato-striata, serrulata, nervo ultra medium producto, luteo-fusca, subspadicea, in var. β. late viridia. Seta seminncialis, brunnea. Theca horizontalis, turgida, sub ore contracta, rufa. Peristomium externum fermgineum, internum flavum.

This moss resembles II. adurcum in everything but the scabrous seta, and the serrulate leares; the var. β again approaclies very nearly to some varieties of II.velutinum.

Plate CLV. Fig. II. -1 , plant of the natural size; 2 and 3, leaves; 4 and 5, thece; 6, peristome:magnified.
18. Hypnum fluitans, Linn.; Hedw. Muse. Frond. vol. iv. p. 36. Fl. Antarct. pt. 1. p. 141.

Hab. Hermite Island, Cape Horn, in bogs, very common by the margins of mountain lakes. In fruit $^{\text {a }}$ amongst wet stones.

Also found, but barren, in Campbell's Island.
19. Hypnum adencum, Dill. Linn.; Hedw. Miusc. Frond. vol. iv. t. 24. Hook. et Tayl. Musc. Brit. p. 186. t. 26.

Var. є. revolvens, Bridel, Bryol. Unir. Hook. et Tayl. l.c.
Hab. IIermitc Island, Cape Horn, (barren).
20. Hypxus falcatum, Bridel, Bryol. Univ. vol. ii. p. 526. Schweegr. Suppl. II. vol. i. p. 162. t. 145. Hab. Falkland Islands, common in watery places, rare in fruit. $^{\text {a }}$
Apparently the moss mentioned by Gandichaud under the name of H.aduncum, to which indeed it is nearly allied. It differs from II. fluitans, in its very strong, often percurrent nerve. The leaves vary in length.
21. Hyprosi uncinatum, IIall. ; Hedw. Ahusc. Frond. vol. iv. t. 25. Hook. et Tayl. Musc. Brit. p. 187. t. xxvi.

Hab. Kerguelen's Land, in bogs, not memmon (barren). Hernite Island, Cape Horn, also in wet $_{\text {mat }}$ places.

g. Fotiis secundis enerviès.

22. Hypyun lithophilum, Hornseluch; ramis elongatis, foliis erecto-patentibus secundis siccitate erectis ellipticis acutinsculis (rameis elliptico-oblongis obtusiusculis) concaris margine reflexis tenuissime lineari-areolatis, perichæetialibus erectis. H. lithophilum, Hornschuch, in Endlick. et Mart. Flora Brasit. p. 84, in part.

Hab. Hermite Island, Cape Horn; with H. anncenum (barren).
lu the Hookerian Herbariuu we find a Brazilian specimen, apparently authentic, of II. lithophiilum, labelled "supra lapides rivulorum in novo Friburgo", but consisting of two different species mixed together; and as the description in Fl. Bras. appears to have been drawn up from both, we append a diagnosis of the other species.*

* Hypners succedaneum, nobis; foliis laxe imbricatis siceo ac humido pariter patulis subsquarrosis late ovatis concavinsculis margine subreflexis, areolis paralellogrammis, perichetialibus longioribns apice subsquarrosis.

Hab. Brazil, Province of Rio, New Friburg, Martius.

Our specimens agree with I. lithophilum, except that their branches are more elongated and the leaves faintly tro-nerved at the base. A Brazilian specimen from Raddi corresponds with the H. succedaneum, which is allied to II. molle.

23. Hypnum micans, Wils. ; in Hook. Brit. Flora, v. 2. p. S3. Engl. Bot. Suppl.

Var. luxum, foliis secundis patentibus ellipticis concavis serrulatis enerviis.
Hab. Hermite Islaud; in moist places in the woods, and on the hills.
Caules semiunciales, prostrati, parce ramosi; rami graciles.
This variety is allied to H. gracile, nobis, but differs in the reticulation of the leaves, and in their margins being recurved at the base.
24. Hypaum amoenu, Hedw., Sp. Musc. p. 292. t. 77. Isotheciun amouum, Brid. Bryol. Univ. vol. ï. p. 382.

Hab. Hermite Islaud; on wet rocks by streams of water, generally in woods, growing in patches, rare in fruit.

Allied on the one hand to H. temuirostre, Hook. (Nusc. Brit.), and on the other to H. leptorhynchum, Sehwaegr. From the first of these it differs in the longer more attenuated circinate leaves; from the latter iu its larger size and in the elliptical shape of the lower part of the leaf, which is not reflexed at the margin. The operculum, as in those species, has a long slender beak and is somewhat longer than the capsulc.
25. Hypxum leptorhynchum, Brid.; Schaegr. Suppl. I.v. 2. p. 295. 1. 93. Fl. Antarct. pt. 1. p. 140.

Hab. Hermite Island; very common on the rocks aud banks, and on trunks of trees, taking the place of H. cupressiforme, which, strange to say, has not hitherto beeu found in any part of Fuegia or the Falkland Islands.

30. HOOKERTA, Sw.

a. Foliis marginatis enerviis.

1. Hookerra apiculuta, Hook. fil. et Wils. ; caule compresso subramoso, foliis distiche imbricatis rotundatis apiculatis marginatis enerviis siccitate undulatis, seta scabriuscula, capsula cernua, calyptra pilosa. (Tab. CLV. fig. VI.)

Hab. Hermite Island; ou moist shady rocks near the sea (barreu), forming green tufts.
Caules steriles unciales, erecti, densius cæspitosi, parce ramosi, inferne radiculis nigris obsiti, ramis ereetis compressis; fertiles procumbentes, humiles, vix semiuneiales. Folia laxe imbrieata, lateralia patentia, cetera appressa, rotundato-ovata, apiculata, rigidiuseula, marginata, cuervia, siccitate paulo undulata, apiee subinde denticulata, areolis majusculis hexagonis ; perichætialia erecta, minora, ovato-lanceolata, acuta. Seta seabriuscula, 2-3 lin. longa, flexuosa. Capsula cernua vel horizontalis, ovata, subapophysata. Operculum basi hemisphærico-conicum, rostratun, capsula paulo brevius, rostro reeto. Calyptra parva, pilosa, allida. Florescentio dioica.

Allied to Hookeric asplenioides, Schwaegr., but smaller, and having the margiu of the leaves thickened and undulated when dry. Described from fertile specimens, gathered on the bark of trees, in Tasmania, by Mr. Cumm.

Plate CLV. Fig. VI.-1, tuft of the natural size; 2 and 3, leaves:-magnified.

b. Foliis marginalis evanidinerviis.

2. Hookerla Dichsoni, Hook. in Brews\%. Edinb. Journ. of Science, vol. 2. p. 226.

Hab. Falkland Islands ; on shady clay-banks near the sea, at Port Louis (barren). Hermite Island ; 2 common on mossy banks and on the trunks of old trees in the woods of evergreen beech, abundant in fruit.

Very closely allied to Hookeria pulchella, nobis (part l. p. 142. t. Xii); but the leaves are more erect, less crowded, acuminated, with larger reticulations, thece larger and decidedly cernnons. The calyptra in both these species is fringed at the base.
3. Hookerla flaccida, Hook. fil. et Wils.; caulc debili elongato erecto subramoso, foliis imbricatis erecto-patentibus ellipticis concavis obtusis subapiculatis integerrimis anguste marginatis evanidinerviis, seta clongata lævi, theca erecta obovato-oblonga, operculo rostrato, calyptra basi fimbriata. (Tab. CLV. fig. V.)

Hab. Hermite Island ; in wet bogs on the hills, amongst other mosses and grass, very rare in fruit. $_{\text {a }}$
Caules unciales ad triunciales, graciles, debiles, parce subpinnatim ramosi, rufo-fusci, ramis compressiusculis. Folia laxe imbricata, erecto-patentia, Haccida, elliptico-oblonga, concava, obtusa, brevissime apiculata, inferiora subobovata, omnia integerrima, margine tenui cartilagineo nervoque tenuissino sub apice evanido instructa, sordide ac pallide viridia, siccitate crispata, areolis parvulis rotundatis; perichætialia triplo minora, ovata, enervia. Seta uncialis, vix tortilis, rubra. Theca erecta, obovato-oblonga, brumnea, subapophysata, ore subpatulo. Peristomii externi dentes lutei, incurvi, trabeculati, linea media notati, interni processus abidi. Spora minimæ, luteo-virides. Opercutum conico-acuminatum, theca paulo brevius. Calyptra elongato-conica, acummata, basi fimbriata, fusca, capsule dimidiam partem obtegens.

A remarkably soft and delicate species, bearing much the same analogy to its congeners that Iyppum straninewn does to other IIypna.

Plate CLV. Fig. V. -1 , plant of the natural size: 2 and 3, leaves ; 4, thece ; 5, peristome ; 6, calyptra:all magnifed.
4. Hookerla Magellanica, P. Beauv. ; caule ramoso erceto, foliis ovato-oblougis acuminatis marginatis cranidinerviis, calyptra basi fimbriata.

Hypnum Magellanicum, P. Beauv. Atheog. p. 66.
Hab. Strait of Magalhaens.
An authentic specinen in Professor Arnott's Herbarium is closely allied to Hookeria flaccida, nobis. It differs in having narrower acuminated leaves, which do not fully recover their shape after long imnersion in water.

c. Foliis emarginatis.

5. Hookeria denticulata, nobis; vid. Pt. I. l. c. 145. tab. lxii. f. 2.

Hab. Falkland Islands; in tufts of Riccia and Jungermannia, on rocks near the sea, frequent (barren). Hermite Island, Capc Horn; on the wet ground in woods, not uncommon (also barren).
6. Ноокerla cristata, Hedw.; Sp. Musc. p. 211.t.49. Schwaegr. Suppl.t. 278. A.B.

Hab. Hermite Island, Cape Horn. $^{\text {a }}$
A solitary barren stem of this occurs in the collcction of Hermite Island plants.

31. HYPOPTERYGIUM, Bridel.

Our reasous for not having previously admitcd this gemus will be found in the former portion of this work. We have seen since, that the male flowers arc occasioually, though rarely, inseried beneath the accessory leaves, and
therefore we retain this name for a genus which certainly claims to be separated as well from Leskia as from Hookeria.

1. Hypopterygium laricinum, Bridel; Bryol. Univ. v. 2. p. 714. Hypmum laricinum, Hook. Musc. Exot.t. 35. Hypnum tamariscinum, Swartz!

Hab. Hermite Island; in wet places on the ground, very common in the woods, forming large green patches (always barren).

Under Leskia tamariscina two species have been confounded by Hedwig (Sp. Muse, p. 212). The name ouglt to be applied to the present moss, if the iuconvenience of changing names generally received did not forbid.
2. Hypopterygium Thouini, Schwaegr.; Suppl. t. 289 (sub nom. Hypnum). Hypnum Arbuscula, P. Beauv. Etheog. p. 61! Hypopterygium Thouini, Mlontagne in Ann. Sc. Nat., Aug. 1545, p. 86.

Hab. Strait of Magallaens; Port Famine, Capt. King.
Our specimens are not so large as those described by P. de Beanvois, though evidently belonging to the same species. Dr. Montagne las properly remarked that this species differs from H. laricinum in the flabeliform, not pinnate, disposition of its brauches, which all spring from one central point aud take a horizontal direction. Fertile specimens from Colchagua, iu Chili, have also a more pendulous oblong capsule and shorter operculum.

Ord. LiIII. HEPATICA, Juss.

(By Dr. Thomas Taflor and J. D. Hooker.)

1. Jungermannta, l.

(1. Gymnomitrion, Nees.)

1. Jungernaxnta physocaule, Hook. fil. et Tayl.; caule gracili disperso suberecto ramoso cellulosotumente, ramis apice curratis incrassatis, foliis laxe cellulosis imbricatis distichis concavis oblique erectis late ovatis quadrato-rotundatisve ad medium bifidis segmentis late subulatis integerrimis. Nobis in Lond. Journ. Bot. v. 3. p. 455 . (Tab. CLVI. Fig. I.)

Hab. Hermite Island, Cape Horn; crecping throngh tufts of J. densifolia, Hook.
Caules 1-2 unc. longi, graciles, vage paree ramosi; rami solitarii v. bi-terni, pallide olivacei v. albidi, nune rufobrumuei, apice curvati. Folia tumida, arcte imbricata, cauli appressa; segmentis forme subvariis, integerrimis. Stipule nulle.

Allied to the Scottish J. concinnata, Lightf.; but readily distinguishable by the stems not being tufted, the shoots slender and flexile, the larger more cellular lcaves, which are far more deeply divided, and lave lanceolate segments, and ly the cellular stem.

Plate CLVI. Fig. I.-1, plant of the natural size; 2, portion of stem: 3, leaf :-magnified.
2. Jungermannla atrocapilla, Hook. fil. et Tayl. ; caule tenuissino procumbente implexo parce ramoso flexuoso basi longe mudo, foliis remotis crectis cauli appressis concavis late orato-quadratis integris eroso-
emarginatis, perichætialibus majoribus imbricatis in capitulum clavatum congestis. Nobis in Lond. Journ. of Bot. vol. 5. p. 258.

Hab. Foul Haven, Kerguelen's Land ; on clay banks, at an elevation of 600 ft .
Cæespites extensi, 1-2 unc. lati, valde inconspicui. Caules atri, diametro setæ equinæ, crassiusculi, subnudi, basi hie illic cicatrieati, superne foliis parvis tumidis appressis remotis quasi nodosi, fertiles apiees versus foliosi, e foliis periehætialibus gradatim majoribus arcteque inbrieatis clavati. Folia late quadrata, supra medium apieibusque erosis pallida.

A remarkably distinet little speeies, forming very obscure black patches on the ground. Stems wiry when dry, and loosely tufted; those of the perichætium paler and olive-brown, having their apiees twice as broad as any other parts of the shoot. Perichætial leares more imbrieated, roundes, broader, and more concave than the eauline, enelosing a pair of minute whitish eomirent seariose seales, but without any trace of ealyptra or barren pistilla.

(2. Gottschea, Nees.)

3. Jungermannia lamellatu, Hook.; Muse. Exot.t. 49. Gottsche, Lind. et Nees; Syn. IIep. p. 30. Hab. Staten Land, Menzies. Hermite Island, Cape Horn, in dense moods abundant. This beautiful speeies is apparently peeuliar to the southeru extreme of the American continent.
4. Jungermannia leneoplyglla, Lehm. MS. Gottsche, Lind. et Nees; Syn. ILep. p. 17.

Hab. Strait of Magalhaens; Commerson (in Hb. Reg. Berol.).
5. Jungermavnia splachnophylla, Hook. fil. et Tayl. ; caule crasso subdisperso procumbente simplici recurvo e foliis complicatis deusissimeque imbricatis squamoso dorso fibrillis squamisque densissime obsito, foliis erecto-patentibus undulato-complicatis carnosis marginibus sub-erosis, lobo ventrali oblongo-ovato, dorsali subrequali semi-ovato, ala lineari uudulata. Nobis in Lond. Tourn. Bot. vol. iii. p. 455. (Tab. CLVI. Fig. II.)

Hab. Hermite Island, Cape IIorn; on the ground amongst underwood, alt. $800-1000 \mathrm{ft}$., and thence to the hill-tops.

Caules 2-unc. longi, erassi, terræ appressi, sub $\frac{1}{4}$-une. lati, dorso densissime filamentosi, substuposi. Folia sordide alba, densissime imbrieata et complieata, earnosa et aquosa, fragilissima, marginibus hine sæpissime erosis, paulo incurvis, basi sese aretc auplectentia.

A very singular plant, differing in its earnose texture from all the previously described speeies. The leaves are so thick, brittle, and watery as to be crushed to pieces readily between the finger and thumb, whenee the aualysis of the dried specimeus is extremely difficult.

Tab. CLTI. Fig. II:-1, plant of the natural size: 2, front, and 3, back view of leaf; 4, leaf from lower portion of stem :-magnified.
6. Jungermannla pachyla, Hook. fil. et Tayl.; caule cæspitoso erecto subramoso ramisque apice incurvis anguste linearibus, foliis inflatis dense imbricatis crecto-patentibus, lobis ovato-oblongis acuminatis apicibus incurvis, dorsali integerrimo dorso convexo, ventrali undulato horizontali margine anteriore basi dentato, ala anguste lineari, stipulis majoribus late ovato-quadratis bifidis segmentis lanceolatis apice incisis. Nobis in Lond. Journ. Bot. vol. iii. p. 456 . (Tab. CLV I. Fig. III.)

Hab. Hermite Island, Cape Hom; on the bare ground in wet places.

Cæspites extensi, laxi, luride rufo-brmnei. Caulis creetus, parce ramosus, dorso radiculis fibrillosis purpureis per totan longitudinem instructus, apicibus subeurvatis. Folia latiuseula, coneava, patentia, marginibus undulatis, erosis. Stipularum laciniæ sæpius inæquales.

One of the more slender species of the genus, with the leaves short and coneave. Colour a dark reddish brown. The leares are closely imbrieated, the lobes uniting by one-fourth of their length. The smaller lobe is folded at the margin, and receives in the sinus thus formed a similar fold of the leaf above; its inmer rounded margin is sharply inciso-dentate. Speeifically this is remarkably distinct from any of its eongeners, and like the former, is rather an abnormal form.

Plate. CLYI. Fig. III:-1, plant of the natural size: 2 and 3, back and front views of leaf and stipule; 4 , leaf with the stipule removed, showing the form of the smaller lobe; 5 , stipule; -maynified.
7. Jungermannia lamimigera, Hook. fil. et Wils.; caule cæspitoso suberceto ramoso planiusculo, foliis imbricatis patentibus eroso-ciliatis subter lamellatis marginibus lamellisque undulatis ciliato-dentatis, lobo ventrali lanceolato basi bilobo, dorsali semi-cordato, stipulis majoribus late rotundato-quadratis 4-5fidis ciliatis, calyce terminali oblongo compresso spinuloso ore laciniato ciliato obseure bilobo. Nobis in Lond. Jourr. Bot. v. 3. p. 456. (Tab. CLVI. Fig. IV.)

Hab. Hermite Island, Cape Horn ; on the ground in the woods, aboudant.
Cæspites laxi, superne pallide flavo-rirescentes, inferne soldide brunnei. Caules 1-3 mnc. longi ; ramis ereetis, subfastigiatis. Folic patentia, dorso carinis lamellisve plurimis eristatis infra apiceur cvanidis ornata, versus apiees setosa, marginibus ereberrime spinuloso-dentatis. Stiputre majusculæ, dorso basi obscure lamellatæ, segmentis linearibus subobtusis, marginibus recurvis ciliato-dentatis. Calyx oblongus, $\frac{1}{2}$-exsertus, pallidus, extus spinulosus, vix lamellatus. Seta uncialis. Capsula eylindracen.

This a good deal resembles the J. lamellata (v. supra), but is more robust though smaller, the lobes of the leaves are more united throughout their whole length and the stipules are 4 -5-ficl. It varies much in size, some of our speeimens being hardly an inch long.

Plate CLVI. Fig. IV.-1, plant of the natural size; 2, upper, and 3, under surface of the leaf; 4, stipule ; 5, calyx :—magnified.

(3. PLAGIOCHILA, Nees et Mont.)

8. Jungermannla ansata, Hook. fil. et Tayl.; caule gracili laxe cespitoso elongato subramoso, foliis laxe imbricatis plauis erectis appressis secundis obligue rotundatis basi decurrentibus integerrimis fuscis. Nobis in Lond. Journ. Bot. v. 3. p. 457. (Tab. CLVI. Fig. VI.)

Hab. Falkland Islands; amongst moss on the liills, abuudant.
Cæspites laxi, inter muscos implexi, pallide brunnei. Caules flexnosi, graeiles, tennes, vix ramosi, Folia submembranacea, integerrima, rotundata, erecta, cauli appressa, hine homomalla, margine anteriore obscure recurvo, posteriore decurrente.

In habit resembling the J. colorate, Hook. (v. infra), but the stems are more clongated, and the leaves quite entire and free, not united into opposite pain's at their bases. The same characters distinguish it from the Pl. Braunii of Java, which further has heteromallous leaves. The trivial name alludes to the produced lower margin of the rounded leaf forming a handle.

Plate CLVI. Fig. VI.-1, plant of the natural size; 2 and 3, front and baek riew of a leaf :-magnifed.
9. Jusgermansa unciformis, Hook. fil. et Wils.; cantibus cespitosis smbsimplicibus erectis apice
plerumque curvatis, foliis crassiusculis laxe imbricatis erectis secundis appressis oblique ovato-rotundatis, margine inferiore gibboso obscure sinuato-dentato superiore incurvo basi celluloso. Nobis in Lond. Journ. Bot. v. 3. p. 457. (Tab. CLTI. Fig. V.)

Hab $_{\text {ab }}$. Hermite Island, Cape Horn; on the trunks of trees near the ground.
Cæspites 2-4 une. lati, rufo-mnunei. Canlis $\frac{1}{2}$ unc. longus, apice strictus v. sxpins curratus, nune hamatus. Folia e basi caulis gradatim majora, imbricata, homomalla, compressa, margine superiore incurro, pliea tunida elongata, inferiore tumido obscure et obtuse sinuato ; cellule minimæ, dense, nisi ad basin foliorum ubi majores pallidioresque cradunt, maculan latam efficientes.

A species allied to the J. biserialis, L. and L., of Tasmania, but less than half the size, with more minute denticulations to the leaves, which are widely ovate, not round or decurrent at the anterior margin, nor bispinons at the apex.

Plate CLTI. Fiy. T.-1, plant of the natural size; 2, froni, and 3, back view of leaf and portion of stem; 4 and 5 , similar views of leaves removed from the stem ;-magnifed.
10. Jengermaxnta Magellanica, Lindb.; Sp. Hep. p. 164. Gottsche. Lindb. et Nees, Syn. Ifcp. p. 53. Mont. in Toy. au Pole Sud, Bot. Crypt. p. 271.

Hab. Strait of Magalhaens, St. Nicholas Bay; ML.M. D' Urville et Jacquinot.

We owe our aequaintance with this plant to the liberality of our learned friend M. Nontagne, who most generously has communicated to us his own examples of such Antarctic species as wc desired for comparison or examination, ulhesitatingly confiding his unique specimens to the care of the post-ofice, that we might profit to the fullest by lis labours, and aroid unnecessary errors. It differs from our J. unciformis in the larger and narrower leaves, which are acute and servato-dentate along the iuncr margin.
11. Juxgermanxa duricaulis, Hook. fil. et Tayl. ; canlibns crespitosis duris robustis flexuosis erectis ramosis, foliis amplis subimbricatis patentibus oblique ovato-cordatis basi decurrentibus argute denticulatis, basi postica porrecta verticali, margine inferiore lente recurvo. Nobis in Lond. Journ. Bot. v. 3. p. 45 S. (Tab. CLVI. Fig. IN.)

Hab. Hermite Island, Cape Horn; abundant, in the woods.
Species insignis. Crespites laxi, majusenli; externc pallide sed luride oliracei. Canles 4 unc. longi, irregulariter ramosi, ramis compressis. Folia $\frac{1}{8}$ unc. longa, arete laxiusve imbricata, marginibns dorsalibus parium suboppositorum rotundatis postice porrectis appressis carinamque cauli quasi efficientibus; margine superiore paulo incurvo, marginibus omnil)ns minute sed crebenime et regulariter denticulatis. Perigonia in spicam brevem terminalen disposita.

Most nearly related to the Pl. flacoidu, Lindb., of St. Tincent, which has a very similarly hard and woody stem but the present may be known by the greater breadtl of its brancles and foliage, by its more compound ranification and the minute denticulation of its leaves.

Plate CLVI. Fig. IN.-1, plant of the natural size ; 2, stem and opposite pair of leares ; 3 , leaf:-magnified.
12. Juxgermaxya aspleniuiles, Limı.; Sp. Pl. p. 1597. Mont. Foy. au Pole Sư, Bot. Crypt. p. 26 s .

Hab. Strait of Magallhaens; I' Urville.
We bave scen no Fuegian specimens of this species. Those M. Montagne has examincl, are in a very unsatisfactory state.
13. Juvgermannia sphatera, Hook. fil. et Tayl. ; caule laxe cæspitoso erecto basi ramoso apice incurvo, folis vix imbricatis subhorizontaliter patentibus secundis siccitate suberectis late oblique ovato-rotundatis acutis, apice inequaliter bifido v. bidentato, margine superiore incurvo integerrimo, inferiore planiusculo dentato laxe celluloso. Nobis in Lond. Journ. Bot. vol 3. p. 45s. (Tab. CLVI. Fig. VILI.)

Hab. Hermite Island, Cape Horn; growing amongst mosses in the woods.
Caspites laxi, pallide olivacei. Cautes 1-2 unc. longi, raro in ramos 2-3 erectos divisi. Rami compressi, recti v. curvati, apicibus rotundatis. Foliu remotiuscula, madore patentia, sed secunda, apicibus subrecurvis, basi contracta, margine inferiore grosse irregulariter serrato.

Nearly allied to J. uncialis, but taller, with the leaves more remote, less imbricated and secmen, more loosely cellnlar and not so strongly dentate. When moistencd the differences are more apparent, the leaves in particular of J. sphatera being distinctly narrowed at the base,

Plate CLVI. Fig. VIII.-1, plant of the natural size; 2 and 3, front view of leaf, and portion of stem; 4, the same detached from the stem:-magnified.
14. Jungermannla uncialis, Hook. fil. et Tayl. ; caule breviusculo cæspitoso suberecto v. prostrato et ascendente ramoso, foliis imbricatis crecto-patentibus concavis late ovatis acutis argute irregulariter ciliatodentatis sublaxe cellulosis, margine inferiore subrecurvo, calyce majusculo terminali compresso late obovato, ore oblique subrotundato dentato-ciliato. Nobis in Lond. Jowrn. Bot. vol. 3. p. 459. (Tab. CLVI. Fig. VII).

Hab. Hermite Island, Cape Horn ; on damp rocks and the trunks of trees.
Cæspites late extensi, pallide flavo-virescentes. Caules vix 1 unc. longi, subprostrati, rarius erceti, vage ramosi, ramis fructiferis subfastigiatis. Folia vix decurrentia, perichætialia calyce $\frac{1}{2}$ breviora. Calyw obovato-cuneatus, compressns, ore obtuse rotundato, oblique fisso, sermulato. Capsula oblongo-sphrerica, vix exserta. Perigonia in spicas breves secus ramos disposita.

In habit the present approaches the African P. sarmentosa, Lindb., but in character it is more ncarly allied to our Tasmanian J. aculeata. The former, whose fructification is unknown, has larger and more rounded leaves. The J. aculeata is a much larger plant; its leaves have a narrower base, and then superior margin is recurved with a broader fold, the denticulation is coarscr, and calyx shorter, being scarcely exserted beyond the perichretial leaves; above all, the cellnlation of the J. uncialis is much coarser though belonging to a snaller plant.

Plate CLVI. Fig. VII.-1, plant of the natural size; 2, stem, "perigonium and leaves; 3, front, and 4, back view of portion of stem and leaf; ă, calyx and capsule :-magnified.
15. Juxgermanila Jacquinotii, Mont., in Voy. au Pole Sud, Bot. Crypt. p. 273.

Hab. Strait of Magalhacus ; D'Urville.
A very different plant from any collected by the Antarctic Expedition.
16. Jungermanvia minutulu, Hook. fil. et Tayl.; cespitosa, canle brevissimo erecto parce ramoso, foliis imbricatis erectis appressis obovato-rotundatis convexiusculis, margine anteriore subdecurrente posteriore recurvo, supremis majoribus denticulatis. Nobis in Lond. Journ. Bot. vol. 3. p. 459. (Tab. CLVII. Fig. I).

Hab. Kerguelen's Land; on the gromud and on moist rocks.
Cæspites late extensi, atro-virides. Caules crecti, crassiusculi. Rami primarii vix $\frac{1}{8}$ unc. longi. Folia inferiora minuta, subintegerrima, caule vix latiora, gradatim majora, superiora arctius imbricata, in capitulum compressum dilatatum congesta, superiora crenato-denticulata, omnia crassa, obscure cellulosa; cellulis parvis, opacis, marginalibus conspicuis.

Each branch is short and bears but few pairs of leares:-these are narrow at the base, gradually widening upwards to the top of the branches, where they are collected into a flattened head three or four times wider than the inferior part of the shoot. This resembles in general appearanee the P. pusilla, Mont. (of Tasmania), but is more mimute, has not curved stems, there are fewer leaves on the shoots, and the anterior margin of the leaf is deeurent.

Plate CLIII. Fig. 1.-1, plant of the natural size; 2 and 3, front and back views of leaf and portion of stem:magnified.
17. Jungermannla heterodontu, Hook. fil. et Tayl. ; crespitosa, caule erecto v. prostato ramoso, ramis ascendentibus subfastigiatis, foliis crecto-patentibus-late ovatis obovatisve grosse inrequaliter eroso-dentatis margine superiore deeurrente, inferiore apice obscure bifido, calyce terminali folis perielæetialibus breviore angustioreque obovato-rotundato, ore contracto æquali truncato ciliato-dentato. Nobis in Lond. Journ. Bot. vol. 3. p. 460 . (Tab. CLVII. Fig. II).

Hab. Kerguelen's Land; on moist roeks near the sea.
Cæspites late extensi, rupibus appressi, læte olivaceo-virides. Caules sub 2 une. longi, irregulariter vage ramosi. Folia subarete imbrieata, oblique rotundata, apiee latiuscula, dentibus marginalibns, nunc manifeste ume obseure bifida. Calyx periehetio brevior, obscwe lilabiatus; labiis rotundatis, erenatis et minnte ciliatis.

Allied to the P. scioplita of Nepaul, which has emarginato-dentate leaves, but from which the present may be rlistinguished by its smaller size, ereet growth, and closely imbrieated foliage, which is more toothed. The perigonia, with which the Antaretie species is supplied, are in the form of a narrow spike, whose leaves are minute, erect, imbrieated, and bidentate with somewhat squarrose apiees.

Plate CLVII. Fig. II.-1, plant of the natural size; 2, leaf and portion of stem ; fig. 3, ditto remored from stem; 4, calyx :-magnified.
18. Jungermanna Chonotieu, Tayl.; cespitosa, surculis erectis subramosis complanatis basi nudiuseulis, foliis imbricatis erecto-patentibus oblongo-rotundatis basi angustatis convexis, marginibus recurvis spinosodentatis. Tayl. in Lonel. Jourm. Bot. vol. 5. p. 260.

Hab. Chonos Archipelago; C. Darwin, Esy.
Cæspites pallide fulvi. Caules 2-3 une. longi, deudroidei, r. nudi basique simpliemsenli. Perigonia parva, brevia, in spieam linearem arete imbricatam disposita, foliolis parvis tumidis dentienlatis.

Resembles the P. fasciculutu, Lindb., of New Holland and Lord Auckland's group; the shoots however are mueh narrower, leares shorter, more distinetly and minutely toothed, the branelies fascieled and the cells of the leaves muel more minute.
19. Jungermannia distinelifolia, Tayl. l. c.; Lindb. Sp. Itep. p. 17. t. 3. Gottsehe, Lindb. et Nees, Syn. Hep. p. 30.

Hab. Staten Island; Menaies in Ilerb. Mook.
We have not seen specimens of this from the Autaretie Expedition. It is also a native of Jamaica and the Brazils.

(4. Juxgermamia, L. et auct. recent.)

20. Jungermannia colorah, Lehm. in Limn. vol. 4. p. 366. Guttsche, Lindb. et Nees, Syn. Mep. p. S6. F\%. Autarct. P1. 1. p. 119.

Hab. Hermite Island, Cape Horn ; from the sea to the monutain-tops. Falkland Islands; on the lifls. Kerguelen's Land ; particularly abundant on the ground, on the hills.

Also found in New Holland, Tasmania, and New Zealand, Lord Aucklaud's group, the Cape of Good Hope, and Juan Fernandez. In the Falkland Islands it forms large black patches on the alpine rocks, resembling an Andreca.
21. Jungermanmia byssacea, Roth ; Cat. Bot. vol. 2. p. 158. Engl. Bot.t. 2463.

Hab. Falkland Islands; amongst mosses on the hills.
2.2. Jungermivxia bicuspidata, Lim.; Hook. Brit. Jung. t. 11. Engl. Bot. t. 2239.

Hab. Talkland Islands; on moist rocks.
One of the, comparatively speaking, few Hepatice, which, according to the modern limitation of species, is acknowledged to be a cosmopolite.
23. Jungermarma rigens, Hook. fil et Tayl.; minima, laxe cellulosa, crespitosa, caule prostrato subpimatim ramoso, ramis erectis, foliis laxe imbricatis suberectis concaris late oblongis bifidis, segmentis incurvis late subulatis integcrimis, stipulis ovato-rotundatis concavis bifidis segmentis late subulatis integerrimis. Nobis in Lond. Journ. Bot. vol. 3. p. 461. (Tab. CLV1I. Fig. Ill).
$H_{\text {ab }}$. Falkland Islands; on moist maritime rocks.
Crespites parri, pallide olivaceo-flavescentes. Caules 2-3 lin. longi, carnosiusculi, simplices r. ramosi. Folia sursum gradatim minora, imbricata, tumida, hine caulis submoniliformis. Stipule pro planta amplæ, foliis consimiles, ad medium r. supra medium bifide.

Allied to the British J. Francisci, Hook., but more minute, the leaves more concave, and the stipules of a very different form.

Plate CLTII. Fig. III.-1, plant of the natural size; 2, portion of stem, leaf, and stipule; 3, stipule, removed:- magnifed.
24. Juxgermisxia tubulata, Hook. fil. et Tayl.; parvula, caule lase cespitoso procumbente ramoso, folis laxis suberectis oblongis bifidis segmentis acutis acuminatisre, calyce terminali angustc lineari-elougata tubulata, basi oblongo, ore plicato minutissime denticulato, foliis perichætialibus segmentis lanceolatis integerrimis. Nobis in Lond. Journ. Bot. vol. 3. p. 463. (Tab. CLIII. Fig. VT).

Hıв. Falkland Islauds; on moist rocks near the sea.
Cautes graciles, laxe cespitosi, simpliciusculi v. ramosi, vix $\frac{1}{2}$ unc. longi, sæpissime ranulis flagelliformibus nudis ancti, (ut in J. licuspidata, L.), pallide viresecntes. Folia crecta, pallida, pellucida, basi concara, in segmentis duobus lanceolatis apiec subulatis dirisa, sinu angusto acuto. Calyces conspicui, albidi, clongati, superne subinflati et plicati, ore minutissime denticulato. Folia perichretialia erecta; segmentis angustis, integerrimis. Capsula oblonga. Sporce numerosissine, luteo-brunnex, subangulate. Elateres e helice duplici constantes.

So very near the European J. bicussidata, as to be hardly distinguishable from it specifically : the capsnles are however shorter, the perichetial leaves entrie, the calyx longer, and the areolre of the foliage smaller. The calyces are always terminal, whereas in J. bicuspidata they are more frequently lateral.

Plate CLTII. Fig. YI.-1, plant of the natural size; 2, leaf; 3, stipule ; 4, perichæecium, calyx and capsule: -magnified.
25. Jungermanma vaseulosa, Hook. fil. et Tayl.; flaccida, tenerrima, cæspitosa, caule procumbente subramoso, foliis imbricatis secundis erectis rotundato-quadratis, basi lato decurrente, margine integerrimo undulato, stipulis majoribus ovatis concavis bifidis, segmentis lanceolatis integerrimis v . basi utrinque unidentatis. Nobis in Loud. Journ. Bot. vol. 3. p. 461. (Tab. CLVII. Fig. IV).

Нab. Falkland Islands; on wet rocks near the sea, abundant.
Cæspites late extensi, $2-4$ unc. lati, atro-virides. Caulis 2 unc. longns, parce ramosus. Folia laxiuscnle imbricata, integerrima ; marginibus subinflexis undulatis, superiore subgibboso, inferiore longe decurrente; substantia tenerrima, flacida, cellulis majusculis. Stipule conspicue, caulem amplectentes; segmentis late lanceolatis, erectis, sinu obtusiusculo.

This bas a good deal of resemblance to the J. cordifolia, Hook., of Britain, but the presence of stipules will at once distinguish the Antarctic plant. In many respects it has an equal claim to be considered a Lophocolea as a Jungernamiaia; on the whole, however, we incline to retain it in the latter genus.

Plate CLVII. Fig. IV.-1, plant of the natural size ; 2, portion of brancl, with leaf and stipule ; 3, stipule :both magnifed.
26. Jungermansla erinacea, Hook. fil. et Tayl.; tenerrima, cespitosa, caule suberecto ramoso, ramis erecto-patentibus, foliis imbricatis patentibus flaccidis ciliato-dentatis apice obtusis plus minusve profunde emarginatis, lobo inferiore ovato-rotundato superiore libero ovato adpresso stipulis majoribus late rotundatis irregulariter ciliato-dentatis integris bifidisve. Nobis in Loud. Journ. Bot. vol. 3. p. 462. (Tab. CLXI. Fig. IV).

Hab. Falkland Islands; on moist rocks near the sea.
Pallide olivaceo-flara. Cespites laxi, extensi. Caulis $1 \frac{1}{2}-2$ unc. longus, flaccidus, ramosus, ramis subfastigiatis. Folia laxe imbricata, tenerrima et flaccida sed areolis minutis, apice plerumque bifida, sinu lato rotundato, ciliis margimatibus basi latiusculis sæpe repente in apicem articulatam desinentibus. Stipulce rotmclatæ, ambitu ciliatæ, lobulo minore folii majores, bifidæ.

A rery benutifud species, allied to our J. diplophylla (Pt. 1. p. 152.t. 64. f. is) ; where fructification is unkuown, they together appear to form as natural a genus as any which has been proposed out of Jengermannia, and differ from Scapania in the presence of stipules. The present is readily distinguishable from J. diplophylla by the separation of the two lobes of the leaf, by their emarginate tips, by the larger and closer ciliation of their margins and by the less deeply but more frequently dirided aud broader stipules.

Plate CLXI. Fig. IV.-1, plant of the natural size ; 2 and 3, portion of stem, leaf, and stipule ; 4, stipule:magnified.
27. Juxgermarxia humectata, Hook. fil. et Tayl. ; laxe cæspitosa, flaccida, caule erecto parce ramoso, foliis remotis tenuibus erecto-patentibus undulatis basi amplexicaulibus orato-rotundatis emarginatis bifidisve segmentis obtusiusculis subdivaricatis iutegerrimis v. utrinque dentatis, stipulis foliis consimilibus sed minoribus. Nobis in Lond. Journ. Bot. vol. 3. p. 462. (Tab. CLVII. Fig. V).

Hab. Falkland Islands; on wet sand by the sides of mountain-streams.
Cæspites laxi, extensi, inferne atro-brumnei ; ramis paucis, erectis, pallide fusco-oli raceis. Folia alterna, remotiuscula, basi caulem totam fere amplectentia, late oborato-oblonga r. rotundata, bifida, sinu acuto r. obtuso.

Possibly from its rather anomalous locality, an altered state of some other species, though we cannot say of what. In the wet place of growth, erect habit and general outhine of the leaf, it resembles the British J. Lyoni,

Tayl. (J. socia. var., Gottsche, Lind. et Nees), differing in the paler green colour of the young shoots, in the more delicate foliage, smaller areolæ, deeper emargination and clasping leaves.

Plate CLVII. Fig. V.-l, plants of the natural size; 2, stipule; 3, leaf:-both magnified.
25. Jungermannia austrigena, Hook. fil. et Tayl.; laxe cespitosa, caule elongato ascendente subramoso, surculis incurvis, foliis imbricatis subsecundis erecto-patentibus rotundatis convexis integerrimis margiuibus recurvis perichrtialibus rotundatis, stipulis majoribus rotundatis, marginibus reflexis integerrimis bidentatisve, calyce terminali oblongo compresso ore subintegro trigono. J. austrigena et J. carispina. Nobis in Lond. Journ. Bot. vol. 3. p. 463 et 466. (Tab. CLVII. Fig. VII. and Tab. CLVIII. Fig. V).

Hab. Hermite Island, Cape Horn; moist banks in roods (fruit). Falkland Islands, along with J. humectata.

Cæspites laxi, lati, pallide flavidi, virides r. atro-brunnei. Caules 2-3 unc. longi, rage ramosi, flexuosi, crassiusculi. Folia arcte imbricata, subopposita, autice decurrentia, siccitate plerumqne crispata, recurra; madore suberecta, appressa, marginibus plus minusve recurvis. Stipula rotundata, basi utrinque decurrentes, integerrimæ v. apice bidentatæ, margiuibus valde deflexis porrectis, intra margines posticos foliorum verticaliter compressæ. Culyx majusculus, oblougns, latiusculus, trigonus.

A very curions species, and unlike any with which we are acquainted. The habit of the Falkland Island specimens when died, is, owing to their having grown in water, so peculiar, that we regarded them at first as a difterent species, which we describcd as J. cavispina, from the reflexed margins of the closely imbricating stipules, giving a grooved appearance to the back of the stem. The calyx is that of a Lophocolea, from which group the presence of stipules and the entire leaves remove it.

Plate CLVII. Fig. VII. Falkland Island state, (sub nom. J. cavispince).-1, plant of the natural size ; 2, front, and 3, back riew of stem aud leaf; 4, stem and stipule; 5 and 6, stipules:-magnified. Plate CLVIIl. Fig. V. (Hermite Island state).-1, plant of the natural size; 2, lateral, 3, back, and 4, front view of stem, leaf, and stipule ; 5, stem and stipule; 6 and 7, stipules :-magnified.
29. Jungervannla palustris, Hook. fil. et Tayl. ; caule elongato disperso flaccido ramoso, foliis laxe imbricatis erecto-patentibus tenuissime membranaceis rotundatis valde concavis marginibus incurvis medio longitudinaliter undulatis integerrimis, stipulis majoribus ovalibus cymbiformibus integerrimis. Nobis in Lond. Journ. Bot. vol. 3. p. 46t. (Tab. CLTII. Fig. VIII).

IAs. Hermite Island, Cape Horn ; on the borders of an alpine lake, growing in the watcr.
Caules inter Mruscos aliasque Hepaticas demersas ascendentes, sparsi, 3 unc. longi ; ramis erectis, flaccidissimis. Folia tumida, varie incurva, medio plerumque plica longitudinali notata. Stipule valde concaræ, subimbricatæ.

Allied to the British J. Doniana, and to the J. involutifolia, Mont. (v. infra), but very distinct from both. The leaves resemble those of Hypmum cochlearifolium, Schwaegr.

Plate ClVII. Fiy. VIII.-1, plant of the natural size; 2, front riew of stem, leares, and stipules; 3, back view of ditto:-magnified.
30. Jungermanna involutifolia, Mont. in Gottsehe, Nees et Lindl. Syn. Mep. p. 81. Toy. au Pole Sud, Bot. Crypt. p. 260.

Hab. Strait of Magalliaens; on tufts of Hypnum fluitans: M. Hombron.
The nearest ally to this plant is J. notophylla, nobis.
31. Juygermannta fulvella, Hook. fil. et Tayl.; parvula, caule implexo procumbente ramoso, ramis cylindraceis, foliis arcte imbricatis patentibus concaris marginibus incurvis remote dentatis carnosiusculis pellucidis lase cellulosis caulinis oblique rotundatis, rameis minoribns arctins imbricatis rotundatis, stipulis erectis concaris late rotundatis integerrinis v . irregulariter dentatis, calyce laterali obovato cylindraceo foliis perichretialibus integerrimis duplo longiore. Nobis in Lond. Joura. Bot. vol. 3. p. 464. (Tab. CLVIII. Fig. I.)

Hab. Hermite Island, Cape Horn ; in the woods on dead timber, trunks and trigs of trees; abundant. Sonth part of Tierra del Fuego ; C. Darwin, Esq.

Cespites 3 unc. lati, pallide fulvi. Caulis 1 me. longus, pluries rage ramosus, ramis tenuibns. Folia caulina rameis laxius inbricata, basi latiora plamiora, dentibus valde inregularibus. Stipulce rameæ caulinis breviores, sed latiores, rariusque dentatæ. Folia perichretialia parra, oblonga, concava, calyce ter breviora. Calyx lineari-oblongns, trigonus, subtumidus, ore angustato. Seta $\frac{1}{3}$ unc. longa. Capsula late oblonga.

With much the appearance of a Herpetium, but having no flagelliform shoots, and the leares are irregularly dentate. It is a most distinct species.

Plate CLVIII. Fig. I.-1, plant of the natural size ; 2, part of stem, leaf, and stipule ; 3, leaf; 4, upper leaf; 5, stipule; 6, portion of branch with leares, calyx, seta, and capsule; 7, calyx and perichretium; 8, corolla : magnifeed.
32. Juxgermanyia obroluta, Hook. fil, et Tayl.; cæspitosa, caule ascendente vage ramoso, ramis cylindraccis elongatis flaccidis suberectis, foliis imbricatis patentibus membranaceis laxe cellulosis late quadratis margine incurvo undulatis bifidis simu angusto lic illic grosse dentatis subdecurrentibus, stipulis majoribus rotundato-ovatis concavis emarginatis utrinque uni-dentatis. Nobis in Lond. Journ. Bot. vol. iv. p. So. (Tab. CLATI. Fig. I.).

Hab. Hermite Island, Cape Horn, and the Falkland Islands; on the trunks of trees, and on the ground.

Craspites pallide olivacei, struminei. Caules $\frac{1}{2}-\frac{3}{4}$ unc. longi. Folia secus partem caulis superiorem involuta. Stipulce cmargiuatæ, sinu latiusculo.

Allicd to J. oligophylla, nob., but quite different spccificiily from that, and from any other species with which we are acquainted.

Plate CLXI. Fig. I.-1, plant of the natural size; 2, portion of stem, leaxes, and stipules; 3, leaf; 4, stipule:-magnifed.
33. Juxgermanmea madida, Hook. fil. et Tay̧l. ; cespitosa, eaule elongato plauiusculo erecto ramoso, ramis erectis fastigiatis, foliis lase imbricatis pateutibus scmiamplexicaulibus concaris ovato-quadratis bifidis, segmentis aentis incurvis integerrimis v. apices rersus. 2-3-dentatis, stipulis majoribus foliis paulo brerioribus concavis late ovatis lifidis subintegerrimis, calyce terminali cylindraceo recto apice obscure dentato, capsule valvis lineari-elongatis. Nobis in Lond. Journ. Bot. vol. 3. p. 465. (Tab. CLVIII. Fig. II).

Hab. Ilermite Island, Cape Horn ; on moist banks, and in bogs on the mountains, forming dense tufts.
Caspites densi, 2-3 unc. lati, locis humidioribus obscure virescentes, siccis rufescentes. Caules 2 unc. longi. Folia laxe imbricata, ad $\frac{1}{3}$ longitudinis bifida, minute cellulosa, integerrima v. apices versus $1-2$-dentata. Stipule foliis subæquales, late oblongx, bifidæ, segmentis obscure dentatis. Calyx elongatus, superne attemuatus, apice truncatus. Capsula elongata, cylindracea.

Very closely allied to the J. sermlata, Sw. (Musc. Exot.t. S8), of the West Indies, but the leaves are not so densely imbricated, are scarcely scrrulate, their areolæ are more minute, and the stipules are different. When growing in moist places the plant is greener and larger, and the leaves more generally serrulate than when found iu drier situations.

Plate CLTIII. Fig. II.-l, plant of the natural size; 2, portion of stem, leaf, and stipule; 3, leaf; 4, stipule ; 5. perichætial leaf; 6, calyx, seta, and capsule ; 7, corolla ; 8, capsule:-magnified.
34. Juxgermannla aquata, Hook. fil. et Tayl.; caule brevi implexo procumbente ascendente ramoso flexuoso, ramis compressis curvatis, foliis imbricatis secmodis appressis suboppositis rotundatis margine incurvis integernimis crassis opacis ima basi inter se et cum stipula parra ovata bifida v. integra connatis. Nobis in Lond. Journ. Bot. vol. iii. p. 465. ('Tab. CLVIII. Fig. III.)

Hab. Hermite Island, Cape Horn ; on the trunks of trees in the woods.
Caspites parvi, inter Muscos aliasque Hepaticas nidulantes, rufo-brunnei. Caules unciales, vage sed parce ramosi, basi nudi, sursum curvati. Folia arcte imbricata, oblongo-rotundata, madore e marginibns incurvis tumida, opposita, basi antice connata, postice cum stipula adnata. Stipula ovata, bifida v. raric secta, segmentis subulatis.

The form of the leares, thein opposite arrangement and connexion in front, are similar to J. Brankiana, Necs, but that species is destitute of stipules.

Plate CLVIII. Fig. III.-1, plant of the natural size ; 2, portion of branch; 3, ditto with front view of leaf and stipule, 4 and 5 , stipules:-magnified.
35. Jungermannla otophylla, Hook. fil. et 'Tayl.; caule debili flavido clongato subramoso, foliis oppositis secundis erecto-patentibus imbricatis flaridis ct membranaceis late reniformi-rotundatis basi latissime cauli adnatis integerrimis, margine superiore basi tumido rccurvo, stipulis majoribus concavis late rotundatis emarginatis integerrimis obscure sinuatisve. Nobis in Lond. Journ. Bot. vol. iii. p. 466. (Tab. CLVIII. Fig. IV.)

Hab. Hermite Island, Cape Horn; in alpine bogs.
Caspiles laxi, luride olivacei v. albescentes. Caulis gracilis, 3 unc. longus, parce ramosus; ramis erectis. Folia tenuissime membranacea, latissime oblonga v. rotundata, basi ad marginem anteriorem quasi auriculata. Stipulce ample, subimbricatæ, marginibus incmris, apicibus emarginatis, sinu lato, nunc apice sinuato.

In habit and general appearance this approaches oun δ. palustris, which inhabits similar localitics, but they are in many respects widely different plants.

Plate CLVIII. Fig. IV.-1, plant of the natural size ; 2, front, and 3, back vicw of portion of stem aud leat; 4, stipule :-maynified.
36. Jungermannia densifoliu, Hook., Musc. Exot. t. 36. Scapania? densifolia, Gottsche, Lindb. et Nees, Syn. Hep. p. 72.

Hab. Hermite Island, Cape Horn ; in wet bogs, \&e.
A rery abundant species in Hermite Island.
37. Juygermannia chloroleuca, Hook. fil. et Tayl. ; caule erecto cæespitoso parce ramoso flavido, foliis subapproximatis imbricatis patentibns ovatis v. ovato-oblongis inferne tumidis semi-amplexicanlibus bipartitis ciliato-dentatis, segmentis linearibus ligulatisve summo apice bifidis. Nobis in Lond. Journ. Bot. vol. iii. p. 467. (Tab. CLAI. Fig. V.)

Hab. Hermite Island, Cape IIorn; on moist banks near the sea.
Caspites subereeti, flavo-viresentes. Folia disticha, vix imbrieata, segmentis plerumque reeurvis, ramis hine (sieeitate preeipue) squarrosis.

So nearly allied to the previous species that a particular description is hardly required; it differs conspieuously in the eolour. These speeies were never seen passing into one another, and both are remarkably eonstant to their charaeters. They belong, with the J. vertebralis, Gotische (Pt. 1. p. 153), of Lord Auekland's group and Tasmania, also a very closely allied plant, to a distinct section of the genus. The J. chlorolenca differs from J. vertebralis in eolowr, size, and different texture, also in the form of the leaves and eiliation; and from J.densifolia, besides the colour, mentioned above, in the denser tissue of the remote leaves, which are much broader at the base, aud whose areolæ are blended together, in their long ciliation and bifid apiees.

Plate CLXI. Fig. V. -1 , plant of the natural size; 2 , portion of stem and leaf:-magnifeld.
38. Juxgermannia clandestina, Mont., in Toy. au Pole Sut, Bot. Ciypt. p. 264. t. 1G. f. t. Gottsele, Lindb. et Nees, Syn. Hep. p. 73.

Hab. Strait of Magalhaens ; Port Famine and Port Gallant, M. Hombron.
39. Jungermannia schismoiles, Mout., vid. Pt. 1. p. 150. (Tab. CLAI. Fig. IX.)

Hab. Hermite Island, Cape Horn; creeping through tufts of mosses in the woods.
The leaves of these speeimens are slightly serrulate along the margins, in which respect alone the plant differs from that found in Lord Anekland's group.

Plate CLX1. Fig. LX.-1, plant of the natural size ; 2, 3, aud \pm, leaves:-magnifed.
40. Jungermannla crebrifolia, Hook. fil. et Tayl.; caule ceespitoso erecto ramoso, ramis suberectis, foliis carnosulis arcte imbricatis erecto-patentibus secundis coneavis late orato-rotundatis bilobis, lobis ovatis subaeutis integerrimis inferiore minore basi deutato v . integerrino, calyce minimo laterali obovato plicato, ore scarioso lacimiato, lacimiis lanceolatis. Nobis in Joum. Lond. Bot. vol. iii. p. 467. (Tab.CLTII. Fig.IS.)

Нав. Hermite Island, Cape Horn.
Dense erespitosa, rufo-bruunea. Coules fere 2 une. longi, siceitate fragiles, irregulariter repetitim ramosi, rarius superne paulo incrassati. Folia arcte imbricata, valde coneara, marginilus apieibusque madore crectis, lobo superiore majore, inferiore basi supra eanlem produeto, integerrimo v. uni-dentato. Calyces minuti, valde inconspieui, ore albido scarioso.

Closely allied to the J.cryptodon, Wils. MS., of the Audes of Colombia, which has a similarly toothed lower lobe of the leaf, equally produced at the base aeross the stem. The present is a larger plant, with more imbrieated and ereet leaves, their lower lohe smaller, and the produced portion larger in proportion.

Plate CLVII. Fig. IN.-1, plant of the natural size; 2 aud 3 , leares :-iragniferd.
41. Juxgermaxyla hemnilis, Itook, fil. et Tay1.; parvula, caule implexo procumbente radicante ramoso, foliis subimbricatis ereeto-patentibus secundis rotundatis concavis integerrimis crassiusculis, stipulis minutis ovatis integris v. bifidis segmentis unideutatis v. irregulariter sectis. Nobis in Lond. Journ. Bot. vol. iii. p. 4.68. (Tab. CLVIII. Fig. VI.)

Hab. Kerguelen's Laud; on tufts of Azorella Selayo.
Ccespites lati, pallide flavo-olivaeei. Caudis vix uneialis, irregulariter ramosus. Foliu laxe imbrieata, basi late eaule aduata sed non decurrentia, patentia, homomalla. Stipule eauli æquilatæ, varie sectre, emarginatæ, bifidæ v. irregulariter sinuato-dentata.

Allied to J. turgescens, nobis (Pt. 1. p. 150, t. Lxir. f. 2.), of Lord Anekland's group; but the present may be readily distinguished by its smaller size, more olive colour, its toothed stipules, more patent and differently shaped leaves, whose attachment is also different, and which are not decmrent; and by their larger areolæ.

Plate CLVIII. Fig. VI.-plant of the natural size. 2, stem, back view of leaf and stipude; 3, frout view of leaf; t, stipule:-magnified.
42. Jungervavxla minuta, Crantz, ciel. Fl. Antarct. Pt. 1. p. 152.

Hab. Kergnelen's Land; on tufts of mosses, \&ce, ou the hills.
Also found in Lord Auekland's group, but hitherto not elsewhere in the Southern Hemisphere; nor out of Europe in the Northern.
43. Juxgermanvia quadripartita, Hook., Mhus. Exot. t. 117. Gottsche, Liudb. et Nees; Syn. Hep. p. 146.

Hab. Staten Land, Menzies (in Herb. Hook.); Hernite Island, Cape Horn; on moist banks, $_{\text {L }}$ Mr. Davis.

(5. Gyminathe, Tayl.)

44. Juxgermaxyea Urvilleena, Mont., vid. F\%. Antaret. Pt. 1. p. 153.

Hab. Hermite Island, Cape Horn; in the woods.
Asso a native of Lord Auckland's group and Tasmania.

(6, Lophocoles, Nees.)

45. Juxgernanvis textilis, Hook. fil. et Tayl.; caule laxe implexo prostrato parce vage ramoso plano, foliis disticlis horizontaliter patentibus complanatis approximatis late orato-quadratis apice bifidis planis laxe cellulosis segmentis subulatis acutis integerrimis, stipulis ovatis bipartitis segmeutis linearibus divaricatis. Nobis in Loul. Jown. Bot. vol. iii. p. 46s. (Tab. CLVIII. Fig. IN.)

Hab. Hermite Island, Cape Hom; in woods. Falkland Islands; on wet rocks near the sea, very common.

Caspites late extensi, pallide sell late flavo-virides. Caules 2 uuc. longi, laxe intertexti, terree appressi. Folia disticla, ommia horizontaliter patentia, basi lata, eauli aduata sed nou decurrentia, margiue superiore snlrotundata inferiore reeta; substantia tenera, laxe areolata. Stipule parve, eauli æquilate, bipartite, segmentis subulatis acuminatis. Perigonia nuue secus ramos obvia, plerumque apiees versus; foliis arete appressis erectis, basi tumilis.

In some partieulars resembling our J. planiuscula (Pt. 1. p. 1כ̆6. t. lxv. f. 2), of Lord Auckland's group, which is a larger plant, with leares rounded and otherwise of a very difierent form. The whole stratum is very flat and appressed, wide, of a fine shining green colowr, and soft texture.

Plate CLVIII. Fig. IX.-1, plant of the matural size; 2, stem and leaves; 3, stipule:-magnifeed.
46. Juxgermaxna leptantha, Hook. fil. ct Tayl.; caule flaccido implexo procumbente ramoso, foliis distichis planis subimbricatis patentibus ovato-oblongis integerrimis margine superiore subrecurvo apice emarginato-bidentatis dentibns elongatis simn rotundato, stipulis porrectis minutis bipartitis segmentis sulbulatis extus midentatis 4 -partitisve, calyce terminali lineari-oblongo trigono ore trifido segmentis emarginatobidentatis serratis rarius subintegris. Nobis in Lond. Journ. Bot. vol. iii. p. 471. Lophocolea coadunata

Nees, fid. Montagne in Toy. au Pole Sud, Bot. Crypt. p. 250 (non Jung. coadunata, Swartz.) (Tab. CLIX. Fig. VI.)

Hab. Hermite Island, Cape Horn; moist places in the woods.
Caspites late extensi, plani, pallide fusco-oliracei. Caules 1-2 unc. longi." Folia rix imbricata, pateutia, orata, apicem versus dilatata et in segmenta 2 subulata subcaudata fissa, lase cellulosa. Stipulce parræ, cauli subæquilatæ. Folia perichætialia erecta, lateralibus cmarginatis dentatisque, intermedio seu stipulari bifido integerrimo. Seta uncialis. Capsula oralis.

This is one of the many southern forms of Lophocotea nearly related to one another, and to J. bidentata of Europe; it differs from J. secundifolia, in the leares being horizontally patent and not secund; from J.diademata, nob., of New Zealand, in the calyx and less spreading foliage; and from J.physanthe, nob., of the same country, also by the totally different calyx, from all three by the divisions of the mouth of the latter organ being dentate. We are indebted to our friend M. Montagne for a specimen of his J. coadmata, so named by Nees, but which we do not consider to be the plant of Swartz.

Plate CLIT. Fig. VI.-1, plaut of the natural size; 2 and 3, leaves; 4 and 5 , stipules ; 6, calyx, seta, and capsulc :-all magnified.
47. Jungermanda humifusa, Hook. fil. et Tayl.; caule flaccido procumbente implexe ramoso, foliis approximatis subimbricatis horizontaliter patentibns planis oblongis autice gibbosis emarginato-dentatis integerrimis, stipulis bipartitis segmentis subulato-setaceis extus unidentatis quadripartitisve. Nobis in Lond. Journ. Bot. vol. iii. p. 479. (Tab. CLLX. Fig. V.)

Hab. Kerguelen's Land ; on the rhizomata of Pringlea.
Cespites lati, explanati, appressi, pallide virides. Camlis uncialis, inregulariter ramosus, ad stipulas radicans. Folia approximata, vix imbricata, basi latiora, decurrentia, simu apice formæ irregulari. Caly.r ovato-oblongus, trigonus ; angulo unico alato, subdentato. Perigonia in spicas ovato-lanceolatas secus ramos obrias disposita, foliolis imbricatis, ventricosis.

Very nearly allied to J. leptanthe and perhaps not distinct from it; though we have preferred separating species from such widely-severed localities as these affect, when, as in this casc, they present tangible characters. Those of this species will be found in the more ercet leares, with lax areole, wide and decurrent bases, and more sctaceous stipulcs.

Plate CLIN. Fig. Y.-1, plant of the natural size; 2 and 3, leaves; 4, stipule :-magnified.
4S. Jesgernanina altemifolia, Hook. fil. et Tayl.; caule gracili lave implexo procumbente parce ramoso, foliis flaccidis laxe reticulatis alternis patentibus planis triangulari-oratis emarginatis decurrentibus segmentis spinoso-acuminatis integerrimis, stipulis minutis quadripartitis segmentis setaceis, calrce terminali triangulari-cylindraceo ore trilabiato ciliato. Nobis in Lond. Journ. Bot. vol. iv. p. S3. (Tab. CLII. Fig. II.)

Hab. Falkland Islands; on moist banks near the sea.
Cespites luride rirides, ramis substrictis. Folia basi decurrentia, laxe reticulata; perichetialia $\frac{1}{2}$ longitudine calycis, erecta, concara, subciliata. Capsula oblongo-rotumdata.

Related to J. humifusa, but distinguishable by the deep division of the apex of the leaf, the longer segments, the more decurrent bases and the wider segments of the stipules. This species was erroneonsly described (Lond. Journ. Bot. l. c.) as a natire of New Zealand; from whence we have never seen specimens.

Plate CLXI. Fig. II.-l, plant of the natural size; 2 and 3, branch and leaf; 4, leaf; 5, stipule:-all mugnified.
49. Jungermannis divaricata, Hook. fil. et Tayl. ; caule implexo procumbente ramoso, foliis approximatis suberectis secundis e basi angusta oblougis conrexis bifidis segmentis lanceolatis acuminatis divaricatis subflexuosis, stipulis bifidis segmentis subulatis extus unidentatis. Nobis in Lond. Journ. Bot. vol. v. p. 367. (Tab. CLII. Fig. VIII.)

Hab. Hermite Island, Cape Horn ; iu tufts of mosses, \&ce.
Cospites pallide flaro-virescentes. Caules 1 unc. lougi, basin versus precipue ramosi. Folia laxe imbricata, grosse reticulata, ad mediun in segmenta dua acuminata divaricata fissa, margine dorsali decurrente et recurvo. Perigonia in spicas terminales disposita; foliolis arcte appressis, basi tumidis, anthcriferis, segmentis foliis caulinis brevioribus.

Allied to J. leptantha, but a smaller plant, with leaves of a different slape, being narrower at the base and deeply divided beyond the middle. The stipules are bipartite.

Plate CLXI. Fig. VIII.-1, plant of the uatural size ; 2 and 3 , brauch and leaf; 4, leaf; 5, stipule :-all magnified.
50. Jungermannta sabuletorum, Hook. fil. et Tayl.; minima, caule cæspitoso crassiusculo prostrato ramoso, ramis ascendeutibus apice recurvis, foliis approximatis subremotisve erecto-patentibus secundis subquadratis angulis obtusis integerrimis apice retusis laxe cellulosis, stipulis minutis ovatis lanceolatisve bipartitis, segmentis subulatis incurvis. Nobis in Lond. Journ. Bot. vol. iii. p.469. (Tab. CLVIII. Fig. VIII.)
H_{ab}. Falkland Islands; ou wet sand and clay-slate.
Caspiles sub 2 uuc. lati, pallide flaro-virides. Caules breves rix $\frac{1}{4}$ unc. longi. Rami e caule prostrato erecti, curvati, demum horizontales. Folia versus apices ramorum lase imbricata, parra, madore homomalla, apice plerumque retusa v. emarginata, rarius rotundata, basi late adnata, laxc cellulosa, paria ultima sæjpissima appressa, apicibus ranulornm hiue compressis. Stipule caule subangustiores.

Perhaps the most minute of the Lophocolec, from all the species of which its habit and the form of the leaves amply distinguish it.

Plate CLVIII. Fig. VIII.-1, plant of the natural size ; 2, portion of branch, leares, and stipules; 3, leaf; 4, stipule :-magnified.
51. Juxgermannl rivalis, Hook. fil. et Tayl.; flaccida, càule cespitoso ascendenti v. erecto ramoso gracili, foliis distichis laxe imbricatis approximatisve inferioribus remotis teneribus flaccidis oblongoquadratis angulis obtusis integerrimis basi late adnatis decurrentibus apice retuso, stipulis ovatis bifidis segmentis integerrimis v. extus unidentatis. Nobis in Lond. Journ. Bol. rol. iii. p. 469. (Ta b. CLVIII. Fig. VII.)
$H_{A b}$. Falkland Islands; on wet rocks, \&c., near the sea, abundant.
Crespites laxi, basi srepe submersi, atro-fusci, superne pallide oliracei. Courlis $1-2$ unc. longus, ramosns, ramis erectis gracilibus, laxe foliosis. Folia tenerrima, membrauacea et flaccida, minute arcolata, basi lata decurrente, oblongo-rotundata r. subquadrata, apice plerumque obscure retusa. Stipule caule vix latiores, basi subrotundate, v. late orate, bifidæ; segmentis integerrimis uni-dentatisve.

Allied to J. planiuseula (Pt. 1. t. 65. f. 2), which is a larger plant, with differently shaped stipules. Also near the following, which, agaiu, is smallcr than either, with leares of another form.

Plate CLY'III. Fig. VII.-1, plant of the uatural size; 2 and 3, leaves ; 4 and 5, stipules:-magnified.
52. Jungerilannia grisea, Nobis in Fl. Antaret. Pt. 1. p. 154. t. lxiv. f. 8.

Var. β, laxa; caule ramoso flexuoso, foliis laxius insertis subremotis alternantibus. (Tab. CLX. Fig. IV.)

Hab. Falkland Islands; on clay banks near the sea. Var. β, in similar situations. $_{\text {a }}$
Also a native of Lord Auckland's group.
Plate CLX. Fig. IV.-1, plaut of the uatural size; 2, stem and leaves; 3 and 4, leaves; 5 and 6 , stipules:magnifed.
53. Jungermarnia reclinans, Hook. fil. et Tayl.; caule prostrato implexo ranoso, foliis imbricatis patentibus siccitate explanatis madore secuudis e basi lata ovato-rotundatis integerrimis apice rotundatis v. obscure retusis, stipulis 2-4-partitis, segmentis setaceis intermediis elongatis. Nobis in Lond. Journ. Bot. vol. iii. p. 470. (Tab. CLLX. Fig. I).

Hab. Falkland Islauds; on wet rocks near the sea.
Crespites laxe intertesti, pallide flaro-olivacei, inter Auscos Hepaticasque alias repentes. Caules supini, vix $\frac{1}{2}$ unc. longi, parce ranosi. Folia margine superiore sursum prodncto plerumque trilobo, rarius bilobo, lobis latis obtusis, folia nunc integra. Stipulice basi augustatæ, quadrate, bipartite, segmentis plerumque uni-dcutatis omnibus setaceis articulatis incurvis.

With much affinity to the J. multiperna of Lord Auckland's group; but the upper margin of the leaf is not so gibbons or produced upwards, the stipules have the inuer segments straight or recurred, but not reflexed, and mnch more slender.

Plate CLIX. Fig. I.-1, plant of the natural size; 2, stem and leaf; 3, stipule ; 4, perichætiun and calyx: magnifeed.
54. Jungermannia secendifolia, Hook. fil. et Tayl.; parvula, caule subcespitoso procumbente subramoso, foliis inbricatis erectis secundis oblongis emarginato-bifidis, segmentis lanceolatis integerrimis, stipulis bipartitis, scgmentis inequaliter bifidis laciniis subulato-sctaceis, calyce terminali oblongo trigono, ore trilaciniato laciniis dentatis. Nobis in Lond. Journ. Bot. vol. iii. p. 47]. (Tab. CLIX. Fig. II.)
$H_{A b}$. Falkland Islands; on tufts of mosses.
Craspites parvi, inter Muscos intricati, pallide olivacei. Caultes vix $\frac{1}{2}$ unc. longi, prostrati, demum ascendentes, apicibus supinis radicautibus. Folia imbricata, madore erecta et secunda. Stipule amplæ, segmentis setaceis incurvis. Caly.x majusculus, trigonus, latere inferiore latiore, ore ciliato-dentato.

This in some respects approaches the British J. bidentata, but is even more like J. helerophylla, from which it may eventually prove not distiuct ; its claims rest on the closely imbricated and secund leaves, and more entire segments of the stipules.

Plate CLIX. Fig. II.-1, plaat of the natural size; 2, apex of stem, perichæetium, and calyx ; 3, leaf; 4, sti-pule:-nagnifeed.
55. Juxgermarnia subviridis, Hook. fil. et Tayl.; parvula, caule cæspitoso prostrato ramoso, foliis laxe imbricatis secundis erecto-patentibus erectisve oblique obovatis qnadratisve emarginato-bifidis segmentis obtusiusculis, margine anteriore gibboso, inferiore decurrente, stipulis ovatis bifidis utrinque uni-dentatis. Nobis in Lond. Journ. Bot. vol. iii. p. 473. (Tab. CLIX. Fig. IV.)

Habs. Hermite Island, Cape Hont; on the ground.

Ccespites lati, 2 unc. diametro, pallide virides, intricati. Canles vix $\frac{1}{2}$ unc. lougi, decumbentes v. prostrati, apicibns asceudentibus. Folia remotiuscula, margine superiore sursum gibboso; substantia dense celludosa.

Closely allied to the J. discedens, Nees, of the East Indies; but the leaves are shorter, wider, have a deeper sinus and more acute segments; and the stipules are not so slender.

Plate CLIX. Fig. 1Y.-1, plant of the natural size; 2, branch, with leaves and stipules; 3 and 4 , leaves; 5 and 6, stipules:-all magnified.
56. Jungermannia trachyope, Hook. fil. et Tayl. ; parvula, caule implexe ramoso procumbente flaccido, foliis tenerrimis laxe cellulosis imbricatis erectis subsquarrosis latissime rotundato-quadratis profunde bitrifidis grosse iuæqualitcr spimuloso-dentatis, stipulis late ovatis bifidis segmentis acuminatis grosse dentatis, calyce termimali oblongo trigono, ore laciniato-dentato. Nobis in Lond. Journ. Bot. vol. iii. p. 471. (Tab. CLLX. Fig. III.)

Hab. Hermite Island, Cape Horn ; growing in the woods on Anthoceros punctatus, L.
Caules vix $\frac{1}{2}$ unc. longi, irregulariter ramosi, pallide virides. Folia arcte imbricata, in lacimas dnas v. plerumque plures lanceolato-subulatas divisa. Culyx pro planta majusculus. Capsula ovalis. Sela cauli requilonga.

A very distinct species from any of the forcgoing, and a beautiful object under the microscope from the delicacy and reticulation of its leaves.

Plate CLIN. Fig. III.-1, plant of the natural size; 2, stem and leaf; 3-6, stipules; 7, perichætium, calyx, seta, and capsule :-all magnified.
57. Jungermannia triacantha, Hook. fil. et Tayl.; cadle implexo procumbente vage ramoso, foliis planis approsimatis patentibus oblongo-ovatis trifidis segmentis subulato-lanceolatis, stipulis subquadratis bifidis segmentis bilaciniatis laciniis subulatis. Nobis in Lond. Journ. Bot. vol. v. p. 368.

Hab. Falkland Islands; on the ground.
Cospiles deusi, luride olivacei. Coulis uncialis, ramis paucis patentibus. Folia basi vix imbricata, patentia, divaricata, oblonga, apices versus simblus duobus excisis ancta; lacinïs 3 subulatis, porrectis, subparallelis. Stipula liberæ, crecto-patentes, quadrifide, segmentis subulatis.

Most nearly allied to L. chlorophylle, nobis, of New Zealand, which is, however, a smaller plant and has shorter wider subsecund leaves, and rounded dentate stipules,

(7. Chiloscyphus, Nees.)

58. Jungermanna pallido-virens, Hook. fil. et Tayl. ; majuscula, caule implexe subramoso procumbente, foliis patentibus imbricatis late ovato-oblongis apice retusis integerrimis margine anteriore recurvo, stipulis minutis recurvis oblongis bifidis segmentis subulatis extus umidentatis quadrifidisve, calyce in ramo abbreviato terminali oblongo tri-alato compresso apice laciniato-ciliato. Nobis in Lond. Journ. Bot. vol. iii. p. 473. (Tab. OLLX. Fig. IS.) ,

Hab. Hermite Island, Cape Horn ; on the gromed near the sea.
Cosspites late extensi, pallide flavo-virescentes, demum fuscescentes, interdum (status minor) ommino fuscati. Caules 2 unc. longi, parce ramosi, ramis $\frac{1}{8}$ unc. latis. Folia dense reticulata, arcolis minutis, laxe imbricata, erectopatentia, ope stipulæ basi connexa, apice rotundata sen truncata, unidentata v. emarginata. Stipulee mimimæ, caulis $\frac{1}{2}$ latitudine, concaræ, recuræ, oblongæ; segmentis sctaccis cxtus unidentatis. Perichetium ramum abbreviatnm terminans, e paribus 2-3 foliolorum crectorum appressorum constans, foliolo interiore 4-5゙-partito. Culy, oblongocampanulatus, latcre unico profunde fissus.

This handsome plant resembles the C. Endlicherianus, Nees, of Norfolk Island, more than any other species; differing, however, materially in its great size, the less rom tops of the leares, their more convex figure, their perfectly entire margins, and by the less laciniated stipules.

Plate CLIX. Fig. IX.-1 and 2, plants of the natural size; 3, stem and leaf; 4, back riew of ditto and stipules; 5, stipule; 6, perichætial leaf; 7, calyx:-mannified.
59. Juxgermantia gramdifolia, Hook. fil. et Tayl.; caulc procumbente subsimplici laxe implexo, surculis planis, foliis arcte imbricatis patentibus quadrato-rotundatis antice basi gibbosis margineque recurvis integerrimis, stipulis minutis sub 4-lacinatis. Nobis in Lond. Journ. Bot. vol. iii. p. 474. (Tab. CLIX. Fig. VIII.)

Hab. Hermite Island, Cape Horn ; in the woods.
Cespites $3-4$ unc. longi, $\frac{1}{6}$ unc. lati, supernc pallide virescentes, infcrne rufo-brunnei. Folia ampla, marginc superiore basi precipue recurvo, inferiore basi simplici non decurrente, flaccida, crassiuscula, pellucida, areolis parvis, rarius cum stipulis imo basi conncxa, plerumque libera.

The largest and handsomest species of Chiloscyphus, in which the disproportion between the leaves and stipules is very remarkablc. The broader and shorter leaves, their larger areole and more laciniated stipules, are alone sufficient to distinguish it from the former.

Plate CLIX. Fig. VIII.-1, plant of the natural size; 2, back of stem, stipudes, and leaves; 3, stem and leaf; 4, stipule:-magnified.
60. Juxgermanna fusco-virens, Hook. fil. et Tayl. ; caule implexo procumbente subramoso, surculis ascendentibus, foliis imbricatis verticalibus patentibus secundis rotundatis integerrimis, stipulis bi-quadripartitis, segmentis radiantibus, calyce in ramo brevi terminali oblongo-campanulato triplicato, ore truncato integro. Nobis in Lond. Journ. Bot. vol. iii. p. 474. (Tab. CLIX. Fig. VII.)

Hab. Hermite Island, Cape Horn ; forming dense tufts on the tops of the mountains, alt. 1,700 feet.
Cespites parri, densi, rufo-brumnei, ramis junioribus virescentibus. Caules 2 unc. longi, secus totam longitudinem radiculas dense fasciculatas demittentes. Folia planiuscula, paria opposita basi valde approximata, opaca, crassiuscula, cellulis parvis. Stipulce basi breves, in segmenta dua r. plura subulata setaceave fissa. Calyces bini v. plures, foliis pallidiorcs. Seta fere uncialis. Capsula oblougo-rotundata.

The narrow segments of the differently shaped stipules aud calyx afford the best means of distinguishing between this, and J. australis, nob., of Camplell's 1slaud. The latter is also a smaller plant, of a darker colour. The size, large arcoke of the leaves, and thcir not beiug connate at the base with the stipulcs, at once remove the present from the following species.

Plate CLIX. Fig. VII.-1, plant of the natural size; 2, stem and leaf; 3, back view of ditto and stipules; 4 , stipule ; 5, perichætium, calyx, seta, and capsule :-magnified.
61. Juxgermansia surrepens, Hook. fil. et Tayl.; canle disperso simplici repente, foliis imbricatis patentibus rotundatis integerrimis stipula ovata subquadrifida connatis. Nobis in Lond. Journ. Bot. vol. iii. p.475. (Tab. CLX. Fig. I.)

Hab. Hermite Island, Cape Ilorn ; on J. Magellanica.
C'aules plerumque subsolitarii, supiui, pallide brumei v. albidi. Totia opposita, dorso ope stipula basi conuexa. Stipula caule vix latior, ovata, bifida, segmentis subulatis extus dente majuscula auctis.

Near the last, but a very different plant in size, and in the disposition of its leaves.

Plate CLX. Fig. I.-1, plant of the natural size; 2, back view of stem, leaves and stipules; 3, stem and leaf; 4, stipule:-magnified.
62. Jungermannia retusata, Hook. fil. et Tayl.; caule implexo procumbente subsimplici rectiusculo, foliis patentibus planis late oblongis obtusis retusisque integerrimis hiuc stipulæ minute setacco-bipartitæ connexis. Nobis in Lond.Journ. Bot. vol. iv. p. 84. (Tab. CLXI. Fig. III. sub. nom. J. reclinata.)

Hab. Falkland Islands; on the ground.
Caspites laxi, pallide fusco-olivacei. Caules unciales. Fotia remotiuscula, late oblonga, obscure emarginata, cum stipula caule equilata comnexa.

Allied to the Ch. integrifolius, Gottsche, of Chili, but the leaves are more distant, shorter, and wider; the stipule more divided and the whole plant of a darker colour.

Plate CLXI. Fig. III. (uuder the name of J. reclinata).-1, plant of the natural size; 2, 3, and 4, stem and leaves; 5 , stipule:-magnified.
63. Jungermannia horizontalis, Hook., Musc. Exot. t.96. Gottsche, Lindb. et Nees, Sym. Mep. p. 178. Hab. Staten Land; Menzies (in Merb. Hook.).
Not in the collections of the Antarctic Expedition.
64. Jungermannia amphibolia, Nees, in Martius, Flor. Bras. vol. i. p. 334. Gottsche, Lindb. et Nees, Syu. IIep. p. 178.

Hab. IIermite Island, Cape Horn ; mixed with J. uncialis.
Also a native of the Brazils.

(8. Lepidozea, Nees.)

65. Jungermannia tetradactyla, Hook. fil. et Tayl.; in Fl. Antarct. Pt. 1. p. 158. Gottsche, Lindb. et Nees, Syn. Hep. p. 213.

Hab. Hermite Island, Cape Horn; moist places near the sea.
Likewise found both in Lord Auckland's group and New Zealand.
66. Jungermannia plumulosa, Lehm.et Lindb., Pugill. p. 30. Gottsche, Lindb.et Nees, Syn. Hep.p. 211.

Hab. Staten Land, Menzies. Strait of Magallaens, D'Urille. Hermite Island, Cape Horn; on moist banks.
67. Jungermanma levifolia, Hook. fil. et Tayl.; in Fl. Antaret. Pt. 1. p. 157. Gottsche, Lindb. et Nees, Syn. Hep. p. 20 S.
$H_{a b}$. Falkland Islands; on moist rocks near the sea.
First described from Auckland Island specimens; also found in New Zealand and Tasmania.
68. Jungermannia oligophylla, Lelım. et Lindb., Pugill. vi. p. 26. Gottsche, Lindb. et Nees, Syn. Hep. p. 201.

IIab. Staten Land, Menzies. Hermite Island, Cape Horn ; in moist places.
69. Juxgermannia tridactylis, Lehm. et Lindb.? fid. Montague, in Voy. au Pole Sul, Bot. Crypt. p. 243.

Hab. Strait of Magalhaens; M.M. Hombron et Jacquinot.
70. Jungermaxmla filamentosa, Lehm. et Lindb., Pugill. vi. p. 29. Montagne in Foy, an Pole Sud, Bot. Crypt. p. 246.
H_{AB}. Strait of Magallhaens; Mr. Hombron.
A plant we do not recognize amongst the numerous forms, from Fuegia and Lord Auckland's Island, of this most difficult, and perhaps too extended group.
71. Juxgermannla Javanica, Mont., in Foy. an Pole Sud, Bot. Crypt. p. 246.
$\mathrm{H}_{\text {ab. }}$ Strait of Magalhaens; Port Famine, M. Jacquinot.
This may be oue of the above enumerated species, though we have failed in identifying it. It is also a native of Jara.
72. Jungermaneia chordulifera, Tayl., in Lond. Journ. Bot. vol. v. p. 371. (Tab. CLXI. Fig. VI.)
$H_{a b}$. Chonos Archipelago, C. Darvin, Esq.
A very handsome specics, allied to the J. pendulina of New Zealand.
Plate CLXI. Fig. VI.-1, plant of the natural size ; 2, stem, leaves, and stipules ; 4, stipule:-maynifeed.

(9. Mastigophora, Nees.)

73. Jungermanmia hirsuta, Nees; Fl. Antarct. Pt. 1. p. 160. Sendtnera ochrolenca, Nees, in Fottsche, Iinilb. et Nees, Syn. Hep. p. 240.
$H_{\text {ab }}$. Hermite Island, Cape Horn ; on roots of stunted trees, \&c., alt. 1,000 feet. Falkland Islands; rocks on the hill tops, rare.

A widely distribnted plant, being found in Mexico and Java, at the Cape of Good Hope, and Lord Anckland's group.
(10. Radula, Nees.)
74. Jungermannia Helix, Hook. fil. et Tayl.; parvula, caule repente implexo subflexnoso pinnatim ramoso, foliis remotis alternis oblongis alte concavis integerrimis basi gibbosis, lobo superiori ovato-oblongo obtuso, inferioris ovati tumidi involuti apice subachto superiori appresso. Nobis in Lond. Journ. Bot. vol. iv. p. 475 . Gottsche, Lindb. et Nees, Syn. Hep. p. 260. (Tab. CLX. Fig. II.)
$H_{\text {ab }}$. Hermite Island, Cape Form; growing with J. coloruta
Cessites vix $\frac{1}{4}$ unc. lati, pallide straminei. Folia pauea, alterua, nisi apicem caulis versus remota.
A very distinct little species, found growing on large masses of J. colorata, with the purple colour of whieh its pale stems contrast conspicuously. It is smaller and lias more tumid leaves than any of its cougeners; the latter resemble in form the shell of Helix putris, whence the trivial name.

Plate CLX. Fig. II.-1, plant of the natural size; 2, stem and leaves; 3 and 4, leaves:-magnifeed.
75. Juxgermannia physoloba, Mont. ; Fl. Autarct. Pt. 1. p. 161. J. flavifolia, nobis in Lond. Journ. Bot. vol. iv. p. 476. Gottsche, Lindb. et Nees, Syn. Hep. p. 259. J. complanata, β, Hook. (Tab. CLX. Fig. III.)

Hab. Hermite Island, Cape Horn ; on truaks of trees. $^{\text {a }}$
An abundant boreal plant, inhabiting Europe from Switzerland to Ieeland. In the southem hemisphere it has hitherto been seen only in Lord Auckland's group and at Cape 1Iorn. It is rather a variable species, and we have
deseribed it already under two names. The leaf of these speeimens is shorter, broader at the upper part and rounded, with the lower lobe shorter than is usual in J.physoloba. We add a figure.

Plate CLX. Fig. III.-l, plant of the natural size; 2, branch and leaf; 3, leaf; 4, perichretium and calyx ; 5, ealyx and capsule :-magnified.

(11. Polyotus, Gottsche.)

76. Jungeriannia Magellanica, Lamk. Ilf. Antaret. Pt. 1. p. 162.

Hab. Hermite Island, Cape Horn ; on trunks of trees, abundant. Strait of Magalhaens, Commerson. Staten Land, Menzies.

Also found in Campbell's Island, Tasmania, and New Hollaud.

77. Jungermannia Menzicsit, Hook., Musc. Exot. t. 118.

Hab. Hermite Island, Cape Hom ; mossy trmnks of trees, wet rocks, \&c.; also on the summits of the mountains. Staten Land, Mencies.
78. Juxgermaña palpebrifolia, Hook., Musc. Exot.t.71. Gottsche, Lindl. et Nees, Syn. Mep. p. 246.

Hab. Strait of Magalhaens, D'Urville. $^{\text {D }}$
(12. Frullanta, Raddi.)
79. Jungermannia cyperoides, Schwaeg., Prodr. ILep. 14. Gottsche, Lindb. et Nees, Syn. Hep. p. 420.

Hab. Strait of Magalhaens; (fid. Schwaegrichen).
80. Jungernannia lobulata, Hook., Musc. Exot.t.119. Gottsehe, Lindb. et Nees, Syn. Mep. p. 445.

Hab. Hermite Island, Cape Horn; in woods. Staten Land, Menzies. Falkland Islands; on roeks near the hill tops.

S1. Jungermannla Magellanica, Spreng., in Amat. des Wetter. Ges. vol.i. p.25. t.4. f.10, (fid.Gottsche, Lindl. et Nees, Syn. Hep. p. 447.)

Hab. Strait of Magalhaens ; on Drimys Winteri and Berberis ilicifolia; Forster (fid. Gottsche).
(13. Lejeunia, Spreng.)
82. Jungermannia sulintegra, Hook. fil. et Tayl.; caule breviusculo cæspitoso procumbente elongato subsimplici, foliis subimbrieatis erectiusculis integerrinis, lobo superiore oblongo-rotundato, inferiore $\frac{1}{3}$ breviore tumido involuto angulo superiore actminato, stipulis caule panlo latioribus ovatis acntis integerrimis v. summo apice fissis. Nobis in Lond. Journ. Bot. vol. iv. p. 477. Gottschc, Lindb. et Nees, Syn. Mep. p. 377. (Tab. CLX. Fig. V.)

Hab. Falkland Islands; in wet places near the sea.
Caspites late extensi, pallide olivacei. Caules vix $\frac{1}{3}$ unc. longi, plerumque simplices. Folia ampleetantia, suberecta, concava, diametro caulis duplo latiora, laxe cellulosa, areolis majnsculis. Stipule majnseulæ, integerrime, v. imo apice solum fissæ, segmentis approximatis.

The great size of the stipules comparatively to the leaves and their very obscure division, afford sufficiently distinctive characters of this species.

Puate CLS. Fig. V.-1, plant of the natural size; 2, stem; 3, leaf; 4 and 5, stipules:-magnified.
83. Jungermannia parasitiea, Hook. fil. et Tayl.; caule subimplexo procumbente pinnatim ramoso, folis subapproximatis patentibus valde coneavis integerrimis v. obseure dentatis, lobo superiore triangulariovato acuto v . aeuminato apice subrecurvo, inferiore oblongo acuminato, stipulis parvis obovato-quadratis bilobis lobis rotundatis integerrimis. Nobis in Lond. Journ. Bot. vol. iii. p. 477. J. marginalis, nolis, l.c. vol. iv. p. 91. ('Tab. CLX. Fig. VI.)

Hab. Hermite Island, Cape Horn ; parasitical on J. uneialis, and amongst lichens on trunks of trees.
Caules gracillimi, minimi, oculo mudo invisibiles, pallide virides, inter Lichenes aliasque Hepaticas dispersi, $\frac{1}{10}$ unc. longi, subpimnatim ramosi, ramis suberectis. Folia subremota, patentia, basi latiuscnla, apicibus acuminatis, incurvis v . recurvis, lobo inferiore margine involuto subundulato.

This las precisely the habit and appearance of the Irish J.orata, Tayl. MSS., an equally minnte parasite, with stipulcs of the same form. The present differs from that in the shape of the more distant leaves, which are shorter, wider at the base, and more acute above. The whole plant is of a paler colour, and from the smaller size of the cells of the leaves their tissue is more dense.

Plate CLX. Fig. V'I.-1, plant of the natural size ; 2, stem, leaves, and stipules ; 3, leaf; 4, stipule :-magnified.
84. Jungermannia rufescens, Lindb., in Gottsche, Lindlu. et Nees, Syn. Mep. p. 366.

Hab. Staten Land, Menzies (in Herb. Hook.).
(14. Diplolena, Nees.)
85. Jungemannia pisicolor, Hook. fil. et Tayl.; fronde laxe eæspitosa ereeta dichotome divisa basi in stipitem teretem gradatim attenuata, lobis linearibus obtusis emarginatis uninerviis integerrimis. Nobis in Lond. Joum. Bot. vol. iii. p. 478 . (Tab. CLX. Fig. VII.)

Hab. Hermite Island, Cape Horn; at the bottom of an alpine lake.
Frondes e radice repente clongato crecti, sub 3 une. lati, pisicolores, dcmum flavescentes, parte inferiore atra, bis terve dichotome divisi, lobis plerumque madore concavis, e margine proliferi ; juniores basi ratundati, primum liberi ?, demum radices emittentes. Nervus validus, pereurrens, siecitate tenuis, albescens, madore dilatatus, fronde concolor, axillis acutis.

A very distinet and curious plant, allied to the J. teminervis, nob., of New Zealand, from which it may be known by its yellow-green colour, greater size, and taller habit, narrower and more elongated lobes, and, above all, by its being crect, differing remarkably in that respect from its northern allics, J. Hibernicu, Hook., and J. Lyellii, Hook.

Plate CLX. Fig. VII.-1, plant of the uatural size; 2, apex of frond:-magnified.

(15. Aneuka, Nees.)

86. Jungermannia multifilda, Limn.; Fl. Antaret. Pe. 1. p. 166.

Var. β. submersa; fronde anguste lineari-elongata pellueida parce ramosa plana, ramis brevibus, perigoniis marginalibus altermis brevissimis, cellulis deusis.

Var. γ. nana; parvula, ramosa, cellulis latioribus brevioribusque.
Hab. Hermite lsland, Cape Horı; var. a and β, very abundant ; var. γ, in a fresh-water lake amongst the mountains. Falkland Islands; abundant.

An extremely abundant plaut in the southern extra-tropical regions.
87. Jungermannia pinguis, L. Hook. Brit. Jung. t. 46.

Hab. Hermite Island, Cape Horn ; wet places in the woods.
88. Jungermannla alcicornis, Hook. fil. et Tayl.; fronde cespitosa erecta alterne bipiunatim ramosa, caule ramisque linearibus laciniis lobisve brevibus subtruneatis, calyptris lateralibus linearibus albidis scabridis apice laceris. Nobis in Lonả. Jou'n. Bot. vol. iii. p.479. (Tab. CLX. Fig. VIII.)

Hab. Hermite Island, Cape Horn; mossy places in the woods.
Frondes cæspitosi, plamusculi, unciales, circumscriptione oblongi, juniores læte virides, demum fuscescentes et siccitate uigrescentes. Rami scu laciniæ basi subdichotomi, superne subpinnatim divisi; lobudis brevibus, obtusis. Calyptrce partc frondis inferiore laterales, valde elongatæ, cylindraceæ, basi curvatæ, carnosæ, papillosæ. Seta sub $\frac{1}{2}$ uuc. longa. Capsula cylindracea.

A very beautiful little species, allied to the J. palmata, Hoffim., of Europe; bnt much more divided, with the divisions pinnate and not palmate; the lobules also are much narrower, and the calyptra is borne higher up in the frond.

Plate CLX. Fig. VIII.-1, plant of the natural size; 2, ditto; 3, branch and calyptra:-magnified.

(16. Metzgerla, Nees.)

89. Jungermannia furcata, L. Flor. Antarct. Pt. 1. p. 167.

Var. ß. pubescens, J. pubescens, Brit. Jung.
Hab. Hermite Island, Cape Horn ; in woods, \&cc.; both varieties abuudant.
90. Jungermannia prekensilis, Hook. fil. et Tayl. ; fronde laxe cespitosa, ramis erectis incurvis alatis, lobis secundis alteruis pinnatis, pinnulis linearibus planis crassinerviis, calyptra e basi anguste elongatoobovata basi squamosa, perigoniis clavatis. Nobis in Lond. Journ. Bot. vol. iii. p. 480 . (Tab. CLX. Fig. IX.)

Hab. Hermite Island, Cape Horn ; on moist banks near the sea.
Frondes laxe cæspitosi, apicibus latiusculis hamatis. Caulis planus, brumneus, pubescens, pinnulis glabratis pallide olivaceis. Calyptree brunneæ, apices versus frondis laciniarum basi superficie inferiore sitæ, hinc occlusæ, interdum binæ. Perigonia plantis aliis obvia, clavata, c ramo pinnato frondis constantia, lobulis pinnisve incurvis singulis antheram majnsculam sphericam pedicellatam foveutibus.

A remarkably distinct and fine species, most resembling the J.eriocaula, Hook., of New Zealand; though the froud is of a darker colour and tripinnate, the pimmules much narrower, and the whole plant more elongated and divided. The perigonia and calyptre occupy similar positions on different plants.

Plate CLX. Fig. IX.-1, plant of the natural size ; 2, upper, and 3, under surface of branch with calyptra; 4, calyptra :-magnifiecl.

(17. Noteroclada, Tayl.)

Involucrum apicem versus frondis concavi tumidi inflatum, ore libero sub-bilobo. Capsula quadrivalvis, seu irregulariter rumpens, pedicellata. Elateres spirales seminibus immistw. Antherce fronde immerse. Frons pinnatim lobata, v. fokis basi latissimis longe decurrentibus subspirabiter dispositis ornata.-Stirps inter Jungermamias foliosas, frondosasque quasi media, his tamen accedens.-Androcryphia, Gottsche.
91. Jungermannia confuens, Tayl. in Lond. Journ. Bot. vol.iii. p.478. (Tab.CLXI. Fig. VII.in part.)
$H_{\Delta B}$. Hermite Island, Cape Horn; on the bare ground in woods. Falkland Islands and Christmas Harbour, Kerguelen's Land; on moist banks.

Laxe cespitosa. Frondes flaccidissimi, 2 unc. longi, erecti. Caulis simpliciusculus, foliis imbricatis omnino occlusus, subrufescens, gracilis. Folia alterna, tenerrima, madore carnosiuscula, siccitate membranacea, ægre resuscitentia, et inter se quasi confluentia (hine frons prima visu continua et lobata), basi latissima, bis latiora quam longa, longe decurrentia, fere amplexicaulia, semi-orbicularia, apice rotundata v. retusa, areolis majusculis. Inwolucrum terminale, sessile, erectum, cylindraceum, compressum, ore eroso-dentato. Seta uncialis, gracilis. Capsula ovato-globosa, irregulariter v. regulariter rumpens. Elateres brevissimi. Calyptra irregulariter rupta, parte superiore stylo persistente terminata. Anlherce ovato-oblougæ, biseriales, substantia froudis immerse, liquido oleaginoso scatentes.

A genus allied to Fossombronia, but the structure of the involucre, apparently formed very much out of the froud itself, is quite dissimilar. The involucre is terminal in this species, but lateral in a Brazilian congener, which was loug regarded as identical, and smooth; when terminal, winged from the adhesion to its surface of the upper abbreviated leaves: it is either truncated or obsewrely two-lipped. The young spores are united by fours in a trausparent membrane. The drawing of the fruit is taken from Brazilian specimens of an allied species, or perhaps rariety, collected by Mr. Gardner ; the leaves of the Antaretic plant having become so firmly united under pressure, that no maceration would separate them satisfactorily.

In the 'Synopsis Hepaticarum' of Nces, Lindenberg and Gottsche, the generic name has becn clanged to Androcryplica, with the following explanation. "Noteroclada nomen Grece cum sonet neque Greec esse possit
 alind nomen ægre id quidem mecum sustinui." (l. c. p. 470.) The derivation of the name being, howerer, vornpòs "madidus," sufficiently rindicates the adoption of Noteroclada.

Plate CLXI. Fig. VII. (in part.)-1, Brazilian, and 2, Falkland Island specimen, of the natural size ; 3, branch, leaves, \&c., of the Brazilian specimen ; 4, leaf of ditto; 5, corolla of ditto:-mannifeed.
(18. Fossombronia, Nees.)
92. Juxgermanyla pusilla, L.

LLab. Kerguelen's Land; on bauks amongst moss, \&ec.
Also a native of Nerv Zealand, and probably not an uncommon plant in the temperate parts of the Southern as it is of the Northeru hemisphcre.

2. Marchantla, March.

1. Marchaxtla polymoripha, L. Flor. Antaret. Pt. 1. p. 168.

Hab. Fuegia, the Falkland Islands, and Kerguelen's Land; very abundaut.
This is perhaps the most widely dispersed of Hepatice, ranging from the Arctic circle to the 57 th degree of south latitude.

3. ANTHOCEROS, Michel.

1. Anthoceros punctatus, L.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; very common.

LIV. FUNGI, L.

(By the Rev. M. J. Berkeley.)

1. AGARICUS, L.

1. Agaricus longinquus, Berk.; pileo obliquo suborbiculari albo demum pallide fusco glabro nitente, strato superiore gelatinoso, stipite curto quandoque brevissimo pallide flavo-fusco basi albo-floccoso, lamellis albis subfurcatis, interstitiis lævibus. (Tab. CLXIII. Fig. V.)

Hab. Hermite Island, Cape Horn ; on dead wood near the sea.
Pileus $\frac{3}{4}$ unc. et ultra latus, temuis, oblique ovatus vel semiorbicularis, primum subtiliter pruinosus, mox autem glaberrimus, nitens; marginc striato; stratum epidermale gelatinosum. Stipes rix liueam exsuperans quandoque obsoletus, æqualis, primum ceutralis, deinde excentricus aut omnino lateralis, subtiliter pruiuosus, demum glaber, pallide flaro-fuscus, ad matricem besi tomentosa affixus. Lamellee albæ, distantiusculæ, subfurcate, prope marginem presertim subventricosæ, decurrentes, interstitiis levilus, non reticulatis.

The nearest ally of this species is perhaps $A g$. mitis, Pers., but the stem is not dilated upwards and the pileus is seldom perfectly lateral. Its colour, too, is different, and it has not the same opake appearance when dry. The upper stratum is gelatinous, though the pilens is dry externally ; a character common to sereral closely allied species. It resembles also some smaller forms of $\mathcal{A g}$. algidus, Fr., but that is at first resupinate, whereas in the present species the stem is normal, though, as in most of the smaller excentric Agarics, occasionally obsolete. I do not know any other species with which it is necessary to coumpare it.

Plate CLXIII. Fig. V.-1, Agaricus longinquus, Berk., of the natural size, from rather young specimens; 2, another:-magnifed.
2. Agaricus exquisitus, Berk.; minimus, tenerrimus, pileo ferrugineo subtiliter pulverulento, stipite brevi filiformi sursum incrassato pulvcrulento pilco concolori, basi dilatata irregulariter floccoso-membranacea, lamellis paucissimis ventricosis subliberis albo-marginatis interstitisque lævibus ferrugiveis.

Hab. Port Loums, Falkland Islands; on stems of Chiliotrichum amelloides.
Pileus membranaceus, 1 liu. latus, orbicularis, subtiliter pudverulentus, ferrugineus. Stipes 2 lin. altus, filiformis, sursum incrassatus, flexuosus, pulverulentus, pileo concolor, basi disco irregulari flexuoso-membranaceo affixus. Lamellce paucæ (6), sullibere, ferrugiueo-fuscæ, interstitüs latis lævibus.

This elegaut little Agaric diflers from Ag. horizontalis, Bull., an imperfectly known specics, which I have received from Dr. Léreillé and have myself gathered on the trunks of trees in the park at Burleigh, near Stamford, in being altogether more delicate, in the membranaccous pilens, and especially in the absence of smaller gills betreen the larger. The pileus of Ag. horizontalis also is much darker when dry.
3. Agarices Glebarum, Berk.; pileo carnoso late umbonato glabro pallide fusco, stipite brevi glabro sursum subincrassato solido, basi myecho floccoso affixa, lamellis latinsculis adnatis horizontalibus fulvis. (Tab. CLXII. Fig. III.)

Hab. Berkeley Sound, Falkland Islands; growing out of tufts of Bolax on the hills, where it endures a great degree of wet and cold.

Pileus $\frac{3}{4}$ uuc. latus, glaberrimus, subhemisphcricus, umbonatus, pro ratione valde carnosus, senectute rugosns; nequaquam viscidus. Stipes $\frac{3}{4}$ unc. altus, $1 \frac{1}{2}$ lin. crassus, solidus, subtiliter fibrillosus, sursum incrassatus, basi ad
surculos foliaque marcida mycelio floccoso affixus. Lamelle latiusculæ, horizontales, dente obsctuo aduatæ, subdistantes, quandoque furcatæ. Spore oblique ellipticæ, sub lente aureo-fuscæ, nucleo parto globoso. Margo pilei interdum reflexus discusque exinde depressus, tunc ctiam lamellæ, ni caute perscrutentur, bibere habcantur.

This species is allied to Ag. imnocens, Tasch, and Ag. cerodes, Fr. From the latter it differs in its solid stem ; from the former, in its decidedly carnose umbonate pilcus.

Plate CLXII. Fig. III.-1, Ag. Glebarnm, Berk., of the natural size, on tufts of Bolax; 2, vertical sectiou of the same; 3 , spores :-highly magnified.
4. Agaricus fascicularis, Huds., Fl. Angl. p. 615. Fries, Ep. p. 222.

Hab. Hermite Island, Cape Horn; on the trumk of a dead tree, Mrr. Davis.
A single specimen only was found.
5. Agaricus papilionaceus, Bull., t. 561. f. 2. Pers. in Freyc. Foy. p.168. Ag. fimetarius, Guud. in Ann. des Sc. Nat. vol. v. p. 97.

Hab. Falkland Islands; Gaudichaud.
This species was not met with during the visit of the Erebus and Terror. Ag. Glebarum could not have been considered as belonging to the subdivision of Coprini. The pileus is said by Persoon to be broader, and the stem shorter than in Bulliard's figure.

2. COPRINUS, Pers.

1. Coprinus Flosculus, Berk.; mimimus, tenerrimus, pileo glabro ovato demum expanso hemispherico fisso sulcato vertice depressiusculo, stipite brevi, lamellis liberis paucis linearibus remotis. (Tab. CLIII. Fig. II.)

Hab. Berkeley Sound, Falkland Islands; on dung.
Pileus $1 \frac{1}{2}$ lin. altus, 1 lin. latus, ovatus, profunde ex ipso vertice sulcatus, interstitus striatis, glaber, subgriseus, margine crenulato, demum expansus, hemisphcricus, fissus. Stipes $\frac{1}{2}$ lin. altus, filiformis, primum leviter ad basin turgidus, demum æqualis. Lamellœ primariæ subdecem, liberæ, remotæ, lineares. Sporce oratæ, atro-purpureæ.

A minnte Coprinus, belonging to the same section with Coprinus Hemerobius, but differing from it and from the other species of the section in various characters. It resembles im Labit C. Hendersonii, Berk., but wants the ring which is characteristic of that species.

Plate CLXII. Fig. II.-1, Coprinus Flosculus, of the uatural size ; 2, ditto:-magnified; 3, hymenium, viewed vertically with the sporcs on the sporophores; 4, spores:-highly magnified.

3. POLYPORUS, Fries.

1. Polyporus versicolor, Fr., Ep. p. 473. Berk. in Ann. Nat. Hist. vol.iv. p. 292.

Hab. Falkland Islands; on the underside of timber, C. Darwin, Esq.
This can scarcely be considered indigenous. The mycelinm in all probability cxisted on the timber when imported.

4. CORTICIUM, Fries.

1. Corticium tiemellinum, Berk.; confluenti-effusum, gelatinosum, pellucidum, candidum, quandoque opacum, subtiliter prumosum, siccum non rimosum decoloratum.

Hab. Hermite Island, Cape Horn ; on bark of the Deciduous Beech in damp woods.

Primnn maculas orbiculares exhibens, que demum coufluendo areolas tenues longe effusas omues matricis inæqualitates obserrantes efficiunt; album, ht phurimm pcllucidum, quandoque opacum, temue gelatinosum, subtiliter pruinosum atque exinde nitidulum, inodorun, insipidum ; exsiccatum sordide umbrinum. Margo tennis, nequaquam finbriatus, hic illic exsiccatione liber. Sporce elliptice, majores.

Nearly allied to Corticium viscosum, but not in the least cracked when dry. I have found the same species, apparently, in Sherwood Forest, which I had referred to C. viscosum ; but the characters given by Fries, in his - Epicrisis,' indicate a distinct species.*

5. TREMELLA, I.

1. Tremella mesenterica, Retz, in Vetcnsk Ac. Handl. 1769, p. 249. Engl. Bot. t. 709.

Hab. Hermite Island, Cape Horn; on a dead trunk of Deciduous Beech, almost covered with former winters' snow, 1,200 feet above the sea, in an exposed place.

The ouly specimen seen.

6. EXIDIA, Fries.

1. Exidia Auricula Juda, Fries, Ep. p. 590.

Hab. Port Famine ; on Beech, C. Darwin, Esq. Hermite Island, Cape Horn ; J. D. H.
The specimens collected in the latter locality are small and less tomentose than the more usual state of the species.

7. CRUCIBULUM, Tut.

1. Crucibulum rulgare, Tul. Amn. Sc. Nat. Ser. 3. vol. i. p. 90. Cyathus Crucibulum, Pers. Syn. p. 23S. Grev. Scot. Crypt.Fl. t. 34.

Hab. Hermite Island, Cape Morn; on moss near the sea, always solitary.
The spccimens differ from the ordinary form, which occurs in the southern as well as in the northern hemisphere, in their solitary habit, more conical peridia, which are of a semi-transparent dirty orange-yellow, and in the more irregular sporangia. In structure I find no difference.

S. LYCOPERDON, Tourn.

1. Licoperdon calatum, Bull. Champ. vol. i. p. 156. t. 430.

Hab. Falklaud Islands; on a tuft of Bolar.
One specimen only was met with.
It is not possible to speak very positively of a single old specimen and which had been evidently much exposed to the weather. It is, however, certainly neither L. gemmatum, nor L. pyriforme, and appears to me to be a state of L. celatum. L. arenarium, Pers., will be found under the genus Bulgaria.

9. LEPTOTHYRIUM, Kie.

1. Leptothyrium decipiens, Berk.; suborbiculare, atrum, nitidum, sporis tenerrimis irregulari-subfusiformibus quandoque curvatis. (Tab. CLAIII. Fig. III.)

[^40]H_{a}. Falkland Islands; on dead stems of Rosthoria grandiflora.
Puncta irregularia suborbicularia picea nitida in cuhnos exsiccatos efformans. Perithecia valde depressa, demnm basi squamæ instar dehiscentia. Spore irregulares, fusiformes, quandoque curvatæ, tenerrimæ, albæ, pellucidæ; endochromium varie partitum, non autem septatum.

A species which, examined superficially, may be passed over as Leptostroma junceum, differing merely in its more shining perithecium. The spores are, however, of a very different form, and many times larger. In that species, as published in 'British Fungi' (No. 197), and by Madame Libert (No. 260), they are extremely minute and obtuse at cither cxtremity ; the perithecium also is more closely cellular. In the specimens published by Klotzsch and Fries (in my copy at least), there is no fructification. It resembles also, exiernally, Leptostroma vulgare, but there is as decided a difference as in the former case between the spores.

Plale CLXilit. Fig. IIt.—Leptothyrium decipiens, Berk., of the matural size; 2, portion of stem of Rostkovic grandifora, with base of peridium adhering to it :-magnified; 3, spores:- lighly magnified.

10. SPH ERONEMA, Fries.

1. Spheronema sticticum, Berk.; minutissimum, punctiforme, innatum, atrum, nitidum, demum collapsum, sporis minutissimis ellipticis. (Tab. CLIIIII. Fig. I.)
$H_{\text {ab. }}$ Hermite Island, Cape Horn; on dead leaves of the Deciduous Beech (Fagus Antarctica.)
Minutissinum, punctiforme, atrum, nitidum, demum collapsum, precipue venis foliorum innatum, unde dispositionem reticulatam exhibit. Spore minutissimæ, sporophoris brevibus filiformibus affixæ.

Not to be confounded with Spheria punctiformis, P'ers., (Fr. Sc. Suec. No. 56), which has true asci, assuming the production published by Fries, which exactly accords with specimens gathered in Northamptonshire, to be the type of the species. Both Desmazière's (No. 984), and Mougeot's, and Nestler's (No. 662) plants appear to me quite different. Unfortunately in neither have I been able to detect fructification. In Mongeot's plant the perithecia are strongly collapsed, which is by no means the case with that of Fries; and that of Desmaziere approaches $S p$. maculaformis.

The genus Spheronema is here considered as comprising such species of the genus Sphceria as have simple spores, never included in asci, such as $S p$. acuta, \&c.

Plate CLXIII. Fig. I. - 1, Spheronema sticticum, Berk., upon leaves of Fagus, of the natural size; 2, portion of leaf and fungus: 3 , spores on their sporophores; 4 , spores:-all highly magnified.

11. SPORIDESMIUM, Lk.

1. Sporidesmium adscendens, Berk., in Ann. Nut. Hist. vol. iv. p. 292. t. S. f. 1. 1 S10.

Hab. Falkland Islands; on the underside of Polyporus versicolor, C. Darwin, Esq.
The species is nearly allicd to $S p$. ragum, Necs, from which it differs merely in having constantly a single globose nucleus in each articulation, presuming that Corda's figure, published in the same year with that in the Annals of Natural History, is the plant of Nees.

12. ECIDIUM, Gmel.

1. Acidicm Magellanicum, Berk.; hypophyllum, totam faciem inferiorem occupans inque petiolos sparsum, rarissime epiphyllum, maculis rubellis, peridis urcealatis elougatis, sporis pallidis irregulariter orbicularibus. (Тав. CLXIII. Fig. II.)

Hab. Strait of Magalluaens; Port Famine; on Berleris ilicifolia, Cupt. King.

Maculæ rubclie; peridia plus minus elongata, wreolata, sursum leviter coustricta, vel omnino eylindracca, fragilia, totam superfieiem inferiorem investientia, plus minus in petiolos descendeutia. Sporee pallidee (saltem in exemplaribus cxsiccatis) irregulariter sulgobose, angulatæ. Rarissime pauca peridia cpiphylla sunt.

Resembling much in external appearance .Ec. sambucinum, Schwein. It is at once distinguished from Ecidinut Berberidis by its very diflerent labit.

Plate CLNII1. Fig. II.-1, leaves of Berberis and Ecidium Mageltanicum, of the natural size; 2, portion of leaf and fungus; 3, spores :-highly magnified.
13. UREDO, Pers.

1. Uredo candicla, Pers., Syn. p. 223.

Hab. Falkland Islands; on Arabis Macloviana, Capt. Sulivan.
The mycelium is very visible in these specimens. There is no difference in the spores.

14. MORCHELLA, Dill.

1. Morchella scmilibera, Dec., Fl. Fr. vol.ii. p. 212.

Нab. Falkland Islands; on the ground.
I have seen a single imperfect specimen only, which is scarcely more than sufficient to determine the genus. I believe it, however, to be the species of De Candolle, above cited.

15. PEZIZA, Dill.

1. Peziza Kerguelcnsis, Berk.; media, cupula plana adnata coccinea extus sctis brevioribus obsita. (Tab. CLXIV. Fig. III.)

Hab. Hermite Island, Cape Horn ; on dead branches amongst the snow, alt. 1,000 feet. Christmas Harbour, Kerguelen's Land; May and June; on bare boggy earth near the sea, growing amongst Conferce.

Cupula $\frac{1}{2}-\frac{3}{4}$ unc. lata, plana, adnata, margine tantum ut plurimum libcro, coccinea, externe setis brevioribus subflaceidis plus minus contextis primum pallidis deinde saturate rubris vestita, dissepimentis demum absorptis. Asci lineares, obtusi ; sporidia late elliptica, glabra, nucleo unico globoso ; paraphyses apice clavulate.

Allied to P. scutellata and P. umbrosa, but larger than cither. The bristles are short and somewhat flaceid, in which it differs strikingly from the former species, as also in its broader sporidia. From the latter it differs priucipally in its larger size and less couspicuous hairs. I am not able, in the abscnce of authentic specimens, to compare the sporidia; but if that species be the same with P. trechispora, Berk., and Broome, which is not impossible, the differenee is cousiderable.

Plate CLXIV. Fig. III.-1, Kerguelen's Land, aud 2, Cape Horn specimens; of the natural size; 3, sctæ: -magnified; 4, asci, sporidia and paraphyses; 5, sporidia:-very bighly magnifed.

2. Peziza stercorea, Pers. Ols. vol. ii. p. 89 . (Tab. CLXIII. Fig. IV.)

- Jab. Port Louis, Falkland Islands ; on cow-dung.

Not distinguishable from European specimeus. I caunot detect Ascobolus furfuraceus, which is so geuerally its companion in Europe.

Plate CLXIII. Fig. IV.-1, bristles from cup; 2, asci and paraphyses, in the broken ascus the imuer membrane is visible, projecting below; 3, sporidia:-all highly magnified.

16. BULGARLA, Fries.

1. Bulgaria arenaria, Lév., Ann. Sc. Nat. Ser. 3. vol. v. p. 253. Lycoperdon arenarium, Pers. in Freye. Toy. p. 179. t. 1. f. 2. Geud. 1. c.

Hab. Falkland Islands; "très-common cn Mars et Avil, an sommet des dumes de sable qui bordent le contour de la baie Francaise an Camp de l'Uranie."

This species unfortunately was not found during the visit of the Erebus and Terror. M. Léveille has had an opportunity of inspecting an original specimen, and finds its slender asci to contain simple sporidia.

17. CFTTARTA, Berk.

1. Cyttarla Mookeri, Berk.; parva, turbinato-obovata, obtuse papillata, pallide fusca, cupulis paucis. (Tab. CLAII. Fig. I.)

Hab. Hermite Island, Cape Horn ; on living branches of the Deciduous Beech.
Receptacula communia oborata, e diseo oblongo corticali enata, $\frac{3}{4}-1$ une. alta, $\frac{1}{2}-\frac{3}{4}$ me. crassa, basi attenuata, apiee obtuse papillæformi, pallide fusea, glabra; contextu ut in aliis speeiebus gelatinoso-carnoso, e fibris anastomosantibus; enpulis paucis, primum materie gummosa repletis, demum racuis; ascis linearibus truncatis, paraphysibus linearibus quandoque furcatis immixtis. Sporidia ignota.

The genns Cyttaria is peculiar to the Southern hemisphere, and unless Commerson's habitat, to be mentioned presently, should prove correct, to the more temperate latitudes. All the species known at present grow on living beeeln : Cyttaria Berteroi on Fagus obliqua, the Fuegian species on Fagus betuloides, that of Tasmania on Fagus Cuminghami, and Cyttaria Hookeri on Fagus Antarctica._ The species, on whieh Cyttaria disciformis, Lév., grows, has not been ascertained. It is probable that the genus occurs also in New Zealand, where thcre is a speeies of beech closely allied to Fagus Cmminghami. There exists, indeed, in Monsicu• B. Delessert's 1Lerbarium, a species purporting to have been collected in the Isle of Bowbon, by Commerson, but though the locality* is rery preciscly indicated, it is probable, both on account of the difference of climate and the absence of the genus Fagus in that island, that there is some mistake about the specimen.

All the species seem to grow from a distinct dise, which donbtless, as in Podisoma, produees a fresh erop every season. The disc bursts through the cuticle, and is formed either entirely of the lower portion of the bark, or of that and the upper stratum of the wood, which are split longitudinally or in the direction of the medullary rays, the fissurcs being traversed by loose threads of myeelium. Sometimes, also, there are traces of mycelimm in portions of bark where no disc has been protruded. The strueture of the bark is often much deranged, and sometimes quite disorganized. The base of the receptaeles is attenuated, and penetrates generally to the dotted vessels. In Cyttaria Gnmiit, which seems more truly cortical, there appears always to be a fasciele of suel vessels in connexion with the base penetrating through the cortical stratum. I do not find this to be the case in Cyttaria Hookeri. The strueture of the substance of the receptacles is so different in the plant when dry, from that in the same species when

* The label attached to the specimen is literally as follows:-
"Elvela Claturus: sessilis seutelle instar concava, brunnea subterius murina Commerson. Vel aeaulis scutelliformis in concavitate fusea subterius e murino cinerascens. Comm. Entre la Rivière du Rampart et Langevin St. Vincendan, à Bourbon.

Envoié à M. Linné sous le No. 1 (incomnu à M. Limné) An. 1779." (Such appears to be the date, but Commerson died at the Isle of France, in 1773, and the elder Linnens in 1778.
preserved in spirits, as to be scarccly recognizable. I had, at first, on examining dried spceimens of Cyttaria Gumnii, fancied that I had madc some mistake in the analysis given in my pajer in the 19 th volume of the Limean Transactions. The fact is, that when a very thin slice of the dried plant is placed on the field of the microscope, the gelatinous coat of the threads of which it is composed becomes visible ; while in the plant preserved in spirits, the jelly seems to form one common mass in which the central tube alone is exhibited, and when the plexus of filaments is drawn out with the point of a lancet, they appear far less curled than they do in situ. Perfect sporidia have not at present been observed in any spccies.*

Plate CLXII. Fig. I.-1, Cyttaria IIookeri, Berk., of the natural size, on a living twig of Fagus Autarctica; 2 , vertical, and 3 , transvcrse sections of a single plant, of the natural size; 4 , asci and paraplyses; 5 , curions state of asci; 6, part of the tissue from the darker part of a specimen preserved in alcohol; 7, ditto from lighter part artificially extended; 8, portion of intercellular tissue of Cyttaria Cumnii as seen in a dry specimen; (the same structure is found in dry specimens of Cyttaria Hookeri, and in Cyttaria Daroinii, after it has been preserved in alcohol and dried for the Herbarium) ; 9, horizontal slice from portion of bark nearest to the wood, in a part of a twig not externally attacked by Cyttaria, to show the mycelium penetrating the cells; 10 , slice of fructifying dise, showing two sorts of tissue of the bark, intermpted by a cavity which is traversed by mycelium ; 11, slice of bark infested with mycelium ; 12, slice from the outer surface of the wood ; 13, section through a fructifying dise, showing fissures radiating from wood through the spongy portion of the bark, which is greatly increased in rolume, and also a cavity traversed by mycelium parallel to the cuticle. The lower portion of the fungus penetrates in this case to the wood; occasionally, howerer, it docs not penctrate quite so far :-all the above figures, with the exception of the first two, are more or less magnified.

18. ASTERINA, Lév.

1. Asterina pelliculosa, Berk.; effusa, tenuissima, peritheciis punctiformibus depressis atro-fuscis in mycelio fusco a matrice solubili sparsis. (Tab. CLNIV. Fig. I.)

Hab. Chonos Archipelago; on leaves of an Eugcnia ; C. Darwin, Esq.
Amphigena, atro-fusca; maculæ irregulares, varie effusæ punetiformesque, e fibrillis radiantibus intertextis ramis patentissimis formatæ, demun e matrice solubiles; interstitïs sepe strato celluloso tenuissimo repletis.

I have not detected fructification ; but the species certainly belongs to the genus Asterina, which is very properly scparated from Dothidea by Léveillé. The cells of which the perithecium is composed are elongated, but very irregular, and I find similar cells often filling up the iutcrstices left by the crossing of the radiating threads. Sometimes the mycelium is very obscurc and the species then assumes quitc a different appearance, the fructifying cells predominating and the patches presenting merely a brown stain studded with darker specks.

Plate CLXIV. Fig. I,-1, leaves of Eugenia, with Asterina pelliculosa, Berk., of the natural size; 2, part of peritheciun seen from the under side; 3 , filaments of mycelimn :-highly magnified.
2. Asterina stictica, Berk.; minutissima, omnino punctiformis, mycelio obscuro, peritheciis depressis atro-fuscis margine membranaceo pellucido. (Tab. CLNIV. Fig. IV.)

* The Tasmanian species, of which I have scen dried specimens only, differs from Cyttaria Darwinii in the total absence of the granulations at the base of the receptacle. It may be characterized,-

Cyttarla Gumii, Berk.; receptaculo subglohoso demum cavo, basi non primum distincte stipitiformi nec scabra, cupulis parvis.

Hab. Tasmania; on Fagus Cunninghamii, R. C. Gunn, Esq.

The specimens are hollow when dry. I cannot say whether such is also the case in Cyttaria Darwinii.

Hab. Hermite Island, Cape Horn ; on leaves of Viola tridentatu. $_{\text {a }}$
Amphigena, punctiformis. Myeelinn valde obscrrum, e filamentis paucis brevibus parec ramosis. Perithecia depressa, atro-fusea, e cellulis radiantibus elongatis subregularibus formata; margine tenui lacerato membranaceo pellucido.

Neither have I been able to detect fructification in this plant, but the genus is I believe certain.
Plate Clisiv. Fig. IV.-1, Fiola attacked witl Fungus of the natural size; 2, leaf of ditto and Fungıs; 3, perithecium ; 4, portion of edge of ditto:--highly magnifeed.
3. Asterina Darvinüi, Berk.; epiphylla, maculis parvis orbieularibus e fibrillis radiantibus artieulatis inartieulatisque, peritheciis irregularibus demum depressis centralibus margine laciuiato. ('Tab. CLIIV. Fig. II.)

Hab. Cape Tres Montes ; on Azura lanceolata; C. Darwin, Esq.
Maeule epiplylle, orbiculares, $\frac{1}{2}-1$ lin. late, e fibrillis radiantibus reticulatisque, partim e margine perithecii, partim e superficie inferiore enatæ, breviter articulatie, aut omnino simplices. Perithecia primum irregularia, sulsclevata, demum depressa, margine laciniato laciniis denticulatis. Asci ut in reliquis speciebus globosi; sporidia oblonga, biloculata.

Apparently different from A. Azare, Lév., in its perithecia, which are not depressed in the centre, as in that species. Unfortunately I have no opportunity of comparing them. The perithecium, both here and in Asteriua microscopica, splits from the centre in a radiating mamer when slightly pressed.

Plate CLXIV. Fig. II.-1, Asterina Darwinii, Berk., on leaves of Azara lanceolata, of the natural size: 2, perithecia and nyycelium ; a, cuticle of matrix ; b, incipient perithecium ; c, curious processes given off from threads of mycelium; 3, fibres of mycelium ; 4, portion of border of perithecinn; 5 , processes on threads of mycelium; 6, asei; 7, sporidia :-all very higlly magnified.

19. EUROTIUM, L k:

1. Eurotium herbariorum, Lk., Ols. vol. i. p. 99. f. 44.
$H_{\Delta B}$. On biseuit on board the 'Erebus', Jan. 3rd, 1841.
The sporangia in the specimens before me, which are very seanty, are almost destitute of flocei, but accompanied by an abundant tawny mycelium, thus confirming the opinion of Fries and Corda, that Eurrotium epixylon is not really a distinct species. I cannot, however, think with Corda that it has the slightest affinity with Prysurrum. The morphosis has not at present been traced, and till this is done it appears better to let it remain where Frics lias placed it, in the neighbourhood of Mucor.
-The peridium is lined with a stratum of gelatinous cells, which vamish in a great measure as the plant approaches maturity. The flocei in Kze. and Schm., 1. 83, are rough and dark, but I find great variation both of surface aud colour.

LV. ALGe, L.

1. D'URVILLEA, Bory.
2. D'Urvillea utilis, Bory, in Duperrey Foy. Bot. p. 65. t. 1 et 2. f. 2. Fl. Autarct. P't. 1. p. 167. Laminaria cerprestipes, Montagne in Voy. D'O.bigny, Bot. Crypl. p.11. t. a.

Hab. Tierra del Fuego, the Falkland Islands, and Kerguelen's Land; very abundant at half-tide mark and below it; also in the open ocean, between lat. 45° and $55^{\circ} \mathrm{S}$., reaching the 65 th degree of south latitude in the meridian of New Zealand.

This, the Lessonia, aud Macrocystis are the three most remarkable Algee of the Antarctic regions, especially on account of their size ; the present exceeding any sea-weed, except the Lessonia and the Ecklonia buccinalis of the Cape of Good Hope, in bulk; while the Macrocystis, to which we shall afterwards allude, is the longest vegetable production knomn.

The nearest affinity of D ' Uvieillea was considered, in the 'London Journal of Botany' (vol. ii. p. 325), to be with IFimanthatia of the Northern and Aretic seas, an opinion to which one of us was led by observing how, in habit and locality, these species represented each other in the opposite Polar oceans. Wahlenberg, Bory de St. Vincent and Greville, all regard the curious pezizeform organ of Hinanthalia as the frond, and the deciduous strap-shaped

- lacinire as receptacles, which view is also maintained in the 'Phycologia Britannica' (t. lxxviii.) Lynglye (the founder of the species) and Agardh, on the other hand, pronounce the frond to be swollen at the base into a bladdery stipes, furnished with strap-shaped laciniæ, orer whose surface the conceptacles are scattered as in D'Uroillaa; and in Siphophora, a genus (as pointed out by Montagne) nearly allied to the present, and which represents it in a lower latitude of the Southern Ocean. In the 'London Journal of Botany' the true analogy to the bladder of IItimanthalia was sought in the trumpet-shaped stipes of Ecklonia buccinalis, but iu that plant the growth of stipes and frond proceeds from the earliest stage, pari-passu, whilst the bladder of Himanthatia is fully developed before the straps appear.

We have nowhere seen a grood representation of the beautiful cellular tissue of D'Urvillaa utilis, which, in its fresh state, is so regruar and large as to resemble perfectly in size and strueture one of the two layers of cells found in honey-comb. Most of the speeimens brought to Europe are injured by pressure, which can however hardly have caused the total obliteration of structure which M. Bory's plate represents; the most accurate figure we know is given in the beautiful plate accompanying M. Decaisne's 'Essay ou the fruetifieation of Algx'.

The spores of this and the following species are divided into four, and we cannot doubt but that this division is followed by the complete breaking up of the organ into four sporules, whose future geruination resembles that described by MM. Decaisne and Thuret in Fucus serratus ('Annales des Sc. Nat.' Ser. 3. vol. iii. p.10. t. 2). The conceptacles contain probally both antheridia and spores, so far as we cau judge from drawings taken from the living plant, though at the time these bodies were not recognized as belonging to two differents elasses of orgaus.

The northern limit of D'Urvillea will probally be found to be the latitude of Valparaiso, or $33^{\circ} \mathrm{S}$, on the West coast of South Ameriea, and $50^{\circ} \mathrm{S}$., on the opposite shores of the same continent. In New Zealand it attains the parallel of 40°, but whether it inhabits any of the shores of Tasmama, or is there represented by the Fucus potatorum, is a question we caunot answer. Though carried by the currents along the ocean to the south of the Cape of Good Hope, (for it was collected in that meridiau in the 51st degree, floating in the open ocean,) it does not appear to inbabit or be cast upon the southern extremity of Afriea; and in the Indian Ocean, again, its range is not likely to be north of the Islets of Prinee Edward's, the Crozet group and Kerguelen's Land. On the ofther hand, the south latitude it attains is probably regulated by the position of the Pack Jee, to witlin a few miles of which it was traced by the Antarctic Expedition, on one oceasion, south of New Zealand to the 65th degree, which is probally its "ultima Thule" in auy longitude; for it was there the last traee of vegetation. It grows invariably accompanied by the Macrocystis pyrifera.

Bory de St. Vincent states, on the excellent authority of D'Urville, that the poorer classes of West Chidi nse this plant for food, and that when made into soup it is very palateable, being sweet and mucilaginous. In Kerguelen's Land its enormous and weighty fronds, sometimes ten feet long, and alnost too licavy for a man to lift, form the only shelter for the shells and soft animals, which there find a refuge from the flocks of aquatic birds that cover the shores and follow the reecding tide.
2. D'Urvillea Marreyi, Hook. fil.; radice e fibris crassis demum auastomosantibus constante, stipite perbrevi valido compresso in laminam subsolidam coriaceam apice laciniatam gradatim dilatato. Nobis in Lond. Journ. Bot. vol. iv. p. 249. Himanthalia D'Urvillæi, Bory? in Duperrey Toy. Bot. p. 135. (Tab. CLIV, CLIVI.)

Hab. Hermite Island, Cape Horn, and the Falkland Islands; abundant.

Radix fibrosus, fibris crassis, inter se intricatis, demum anastomosantibus, diseum calmme pertusum 2-4 une. diametro cfficientibus. Stipes $3-4$-uneialis, $\frac{1}{2}-\frac{3}{4}$ une. diametro, valde compressns, in laminam forma variam gradatim dilatatus. Lamina 4-S-pedalis, snpra medium 1-2 ped. lata, plermmque late lanceolata, basi augustata, apieem versus in lacinias plures lineari-elongatas ligulatas abbreviatasve aeutas thmeatasve fissa, sieeitate atro-fusea v. subpieea, opaea, dura, subfragilis, lineis superfieialibus striata, v. subretieulata, e coneeptaeulis prominulis mamillosa; madore olivaceo-brumea, coriaeea v. flaccida, plana, lævis, intus solida, 1-4 lin. crassa. Conceptacula sphæriea, per totam frondem sparsa, poro ineonspicuo pertusa, filis artienlatis sporisque basifixis repleta. Spore ut in D.utili, varie quaternatim divisæ, limbo hyalino cinctæ.

Always eonsiderably smaller than the D. utilis, of a mueh thinuer texture, and readily distinguishable by its fibrous root. I have never observed the frond of even the largest state of this speeies to be filled with those elongated transverse cells which distinguish the former.

The structure of the frouds is seen to consist, on a transverse seetion, of a dense narrow layer of eortical substauce, whieh gradually beeorues more open inwards, and there breaks up into parallel lamellæ projeeting towards the centre of the frond. These are less densely packed inwards, and are uuited at right angles by similar very short plates, together forming a loose cellular tissue, whose walls are thickened at the angles; which, agaiu, at the very centre of the frond, are gradually resolved into a mass of slender, short, waved filaments, free or anastomosing and floating in a gelatiuc.

The affinity of the Laninaria potatorum is probably with this genus; it is deseribed, by M. Kiitzing, under the generie name of Sarcophycus (Phyeologia, p. 392). I have examined a very small fragment of the plant, and find the spores to be contained in eysts, altogether like those of D^{\prime} Urvillcea and Xiphophora.

Plates CLXV, CLXVI-1, transverse slice of frond; 2, vertical seetion of ditto; 3, spores aud antheridia; 4, spores:-lighly magnified.

2. SCYTOTHALIA, Grer.

1. Scytothalia Jacquinotii, Mont., in Foy. au Pole Sud, Bot. Ciypt. p. SG. t. 5.

Hab. Graham's Land; lat. 63° S., floating in the ocean, Dr. Lyyall. Deception Island, New South Shetlands; Mr. Weuster.

An aecurate description of this noble sea-weed is given by its diseoverer, Mr. Webster, R.N., in the Appendix to the Narrative of Capt. Foster's Voyage; though nothing was known of the species, botanically, until specimens were reeeived by Dr. Montagne, from the Herbarium of the French South Polar Expedition, colleeted within a very few aniles of the spot where it was agaiu seen by the Antaretie Experition, and obtained by our indefatigable friend, Dr. Lyall.

The existenee of this sea-weed on the Icy shores of an Antaretie land, in the lougitude of Cape Horn, is a most singutar and anomalous faet; for I believe it to be the only speeies of the tribe C'ystoseirece, which inhabits the colder or Antaretie seas of South America; thongh many abound in similar temperate latitudes of New Zealand, Lord Auekland's group, New Holland, and Tasmania. We have thus, under the most rigorous skies, the representative of a group, the total absence of whose other species in warmer seas of the same longitude, was supposed to be owing to a low degree of temperature being destruetive to its life. The said group of Cystoseirece is not here represented by a speeies in auy way indicative of its habitat being far remosed from its eongeners, or of its locality being uneongenial,
except by one of its own aspect; for its nearest and, indeed, very near ally, is a native of New Holland; whilst in size, luxnriance and beanty of growth, the present smpasses not only all other species of the genus, but almost the whole of the group Cystoseirece.

We are accustomed to regard the ocean as so ever-active and powerful an agent in facilitating migration, and its uniform temperature is so conducive to the general diffusion of species, that it seems almost wonderful that Alga should have limits to their distribution, especially in waters whieh gird the globe on the same parallel of latitude, and whose unchecked swells and currents literally extend over every degree of longitude. The remarkable increase in temperature of the tropical over the polar seas of the Atlantic may, and probably alone does, check the progress of the Macrocystis in its course from Cape Horn to the Equator in that ocean, for, as I shall afterwards show, the same sea-weed can float with the colder currents of the Pacific from the same Cape to Behring's Straits; but no such obstacle prevents the fullest interchange of Cystoseirece between New Zealand and the temperate seas of South America. It, however, is the fact, that whilst this group literally abounds in certain latitudes and longitudes, which are those of New Holland and the West Pacific, they are nearly absent from analogous positions in the longitude of South America.

Throughout all latitudes the two tribes Fucoidece and Cystoseirece form that prevailing marine regetation to which the name sea-weed is commonly applied ; and the different genera so far arrange themselves within geographical bmits as to present, with such few exceptions as the Scytotlalia Jacquinotii, a most harmonious assemblage. Thas, in the opposite colder and frigid zones the waters are inhabited by certain genera of Fucoidece which are in a great measure representatives of one another ; as, in

$$
\text { the north cool zone } \left.\left\{\begin{array}{c}
\text { Fucus proper, and } \\
\text { IFimanthalia, }
\end{array}\right\} \begin{array}{c}
\text { are represented in analogous } \\
\text { southern zones, by }
\end{array}\right\} \begin{gathered}
\text { D'Urvillea, and } \\
\text { Sarcophycus, Kütz. }
\end{gathered}
$$

None of these genera approaeh the tropics, for the Fucoidece abound towards the poles, and there attain their greatest bulk, dimimshing rapidly towards the Equator, and ceasing some degrees from the Line itsclf. The representatives of the Cystoseirece in the higher latitudes of the opposite hemisphere, are equally appropriate with those of Fucoidee, for we have in

$$
\text { the north cool zone }\left\{\begin{array}{c}
\text { Cystoseira, aud } \\
\text { Hatidrys, }
\end{array}\right\} \begin{gathered}
\text { represented in the } \\
\text { south cool zone, by }
\end{gathered}\left\{\begin{array}{c}
\text { Blossevillea, and } \\
\text { Scytothalia; }
\end{array}\right.
$$

whilst the immense genus Sargassum finds its maximum in lower latitudes, and under the Equator itself.
Such are the salient features of the distribution of these tribes, which are not influenced by the minor divisions, chiefly local assemblages of small genera, affecting exclusively certain coasts or bays.

3. LESSONIA, Bory.

1. Lessonla fuscescens, Bory, in Duperrey Toy. Bot. Crypt. p.75. t. 2. f. 2. et t. 3. Post. et Ruppr. Mlust. Alg. p.2. t. 3 et p.4. t.39. f. 14-18. L. flavicans, D'Urville, in Mém. Soc. Lim. Paris, vol. iv. p. 594. (Tab. CLXVII., CLXVIII. A., and Tab. CLXXI. D.)

Hab. Hermite Island, Cape Horn, and Falkland Islands; most abundant, always far beyond low-water mark. Christmas Harbour, Kerguelen's Land; rare

The fructification of the species of Lessonia occurs, as in Macrocystis, upon the surface of the fronds, and there forms large patches. In the present species the sori are situated beyond the middle of the leaf, they are oblong and nearly as broad as the lamina, of which they carry away the upper part when decaying, causing their broad apices to be two-horned. In none of our specimens is the point perfect, all the spores we have seen being situated on the edges of the sorus, which has itself fallen away from the frond. The an'-cells are less numerous, and the spores are smaller, shorter, more densely packed than in the following species, and covered
with a rery thin cutieular layer of the frond. The presence of this cuticle is owing to the peeuliar manner in which the superficial or sporiferous cells of the frond dehisce transversely, allowing the dispersion of the spores (shown in the dissection of Nucrocystis, given at Plate CLXIX., CLXX. Fig. 2).

This and the following arc truly wonderful Alge, whether seen in the water or on the beach; for they are arborescent, dichotomously branched trees, with the branches pendulous and again divided moto sprays, from which lang linear leaves $1-3$ feet long. The trunks usually are about $5-10$ feet long, as thick as the human thigh, rather contracted at the very base, and again diminishing upwards. The individual plants are attached in groups or solitary, but gregarions, like the pinc or oak, extending orer a considerable surface, so as to form a miniature forest, which is entirely submerged during high-water or even half-tide, but whose topmost branches project above the surface at the ebb. To sail in a boat orer these groves on a calm day affords the naturalist a delightful recreation ; for he may there witness, in the Autarctic regions, and below the surface of the ocean, as busy a scene as is presented by the coral reefs of the tropies. The leaves of the Lessonia are cromded with Sertularice and Mollusca, or enentsted with Fustree; on the trunks parasitic Algce abound, together with Chitons, Putelle, and othcr shells; at the hases, and amongst the tangled roots swarm thousands of Crustacea and Radiala, whilst fish of several species dart amongst the leaves aul branches. But it is on the sunken rocks of the outer coasts that this genus chiefly prevails, and from thence thousauds of these trees are flung ashore by the waves, and with the Macrocystis, and D'Urvitlea, form along the beach continued masses of regetable rejectamenta, miles in extent, some yards broad, and three feet in depth; the upper cdge of this belt of putrefying matter is well in-shore, whilst the onter or scaward edge dips into the water, and receives the aceumulating wreck from the sub-marine forests throughout its whole length. Amongst these masses the best Alye of the Falklands are found, though if the weather be mild, the stench, which resembles putrid cabbage, is so strong as to be almost insufferable. The ignorant observer at onee takes the trunks of Lessonia thus washed up for pieces of drift-wood, and on one occasion, no persuasion could prevent the captain of a brig from employing his boat and boat's crew, during two bitterly cold days, in collecting this incombustible weed for fuel !

The trunks, which contract to one-fouth of their original dimensions when dry, and hecome deeply furrowed, are perfectly smooth and eartilaginous when fresh. On being cut aeross, the curious appearance of concentric elliptieal rings, in many respects similar to, though rery different from, those of an Exogenons trink, is very evident. These rings surround a lance-shaped pale line, which occupies the lroad axis of the compressed stem, without reaching across it, and appears to afford some rude indication of the age of the plant, though of this we could by no means satisfy ourselves. It is singular that this, the most arborescent of the Alge, and the beautifnl Usnea melaxantha, the most tree-like in form of the Lichens, are nearly the only plants of the Orders to which they respectively belong, conspicuonsly presenting even a semblance, if it be no more, to a growth that indicates an increase by periodical accessious to the circumference.

The substance of the trunk of the Lessonice is very usefully employed by the Gauchoes, for kuife-liandles*; the haft of the instrument is plunged into a radely-shaped piece of this weed, which contracts into a substance harder than horn. The range of the present speeies is from the Falkland Islands to Cape Horn, and thence north along the coasts of South America probably to Valparaiso.

Plate CLXVif.-CLXVIII. A.-apex of a branch and fronds, of the natural size; A. 1, portion of stem showing layers of cellular tissue and air-cell:-magnified.
2. Lessoina nigrescens, Bory, in Duperrey Voy. Bot. Crypt. p. S0. 1.5. Post. et Ruppr. Illust. Aly. pp. 2 et $4 . \mathrm{t} .4$ et 39.f. 11 et 13 . (Tab. CLAVII.-CLXVIII. C.)

Hab. Hermite Island, Cape Itorn, and the Falkland Islands; very abundant, with the former species.
A species very similar to the preceding in general appearance, but of a different consistence and colour.

* The stipes of Laminaria digitata is used by the Orkneymen for similar purposes, as is noticed by our excellent friend Dr. Neill, in his interesting account of the Orkney Islaurls.

Fructification forming a large oblong or linear sorus between the base and middle of the frond, of a rich red-brown colour when held between the eye and light, imbedded in the thickened substance of the frond, which decays with it. On a transverse seetion the soriferous lamina is seen to be hollow in the centre; or rather the sorus is formed of two parallel plates, each covered externally with densely aggregated spores, whieh occupy what are the superficial cells of other parts of the frond. Below the superficial series of cells, and especially in fertile specimens beneatl the spores, are several, $4-6$ or many more, air-cavities, reposing on, and scparated from each other by a loose eellular tissue, whieh is hexagonal, transparent, the cells becoming transversely elongated and finally towards the centre of the frond breaking up into a layer of matted filaments, which surrounds the cavity, a structure resembling very closely that of Fucus conftuens as given by Turner. When dry, the surface of the plant is covered with white eflorescence, similar to that of Laminaria saccharina, it has been analysed by my friend Mr. Stenhouse of Glasgow, who finds it to contain excellent Manna, and who further informs me that this and the other larger Antarctie Alga are peculiarly rich in Iodine.

The Lessonia quercifolia of Bory, is deseribed and figured as having the frond eovered with cavities contaning spores, whence it would appear to belong to Fucoidec, and to be more allied to D'Urvillea than to this genus.

Lessonia ciliata of Postel and Ruppreeht, is certainly only the young state of Macrocystis pyrifera.
Plate CLXVII.-CLXVIlI.-C. transverse section of frond in fructification :-highly magnified.
3. Lessonia ovata, Hook. fil. et Harv.; stipite brevi vage dichotome ramoso, ramis brevibus divaricatis, frondis laciniis breviter petiolatis, petiolo in laminam ovatam lineari-ovatamve olivaceo-fuscescentem subnembranaccam dilatato. (Tab. CLXVII.-CLXVIII. 13 ; et Tab. CLXXI. C.)

Hab. Hermite Island, Cape Horn, and the Falklaud Islands; very abundant.

Radix e fibris perplurimis crassis intricatis massam l-2 ped. latam efficientibus. Stipites e radice plurimi (ut in Macrocysti) 4-6 unc. longi, torti v. flexuosi, erassitie pollicis humane, dichotome fissi, demum solitarii, incrassati, subarborescentes. Lamince pedales, colore et substantia L. fuscescentis, juniores basi obscure sinuato-dentatr ; adultæ integerrimæ.

Certainly very near L.fuscescens; but as far as eould be judged on examining the plant, both on the shores it inhabits and in the herbarium, it has good clams to be considered a distinct species, especially in the many short stipites, short branches and broad leaves. Never having seen the fruit, however, it may prove the young of L. fuscescens, for we can well suppose only one out of the many stems of that plant to attain any great dimensions, and the lamina of the young state to be broader than that of the adult

The ramification of all the species of Lessonic is dichotomous; each plant in a young state consists of a few rooting and clasping fibres, giving of a single stem (or petiole) and frond. This frond splits at the base, and as the growth proceeds, the fissure extends vertically upwards, till the original frond is bisected; each of the two parts is now a complete frond, altogether similar to the primary one, and provided with a petiole of its own: these again divide, and the process is repeated. Hence the rapid growth of this genus, and hence the origin of the flattened form of ramuli and eliptic core which is placed in the long axis of these ramuli and across the axis of the terete stem. It was not observed whether any relation existed between the number of branches on the whole frond and of coneentric rings in the trunk. The latter are probably the indices of the number of times that a subdivision of the laminæ has occurred, supposing that all split at about the same epoch, rather than a register of the years the vegetable bas existed; as the following account of the anatomy of this species will show.

A branched portion of the plant, terminated by four laminæ, necessarily presents subdivisions of three periods of growth: 1st, the petioles of the four laminæ; 2nd, the two ramuli from which the four are given off; and 3rd, the one branch which gives off the two latter: these were successively examined.

1. The base of the lamina or petiole is exceedingly compressed, and composed of a mass of cellular tissue of
different textures, all, however, very gelatinons, and modifications of the three layers forming the leaf, there are 1st, the superficial tissue (or cortex) consisting of small cells, closely packed and full of chromule, gradually opening out into, 2nd, an intermediate tissne of much larger cells more loosely placed, with little or no contained chromule, separated lyy much gelatine ; and 3rd, an elliptical core placed in the long axis of the petiole, composed of still smaller cells, separated by broader masses of gelatine, which latter is permeated by canals, full, as are the small cells, of chromide.
2. Each ramulus, from which proceed the two petioles, whose structure we have just described, presents no very important difference from them; the core no longer stretches across it, howeser, but the whole petiole within the superficial portion is angmented by a newly developed though indistinct zone of cellular tissue, thus deposited between the superficial (or cortical) and intermediate tissne. At this period the cortex is somewhat broader, and the intermediate tissue has become, through the absorption of the gelatine, much more conspicuous; the cells being larger and the spaces betwcen them narrower ; little or no change is perceptible in the core itself.
3. The branch is very materially different from either of the above, for what was hitherto the petiole is now enclosed (all but its cortex) in a very broad zone of cellular tissue, whose cells are large and thin towards the old tissue, elongated and of a different shape, so as to show the line of separation between the two periods of growth (see $B 1$, of the plate Lessonice).

From this time forward the normal mode of growth followed by the sten exhibits an additional layer or zone of cellular tissue for every subdivison of the frond, (shown at $A 1$, where six are interposed between the cortex and core). It is not probable, however, that this numerical relation can be always evident, or that the number of subdivisions of the frond will indicate the rings of growth in a large stem. This uncertainty arises from the branches leing frequently broken off; added to which, the growth of the sea-weed is very rapid, and there being no period of rest, irregular zones may be expected, or their absence from those branches of the plant whose leaves are injured.

In their anatomy the stems of L. fuscescens and L. nigrescens do not differ much from that of this species, except that the air-cells are copious in the stems of the former, and much rarer in the latter; in which also the cortical substance is much broader.

In the elegant Lessonia Sinclairi, Harv. MSS., from California, the stipes (which bears but a solitary lincar frond) is terete, and in the specimen we examined, contains a central core, reaching half-way across the diameter. There are apparently two rings of tissue beneath the cortex, separated by a zone of very large cells (air-cells?); whence it is difficult to account for the stem being terete, for the frond is plane, and the core three times longer than broad. Nor is it easy to explain the origin of the two zones surrounding the core; if they really be successively deposited, it is possible that the frond is two years old; if not, that the large cells are air-cells, and do not indicate a line of separation between two successive deposits.

I have stated the growth of the Lessonia to be rery rapid; this is proved by the zones of a five-ringed stem being progressively broader towards the circumference. The probability, too, of one being added for every time the laminæ divide, and the fact that the process of subdivision is continued in geometrical progression, all favour the opinion that these Algre attain their enormons bulk in a very few montlis. The vast masses washed up on the outer eastern slores of the East Falkland Island, and the rapidity with which they decay, are additional proofs of a singularly rapid development.

The analogy between the mode of growth exhibited by this genus and an Exogenous tree, is, thongh incomplete, very obvious; both increase by layers deposited outside one another, within a cortical substance, and both contain an axis of tissue different from that forming the greater part of the trunk: here, however, there are no traces of medullary rays. We conclude this subject with the observation, that the periodical increment of the trunk being dependent on, or coincident with, the formation of the laminx, these appear to perform the office of the leaves in the ligher order of plants; and that the Lessonia is also in this respect analogous to an Exogenous plant,
deprived of its woody tissue, for it is a stem composed of layer upon layer of cellular tissue, deposited round an axis, whieh, like the pith, when once formed, is afterwards but slightly modified.

Plate CLXVII.-CLXVIII. B. apex of branch and frond of the natural size; $B 1$, transverse section of young stem:-magnified.

4. MACROCYSTIS, Ag.

1. Macrocystis pyrifera, Agardh, Sp. Aly. vol. i. p.47. Nov. Act. Nat. Cur. vol. xix. p. 297. t. 26 f. 2. Post. et Ruppr. Illust. Alg. p. 9. t.6; et p.4. t. 39. f. 22, 23. Fl. Antarct. Pt.1. p.178. M. communis, Bory, in Dict. Class. v. x. p. S. M. planicaulis, Agardh in Nov. Act. Nat. Cur. l.c. Lessonia ciliata, Post. et Ruppr. l.c. (young state).

Var. β. integriffons; foliis fere integerrimis planis rugoso-plicatisve. M. integrifrons, Bory, l. c. t. 6 .
Var. γ. angustifrons; vesiculorum parietibus tenuibus, foliis ut in M. pyrifera. M. augustifrons, Bory, 1.c.t.S. Agardh, l.c. t. 26.f. 4 and 5. Post. et Ruppr. t.5.

Var. o. zosterefolia; folïs anguste lincari-elongatis planis. M. zosterafolia, Bory, \&c.
Var. є. luxurians; folins $3-S$-pedalibus S unc. latis basi cordatis membranaceis plicatis margine longe ciliato-dentatis, vesiculis late obovatis parietibus tenuibus, caule gracili. (Tab. CLNLX.-CLXX.)

Var. ζ. membranacea; foliis ut in M. pyrifera sed tenuissime mombranaceis planis, vesieulis parvis elliptico-ovatis utrinque subacutis.

Var. η. IHumboldtii; foliis lineari-elongatis planiusculis, vesiculis globosis tenuibus. M. Mumboldtii, auct. M. pomifera, Bory.

IIab. Throughout the Antarctic scas, between the parallels of 40° and 64°, both attached, and floating over the whole ocean.

After a very attentive examination of many hundreds of specimens, we have arrived at the conelusion that all the described species of this genus which have come under our notice may safely be referred to Macrocystis pyrifera. Nor can these variations excite surprize, when it is considered that this gigantic weed is subject to every vieissitude of elimate, of temperature, and exposure; that it literally ranges from the Antarctic to the Arctie cirele, through 120 degrees of latitude; that it lives and flowishes, whether floating or attached, growing in bays, harhours, or the open sea when most distant from laud; and, lastly, that it equally adapts itself to the ealmest or most tempestuous situations, to waters of uniform depths or those which rise and sink with the tide, to dead water or to strong currents. One thing alone it requires, and that is, a mean depth of six or more fathoms; for, like the Laminarice of our own shores, it, and others of the same tribe in the south, invariably form the onter belt of marine vegetation.

A few remarks upon the above varieties may be interesting; showing how much their characters depend upon natural eauses, and how much more upon mutilations of the specimens, or ehanges during the operation of drying.

Variety β. integrifrons. This we have reeeivel from various parts of the west coast of South America; its characters rest almost entirely on the want of ciliation at the margiu of the frond, which is much dependent upon the portion of the plant from which the specimen is takeu, the lower leaves being always nearly entire; also on the state of the waters, those plants which grow in quiet bays having very much developed cilix, whilst those from the main oeean or stormy coasts are generally more cntire.

Variety δ. zosterafolia, is a plane and narrow-leaved state of M. pyrifera; we have traced all the changes in one specimen of M.pyrifera, from very rugose to perfeetly plane. Young specimens and terminal leaves are generally
plane, and it often depends on the smoothness of the water low long they may remain so. This variety is abundant everywhere in the Antarctic seas.

Variety γ.angustifrons. The character, drawn from the tennity of the resicles, is utterly unsatisfactory, being attributable to the drying of the specimen, and the locality of the live plant. Besides the Antarctic habitats of this variety, it has becn found in Chili, New Zealand, and the Indian Ocean.

Vareties ϵ. luxurians, and ζ. membranacea. If any form of this genus deserves specific distinction it is surely the noble one we have designated ϵ. luxurions; and yet permanent characters, distinguishing it from pyriferc, were vainly sought in plants gathered on the shores of Berkeley Sound. Both there and at Cape Horn these two states inhabited dcep and still waters, where, as might be expected, the Macrocystis would acquire its greatest development, where its substance would be most membranous, its stems most slender, and the vesicles broad with thin walls, and the base of the frond broadcst. We have seen no specimens of these varieties except what wore brought home by the Antarctic Expedition.

Variety η. Humboldtii, at first sight appears different, and the specimens found on the outer shores of the Falklands we once thought might belong to a distinct species. The romuded form of the vesicles, however, which affords the main character, is not constant on specimons collected in the Coral 1slands by Captain Beechey. It has been gathered at various places along the west coast of South America, from Cape Horn to the Equator, and far westward in the Pacific amongst the Coral Islands.

With regard to other states, which we have not seen, the most remarkable is the M. Orbignyana of Montagne (Sert. Patagon. p. 12. t. 1.), which has the vesicles remarkably lengthened and the lcaf attenuatel at the base above the vesicle into a distinct petiole. The M. latifolia, Bory, is intermediate between our ϵ. luaurians and pyrifera. M. temuifolia, Post. and Ruppr., is apparently between M. pyrifera and M. zosterafolia. The character of M. planicaulis is founded on the compression of the stem, produced by drying, and we have therefore quoted it as a synonym.

In thus bringing together under one, the ten species which have been described by five authors, of whom hardly onc has cver seen even the genus in a living state, we are only taking advantage of opportunities which a long residence in the Sonthern Hemisphere has afforded. Without studying these plants on the coasts they inhabit, it is impossible to judge of the influence of local causes on their plastic forms. We venture to say that few botanists in Europe have seen even tolerable specimens from one single plant of this Alga, such, we mean, as give a lair idea of the differences between the leaves and bladders, along, perhaps, 300 feet of stem, with the submerged fructifying fronds from the root. Out of some thirty specimens brought home by ten different collectors and presericd in the Hookerian Herbarium previous to our visit to the seas which M. pyrifera inhabits, not onc conveys any notion of the variations which even a solitary individual can assume.

The fructification of this plaut appears to be produced only on the young newly-formed submerged leaves, where it forms large irregular brown patches or sori, causing the frond to separate into two laminæ, as in Lessonia. The spores are fusifom, first divided into four, each afterwards breaking up into as many sporidia. Under a high power the surface of the fertile frond is seen generally to be corered with amastomosing raised lines of a dark colour, on which the spores are placed; the spaces between are palc and transparent. We have not noticed spores, like what are figured by Agardh (I. c. t. 28. f. 11), but plenty of the kind he represents at f. 10^{8} of the same plate, thongh not contained in sporangia. These, maguified as lighly as his $\mathrm{f} .10^{b}$, are evidently divided, as in D'Uroillaca. The gramules also, which occur abundantly with the spores, are surrounded by a hyaline border, and divided into two to four sporidia; we suppose them to be merely small spores.

It is seldom that the history of an Alga is likely to afford interest or ammsement to the general reader, unless it be a positively valuable plant in an comomic point of vicw. Like the Sargasso-wced of the Tropics, howcrer, the Macrocystis is so conspicuous, and from its wandering halits, often occurs so unexpectedly, that the attention of our carliest voyagers has been directed to it, and we are consequently led back by our enquiries into its first
diseovery, to the anmals of those perils and privations which have ever marked the progress of discovery or enterprize in the stormy seas of the south. "Nihil vilior Alga ", is a saying more trite than true, and one whieh a seaman can never use; for these weeds often prove his unerring guide towards land, as they surely are to the direction of the currents; or beeome of more importance still in the case of the present plant; for it is, where growing, not only the infallible sign of sunken rocks, but every rock that can prove dangerous to a ship is conspicuously luoyed by its slender stem aud green frouds, aud we may safely affirm that without its presence many channels would be impractieable, and numerous harbours in the south closed to our adventurous mariners.

The first notice of the Macrocystis, with which we are acquainted, is of so early a date as the middle of the 16 th century, and oceurs in a copy of sailing directions for mariners, with the title "A Rutticr from the hiver of Plate to the Streight of Magelana", aud forms part of " A special note concerning the eurrents of the sea between the Cape of Buena Esperanza and the coast of Brazilia, given by a French pilot before Sir John Yorke, Kit., before Sebastian Cabote, which pilot had frequented the shores of Brazilia eighteen royages." (Hakluyt, ed. 2. vol. iv. p. 219). In describing the above-mentioned route, after passing Cape Sta. Martha, the trusty pilot's direction to the marimer is to "goe S.W. by W. until he be in 40 degrees, where he shall find great store of weedes which come from the coast "; and again, in pursuing the voyage after entering the Straits, "if you see beds of weede, take hecd of them and keep off from them." Now, both the position assigned to the great masses of floating weed aud the value of those which are attached in denoting hiddeu dangers, are conelusive as applying to the Macrocystis. These directions bear no date; but the diseovery of the Strait of Magalhaens was in 1520, and the death of Sebastian Cabote took place in 1556 , so that we have sufficicnt proof that this plant attracted the attention of the carliest Antaretic royagers in the longitudes of Cape Horn; though it may have been noticed previously on the sonthern extreme of Africa or the China seas. Nor can we wonder that the attention of our forefathers should have been so early called to it, when even now it is of the first importance that the look-out man should use his utmost vigilance to detect, and promptitude to report, this weed, on approaching any of the straits and bays of the shores of Tierai del Fuego and similar latitudes. In the latest voyages that have been published, those of Capts. Foster, King, and Fitz-Roy, we find a constant watch for the "kelp" to have been kept, and caution used to aroid the "moored" pieces, together with instructions how to distinguish them from those which are floating.

The earliest seientific notice which we find of it, consists of a rude figure aud description in Bauhin's "Historia Plantarum," published in 1651, where it is designated "Pueus marinus crinitus." In the year 1764 , the lirenels Navigator, Bougainville, fell in with the Nacrocystis, Lat. $42^{\circ} \mathrm{S}$., Long. $57^{\circ} \mathrm{W}$., and a long description appeared in 1771, by Don Pernetty, the historiograpber of that royage, together with a sketeh, wheu it was published as a native also of the Falkland Islands. (Pernetty Toy., vol. ii. p. 67. t. ix. f. 5.) About the same period (1771) speeinens were collected by Emmanuel Kenig (of Bale) on his voyage to India, and transmitted to Linnarns, with this observation, "Habitat in oeeano Ethiopico e profundissimo mari seepe enatans insulasque quasi formans," (MSS.); it was then published in 1771, as F'ucus pyriferus (Limn. Mantiss. p. 311,) with the additional remark of "maxiinus forte omnium Fucorum." We are not sure of the precise habitat of Kouig's specimens; but by "oceanus Athiopicus" he probably alluded to the seas of the Cape of Good Hope, which he doubled on his way to India, and where tbis weed abounds.

So remarkable a plant was not likely to eseape the notice of Cook, and especially of the illustrious companion of that navigator's first voyage, and we accordingly find in his marrative repeated allusions to it. It engaged the attention of Banks when entering the Straits of Le Maire in 1769, and frequently afterwards in the cooler latitudes of the southern ocean. To him we owe the first account of its gigantic dimensions. Captain Cook says, on the authority of Banks and Solander, who enlled it lucus giganteus, that the stems attain a length of 120 fect. That these dimensions are considerably under the mark there is little doubt; though the report that specimens have been measured upwards of 1000 feet is perhaps as much of an exaggeration. Still it nust be remembered that, provided the water be smooth ind of sufficient extent, there are no impediments to the almost indefinite
elongation of the upper part of a plant which never branches, and whose growth is independent of all below it, eveu of the root. Specimens measuring between 100 and 200 feet are common in the open ocean, and these are always broken off at the lower end, either from the division of the frond by sea-ammals, through whose agency the plant increases and the floating island it forms dilates, or from the impossibility of securing the whole nass from the motion of the ressel or the swell of the sea, in latitudes where no boat can be lowered. Again, D'Urville, upon whose observations in natural history the utmost reliance may be placed, states it to grow in eight, ten and even fifteen brasses of water, from whieh depth it ascends obliquely and floats along the surface nearly as far : this gives a length of 200 feet. In the Falklaud Islands, Cape Horn and Kerguelen's Land, where all the harbours are so belted with its masses that a boat can hardly be foreed through, it generally rises from eight to twelve fathom water, and the fronds extend upwards of one hundred feet upon the surface. We seldom, howerer, had opportunities of measuring the largest speeimens, though washed up entire on the shore; for on the outer coasts of the Falkland Islands, where the beach is lined for miles with entangled eables of Macrocystis, much thicker than the human body, and twined of immmerable strands of stems coiled together by the rolling aetion of the surf, no one succeeded in unravcling from the mass any one piece upwards of seventy or eighty feet long; as well might we attempt to ascertain the length of hemp fibre by unlaying a cable. In Kerguelen's Land, the length of some pieces, which grew in the middle of Christmas Harbour, was estimated at more than three hundred feet; but by far the largest seen during the Antarctic Expedition, were amongst the first of any extraordinary length which the ships encountered, and they were not partieularly noticed, from the belicf that the report of upwards of 1000 feet leugth was true; or, at any rate, that better opportunities of testing its theth would arise in the course of a three years' voyage, than the first week of our explorations could afford. These oecurred in a strait between two of the Crozet Islands, where, very far from either shore, in what is believed to be forty fathoms water, somewhat isolated stems of Macrocystis rose at an angle of 45° from the bottom, and streamed along the surface for a distance certainly equal to scveral times the length of the 'Erebus';-data, which if correct, (and we believe them so) give the total length of the stems as about 700 feet.

That isolated patehes of weed should rise through such a volume of water is not incompatible with the statements we have elsewhere made, that eight or ten fathoms is the utmost depth at which, judging by our expericnce, submerged sea-reed vegetates in the Southern temperate and Antaretic Ocean. These exceptional eases are probably due to the parent plant having attained such a size in its birth-place near shore, as to weigh its stony moorings and deposit itself in deeper water, where an increase of the roots would mite the original base to other rocks, and thus gain a footing that defies the power of the elements.

We have stated that the elongation of the Macrocystis may be indefinte; but this is only true partially and in the case of detached patches: for the stem of the attached plant does not gain bulk or tenaeity, after a certain period; whilst the growing dimensions of the floating portion are increasing the difference between the speeific gravity of the vegetable and the element it inhabits, and eonsequently augmenting the strain upon the slender stem by which it is attached. At some period or other, the resistance is overcome and the floating part detaehed from the submerged: though at what epoch this may take plaee, or whether it be coincident with other phases in the life of the plant, is beyond our conjceture.

The fact that fructification is produced only on the submerged young bladderless and small frond, within a few inches of the very root, is highly remarkable. What then is the function of the floating mass of the plant? to one of whose thousand leaves, each four to six feet long, the fruetifying part bears au inconceivably small proportion. Were this a phrnogamie plant, we should recognize, in such foliaceons expansions, organs which fulfil a respiratory and digestive oflice and are subservient and uccessary to the development of the more important parts of the vegetable ; but iu this ease sueh a mutual dependeney is not so casily traced. As in Lessonia the multiplieation of the leaves is intimately comected with the development in diameter of the stem, so in Macrocystis the development of fructifying fronds may take plaee only at the root of the barren ones, on whose previous existence they may be dependent for their origin. These are, however, questions which propose themselves to us in the closet only,
when the prospect of solving them is gone by ; and when they but add to the thousand regrets over lost opportunities, the remembrance of which weighs so heavily on the mind of every naturalist, that the brightest prospects of discovery in the fair future can never obliterate them.

So many interesting points are comected with the Macrocystis, that a book might be instructively filled with its history, anatomy, physiology and distribution ; whilst its economy, its relation to other regetables and to the myriads of living creatures whieh depend on it for food, attachment, shelter and means of transport, constitute so extensive a field of research that the mind of a philosopher might shrink from the task of describing them. We conclude with an outline of its dispersion over the surface of the globe, which is wider than that of any of the large Algre.

As already mentioned, the Macrocystis girds the globe in the Southern temperate zone, but not in the Tropics or Northern Hemisphere, and this is a most curious trait in its history. We may first, however, trace the sonthern edge of the belt which it forms, and we are the better enabled to do so, becausc the limits of its existence, as a floating plant, were observed in six different longitudes in the passage of the Antarctie Expedition as often between the Southern Sea and the Southern Ice, within which there is no vegetation. The southern boundary of the "Macrocystis sea" is very much determined by the position of the ice, and the northern by the corrents and temperature of the water. Thus, in the longitude of New Zealand, where open sea extends to the 65 th degrec, this plant is formd as far as 64°, the specimens having probably becn drifted originally from Kergueten's Land or the Crozets, which are the great nurseries for it in the Eastern Hemisphere, and from wheuce all those drifting islets have been wafted which occur betwcen their lougitude and Cape Horn. In the lungitude of Cape IIom, 55° or 60° is the highest parallel it attains, for it has not been found amongst the South Shetlands; further east, in the South Atlantic, its parallel is probably still lower; till in the meridian of the Cape of Good Hope it is 40 degrecs removed from the Pole, being scen no further sonth than $50^{\circ} 30^{\prime}$. There the Atlantic Ocean specimens are derived from the southern extreme of Anerica and the neighbouring islands. Its northern range on the other hand is dependent, 1st, on the temperature of the ocean ;-for it neither enters the Tropics of the Atlantic, nor passes up the shores of Africa or into the Indian Ocean ; whilst it does inhabit the whole surface of the Pacific Ocean and the west const of both Americas: 2ndly, on the currents, for when north of the influcnce of the uniform westerly movement of the waters in the Antarctic Ocean, it is defleeted with their courses and carried, white temperature allows, to whatever seas receive those waters. Thus, the South Polar current divides at Cape Horn, one portion following the west coast of South Ameriea to Cape Blanco and the Galapagos Islands under the Equator, carrying the Macrocystis with it, whieh then enters the cold waters which flow from the Arctie Islands of the Pacific, and orer whose entire surface it is spread, reaching Kamtschatka, New Califorma, and the Alentian Islands: so that in the longitude of Western America the Macrocystis ranges from the Arctie to the Antarctic circlc. The eastern branch of the Cape Horn curent passes between the Falkland Islands and Fuegia, conveying vast masses of this sea-weed 200 miles north of the Falklands, as low as the 44 th degree, and some even reaching the Plate river in 35°, its northern limits in the Western Atlantic. Further west in the Antaretic ocean its distribution is less knomn ; but since it does not occu far north of the Cape of Good Hope in that meridian, we may conclude that it ceases abont the 34 th degree. With regard to the South African habieat, it is difficult to account for so vast a quantity as the Agulhas Bank exhibits, for these waters, 130 miles in brealth, flowing with a rapid strcam from the N.E. or Indian Occan, literally swarm with Macrocystis, which possibly is taken up from the northern edge of the westerly Polar current (which flows along the parallel of 45° S.) by the Indian (or N. E.) current in question.

Its northern limit in the Indian Oeean is not ascertained, but it lies probably south of a line drawn northeast from the Cape of Good Hope to Austrahia, upon whose western shores the plant is found, as also in New Zealand, and on the coast of China to the north, to which sea it perhaps migrates from the Nortl Paeific Ocean, Kantschatka, \&c.

Plate Clixix., CLXX. Frond of M. pyrifere, var. luxurians, of the natural size; 1, thin slice of fructifying
frond; 2, portion of ditto showing the two modes of escape of the spores, either free or contained in the original cells :-very highly magnified. (The quaternary division of the spores was not seen in this disscction.)

5. LAMINARIA, Lamourx.

1. Laminaria fuscia, Ag., Syst. p. 273. ILurv. Phye. Brit. t. 45.

Hab. Ilermite Island, Cape Horn, and the Falkland Islands; not common.
These specimens do not appear to differ from British ones in any particular. The L.fascia is a northern, but not Aretic species, found along the shores of England, Ireland, and the German Ocean; and under the name of L. debilis, it also inhabits the Mediterranean Sea.

6. CAPEA, Montayn.

1. Capea biruncinata, Montagn. in Flor. Canar. Crypt. p. 140. t.7. Laminaria biruneinata, Bory in Duperrey Voy. Bot. Crypt. p.101. t.10. L. radiata, β. exasperata, Turner Hist. Fue. vol. ii. p. 16.

Hab. Hermite Island, Cape Horn; J. E. Davis, Esq.
Our solitary specimen is barren, and does not appear different from the plant of the Canary Islands, Nerw Holland, and New Lealand.

We quite agree with Dr. Montagne as to the propriety of separating this genus from Laminaria and Ecklonia, which latter is its Cape of Good Hope representative, and is reported to be a native of the Falklands, probably erroneously; as is the station assigned to the Macrocystis of the Canary Islands. On the other hand, there is no reasou why the Macrocystis should not accompany the Capea, whose principal parallel is certainly in the Southern Hemisphere.

The finctification of Ecklonia is scarcely known; we have seen what appear to be young sori in the form of opaque thickened spots on the frond. A transverse section shows the cortical layer to be thickened and formed of parallel tubes full of granules, analogous to what such fructification as Montagne's beautiful analysis of Capea represents would be in an immature state, but we are extremely doubtful of our analysis.

7. DESMARESTIA, Lamourx.

1. Desmarestia media, Grev., Synops. p. 40. Sporoehnus medius, Agardh, Ic. Alg. p. 259. t. 16. D. anceps, Montagne in Toy. au Pole Sut, Bot. Crypt. p. 51?

Hab. Cockburn Island, (lat. $64^{\circ} 12^{\prime} \mathrm{S}$. , long. $57^{\circ} \mathrm{W}$.); floating in the sea, abundant.
One of the most Antarctic of plants and probably common in many latitudes; for, under other names, it has been noticed as a native of Peru, of various parts of the Pacific Ocean, and even north to the Arctic eircle. It is singular that a plant of this small genus, and from which the present is perhaps not specifically distinct, the D. aculeata, should be among the highest Arctic Alge, inhabiting Spitzbergen in $80^{\circ} \mathrm{N}$. lat. Montagne's D. anceps, confessedly described from imperfect specimens, is very probably this plant, having been gathered in nearly the same locality : or else it is the D. ligulata, a Cape Horn species.

2. Desmarestia viridis, Lamourx.-Flor. Antaret. Pt. 1. p. 178.

Var. β. distans; ramis remotioribus.
Нав. Hermite Island, Cape Horn, Falklaud Islands, and Kerguelen's Land; very abundaut. Var. β, Kerguelen's Land.

The range of D. viridis in the Northern Hemisphere is not extensive, and almost confincd to the shores of England and of the German Ocean. It is, howerer, found at Unalaschka, according to Postel and Rupprecht.
3. Desmarestia ligulata, Lamourx. Grév. Alg. Brit. p. 37. t. 5. Turmer Hist. Fuc. t. 99.

Hab. Hermite Island, Cape Horn; rare.
Our specimens in no way differ from Europcan ones. It is probably a common Antaretic spccies, for we have received it from the east coast of Patagonia.
4. Desmarestla herbacea, Lamourx. Montagne in Toy. au Polc Sul, Bot. Coypt. p. 50.

Hab. Port Famine, Strait of Magalhaens; M. Hombron.
We have seen no Antarctic specimens of this plant, which is also a native of the Cape of Coorl Hope, Concepcion on the west coast of Sonth America, and of Nortli-west America.
5. Desmarestia chordalis, Hook.fil. et Harv.; fronde eoriaceo-cartilaginea compressa anguste lineari tri-quadripinnata, pinnis pinnulisque longissimis oppositis distantibus apice longe nudis, pinnulis sæpe alternis elongatis inermibus chordiformibus. Nobis in Loud. Journ. Bot. vol. iv. p. 249.

Hab. Christmas Harbour, Kergueleu's Land; very abundant, in two to five fathom water.
Alga socialis, rupicola, cespitem gramineam submarinam late extensam cfficiens. Frondes c radice anguste scutata valde elongatr, $3-5$-pedales. Stipes $1-1 \frac{1}{2}$ lin. diametro. Pinuce paulo angustiores, pimulis $\frac{1}{2}$ lin. latis.

A very noble species, recognizable at once by the long whip-like naked apices of its pimme. In the great abundance of this Alya consists one of the peculiarities in the submarine regetation of Kerguelen's Land.
6. Desmarestia Rossii, Hook. fil. et Harv.; fronde eoriaceo-cartilaginea compressa lineari bi-tripimata circumscriptione anguste lanceolata, pinnis pinnulisque omnibus oppositis basi apiceque attenuatis aeutis erectis v. ultimis appressis margiue integerrimis. Nobis in Lond. Joum. Bot. vol. iv. p. 249. (Tab. CLXXII., CLANIII.)

Hab. Staten Land, A. Menzies, Esq. Hermite Island, Cape Horn, and the Falkland Islands; very abundant.

Frondes 4-8 ped. longæ, anguste lanceolatæ, nunc apices versus dilatatæ, infernc bipinnate, supra medium tripinnatæ, valde coriaceæ. Caules stricti, $2-3$ lin. lati. Pinnce 1 lin. latæ pinnnulæque oppositæ, subercetæ, axillis acutis, basi apiceque attenuatr.

Eren a nobler species than the last, from its great size and opposite ramification. In gencral form it resembles the D. ligulata, but is of a totally different consistence, being much more rigid, coarser, and thicker. The fronds are sometmes curiously dilated towards the apex, when they are generally linear below the expanded portion. This appearance is produced by the upper pinnæ elongating and bccoming thrice pinnated; they are then also of a paler colour than the lower ones.

Plate CLXXII., CLXXIII. Fig. 1, transrerse section of stem ; fig. 2, horizontal, and fig. 3, vertical slice of the same:-magnified.

8. DICTYOSIPHON, Grev.

1. Dictyosiphon fasciculatus, Hook. fil. et Harv., in Fl. Antarct. Pt. 1. p. 178. t. 49. f. 1.

Hab. Berkeley Sound, Falklaud Islands, and Christmas Harbour, Kerguelen's Land.
We have before noticed this plant, which is the Southern representative of the Northern and Arctic D. feeniculaceus.

9. STEREOCLADON, ITook. jil. et Harv.

Frons solida, olivacea, filiformis, ramosissima, e cellnlis endochromate repletis longitudinaliter seriatis formata. Sporidia solitaria, sparsa, in frondis peripheria immersa, nigro-olivacea, eiliptica.-Genus dubice affintatis, vix in tribu Dictyotearum includendum.

1. Stereocladon Lyallii. (Tab. CLIXIV.)

Hab. Cape Horn, and the Falkland Islands; thrown up on the beach, rare.
Frons 5-6 unc. longa, setacen, decomposito-ramosissima, ramificatione valde incegulari. Caulis pereurrens r. parce divisus, vix dichotome ramosus. Rami alterni, patentes, Hexnosi, decompositi ; ramuli omnes patentes, flexuosi v. squarrosi, multifidi, apices acuti. Substantia rigidula, chartæ laxe adhrercns. Color olivacens. Sporidia mumerosissima, per frondis partem superiorem dense sparsa, immersa.

This remarkable plant resembles, to the naked eye, Dictyosiphon feniculaceus; but its stem and branches are solid throughont, and the seeds are immersed endwise, in the substance of the branch.

Plate CLAXIV. Fig. 1 and 2, portions of branch and ramuli; fig. 3, segment of ramulus; fiy. 4, transverse section of fructifying stem:-magnified.
10. CHORDA, Stackik.

1. Chorda lomentaria, Grev., Alg. Brit. p. 50. t. 9. Fl. Antarct. Pt. 1. p. 179.

Hab. Berkeley Sound, Falkland Tslands, and Christmas Harbour, Kergnelen's Land; abundant.
Very abmedant on the shores of Europe, from the Mediterrancan Sca to the Gemman Ocean. Also fomel in Lord Auckland's Group, but not, that we are aware, within the Tropics.

11. ASPEROCOCCUS, Lamour.r.

1. Asperococcus sinuosus, Bory, Morea, p. 32G. Encelium sinuosum, Ag. Sp. Alg. vol. i. p. 136.

Hab. Falkland Islands ; abundant. Hermite Island, Cape Horn.
The distribution of this specics is very wide, continuing through the Tropics from the latitude of Spain to the Falkland Islands. We have specimens from the colleetions of Humboldt; also from Togel, gathered in Tropical Africa, and from the Red Sea and Persian Gulf. It neither inhabits Northern Europe nor is found on any shores south of the Falklands.
12. ADENOCYSTIS, Hlook. fil. et IHarv.

1. Adenocystis Lessoni, Hook. fil. et Harv., Fl. Antarct. Pt. 1. p. 179. t. 69. f. 2.

Hab. Hermite Island, Capê Horn; Falkland Islands; Kerguelen's Land, and Cockburn 1slaud, lat. $61^{\circ} 12^{\prime} \mathrm{S}$., long. $57^{\circ} \mathrm{W}$.; very abundant.

Apparently quite an Antarctic speeies, though much resembling some of the Domoutice figured in Postel and Rupprecht's great work on the Algee of the Arctic and Paeific Occans.
2. Adenocystis D'Urvilleai, Hook. fil. et Harv. Asperococcus D'Urvillsei, Bory in Duperrey Foy. Bot. p. 200. t. 11. f. 3.

Hab. Berkeley Sound, Falkland Islands; with the former.
We are inclined to regard this as a slender state of the A. Lessonii, which is exceedingly rariable when young.

13. SPHACELARLA, Lymg.

1. Sphacelarla obovata, Hook. fil. et Harv.; parvula, gracilis, pallide viridis, stupa mulla, fronde circumscriptione obovata, caule gracili articulato basi longe nudo supra medium ramis plurimis tenuibus clongatis erecto-patentibus laxe distiche pinnatis ornato apicibus sphacelatis. Nobis in Lond. Journ. of Bot. vol.iv. p. 251.

Hab. St. Martin's Cove, Hermite Island, Cape Horn, in about eight fathom water; very scarce.
Cæspitosa, superne fastigiatim ramosa. Frondes $1-1 \frac{1}{2}$ unc. longæ, caule ramisque gracilibns, per totam longitudinem articulatis.

We lave seen no specimens of this, but what were dredged up from a considerable depth; and, if fully grown, the outline of the frond alone is sufficient to distinguish it from its congeners.

2. Sphacelaria funicularis, Mont. Fl. Antarct. Pt. 1. p. 180.

Hab. Cape Tres Montes, South Chili ; C. Darwin, Esq.
The representative of the European S. scopario. We have a note, maccompanied, however, by any specimen, purporting that this species was also found in the Falkland Islands.

14. CLADOSTEPHUS, Ag.

1. Cladostephus spongiosus, Agardh, Sp. Alg. vol. ii. p. 15. Engl. Bot. t. 2427. f. 1.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; abundant.
This plant varies considerably at several periods of the year, becoming bare of ramuli in the winter. It is abundant in the German Ocean aud on the Atlantic shores of Europe, and extra tropical North America, in the Mediterranean Sea and Canary lslands, but has not been hitherto found within the Tropies. We regard these specimens as speeifically identical with others of British growth.
15. ECTOCARPUS, Lyngb.

1. Ectocarpus tomentosus, Lyngb. Grev. Crypt. Flor. t. 316.

Hab. St. Martin's Cove, Hermite Island, Cape Horn ; rare.
The European shores of the Atlantic Ocean and the German Sea are the only previously recorded habitats for this speeies.
2. Ectocarpus siliculosus, Lyngb. Engl. Bot. t. 2319.

Hab. Hermite Island, Cape Horn, and Berkcley Sound, Falkland Islands; abundant.
Apparently a moch more widely distributed species than the former, ranging from the Baltic Sea and German Ocean to the Mediterranean and Canary Islands, also along the shores of the United States. In the Southern hemisphere it has been found at the Cape of Good Hope and New Zealand.
3. Ectocarpus geminatus, Hook. fil. et Harv.; cæspite basi intricato ramoso olivaceo v. vircscente, filis majusculis teuubus ramosissimis apice biberis plumosis, ramis ramulisque patentibus oppositis quaternisve ultimis brcribus, utriculis sessilibus oppositis conicis basi sæpe ramulo brevi bractceformi suffultis. Nobis in Lond. Journ. Bot. vol. iv. p. 251.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; abundant.
Caspites $4-5$ unc. longi, basi e ramulis perplurimis implexis intricati. Rani primarii circumscriptione binearioborati, plerumque quaterni, secundarii ramulique ultimi oppositi, patentes. Utriculi semper oppositi, ramulo bractexformi duplo longiores.

In habit and general appearance resembling the European E. granulosus; but abundantly different in the constantly opposite sessile conical capsules or utricles, which are generally subtended by a minute ramulus half their own length.

16. MESOGLOIA, Ag.

1. Mesoglola linearis, Hook. fil. et Harv.; virescens, fronde circumseriptione lineari, caule gracili indiviso v. rarius diviso ramis brevibus ornato, ramis alternis crebris abbreviatis flexuosis erecto-patentibns, ramulis subsecundis. Nobis in Lond. Journ. Bot. vol. iv. p. 251.
$H_{A B}$. Hermite Island, Cape Horn ; rare.
Frondes 4-6 unc. longi, vix $\frac{1}{2}$ hin. diametro, pallide flaro-ri'escentes. Coulis gracilis, indivisus r. basi ter quaterve divisus, rarius medium versus in ramos 2 prinarios fissus. Rami perplurimi, $\frac{1}{4}-\frac{1}{2}$ unc. longi, flexnosi, interdum basin versus caulis nudi v. ramulis paucis aucti. Ramuli secundarii plerumque e margine inferiore seu exteriore ramorum orti. Peripheria filamenta moniliformia, e substantia gelatinosa rix exserta.

Probably the representative of the European M. vernucularis, from which it may be at once distinguished by the ramification.

17. DELESSERLA, Lamourx.

1. Delesseria sanguinea, Lamourx. Engl. Bot.t. 1041.

Var. ß. lancifolia; fronde clongata anguste lineari-lanceolata ligulatave utringue angustata.
Hab. Hermite Island, Cape Horn; on rocks, abundant near the shore, also dredged up in five or six fathom water.

Hitherto known only as an inhabitaut of the seas of the Northeru hemisphere; where its range is not wide. In the sonthern it appears to be confined to the extreme south of America, flourishing in the deep bays which indent the coasts of Fucgia. Some specimens are altogether similar to those of Ewropean growth; others, of which we have constituted the var. lancifolia are larger, longer, sometimes almost a foot long, much narrower, and more attenuated at both ends. It is a very handsome variety.
2. Delesseria Davisii, Hook. fil. et Harv.; caule cartilagineo alato, lamina profunde pinuatifida v. pinnata, laciniis pinnisve cultrato-lanceolatis obliquis costatis penninerviis, nerris alternis, demum inter nervos altcrne v. secunde lacerato-lacimiatis, lacinulis erecto-patentibus costatis. Nobis in Lond. Journ. Bot. vol. iv. p. 52. (Tab. CLITY.)

Hab. Hermite Island, Cape Horn; abundant. Falkland Islands, Berkeley Sound, Di. Lyall.
Frons 5-7-unciahis, alata r. latiuscule marginata, basi in caulem brevem abrupte attenuata, circumseriptione late orato-rotundata, in lacinias perplurimas simplices v. partitas distichas costatas divisa, rosea, membrauncea. Jucinice plerumque secus marginem exteriorem oblique ad costan fissre, $\frac{1}{4}-\frac{1}{2}$ unc. late, obtuse r. subacute. -Inter D. aletam et D. sanguineamı quasi media, sed utraque sat dirersa.

This is perhaps most closely allied to D. sanguinea, from which it may be distinguished by the alternate nervation and dividing of the frond. The D. alata, which it is also near, differs in the texture and colour of its froud. No fruiting specimens were found.

Plate CLXXV. The absence of fructification precludes the necessity of dissections.
3. Delesserla platycarpa, Lamourx., in Anu. du Mus. vol. xx. p. 124. Agardh, Sp. Alg. vol. i. p. 188. Turner, Mist. Fuc. t. 144.

Hab. Falkland Islands; abundant in Berkeley Sound and Port William.
Originally discovered at the Cape of Good Hope, where it is very abundant. More recently it has been gathered on the coast of Califormia, whence its existence in the Falkland Islands might have been considered probable, even before its recent discovery in that part of the Southern Ocean. It is very plentiful on the long shelving beaches of the islands in question, but was not seen on the deeper and more rocky shores of Fuegia.

4. Delesserla crassinevvia, Mont. Fl. Antarct. p. 184.

Var. β. costa angustiore.
Hab. Hermite Islaud, Cape Horn, and the Falkland Islands; both varieties abundaut. Kerguelen's Land; Christmas Harbour, var. a only.

Were the rar. β. found upon the coast of Europe, it would be undoubtedly referred to D. hypoglossum, and it may well be considered very doubtful whether the D. crassinervia of the Southern Hemisphere be the representative of its northern congener, into the likeness of which it varies; or whether, as is perhaps more probable, both are not varicties of the same species. The true D. ruscifolia is a native of the Cape of Good Hope, of Tasmania, and, according to Gaudichaud, of the Falkland Islands also.

5. Delesseris quercifolia, Bory in Duperrey Voy. Bot. p.186.t.18. f.1.

Hab. Hermite Island, Cape Horn, and the Falkland Islands ; most abundant both on the outer coasts and in the harbours.

A very handsome species, of which M. Bory gives a sufficiently characteristic but discoloured figurc. The original colour of the plant is a rosy or vinous red. In every respect, except the position of the gramules, which are here scattered over the surface of the frond, this is very nearly allied to D. simuosa, Ag.
6. Delesseria Lyallii, Hook. fil. ct Harv.; fronde lincari-oblonga obtusa costata penminervi argute serrato-dentata, nervis oppositis, margine incrassato folia consimilia petiolata emittente, dentibus subulatis simplicibus v. latere inferiore plerumqnc erosis, coccidiis frondis pagina sparsis, grannlis in soros intcr nervos laciniarum sitos dispositis. Nobis in Lond. Journ. Bot. vol. iv. p. 252. (Tab. CLXIVI.)

Hab. Falkland Islands; on the outer coast only, probably washed ashore from the exposed rocks. Kerguclen's Land; Christmas Harbour, washed up on the shores.

Frons primaria exemplaribus Kerguelensibus 9 unc., Falklandicis $4-5$ unc. longa, $1-1 \frac{1}{2}$ unc. lata, in petiolun cylindraceum gradatim angustata, oblonga v. linearis, apice rotundata, costa ralida percursa, venosa, venis oppositis, erecto-patentibus, margine argute serrato-dentata, sed non sinuata, incrassata, foliola seu frondes secundarias emittens? Frondes secundaria primariis consimiles, sed plerumque minores, omnes evidenter petiolatæ, e margine incrassato frondis primariæ ortæ, venis ejus oppositæ r. alternæ. Color luride sanguineus.
D. sinuosce habitu formaque frondis colore et substantia simillima: differt margine incrassato, dentato, non sinuato, et præsertim frondibus secundariis evidenter petiolatis, nunquam e laciniis frondis primarix ortis.

A rery noble species, of which finc specimens were collected, thrown up on the stony shores of Kergueleu's Land and the outer coasts of the Falkland Islands; and which, as it was never seen attached, either in the shallow or deep bays of any of the coasts visited by the Expedition, finds, we conclude, a congenial home amongst the wild breakers that fringe many parts of these iron-bound coasts. Specifically it is allied to the European D. simosa,
from which it differs remarkably in the thickened margin of the frond not being sinnated, but proliferous; in the leaves all being petiolate and arising from the margin, and not from laciniæ of the frond; and in the position of the fructification.

We have, in figuring the nobler species of this and some other gencra, endeavoured to commemorate the services rendered to the botany of the Antarctic regions by those officers of the Antarctic Expedition who particularly deroted themselves to increasing the botanical collections. Their names appear to be more properly associated with the Algce, than with any other tribe of plants; comprising, as these do, the greater part of the vegetation of that element which these gentlemen have adopted for their home, and being natives of the regions they have so successfully explored.

Plate CLXXV. Fig l, apex of frond aud sori; fig. 2, portion of ditto showing the spherospores:-highly magnified.

1s. NITOPHILLUM, Grer.

1. Nitophylum lividum, Hook. fil. et Harv.; fronde e stipite brevi filiformi cartilagineo late expansa tenerrima basi vix venosa fureata v. dichotoma margine undulata livido-purpurea, laeiniis patentibus oblongis obtusis, soris minutissimis punctiformibus coecidiisque perplurimis per totam frondem sparsis. Nobis in Lond. Journ. Bot. vol. iv. p. 253. (Tab. CLXXIX.)

Hab. Falkland Islands; Berkeley Sound and Port William, not uueommon.
Stipes cartilagineus, filiformis, $\frac{1}{2}-1$ unc. longus, ad basin frondis evanidus. Frons 4 unc. longa, 6 v. plures lata, in lacimas paucas latinsculas furcatas apice obtusas divaricatas divisa, areuia, nisi ad imam basin, ubi stipes in renas breves evanidas abiit. Substantia tencrrima. Color livide purpurens, ut in Porphyra, sed vix nitens.

The colow affords a very distinctive character for this species, in which particular it resembles only one of its congeners, the N. Gumianum, Harr., of Tasmania. But that plant, is of a much thicker texture and less lubricous. A single imperfect specimen from Cape Horn probably belongs to the N. lividum. Of the mass of radiating spores contained in the capsules of the species, only those at the base of the cavity are fertile.

Plate CLXX1X. Fig. l, sori; fig. 2, capsule; fig. 3, vertical section of the same; fig.4, portion of ditto:all highly magnified.
2. Nitophyllum fusco-rubrum, Hook. fil. et Harv.; stipite filiformi elougato nunc dichotome ramoso nudo, ramis frondiferis, frondibus flabelliformibus lobatis v. longitudinaliter fissis crasso-membranaceis fuscorubris, basi cuneatis in stipitem gradatim angustatis tenuiter venosis, margine plano subintegerrimo, apicibus (exemplaribus nostris) laceris, soris minutissimis punctiformibus coccidiisque numerosissimis per totan frondem sparsis. Nobis in Lond. Journ. Bot. vol. iv. p. 254.

Hab. Kerguelen's Land ; parasitical on larger sea-weeds in Christmas Harbour.
Stipes 1-8 unc. longus, simplex v. irregulariter ramosus, ramis in frondes cuneatas elongatas exeuntibus. Frondes 3-ă unc. longæ, latitudinc variæ, ima basi obscure vcnosæ, irregulariter profude fissæ, lacinüs cuneatis linearibusve. Sori minimi, inconspicui. Spharosporce plerumque solitariæ, per totam paginam frondis creberrime sparsæ. Coccidia frondibus distinctis numerosa. Sulstantia firma, basi subcartilaginea. Color luride fusco-ruber.Stirps N. ulvoiden, Hook. similis, sed abunde differt colore, sphærosporis sparsis, stipiteque ramoso elongato.

Apparently a native of Kerguelen's Land only, where it was found sparingly, adhering to the stems of larger Alga. The colour, texture, and branching stem at once distinguish this from its congeners.
3. Nitophyllum Crozieri, Hook. fil. et Harv.; fronde basi longe cuneata in stipitem angustata linearilanceolata v. ovata v. late ovato-lanceolata integerrima v. in lacinias plurimas longitudinaliter fissa enervi
tenerrima rosea, soris majusculis oblongis coccidiisque per frondem sparsis. Nobis in Lond. Journ. Bot. vol. iv. p. 254. (Tab. CLXXVII.)

Hab. Hermite Island, Capc Horn ; abundant in deep water.
Radix discus cartilagineus. Stipes gracilis, $\frac{1}{2}-\frac{3}{4}$ unc. longus, cartilagineus, superne alatus, basin in frondem cuneatam abeuns, deinde gradatim evanescens. Frons 8-12 unc. longa v. longior, latitudine varia, lineari-oblonga v. late ovato-rotundata, integerrima \mathbf{v}. in lacinias fissa, adultior punctis crebriformibus pulchcrrime terebrata, apice exemplaribus normakibus attenuata, margine integerrima, undulata, plus minusve in lacinias fissa, subarenia v . basi solum nervis indistinctis e apice stipitis ortis notata. Sori numerosissimi, per totam frondis paginam sparsi. Substantia tencrrima. Color pulcherrime roseus.

One of the most beautiful of the genus, and probably the southern representative of the European N.punctatum, cliefly distinguishable from it by the long euneate base of the frond passing into a filiform stem and by the absence of dichotomous divisions with wide axils. The traces of the stem become gradually more faint at a short distance from the base of the frond, but do not break up into numerous reins. The normal form of the frond is broadly lanceolate, tapering to an acute point ; with waved but entire margins, which are, however, often split and torn into numerous linear ribbon-like segments, caused by injury and not the natural divisions of the frond.

Plate CLXXVII.-Fig. 1, portion of frond and sorus:-magnified.
4. Nitophyllem multinerve, Hook. fil. et Harv.; fronde breviter stipitata elliptica v. orata subintegerrima v. lobata, nervis pluribus parallelis distinctis dichotomis apicem versus frondis evanescentibus, soris? Nobis in Lond. Journ. Bot. vol. iv. p. 255.

Hab. Hermite Island, Cape Horn, and Falkland Islands; Berkeley Sound, on rocks, not common.
Stipes plerumque $\frac{1}{8}-\frac{1}{4}$ unc. longus, nunc pollicaris, simplex. Frons in lacinias plurimas obtusas cito fissa, 2-4 unc. longa, basi rotundata v. cuneata ; nervis plurimis, validis, ad apicem frondis evanidis. Substantia membranacea. Color roscus.

Of this plant we have not very satisfactory speeimens, or which may not belong to the Delesseria dichotoma: except that in the present species the nerves are much fainter, less distinct from the lamina, and vanishing further from the apex of the frond, which evinces no tendency to form distinct leaves.
5. Nitophyllum Smithii, Hook. fil. et Harv.; fronde stipitata flabelliformi lobata basi cuneata superne divisa et laccra, apicibus laciniarum obtusis, marginibus planis, colore rubro subfuscescente, nervosa, nervis gradatim evanescentibus basilari centrali crasso lateralibus radiantibus tenuibus nunc evanidis, soris minutis rotundatis margines versus laciniarum frondis densissime sparsis. Nobis in Lond. Journ. Bot. vol. iv. p. 256. ('Tab. CLXXVIII.)

Нab. Falkland Islands; in the bays and along the outer sea coast, growing on the roots of larger Alga.
Frous 4-7 une. longa, angusta v. latiuseula, in stipitem simplicem v. ramosam $\frac{1}{2}$ unc. longam ct ultra desinens, forma varia; nunc elongatæ, laceræ; juniores latiores, lobatæ: lacinuis latis, obtusis, emarginatis retusisve. Nervus centralis elongatus, basi latus, frondibus seuioribus ultra medium extensus, junioribus eito evanidus; laterales ad basin frondis flabellatim expansi, oblique areuati. Substantia crassiuscula. Color ruber, demum fuscescens.

This is a very distinet speeies ; but, bke its congeners, so variable in form that little dependence ean be placed on the characters drawn from its outline, or from the length of the stipes. Our figure gives a very faithful representation of the eolour and normal form of the old and young states, both veined and nearly veinless.

Plate CLXXVIII.-Fig. 1, portion of frond and tetraspores; fig. 2, ditto with coccidium :-both magnified.
6. Nitophyllum Bonnemaisoni, Grev.; Alg. Brit. p. 81.

Var. laciniatum, fronde flabelliformi profunde digitatim lohata v. subdichotome pinnatifida, laciniis inciso-dentatis. N. laciuatum, nobis in Lond. Journ. Bot. vol. iv. p. 256.

Hab. var. laciniatum. Hermite Island, Cape Horn; on rocks in deep water. Falkland Islands; not $_{\text {a }}$ common.

Thongh not exactly identical with our European N. Bonnemaisoni, we camot consider this as more than a variety of that plant, which is occasionally foumd in Britain nearly as much laciniated as the specimens before us are. Stipes, in the Antarctic specimens, $\frac{1}{4}-\frac{1}{2}$ inch long, terminating in the thickened cuneate base of the frond, which is $4-5$ inches long, and deeply cleft into $5-9$ segments, either radiating from the centre in a digitate manner, or springing like pinnules from a lengthened rachis. Colour, a pale brownish-red at the base, becoming rosy upwards.

The N. Bornemaisoni in the Northern Hemisphere inhabits the Orkney Islands, the west coasts of Scotland and Ireland, and the south-western shores of England.

19. PLOCAMIUM, Lyngb.

1. Plocamium coccineum, Lyugb.; Harv. Phyc. Brit., t. 44. Fl. Antarct. p. 156.

IIab. Hermite Island, Cape Horn, and the Falkland Islands; rery abundant. $^{\text {a }}$
The present is one of the most widely diffused of the Floridee, both in the Northern and Southern Hemisphere. In Europe it ranges from the shores of the Mediterranean Sea to the North Cape. In Afrien it occurs at the Cape of Good Hope, in North America on the coast of California, and it is abundant, on the Atlantic shores of the United States. It inhabits both coasts of South America, but particularly the western ; Tasmania, New Zealand, and the Anckland Islands. The Antaretic specimens are equally luxuriant with those of the Northern Hemisphere.
2. Plocamum Hookeri, Harv.; fronde cartilaginea anguste lineari compressa plana distiche decomposite ramosa, ramis primariis subdichotomis patentibus, secundariis alternis flexuosis folia ramulosque alterne gerentibus, foliis planis aveniis oblique obovato-lanceolatis obtusis basi angustatis cultratis integerrimis v. margine exteriore crenatis, ramulis liwearibus alterne et secunde pectinato-multifidis, stichidiis brevibus lateralibus dense fasciculatis digitatis laciniatis simplicibus obtusis, coccidiis lateralibus sessilibus sparsis. Harv. in Lond. Journ. Bot. vol. iv. p. 257.

Hab. Kerguelen's Land; Christmas Harbour ; thrown upon the beach, rare.
Frons 8-10 unc. longa, vix lin. diametro, plano-compressa, cartilaginea, nunc subdichotome nune pinnatim ramosa. Rami primarii patentes; secundarii circumscriptione lineares, alterni, flesuosi, ramulos decompositos foliaquc gerentes: foliis $\frac{1}{2}$ unc. longis, $1 \frac{1}{2}-3$ lin. latis, anguste oboratis lanceolatisre, obtusis, aveniis, integcrrimis v. rarius secus marginem exteriorem crenatis. Color luride roscus.

One of the most singular species of the genus, from the curions leaf-like appendages on the secondary and lesser branches. It is a very rare plant in Christmas Harbour, and cannot be confounded with any of its congeners.
3. Plocamum? Magellanicum, Hook. fil. et Harv. Thamnophora Magellanica, Montagne in Foy, au Pole Sud, Bot. Crypt. p. 142. t. 8. f. 2.

Hab. Hermite Island, Cape Horn ; the Falkland Islands, and Kerguelen's Land; very abundant.

Of this plant we have very copious suites of specimens, gathered in the localities above enumerated and varying in length from 2 or 3 , to 4 or 8 inches; most of them are covered with coccidia, though none presents us with a single stichidium ; which is the morc remarkable, because, in other species of this genus the latter description of fruit is the most general.

Under the P. coccinerm, in the first portion of this work, the reasons for abandoning the genns Thamnophora are detailed; whether or not the present plant belongs to Plocamium even, must remain uncertain until the nature of the stichidia is known.

20. RHODYMENIA, Grev.

1. Rhodmenta palmata, Grev.; Alg. Brit. p. 93. Fucus palmatus, Engl. Bot.t. 1306.

Hab. Berkeley Sound, Falkland Islands; abundant. Hermite Islands, Cape Horu; rare.
The Dulse, so commonly eaten on the coasts of Scotland, is not an unfrequent sea-weed on the shores of the Falkland Islands, where it was quickly recognized by some of the north-country seamen of the 'Erebus' and 'Terror.' In Europe its distribution is from the Canary Islands and Mediterranean Sea, to the coasts of Norway and Ireland. Dr. Greville mentions that it is a native of the shores of Brazil.
2. Rhodymexia sobolifera, Grev. ; Alg. Brit. p. 95. Fucus soboliferus, Eng. Bot.t. 2133.

Hab. Falkland Islands ; in Berkeley Sound, and on the exposed outcr sea-coast ; abundant.
Apparently identical with a sea-weed which inhabits the western shores of Ireland, Scotland, and the Orkney lsles, and has also been gathered on the west coasts of France. It is scarcely more than a variety of R. palmeta, whether occurring in the north or south temperate oceans.

3. Rhodimenta corallina, Bory; in Duperrey Voy. Bot. Crypt. p. 175.t. 16.

Hab. Christmas Harbour, Kerguelen's Land; rare.
We have referred our single specimen, without fruit, to this species; with which it appears entirely to agree. The species is not uncommon along the Pacific shores of South America, between the latitude of Concepcion and the Equator.
4. Rhodymenla Palmetta, Grev.; Alg. Brit. p. 85. t. 12.

Hab. Straits of Magalhaens, D' Urville ; Falkland Islands, Gaudichaud.
Of this species we have seen no southern examples.
5. Rhodmenia fimbriata, Grev. ; Synops. p. 48. Sphærococcus fimbriatus, Agardh, Spec. Alg. vol. i. p. 299.

Hab. Falkland Islands, Gaudichaud.
This again is a plant which we do not recognize amongst the collections brought from the Southern Hemisphere.
6. Rhodmenta variegata, Montagne; in D'Orbigny Voy. p. 22. and 116 in Obs. Halymenia variegata, Bory in Duperrey Toy. Bot. Crypt. p. 179. t. 14. R. Hookeri, Harv. in Lond. Journ. of Bot. vol. iv. p. 258. R. glaphyra, Suhr, in Flora, 1839, vol. i. p. 69. t. 2. f. 43.

Var. a. flabellata; fronde stipitata rosea v. sanguinea flabellata fere ad basin partita, lacimiis manifeste Habelliformibus basi cuneatis repetite di-tri- vel palmatim dichotomis, laciniis linearibus $\frac{1}{4}-\frac{1}{2}$ unc. latis,
margine lacinulis brevissimis truncatis quadratis alternis ornato, axillis rotundatis: $-R$. Lamberte forma similis, sed substantia differt.

Var. β. atro-sanguinea; fronde substipitata atro-sanguinea palmato-fissa, laciniis obtusis crectis subdichotome v . alterne divisis margine proliferis, axillis rotundatis. Color luridior quam in var. a.

Var. γ. latissina; fronde 10 unc. longa ad pedalem, laciniis parum divisis apice truncatis 1-4 unc. latis. Varietas a cexteris valde diversa, sed certe nil nisi forma gigantea.

Var. δ. lacerata; inter varietates a et β media:-frons subsessilis divisa.
Var. є. prolifera; fronde $1 \frac{1}{2}-2$ unc. longa subdichotoma, laciniarum marginibus proliferis laciuulas numerosas angustissimas furcatas v . irregulariter ramulosas acutas emittentibus.

Var. §. pulcherrima; laciniis angnstis decomposito-ramosis, pimulis ultimis elongatis emarginatis.
Hab. Mermite Island, Cape Horn ; var. a. Falkland Islands; var. a. β. (on the outer sea-coast) and ζ. (in Berkeley Sound) Kerguclen's Land; vars. a. γ. δ and ε. All very abundant in Christmas Harbour.

A more rariable speceies can scarcely be imagined : so dissimilar are its forms that the more distinct of them werc uuhesitatingly prononuced to be different species, before the whole suites of specimens were collated. In Kerguelen's Land it is one of the most common of Algre; and the varicties, collected there and noted as belonging to the one species, are connected by various links with one another, and with the forms of Cape Horn, the Falkland Islands, and of the American coast. The dark coloured variety, β. atro-sanguinea, is eridently sea-bcaten, and though generally destitute of the marginal tooth-like lacinix, so conspicuous in a, there are specimens possessing them, which comect the two forms. The rar. γ. latissima is the best marked, more, perhaps, by its great size than by its presenting any positive characters: it was gathered along with a and δ, and referred when fresh to the same species. In the Falkland Islands the var. ζ. is conspicuous for having few, and but sparingly divided principal segments, about $\frac{1}{4}$ inch wide, suddenly passing into narrow much-divided minor segments from $\frac{1}{2}-1$ line broad. Though at first sight abundantly distinct from β. or γ. , it is imuediately connected with them both througb var. a.

We follow Endlicher in quoting Suhr's figure of R. glaphyra as a synonym of this species : the representation is, however, anything but characteristic of as Alga.
7. Rhodymenia variolosa, Hook. fil. et Harv.; fronde carnoso-membranacea sanguinea in lacinias plures late lineares v. cuneatas elongatas furcatas dichotomasve ad basin fere divisa, laciuiis basi angustatis erectis apice obtusis emarginatisve, coccidiis? superficialibus densissime conspersis sessilibus pelicellatisve deciluis. Nobis in Lond. Journ. Bot. vol. iv. p. 259. (Tab. CLXXX.)

Hab. Christmas Harbour ; Kcrguelen's Land.

Frons 2-3 v. 7-8 unc. longa, ad basin fere in lacinias fissa. Lacinice $\frac{1}{2}-1$ unc. latæ, e basi angustata sensim latiores, furcatæ, bis terve dichotome divisæ, simubus latis obtusis, margine integerrimo v . parce prolifero, super subtcrque corporibus granulifcris (coccidia?) sparsæ. Coccidia? (in genere abnormalia) superficiabia, subglobosa, basi angusta frondis affixa, cito decidua.

Allied to the R. variegata, especially in form, but of a firmer texture and brighter colour ; and very different in the nature of the fructification, which is easily detached, leaving only a small puncture on the surface of the laciniz : this constitutes the peculiar character of the species. In the structure and form of the frond there is some affinity with the Gracilaria polycarpa of the south of England and California; but the fruit of that plant is quite different.

Plate CLXXX.-Fig. 1, portion of froud and coccidia; fig. 2, portion of ditto vertically sliced; fig. 3, spores from the same ; fig. 4, immature ditto :-all highly magnified.

21. ACANTHOCOCCUS, Hook. fil. et Harv.

Frons linearis, compressa, distiche ramosa, cartilagineo-carnosa, rosea. Axis solidus, densus, e cellulis minutissimis formatus, tubulis magnis phoriseriatis extus sensim minoribus circumdatus. Peripheria celluli parvis reticulata. Coccidia globosa, in apicibus ramulorum immersa, sporis numerosissimis repleta.

1. Acamthococcus Antarcticus, nobis, in Lond. Journ. Bot. vol. iv. p. 261. (Tab. CLIXXI.)

Hab. Cape Horn and the Falklaud Islands; not uncommon, and parasitic.
Fions 4-8 unc. longa, compressa, anguste linearis, basi semilineam vix lineam latitudine, sursum sensim augustata, distiche ramosissima. Rami patentes vel diraricati, nune flabellatim multifidi, nunc pinnati et bipinnati ; sccundarii nune breves subsimplices, nunc longissimi, ramosissimi. Ramali per totam frondom sparsi, apicem versus crebriores, erecti et erecto-patentes, subulati, l-3 lineas longi, alterni vel sæpius sccundi, simpliecs vel parum divisi. Coccidia solitaria, globosa, spinis 4-6 magnis subulatis armata, in apicibus ramulorum immersa, sporis numerosissimis miuutis repleta. Tetraspora ignota. Color intense ruber, siccitate obscurior. Substantia firma, cartilagineocarnosa :-clartæ adhæret.

We cannot satisfactorily include this plant under any established genus. It belongs, unquestionably, to the Spharococcece and will stand ncar Hypnea, from which it differs in the structure of the frond, as well as in the fructification. The densely cellular axis, surrounded by large empty cellnles or tubcs, is seen in Hypnea musciformis, and also in Gracilaria purpurascens. Outwardly there is a close resemblance betwecn our plant and Heringia rostrata, J. Ag., (Gelidium? rostratum, Griff.; Fucus alatus, and angustissimus, Turn.) ; but, besides the dissimilar fructification, the structure of that plant is uniformly dense, without a trace of large cellules, or tubes. Again, the present plant may be compared with Microcladia, which it approaches in habit; and to a certain extent, the spiuous coccidia may be deemed analogous to the involucrated favellce of that genns; but, in Microcladia, the axis, far from being the most dense part of the frond, is tubular.

Plate CLXXXI.—Fig. 1, ramulus; fig. 2, apex of ditto with coccidium ; fig. 3, transrerse section of ramulus; fig. 4, longitudinal section of coccidium:-all magnified.

22. GRACILARIA, Grev.

1. Gracilaria (?) nigrescens, Hook. fil. et Harv.; radice fibrosa, frondibus purpurascentibus cespitosis e basi irregulariter dichotoma et intricata ramosissimis gracilibus subcylindraceis obscure compressis flexuosis flaccidis carnoso-membranaceis, axillis obtusis seppissime latis, ramis decompositis sensim angustatis, ramulis filiformibus v. subulatis acutis, ultimis sepe secundis. G. obtusangula, nolis in Lond. Journ. Bot. vol. ir. p. 260. Sphærococcus subulatus, β. nigrescens, Agardh, Sp. Alg. p. 329.

Var. β. tenuior, ramis strictioribus divaricatis, axillis patentibus.
Hab. Hermite Island, Cape Horn, and the Falkland Islauds; not uncommon. Var. β. Falkland Islands.

Frons basi repens et fibrosa, filiformis, 4-6 unc. longa, $\frac{1}{4}$ lin. lata, subcompressa. Color luride purpurens, ut iu G. purpurascente.

In the absence of fructification we refer this doubtfully to the genus Gracilaria, chiefly from its close resemblance to the G. purpurascens in the essential characters of the frond. We have never seen original or any other specimens of the Sphorococcus subulatus, var. nigrescens, and owe the ideutification of our specimens with that plant to the kindness of our friend Dr. Montagne.
2. Gracilaria (?) aggregata, Hook. fil. et Harv.; cæspitosa, nigrescens, frondibus fastigiatis e basi communi late scutata carnosa ortis plurimis filiformibus, primariis cylindraceis cartilagineis vage subdichotome ramosis, axillis angustis, ramis ercetis simplicibus furcatisve ommibus compresso-cylindraceis filiformibus superne subfastigiatis apicibus obtusis, fructu ——? Nobis in Lond. Journ. Bot. vol. iv. p. 261.

Hab. Falkland Islands; on rocks in Berkeley Sound, Dr. Iyall.
Frondes 3-4 une. altæ, vix $\frac{1}{2}$ lin. diametro, e basi scutata, $\frac{1}{2}$ unc. latæ, dense fastigiatæ, siccitate rigidæ, madore cartilagineæ, irregulariter superne præcipue ramosæ, basi cylindraceæ, interdum simplices, mun e basi regulariter dichotome ramosæ. Rami omncs erecti, axillis angustis, sinubus obtusiuseulis, ultimi paulo latiores. Color nigropurpurascens, siccitate ater;-chartæ non adhæret. Habitu Polyidis rotuadi.

Of this, again, we have seen no fruit ; but the structure of the frond is exactly that of the genus Gracilaria, to which we consequently refer it.

23. POLYSIPHONIA, Gree.

1. Polysiphonia atro-rubescens, Grev. Harv. in Brit. F7. vol. ii. p. 331.

Hab. Berkeley Sound, Falkland Islands; scarce.
Only a few speeimens of this species, and in an immature state, were proeured: they very closcly approneh British ones in structure, but are, perhaps, more branched; though we ean detect no specific differences between them. They differ from the following speeies in substance aud in wanting the fibrillous apices of the ranmli; the latter, however, is an unimportant character.

The species ranges from the Mediterrancan Sca to the coasts of Scotland.
2. Polysipionia fuseo-rubens, Hook. fil. et Harv.; atro-rubescens, obscure articulata, rigidiuscula, multistriata, frondibus irregulariter dichotomis, caule angulatim flexuoso gracili sensin attenuato, ramis majoribns dichotomis, miuoribus altermis strictis elongatis, ranulis paucis subulatis crecto-patentibus, axillis primariis patentibus secundariis acutis, articulis e tubulis octo radiantibus coloratis formatis, ramorum diametro duplo-triplo-quadruplove, ramulorum sesquilongioribus. (Tab. CLXXXII. Fig, I.)

Hab. Falklaud Islands; Mrs. Capt. Sulivan. $^{\text {a }}$
Caules primarii ramosissimi, fasciculati, 6-8-unciales, graciles, filiformes, basi nudi, superne sul-angulatim flexuosi, ad angulos ramos 2 unc. longos emittentes, rigiduli. Rami ramulique crecto-patentes, laxe pluries divisi, fasciculati, ultimi longitudine varii, $\frac{2}{4}-2$ lin. longi, elongati v. subulati, omnes rigidiuseuli. Color atro-rul)cseens :ehartæ laxe adhæret.

Very similar indeed to the P. atro-rubescens, but differing in the flexuose stem; also allied to P. anisogona, nob., but of a totally different texture and consistence.

Plate CLXXXII. Fig. I.-1, ramuli ; 2, apex of ditto; 3, transverse sectiou of ditto :-all magnified.
3. Polysiphonia anisogona, Hook. fil. et Harv.; atro-rubescens, flaccida, madore fragillima, frondibus cespitosis irregulariter ramosissimis equalibus setaceis articulatis vix attenuatis, ramis ramulisque alternis subdichotomisve crectis v. appressis, axillis angustissimis, articulis variis inferioribns diametro sextuplo, superioribus duplo triplove longioribus, ultimis sesquilougioribus v. quadratis, omuibne striis sex notatis e tubulis duodecim tenuibus radiantibus endochromate repletis formatis, ceramidiis -_? Nobis in Lond. Journ. Bot. vol. iv. p. 268. (Tab. CLXXXII. Fig. II.)

Hab. Hermite Islaud, Cape Horn, and the Falkland Islands; not common.

Dense cæspitosa. Cospites 4-5 unc. longi, intricati. Articuli longitudine varii, inferiores valde clongati, supremi brevissimi, omnes striis sex rectis spiralibusve notati, e tubulis duodecim tenuibus coloratis cirea cavitatem centralem dispositis conflata.

A fine species, and evidently quite distinet from any previously described; but unfortunately so tender that it eannot be removed from the paper without breaking ; for which reason our description of the ramification is not so perfect as is desirable. It differs, in the snbstance especially, from the British Polysiphonia atro-rubescens, being more fragile and tender.

Plate CLXXXII. Fig. II.- A. and B. different states of P.anisogona; 1, ramulus; 2, apex of ditto; 3, transverse section of ditto :-all magnified.
4. Polysiphonia temistriata, Hook. fil. et Harv.; rubescens, articulata, multistriata, froudibus gracillimis capillaceis flaccidis elongatis circumscriptione ovato-lanceolatis, caulc primario subsimplici flexuoso alterue irregulariter dichotome ramoso, ramis remotis circumscriptione ovatis ramulisque erecto-patentibus sensim attenuatis apice fibrillosis, axillis acutis, articulis ramorum diametro multiplo, ramulorum duplo triplove longioribus sex-striatis e tubulis duodecim tenuissimis radiantibns coloratis formatis, geniculis incrassatis. Nobis in Lond. Journ. Bot. vol. iv. p. 266. (TaB. CLXXXII. Fig. III.)

Hab. Hermite Island, Cape Horn; dredged up in about six fathom water.
Basis frondis deest. Cautis primarius solitarius? 4-6 unc. longus, capillaris, flexuosus, alterne ramosus. Rami 2 -3-unciales, ramulique tenuissimi.

A very elegant speeies, allied to P. anisogona, but much more slender, very differently branched, and not fragile when moistened after being once dried.

P'late CLXXXIII. Fig. III-1, plant of the natnral size ; 2, branch and ramulus ; 3, ramulus ; 4, transverse section of ditto:-magnified.
5. Polysiphonia Sulivance, Hook. fil. et Harv.; pusilla, badia, articulata, flaccida, multistriata, frondibus flabellatim ramosis, ramis alterne docompositis fastigiatis, ramulis sparsis alternis subulatis simplicibus subquadrifariis, articulis ramorum diametro subduplo, ramulorum sesquilongioribus omnibus e tubulis duodecim angustis radiantibus formatis. (Tab. CLXXXII. Fig. TV.)

Hab. Falklaud Islauds; Mrs. Capt. Sutivan.
Radix? Frondes cæspitosæ, 1 unc. longæ, e basi valde fastigiatim ramosæ, flabellatim expansx. Cuulis primarius brerissimus, ramos plurimos capillares repetitim divisos fasciculatos emittens, rami penultini subpectinati, ultimi curati patentes, axillis obtusiuseulis, supremi ramos ramulosque terminantes arcte incurvi sese invicem amplectentes, apices frondinm hine nodosi v . incrassati apparent. Color badius. Substantia flaceida, tenax :- charta adhærct.

A pretty but small species, allicd to the Anekland Islands P. ceratoclada, Mont., but slenderer; with the steur formed of a greater number of tubes, more flaceid, \&e. The ultimate ramuli are longer in proportion than those they spring from, they are slender, patent, rather uniform in length, and ewre upwards, hence giving a somewhat pectinated appearance to the ultimate divisions of the frond. The hue, which is palc brown in this specimen, may be somewhat fadel, and here and there shows indications of the plant having been originally rose colonred.

Plate CLXXXiI. Fig. IV.-1, branch and ramuli ; 2, apex of branch :-both magnified.
6. Polysiphonia microcarpa, Hook. fil. et Harv. ; atro-rubescens, cespitosa, frondibus temuissimis capillaribus membranaceis flaceidis tenacibus oligosiphoniis equalibus vix attenuatis irregulariter repetitim dichotomis, ramis ramulisque erecto-patentibus crebre divisis, articulis bistriatis c tubulis quatuor formatis, ramorum majorum diametro multiplo, minorum triplo quadruplove, ramulorum sesqui duplove longioribus,
ceramidiis pusillis ovatis breve pedicellatis. Nobis in Lond. Journ. Bot. vol. iv. p. 265. (Tab. CLXXXII. Fig III.)

Нав. Hermite Island, Cape Horn; very rare.
Fil. 3-4 unc. longa, capillaria, flaccida, tcnacia sed non fragilia, dense cæspitosa, basi irregularitce dichotome ramosa, ramis omribus diametro æqualibus. Ceramidia minima, lateralia, elliptico-urceolata. Color luride ruber.

Plate CLXXXII. Fig. III.-1, portion of brauch ; 2, ditto with ceramidium :-both highly magnifeed.
7. Polysipionia abscissa, Hook. fil. et Harv.; coccinea, frondibus circumscriptione ovatis tenuibus membranaceo-gelatinosis flaccidis tenacibus oligosiphoniis, caule primario parce diviso flexuoso ramos secuudarios alternos multifidos circumseriptione obovatos emittente, ramis filiformibus minoribus altermis subclichotome divisis, ramulis fastigiatis (quasi abscissis) fibrilliferis, articulis ramorum diametro quadruplo v. sextuplo, ramulorum duplo triplove longioribus bistriatis, ceramidüs pusillis oratis breviter pedicellatis. Nobis in Lond. Journ. Bot. vol. iv. p. 266. (Tab. CLXXXIII. Fig. II.)

ILab. Hermite Island, Cape Horn ; dredged up in about six fathom water.
Frons seu ramns primarius $3-4$ unc. longus, filiformis v. capillaceus, flexuosus, altcrue ramosus, ramis gradafim brevioribus, hinc cincumscriptio frondis totius ovata evadit. Rami inferne nudiusculi, superne fastigiatim ramulosi ; ramulis ultimis temuissimis, confertis. Cautis tubuli sub quatuor. Color roseus v. cocciueus.

A beautiful species, of which the only specimens were procured with the dredge in St. Martin's Cove. The fastigiate branching of the ramuli and the colour arc, of themselves, sufficient to distinguish this from the P. microcarpa, to which it is most nearly related. The principal stem is very conspicnous though slender, and the branching regular and tolerably uniform.

Plate CLXXXIII. Fig. II.-1, plant of the natural size; 2, branch and ramuli; 3, portion of ramulus; 4 , portion of ramus; 5 , ditto, with ccramidium :-all highly magnified.
8. Polysiphonia flabelliformis, Hook. fil et Harv.; pusilla, setacea, badia, rigidula, fronde brevi basi simplici stipitiformi apice flabellatim ramosa, ramis irregulariter dichotomis multifidis apice subfastigiatis, ramulis ultimis erectis longe vudis, axillis angnstis, articnlis multistriatis inferioribus diametro multiplo superioribus sesquilongioribus. Nobis in Lond. Journ. Bot. vol. iv. p. 266. (Tab. CLXXXIII. Fig. I.)

Hab. Crozet Islands ; on Mracrocystis pyrifera.
Frons uncialis, solitaria, rigida, crassitudinc seta porcine, inferne simplex, superne distiche flabellatim ramosa, crassiuscula, circumscriptione orliculari. Rami multifidi, irregulariter dichotomi, fastigiati, rannulis erectis. Avticuli rami valle clongati, strrïs numerosis notati. Color badius, vix rufescens:-charte vix adhæret.

Only one specimen of this very distinct spccies was procured, from a piece of Macrocystis floating off the Crozet's Islands, of which group the present, the Callithamnion Ptilota, nob., aud Ballia Branonis, are the ouly known vegetable productions.

Plate CLXXXIII. Fig. III.-1, plant of the natural size ; 2, branch and ramuli ; 3, portion of ramulus, and 4, of stcm :-highly magnified.
9. Polysipionia (Heterosiphonia) Berkeleyi; Het. Berkeleyi, et Pol. punicea, Mont. Foy. au Pole Sud, Bot. Crypt. p. 128. t. 5. f. 3. Fl. Autaret. Pt. 1. p. 182.

Var. β. Davisii; robustior, caule primario regulariter ramoso, ramis erecto-patentibus sub-bipinuatiu ramulosis, ultimis erectioribns densioribus parciusque divisis. P. Davisii, nobis in Lond. Journ. Bot. vol. i. p. 267.

НАв. Hermite Island, Cape Horn ; Falkland Islands, and Kerguelen's Land ; abundant. Var. Davisii, Hermite Island ; rare.

The somewhat differcnt habit, more regular primary ramification, and more erect, denser, and less divided ramuli, had induced us to separate the var. β. from the original P. Berkeleyi : an opinion we have now abandoned, after a careful examination of very many specimens; amongst which, forms commecting the two may be fond.

Though not included by Montagne under his genns Heterosiphonia, the structure of the tubes forming the frond of P. punicea is the same with that of Ieterosiphonia Berkeleyi, of which we have examined an authentic specimen, communieated by our friend the Rev. M. J. Berkeley, and differing in no respect from P. punicea. We scarcely, however, think that the varying diameter of the tubes in the genus Polysiphonia authorizes a division of the genus; for, in some species, as the present, the increased size of two of the tubes, though conspicuous under favourable circumstances, affords bnt an obscure character ; and in some species the difference of diameter is trifling.

24. RHODOMELA, Ag.

1. Rhodomela patula, Hook. fil. et Itarv.; fronde cylindracea brumea cellulis irregularibus notata vage bipinnatim ramosa, ramis alternis elongatis horizontalibus suberecto-patentibusve minoribus elongatis patentibus subsimplicibus alternatis nudis. Nobis in Lond. Journ. Bot. vol. iv. p. 264. (Tab. CLXXXIII. Fig. IV.)

Hab. Falkland Islands; Port William and Berkelcy Sound, rare.
Frons 4-6 unc. longa, basi diametro $\frac{1}{2}$ liin., vage et patentim ramosa. Caulis primarius subsimplex, ramos altcrnos, patentes, elongatos cmittens. Renui laxe ramulosi, ultimi breriusculi, e tubulis 4 magnis circa cavitatem centralem dispositis extus strato cellulorum confertorum circumdatis conflati. Substantia membranacea. Color luride bruneus v. fuliginosus:-cbartæ adherct.

Similar to the following, and, perhaps, not specifically distinct : it diffcrs in the ramification; and in the absence of the very numerous short ultimate ramuli so copiously scatered over the branches of R. Gaimardi.

Plate CLXXXIIl.-Fig. IV.-1, portion of plant of the natural size; 2, portion of stem and ramulus:-magmified.
2. Rhodomela Gaimardi, Ag.; fronde cylindracea flabellatim ramosissima, stipite simplici filiformi, ramis primariis divaricatis, secundariis patentibus bipimatim multifidis segmentis alterwis, ramulis brevibus setaceis simplicibns furcatis quadrifidisve sepe secundis per totam frondem sparsis. Nobis in Lond. Journ. Bot. vol. iv. p. 264. Agardh, Spec. Alg. vol. iv. p. 380. (non Mont. in Toy. au Pole Sul). (Tab. CLXXXIV.)

Hab. Hermite Island, Cape Horn, and in Berkeley Sound, Falklaud Islands; not uncommon.
Frons 4-6 unc. longa, crassitudine sete porcine, basi simplex, superne in ramos 3-4 primarios flabellatim divisa. Rami primarii subdichotomi v. inregulares, divaricati, repctitim bifarie ramulosi; rami secundarĭ tertiariique elongati, simplicinsculi, filiformes, ramulis brevibus ornati. Ramuli 2-3 lin. longi, srepissime secundi, tenuissimi. Structura ut in R. patula. Color luridus.

This, which we doubtfully referred in the London Jourual of Botany to the R. Gainardi, Ag., appears to us decidedly the plant of Agardh; and our friend, Dr. Montagne, has kindly furnished us with a specimen of the Auckland Island species, to which he had applied this name, and which belongs to anotber plant. The R. Gaimardi of Dr. Montagne is assurcdly our Potysiphoonia botryocarpa, (Pt. 1. p. 181.) and bas very much the appearance of a Rhodomela. The specimens, from which the above description is taken, were gathered in the sanue locality as that from whence the typical plaut of Agardh was brought by Gaudichaud; and they agree with
the description of that author in every particular : except that the compression attributed to the frond is certainly not a character of our specimen, and most probably originated in that of Gaudichaud from bad drying.

Plate CLXXXIV.-Two states of R. Gaimardi, of the natural size. Fig. 1, ramuli and stichidia; fig. 2, tetraspores; fig. 3, section of stem:-magnified.
3. Rhodoyela ? comosa, Hook. fil. et Harv.; ramosissima, atro-rubescens, caule cylindraceo frondem percurrente ramis crebris alternis ornato, ramis cylindraceis elongatis phries alterne divisis erecto-patentibus sensim utrinque attenuatis, ramulis ultimis setaceis acutis abbreviatis vagis, capsulis ovatis breve pedicellatis. Nobis in Lond. Journ. Bot. vol. iv. p. 263. Harv. Ner. Aust. t. xi. (Tab. CLXXXV.)

Var. β. fibrillifera; fronde tenuiori laxius ramosa, apicibus fibrilliferis.
Hab. Berkeley Sound, Falkland Islands; both varieties abuudant.
Cautis cylindraceus, 6-9 unc. longus, $1-1 \frac{1}{2}$ lin. diametro (in rar. β gracilis) indivisus v. e basi in ramos primarios 3-4-divisus. Rami primarii secundariis perplurinis aucti, secundarii ramulis breribus setaceis ornati, ultimis in var. β. fibrilliferis : omnes e tubulis septem circa axin centralem articulatam dispositis et strato externo cellnlonm densorum circumdatis conflati. Ceramidia numerosa, secus ramulos ultimos tertiariosque disposita, parra, ovata, breviter pedicellata. Substantia flaccida, opaca, primo visu inarticulata, sed vere articulata. Color luride rufo-brumeus:-chartæ arcte adhæret.

A very much branched species, rariable in size and in the density of the ramification. In old specimens the stem becomes considerably incrassated and constricted at irregular intervals. Being unacquainted with the secondary fructification, we doubtfully refer this plant to Rhodomela: it may belong to Dasya.

Plate CLXXXV.-Two vars. of R.? comosa, of the natural size. Fig. $1 a$, branch and ramuli of var. a; fig. 2 a , section of ditto ; fig. $3 a$, tissue of ditto ; fig. $1 b$, portion of branch and ramulus of var. β. with ceramidia; fig. $2 b$, fibrilliferous apex of ditto:-highly magnified.

25. MELOBESLA, Lamx.

1. Melobesia rermucata, Lamx. Polyp. flexilles, p. 315. Decaisne in Ann. Sc. Nat. Ser. ii. vol. xviii. p. 126.

Var. Antarctica; fronde circumscriptione orbiculari lobata medio adnata margine integerrima libera superficie lrevi lineis concentricis undulata, ceramidiis depresso-hemisphæricis:-an species distincta?

Hab. Var. β. Hermite Island, Cape Horn; the Falkland Islands, and Kerguelen's Land ; encrusting shells, and the stems of Alga, particularly of Ballia Brunonis.

The M. verrucata is a native of the Atlantic Ocean and Mediterranean Sea; the var. β. of the Antarctic Ocean; of Lord Auckland's Group, New Zealand and Tasmania. The ceramidia are intermediate in size between those of M. verrucata and Mr.pustutata, Lamx. We have little doubt of this being a new species; but the materials for its determination are wanting.

26. DASIA, $A g$.

1. Dasya pectinata, Hook. fil. et Harv. ; setacea, rigida, purpurea, fronde basi nuda superne distiche decomposito-pinnata, ramis articulatis tri-striatis pectinato-pinnatis, ramulis (v. pimulis) simplicibus alternis brevibus subulatis articulatis monosiphoniis, articulis diametro sesquilongioribus, ceramidnis urceolatis pedicellatis. Polysiphonia pectinata, nobis in Lond. Journ. Bot. v.iv. p. 267.

Hab. Hermite Island, Cape Horn; dredged np from about six fathom water, and on rocks at low-- water mark, very rare; Falkland Islands, Mirs. Capt. Sulivan.

Species pulcherrima, habitu Bonnemaisonice asparagoidis. Frons 2-4 unc. longa, circumscriptione late ovata, 2 unc. lata, rigida, distiche ramosa, v. ramosissima, ramis setaceis decomposito-pimatis. Caulis primarius simpliciusculus, basi inarticulatus, superne articulatus, tri-striatus, compressus v. angulatus. Rami minores ramulis alternis ornati, omncs breves, subulati, e singulo serie cellularum formati, hinc monosiphonii. Articuli omues breves, caulini e tubis quatuor inæqualibus (quorun 2 lateralibus latioribus,) curca cavitatem ceutralem dispositis conflati; articuli ramulorum Callithamnio forma et structura simillimi. Ceramidia secus ramulos disposita. Color pulchre pupureo-roseus.

A very beautiful and rare species : distinct from any of its European and exotic congeners that have been described. Mrs. Sulivan's specimens are much finer and more branched than those from Cape Horm.

27. STICTOSIPHONIA, Harv.

Frons purpmea, filiformis, cylindracea, ramosa, tubulosa, extus stictis quadratis notata, intus diaphragmatibus scptata. Peripheria e cellulis quadratis tubum centralem cavum radiatim cingentibus formata. Ceramidia? Stichidia lanceolata, ramulos terminantia, tetrasporas phuriseriatas foventia.-Algæ pusilla, cespitos爪, e filis repentibus orta, rupes marinas Antillauas, Austro-Atlanticas, Antarcticasque vix demersas v. ad limitem pleni maris astus sitas incolentes.- Genus Bostryclice, Mout. ralde affine.

A very natural little group: composed of a few species, which occupy the same position with regard to the high-water mark in the Southern Ocean, that Lichina aud Catenella do in the Northern. As a genus it differs from Bostrychic, Mont., only in the more simple internal structure of the frond, and broad, apparently septate, tubes, surrounded by only one row of cells occupying the centre of the frond: in habit aud other respects they are so closely allicd, that it is doubtful whether Stictosiphonia should not rather be regarded as a subgenus of Bostryctia. The structure of the frond is very similar to that of Polysiphonia, differing chiefly in the cellules of the periphery being very short: whilst those constitnting the axis are lengthencd.

1. Stictosiphonla Hookeri, Harv.; caulibus indivisis curvatis apice involutis, ramis lateralibus abbreviatis alternis subquadrifariis crecto-patentibus, inferioribus subulatis simplicibus furcatisve, superioribus alterne multifidis, ramulis subulatis acutis erectis, axillis acutis, stictis subtriseriatis, stichidiis lanceolatis acutis ramulos minores terminantibus. Bostrychia Hookeri, Harvey in Lond. Journ. Bot. vol. iv. p. 269. (Tab. CLXNXVI. Fig. II.)

Hab. Hermite Island, Cape Ilorn; and the Falkland Islands: on rocks close to high-water mark; abundant.

Frons 1-1 $\frac{1}{2}$ unc. longa, dense cæspitosa, rigida, atro-purpurea. Caulis plerumque simplex, per totam longitudinem ramulis brevibus lateralibus ornatus. Rami nunc omnes 1 lin. longi et indivisi v. superiores clongati 2-4 lin. longi, repetitim ramosi. Ramuli ultimi subulati, erecti erecto-patentesse. Rami ramulique omnes apicibus plerumque arcte involutis:-chartæ laxe adhæret.

A beantiful little plant, marked all over, under the microscope, with three rows of dark purple dot-like cells.
Plate CLXXXVI. Fig. II.-1, plant of the natural size ; 2, stem, \&ce. ; 3, ramulus and stichidium ; 4, portion of stem ; 5, longitudinal and 6 , horizontal scctou of ditto ; 7, tetraspores:-all magnified.
2. Stictosiphonia fastigiata, Hook. fil. et Harv.; caulibus fastigiatis multifidis apicibus involutis,
ramis æquilongis curvatis, ramulis alternis subulatis furcatis v. alterne multifidis, axillis acutis, stictis 3-4. v. pluriseriatis. Bostrychia fastigiata, nolis in Lond. Journ. Bot. vol. iv. p. 269.

Hab. Hermite Island, Cape Horn ; on stones near high-water mark.
Pusilla, dense fastigiata. Frondes $\frac{1}{2}$ unc. longæ, e basi in ramos plurimos primarios divisæ, rubro-purpureæ. Caulis brevissimus. Rami elongati, curvati, apicibus arcte incurvis, ramulis simplicibus multifidisve ornati :-chartæ laxe adhæret.

Possibly only a varicty of the preceding; from which, however, it diffcrs conspicuously in the very abbreviated stem, the consequently longer, more divided branches and the duller colour.
3. Stictosiphonia vaga, Hook. fil. et Harv.; caulibus flexuosis vage dichotome ramosis, ramis paucis nudis simplicibus filiformibus subcapillaribns arcnatis medio incrassatis apicibus incurvis, ramulis nullis, axillis patentibus, stictis minutis multiseriatis, stichidiis longissime pedunculatis lanccolatis acutis. Bostrychia vaga, nobis in Loul. Joum. Bot. vol. iv. p. 270. (Tab. CLXXXVI. Fig. I.)

Hab. Christmas Harbour, Kcrguelen's Land; on rocks and stones above high-water mark, and in damp places at a considerable distance from the sea; abundant.

Dense cæspitosa, filis intertextis quasi crinita. Frondes $\frac{1}{2}-1$ unc. longæ, flexuosæ, irregulariter ramosæ, capilkures. Sticto parre, 6-8-seriatæ. Substantia rigida. Color luride purpureus :-chartæ laxe adhæret.

A remarkably distinct little species, of very simple structure. It is abundant in Kerguelen's Land, sometimes inhabiting places some hundreds of feet above the sea, but probably always within reach of the spray.

Plate ClixXXVI. Fig. I.-Plant of the natural size; 2, rami of ditto ; 3, portion of ditto ; 4, incrassated ramulus ; 5, ramulus and stichidium ; 6. tetraspores:-all magnified.

98. LAUREN IA, Lamx.

1. Laurencia pinnatifula, Lamx. Far. γ. angustata, Hook. ; Fl. Antarct. Pt. 1. p. 184.

Hab. Berkeley Sound, Falkland Islands; abundant on the beach.
One of the most widely dispersed of the Alya, inhabiting the shores of Europe from Norway to the Mediterranean ; the Canary Islands; west coast of Africa, and Cape of Good Hope; the Peninsula of India; Australia and New Zealand ; the Pacific Islands, and both coasts of North and South America. This very extended range las, however, its limits; the plant is neither found so far north as Iceland in the Aretic Sea, nor in the south is it kuown to inhabit Cape Horu or Kerguelca's Land.

29. DELISEA, Mont.

1. Delisea mulchra, Mont. in Amn. Sc. Nat. Ser. iii. vol. i. p. 15s. Bowiesia pulchra, Grev. Synops. Alg. p.57. Bonnemaisoma elegans, Endl. Supp7. vol. iii. p. 44. Calocladia pulchra, Grer. Herl. Splærococcus Haccidus, Suhr. (fid. Mont.)

Hab. Christmas Harbour, Kerguelen's Land; common.
Magnificent specimens of this noble Alga were collected by the Antarctic Expedition, though only in Kerguelen's Laud. The previously assigned habitat for the species is New Holland or Tasmania; but we have seen no other specimens than Mr. Fraser's original one, labelled as from that quarter of the world. It thereforc appears to us probable, that the specimen sent by Mr. Frascr, may have been collected in Me'Quarrie's Island; whence other Antarctic plants were brought to that geutleman in Sydney, some of which have since found their way into our Herbaria as of Australian origin.

30. IRIDÆA, Bory.

1. Iridea Radulu, Bory; Fl. Antarct. Pt. 1. p. 188.

Hab. Hermite Island, Cape Horn ; Falkland Islands and Kerguelen's Land, very abundant. Cockburn Island; at the limits of southern vegetation, on the beach, rare and bleached.

So abundant are the Iridece in the South Polar Oceau, and so variable in their form and texture, that we can seareely hope to arrive at any accurate knowledge of the species until they shall have beeu studied in a living state; and then it is not improbable that the genus will be considerably reduced; and one or two of the more eommon species be found to assume forms as dissimilar as those of our Laurencia pinnatifida.

There exist in the Hookerian Herbarium, authentic specimens of the Fucus bracteatus of Gmelin, as figured in Tumer's 'Historia,' collected both at the Cape of Good Hope and in North West America, by Mr. Menzies. These are (as is geuerally the case with the specimens of the larger Fuci, preserved in our Herbaria) smaller and of that lanceolate form which other Iridece present in a young state. Their texture is very thick, densely cartilaginous, opaque; and covered with tubereles whieh fall away, leaving a cribriform frond both when immature and older. This great density is a very remarkable character, and observable in the plant here referred to that species, which, when full grown, beeomes broadly ovate, or orbicular, and cordate or rounded, or narrowed at the base; with the lamina more or less and variously divided, sometimes three feet broad, or upwards. The largest specimens we have never seen attached, though they are abondant, washed up on the beach, and probably attain their great size on the outer rocks.

Since the publication of the first part of this work, we have, through Dr. Montagne's kindness, had the opportunity of inspecting the I. laminarioides, Bory, of Lord Auckland's Group : specimens of which are in our Herbarium from the same island; but which we had previously regarded as a more delicate state of I. Radula. Even what we consider the true I. Radula of Lord Auckland's Group and Kerguelen's Land, is not so dense in the frond as the specimeus of the Falkland Islands aud Cape of Good Hope are. Both this and the following species have the surfaee frequeutly covered with granules, tubercles or pedicellate pear-shaped organs; or in the young state with elongated fleshy bodies similar to those of the I. stiriata, Bory. The I. stiriata, according to the descriptions, may belong to a state of this, or the following, or many other forms of the genus: it is, however, a narrower, smaller species, with a much more dense frond than even I. Rudula.
2. Iridea cordata, Bory, in Duperrey Toy. Bot. p. 104 ; et I. micans, p. 110. t. 13 et 13 lis. Halymenia cordata, Agardh, Sp. Alg. p. 201. Fucus cordatus, Turner Hist. Fuc. t. 116.

Tar. β. ciliolata; stipite brevi cartilagineo euneato ciliato-dentato mox in frondem simplicem ovatolanceolatam desinente, fronde latissima basi euneata v. cordata apice obtusa v. acuta v. emarginato-bifida membranacea rubra plana nitente lævi margine vix undulata. Nobis in Lond. Journ. Bot. vol. iv. p. 263.

Var. γ. dichotoma; stipite brevi mox cuneato furcato v. pluries dichotomo sensim in frondem late cuneatam obovatamve desinente, segmentis integris vel divisis margine dentatis lobatis proliferisve.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; both varieties very abundant.
This species, when fresh, well deserves the brilliant description of its beautiful tints, given by M. Bory ou the anthority of Admiral D'Urville and M. Gaudichaud. It is one of the most common Algce of the southern extremity of America and the Falklands. In its younger statc, the fronds are obovate or spathulate, like those of I. laminarioides, figured by Bory, and soon expand into laminæ, variously morlified, according to situation and exposure, with relation to the force of the sea, the nature of the bottom, the currents, depth, and protection afforded by other Alger; for no two fronds of a similar shape are usually to be found within a few yards. Indeed,

I question whether I. micans be more than a membranons form of I. Radula: the former always preferring the quieter harbours, where its fronds are sometimes as thin as those of a Delesseria, quite unfitted to withstand the rough seas of the outer coasts, which wash the almost uninjured fronds of the I. Radula ashore in broad sheets, as large and as red as au ordinary pocket-handkerchief.

Though sometimes almost equally thin, the substance of the I. micans is never so membranous as that of a Delesseria. The colour, tbough not so bright a rose, or so delicate when the plant is dried, is, when seen in the living state, much more varied and more beautiful. The texture is such that the slightest motion of the water causes the frond to undulate throughout from the base upwards without falling into folds: each portion of the surface, when preseuted at a certain angle to the eye, reflecting back the most brilliaut metallic tints of azure, steelblue, pink, and purple. A more beautifnl object in the water is not to be found in the whole order of $\operatorname{Alg} \mathscr{E}$ than this, when seen from a boat in calm weather and sunshine; though it is seldom that such opportunities occur in the latitudes it inhabits. I have not been able to detect any strix on the surface of the frond, which is formed of cells so densely packed that they coalesce into a homogeneous cartilaginous tissue.

We have no hesitation in pronouncing this as identical specifically with the I.cordata of the Banks of Newfoundland and the Cape of Good Hope; of which species there is an excellent figure in the 'Historia Fucomm', coinciding with that of Bory in Duperrey's Voyage. The descriptions, both of Agardh and Turner, particularly mention the iridescence of their specimens. The only differential characters noted by Bory, who justly indicates the close affinity of I.micans with I.cordata, are the slight discrepancy in the bluntuess of the apices of the fronds and depth of the lobes at the cordate base. We are, however, well assured that snch characters are all too slight; for we could not, either at the Cape of Good Hope or the Falkland Islands, distinguish between the forms of this Iridea with a cordate and those with a cuneate base to the frond. We are, however, far from asserting that there may not be from the two last-named localities two species here confounded (one of which, the I.micans of Bory, is the same with the F. cordatus of Turner), though we strongly incline to the opposite opinion.

31. PHYLLOPHORA, Grev.

1. Phyllophora cuneifolia, Hook. fil. et Harv.; fronde stipitata basi ramosa lato-cuneata prolifera integra emarginata v. biloba e margine disco v. apice frondes consiniles emittente.

Hab. Port William and St. Salvador Bay, Falkland Islands; Christmas Harbour, Kerguelen's Land; rare.

Frondes omues stipitate. Stipes compressus interdum subplanus, ima basi plerumque angustissima, sensim in lamiuam latam cuneatam deltoideamve dilatatus, basi divarication ramosus, bis, ter pluriesve divisus. Frondes primariæ $1-2$ unc. longæ, $1-1 \frac{1}{2}$ latæ; apice latiore late rotuudato, emarginato, retuso v . bilobo; segmentis rotundatis, rarius erosis ; sccundariæ primariis omnino similes sed colore pallidiores et basi simplices, sæpe frondes tertiarias emitteutes, hinc planta vetusta catenatin ramosa evadit. Fructus - ? Substantia tenuiter cartilaginea, subcornea, basi opaca. Color ut P. Brodiai.-Chartæ vix adhæret.

Certainly distinct from P.obtusa, the only one of the genus hitherto described as a native of the southern temperate hemisphere, but perhaps not equally so from P. Brodici. Still our specimens are very different from the ordinary British form of that plant, in the much shorter stipes, and larger broader frond, which is much less lobed and the lobes are not so narrow or elongated, or separated by so deep a sinus.

2. Phyllophora obtusa, Grev. Fl. Antarct. Pt. 1. p. 187.

Hab. Hermite Island, Cape Horn ; dredged up from five fathom water, very rare.
The specimens of this species are sufficieutly characteristic, though few in number. It is also a native of the Cape of Good Hope and Lord Auckland's Group.

32. NOTHOGENIA, Mont.

1. Nothogenia variolosa, Mont. Fl. Antarct. Pt. 1. p. 188.

Hab. Hermite Island, Cape Horn; the Falkland Islands; and Christmas Harbour, Kerguelen's Land; on rocks, very abundant.

An exceedingly variable plant in size and in the breadth of its fronds, simulating in the high southern latitudes the Chondrus crispus, as far as locality and abundance are concerned. The southern species representing our Chondrus crispus is the C. tuberculatus in Lord Auckland's Group, (where the Nothogenia also abounds,) and at the Cape of Good Hope the C. dilatatus.

33. DUNONTIA, Lamx.

1. Demontia filiformis, Grev. Fl. Antarct. Pt. 1. p. 189.

Hab. Berkeley Sound, Falkland Islands; rare.
Apparently identical with the European plant, which ranges from the Mediterrauean to the British coasts.

34. GIGARTINA, Lamx.

1. Gigartina plicata, Grev. Alg. Brit. p. 15. Fucus plicatus, Engl. Bot. t. 1089.

Hab. Cape Pembroke, Falkland Islauds; Christmas Harbour, Kerguelen's Land; abundant.
These examples so entirely accord with others of British growth, that it is umecessary to separate them spefically. No specimens considered by any systematic botanist to belong to this Gigartina have been found between the latitudes of the south of Europe and Kcrguelen's Land, except (according to Montagne) at Callao : yet the genus, under oue or other of its Proteau aspects, abounds throughout all tropical and temperate seas.

35. PTILOTA, $A g$.

1. Ptilota Harveyi, Hook. fil.; caule compresso cartilagineo inarticulato anguste lineari furcato inordinateve ramosissimo, ramis distichis pirmatim decomposito-ramosis majoribus minoribusque pectinatim pinnulatis costa articulata percursis, pinnulis creberrimis simplicibus articulatis monosiphoniis abbreviatis subulatis oppositis, pimnularum articulis quadratis, favellis in ramulos terminalibus ramellis pimatis involucratis, tetrasporis ad apices pimnularum aggregatis mudis breve pedicellatis. Hook. fil. in Lond. Journ. Bot. vol.iv. p. 271. (Tab. CLXXXVII.)

Var. β. pinnulis subdistantibus.
Hab. Hermite Island, Cape Horn, and on the outer coasts of the Falkland Islands; abundant. $_{\text {a }}$
Species pulcherrima, prima visu P. plumose referenda, sed distinctissima. Frons 8 unc. ad pedalem, e ramis patulis ejusdem latitudinis. Stipes gracilis, $\frac{1}{2}$ lin. diametro, et per totam frondem equilatus, inregulariter furcatim v. dichotome v. sub-pinnatim ramosissimus. Rami minores majoresque (juniores præcipue) ramulis creberrimis articulatis 1 lin. longis pulcherrime pectinati. Ramuli simplices, serie unica cellularum quadratarum endochromate roseo repletarum constantes, ramis Callithamnio subsimiles.

This lovely plant is the Cape Horn and Falkland Island representative of the Boreal and Aretic P. sericea, Harr. (P. elegans, Kutz., Fucus sericeus, Gmel.) and of the Auckland Island P.formosissimu, (t. LXXVII.) From
the former of these it differs in being larger, more rigid, and having ramuli of much greater diameter, so that under the microscope it is impossible to confound them. Its Cape of Good Hope representative, and indeed, very near ally, is the P. setigera, Harv. (Nereis Australis.)

Plate CLXXXVLI.-Fig. 1, branch and ramuli ; fig. 2, portion of a ramulus; fig. 3, another ramulus; fig. 4, favella; fiy. 5 , spores from ditto; fig. 6, tetraspores:-all magnified.

36. CERAMIUM, Adaus.

1. Ceramium mbrum, Ag. Fl. Antarct. Pt. 1. p. 191.

Hab. Hermite Island, Cape Horn; Falkland Islands, and Christmas Harbour, Kerguelen's Land; very abundant.

These two Ceramia (rubrum and diaphanum) are very widely distributed throughout the temperate regions of both hemispheres: they are also found on the shores of Peru and Brazil.
2. Ceramicm diaphanzm, Ag. Fl. Antarct. Pt. 1. p. 191.

Hab. Hermite Tsland, Cape Horn ; Falkland Islands ; and Christmas Harbour, Kerguelen's Land ; $_{\text {; }}$ abundant.

37. GRIEFITHSIA, Ag.

1. Griffithsla Antarctica, Hook. fil. et Harv. ; filis cæspitosis dichotome ramosis flaccidis, axillis inferioribus patentibus, superioribus acutis, ramis elongatis ramulisque nudis ad nodos constrictis, articulis cylindraceis superne paulo incrassatis, ramorum diametro sextuplo, ramulorum snbtriplo longioribus;-fructiticatio deest.

Hab. Hermite Island, Cape Hom, and the Falkland Islands; on rocks.
Fila sub 3 unc. longa, fastigiata, parce ramosa, ramis elongatis, distanter ramulosis, ramulis brevibus. Color roseus :-charte arcte adhreref.

Allied to the G. secundifora, J. Ag., but smaller in all its parts.
2. Griffithsia corallina, Ag. Conf. corallina, Engl. Bot.t. 1815.

Hab. Hermite Island, Cape Horn; dredged up in about seven fathom water.
A solitary barren specimen, resembling the British G. corallina, which is also a native of the Mediterranean sea, Canary Islands, and Cape of Good Hope.
3. Griffithsia equisetifolia, Ag. Conf. equisetifolia, Engl. Bot. t. 1479.

Hab. Falkland Islands; (Agardh.)
38. BALLIA, Harv.

1. Ballia Brunonis, Harv. Fl. Antarct. Pt. 1. p. 190.

Var. β. Hombroniana, Fl. Antarct. 1. c.
Hab. Hermite Island, Cape Horn; Falkland Islands; Christmas Harour, Kerguclen's Land, and the Crozet Islands; most abundant; always (?) parasitical.

One of the handsomest, aud certainly the most common and widely distributed of the Antarctic Floridece: its northern limit in the New World is Patagoma, and the Bay of Islands in New Zealand in the Old. With regard to the arloption of the trivial appellation of "Callitricha," which Agardh proposed for this species (under Sphacelaria), it was waived in compliance with the wish of the first discover of the plant, whose name it now bears.

39. CALLITHAMNION, Lyngb.

1. Callithamion Plumula, Agardh, Sp. Alg. vol. ii. p. 159.

Нab. Hermite Island, Cape Horn ; dredged up from about seven fathom water ; very rare.
Decidedly the same as the European and North American plant.
2. Callithannion simile, Hook. fil. et Harv.; fronde subsolitaria rigidiuscula ramosissima, ramis alteruis v. subdichotomis articulatis enerviis, ramulis brevissimis oppositis distichis crassis sursum pectinatis e quoque ramorum articulo horizontaliter porrectis, pinnulis robustis simplicibus ramosisve, articulis ramorum diametro sesqui-duplo longioribus, ramulorum diametrum subæquantibus.

Hab. Christmas Harbour, Kerguelcn's Land; rare.
Frons 2-5 unc. longa, gracilis, rigidinscula, repetitim distiche ramosa; ramis omnibus articulatis, æquilatis. Ramuli $\frac{1}{2}$ lin. longi, distiche oppositi, e medio articuli cujusvis per totam frondis longitudinem orti, robusti, subacuti, lrorizontaliter patentes, secus marginem superiorem dispositi, ramulis secundariis obsiti. Color fnsco-ruber.
C. Plumule simillimum, sed rigidinsculum, ramis latioribus, ramulis robustioribus articulisque brevioribns.

This so closely resembles the C. Plumula, that it is difficult by mere words to discriminate them; yet, on comparing them under the microscope, they are obviously distinct. C. simite is a much coarser and more rigid plant, with the ramuli more robust in proportion to the diameter of the articulation they spring from, and the articulations themselves are shorter. Again, from the circumstance of the true C. Plumula occurring at Cape Horn, where this, (the ouly Kerguelen's Land species), does not appear, we incline to regard the present as a representative species rather than a rariety.
3. Callithamnion Ptilota, Hook. fil. et Harv. ; parvum, rigidulum, setaceum, fronde pinnatim ramosissima, ramis vix distichis venoso-striatis subopacis, secundariis opposite pinnulatis, pinnulis simplicibus patentibus subulatis e quoque ramorum articulo ortis, articulis diametro duplo longioribus. Nobis in Lond. Sourn. Bot. vol. iv. p. 272. (Tab. CLXXXIX. Fig. I.)

Hab. Crozet Islands; on a floating mass of Mucrocystis pyrifera.
Frons 1-2 unc. longa. Caulis crassitudine setæ cquinæ, repetitim pinuatim ramosus; ramis suboppositis patentibus demum deflexis, inferioribus subuncialibus; secundariis breviusculis pimatis, pimnis plurimis densis, oppositis, simplicibus, subulatis, e omni articulo rami ortis. Color fusco-ruber :-charte vix adheret.

Only one specimen of this very distinct little species was found : it grew on a piece of floating sea-weed, picked up at a considerable distance from the slore.

Plate CLXXXIX. Fig. I.-l, plant of the natural size ; 2, ramuli ; 3, ditto with sphærospores:-all magnifed.
4. Callithamnion termifolium, Hook. fil. et Harv.; perpusillım, vage dichotome ramosum, ramis pellucide articulatis, ramulis sæpissime ternis e omni ramorum articulo ortis erecto-patentibus brevibus gracilibus simplicibus, articulis ramorum diametro $4-5$-plo ramulorum subduplo longioribus, favellis magnis bilobis ramos terminantibus. Nobis in Lond. Journ. Bot. vol. iv. p. 272. (Tab. CLXXXLX. Fig. II.)

Hab. Hermite Island, Cape Hom ; dredged up from about eight fathom water ; parasitic on other Algof.
Species perpusilla, parasitica, cespitosa, sub $\frac{1}{2}$ unc. longa, vage ramosa, rosea, flaccida et membranacea. Ramuli plerumque e quoque articulo terni, raro bini quaternive, graciles, breves, simplices. Articuli caulis ramorumque elongati. Favelle magnæ.

A very small plant, of which but few specimens were obtained, and by the dredge only : they are in a good state of fruit, and probably characteristic of the species.

Plate CLXXXIX. Fig. II.-1, plant of the natural size; 2, portion of ditto; 3, ramuli; 4, ditto, with favelia; s, tetraspores:-magnified.
5. Callithamaion flaccidum, Hook. fil. et Harv. ; gracillimum, flaccidum, membranaceum, fronde laxe et vage decomposite ramosa, ramis primarïs et secundariis oppositis alternisve distichis elongatis patentibns, ramulis ultimis brevibus simplicibus patentibus oppositis secundisve apice incurvis, articulis ramorum primariorum diametro multoties secundariorum 6-10-plo ramulorun sesquilongioribns pellucide roseis enerviis. Nobis in Lond. Journ. Bot. vol. iv. p. 273. (Tab. CLXXXVIII. Fig. I.)

Var. β. alternifolium; ramis ramulisque alternis secundisve rarissime pancis oppositis.
Hab. Hermite Island, Cape Horm ; dredged up from about seven fathom water ; abundant.
Frons ${ }^{2}-4$ unc. longa, laxe ramosa, membrauacea, flaccida, rosea. Caules ramique gracillimi, filiformes.
A rery beautiful and delicate species, remarkable for the ramification being often truly opposite, always so in var. a, two branches springing from opposite points of the same articulation. On the other hand, when, as in var. β. they are alternate or secund, it is owing to the inner ramuli on the branches becoming ahortive, those along the onter edge alone being developed. There is no other difference between the two varieties. Spccifically the present is most closely allied to the C. Turneri, but it is much larger and more branching. The colour is a very bright rose, and from the delicacy of the filaments, the plant forms a beautiful object when properly displayed upon paper. The articuli of the stem are often singularly elongated.

Plate CLXXXVIII. Fig. I.-l, plant of the natural size; 2, ramus and ramuli; 3, apex of ramulus; 4, favella :-magnified.
6. Callithanion scoparium, Hook. fil. et Harv. ; ceespitosum, caulibus fastigiatis, primario crasso inarticulato fibris intertextis flexuosis stuposis restito flabellatim ramoso, ramis primariis cauli similibus, secundariis strictis gracilibus pellucidis creberrime pinnatis bipinnatisve quadrifariis e primariorum apicibns fasciculatim ortis fastigiatis, articulis diametro duplo triplo longioribus. Nobis in Lond. Journ. Bot. vol.iv. p. 173. (Tab. CLXXXIL. Fig. III.)

Var. β. ramulosum ; pinnis apice ramulis secundis ormatis.
Hab. Var. a. Berkeley Sound, Falkland Islands; on rocks. Var. β. Hermite Island, Cape Horu ; rare.
Frons 2-3 unc. longa, dense fastigiata. Caules robusti, inarticulati, basi integra, fibris stuposis dense restiti, in discum latiusculum expansi. Rami cauli subsimiles, per totam longitudinem ramulis strictis dense fastigiatis quadrifariis vestiti (ut in Sphacelaria scoparia) ; secundarii articulati, vage ramosi, pinnati v. dichotomi secundive; omnes erecti, ramulique plerumque appressi ; apicibus obtusis v. acutis simplicibus v. ramulis brevibus pectinatis ornati. Substantia rigida. Color luride purpurens.

A densely tufted species, with the habit of Sphacelaria scoparia, resembling amongst its congeners the C. tetricems of Britain, but abundantly diffcrent under the microscope. It las also been found in Tasmania.

Plate CLXXXIX. Fig. III.-1, plant of the natural size ; 2, ramus and ramuli ; 3, apex of the latter ; 4, fibres at the base of the stem :-magnified.
7. Callithamnion Montagnei, Hook. fil.; fronde fruticosa ramosissima, caulibus primarïs decompositis sensim alternatis crassis quadrifariis inarticulatis opacis, ramis inarticulatis striatis ramulis quadri-
fariis plumosis densissime obsitis, ramulis (sen pimulis) brevibus pinnatis bipiunatisve articulatis pellucidis roseis, piunulis patentibus, inferioribus simplicibus elongatis subulatis superioribus furcatis v. iterum pinnulatis, articulis diametro subduplo lougioribus. C. Gandichaudii, Ag? Nobis in Lond. Journ. Bot. vol. iv. p. 274. (Tab. CLXXXVIII. Fig. II.)

Var. β. caulibus elongatis laxius ramosis basi nudis, ramulis paucioribus gelatinosis.
$H_{\text {Ab }}$. IIermite Island, Cape Horn ; and Berkeley Sound, Falkland Islands. Yar. β. Falkland Islands.
Radix scutata. Frons 2-3 unc. (in var. β. 4-5 unc.) longa, fruticulosa, ramosissima. Caulis crassiusculus, $\frac{1}{2}$ lin. fere diametro, e basi ramosus v . nudus superne precipue in ramos undique patentes divisus. Rami primarii phries livisi; secuudarii ramulis pinmulisre parris $1-1 \frac{1}{2}$ lin. longis undique vestiti. Facelle magnæ, 2-3-lobatæ, lovis gramulis plurimis farctis. Color siccitate atro-purpurens, madore sub lente roseo-purpurens. Substantia caulis ramorumque cartilagiuea, ramulorum teuer, charteque adherens.

In the London Journal of Botany we referred this plant with a mark of doubt, (and erroneonsly as it subsequently appears) to the Cal. Gaudichaudii of Agardh: a Falkland Island species, with which it seemed to agree in many particulars. Our kind friend, Dr. Montague, has, with his usual liberality, supplied us with a portion of the original specinen of C. Gaudichaudii, which proves to be quite distinct. Its nearest northern allies are C. Arbuscula and C. Brodiat, between which it appears almost intermediate, haring the large size and robust habit of the former, with longer and more compound pinnules, and being much stouter than C. Brodixi, having more opaque stems. The var. β. may be ouly an adranced state, having been gathered in the same locality with var. a., but three months later in the season. It chiefly differs in its more tender and gelatinous substance, and in the branches being less densely clothed with ramuli, and nearly naked at the base. Its outrard appearance is very much that of C. tetragonum, Ag.

Plate CLXXXVIII. Fig. II.-l, plant of the natural size ; 2, branch and ramuli ; 3, ditto with favella :-magnified.
S. Callithamyon Gaudichaudii, Ag. Sp. Alg. vol. ii. p. 173.

Hab. Falkland Islands; Gaudichaud.
9. Callithannton leptocladum, Montagne in Toy, au Pole Sud, Bot. Crypt. p. 91.

Hab. Strait of Magalhaens; l^{ρ} Ureille.
40. CODIUM, Stackik.

1. Codium tomentosum, Stackh.; Fucus tomentosus, Engl. Bot. t. 712.

Hab. Hermite Island, Cape Horn ; and the Falklaud Islands; abundaut. Kerguelen's Laud?
This curious plant is equally widely diffuscd in the southern as in the northern and tropical zones; and the specimens from the different localities are very similar. What we believe to have becn this species was collected in Kergueten's Land, but no specimens appear to have becn preserved.

41. CLadothele, IIook. fil. et IIarv.

Frons cylindracea, filiformis, viridis, solida, ramosa, extus papillosa. Axis cellulosa, deusa, e cellulis magnis hyalinis racuis cellulam centralem radiatim cingentilus formata. Peripheria cellulosa, cellulis coloratis (viridibus) pluriscriatis. Utriculi papilleformes, totam superficiem vestientes.-Alga marina Falklandica, irregulariter ramosa, sordide ciridis, ecorticata.

1. Cladothele Decaisnei, Hook. fil. et Harv. ; in Lond. Journ. Bot. vol. iv. p. 293. (Tab. CXC.)

Hab. Berkeley Sound, Falkland Islands ; in the sea.
Radix fibrosa? Frondes 4-6 unc. altæ, cæspitosæ, filiformes, seta porcina crassiores, cylindraceæ, flesuosæ, plus minusve ramose, ramificationc valde irregulari. Rami primarii elongati, sepe simplices, ramulis longis simplicibus sxpissime secundis curvatis v . incurvis vix attenuatis laxe donati. Substantia tenax. Color sordide viridis, sicecitate cinerascens:-chartæ laxe adhæret.

A very curious plant, certainly related to Codium, especially to C. simpliciusculum, by the structure of the papillee that cover its surface, and from which we have derived the generic name. The axis is, however, of very different structure from that of Codium or of any other genus of Siphoneea, and more closely resembles that of Polysiphonia. In the specific name we wish to pay a deserved compliment to our friend M. Decaisne, who has thrown much light on the affinities of the corallinoid Alga, especially those related to Siphonea.

Plate CXC.—Fig. 1, plant of the natural size; 2 ramus and ramuli; 3, longitudinal, and 4, vertical scction of branch; 5 , cellular tissue of ditto:-magnified.

42. BRYOPSIS, Lamx.

1. Bryopsis plumosa, Grev. Alg. Brit: p. 187.

Var. ß. Arbusculu, J. Agarlh, Alg. Medit. p. 21. B. Arbuscula, Alg. Sp. Alg. p. 451.
Haß. Hermite Island, Cape Horn, and the Falkland Islands; abundant, both varieties.
The branches of the frond are narrower and pinnated nearer to the base, with the ramuli more uniform and shorter in some of the specimens than in others.
2. Bryopsis Rose, Ag. Syst. Alg. p. 179. Bory in Duperrey Voy. Bot. p. 211. t. 24. fig. 1.

Hab. Hermite Island, Cape Horn, and the Falkland Islands.
None of our specimens equal those figured by Bory in size, though they coincide in all other respects with the descriptions published by that author and Agardh. Our opimion is, that the present plant is not distinct from the B. plumosa, but is a large state of that very sportive species, depending probably on the temperature of the oceau it inhabits for its developmeut. Some otler species of this highly Protean genus are equally difficult to define; and we cannot but expect that a copions suite of specimens from different shores and depths will considerably diminish it.

43. VAUCHERTA, $D C$.

1. Vaucheria Dilluynii, Ag.; Grev. Alg. Brit. p. 191. t. 19. Conferva frigida, Dillwyn, t. 19. Hab. Christmas Harbour, Kerguelen's Land ; on the ground amongst the Pengnin Rookeries. $_{\text {a }}$
The patches are very extensive and rather more glaucous than others collected near Edinburgh, with which the Antarctic specimens appear otherwise entirely to agree. The capsules are not always globose, as figured by Mr . Hassall, (Brit. Fresh-water Algæ) but often, if not more generally, hoizontally elongated and gibbous; as slown in Greville's 'Algæ Brit.' (l. c.) where there is an exccllent figurc of this species.
2. Vaucherla crespitosu, Ag.; Grev. Aly. Brit. p. 194.
$\mathrm{H}_{\Delta \mathrm{B}}$. Berkeley Sound, Falkland Islands; on the moist borders of fresh-water lakes, and in pendent masses from dripping rocks.

These specimens are dried very badly, so that we have not much confidence in our identification of the species.

44. BATRACHOSPERMCM, Roth.

1. Batrachospermum vagum, Ag.; Havey, Manual, p. 119. Lyngb. Ifydroph. Dan.t. 44.

Hab. Hermite Island, Cape Horn ; in an alpine pool.
We cannot distinguish these from British specimens; an alpine locality is common to both, the English plant haring been gathered on the summit of Snowdon.

45. DRAPARNALDIA, Bory.

1. Draparyaldia pusilla, Hook. fil. et Harv. ; filis perpusillis densissime cæspitosis gelatinosis parce vage ramosis flexuosis, ramulis perpancis brevibus apice non setigcris simplicibus, articulis coloratis luteoriridibus diametro sub-duplo longioribns. Nobis in Lond. Joura. Bot. vol. iv. p. 296. (Tab. CNC. Fig. II.)

Hab. Berkeley Sound, Falkland Islands; growing on the roots of Crantzia lineata, in fresh-water.
Fila sub $\frac{1}{4}$ unc. longa, radices radiculasque submersas vestientia, diametro D. temuis, cui verosimiliter species affinis ; differt precipue filis rigidioribus ramulisque non setigeris.

We lave referred this and the following species to the genns Draparmaldia with little hesitation, from theiaffinity with D. temuis, Ag. Those naturalists, howercr, who know the great diffculty of examining such things in a dried state, will best understand the uncertainty which attaches to all determinations of species belonging to these tribes which are not from the fruit, or from characters of ligher importance than the filamentous branches, eridently referable to known forms.

Plate CXC. Fig. II.-1, plant of the natural size, on roots of Crantzia lineata; 2 and 3, threads ;-lighly: maynified.

2. Draparialdia sp,?

Hab. Hermite Island, Cape Horn ; in stagnant water on the hills.
The filaments of this species arc infinitely more slender than those of the last, but similarly gelatinous and of the same structure.

46. CONFERVA, Ag.

1. Conferva clavata, Ag.? Syst. Alg. p. 99.

Var. Darwinä ; pro genere maxima, filis 2 uncialibus e basi gradatim incrassatis, articulis ad nodos constrictis diametro paulo longioribus, iuferioribus longioribus, supremis $\frac{1}{5}$ unc. latis. (Tab. CXCII. Fig. I.)

Hab. Cape Tres Montes, on Sphacelaria funiculuris; C. Darwin, Esq.
Of this rariety we have seen but onc specimen and refer it doubtfully to the C. clavata of the Cape of Good Hope and New Zealand, to which it is certainly very closely allied.

Plate CACII. Fig. I.-Plants of C. clavata, var. Darwinii, of the natural size, parasitical on Sphacelaria funiculuris, Mont.
2. Conferva Linum, Ag.; Harv. Man. Brit. Alg. p. 12s.

Hab. Clnistmas Harbour, Kerguelen's Land; in the sea, on rocks near high-water mark.
A widely distributed specics, found from the Canary Islands, Mediterranean and Black Sea, to the coasts of

Scotland, also on the east coast of North America, the West Indies, and on the west coast of South America. It is singular that Kerguelen's Land should be its only hitherto recorded locality in the Southern Hemisphere.

3. Conferva Sanduicensis, Ag.; Syst. Alg. p. 92. (Tab. CXCII. Fig. II.)

Hab. Berkeley Sound, Falkland Islands; in pools of fresh water, and hanging from wet rocks.
Massa pedalis et ultra, mollissima, pallide sed læte viridis, e filis tenuissimis arachnoideis densissime fastigiatis constans. Fila hyalina, flaccidissima, simplicissima, vix intertexta, aciem oculorum fugientia, Articuli diametro duplo longiores, subvitrei ; sacculo endochromatis interno medio constricto, læte rirente, pellucido.

Our specimens entirely agree with Agardh's description of a plant brought from the Sandwich Islands by M. Gandichand.

Plate CXCII. Fig. II.-1, plant of the natural size; 2, portion of a thread; $3 \& 4$, other portions of ditto: -both very highly magnified.
4. Conferva angulata, Hook. fil. et Harv. ; fluitans reptansve, filis simplicibus tenuissimis brevibus strictiusculis lic illic incrassatis angulatisque angulis radiculo ramulove abnormali auctis, articulis diametro 3-5-plo longioribus coloratis, endochromate siccitate contracto. Nobis in Lond. Journ. Bot. vol. iv. p. 295. (Tab. CXCI. Fig. II.)

Hab. Christmas Harbour, Kerguelen's Land; commou in streams, pools, and lakes of fresh water.
Fila intertexta, temuissime capillacea, in massam pallide virescentem subnitentem conferta. Articuli siccitate coutracti, æquales, munc medio incrassati, nucleati, rarissime ramum emittentes, sæpissime radicula parva uniarticulata aucti, nunc geniculation curvati.

Allied to the British C. bombycina, but readily distinguishable by its greater rigidity, angular flexures, radicles and different incrassations, which do not appear to us of the same character as those of Mr. Hassall's genus ' Tesiculifera.' The filaments are sometimes ramified, though very rarely, and perhaps only at the very base : the branch is always at right angles to the flament.

Plate CICI. Fig. II.-1, plant in mass, of the natural size; 2, thread of ditto ; 3, portion of ditto with branch ; 4, ditto with rootlets? 5 , ditto with swollen joint:-all very highly magnified.
5. Conferva ambigua, Hook. fil. et Harv.; filis basi intertextis aduatis? capillaribus rigidulis nigrovirescentibus longe fluctuantibus simplicibus lic illic spurie? ramosis radicantibus, nunc processubus lateralibus anastomosantibus auctis diametro 2-3-plo longioribus opacis sacculo endochromatis repletis. Nobis in Lond. Journ. Bot. vol. iv. p. 295. (Tab. CACI. Fig. I.)

Hab. Clyistmas Harbour, Kerguelen's Land; in the sea.
Fila $4-5$ unc. longa, basi in stratnm densum intertexta, deinde libera, elongata, massam crinitam efficientia,
Plate CXCI. Fig. 1.-1, plant of the natural size; 2, filanent from ditto:-magnifed.
6. Conferva quadratula, Hook. fil. et Harv.; pusilla, filis tenuibus pallide viridibus flexuosis intricatis cylindraceis, articulis quadratis siccitate endochromate collapso notatis. (Tab. CXCI. Fig. IV.)

Hab. Christmas Harbour, Kerguelen's Land; in pools and streans of fresh water; very common.
Fila simplicissima, sub $\frac{1}{2}$ unc. longa, in strato dilute viridia, implicata, crispata, diametro C. floccose duplo triplove superantia. Articuli longitudine diametnum wqnantes, cylindracei, ad nodos non constricti, pellucidi, endochromate plernmque in massam linearem viridem collapso medio notati.

Plate CACI. Fig. IV.-1, plant of the natural size ; 2, thread from ditto ; 3, portion of ditto:-both very highly magnified.
7. Conferva podagraria, Hook. fil. et Harv. ; filis simplicibus basi intertextis breviusculis fluctuantibus flexuosis flaccidis flavo-viridibus cylindraceis, articulis opacis elongato-quadratis diametro $\frac{1}{2}-2-p l o l o n g i o r i b u s$ sacculo endochromatis repletis integumento externo sæpissime incrassato modoso. (Tab. CYCT. Fig. III.)

Нав. Christmas Harbour, Kergnelen's Land ; in streams of fresh water, attached to stones or earth.
Masse unciam latæ, nunc latius extensx, pallide virescentes. Fila flexuosa, $\frac{3}{4}$ unc. longa, laxe intertexta, opaca, e basi simplicissima, cytindracea, subæquilonga. Articuli cylindracei, sacculo endochromatis repleti, sæpissime, ob tegumentum externum morbo affectum, incrassati et nodosi.

A remarkably distinct little species, forming patches in the water. The threads are densely tufted, curled, and aseending, rather stout in proportion to their length, but flaccid and somewhat soft in consistence; they are generally covered at some part of their length with a thiekened opaque substance, of irregular form, extending over several of the joints at once, but more or less cvidently protuberant on one side of the thread. This appearance seems due to a diseased condition of the outer membrane; for the sac of endochrome is often seen to be unchangen beneath this thickening, which sometimes increases the filament to twice its usual diameter.

Plate CXCI. Fig. III.-1, plant of the natural size; 2, healthy filament; 3, portion of altered ditto :highly magnified.

46. CLADOPHORA, Kütz.

1. Cladophora rupestris, Linn.; Dillw. Mist. Brit. Conf. t. 23.

Hab. Christmas Harbour, Kerguelen's Land ; on rocks in the sea.
These specimens are very characteristic of the northern C. rupestris, which inhabits all latitudes between the Arctic Circle and Mediterranean Sea on the west coast of Europe.

2. Cladophora flexuosa; Dillw. Hist. Brit. Conf. t. 10.

Berkeley Sound, Falkland Islands; in the sea.
Specimens not very satisfactory, but we think referable to this species. The ramuli are secund, and the other characters of C. flexuosa are tolerably evident.
3. Cladophors arcta; Dillw. Brit. Conf. Suppl. t. E.

Var. centralis, Conferva centralis, Lyagb. et auct.
Hab. Hermite Island, Cape Horn, and in the Falkland Islands; very abundant, in the sea.
Decidedly the European plant of the namc, which is a native of the German and North Atlantic Ocean.
4. Cladophora riparia, Rotli; Engl. Bot. t. 2100.

Hab. Christmas Harbour, Kerguelen's Land ; on rocks near ligh-water mark.
A native also of the German Oeen, the North Sea, and West Indian Islands.
5. Cladophora Falklandica, Hook. fil. et Harv. ; filis densissime cæspitosis flaccidis flexuosis intricate ramosissimis læte rirescentibus, ramis secundariis lougissimis subsimplicibus undulatis flexuosis brevibus secundis, ramulis patentibus distantibus, articulis granuliferis diametro triplo-quintuplo longioribus. Nobis in Lond. Journ. Bot. vol. iv. p. 294. (Tab. CXCIII. Fig. I.)

Hab. Berkeley Sound, and St. Salvador Bay, Falkland Islands; on muddy rocks in the sea, abundant.
Cespites 6-10 unc. longi, densissime fastigiati, e filis flexuosis intertextis gracillimis quasi crinitis formati。Rumi fiexnosi, elongati : secmndarii valde elongati, simplices, ramulis brevibus longioribnsve patentibus secundis ormati.

Apparently very distinct from any hitherto described speeies: its remarkable characters are its wary habit, and the great length and simplicity of the upper branches, which are furnished with more or fewer, short, patent, secund ramuli.

Plate CXCIll. Fig. I.-1, plant of the natural size; 2, branch and ramuli; 3, apex of branch ; 4, portion of ditto:-very highly magnified.
6. Cladophora incompta, Hook. fil. et Harv. ; filis intricatis incomptis atro-viridibus opacis rigidis setaceis tortuosis vix ramosis, ramis longe nudis r. ramulis brevibus pectinatis circinato-inflexis ornatis, ramulis ultimis secundis v, alternis patentissimis obtusis approximatis remotisve, articulis diametro brevioribue quadratis v. $\frac{1}{2}$ longioribus. Nobis in Lond. Journ. Bot. vol. iv. p. 294. (Tab. CXCII. Fig. III.)
H_{ab}. Hermite Island, Cape Horn; in the sea.
Cespiles intertexti, horizontaliter extensi, atro-olivacei, rigidi. Fila intricata, irregulariter parce ramosa, latiuscula, C. sinupliciuscule diametro duplo excectentia. Rami flexnosi, seppe nudi, non raro ramulis involutis pectinatis obsiti, ut in C. flexuosa. Color huride ater v. virescens, opacus. Substantia siccitate rigida :-chartre minime adlweret.

Plate CXCII. Fig. III.-1, plant of the natural size ; 2, portion of ditto, highly magnified, with abbreviated ramuli ; 3, another portion of ditto and branch :-still more highly magnified.
7. Cladophora simpliciuscula, Hook. fil. et Harv.; filis intricatis incomptis atro-viridibus opacis Hexuosis rigidiusculis capillaribus irregulariter subramosis, ramis valde remotis elongatis simplicibus, ramulis perpaucis patentissimis filiformibus sæpe secundis articulis diametro æqualibus y. $\frac{1}{2}-2$ plo longioribus, sacculum endochromatis intus foventibus. Nobis in Lond. Journ. But. vol. iv. p. 295. (Tab. CXCII. Fig. IT.)

Hab. Hermite Island, Cape Horn, and the Falkland Islands ; on sea-weeds, stones, and shells.
Ccespites intertexti, opaci, luride virides, subhorizontaliter extensi. Fila 1-2 unc. longa, remote et inregulariter ramosa; rami ramulis perpaucis aucti :-chartæ non adheret.

Allied to C. riparia, but more robust, also near the C. Alagelliformis of the Cape of Good Hope, but with a very different habit from that plant.

Plate CXCII. Fig. IV.-1, plant of the matural size; 2, portion of thread and branch; 3, cells of ditto:very highly magmified.
s. Cladophora glaucescens, Griff.? Marv. Manual, p. 139.

Hab. Hermite Tsland, Cape Horm ; rare.
We are not at all satisfied with the reference of the Antarctic plant to the British C.glaucescens, Which has slenderer filaments. The specimens resemble that species more nearly than any other, and are not in a sufficiently good state for a proper comparison.

48. OSCILLATORIA, Fauch.

1. Oscillatoria purpurea, Hook. fil. et Harv; strato gelatinoso tenaci siccitate translucente purpureo, filis riolaceis omnium tenuissimis dense intertextis curvatis longe radiantibus, strïs inconspicuis. Nobis in Lond. Journ. Bot. vol. iv. p. 297.

Hab. Kerguelen's Land ; in alpine rivulets, alt. 300-700 feet.
Species admodum singularis, Lyngbya prolifice, Grev. (Scot. Crypt. Flor. t. 303,) plerisque notis affinis, nee
non (suadente clariss. Berkeley), cum Bysso aquatico, D.C., (Genera Trans. vol. ii. p. 29,), Oscillatoria rubescente, Bory et cum Conferva purpurea quoque conferenda. Fila muscos submersos strato gclatinoso iranslucente vestientia, dum maxime amplificata lineis transversis obscure notata.
2. Oscillatorla autumnalis, Agardh Syst. p. 62.; Harvey, Manual of Brit. Alg. p. 165.

Hab. Falkland Islands ; on wet rocks; Cockburn Island, Graham's Land (Lat. 64° S. Long. 57°.W.) in moist places.

We have carefully compared this with Captain Carmichael's Appin specimens of O. autumuatis, and find them to be quite the same species, which is considered common in England, though Mr. Hassall quotes Captain Carmichael's habitat as the only one. The figure in the last named author's 'British Fresh-water Alge,' is very unlike either Captain Carmichael's or the Antarctic specimens; in both of which the striæ are nearer to one another than the filament is broad. The diameter of the Cockburn Island filaments is $\frac{1}{2600}$ of an inch.

49. CALOTHRIX, Alg.

1. Calothrix olivacea, Hook. fil. et Harv.; cæspite majusculo intense olivaceo v. ærugescente erecto strictiusculo, filis basi dichotome v. alterne divisis luteis flavidisve superne strictinsculis flexuosisve in funiculos crispatos tenaces cohærentibus per totam longitudinem comnexisve apice liberis obtusiusculis, endochromate opaco obscure striato, articulis diametro longioribus brevioribusve. Nobis in Lond. Journ. Bot. vol. iv. p. 296. (Tab. CXC. Fig. III.)

Hab. Christmas Harbour, Kerguelen's Land; in alpine rivulets, adhering to stems and leaves of mosses, \&c.

Crespites fasciculati, interdun extensi, $\frac{1}{2}$ me. longi, intense colorati, olivacci læte ærugescentesve, siccitate vix nitentes. Fila C. distorta multoties latiora, flexnosa sed non torta, sæpissine in fasciculos siccitate crispatos connexa, circa $\frac{1}{2000}$ unc. lata, basi flavescentia, ramosa v . divisa.

A very pretty species and quite distinct from any European one with which we are acquainted.
Plate CXC. Fig. III. - 1 , plant of the natural size ; 2, filaments ; 3, upper, and 4 , lower portion of ditto :much magnified.
2. Calothrix distorta, Harvey, Manual of Brit. Aly. p. 155. Engl. Bot. t. 257.

Hab. Falkland Islands; in pools of fresh water.
The specimens, though in a very indifferent state, are clearly referable to the English C. distorta.

50. LINGBIA, $A g$.

1. Lingbys muralis, Agardh; Conferva muralis, Dillwyn, Brit. Conferv. t. vii.

Hab. Falkland Islands; on the ground, abundant.
These we have carefully compared with original British spccimens of L. muralis, and find them to differ only in having the filaments rather broader and more opaque.
2. Lyngbya fragilis, Hook. fil. et IIarv.; filis minutis tenuissimis fragilibus flavo-viridibus tortuosis implexis in stratum tenue lutescens cohærentibus, strïs densissimis. Nobis in Lond. Journ. But. vol. iv. p.296. (Tab. CXCIII. Fig. II.)

Hab. Berkeley Sound, Falkland Islands; on the fur of a dead rabbit.
Fila L. murali subsimillima, sed diametro $\frac{1}{2}$ angustiora, fragillimaque. Stratum temue, lutescens v. flavo-virescens, vix nitens.

A plant so nearly related to the common L. muralis, of Britain, as to require no detailed description.
Plate CXCIII. Fig. II.-1, plant of the natural size ; 2, thread, highly magnified; 3, portion of ditto :--still more highly magnified.
3. Lyngbya subarticulata, Hook. fil. et Harv. ; filis tenuissimis laxe implexis vix tortis hic illic obscure subarticulatis, sporidiis disciformibus diametro variis filnm vix $\frac{1}{2}$ æquantibus ad articulos spurios fili solutis.

Нав. Christmas Harbour, Kerguelen's Land ; creeping amongst Ulice \&c., on wet rocks near the sea.
Fila cylindracea, sub $\frac{1}{1000}$ unc. lata, pellucida, obscure articulata, articulis diametro ter longioribus, intus cum axi e sporidiorum disciformium composito ancti. Sporidia læte viridia, opaca, ter quaterve latiora quam longa.

A very different species from either of the two former. Each filament is a transparent tube, very obscurely incrassated, as if jointed here and there, and contaming an axis of sporidia abont half its own diameter. The sporidia are discoid, of various breadth and length, but always much broader than long, of a bright green colour, and interrupted opposite the spurious articulation of the filament.

51. MICROCOLEUS, Desmaz.

1. Microcoleus repens, Harvey; Manual, p. 168. Oscillatoria repens, Agardh Syst. p. 61. O. chthonoplastes β, Harvey in Hook. Brit. Fl. vol. ii. p. 373.

Hab. Cockburn Island, Graham's Land ; (Lat. $64^{\circ} \mathrm{S}$. Long. $57^{\circ} \mathrm{W}$.) on the ground.
Omr specimens are very poor, as might be expected from the native place being on the limits of vegetation in that quarter of the globe which the plant inhabits.
52. ULVA, L.

1. Ulrs Lactuca, Linn; Grev. Scot. Crypt. Flor. t. 313.

Hab. Hermite Island, Cape Horn ; sparingly.
2. Ulva latissima, Limn.; Engl. Bot.t. 1551.

Hab. Hermite Island, Cape Horn; Falkland Islands and Kerguelen's Land ; very abundant.
There is probably no shore between that of Iceland and Cape Horn, that does not produce abondantly this species of Alga .
3. Ulva rigida, Agardh,? Syst. Alg. p. 189.

Hab. Port William, Falkland Islands; common.
Our specimens appear to be only a young dark-coloured variety of the former. The species is also a native of Brazil, and the west coast of South America.
4. Ulva Linza. Limn. ; Harv. Phye. Brit. t. xxxix.

Hab. Falkland Islands and Hermite Island, Cape Horn ; abundant.
An abundant plant in the Atlantic and Mediterranean shores of Europe; it has also been collected in New: Zealand.
5. Ulva crispa, Lightf.; Harvey, Manual, p. 171.

Hab $_{\text {a }}$ Berkeley Sound, Falkland Islands; on moist rocks; Cockburn Island, Grahan's Land; very abundant.

A highly interesting species, because it is one of the very few terrestrial plants that have been gathered on the limits of vegetation both in the Northern and Southem Hemispheres. It was collected in Spitzbergen, (in 80°. N.) by the officers of Captain Pary's Expedition towards the North Pole, and is a native of many intervening latitudes. We have carefully compared these specimens with Agardh's original ones of U. crispa, from Norway, and find them to be identical. The Cockburn Island specimens are in fine fruit
6. Ulva cristata, Ilook. fil et Harv. ; pusilla, stratun continuum furfuraceum efficiens, frondibus crispatis lacunosis latioribus quam longis supra medium in laciniis perplurimis fissis, laciniis filiformibus fistulosis tortis pluries divisis processubus corniculatis simplicibus ramosisque undique obsitis, substantia tenerrima, sporis confertis irregulariter dispositis rarius quaternis.

Нав. Kerguelen's Land; in moist clefts of rocks overlanging Chistmas Harbour, growing with Trypothallus anastomosans.

Frondes singulæ 2-6 lin longæ, latiores quam longæ, sessiles, basi contractæ, lete virescentes, fragiles, margiuibus crispatis, superficie lacinioso v. profude rugoso ; laciniis perplurimis gracilibus compressis v. teretilus, fistulosis, processubus divaricatis undique ornatis.

A species so closely resembling the χ^{r}. crispa, that we at first sight confounded it with that plant: it is, however, abundautly distinct, in the much smaller spores, and in the clurons long and slender lacimire of the frond, which are tnbular in the specimens we have examined, and, as well as the margins of the sessile frond, are studled with short simple or divided hom-like processes, or ablreviated ramuli.

53. MASTODIA, Hook. fil. et Ilarv.

Frons plana, membranacea v. subcarnosa, viridis, late expansa, inordinate areolata. Fructificatio duplex: 1°. Sporidia granulæformia, in areolis indefinita (ut in Uloa) fronde immersa. 2° Conceptacula mammæformia, fronde immersa, apice mamilla instructa, materie grumosa repleta, sporasque ellipticas foventia.-Genus Ulve proximum, et nisi presentia conceptaculorum nullo modo distinguendum.

1. Mastodla tessellata, Hook. fil. et Harv. Ulva tessellata, nobis in Lond. Journ. Bot. vol. iv. p. 297. (Tab. CXCIV. Fig. II.)

Var. a. fronde tenuissima, laciuiis longioribus.
Var. β. fronde carnosa siceitate rigida, laciuiss rotundatis.
Hab. Kerguelen's Land; var. a. in streams of fresl-water. Var. β. on stones occasionally exposed in a fresh-water lake.

Frons foliacea, 1-2 unc. lata, luride riridis, subplicata, siccitate rigidinsecua, suberecta v. in war. β. horizontaliter expansa, sub lente granulis majusculis opacis in areolas quadratas compositas dispositis pulcherrime quasi tessellata, demum in lacimias plurimas undulato-crispatas rotundatas fissa; areolis quadratis, lineis lyalinis circumscriptis, gramulis magnis quaternis. Conceptacula cxemplaribus omnibus nobis visis perplurima, ad angulos areolarum majorum sita, elerata, mammoformia, apice pallidiore, crassa et carnosa, intus cara, materic grumosa sporisque lineari-ellipticis viridibus immixtis farcta.

Erroneously described as a mariuc species in the London Journal of Botany. Even when destitute of fruit it is specifically very distinct from any Ulra, especially in the great size of the granules, and their comparative remoteness from one another. The curious hemispherical bodies are abundaut in all the specimens, and resemble in some degree
the capsules of a Nitopliyllum: whether they be an abnormal development, or organs of fructification rarely dereloped in the genus, may be a point of dispute. At first sight they were supposed to be caused by the puncture of an aquatic inseet or other animal ; but their appearing in specimens from different localities; their position, constantly at the angles of the greater areole, where four of these meet; their uniform size; the constant presence of the cavity filled with elliptic spores, taken especially along with the fact, that there is no sign of disease or lesion in the frond, would indicate these to be organs in a normal condition.

Plate CXCIV. Fig. II.-1, Var. a.; 2, var. β.; both of the natural size; 3, apex of frond; 4, portion of ditto with coneeptacles; 5 , portion of ditto more highly maynified; 6, vertical scetion of conceptacle; 7, grumous contents from ditto ; 8, spores from ditto:-all very highly maynified.

54. ENTEROMORPHA, Link.

1. Enteromiorpha compressa, Grev. Alg. Brit. p. 180. t. 18.

Hab. Hermite Island, Cape IIoru, Falkland Islands, and Kerguelen's Laud; very abundant.
2. Exteromorpha intestinalis, Link. Giev. Aly. Brit. p. 179.

Hab. Hermite Tsland, Cape Horn ; Falkland Islands, and Kerguelen's Land; with the former.
These two speeies enjoy equally wide ranges with the Ulva latissima. I have found it very difficult to distinguish between this and the former spccies, even when growing, and between E. compressa and Ulva Linza in a young state. In the Falkland Islands the Cr. latissima abounds in the land-locked Lagoons, and the U. Linza in thr harbours where no heavy seas run; whilst the Enteromorpha compressa, and intestinatis, may be collected on the shores of the weather-beaten coasts. Hence it becomes difficult for the collector to regard these speeies, whose structure and organization are so similar, as anything more than states of one plant, which commences as a pyriform bladder wherever it germinates, bit whose future outhe is determined by the depth and tranguillity or the reverse of the clement it inhabits, and other natural causes. Such specimens as our Herbaria generally afford, are too often, if not fragmentary, immature; the full development of the species being arrested by the collector, who is content with one entire specimen in whatever stage of growth, and generally preserves it without any note of the conditions under which it was gathered. A few obscrvations on the forms which the Alyce assume during different stages of their growth, would be eminently useful: portions of a crop of such species as this, which often covers shells or pelbbles, might readily be transported to other waters, whose state is rery different from what the plant enjoyed before. It eannot be doubted that great ehanges in form would be the consequence; and it is on outline alone that specific characters are chiefly founded.

55. PORPHIRA, $A g$.

1. Porphyra vulgaris, Ag. Grev. Alg. Brit. p. 169.

Hab. Hermite Island, Cape Horn ; the Falkland Islands, and Kerguelen's Land; very abundant.
This has as wide a range in latitude and longitude as Ulva latissina.
2. Porphyra laciniata, Ag. Ulva umbilicata, Engl. Bot. t. 2296.

IIab. IIermite Tsland, Cape Horn; the Falkland Islands, and Kerguelen's Land ; very abundant.
Obvionsly a variety, or rather state of P. vulgaris; of which the P. Columbina, Mont., is probably the young, and P. Capensis, Kütz. another variety.
56. TRIPOTHALLUS, Ilook. fil. et Ilarv.

Frons subcartilaginco-carnosa, vix gelatinosa, undulato-crispata, lobata, e cellulis hyalinis in stratum conglobatis
efformata, primum continua, matura terebrata v. clathrata (cellulis in lineis anastomosantibus dispositis) demum in massam gelatinosam subgranulosam collabens, Sporee (sen granulæ) plcrumque binæ, anguste lineari-oblongæ. -Genus Palmellæ affine, sed indole frondis diversissimum.

1. Trypothallus anastomosans; Hook. fil, et Harv.; Palmella? anastomosans, nobis in Lond. Journ. Bot. vol. iv. p. 298. (Tab. CXCIV. Fig. I.)

Нав. Christmas Harbour, Kerguelen's Land; in clefts of rocks, and in damp caves, hear the sea,
Frons $\frac{1}{4}-\frac{1}{2}$ unc. longa, undulato-crispata, pallide viridis, prima facie Ulvam furfuruceam referens, e strato unico cellularım formata, translucida; junior continua, suberecta v. horizontaliter extensa, margine lobata; matural (e celludis in lineas dispositis) pulcherrime clathrata, foraminibus diametro variis pertusa. Cellula hyalinæ, marginibus sub lente vix distinctis, dense aggregatæ, rotundatre v. obtuse angulatæ. Sporce axi cellularum immersx, plerumquc binæ, late virides (sub lente), post marcescentiam frondis diametro auctæ, cellulasque fere implentes.

We referred this plant doubtfully to Palmella, in the London Journal of Botany; and now, unhesitatingly, we place it in a new genus, most distinct from any previously defined. Under the microscope it is a very beantiful object, the full grown specimens appearing as a transparent frond, firmer and more membranous than Palmella, and much thicker in proportion than any Ulva, beautifully clathrate or formed of anastomosing branches: the branches are composed generally of one, or more rarely, of two collateral lines of cells, cach containing a pair of parallel minute spores, of a bright green colour, placed at right angles to the axis of the branch.

Plate CXCIV. Fig. I.-1, plant in its foliaceons and reticulated condition; 2, the same at a later stage, forming a gelatinous mass ; 3, the same with the spores disunited;-all of the natural size; 4 , portion of foliaceous state ; 5 and 6, portions with anastomosing structure; 7 and 8, spores:-all very highly magnified.

57. PROTOCOCCUS, $d g$.

1. Protococcus stercorarius, Berk.; strato aurantiaco demum subrimoso, globulis demum margine pellucidis nucleis subgranulatis conformibus.

Hab. Falkland Islands; on cow-dung; abundant.
P. nixali, Desm., (quar eadem est ac P. pluvialis, Flotow) affinis, sed globulis minoribus saturatins coloratis, Irematococco Orsinii, Menegh., quoque referens.

This curions vegetable appears abundantly in places frequented by cattle, covering their droppings with a pale orange stratum in a very short space of time. For the identification and description of the species we are indebted to our learned friend Mr. Berkeley, who had previously obscrred the same plant in England.

58. NOSTOC, Tuuch.

1. Nostoc commune, Vauch. Conferv. p. 223. t. 16, f. 1.

Hab. Christmas Harbour, Kerguelen's Land; on wet rocks near the sea.
The Rev. MI. J. Berkeley has favoured us by examining this, the following, and several other of the lower forms of Algoe collected during the Antarctic Expedition : of the present he says that it scarcely differs from the N. commune, of England, which is common thronghout Europe, and in Bolivia and the Canary Islands.

2. Nostoc microscopicum, Carm.?; Harv. Man. Brit. Alg. p. 184.

Hab. Cluristmas Harbour, Kerguelen's Land; on wet rocks near the sea.
Specimens rather larger than those of British growth, but not otherwise different. Mr. Hassall considers the N. microscopicum to be a variety of N. muscorum, Ag.

59. ANABATNA, Bory.

1. Anabaina tenar, Hook. fil. et Harv.; strato globuloso definito lobato gelatinoso fluctuante æruginoso, filis densissime intertextis flexuosis moniliformibus inxqualibus hic illic interruptis, articnlis plerumque globosis angnlatisve nunc transverse elongatis, majoribus ellipticis oblongis limbo hyalino cinctis solitariis plurimisve. Sphrrozyga tenax, nobis in Lond. Joum. Bot. vol. iv. p. 298. (Tab. CACIII. Fig. III.)
$H_{\text {ab }}$. Falkland Islands; in small pools of water on the hills.
Stratum 1-3 unc. latum, e massis $\frac{1}{4}-\frac{1}{2}$ uncialibus conglobatis efformatum, gelatinosum, hyalinum, pulchre reruginosum, natans. Substantia gelatinosa, sub lente oculum fugiens. Fila perplurima, dense aggregata, diametro varia. Articuli sub lente glauco-virescentes, opacæ, majores translucidæ.

A very distinct and beautiful species, evidently congeneric with the Spheerozyga Jacoli, of which the Rev. M. J. Berkeley has published an excellent figure in the Supplement to English Botany, (t. 2826. fig. 2.) but which we do not consider generically distinct from Anabaina. The granular substance of the larger articuli is of a different mature from that filling the smaller one, being more tramsparent, and confined in a proper cyst, between which and the border of the articulation there is a transparent space. The stratum is as firm as that of Nostoc cormeum, and the speeimens preserved resemble a dried mass of Oscillatoria.

Specifically this differs from A. Jacobi in the form of the stratum, and from A. flos-aque in the straightness of the larger articulations.

Plate CXCIII. Fig. III.-1, plant of the natural size; 2, threads; 3, portion of a thread with spores; 4, spores:-highly magnified.

60. CHROOLEPUS, Ag

1. Chroolepus aureus, Harv. in Hook. Brit. Flor. vol. ii. p. 380. Conferva anrea, Dillwoyn, Hist. Comf. t. 35.

Hab. Hermite Island, Cape Horu; Kerguelen's Land, and the Falkland Islands; very abundant on the under surfaces of rocks near the sea, \&c.

One of the commonest vegetable productions in the Antarctic Islands, growing under circumstances where no Lichen, or other cryptogamic plant, flomishes. It was always found near the Lecanora miniata, and is very abundant in situations sheltered from the direct rays of the sun. When fresh, or rather during drying, it emits a very evident smell of violets.
2. Chroolepus ebeneus, Ag. Syst. Alg. p. 36. Conferva ebenea, Dillwyn, t. 101. Byssus miger, Engl. Bot. t. 702.
H_{ab}. Hermite Island, Cape Horn ; in clefts of rocks in the woods.
Like the former, this species, invariably shuns the light in the south. It was found in damper places than C. aureus. Both are, very probably, abnormal states of some Lichen.

LVI. DIATOMACEA, Ag.

The Waters and the Ice of the South Polar Ocean were alike found to abound with microscopic regetables belonging to this Order. Though much too small to be discernible by the naked eye, they occurred in such countless myriads, as to stain the Berg and the Pack-Ice, wherever they were washed by the swell of the sea; and when enclosed in the congealing surface of the water, they imparted to the Brash and Pancake-Ice a pale ochreous colour. In the open ocean, northward of the Frozen Zone, this Order, though no donbt almost universally present, generally tludes the search of the naturalist; except when its species are congregated amongst that mucous scum which is sometimes seen floating on the waves, and of whose real nature we are ignorant; or when the coloured contents of the marine animals who feed on these Algæ are examined. To the south, however, of the belt of ice which encircles the globe, between the parallels of 50° and $70^{\circ} \mathrm{S}$., and in the waters comprised between that belt and the highest latitude ever attained by man, this vegetation is very conspicuous, from the contrast betweeu its colour and the white snow and ice in which it is imbedded. Insomuch, that, in the eightieth degree, all the surface-ice carried along by the currents, the sides of every berg, and the base of the great Victoria Barrier itself, within reach of the swells, were tinged brown, as if the Polar waters were charged with oxide of iron.

As the majority of these plants consist of very simple vegetable cells, enclosed in indestructible silex (as other Alyo are in carbonate of lime), it is obvious that the death aud decomposition of such multitudes must form sedimcntary deposits, proportionate in their extent to the length and exposure of the coast against which they are washed, in thickness to the power of such agents as the winds, currents and sea, which sweep them more energetically to certain positions, and iu purity to the depth of the water and nature of the bottom. Hence we detected their remains along every ice-bound shore, in the depths of the adjacent ocean, between eighty and 400 fathoms. Off Victoria Barrier (a perpendicular wall of ice, between one and two hundred fect above the lcvel of the sea), the bottom of the ocean was corered with a stratum of pure white or green mud, composed principally of the siliceous cells of Diatomacea. These, on being put iuto water, rendered it cloudy, like milk, and took mauy hours to subside. In the very deep water off Victoria and Graham's Laud, this mud was particularly pore and fine; but towards the shallower shores, there existed a greater or less admixture of disintegrated rocks and sand; so that the organic compounds of the bottom frequently bore but a small proportion to the inorganic.

Being indebted to the works of the illustrious Ehrenberg for all I knew of these organisus, previous to the sailing of the Antarctic Expedition, I had supposed the Diatomacere to belong to the Animal Kingdom *; and as they are unaccompanied in the Antarctic region by auy evidence of a higher order of plants, I had always supposed vegetation to cease at a much lower latitude than these productions actually attain. The species were, however, collected on every available occasion, and transmitted, on my return to England, to Professor Ehrenberg, whose determination of the genera aud species is bere introduced, at the suggestion of the Rev, M. J. Borkelcy and other eminent Cryptogamic botanists.

[^41]I must offer some apology for omitting a class of organisms which have been investigated, and considered of regetable origin, by Prof. Ehrenberg, and which are almost equally abundant in the Antarctic Ocean with the Diatomacea, whether on the surface or at the bottom of the sea: these are the Phytolitharia, Ehrb. I am not aware of the precise limits of this Order, and of many of the genera composing it; but from casual allusions, I gather that the term Phytolitharia is a couventional one, employed to desiguate the siliccous and other inorganic particles, deposited in plants of a higher structure. Thus, Lithodermatium is a genus whose species are represented by modificatious of the siliceous epidermis of one or many species of Equisetum; and the Lithostylidia are the siliceous cells of Graminece*. It is not my object to discuss in this place the expediency of constitnting such orders, genera, and species. The total absence of Equiseta from the Antarctic Flora, and of Graminece or other phænogamic plants from any position within 700 miles of Victoria Barrier where the Phytolitharia abound, renders it in the highest degree improbable that the latter should be of vegetable origin. \dagger

A few remarks on the phases and situations under which these curious regetables occurred, will not be misplaced here, especially as I hare little to add to what is alrcady known of their habits and organization.

Scattered on the surface of the ocean, the Antarctic Diatomacere were seen connected in filaments, or resolved into thesimple frustules, of which they are composed. When entire, they shewed no signs of motion or irritability. The grumous or granular contents of the cells were yellow under the microscope; but in mass the same species assumed an orange-brown, or burnt Siema colour ; the intensity of which depended on the denseness with which they were packed together.

The various means employed for selecting the species varied according to circumstances, as the following enumeration of the processes pursucd will show. 1. Sea-water was filtered throngh closely woren bibulons paper (filter-paper), which latter was folded, dried, and carefully put away. If a certain measure of water be always thus treated, an approximate knowledge of the abundance and scarcity of the various species and genera occurring at different positions, may be gained. 2. The scum of the ocean almost invariably contains many species entangled in its mass; it was preserved in small phials, well secured. 3. A tow-wet of fine muslin, used when the vessel's rate does not exceed two or three knots, secures many kinds, which may be washed off the muslin, and collected on filter paper. 4. The stomachs of Salpe \ddagger and other (especially of the naked) mollusca, invariably contain Diatomacere, sometimes several species. These Salpa were washed up in masses on the Pack ice, and in decay they left the snow covered with animal matter impregnated, as it were, with Diatomacere: the reliquice were preserved in spints. 5. The dirt and soil of the Penguin Rookeries, and especially their Guano, abonnd in Diatomacere, perhaps originally swallowed by the Salpe and Cuttle-fish, which themselves become the prey of the Penguins. 6. Ice encloses Diatomacea: they are deposited on the already formed ice by the waves, or frozen into its substance during calm weather, when the npper stratum of water rapidly congeals. Ice, so formed, generally breaks up by the swell of the sea into thin angular masses, which become orbicular by attrition, whence the name Pancake-ice. The Pancake-ice was often seen a few hours after a calm, corering leagues of ocean, and uniformly stained bromn from the abundance of these plants. It was taken in buckets, and when remored from the water appeared perfectly pure and colourless. On melting, howerer, it deposited a pale red clondy precipitate, excessively light, consisting wholly of Diatomacece. This precipitate was bottled on the spot, and prored

[^42]more rich in species than any of the other collections. The specimens were also the best preserved; for Professor Ehrenberg observes, that some* thus obtained, appeared as if still alive, though collected three years previous to his examination, and subjected to many vicissitudes of climate. The snow sometimes falls on the surface of the still ocean-water, and does not freeze, but floats a honey-like substance, often called Brash-ice : treated in the same way as the Pancake-ice it yielded an abundant harvest. 7. The mud and other soundings from the bottom of the ocean, when bronght up on the arming of the deep sea-lead, or the chlam or dredge, generally contain the siliceous skeletons or coatings of many species, with the markings on their surface retained. $\dagger 8$. The fresh and salt waters and muddy estuaries of the Falkland Islands, and similar localities, present us with species, occurring under circumstances, altogether similar to what accompany their allies in Europe.

The universal existence of such an inrisible regetation as that of the Antarctic Ocenn, is a truly wonderful fact, and the more from its not being aecompanied by plants of a high Order. During the years we spent there, I had been accustomed to regard the phenomena of life as differing totally from what obtains thronghout all other latitudes; for everything living appeared to be of animal origin. The ocean swarmed with Mollusca, and particularly entomostracous Crustacea, small whales and porpoises: the sea abounded with penguins and seals, and the air with birds: the animal kingdom was ever present, the larger creatures preying ou the smaller, and these again on smaller still: all seemed carnivorous. The herbivorous were not recognized, because feeding on a microscopic herbage, of whose true nature I had formed an erroneous impression. It is, therefore with no little satisfaction that I now class the Diatomacee with plants, probably maintaining in the Sonth Polar Ocean that balance between the animal and vegetable kingdoms, which prevails over the surface of our globe. Nor is the sustenance and nutrition of the animal kingdom the only fuaction these minute productions may perform: they may also be the puifiers of the vitiated atmosphere, and thns execute, in the Antarctic latitudes, the office of onr trees and grass-turf in the temperate regions, and the broad leaves of the palm, \&c., in the Tropics. Though we possess incontestible proofs of the abundance of silica, contained in the ocean, from its being secreted so copionsly by these plants, we are ignoraut of the process by which it is assimilated, and the chemical state in which it is suspended in the sea-water. The end these plants serve in the great scheme of nature is apparent, on inspecting the stomachs of many sea-animals, as above stated. Owing to the indestructible nature of their shields, they tell then own tale.

I shall now notice the most remarkable featme in the distribution of these organisms. They possess more than ordinary interest, many of the species being distributed from Pole to Pole; while these, or others, are preserved in a fossil state, in strata of great antiquity. There is probably no latitude between that of Spitzbergen and Victoria Land, where some of the species of either country do not exist: Iceland, Britain, the Mediterranean Sea, North and South America, and the South Sea Islands, all possess Antarctic Diatomaceec. The siliceous coats of species only known living in the waters of the South Polar Ocean, have, during past ages, contributed to the formation of rocks; and thus they outlive sereral successive creations of organized beings. The Phonolite stones of the Rhine, and the Tripoli stonc, contain species identical with what are now contributing to form a sedimentary deposit (and perhaps at some future period a bed of rock), extending in one continuous stratum for 400 measured miles. 1 allude to the shores of the Victoria Barrier; along whose coast the soundings cxamined were invariably charged with Diatomaceous remains, constituting a bank which stretches 200 miles north from the base of Victoria Barrier, while the average depth of water above it is 300 fathoms, or 1,800 feet. \ddagger

[^43]Again, some of the Antarctic species lave been detected floating in the atmosphere which overhangs the wide ocean between Africa and America. The knowledge of this marvellous fact we owe to Mr. Darwin, who, when he was at sea near the Cape de Verd Islands, collected an impalpable powder which fell on Captain Fitzroy's ships. He transmitted this dust to Elreuberg, who ascertained it to consist of the siliceous coats, chiefly of American Diatomacer, which were being wafted through the upper regions of the air, when some meteorological phenomenon checked them in their course, and deposited them on the ship and surface of the ocean.

The existence of the remains of many species of this Order (and anongst them some Antarctic ones), in the volcanic ashes, pumice, and scoriæ of active and extinct volcanoes (those of the Mediterranean Sea and Ascension Istand for instance), is a fact bearing immediately upon the present subject. Mount Erebus, a volcano 12,400 feet high, of the first class in dimensions and energetic action, rises at once from the ocean, in the 78 th degree of south latitude, and abreast of the Diatomacee bank, which reposes in part on its lase. Hence it may not appear preposterons to conclude, that, as Vesuvius receives the waters of the Mediterranean, with its fish, to eject them by its crater*; so the subterranean and subaqueons forces which maintain Mount Erelus in activity, may occasionally receive organic matter from this bank, and disgorge it, logether with those volcanic products, ashes and pumice.

Along the shores of Graham's Land and the South Shetland Islands, we have a parallel combination of igneous and aqueous action, accompanied with an equally copious supply of Diatomacece. In the Gulf of Erebns and Terror, 15 degrees north of Victoria Land, and placed in the opposite side of the globe, the somdings were of a similar nature with those of Victoria Land and Barrier, and the sea and ice as full of Diatomacere. This was not only proved by the deep-sea lead, but by the examination of bergs, which, once stranded, had floated off and become reversed, exposing an accumulation of white friable mud, frozen to their bases, which abounded with these vegetable remains.

The following systematically arranged catalogne of the hitherto described Antarctic species is drawn up from various papers by Professor Ehrenberg, but principally from that which appeared in the 'Monatsberichten der Berliner Akad. der Wissenschaften" for May, 1841, and which has been reprinted in Taylor's 'Annals of Natural History', and in the Appendix of Sir James Ross' 'Narrative of the Antaretic Expedition '. A few Falkland Island and Kerguelen's Land species have subsequently been examined by Mr. Thwaites, to whom, and to the Rev. Mr. Berkeley, I am much indebted for the assistance they have aflorded me in this group. The arrangement of the genera followed is that of M. Kützing's great work on this order.

1. EUNOTLA, Ehrb.

1. Euxotia gibberula, Ehrb. Epithemia gibberula, Kütz. Kieselsch. Bacill. p. 35. t. 29. f. 54, c.

Hab. Open Ocean, in Pancake-ice, Lat. $75^{\circ} \mathrm{S}$. Long. $170^{\circ} \mathrm{W}$.
An inhabitant of the Baltic Sea. Found fossil at Newhaven, in Comecticat, in volcanic ashes from the Rline and amongst an atmospheric dust which fell near the Cape de Verd Islands.
2. Eunotia amphioxys, Ehrb. Kütz. l.c. p. 44. t. 30. f. 1.

Hab. Falkland Islands, Lesson. Cockburn Island, amongst the guano of a Penguin rookery.
surface of the barier, in a climate where there is no thaw throughout the year, and where snow lies perennially, will result in the sinking of the barrier and its base becoming imbedded in this stratum of vegetable debris. Supposing the barrier, then, to have a progressive motion, such as smaller but similar glaciers exhibit, the result would be flexures of the pasty stratum of mad upon whose edge it rests, and against whose walls it would in time albut, as the deposit thickens.

Found living in the German Ocean and Sandwich 1slands; in the natural paper of Silesia, and dead in the guano of Pern. Fossil as floating in the air with the former species. In peat, Iceland; earth, Labrador, and in strata on the banks of the Euphrates and Oxus. In the roleanic tuff of the Rhine and in Plonolite.
3. Eunotia Faba, Ehrb. Epithemia Faba, Kütz. l.c. p. 36. t. 5. f. 21.

Hab. Falkland Islands; on marine Conferve, Lesson.
Abundant both reeent and fossil, in Germany, Sweden, Finmark, Newfoundland, Labrador, and the Oregon. Also found in the volcamic tuff of the Rtine.
4. Eunotla biceps, Ehrb. Küť. l. e. p. 37. t. 29. f. 65. c.
$H_{\text {ab }}$. Falkland Islands; on marine Conferve, Lesson.
Found in earth at Labrador and the Oregon.

2. FRAGILARIA, Lyngb.

1. Fragilarla amphiceros, Ehrb. Schrift. Berl. Akad. Feb. 1844.

Hab. Victoria Barrier, in Pancake-ice and in mod from 190 fathoms. Graham's Land, in mud from $_{\text {mat }}$ 270 fathoms. In a floating scum, Lat. $64^{\circ} \mathrm{S}$. Long. $160^{\circ} \mathrm{W}$.

Oecurs fossil in Virginia, U.S.
2. Fragilarla acuta, Ehrb. K̈̈̈t. Kieselsch. Bacill. p. 46. t. 16. f. 7. C.

Hab. In Pancake-ice off Victoria. Barricr, and in Lat. $75^{\circ} \mathrm{S}$. Long. $170^{\circ} \mathrm{W}$. In the stomach of a Salpa, taken in the open occan, Lat. $64^{\circ} \mathrm{S}$. Long. $157^{\circ} \mathrm{W}$.

Previonsly only known as a fossil, occurring ncar Freiberg.
3. Fragilaria n. sp.? (indicated by Eheb.)

Нав. Victoria Barrier ; in mud from 190 fathoms.
4. Fragilaria pinmubate, n. sp. Ehrb. Schrift. Berl. Akad. May, 1844.

Hab. Pancake-ice, Lat. $75^{\circ} \mathrm{S} .170^{\circ} \mathrm{W}$., and near the continent of Victoria Land, $76^{\circ} \mathrm{S}$., in Braslıice. Graham's Land, in mud from 270 fathoms.

Onc of the most abundant Victoria Land Diatomacere.
5. Fragilaria rotunduta, n. sp. Ehrb. l.c.

Hab. Pancake and brash-ice off Victoria Land and Barrier. In the stomachs of Salpa, taken in Lat. $66^{\circ} \mathrm{S}$. and Long. $170^{\circ} \mathrm{W}$. Graham's Land, in mud from 207 fathoms.
6. Fragilaria n. sp.? (indicated by Ehrb.)

Lab. Victoria Land; in Brash-ice.
7. Fragilaria granulata, n. sp. Ehirb. l.e.

Hab. In the stomachs of Salpa, Lat. $66^{\circ} \mathrm{S}$. Long. $157^{\circ} \mathrm{W}$. In the open sea near Cape Horn (\boldsymbol{M}. Schayer, fid. Ehrb.). In occamic scum, Lat. $64^{\circ} \mathrm{S}$. Long. $160^{\circ} \mathrm{W}$.

Lately indicated to exist as a fossil near the Araxes river.
8. Fraglearla constricta, Ebrb. Kütz. l.c. p. 46. t. 29. f. 25, c.

Hab. Falkland Islands; on marine Conferva, Lesson.
Fornd in the volcanic tuff of the Rhine, and in Mexico.
9. Fragilaria thabdosoma, Ehrb. F. capreina, Kütz. p. 45. t. 36. f. iii.

Hab. Falkland Islands; ou marine Conferva, Lesson.
A frequent inhabitant of pools and ditches in England, and many other parts of the world, including Asia, Africa, America and the South Sea Islands. In the sand-hills of Patagonia, and in the rolcanic tuff of the Rhine.
10. Fragllarla Trachea, n. sp. Ehrb. Schrift. Berl. Akad. l. c.

Hab. Falkland Islands; on marine Conferva, Lesson.
11. Fragilaria Tentriculus, n. sp. Ehrb. l. c.

Hab. Falkland Islands; on marine Conferve, Lesson.
3. MELOSEIRA, Ag.

1. Meloseira u.sp.? filis moniliformibus temuissime striatis pedunculo gelatinoso affixis, frustulis per paria coadunatis, junioribus sphæricis demum compressis, apicibus utrinque convexis. Thucaites, MS .

Hab. Kergnelen's Land; in the sea. $^{\text {a }}$
3. globifere, Harv. simillima, sed frustulis adultioribns semper compressis differt. Filu striata ut in M. globifera. thercites, MS.

4. PYXIDICULA, Ekrb.

1. Prxidicula dentata, n. sp. Ehrb., Schrift. Berl. Akad. May, 1844.

Hab. Victoria Barrier ; in Pancake-ice.
2. Pexidicula Hellenica, Ehrb. l. c.

Нab. Victoria Barrier ; in Pancake-ice. Graham's Land; in mud from 270 fathoms (doubtful as to species).

This has becn found fossil in Bermuda, the Æegean Sea, and Maryland, U.S.
3. Prxidicula n. sp.? Ehrb. l. c.

Нав. Victoria Barrier ; in mud from 190 fathoms. $_{\text {fin }}$
4. Pyxidictla sp.?

Hab. In the stomachs of Salpa, Lat. $66^{\circ} \mathrm{S}$. Long. $157^{\circ} \mathrm{W}$.

5. HEMIZOSTER, N. G. Ehrb.

1. Hemizoster tubulosus, Ehrb., Sckrift. Berl. Akad. May, 1844.
$H_{A B}$. Victoria Barrier and Land; in Pancake-ice.

6. GALLIONELLA.

1. Gallionella pileata, n. sp. Ehrb. l. c.

IIab. Victoria Barrier ; in Pancake-ice.
2. Gallionella sulcata, Ehrb., Schrift'. Berl. Akud. April, 1837.

Hab. Victoria Land; in Pancake-ice (donbtful). Graham's Land; in mud from 270 fathoms.
An Arctic plant, having been observed at Melville Island. Also in the open ocean off Rio de Janeiro. It iuhabits Perurian and African guano; has becn found in the sand-hills of Patagonia, fossil in Bermadas, Sicily, Algiers, Maryland and Virginia, U. S.; and in volcanic ashes from the Patagonian coast.
3. Gallionella Sol, n. sp. Ehrb. ; Schrift. Berl. Akad. May, 1844.
$\mathrm{Hl}_{\mathrm{Ab}}$. Victoria Barrier ; in mud at 190 fathoms. Grahan's Land; in mud from 207 and 270 fathoms.
4. Gallionella tympanum, n. sp., Ehrb. l. c.

Hab. Graham's Land ; in mud from 207 fathoms.
5. Gallionella Oculus, 11. sp., Ehrb. l.c.

Hab. Graham's Land; in mud from 970 fathoms.

7. CAMPYLODFSCUS, Ehrb.

1. Campylodiscus Clypeus, Ehrb. Kütz. Kieselsch. Bacill. p. 59. t. 2. f. v. 1-6.

Hab. Graham's Land; in mud from 270 fathoms.
Found fossil in Germany and Italy, in the Bermudas and in the Mastodon earth of the Plate river, in African guano, in the atmospheric dust near the Cape de Verd Istands, and in the volcanic tuff of the Rhine.

s. SURIRELLA, Ehrb.

1. Surirella (?) australis, Ehrb.; Schrift. Berl. Akall. l.c.

Hab. Falkland Islands; on marine Conferve, Lesson.

9. SINEDRA, Ehrb.

1. Synedra Ulna, Ehrb.; Infus. t. 1\%. f. 1. Kütz. l. c. p. 66. t. 30. Exilaria Ulna, Hassall, Brit. Fresh-water Alg. p. 433. t. 97. f. 2.

Hab. Victoria Barrier; in Pancake-ice (doubtful). Graham's Land; in mud 270 fathoms.
One of the most abundaut and easily recognized of the Diatomacece, not only in Europe but throughout the globe. Mr. Hassall states it to be of very frequent occurrence in fresh-water ponds and ditches of England. It is also found in Icelaudic peat, in marime mud from Spitzbergen, in the natural paper of Silesia, and in the Tropical Ocean off Rio. As a fossil or dead, it has occurred in Oran and Sicily, the United States, in alluvial deposits in Brazil, the Euphrates River, and in atmospheric dust off the Cape de Terd 1slands. It is also found in the volcamic tuff of the Rline aud in Peruvian guano.

10. DICLADIA, N. G. Ehrb.

1. Dicladia antennata, Ehrb.; Schrift. Berl. Akad. May, 1844.

Hab. Vietoria Barrier ; in Pancake-ice.
2. Dicladia bullosa, Ehrb. l. c.

Hab. Victoria Barrier ; in Pancake-ice.
This and the preceding always occuned abundantly in the stomachs of the Victoria Land Salpa.

11. SCHIZONEMA, Ay.

1. Schizonema sp.? filis ramosis siccitate luride viridibus, frustulis ovato-oblongis siccis collapsis. Thwaites, IIS.

Hab. Kerguelen's Land; abundant in the sea.
Very similar to, and possibly not distinct from, the British S. implicatum, Harv.

12. Ex1LariA, Grev.

1. Exilarla, n. sp.? frustulis limearibus striatis e dorso visis leviter versus apices truncatos attenuatis, e latere visis utrinque obtuse apiculatis. Thwuites, MS.

Hab. Kerguelen's Land; on marine Conferva.
G. truncate forma accedit, sed frustulis striatis ut in Synedra Ulna.

13. COCCONEIS, Ehru.

1. Cocconers Placentula, Ehrb. Kütz. p. 73. t. 28. f. 13. c.
$H_{\text {ab }}$. Falkland Islands; on marine Confervec, Lesson.
Found living in the fresh waters of Europe; also in Iceland, Mexico and the Oregon river, Cliili, the Sandwich Islands, and in African (?) guano.
2. Cocconers Scutellum, Elrb. Kütz. l. c. t. 5. f. vi. 3-6.

Нab. lalkland Islands; on marine Conferve, Lesson. Kerguelen's Land, also on marinc Confercie.
Found living in the Atlantic, German, and Mediterranean Seas; on the coast of Iceland, in Peruvian guano and in volcamic tuff.

14. ACIINANTIIES, Ay.

1. Acinanthes pachypus, Kütz. p. 76. t. 21. II. f. 3 and 29. f. S3.

Hab. Falkland Islands; on marine Conferva, Lesson.
Recorded by Montagne to be a native of Callao, in Peru.
2. Achnanthes longipes, Ag. ILarv. Man. Alg. Brit. p. 200.

Нав. Kerguelen's Land ; on Alga.
Specimen in a very bad state, but probably referable to this species. Thwaites, MS.

3. Achnanthes turgens, Elirb. l. c.

H_{AB}. Graham's Land; in mud from 270 fathoms.

15. LICHNOPHORA, $A g$.

1. Licinophora abbreviata, Ag. Podosfema abbreviata, Ehrb. Infus. p. A4. t. 18. f. 7.

Hab. Kerguelen's Land; in the sea.
Frustula omnino ut in exemplaribus ab Ehrenberg depietis, sed plura, stipiteque majore. Thucaites, MS.
Oeenrs as a parasite on Ceramium rubrum, in the Mediterranean Sea.

$$
\text { 16. DIATOMA, } A g \text {. }
$$

1. Diatoma, n. sp.? frustulis anghstissimis omnino aut fere lævissimis e dorso visis versus apices truncatos sub-dilatatis, e latere visis infra apices rotundatos constrictis.

Hab. Falkland Islands; on marine Conferve.
D. etongata, Ag. simillima, differt frustulis nunquam aut vix striatis. Thwaites, MS.
17. COCCONEMA, Ehr\%.

1. Cocconema Lumulu, Elnb. Cymbella maculata, Kütz. p. 79. t. \&9. f. 3̊. c.

Hab. Falkland Islands; on marine Confervce, Lesson. In a white pigment used by the Fnegians, C. Durwin, Esq.

Found throughout Europe, in Mexico and Chili, the Egean Sca, the Oregon River, and in earth from Labrador. It also oecurs in the white pigment used by the natives of Fuegia, and in atmospherie dust at the Cape de Yerd Islands.

18. GOMPHONEMA, Ag.

1. Gomphonema clavatum, Ehrb. ; Iufus. t. 18. f. vi.

Hab. Falkland Islands; on marine Conferve, Leesson.
Throughout the European and North Ameriean shores, those of Iecland, the Marian and Sandwich Islands. Fossil in Virginia, U.S.
2. Gomphonema mimutissimum, Grev. in Hook. Brit. Fl. vol. ii. p. 209. G. curvatun, β. salinum, Kïtz. p. S5. t. S.f.1.

Hab. Falkland Islands; on marine Conferve ; Lesson.
A British and common Atlantic species; found also in the Oregon territory and fossil in Virginia, U. S.

19. PINNULARIA, Eherb.

1. Pinnularia borealis, Ehrb.

Hab. Cockburn Island; in the soil of a Penguin rookery. In a pigment used by the Fuegians; C. Damin, Esq.

Fonnd also in Peruvian guano, in the Mastodon earth of the Plate river, and in the Cape de Verd atmospheric dust. Also in voleanie ashes from Ascension Island and Patagonia; in voleanie tuff of the Rhine and Phonolite stone.
2. Pinnularia peregrina (?), Ehrb. Navicula peregrina, Kütz.

Hsв. Cockburn Island; in the dirt of a Penguin rookery. Falkland Islands, Lesson.
The true P. peregrina is a native of the open ocean near the Brazilian coast, and has been found fossil in Virginia, U. S., and living at St. Domingo, Cnba, and Labrador.

20. NAVICULA, Bory.

1. Navicula elliptiea, n. sp. Elnb. Schrift. Bert. Akal. May, 1844.

Hab. Graham's Land; in mud from 270 fathoms.
2. Nattcula amphioxys, Ehrb. Kütz. p. 91. t. 28. f. 37.

Hab. Falkland Islands; on marine Conferre, Lesson.
This has also been colleeted living in Chili, Cayeme and Cuba, in various alluvial deposits, as the Brazils, Iceland, and in the natural paper of Silesia.
3. Navicula Ditlyma (?), Kütz.

Hab. Falkland Islands; on marine Conferve, Lesson.
The true N. Didyma is a native of a salt-water Lagoon in Germany:
4. Navicula Iayra, Ehrb. Kütz. p. 94. t. 28. f. $55, c$.

Hab. Falkland Islands; on marine Conferra, Lesson.
5. Naticula viridis, Kïtz. p. 97. t. 4. f. 18. and t. 30. f. 12.

Hab. Falkland Islands; abundant on marine Conferre, Lesson, J. D. II.
One of the most widely dispersed of all Diatomacea, found alire in fresh waters of England, Scotland, and Ireland, in the natural paper of Silesia, in the Sandwich and Marian Islands, and West Tropieal Africa, also in alluvial deposits of Iceland, Labrador and Penn.

21. STAUROPTERA, Ehrb.

1. Stauroptera aspera, Elırb. Infus. Amer. p. 134. t. 1. Kïti. p. 106. t. 12, c.

Hab. Graham's Land; in mnd from 270 fathoms. Falkland lslands, Lesson.
This has been collected in Norway, Spitzbergen, Iceland and Labrador, Mexieo, Cuba, Peru; on the sand-hills of Patagonia, and in Peruvian guano.
2. Stauroptera capitata, u. sp. Ehrb. Schrift. Berl. Akad. May, 1844.

Hab. Cockburn Island; on the ground in a Penguin rookery.
22. AMPHORA, Ehrl.

1. Amphora Libyea, Ehrb. Kütz. p. 107. t. 29. f. 28, c.

Hab. Graham's Land; in mod from 270 fathoms.
Originally detected in the oasis of Sirah, and sinee found in various quarters of the globe, as Ieeland, Labrador, the Oregon River and United States; at the Euphrates River, in African guano, and in the volcanie tuff of the Rhine.
2. Amphora navicularis, Ehrb. ; l.c.

Hab. Falkland Islands; on marine Conferver: Lesson.
23. ASTEROMPHALOS, n. g. Ehrb.

1. Asteromphalos Hookeri, Ehrb. Schrift. Berl. Acad. May, 1844. cum ic.

Hab. Victoria Barrier; in Pancake Ice and in mud from 190 fathoms. In a scum floating in the ocean, Lat. 64° S., Long. $160^{\circ} \mathrm{W}$.
2. Asteronpilalos Rossii, Ehrb. l. c. cum ic.

Hab. Victoria Barrier and Victoria Land; in Pancake Ice. In scum with the previous species.
3. Asteromphalos Buchii, Ehrb. l. c. cum ic.

Hab. Victoria Land and Barrier, with the A. Rossii, also in mud from 190 fathoms and in a floating scum with the two preceding species.
4. Asteromphalos Beaumontii, Ehrb. l. c. cum ic.

Hab. Victoria Barrier ; in Pancake Ice.
5. Asteromphalos Humboldtii, Ehrb. l. c. cum ic.

Hab. Victoria Barrier ; in Pancake Ice and in mud from 190 fathoms. In a floating scum with A. Hookeri.
6. Asteromphalos Curieri, Ehrb. l. c. cum ic.
$H_{A B}$. Victoria Barrier ; in Pancake Ice and in mud from 190 fathoms.

7. Asteromphalos Darwinii, Ehrb. l. c. cum ic.

Hab. In a scum Hoating in the occan, in Lat. $64^{\circ} \mathrm{S}$., Long. $160^{\circ} \mathrm{W}$.

24. HALIOMYX, N. G. Ehrb.

1. Haliomyx senarius, Ehrb. in Sehrift. Berl. Akad. May, 1844.

Hab. Victoria Barrier ; in the Pancake Ice. $_{\text {I }}$
2. Haliomyx duodenarius, Ehrb. l.c.

Hab. Victoria Barrier ; in Pancake Ice. In the stomachs of Salpe taken in Lat. $64^{\circ} \mathrm{S} .$, Long. $157^{\circ} \mathrm{W}$.
25. HEMIAULUS, N. g. Ehrb.

1. Hemiaulus Antarcticus, Ehrb. in Schrift. Berl. Akad. May, 1844.

Hab. Victoria Barrier and Victoria Land; in Pancake Ice and in mud from 190 fathoms. Open sea $_{\text {Len }}$ off Cape Horn, Mi, Schayer (Ehrb.).
2. Hemiaulus? obtusus, Ehrb. 1.c.

Hab. In a floating scum, Lat. $64^{\circ} \mathrm{S}$., Long. $160^{\circ} \mathrm{W}$. Graham's Land ; in mud from 207 and 270 fathoms.

26. SYMBOLOPHORA, Ehrb.

1. Symbolophora? Microtrias, n. sp. Ehrb.; Schrift. Berl. Akad. May, 1844.
 mud from 270 fathoms.
2. Symbolophora? Tetras, n. sp., Ehrb.; l.c.

Hab. Victoria Barrier ; in Pancake lce and in mud from 190 fathoms. Graham's Land; in mud from 270 fathoms.
3. Symbolophora? Pentas, n. sp., Ehrb. l.c.

Hab. Victoria Barrier ; in Pancake Ice and in mud from 190 fathoms. Graham's Land; in mud from 270 fathoms.
4. Symbolophora? Hexas, n. sp., Ehrb, l.c.

Hab. Victoria Barrier ; in Pancake Ice and in mud from 190 fathoms. Graham's Land; in mnd from 270 fathoms.

27. CH ETOCEROS, n. g. Ehrb.

1. Chetoceros Dichaeta, Ehrb.; Schrift. Berl. Akad. May, 1844.

Hab. In a scum floating on the surface of the ocean, in Lat. 64° S., Long. $160^{\circ} \mathrm{W}$.
2. Chetoceros Tetrachata, Ehrb. l.c.

Hab. In a floating scum with the former species. $^{\text {s }}$
Two other species of this new genus have recently been discovered in the Bermuda Islands.

> 28. ANAULUS, м. g., Ehrb.

1. Anaulus scalaris, Ehrb.; Schrift. Berl. Akad. May, 1844.

Hab. Graham's Land; in mud from 207 and 270 fathoms.
29. RHAPHONEIS, N. G. Elirb.

1. Rhaphoneis fasciolata, Ehrb. ; l.c.

Hab. Graham's Land, in mud from 207 and 270 fathoms.
2. Rhaphoneis scutellum, Ehrib.; l.c.

Нав. Cockburn Island; in the dirt of a Penguin rookery.
30. PODOSPHENIA, Ehrb.

1. Podosphenia cuneata, Ehrb.; Infus. t. 17. f. viii. Kutz. Kieselsch. Diat. p. 121. 1. 9. f. I3. 1-4.

Hab. Graham's Land; in mud from 270 fathoms.
Also fonnd in the Atlantic, German, and Mediterranean seas, and in Peruvian guano.

31. GRAMMATOPHORA, Elkb.

1. Gramatophora parallela, Ehrb.

Found fossil in Sicily, Oran and Virginia, U.S.
2. Grammatophora Africana, Ehrl.; Kütz. p. 129.

Hab. Graham's Land; in mud from 270 fathoms.
Exists also in the Mediterranean Sea and German Ocean ; and fossil in Sicily, Oran, and Virginia, U.S., and in Perurian and African? guano.
3. Grammatophora serpentina, n. sp., Ehrb.; Sehrift, Berl. Akad. May, 1844. (non Kïte.)

Hab. Graham's Land; in mud from 270 fathoms.
4. Grammatophora Oceanica, Ehrb. G. marina, Kütz. Diatoma marinum, Lyngb. Harr. Brit. Alg. p. 201.

Hab. Falkland Islands; on marine Conferre: Lesson.
Abundant on the Atlantic shores of both the Old and New World, and in the Mediterranean Sea. Found fossil in Virginia, U.S, and Peruvian guano; also in the atmospheric dnst of the Cape de Verds.
5. Gramintopiora stricta, Elurb.; Kütz. p. 129. t. 29. f. 76. c.

Hab. Falkland Islands; on marine Conferve: Lesson.
This occurs in Peruvian guano, and in deposits at Vera Crnz, in Mexico, and North Americia.

32. COSCINODISCUS, Ehrb.

1. Coscivomiscus? actinochilus, n. sp., Ehrb.; Schrift. Berl. Akad. May, 1814.

Нав. Victoria Barrier ; in Pancake Ice. $_{\text {I }}$
2. Coscivodiscus Apollinis, n. sp., Ehrb.; 7.c.

Hab. Victoria Barrier ; in Pancake Ice and in mud from 190 fathoms. Stomachs of Sulpue, in Lat. 64° S., Long. $157^{\circ} \mathrm{W}$. Gralam's Land; in mud from 207 and 270 fathoms.
3. Coscivodiscus cingulatus, n. sp., Ehrb.; l.c.

4. Coscinodiscus? gemmifer, n. sp., Ehrb.; l.c.

Hab. Victoria Land ; in mud from 190 fathoms, and in Pancake Ice. Gralam's Land; in the $_{\text {a }}$ stomachs of Sulpe with the preceding.

This species has also been found in the Bcrmuda Islauds, and fossil at Oran and Sicily.
5. Coscinodiscus Lanace, n. sp., Ehrb.; l. c.

Hab. Victoria Barricr and Land; in Pancake Ice and in mud from 190 fathoms. In stomachs of Salpe, taken in Lat. $66^{\circ} \mathrm{S}$., Long. $157^{\circ} \mathrm{W}$. Graham's Laud; in mud from 207 fathoms.
6. Coscinodiscus eccontricus, Ehrb.; Lel. Kr. p. 66. Kütz. Kiesel. Bacill. p. 131. t. 1. f. 9.

Hab. Victoria Barrier; in Pancake Ice.
Found on the European shores of the Atlantic, and at Vera Cruz; in deposits at Oran, Bcrmuda, Virginia, U.S., and in Pernvian and African? guano.
7. Coscivodiscus limbatus, Ehrb.; Schrift. Berl. Ahad. 1840. Kïtz. l. c. p. 131.

Hab. Victoria Barrier ; in mud at 190 fathoms.
Also found in the Egean sea.
8. Cosclnodiscus lineatus, Kïtz. p. 131. t. 1. f. 10.

Hab. Victoria Barrier and Land; in Paucake and Brash lce, also in mud from 190 fathoms. Stomachs of Salpe within the Antarctic circle. In a floating scum Lat. 64° S., Long. $160^{\circ} \mathrm{W}$. Graham's Land; in mud from 270 fathoms.

A very widely dispersed species, inhabiting Mclville Island, Sicily, Virginia, Maryland, and Peruvian guano.
9. Coscinodiscus Oculus-Iridis, Ehrb.; Leb. Kr. l.c. Kütz. l.c. p. 132.

Hab. Victoria Land and Barrier; in Pancake Ice. Graham's Land; in mud from 270 fathoms.
Found in the Atlantic Ocean, Bermudas, Mcditerranean Sea, and in Peruvian guano.
10. Coscinodiscus radiolatus, Ehrb.; Kütz. p. 132. t. 1. f. 18.

Hab. Victoria Barrier and Land; in Pancake Ice, and in mud from 190 fathoms. Graham's Land; in mud from 207 fathoms.

This occurs in the Mcditerranean Sea, as also in deposits at Oran, Sicily, the Bermudas, the United States, Peru and Cuba.
11. Coscinodiscus subtitis, Ehrb.; Schrift. Berl. Akad. Fel.1844. Kütz. l. c. p.132. t. 1. f. 16.

Hab. Victoria Land and Barrier ; in Pancake lce. Stomachs of Salpee and oceanic scums within the Antarctic circle. Graham's Land; in mad from 270 fathoms.

Previously found in deposits only, as in Sieily, the Bermodas, the United States, the Mastodon earth of the Plate river, Vera Cruz, and Perurian and African guano.
12. Coscinodiscus relatus, Ehrb.; Schrift. Berl. Akad. Feh. 1544.

Hab. Victoria Barricr ; in Pancake Ice. Graham's Land; in innd from 207 fathoms.
Known previously only in the fossil deposits of Virginia and Maryland, U.S.
33. FLUSTRELLA, Ehrb.

1. Flustrella concentrica, Ehrb.; Schrift. Berl. Akad. Fel. 1844.

Hab. Victoria Barrier ; in Pancake Ice. Graham's Land; in mud from 270 fathoms.
In a fossil state this species oceurs in Sicily, Oran, the Egean Sea, Maryland, U.S, and in the Bermuda 1slands.

34. ACTLNOCYCLUS, Ehrb.

1. Actinocyclus senarius, Ehrb.; Schrift. Berl. Akad. June, 1844.

Hab. Falkland Islands; on marine Conferce: Lesson.
35. ACTINOPTYCHUS, Eherb.

1. Actinoptychus biternarius, Ehrb. ; l.c.

Hab. Victoria Barrier; in Pancake Ice.
Also occurs in tertiary deposits in Virginia and Maryland, U.S, and in the Bermuda Islands.

36. DISCOPLEA, Ehrb.

1. Discoplea Rota, n. sp., Ehrb.; Schrift. Berl. Akad. May, IS44.

Hab. Graham's Land; in mud from 270 fathoms.
2. Discoplea Rotula, n. sp., Ehrb.; l.c.

Hab. Graham's Land; in mud from 270 fathoms.

37. LITHOBOTRIS, Eterb.

1. Lithobotrys? denticulata, n. sp., Ehrb.; l.c.

Hab. Victoria Barrier ; in Pancake Ice and in mud from 190 fathoms. In a floatiug scum, Lat. 64° S., Long. $160^{\circ} \mathrm{W}$.

The only other species of this genus is a Virginian fossil.

38. LITHOCAMPE, Ehrb.

1. Lithocanpe Australis, n. sp., Ehrb.; Schrift. Berl. Akal. May, 1844.

Hab. Victoria Barrier ; in Pancake Ice.
This genus was known only as a fossil, occurring in the United States and the Mediterranean Sea, previous to the detection of this and the following speeies.

Lithocampe Antarctica, n. sp., Ehrb.; l. c.
Нав. Graham's Land; in mud from 270 fathoms.
39. TRTAULACLAS, n.g., Ehrb.

1. Triaulaclas triquetra, Ehrb.; Schrift. Bert. Akad. May, 1844.

Нав. Victoria Barrier; in mud from 190 fathoms.

> 40. BDDDULPHIA, Gray.

1. Biddulphia ursina. n. sp., Ehrb.; l.c.

Hab. Graham's Land; Gulf of Erebus and Terror, in mud 207 and 270 fathoms.

41．ZYGOCEROS，Ehrb．

1．Zygoceros Australis，n．sp．，Ehrb．；l．c．
Hab．Victoria Barrier ；in Pancake Ice．Graham＇s Land；Gulf of Erebus and Terror，in mud at 207 fathoms．

42．DENTICELLA，Ehr己．

1．Denticella lavis，n．sp．，Ehrb．；l．c．
Hab．Graham＇s Land ；Gulf of Erebus and Terror，in mud at 270 fathoms．

43．MESOCENA，Ehrb．
1．Mesocena？Spongolithis，n．sp．，Ehrb．；l．c．

44．ACTINISCUS，Ehrを．

1．Actiniscus lancearius，n．sp．，Ehrb．；l．c．
Нав．Opeu ocean，Lat． 66° S．，Long． $157^{\circ} \mathrm{W}$ ．，in the stomach of a Salpa．

45．DICTYOCHA，Ehrb．
1．Dictyocha aculeata，Ehrb．；Leb．Kr．p．65．Kiutz．Kiesel．Bacill．p． 140.
Lab．Victoria Land and Barrier ；in Pancake Ice．In the stomachs of Salpa，Lat． 66° S．，Long． 157 W. Entangled in a surface scum，Lat． $64^{\circ} \mathrm{S}$ ，Long． $160^{\circ} \mathrm{W}$ ．

Found living in the North Sea，fossil in Sicily，the Agean，North Africa，and Virginia，U．S．
2．Dictyoche binoculus，Ehrb．；Schrift．Akad．Berl．May， 1844.
Hab．Tictoria Barrier ；in Pancake Ice．Entangled in a floating scum，Lat． $64^{\circ} \mathrm{S}$ ．，Long． $160^{\circ} \mathrm{W}$ ． Also occurs in tertiary deposits in the 无gean Sea．

3．Dictyocha biternaria，Ehrb．；l．c．
Hab．Victoria Barrier ；in Pancake Ice．
4．Dictrocia Epiodon，Ehrb．；Schrift．Berl．Akad．Feb． 1844.
Hab．Victoria Barrier；in Pancake Ice．
Originally described from specimens occurring in a tertiary deposit in Virginia，U．S．，also found in Peruvian guano．

5．Dictyocha octonaria，Ehrb．；Schrift．Berl．Akad．May， 1844.
Hab．Victoria Barrier；in Pancake Ice．
6. Dictyocha Oinamentum, Ehrb.; l. c. Feb. 1844.

Hab. Victoria Barrier ; in Pancake Ice. In a floating scmm, Lat. $64^{\circ} \mathrm{S}$., Long. $160^{\circ} \mathrm{W}$.
Tertiary deposits of Sicily contain this species.

7. Dictyocha septenaria, Elnb. ; l. c.

Hab. Victoria Barrier ; in Pancake Ice, and in mud from 190 fathoms.
Previonsly fomed fossil in the tertiary deposits of Oran.
8. Dictiocha Speculum, Elırb.; Kutz. Kiesel. Bacill. p. 140. t. 21. f. ®2. с.

Hab. Victoria Barrier ; in Pancake Ice, and in mud at 190 fathoms. In the stomachs of Salpue, Lat. $66^{\circ} \mathrm{S}$., Long. $157^{\circ} \mathrm{W}$. In a floating scum, Lat. $64^{\circ} \mathrm{S}$., Long. $160^{\circ} \mathrm{W}$.

A widely distributed species, found living in the North Sca and Atlantic, fossil at North Africa, Greece, and Sicily, and in Maryland, U.S.
4.6. RIITZOSOLENIA, Ehrb.

1. Rhizosolenia Calyptia, n. sp., Ehrb.; Schrift. Berl. Akad. May, 1844.

Hab. Tictoria Barrier ; in Pancake Ice. Graham's Land; Gulf of Erebns and Terror, in mud from 270 fathoms.
2. Rhizosolexia Oraithoglossa, n. sp., Ehrb.; l.c.

Hab. Yictoria Barrier ; in Pancake Ice, and in mud from 190 fathoms. Graham's Land; Gulf of Erebus and Terror, in mnd at 270 fathoms.

Both these species have recently becu detceted in the Bermuda Islands.

LVII. DESMIIDIE.Æ, auct. recent.

1. ARTHRODESMUS, Ehrl.

1. Arthrodesmus Tenia, Ehrb.; Schrift. Berl. Akad. June, 18tl.

IIab. Falkland Islands; on marine Conforree: Lesson.

LVIII. LICHENES,* L.

1. USNEA, Ach.
2. Usnea melaxantha, Ach.; Lich. Univ. p. 618. Syn. Meth. p.303. Brown, Plant. Spitz. in Scoresby Toy. vol. i. App.p.76. K̈unth. Synops. vol. i. p. 36. D'Urv. in Mém. Soc. Liun. Paris, vol. iv. p. 596.
[^44]Bory in Duperrey, Toy. Bot. p. 240. Mont. in Toy. au Pole Sud, Bot. Crypt. p.201. U. sphacclata, Brown, in Parry, 1st Toy. App. p. 307. Mook. Plant. Arct. in Linn. Soc. Trans. vol. xiv. p. 384. Bot. Miscell. vol. i. p. 15. t. 12. U. fasciata, Torrey, in Silliman Journ. vol. vi. cum ic. Hook. Bot. Miscell. vol. i. p. 14. t. 11. U. aurantiaco-atra, D' Urv. in Mém. Soc. Linu. Paris, vol. iv. p. 596. Cornicularia flavicans, Persoon, in Frcye. Foy. Bot. p. 210. Lichen aurantiaco-ater, Jacq. Miscell. (fil. Acharius).

Var. a. Acharii; robusta, thallo scabrido, apotheciornm marginibus nudis.-U. melaxantha, Ach. l. c.
Var.ß. Jacquinii; robusta, thallo lævi.-Lichen aurantiaco-ater, Jacq. l. c.
Var. γ.fasciata; robusta, thallo tuberculato, ramulis pluries divisis capillaceo-attenuatis, apotheciis extus tuberculatis.-U. fasciata, Torrey, l.c.

Var. δ. sphacelata; gracilis, thallo lævi pruinoso v. tuberculato fruticuliformi ramosissimo, ramulis capillaribus.-U. sphacelata. Brown, l. c.

Hab. Throughout Tierra del Fuego and the Falkland Islands; on exposed rocks, from the sea to 2,000 feet, most abundant. New South Shetlands; Welister, Dr. Eights.

Perhaps the handsomest of all Lichens, whether we regard its colour, stature, or mode of growth, and yet so variable in all these points, that the extremes are scarcely recognizable. In size it varies from a few lines or an inch, with capillary stem and branches, to four inches, with a woody stem a quarter of an inch in diameter. The colour is sometimes wholly (especially in var. δ) black, at others uniformly yellow, but most frequently banded with black, especially towards the apices of the ramuli. Old specimens turn tawny red, as do all when, after being dried, they are soaked in warm water. The apothecia are yellow, grey or deep black. The surface of both the stems and the back of the apothecia is more or less tuberculated or pruinose, smooth or much wrinkled, naked or more or less covered with longer or shorter horizontal terete acuminated ramuli. The apothecia vary exccedingly in breadth, from two or three lines to almost half an inch; their margins are smooth, tuberculated or beset with branching ramuli ; they are generally terminal, but the younger appear lateral when subtended by a branch.

It is in the Falkland Islands that this species most abounds, corcring the surface of the Quartz rocks with a miniature forest, seeking the most exposed situations, and there attaining its greatcst size and beauty. In these Islands, too, all the five varieties I have enumerated may be collected within a few feet of one another, and so associated as to leave little doubt that they are states depending on age, rather than marked races. The var. δ. especially, is certainly only an undeveloped state, which does not bear soredia in the Antarctic regions; or apothecia either in Tasmania or in the Arctic latitudes, where soredia are produced.

The structure of the stem of this, and probably of some other Lichens, presents a marked analogy with that of the Laminarioid Algæ described at p. 460 . The central thread is very large, composed of concentric laycrs of dense, horny, red cellular tissue, gradually passing into a soft white pith, enclosing a cavity. Around this horny thread, whose edges are sharply defined, are arranged concentric layers of a spongy cellular substance, which again are enclosed in a cortical layer, as dense as the central, and to which the yellow and black hucs of this Lichen are always confined. Thus, proceeding from the circumference, there is-lst, a horny, coloured, cortical layer, answering to what is called the cortical layer of Lessonia, and to which, in that plant also, the colourcd chromule is chiefly confined; 2nd, the layers of intermediate lax tissue, successively deposited, though much more obscurely so than in Lessonia; 3rd, the central thread of Usneee which is a stout axis, answering to the elliptic core of Lessonia, but in this Lichen becoming so lax towards the centre as to enclose a cavity in the older stems.

We have never observed spores in any specimens of this Lichen, from whatever place collected, though we have examined very many apothecia in a live state, as well as after being dried, both young and old, and of all colours, both black, grey, or yellow. Dr. Montagne (Toy. au Polc Sud, l. c.) has been similarly unsuccessful.

The range of this Lichen is very wide. It is found in the Aretic regions of both the New and Old World; on the Andes under the Equator, at an elevation of 11,000 feet; on the mountains of Tasmania at 3,000 and 4,000 feet; in Chili, the Falkland Islands, Fuegia, and the New Sonth Shetlands. Now it is worthy of notice, that in none of the Arctic, the equatorial, or south temperate latitudes, cloes this plant produce apothecia; and that in the Antarctic, where alone apothecia have hitherto been found, these are always barren. Further it is remarkable, that this Lichen grows only where no other Usuea is found in fruit; and is, perhaps, the only specics of that genus which universally iuhabits rocks; circumstances which, taken together with its increasing in luxuriance with the exposure it is subjected to, suggests the possibility of its being a state of some other species of this highly variable and universally diffused genus, and that, distinct as the Antarctic specimens of U. melaxantha appear, they may owe their characters to the climate, for there is very great difficulty in defining the species so as to exclude states of U. florida. In South Chili, where the U.forida commences (proceeding southwards), we have specimens of U. ceruchia, Mont., which are, perhaps, states of U. melaxantha. Again, in Tasmania I am unable to distinguish some specimens of U. barbata and U.florida (?), which grow on the trunks of dead trees in the higher parts of the island, from the U. melaxantha of the summit of Mount Wellington and other elevated mountams.
2. UsNea Taylori, Hook. fil.; thallo erecto lævi pallide citrino dichotomo, ramis erectis gemmis papulosis sparsis, apotheciis terminalibus majoribus demum planiusculis, disco atro, margine integerrimo, dorso lævigato. Lond.Journ. Bot. vol. iii. p. 657. (Tab. CACV. Fig. I.)
$H_{A B}$. Kcrguelen's Land; on rocks from 100 to 1,200 feet of elevation : very abundant.
U. melaxanthce simillima, differt præcipue thallo lævi polito et colore lætiore nitente.

So closely allied to the U. melaxantha, that I advance this species with much hesitation. None of the Kergnelen's Land specimens exactly tally with any of its congencrs from other Antarctic localities, but approach them very nearly indeed; so much so, that the present should be perhaps regarded as a permanent variety only. If it be so, it is singular that it is the only one in which asci have hitherto been detected; these are abundant in all the apothecia, and vary much in size, in the form of their contained spores, and in the arrangement or grouping of these, as shown in the accompanying plate.

This is by far the most handsome vegetable production of Kerguelen's Land.
Plate CACV. Fig. I.-1, young, and 2, full grown plants of the natural size; 3, vertical section of young and 4 , of old apothecium; 5, lamina proligera, with asci and spores:-very highly magnified.
3. Uswes barbata, Ach.; Lich. Univ. p. 624. Fl. Antarct. Pt. 1. p. 194.

Var. c. articulata, Ach.; Syn. Meth. p. 306.
Hab. Hermite Island, Cape Horn, and the Falkland Islands; abundant on the stems of Empetrum and in heathy and rocky places. Var c. Falkland Islands, Mr. Wright. Hermite Island, Cape Horn; top of Mount Foster and Kater's Peak, \&c.

Also a native of Lord Auckland's group, Campbell's Island, and Tasmania. In Europe it is found as far north as Lapland.
4. Usnea plicata, Acb.; L̀ich. Univ. p. 622. Fl. Antarct. Pt. 1. p. 194.

Hab. Falkland Islands, and Hermite Island, Cape Horn ; on twigs of bushes, \&c. Strait of Magalhaens, Jacquinot.

A more Arctic and Antarctic plant than the following, reaching Cape Horn in $57^{\circ} \mathrm{S}$, and the shores of the Polar Sea in Arctic America, or $69^{\circ} \mathrm{N}$. , beyond which it is succceded by the U. melaxantha in both extremities of the globe.
5. Usnea florita, Ach.; Lich. Univ. p. 304. Engl. Bot. t. 872.

Нав. Chonos Arclipelago, on trees; C. Darwin, Esq.
A plant evidently impatient of perennial cold; inhabiting none of the Antarctie islands south of New Zealand and Tasmania in the Old Wortd, nor of the Chonos Arehipelago in the New. In the northern regions, again, it does not pass the wooded regions ($63^{\circ} \mathrm{N}$.), in Ameriea, or reaeh Lapland in Europe.

2. EVERNIA, Ach.

1. Evernia Magellanica, Mont.; in Foy. au Pole Sud, Bot. Crypt. p. 198.

Hab. Strait of Magalhaens; D' Urville and Jacquinot.
A very beautiful and distinet species, which I have seen from no other loeality than that indieated by Montagne.

3. RAMALINA, Ach.

1. Ramalina scopulorum, Ach.; Lich. Univ. p. 604. Engl. Bot.t. 688.

Var. a. thallo 1-1 $\frac{1}{2}$ pollicari lineari rigido polito utrinque glabro, apotheciis plurimis primum concavis demum convexis margimbus reflexis. R. verncosa, nob. in lond. Joum. Bot. vol.iii. p. 655.

Var. β. thallo fastigiato sub 2-pollicari cartilagineo pallide stramineo lineari v. lineari-obovato laciniato polito obscure lacunoso hic illic terebrato apicibus sub-acutis, apotheciis nullis.

Var. γ. thallo elongato 2 -6-unciali rigide cartilagineo planinsculo v. lacunoso parce prninoso pertuso laciniis $\frac{1}{2}$ muc. latis lobulis acutis, apothecuis nullis.

Var. δ. thallo flavo dense fastigiato lineari-ligulato 1-5-unciali laciniis flaccidis nunc pertusis pluries divisis acuminatis glabratis punctisve pruinosis sparsis, apotheciis mollis.

Var. є. omnia varietatis δ., sed rigida, apotheciis apices versus laciniarmm confertis corrngatis plerisque monstrosis.

Var. ζ. tercbrata; thallo elongato 8 unc. ad pedalem flaccido lacumoso et corrugato pertuso pruinoso v. glabrato, margine integerrimo eroso lobulato v. prolifero, apotheciis nullis:-inter var. γ. and δ. media sed statura proceriore. R. tcrebrata, nob. in Lond. Journ. Bot. vol. iii. p. 654.

Var. η. truncata; fastigiata, thallo cuneato in lacinias breves truncatas flabellatim expanso lacimis pertusis pruinosis griseis apicibus involutis :-an forma incompleta?

Hab. Var. a. Dry quartz rocks, Falkland Islands. Tar. β. and γ. Dry rocks, chiefly of clay slate, Falkland Islands. Var. δ. Falkland Islands and Cape $1 l o m$; on rocks near the sea. Var. ϵ. Dry granite rocks, Cape Horn; Kerguelen's Land, Anderson. Tar. §. Falkland Islands; on moist exposed rocks, near the sea, most abundant. Var. η. with var. ζ. but in more shady places.

On these varieties, or rather forms, we are enabled to offer the following observations:-
The var. a. is exaetly the English R. scopulorum, and the only onc which produees perfect frnit in the Falkland Islands. Var. β. is found in New Zealand, and in fruit; also abundantly in Brazil. Var. γ. and ζ. are scarcely distinguishable from R. fraxinea of Norfolk: small specincus cxactly resemble R. membranacea, Laurcr, of New Holland; it is a very common form in the Southern Hemispherc. Var. δ. is very similar to the Uraguay R. prolifera, of Taytor. Var. ϵ, is a small form of a Chilian variety. The var. η. inhabits Chitoe, and approaches near to R. pollinaria.

Dissimilar though the states of this plant here brought together are, no one who has collected them together can doubt their all belonging to one species, which, however, seldom fruits.
M. Fries states his conviction of the probability that all the European Ramatince are varicties of one species, an opinion in which we certainly concur, and we would further add many of the Exotic (except R. inanis) to it. The above ranietics certainly all belong to one species, as abundant in Cape Horn and Fuegia as the ordinary states of R. scopulorm are in Europe, and, however unlike some of these forms are to the English plant of that name, the one called a here, and which is the only one that fruits, is in no way to be distinguished from that plant. Considering how plastic the Lichens are in form and texture, and how amenable to the different climatal conditions, it must be admitted that if the R. scopulorum of England were to inhabit the maritine rocks of the Falklands, its aspect would be changed; the humidity of the atmosphere near the sea of these islands, being much greater than that of similar situations in our own country. Again, the locality inhabited by the rar. a., mamely, rocks at a considerable elevation and distance from the ocean, possesses a climate more assimilated to the British labitats of R. scopulorem than are the moist rocks at a lower level, and hence it is only natural to suppose, that there the Falkland Island form would assume the English. Lastly, the universally acknowledged difficulty of defining the European species, and the singular abundance of forms of the genns exactly similar to these in all parts of the world, between Lat. $60^{\circ} \mathrm{N}$. and $57^{\circ} \mathrm{S}$., together with the fact that many other Lichens are equally protean and widely distributed, are all arguments in favour of the Antarctic species having a common origin with other forms of the genus inhabiting the Aretic, Temperate, and Tropical regions.

The genus Ramalina, in the Arctic zone, attains the parallel of 69°, on the shores of the Polar Sea in North America, and of Lapland in Europe.

4. CETRARIA, Ach.

1. Cetraria Islandica, Ach.; Lich. Univ. p.509. Engl. Bot. t. 1330.

Hab. Hermite Island, Cape Horn ; amongst moss on the tops of mountains only, 1,500-1,700 feet, barren.

One of the most Arctic of plants, having been collected on Ross Islet, the northernmost known land in Europe ($81^{\circ} \mathrm{N}$.), and in Melville Island (76°), on the limits of Aretic American vegetation. It inhabits the level of the ocean only within the Aretic circle, or in the extremely cold plains of Central Russia (as Moscow, $55^{\circ} \mathrm{N}$.) Dahuria in Asia, $50^{\circ} \mathrm{N}$., and in North America (as Labrador, $55^{\circ} \mathrm{N}$.) ; thence, in progressing south, it ascends ; attaining the tops of our Scoteh Alps, 4,000 feet ($56^{\circ} \mathrm{N}$.), about 10,000 feet on the Swiss $\mathrm{Alps}^{\mathrm{s}}\left(46^{\circ} \mathrm{N}\right.$.) , 9,000 feet on the top of the Pyrenees, and 4,000 feet on the mountains of North Carolina and Virgiuia (in $36^{\circ} \mathrm{N}$.). The last locality is the lowest latitude it attains in the Northern IIemisphere; in the Southem it re-appears only on the extreme point of America, and there is confined to the pimnacles of the very highest mountains. There is perhaps no regetable common to both hemispheres more typical of extreme cold than this Lichen, which is further interesting from being the reputed cure for consumption, and the only plant of that order extensively used in medicine.

2. Cetraria glanca, Ach.; Lich. Univ. p. 509. Mont. in Toy.au Pole Sud, Bot. Crypt. p. 194.

Hab. Hermite Island, Cape Horn; top of Mount Kater, 1,700 feet; on rocks, sparingly. Straits of Magalhaens, D' Uiville and Jacquinot.

This, again, is aniustance of the re-appearance of a Northem and Arctic Lichen in the Sontheru Hemisphere only under Antarctic skies. The C. glauca finds its principal paralled in Scotland, central and northern Europe, and sub-arctic America, wandering as far south as the Swiss $\Lambda_{p s}$ and mountains of the Canary Islands. It is not nearly so Arctic as the C. Islandica, not heing foumd in Spitzbergen or Melville Island, or, according to Richardson anywhere to the northward of 54° in Aretic America. Wahlenberg states it to be rare in Lapland.
3. Cetraria sepineola, Ach.; Lich. U'riv. p. 507. Mont. in Toy, aut Pole Sud, Bot. Crypt. p. 195. Hab. Strait of Magalliaens, on bark of Berberis ilicifolia; M. Jacquinot.
4. Cetraria aculeata, Fries, Lich. Europ. p. 35. Mont. l.e. p. 194. Cornicularia aculeata, Ach. Lich. Uniic. p. 612.

Hab. Hermite Island, Cape Horn ; on the summit of Kater's peak, and other mountains. Falkland $^{\text {a }}$ Islauds, Gaudichaud, \&'e.; but not common. Strait of Magalhaens; D' Urville and Jacquinot.

A very Arctic plant, inhabiting Melville Island in Arctic Amcrica, and Lapland in Europe; in the latter coutinent it extends as far south as the Alps and Pyrenees, and to the Canary Islands in the Atlantic Ocean.

5. NEPHROMA, Ach.

1. Nephroma polaris, Ach.; Lich. Unir. p. 523. N. arctica, Mont. in Toy. au Pole Sud, Bot Cigpt. p. 192.

Hab. Hermite Island, Cape Horn ; moist exposed places on the margins of the wools bordering the $^{\text {a }}$ sea, abundant. Strait of Magalhaens; MMY. Hombron and Jacquinot.

The most magnificent of Lichens, whether we regard the size of the thallus, which often is a foot and upwards across, the general aspect, or the size and beautiful colour of the frond and copious apothecia. Its European range is very northern, being confined to Scandinavia, reaching Lapland but not the islands beyond, nor inhabiting any conntries sonth of the Baltic. In North America it ranges over the rooded regions and barren lands, $54^{\circ}-69^{\circ}$, and to the west of the Rocky Mountains descends to Fort Vancourer, in Lat. $46^{\circ} \mathrm{N}$.
2. Nephrosta cellulosa, Ach.; Lich. Univ. p. 523.

Hab. Staten Land; Menzies (in Hook. Herb.)
A very mucl smaller species than the former, approaching very closely to the N. resupinata of Europe. It also inhabits Juan Feruandez and Tasmania.

6. PELTIDEA, Ack.

1. Pelitidea polydactyla, Ach.; Lich. Univ. p. 517. Mont. in Toy. au Pole Sud, Bot. Crypt. p. 193. $\mathrm{H}_{\text {ab }}$. Strait of Magalhaens; MIM. Hombron and Jecquinot.
Very abundant in Tasmania and New Zealand, also found in Lord Auckland's group and Campbell's Island. lu Europe, it ranges from Switzerland to Sweden and Norway ; in America, from Mexico to Sitka, but does not proceed so far north on the east of the Rocky Mountains ; it also inhabits the West Indies, Colombia, the Cape of (Food Hope, and other warm climates. Altogether it is a plant which does not shum the cold so markedly as do either of the following species, for it (the var. sentata) is also found as far as the northern limits of the forest regions of Arctic America.

2. Peltidea canina, Ach.? Lich. Unir. p. 517. Engl. Bot. t. 2299.

Hab. Falkland Islands; on tufts of Bolax glebaria, rarc.
In the Southern Hemisphere the P. canina has becn found in Juan Fernandez only. Its range in the Northern is rery wide, commencing in Mexico it is dispersed as far north as Canada on the east coast, and Sitka on the west. In Europe it is frequent from the Alps to Lapland, but does not inhabit the Aretic Island of Spitzbergen in Europe, or the shores of the Polar Sea and Islands beyond in America, where the P. apthosa abounds, a species not hitherto found in the Antarctic regions. The Falkland Island specimens are in a very imperfect state

3. Peltidea venosa, Ach.? Lich. Univ. p. 514. Engl. Bot. t. S87.

Hab. Kerguelen's Land; on tufts of moss on the hills.
The specimens are in a rery unsatisfactory state, being stunted and barren. They, however, closely resemble dwarf Scotch and Arctic individuals of the plant in question, differing chiefly in the smoother thallus and occasional buds. The range of the species is not wide: Lapland and Switzerland are its Northern and Southern European limits. In North America it inhabits the United States, Canada, and the Columbia river. Kergnelen's Land is the only recorded habitat in the Southern Hemisphere.
4. Peltidea horizontalis, Ach.; Lich. Univ. p.515. Engl. Bot.t. S83.

Hab. Christmas Harbour, Kerguelen's Land ; on wet moss, abundant.
Both in characters and in locality the specimens agree with the European P. horizontalis.
This, again, has not been observed elsewhere in the Southern Hemisphere. In the Northern it is coufined to the temperate latitudes, both of Europe and North America, ranging in the latter from the middle United States to Canada, and in Euroje from Lapland to Switzerland and the Pyrenees, where it is the only species of the genus inhabiting the top of the Pic du Midi (9,000 feet).

7. STICTA, Ach.

1. Sticta crocata, Limn.; Engl. Bot. t. 2110. S. citrina, Pers. in Freye. Toy. Bot. p.201. S. fuliginosa, nolis in Lond. Joum. Bot. vol. iii. p. 646.

Var. ß. gilva, Ach. Synops. Lich. p. 232. S. impressa, quoad exempl. Fulkland. nobis in Lond. Journ. Bot.l.c. S. Gaudichandii, Delise, Monogr. Stict. p. S0. t. rii. f. 23. Bory in Duperrey Toy. Bot. p. 236.

Hab. Strait of Magalhaens; D'Uritle, Hombron. Hermite Island, Cape Horn, and the Falkland Islands ; both varieties on rocks and twigs of shrubs, near the sea.

This species is also found on the west coast of South America, in Tasmania, Swan River, and the Cape of Good Hope. In the Northern Hemisphere it inhabits the United States and West ludian Islands, the Sandwich group, Great Britain and Ircland, attaining its northern limit at Inverary in Scotland (Lat. 56° N.), which singularly coincides with the latitude of the most sonthem habitat, namely, Cape Horn. The var. gilva is certainly only a varicty, without the pulverulent lines on the upper surface. The rimæ are sometimes white in this species, when it becomes exceedingly difficult to distinguish it from some of its congeners.
2. Sticta endochrysa, Delise; thallo late expanso cartilagineo glauco intus aurato glabro lobato, lobis rotundatis subintegerrimis marginibus gemmis confertis auratis obsitis super cæsiis flavo-virescentibusve subter rufo-flaris glabratis, cyphellis parvis prominulis citrinis, apotheciis sparsis concaris stipitatis, disco atro-rufo, margine elevato inflexo primum lanuginoso demum glabrato et crenulato. S. endochrysa, Delise, Monogr. p. 43. t. 1. f.1. S. D'Urvillei, Delise, l.c. p. 170. S. flavicans, nolis in Lond. Journ. Bot. vol. iii. p. 648. S. ochracen, Menzies, MSS. in Mo. Hook. Parmelia pubescens, Pers. in Freye. Toy. Bot. p. 199. (Тав. CACV. Fig. II.)

Hab. Hermite Island, Cape Horn; from the sea to the tops of mountains, abundant on rocks and trecs. Falkland Islands; very abundant. Staton Land; Menzies.

Thallus late expansus, pedalis et ultra, glancescens. Lobi lati, obscure undulati, flavido-marginati v : immarginati; marginibus isidiophoris granulis subfoliaccis dense onustis, rarius denudatis et crenatis; subter lacunosi v. plani, medium rersus fusco-flavidi parce tomentosi, ad apices pallidiores ct glabrati. Cyphelle plurimæ, papillæformes, rimæque thalli citrine. Apothecia sparsa, 2-4 lin. lata.

Variat colore superficiei superioris flavido v. cæsio, nunc glauco-virescente; foliis planis v. sublacunosis; marginibus loborum planis v. elevatis, lævibus v. crispatis, nudis v. granulis corniculatis dense obsitis.

This, and the Nephroma arctica, are the most noble foliaceous Lichens of the Antarctic regions. The present is particularly so, the brightness of its golden thallus, and its great abundance on the sea-ward edges of the Fuegian forest, rendering it a rery conspicuous plant. It is also found in Chiloe and Juan Fernander, and in the Old World it inhabits New Zealand. Though an ally of S.aurata, it is perfectly distinct from that plant, especially in the granular and not powdery margins of the thallus, also in size and general features. It is certainly as well marked as any species of Lichen confined to the southern latitudes.

Plate CXCV. Fig. II.-l, plant in usual state; 2 and 3, portions of thallus; 4, plant as covered with granular tubercles of the natural size; 5 , granular surface of thallus; 6 , apothecia; 7 , under surface of thallus; 8, lamina proligera; 9, spores:-all highly magnified.

3. Sticta orygmea, Ach.; Fl. Antarct. Pt. 1. p. 197.

Hab. Staten Land, (fid. Acharius). Strait of Magalhaens, D'Ureille.
This species was not seen at Cape Horn or the Falkland Islands: but we have specimens from Chiloe and Juan Fernandez. It is singular that a Lichen, which abounds in Lord Auckland's group and Campbell's Island, should not be also found at Cape Horn; and that the S. endochrysa of Cape Horn is found in New Zealand, but does not spread so far south as Lord Anckland's group. The much greater cold of Fuegia might be prejudicial to the S.orygmaa, but there is no apparent reason for S. endochrysa bemg foreign to Lord Auckland's group. I suspect that the Acharian plant from Staten Land, referred to as S.orygmoa, is the S.endockrysa, Del.; and that the specimens were receired from Menzies.

There are rery remarkable differences between the Lichens of those two divisions of Autaretic botany which are here adopted: the most salient features of which consist in the presence or abnudance of the following Lichens in ouly one of the divisious.

Lord Aucklayd's Group and Campbell's Island.

Cape Horn.

Usnea melaxantha.

Ramalina scopulorum.
Cetraria Islandica.
Nephroma polaris.
Stereocaulon corallinum.
Sticta endochrysa.

- crocata.
- Freycinetii.

This remarkable predominance of certain very widely distributed forms in the southern extremity of the Western Hemisphere, and the absence of the same in similar positions in the Eastern, admit of no explanation, beyond what climate will afford.
4. Sticta obroluta, Ach.; Lich. Univ. p. 452 (eix Delise). S. hirsuta, Mont. in Toy. au Pole Sutl, Bot. Crypt. p. 188. t. 15. f. 2.

Hab. Staten Land; ILenzies. Strait of Magalhaens; M. Mombron.
Of this we possess an autheutically named specimen, gathered and labelled by Menzies himself: in it the cyphellæ are pale yellow; as Montagne describes those of his S. hirsuta. M. Delise does not seem to have understood the species, and describes apparently a very different plant under this name. It is closely allied to the S. cometia of Perm, in which the apothecia are fringed with much longer hairs, and also to the S. Mumboldtii, Hook., another Perurian plant with fringed apothecia; but both of these have white cyphellæ.

Sticta obvotuta is also a native of South Chili and Juan Feruandez.
5. Sticta Billardieri, Delise, Monogr. Stict. p. 99. t. 8. f. 35. S. Richardi, nobis in Fl. Antarct. Pt. I. p. 198. (non Mont.)

Var. β. lobis thalli subter pallidioribus. S. divulsa, Tayl. in Lond. Joum. Bot. vol. vi. p. 182.
Hab. Chonos Archipelago ; C. Darwin, Esq.
A New Zealand and Tasmanian species, agreeing remarkably well with the figure and description of Delise, except in the under surface being more pale than is described by that author. It differs from S. faveolata, Delise, in the much longer and narrower lobes and paler under surface, and in the absence of the granulations on the upper. The apothecia are all marginal when young, deeply concave, the older in these specimens convex, with a very narrow margin : this convexity is not a character to which too much importance should be attached, because the apothecia of many allied species vary extremely on the same specimen, from concave to convex; and these differences do not in snch species depend on age.

This is the S. Richardi of the first part of this work, but not of Montagne, the true S. Richardi having much broader lobes to the thallus, more or less rough or even scrobiculate on the upper surface, and almost wholly smooth on the under. It is very nearly allied to the true S.carpoloma, but differs in the white cyphellæ, and like many others of the faveolate group it is possibly only a rariety of S. damecornis.

We have specimens from the Chonos Archipelago, from Chiloe and the Island of Huaffa (on the coast of South Chili), agreeing entirely with one another in the (when dry) pale yellow-brown shining colour of the upper surface. The New Zealand and Lord Auckland's Islaud examples are rather paler: in all, the under surface of the lobes is naked and tamy yellow towards the apex.
6. Sticta faveolata, Delise; Monogr. Stict. p. 101. t. 8. f. 36. Mont. in Foy. au Pole Sud, Bot. Crypt. p. 186.

Hab. Strait of Magalhaens; Hombron.
We have thought it possible that what we have called S. Billardieri, Del., may be the S.faveolate of Montagne (in Voy. au Pole Sud); especially as that author makes no mention of the granular lines on the upper surace so expressly alluded to by Delise (nnder S. carpoloma); and also from this S. faveolata of Montagne being found by the officers of the French South Polar Expedition, both in the Strait of Magalhaens and Lord Auckland's group. In the absence, howerer, of anthentic specimens, and of any explanatory note by Montagne (whose specimens were very insufficient) on the species he calls S. faveolata, we are obliged to abide by the published figures of Delise.

The lacunose fronded Sticte with white soridia, form a most natural gronp of species, so inextricably confounded by nature, if they be really and truly species at all, that we have failed in discovering limits to the variations of any of them. Even the colour of the cyphellæ is very unsatisfactory, there being, between the snowwhite of the S. Billardieri and dirty yellow of some others, all intermediate tints; and in the same species, almost on the same specimen, of Tasmanian examples of S. fareolata (?), it is impossible to say whether the cyphellæ are dirty white or pale yellow ; whilst other specimens, in all respects similar, have their colour well pronounced.
7. Sticta rariabilis, Ach.; Delise, Monogr. Stict. p. 119. t.11. f.48. Mont. in Toy. au Pole Surt, Bot. Crypt. p. 185.

Hab. Strait of Magalhaens ; Jacquinot.
Possibly these specimens are referable to a state of that highly variable plant which we have referred to the S. Freycinetii, Del.
8. Sticta Thonaisii, Delise, Monogr. Stict. p. 90. t. 8. f. 29. S. scrobiculata, nolis in Lond. Journ. Bot. vol. iii. p. 640 (non Ach.).

Нab. Hermite Island, Cape Horn, and the Falkland Islands; on rocks, \&ce. Tristan d'Acunha; Petit Thouars.

The specimens examined, when preparing the short notice of the Antarctic Lichens for the London Joumal of Botany, were very imperfect ; and their under-swface exhibiting no cyphelle, we referred them to the S. scrobiculata, which they considerably resemble, especially in colour, and in their fetid scent when moistened. Other specimens showed white exphelle in abundance, and allied the plant so closely to the European S. limbata, that we can detect no marked difference betwecn them, beyond what is afforded by the colour of the powdery granulations on the stuface.

Delise's description of S. Thouarsii leares no doubt in our mind of this being his plant. The apothecia are unknown. Fuegian specimens are of a paler colour than the Falkland Island ones.
9. Sticts Freycinetii, Delise; Monogr. Stict. p. 124. t. 14. f. 51 (non Flor. Antarct. Pt. 1. p. 190). S. fulvo-cinerea, Mont. in Toy, au Pole Sud, Bot. Crypt. p. 184? S. glabra, nobis in Lond. Journ. Bot. vol. iii. p. 647 (in part). Parmelia lactucafolia, Pers. in Freyc. Foy. Bot. p. 200. (Tab. CTCTI.)

Hab. Hermite Island, Cape Horn; trunks of trees and rocks, from the sea to the mountain tops. Falkland Islands; very abundant on maritime rocks, \&c. Strait of Magalhaens, Port Famine; Capt. King. Staten Land; Menzies.

We have added a figure of this much-disputed species, concerning which we have fallen into an error in the previous part of this work, having regarded it as synonymous with the S. glabra of Lord Auckland's group and Tasmania (probably the S. Delisea Fée,), and which differs from the S. Freycinetii principally in the very shallow, not deeply cupped apothecia.

Fuegia and the Island of Juan Fernaudez are the only localities in which we know this species to occur.
Plate CXCTI. Fig. 1 and 2, portions of thallus of the natural size; 3, apex of ditto, with undereloped and mature apothecia ; 4, ditto with abortive (?) ditto ; 5, slice of lamina proligera; 6, ascus ; 7, spores:-very highly magnifeed.
10. Sticta filicina, Ach.; Lich. Univ. p. 145. Platisma Filix, Hoffim. Plant. Lich. t. 55.

Hab. Hermite Island, Cape Horn ; ou dead wood.
Our specimens, which are small and barren, differ in colour and in the less decidedly marked costæ, from those of New Zealand ; the lobes also are occasionally furnished with an isidiophorous border. The thallus is about an inch and a half high, the upper surface of a dirty greenish-brown, the under pale yellow-brown and uniformly covered with a short tomentum, into which the concolorons and rather large cyphellæ are sunk. They may, indeed, belong to a state of S. obroluta, Ach., with the upper surface glabrous; but hardly to any of the other species enumerated herc.

S. STEREOCAULON, Ach.

1. Stereocaulox corallinum, Fries; Lich. Europ. p. 201. Moug. et Nestl. n. 73. S. paschale, nobis in Lond. Journ. Bot. vol. iii. p. 653 (non Ach.).

Hab. Hernite Island, Cape Horn; on rocks near the sea. Kerguelen's Land; on alpine rocks, $_{\text {, }}$ 600-1200 feet.

We have before pointed out the singular scarcity, in the Southern Hemisphere, of some of those Lichens which are most abundant in all latitudes of the North Temperate and Arctic Zones. Stereocaulon corallinum affords another remarkable instance of this anomalous distribution. Except, perhaps, the Cenomyce rangiferina, it is the rery commonest of all Lichens in the subalpine districts of Britain and Central Europe, in the Alpine
regions of Southern Europe ascending to the summit of the Pyrenees, and to the level of perpetnal snow on the Alps. Again, in the Arctic zone it is found carpeting the otherwise naked stcppes of Asia and the barren lands of America, thence reaching the ultima thule of vegetable life in Melville Island and Ross Islet. To the south of its principal parallel it inhabits the Canary Islands, and a variety is seen on the Andes of Mexico and Colombia. Still further south it is replaced in all longitules by the following species, being itself unknown in the Southern Hemisphere except at Cape Horn and Kerguelen's Land, where it re-appears in abundance. To reconcile this singular fact with the views of those who suppose it to have migrated into Kerguelen's Land, it is alnost necessary to consider the S. ramulosum, which inhabits Lord Auckland's group, Campbell's Island, Tasmania, and the northern parts of Fucgia, as a southern rariety of S. corallinum, which has, in Kergnelen's Land and Cape Hom, reverted to the northern form.

2. Stereocadlon ramulosum, Ach. Fl. Antarct. Pt. 1. p. 195. t. lxxx. f. 1.

Hab. Strait of Magalhaens, Capt. King. Chonos Archipelago, C. Darwin, Esq.
This widely distributed species replaces in the Southern Hemisphere, to a considerable degree, the S.paschale and corallinum of the Northern, hut not fully; for it only enters what we have elsewhere defined to be the Antarctic zone of vegetation, not reaching the Falkland Islands, the southern parts of the Fnegian Islands or Kerguelen's Land. In the Old World it first appears in Bourbon, thence ranging from the Philippines, through Java, Australia, the South Sea Islands, Tasmania and New Zealand, to Lord Auckland's group and Campbell's Island, abounding in rocky and damp places, also on the trunks of large trees. In the New World it commences in the West Indian Islands, whence Swartz originally procured it, and runs through every parallel of latitude to the Strait of Magalhaens.

As a species S. ramulosum appears, at first sight, abundantly distinct from S. corallinum, nor does it display a tendency to assume any northern form of the genus in the Strait of Magalhaens. In Tasmania, again, where it ascends the mountains and becomes dwarfish, its lateral ramuli are still slender and fibrous, typical of the species. On the other hand, some of the tropical specimens, especially those from the Equatorial Andes (where both specics occur), appear intermediate between S. romulosum and corallinum; insomuch that it becomes a matter of opinion alone, whether the S. ramulosum should be considered a sonthern state of S. corallinum, owing its greater development to the more uniform temperature and humidity of the localities it affects in the Southern Hemisphere ; or whether these are two species, one orginating in the Southern Hemisphere, and one in the Northern, meeting muder the Line, and there varying into the similitude of one another.
3. Stereocaulon alpinum, Fries; Lich. Europ. p. 204.

Hab. Hermite Island, Cape Horn; on the summits of the hills.
A native of all the European Alps, also of the Andes of Perv.
4. Stereocaulon denulatum, Somm.; Lapp. p.126. Fries, Lich.Europ. p.204. Moug.et Nestl. n. 466. Hab. Hermite Island, Cape Horn ; on rocks near the sea.
Also an inhabitant of the Alps of Europe and the Mexican Andes.
We are indebted to the Rev. Churchill Babington for the identification of the species of this clifficult genus.

9. SPHEROPHORON, Ach.

1. Spherophoron coralloides, Ach.; Lich. Univ. p. 5S5. Engl. Bot.t. 115. Moug. et Nestl. n. 262.

Hab. Strait of Magalhaens, throughout Fuegia and the Falkland Islands; on the ground and on trunks of trees, most abundant, ascending to the tops of the mountains.

A common Antaretic American plant, rarer in Tasmania, and replaced in Lord Auckland's group by S. tenerum. Its range is very wide in both hemispheres, from within the Arctic circle of the New and Old Worlds, attaining Walden Island north of Spitzbergen, within 9° of the North Pole, stretching south, throughout Europe, to the Asturias, Switzerland, and Madeira, and in America to Newfoundland.
2. Spherophonon tenerum, Laurer. F7. Antarct. Pt. 1. p. 195. Mont. in Toy. au Pole Sud, Bot. Crypt. p. 172. (Tab. CXCVII. Fig. I.)
flab. Hermite Island, Cape Horn; most abundant on the hills. Chonos Archipelago, C. Darwin, Esq.
In the former part of this work we have pointed out the characters which distinguish this species from the S. coralloides. It is much more frequent in Tasmania and New Zealand than iu South America, in the latter coumtry having been only found at Cape Horn, Fuegia, Chiloe, and the Chonos Archipelago.

I know of no Lichen which exhibits so well the successive derelopment of "laminæ proligeræ" in the same apothecium. A vertical section of the youngest fruit shows two strata, parallel to, or rather concentric with, one another. Of these, the upper is fully ripe long before the bursting of the apothecium. It consists of innumerable filiform asci, containing from cight to thirty and more sporules. The sporules are vertically arranged and so densely packed that each ascus resembles a moniliform filament: the lower are smaller, the upper gradually larger; none howerer, attain their full size till after the absorption or disappearance of the walls of the ascus; when they escape as spherical bodies, surrounded by a narrow transparent margin.

The thallus of this genus consists of a firm crustaceous transparent cortex, whose inner edge is sharply defined, cnelosing a mass of longitudinally arranged, matted, curved, dry filaments. These filaments are cylindrical, terete, sparingly supplied with very slort ramuli, and truncate or obtuse at either extremity : they entirely surround the nncleus of the very immature apothecium.

Plate CACVII. Fig. I.-1, fertile, and 2, barren specimens, of the natural size; 3, young, 4, mature, and 5, aged apothecia; 6,7 , and 8 , vertical sections of 3,4 , and 5 , respectively, showing the formation of successire lamine proligere; 9 , asci and spores; 10 , young (or possibly abortive) asci; 11, mature ascus; 12, spores; 13, cortical and filamentous substance of thallus; 14, filaments from the latter:-all highly magnified.

3. Spherophoron compressum, Ach. Fl. Antaret. Pt. 1. p. 196.

IIab. Hermite Island, Cape Horn, and Talkland Islands ; on turfy ground, abundant. $_{\text {a }}$.
These specimens are identical with the English plant so called. It is also an Auckland Island species, and is found in rarious countries, both within and without the tropics, as far north as the barren lauds bordering the Polar Sea in Arctic America. In Europe, Wahlenberg remarks, that it does not occm in any part of Scandinavia. In the Sonthem Hemisphere it grows on the South American Andes and in Van Diemen's Land.
4. Spherophoron australe, Laurer. Fl. Antaret. Pt. 1. p. 195.

Hab. Strait of Magalhaens; Port Famine; Capt. King.
Manifestly identical with the Tasmanian, New Zealand, and Lord Auckland's group species of this name, but not hitherto found elsewhere in the New World.
5. Spherophoron fragile, Ach.; Lich. Univ. p.585. Engl. Bot. t. 2474. Mont. in Toy. au Pole Sued, p. 172.

Hab. Strait of Magalhaens; IP Creille.
A frequent Arctic and North Temperate zone plant, reaching the latitude of lgloolik in the American Polar Sea, and, in Europe, Lapland, Spitzbergen and even Ross Islet, the most northern known land in the world.

10. CENOMYCE, Ach.

1. Ceromyce pyxidata, Ach.; Lich. Unir. p. 534. Engl. Bot. t.1393. Schar. Lich. Melvet. n. 53-55. Hab. Strait of Magalhaens; Port Famine, Capt. King. Port Gallant; MM. Hombron and Jacquinot.
Abundant throughout the Tropics, but not observed south of the Strait of Magalhaens in extra-tropical Sonth America. In the Arctic regions it reaches to the very termination of vegetable life at Ross Islet, in $82^{\circ} \mathrm{N}$.
2. Cexomyce gracilis, Ach.; Lich. Univ. p. 550. Engl.Bot.t. 1824.

Hab. Falkland Islands; on the ground, not uncommon.
Possibly a state of C. sparassa, there being a decided tendency in the podetia to become squamulose. It is also a native of the extreme north, Spitzbergen, Walden, and Ross Islets.
3. Cenonyce fimbriata, Aclı.; Iich. Univ. p. 535. Engl. Bot. t. 2438.

Var. ustulata; podetiis brevibus lanceolatis fistulosis curvato-decumbentibus basi concoloribus apice nigrescentibus, gemmis pulverulento-granulosis. C. ustulata, nolis in Lond. Journ. Bot. vol. iii. p. 652.

Hab. Falkland Islands; abundant on dry heathy soils: Var. ustulate, on sand-hills, near Uranie Bay.
The apothecia in these specimens copiously fringe the margins of the cups, and becoming coalescent form a broad lobed mass.
4. Cexomyce rerticillata, Ach.; Lich. Unir. p. 555. Dill. Hist. Musc. t. 14. f. 6 G.

Hab. Falkland Islands; in heatly places, abundant.
Our specimens entirely agree with others of British growth and with the figure of Dillenius.
5. Cenomyce cormuta, Ach.; Lich. Univ. p. 545. Fries, Lich. Europ. p. 225.

Var. ү. ramosa, Delise; Mont. in Toy. an Pole Sud, Bot. Crypt. p. 174.
Hab. Strait of Magalhaens; on rocks and trunks of trees, M. Jacquinot.
6. Cenomyce furcata, Ach.; Lich. Univ. p. 560.

Var. squamulosa, Delise; Mont. in Toy. au Pole Sud, Bot. Crypt. p. 175.
Hab. Strait of Magalhaens, Port Famine ; on dead trunks of trees, M. Jacquinot.
7. Cenomyce coccifera, anct. ; Engl. Bot.t.2051. Cladonia cornucopioides, Fries, Lich. Europ. p. 236.

Hab. Hermite Island, Cape Horn, and the Falkland Islands ; abundant on the lills.
8. Cexomyce deformis, Ach.; Lich. Univ. p. 533. Engl.Bot. t.1349. Scharer, Lich. Helvet. n. 47-49. Hab. Hermite Island, Cape Horn, and the Falkland Islands; ascending to the tops of the mountains.
9. Cenoryce rangiferina, Ach.; Lich. Univ. p.564. Engl.Bot.t.173. Scherer, Lich. Melvet. n.76,77.

Var. alpestris, Eschw. ; Dill. Hist. Musc. t. 16. f. 30 A. B. Fries, Lich. Europ. p. 243.
Var. sylvatica, Hoff.; Dill.l.c. f. 29 E.F. Fries, Lich. Europ. p. 243. Scharer, Lich. Helvet. n. 78.
$\mathrm{H}_{4 B}$. Throughout South Chili, Fuegia, and the Falkland Islands; most abundant.

Though so widely distributed a Lichen, and, as Fries remarks, "omnium Lichenum copiosissima", this species has its limits within the parallels attained by its congeners and other plants. In the south it is stunted at Cape Horn, and neither inhabits Kerguelen's Land or the South Shetlands; whilst, towards the Northeru Pole, it was not detected in Melville Island, though attaining a much higher latitude in Spitzbergen.
10. Cevonyce rencialis, Ach.; Lich. Univ. p. 559. Engl. Bot. t. 174. Scherer, Lich. Helvet. n. 84. Hab. Strait of Magalhaens; Port Famine, Capt. King. $_{\text {I }}$
Not observed in Hermite Island or the Falklands; nor does it extend in the Arctic regions beyond the continents of Europe and America.
11. Cenomyce? rermicularis, Ach.; Lich. Unic. p.566. Engl. Bot. t. 2029.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; local, but very abundant where it occurs.
We camot but regard this as the abnormal state of some Cenomyce (possibly of alcicornis or endiviafolia?); though we have never succeeded in identifying the species. It is a highly Aretic and Antarctic plant, in the northern regions advancing to the cxtreme limits of vegetation, in islands beyond Spitzbergen. It also has been collected on the Andes of Perı and of Colombia.
12. Cenomyce aggregata, Ach.; Lich. Unio. p. 563. Fl. Antarct. Pt. 1. p. 197.t. 1xxx. f. a.

Hab. South Chili, throughout Fuegia and the Falkland Islands; from the sea to the hill-tops, very abundant.

A very abundant plaut in the higher latitudes of the Southern Hemisphere, from Monte Video on the east, Mendoza in Central Chili, Colombia on the Andes, and Juan Fernandez on the west coast of South America to Cape Horn. Its various northern limits in the Old World are the Cape colony in Sonth Africa, Nepaul in Asia, Swan River in Australia, and Norfolk Island in the Pacific. In Tasmania and New Zealand it abounds, reaching $52^{\circ} \mathrm{S}$. in Campbell's Island.
13. Cenomyce bacillaris, Ach.; Synops. p. 266. Cladonia macilenta, Fries, Lich. Europ. p. 241.

Hab. Falkland Islands; dry places on the hills.
Probably a state of C.coccifera, and the original C. coccifera, a., Lim. It is a native both of the Tropics, and north Temperate zones.
14. Cenoaryce sparassa, Ach.; Synops. p. 273. Engl. Bot. t. 2362. Clad. squamosa and ventricosa Fries, Lich. Europ. p. 231.

Hab. Hermite Island, Cape Horn; on the mountain tops.
The C. ecmocina, rar. gracilis, of Lord Auckland's group, should be referred here; its podetia being squamulose, though but slightly so.

11. PARMELIA, Ack.

1. Parmelia enteromorpha, Ach.; Synops.]. 219. P. physodes, β. vittata, Mont. in Toy. au Pole Surd, Bot. Crypt. p. 182. P. lugubris, Pers. in Freyc. Toy. Bot. p. 196.

Var. β. deusta; parvula, rigida, thallo suberecto brevi subflabellatim diviso, lobis atris patulis angustis canaliculatis utrinque concoloribus.

Hab. Hermite Island, Cape Horn; from the sea to the mountain tops. Falkland Islands; very abundant. Var. β. barren rocks near the top of Katcr's peak.

This species was also found abundantly in Lord Auckland's group and Campbell's Island, though omitted in the first part of the Flora Antarctica. It is further a native of New Zealand and Tasmania; of North-west America, from California to Sitka, and we possess a specimen labelled as from the Mauritius.

Specifically, this differs from P.physodes only in the length of the lobes of the thallus, and these are so variable as to lead to some doubts of the validity of the species. In Tasmanian specimens the lobes are often much dilated and plane, the membranes of which it is composed, and which are normally inflated, being here, not only in contact, but firmly united together; thus effecting a passage between this species and the forms to which P. perlata, \&c. belong.

We have authentically named specimens of the North-west American P. physodes, β. vittata, which is only a narrower state of P. enteromorpha. Norwegian specimens also of the latter plant appear to be clearly referable to this.

2. Parmelia diatrypa, Ach.; Syn. Lich. p. 219. Engl. Bot. t. 1248. Moug. et Nestl. n. 65.

Hab. Hermite Island, Cape Horn; on stems of bushes and on branches of trees, on the mountains. Chonos Archipelago, C. Darwin, Esq.

Probably only a small, or alpine, form of P. enteromorpia ; it was found in similar situations in Lord Auckland's group, and on the top of Mount Wellington in Tasmania. Besides being a native of Great Britain and alpine situations in northern and midland Europe and of the Sandwich Islands.

3. Parmelia cincinnata, Ach.; Lich. Univ. p.495. Syn. Lich. p. 219. (Tab. CXCVII. Fig. Il.)

Hab. Staten Land, Menzies. Hermite Island, Cape Horn; on rocks and trunks of trees above the limit of the evergreen Beech.

By the apothecia this beantiful specics may be distinguished, both from P. diatrypa and P. enteromorpha, some of our specimens, indeed, are on the same piece of wood with P. diatrypa, both retaining their characters. They entirely agree in every other respect with one collected by Menzies, except in being of a pale lemon colour.

Plate CXCVII. Fig. II.-1, specimen of the natural size; 2, portion of ditto; 3, vertical section of apothecium; 4, slice of lamina proligera; 5, ascus; 6 and 7, spores :-highly magnified.
4. Parmelia saxatilis, Ach.; Synops. p. 203. Engl. Bot. t. 603. Mougeot et Nestler, n. 347 and 735.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; abundant on alpine rocks. Cockburn Island, Gralam's Land; very scarce.

None of these specimens are in fruit, bnt they accord perfectly with Scottish and other European examples. The lobes of the thallus vary a good deal in size and colour, according to exposure. That is believed to be this plant was seen at Cockburn Island, on the verge of Antarctic vegetation, but, as the specimens were lost previons to comparison, some doubt may be entertained of the correctness of this habitat. Besides being abundant throughout Europe, advancing as far north in Spitzbergen as vegetation extends, and in Temperate and North America, this species has been found on the Mexican Andes, on the barren grounds bordering the Polar Sea, and also in the Aretic Islands.
5. Parmelia muliginosa, Ach.; Lich. Uuiv. p. 467. Engl. Bot. t. 983.

Var. ß. sphinctrina. P. sphinctrina, Mont. in Toy. au Pole Sud, Bot. Crypt. p. 180. t. 45. f. 3.
Hab. Var. β. Hermite Island, Cape Horn; on trunks of trees.

Chiefly characterized by its much more continuous and leafy thallus. The P. rubiginosa is a sub-Aretic species, extending as far nortlı as the region of Willows and Birch in Norway.
6. Parmella stellaris, Ach.; Lich. Univ. p. 476. Emgl. Bot. t. 1351.

Hab. Cockburn Island, Graliam's Land; on rocks.
A specimen apparently of this species was fonnd; but in a rery insufficient state for determination.

12. LECANORA, Ach.

§ I. Psoroma, Fries.

1. Lecanora microphylla, Ach.; Lich. Univ. p.420. Engl.Bot. t.1247. Schcerer, Lich. Helvet. n.160. Hab. Staten Land; on dead wood, A. Menzies, Esq.
Possibly the L. triptophylla, Fries, but the specimens are not very satisfactory; they agree tolerably with the plate and specimens quoted. C.Babington.
2. Lecayora paleacea; (Parmelia), Frics, Lich. Europ. p. 97. (Tab. CICVII. Fig. III.)

Hab. Falkland lslands; on the ground and on Tussock mounds, rare.
A very rare and curious species, hitherto known only as a native of Denmark. The paleaceous apothecia resemble a Peziza. We have seen no authentic specimens, and add a figure of the Falkland Island plant.

Plate CACVII. Fig. III.-1, plant of the natural size; 2 and 3, young and mature apothecia; 4, vertical section of portion of apothecium; 5, asci; 6, spores:-highly maynified.
3. Lecanora muscorum, Ach.; Syn. Mcth. Lich. p. 193. Lich. carnosus, Engl. Bot. t. 1684.

Hab. Falkland Islands; on the ground and on decaying roots of Ferns.
4. Lecavora Hypnorum, Ach.; Syn. Meth. Lich. p. 193. Engl. Bot. p.740. Fl. Antarct. Pt.1. p. 199. Hab. Hermite Island, Cape Horn; on mossy trunks of trees. Falkland Islands; on the gromid, \&c.

§ II. Placodium, Fries.

5. Lecanora chrysoleuca, Ach.; Lich. Univ. p. 411.

Var. β. Dultoni; thallo centro affixo, lobis radiantibus cuneatis, gemmis marginalibus granuliferis. Lecanora Daltoniana, nobis in Lont. Jouru. Bot. vol. iii. p. 641. (Tab. CXCVIII. Fig. I.)

Var. γ. lignicola; thallo adnafo, lobis cortice appressis.
Hab. Var. β. Cockburn Island, Graham's Land. Var. γ. Hermite Island, Cape Horn; on trunks of trees.

A very rare inhabitant of the Southern Hemisphere, and there confined to the Antaretic regions. The two varieties are certainly not distiuct from the European L. clrysolerca, which inhabits mountainous regions from Norway to the Alps and Pyrenees.

Plate CXCVIII. Fig. I.-1, mature, and 2, immature specimens of var. β. of the natural size; 3, upper, and 4 , lower view of thallus; 5 , central portion of ditto, with young apothecia; 6 , mature apothecium ; 7. vertical section of ditto: 8 and 9 , portions of ditto shoming the lamina proligera; 10, asci; 11, spores:-all maynified.
6. Lecavora Babingtoni, Hook. fil. et Tayl.; thallo crustaceo adnato orbiculari subsquamuloso areolato areolis radiantibus albido-glaucescente demum virescente, squamulis diffractis ambitu sub-contimuis crenulatis, apotheciis adnatis margine thallode tenuissimo evanescente, disco atro primitus tumido margine subelcvato demum planiore immarginato. Lecidea atro-alba, nobis in Lond. Journ. Bot. vol. iii. p. 636 (quoad exempl. Ins. Cochburn). (Tab. CXCVIII. Fig. II.)

Hab. Cockburn Island, Graham's Land; on volcanic rocks.
Thatlus inconspicuus $\frac{1}{2}-1$ umc. diametro, margine definito crenulato, totus in areolas minimas (non nisi ope lentis conspicuas) diffractus; areolis angnlatis, alhidis, sayæ adnatis, centralibus fertilibus, reliquis radiantibus, extimis subfoliaceis lobatis crenulatisve. Apothecia punctiformia, interiora majora subcoufluentia.

Although the specimens of this plant bronght from Cockburn Island are very perfect and well developed, they belong to so difficult a group of Lichens as to bave baftled the Rev. Mess. Babington, Berkeley, and ourselves, in our attempts to reduce it to any known species. Though closely resembling a Lecidec in habit, and, indeed, in characters too, it is certainly not of that genus, for though, as Mr. Berkeley remarks, the apothecia of Lecid. rivulasa and confluens are sometimes obseurely margined (as in this species), yet, Mr. Babington observes, that the thallns here is radiating, which is not the case with the areolate Lecidee, nor has it the carbonaceous margin to the apothecium and substratum of that genis.

Of the tribe in which it should be placed (as a Lecanora) there is some doult: Mr. Berkeley regards it as bclonging to the section "glaucescentes" of Placodiunn, Fries, and allied to L. coarctata, in which the thallodal border of the apothecium is eranescent. Mr. Babington, on the other hand, remarks, that the thallodal border and that of the disc itself place it in Psora, Fries, and that it will rank anongst the section "glaucescentes" near L.melanaspis, of which it may possilly be a vaniety, or a depauperated and crustaceous form. The figure represents the plant as freshly gathered, before drying; it has since assumed a more obsonre, somewhat leaden colour, and the oldest portions of the thallus break up into a greenish mass, which is not given in our plate.

Plate CXCVIII. Fig. II.-1, plaut of the natural size; 2, portion of ditto ; 3, central part of thallns and apothecia; 4 and 5 , lateral views of areola and apothecia; 6 , vertical slice of two apothecia; 7 , portion of lamina proligera :--highly magniffed.
7. Lecavora gelida, Ach.; Lich. Univ. p. 42S. Engl. Bot. t. 699. Urccolaria macropthalma, nobis in Lond. Journ. Bot. vol. iii. p. 640.

Var. ß. vitellina, thallo vitellino.
Нав. Kerguelen's Land; both varieties very common.
The varicty β. is probally dependeut on the thallus haring changed colour. What was described as Crceolaria macropthaluna is a state noticed by Fries (Lich. Enrop. p. 10t). C.Babington.

8. Lecanord murorum, Ach.; Lich. Uuie. p.433. Engl. Bot. t. 2157.

Tar. farcta; apotheciis substantia gramulata fere clausis.
$H_{a b}$. Hermite Island, Cape Horn, the Falkland Islands, and Cockburn Island, Graham's Land; on maritime rocks. Var. β. Kerguelen's Land; on rocks near the sea.

9. Lecanora miniata, Ach.; Lich. Univ. p. 434. Hoffin. Plant. Lich. t. 60. f. 1.

Hab. Falkland Islauds, and Cockburn Island, Graham's Land; very abmudantly on rocks near the sea.
This plant forms the most curions feature in the botany of Cockborn Island, a desolate spot of land on the extreme linit of southern regetation ; for there it abounds so as to stain the rocks, and render the colour thus
produced visible for many miles. It is partial to the effluvium from decaying animal matter, as is the case with other Parmelice belonging to the citrinous series.
10. Lecanora citrina, Ach.; Lich. Univ. p. 402. Engl. Bot. t. 857. Moug. et Nestl. n. 742.

Нав. Kerguelen's Land; ou rocks near the sea.
Specimens very imperfect, but, we think, refcrable to this species.
11. Lecanora erythrocarpia, Fries, Lich. Europ. p. 119. L. theioclyta, Ach. Lich. Univ. p. 425.

Hab. Kerguelen's Land; in a cave near the sea.
Rather a doubtful determination, C.Babington.
§ III. Psora, Fries.
12. Lecanora melanaspis, Ach.; Lich. Univ. p.427. Fries, Lich. Europ. p.122. L. dichroa, nobis in Lond. Journ. Bot. vol. iii. p. 643.

Hab. Kerguelen's Land; on hard earth and stones, rare.
13. Lecanora molybdina, Ach.; Lich. Univ. p. 430. Fries, Lich. Etrop. p. 126.

Hab. Kerguelen's Land; on bare and hardened earth.
§ IV. Patellaria, Fries.
14. Lecavora tartarea, Ach.; Lich. Univ. p. 172. Engl. Bot. t. 156.

Hab. Hermite Island, Cape Horn, and the Falkland Islands; abundant. Kerguelen's Land; rare.
15. Lecanora parella, Ach.; Lich. Univ. p. 370. Engl. Bot.t. 727.

Var. \%. Upsalicnsis, Ach.; Lich. Univ. p. 371. Engl. Bot. t. 1634.
Hab. Falkland Islands; on quartz rocks. Var. γ. Hermite Island, Cape Horn, and the Falkland Islands ; on the ground.
16. Lecanora subfusca, Ach.; Lich. Univ. p. 393. Engl. Bot. t. 2109.

Var. epibryon; Lecanora epibryon, Ach. l.c. Moutg. et Nestl. n. 120.
Var. albella, Fries; Lecanora albella, Ach.l.c. Engl. Bot. t. 2157.
Нав. Strait of Magalhaens; on wood, Capt. King. Falkland Islands; on rocks, and on dead twigs of Accena. Var. epibryon, Kerguelen's Land; on decayed Azorella. Var. albella, Hermite Island, Cape Horn ; on Winter's bark.
17. Lecanora atra, Ach.; Lich. Univ. p.344. Engl. Bot. t. 949. Moug. et Nestl. n. 458.

Var. β. confragosa, Ach.; l.c. p. 345.
Hab. Hermite Island, Cape Horn, and the Falkland Islands; on rocks. Var. β. Hermite Island, Cape Horn ; on rocks.
18. Lecanora sophodes, var. c. exigua, Fries, Lich. Europ. p. 149. Engl. Bot. t. 1849.

Hab. Falkland Islands; on rocks.

Falklands, etc.]

19. Lecanora ventosa, Ach.; Lich. Univ. p. 399. Engl. Bot. t. 906. Moug. et Nestl. n. 256.

Hab. Falkland Islands; on alpine quartz rocks.
20. Lechnora hrematomma, Acl.; Lich. Univ. p. 388. Engl. Bot. t. 486.

Hab. Falkland Islands; on clay-slate near the sea and on quartz rocks on the hills.
21. Lecanora candelaria, Aclı; Lich. Univ. p. 416. Engl. Bot. t. 1794.

Hab. Falkland Islands; on twigs of Acena. Kerguelen's Land; on maritime rocks.
22. Lecanora erythrella, Ach.; Lich. Univ. p. 401. Engl. Bot. t. 1993.

Hab. Falkland Islands; ou very arid quartz rocks at Port Willian.

13. URCEOLARIA, Ach.

1. Urceolaria sordida, Fries ; Lich. Europ. p. 178. Lecanora glaucoma, Engl. Bot. t. 2156.

Hab. Falkland Islands; on rocks.
2. Urceolaria endochlora, Hook. fil. et Tayl.; crusta cinereo-albida tenui-rimosa inequabili nigrolimilata et punctata, apotheciis immersis planis atris rctundato-difformibus, margine thallode tenui madore obsoleto, lamina tenuissima virescenti. Nobis in Lond. Joum. Bot. vol. iii. p. 640.

Hab. Kerguelen's Land; on rocks.
Crusta 2 -unc. lata, eburnea, demum virescens. Apothecia obconica, disco atro-pruinoso.
The lamina proligera rests upon a very thin layer of green matter, which, again, is placed on a black hypothallus. The plant approaches the Broomyces anomalus, Tayl. (in Flor. Hib.)
3. Urceolaria scruposa, var. ß. bryophila, Fries; Lich. Europ. p. 101.

Hab. Hermite Island, Cape Horn ; rocks on the top of Kater's peak.
4. Urceolaria erubescens, Hook. fil. et Tayl.; thallo crustaceo rimoso areolato inequabili ruguloso albido plerumque rufescente nigro-limitato, apotheciis confertis immersis concaviusculis difformibus subpellucidis olivaceis, disco scabrido migro-punctato, margine thallode lacero-crenulato. Nobis in Lond. Journ. Bot. vol. iii. p. 640

Hab. Falkland Islands; on rocks.
Thallus albidus, superficie plerumque colorato. Lanina proligera pellucida, strato albido insidens.
5. Urceolaria calcarea, Ach.; Lich. Univ. p. 340. Lichen cinereus, Engl. Bot. t. 820. Porina fallax (in part), nobis in Lond. Journ. Bot. vol. iii. p. 639.

Hab. Hermite Island, Cape Horn; on rocks and stones.

14. BIatORA, Fries.

1. Biatora corallina. Lecidea corallina, Eschaeiler in Mart. Flor. Bras. p. 256. L. mamillata, nobis, et L. geomæa, Tayl.; nobis in Lond. Journ. Bot. vol. iii. p. 636 and 637.

Hab. IIermite Island, Cape Horn ; on the ground. Falkland Islands; on tufts of Bolax. $^{\text {a }}$

A true Biatora, having the margins of the young apothecia both coloured and soft. It is not a European specics, though belonging to Fries' section "fuscescentes" and allied to B. uliginosa. I have little doubt of its being the plant of Eschweiler. C. BaZington.
2. Biatora pulverca, (Lecidea) Borr.; in Engl. Bot. Suppl. t. 2726.

Hab. Falkland Islands; on rocks.
15. LECIDEA, Ach.

1. Lecidea mamilluris, Fries? Lich. Europ. p.285. Lichen tumidulus, Smith in Linn. Soc. Trans. vol. i. p. S2. t. 4. f. 3.

Hab. Hermite Island, Cape Horm ; on the top of Kater's peak.
It is possible that these imperfect specimens may be referable to some paradoxical form of L. vesicularis. C.B.
2. Lecidea candida, Ach.? Lich. Unir. p. 212. Engl. Bot. t. 1138. Schcerer, Lich. Melvet. n. 167. Hab. Hermite Island, Cape Horn; on hard soil.
I am not satisfied with the identification of this with the British L. candide: it may be merely a form of L. vesicularis. The hypothallus is black. O. Babington.
3. Lecidea vesiculeris, Ach.; Lich. Uniu. p. 212. Engl. Bot.t. 1139. Scharer, Spicel. p. 120. Lich. Helvet. n. 168.

Hab. Hermite Island, Cape Horn, and the Ealkland Islands; on the ground, abundant.
These specimens resemble Isidium oculatum when in a yomg state. I am in doubt whether some may not be referable to L. epigea, which, as well as L. vesicularis, is a very polymorphous plant. C. Babingtor.
4. Lecidea aromatica, Ach.; Lich. Unir. p. 168. Engl. Bot.t. 1777.

Hab. Kerguelen's Land; on moist rocks.
Specimens greener and darker than in Schærer's, but still I think referable to that species. C.B.
5. Lecidea albo-cerulescens, Ach.? Lich. Univ. p. 188. Lichen pruinosus, Engl. Bot. t. 2244. L. confluens, nol. (in part), Lond. Journ. Bot. vol. iii. p. 636.

Hab. Kerguelen's Land; on rocks near the sea and on the hills.
Specimens very fine, altogether resembling what I have gathered on the Austrian Alps. C. Balington.
6. Lecidea spilota, Fries; Lich. Europ. p. 297. L. rivulosa, nolis, in Lond. Journ. Bot. vol. iii. p. 636.

Hab. Kerguelen's Land; on moist roeks.
The specimens, which are rather young, certainly do not belong to L. rivulosa, and are, I think, referable to L. spilota, with which species, however, I am not sufficiently acquainted. C. Babimyton.
7. Lecidea contigua, Fries; Lich. Europ. p. 298. L. speirca, var. hydrophila, Fries, l. c. Lec. confluens, (in part), Engl. Bot. t. 1864.

Hab. Hermite Island, Cape Ilorn; on rocks. Var. hydrophila, Kerguelen's Land ; also on rocks.
The dise does not appear to be pruinose when young, in which respect ouly this differs from Fries' plant. It is allied to L. nitidula, differing from it only in the apothecia springing from the ertst; which is the case also in schecrer's specimens of that plant. C. Butiangton.
S. Lecidea atroalba, Ach.; Lich. Unio. p. 162. Lichen Ederi, Engl. Bot. t. 1117. Scherer, Lich. Helvet, n. 178.

Hab. Hermite Island, Cape Horn ; on rocks.
The Cockburn Island plant, referred (in Lond. Journ. Bot.) to this, we bave elsewhere described as Lecauora Babingtoni.
9. Lecidea lugubris, Sommf.; Lapp. p. 143. Fries, Lich. Europ. p. 314.

Hab. Hermite Island, Cape Horn; on rocks.
I have little hesitation in considering this plant to be that described by Fries; though I know the latter from description alone. It approaches Schærer's L. atro-atlba (n. 178); but the apothecia do not appear to rise from the thallus. C. Babington.
10. Lecidea fusco-atra, Ach.; Lick. Europ. p. 359. Lichen athrocarpus, Engl. Bot. t. 1929.

Hab. Kerguelen's Land; on rocks.
11. Lecidea stellulata, Tayl. in Flora Mib. p. 118.

Hab. Kerguelen's Land; on rocks.
12. Lecides glacialis, Schrerer ; Spicil. p. 147. Fries, Lich. Europ. p. 323. L. sulphurea, Ach., nobis in Lond. Journ. Bot. vol. iv. p. 636.

Hab. Falkland Islands, on alpine quartz rocks. $_{\text {. }}$.
At first sight this resembles Lecanora subfiusca, (or rather the var. orosthea, but the hypothallus is quite black. I fecl no donbt of its being the L. gtaciatis, which is compared with the abore-mentioned species, both by Fries and Scherer. The only difference I can detect between the European and Antaretic specimens, lies in the apothecia of the former being dusky within, and not white.
13. Lecides geographica, Schærer; Spicil. p. 124. Engl, Bot. t. 245. Var. urceolata, Scharer, l. c.

IIab. Hermite Island, Cape Horn, the Falkland Islands, and Kerguelen's Land; very abundant on rocks from the sea to the mountain tops. Var. urceolata, Kerguelen's Land; on maritime rocks.
14. Leclees parasema, Aclı; Lich. Unir. p. 175. Scharer, Lich. Helvet. n. 197-199.

Hab. Hermite Island, Cape Horn; on bark of trees.
15. Lecidea sabuletorun, Ach.; Synops. Lich. p. 20. L. quadricolor, Borr., nobis, in Lond. Journ. Bot. vol. iii. p. 637.

Var. γ. coniops, Fries, Lich. Europ. p. 340. L. scabra, Tayl. in Herl. Hib. p. 121.
$H_{\text {ab. }}$ Falkland Tslands; on the ground. Var. coniops; Hermite Island, Cape Horn; on greenstonc. Falkland Islands; on clay-slate rocks.

I am bardly satisfied with the determination of the Hermite Islaud specimcns: they are certainly allied to the L. sabuletorum and also to L. arctica. They further resemble Biatora rernatis, var. scmguineo-atra, Fries; but this L. sabultetorum is scarcely a Biatora, and may be an undescribed species of Lecidea. C. Babington.
16. Lecidea aretica, Sommerf., Lapp. p. 156. Fries, Lich. Europ. p. 342.

Hab. Hermite Island, Cape Horn ; on hard gravelly soil.
17. Lecidea milliaria, var. c. ligniaria, Fries, Lich. Europ. p. 343. Liehen dubius, Engl. Bot. t. 2347. Lecidea elæoehroma, Aeh.; nobis, in Lond. Jonm. Bot. vol. iii. p. 636.

Hab. Falkland Islands; ou dead twigs of Acena. $^{\text {a }}$
A very puzzling species, differiug from L.elceochroma in the pale hypothallus. I am donbtful if the English Botany L. dubius be the same plant, or L. milliuria, Fries. The only others to whieh the Falkland Island one can be referred, are L. dolosa, Fries, and L. sabuletorum, Fr. : but after a eareful examination of Sehærer's specimen of the former, and Reielenbaeh's of the latter, I have eoucluded that this belougs to neither of them. $C . B$.
18. Lecidea abietina, var. rubens, Esehweiler, in Mart. Fl. Bras. p. 251.
$\mathrm{H}_{\text {ab }}$. Hermite Island, Cape Horn; on bark.
I doubt not this being Eschweiler's plant, but am not convineed of that being the same with the European L. abietina. The lyppophlocdal ernst appears to indieate its not being a true Lecidea, whence it may prove to be a Leciiteal form of some Pyrenotheca; to which genus the L. abietina properly belougs.

16. GYROPHORA, Ach.

1. Gyrophora anea, var. a. Sehærer, Lich. Helvet. i. 149.

Hab. Falkland Islands; on quartz rocks; very rare and barren.
It is remarkable that the Antaretie regions should present us with but a solitary speeies of this curious genus, whieh abounds so strikingly in the Arctic. In one respeet they are replaced by Sticte, whieh are almost equally rare in the ligh northern latitudes. These latter affeet an equable, as deeidedly as the Cyrophora do an extreme elimate ; aud it is in the Falkland Islauds, of all the Autaretie localities, that the Lichens are exposed to the greatest and most sudden ricissitudes. The G. enea, considered by Fries as a variety of G. hyperborca, is a Scotel and American plant.

17. OPEGRAPHA, Ach.

1. Opegrapha atra, Pers.; Scheier, Lich. Helvet. n. 93.

Hab. Ilermite Island, Cape Horn ; on the bark of trees. Falkland Islands; on stems of Acena.
18. ARTHONIA, Ach.

1. Arthonis polymorpha, Ach. ; Syn. Lich. p. 7. Esehweiler, in Mart. Fl. Bras. Crypt. p. 14. t. 9. f. 3. (tabula sub. non. A. tremellosc.) Lecanora mieropthalma, nobis in Lond. Journ. Bot. vol. iii. p. 636.

Hab. Hermite Island, Cape Horn ; on Winter's bark. $^{\text {a }}$

19. PERTUSARIA, DC.

1. Pertusaria communis, DC.; Engl. Bot. t. 677. Scherer, Lich. Helvet. n. 118.

Hab. Hermite Island, Cape Horn; encrusting the bark of trees, abundaut. Kerguelen's Land; on rocks near the sea. Cockburn Island, Graham's Land; on rocks.

The Cockburn Island specimens are very imperfect, and may possibly belong to Umbilicaria sordida.
2. Pertcsaria Wulfenii, DC.; Fries, Lich. Europ. p. 424. Porina fallax, Pers.; Ach. Synops. Lich. p. 110. Lichen hymemius, Engl. Bot. t. 1731.

Hab. Falkland Islands; on rocks.

20. THELOTREMA, Ach.

1. Thelotrema lepadinum, Ach.; Lich. Uniu. p. 312. t. 6. f. 1. Scharer, Lich. Helcet. u. 121. Fl. Antarct. Pt. 1. p. 200.

Hab. Hermite Island, Cape IIorn; on Winter's-bark.

21. VERRUCARIA, Pers.

1. Verrucarla umbrina, Ach.; Lich. Unir. p. 291. Engl. Bot.t. 1499. V. gelida, nobis in Lond. Journ. Bot. vol. iii. p. 639. (Tab. CXCVIII. Fig. IV.)

Hab. Cockburn Island, Graham's Land; on rocks.
The difference between the apothecia of the Antaretic and European specimens is the same as exists between V. maura and V. umbrina, plants which I consider as specifically the same. C. Babington.

Plate CACVIII. Fig. IV.-1, plant of the natural size ; 2, portion of crusti ; 8, do with apothecia; 4 and 5, apothecia; 6 and 7, vertical slices of do; 8, portion of lamina proligera; 9 and 10 , sporules:-all very highly magnified.

22. COLLEMA, Ack.

1. Collema crispum, Ach.; Synops. Lich. p. 311. Engl. Bot. t. 834. Parmelia pulposa, Sehcerer. Hab. Cockburn Island, Graham's Land ; on wet earth.
Miserably depanperated specimens, referred both by the Rev. Mr. Berkeley and Babington to this plant.
2. Collema tremelloides, Ach.; Lich. Univ. p. 455. Engl. Bot.t. 1981.

Hab. Hermite Island, Cape Horn ; on wet banks.
Possibly the C. palmatum, Sm.; my only specimen of which plant (received from Mr. Borrer), may be a dwarf and brown one of C. tremelloides. C. Babington.
3. Collema saturninum, Ach; Lich. Univ. p.644. Engl. Bot. t. 1980. C. myochroma, Scherer, Lich. Melvet.

Var. austiale, thallo subferrugineo. Collema australis, nobis in Lond. Journ. Bot. vol. iii. p. 656.
Ilab. Hermite Island, Cape Horn ; on wet banks in dense woods; abundant.
There is a redder hue about these specimens than I am accustomed to see in British ones of C. saturnimm, but according to Schærer's description, this is evidently a very variable plant. The characters drawn from the powdery buds, are not available. C. Babington.

(Lichenes imperfecti.)

23. ISIDIUM, Ack.

1. Isidium oculatum, Ach.; Lich. Univ. p. 570. Engl. Bot. t. 1833.

Hab. Hermite Island, Cape Horn, the Falkland Islands and Kerguelen's Land; on the earth.
Various Parinelice and Lecanorce in a young state, are scarcely distinguishable from one another, and have been referred to Isidium oculatum.
2. Isidium lutescens, Turn. and Borr. Lepraria lntescens, Engl. Bot. t. 1529.

Hab. Kerguelen's Land; on rocks near the sea.
Very probably a state of Lecanora murorum.

24. LEPRARTA, Ach.

1. Leprarla flava, Ach.; Lich. Univ. p. 663. Engl. Bot. t. 1350.

Hab. Hermite Island, Cape Horn, the Falkland Islands and Kerguelen's Land; abuudant near the sea. Evidently the powdery state of some Parmetia, belonging to the citrinous series.

FLORA ANTARCTICA.

ADDENDA ET CORRIGENDA.

PART I.

p. S. Drosera sp.-I have examined a specimen of this plant, collected by one of the officers of Admiral D'Urrille's expedition, and by him given to my friend Mr. Gunn of Tasmania. It is certainly very nearly allied to the D. anifora of Cape Horn, but differs from that and from all its congeners in the perigynous insertion of the stamina.
p. 10. Epilobiusi confertifolium.-Mr. Watson has giren me cultivated specimens of E. alpinem, entirely according in habit and foliage with this plant.
p. 10. Acena adscendens.-The Kerguelen's Land species differs from this, see Pt. 2. p. 268. t. 96 B.
p. 14. Colobanthus subulatus.-For an explanation of the monstrous appearance of the flowers alluded to, see Pt. 2. p. 248.
p. 19. Aralia polaris.-For analysis of the flowers, \&c., see Hook. Ic. Plant. t. 747.
p. 22. Coprosma repens.-I have, since the publication of this species, received from Mr. Gumn fruiting specinens of the Tasmanian plant included under this, and figured at Pt. I.t. 16 . . In them the berry las but two uncules; and I am obliged to regard it as a distinct species, to which the name of C. pumita has been given.
p. 30. Helichrysum prostratum:-This is the the II. bellidioides of Forster, thongh not of Banks and Solander (Hb. Banks) : in its prostrate stragghing habit it resembles a Cape species.
p. 32. Pleurophyllum crimiferum.-I hase observed the same rigid setæ anongst the tomentum of the foliage in this plant as exist in the P. speciosum.
p. 37. To notes upon Celmisia vernicosa, add:-The generic distinction between this genus and Chiliotrichmo rests on the presence of scalcs on the receptacle of the latter.
p. 37. Of the two Composite alluded to as "dubii generis" I have had the opportnnity of cxamining specimens, they are

1. Gnaphaliua futeo-allum, Linn.

This abounds throughont New Zcaland, from the Bay of Islands to Stewart's Island in the extreme south : I have seen Auckland Island specimens collected by the Freuch Antarctic Expedition, with which Dr. Lyall's barren ones entricly accord.
2. Eurybia (Brachyglossa) Iyallii, Hook. fil.; foliis amplis alterwis breviter petiolatis ellipticoovatis obovatisve acutis plerumque argute subduplicato-dentatis coriaceis super glaberrimis venosis
subter tomento dense appresso lanatis, paniculis terminalibns, pedunculis validis lanatis, capitulis majnsculis, fl. radii paucis inconspicuis, corollæ tubo achæniisque villosis. (Charact. ex exempl. Nov. Zealamu.)

Perhaps most nearly allied to the Eurybia erubescens of Tasmania in the foliage, though a very different plant. The pappus is in a measurc double, for I observe small setæ mixed with or external to the longer : this is the case with various Tasmanian species, and much diminishes the value of the characters distinguishing Olearia from Eurybia.

The Auckland Island specimens lave large aud very obtusely dentate leaves, but are in other respects so similar to those from the mountains of the north Island of New Zealand (collected byMr. Colenso), that I have bittle hesitation in considering them specifically the same.
p. 29. Add

1. Erechtites prenanthoides, DC.; Prodr. vol. vi. p. 296 (in IIb. Gunn).

Hab. Auckland Island, M. le Gruillou.
I have examined a specimen of this plant in Mr. Gumn's herbarinn (collected by M. Le Guillou, an officer of Admiral D'Urrille's expedition): it is small but similar; and much larger ones from rarious parts of New Zealand appear to be specifically the same with others from Tasmania.
p. 63. Add
4. Veronica salicifolia? Forst.; Prodi. p. 3. Benth. in DC. Prodr. vol. x. p. 459.

Hab. Anckland Island: M. le Guillou (in ILb. Gumu).
Specimen in fruit only, but I think referable to this species: it is not an uncommon plant in various parts both of the Northere and Southern Islands of New Zealand.
p. 68. Urtica australis, Hook. fil. Add:-fohis nune omnibus oppositis, pedunculis floriferis petiolo æquilongis simplicibus ramosisve, floribus laxe densiusve aggregatis, masculis subterminalibus pilosiusculis, femineis glabratis.

The above additions to the published characters are supplied from a specimen gathered in Lord Auckland Island by M. le Guillou, and given by hin to Mr. Gunn of Tasmania.
p. 69. Thelimytrs? uniflora.-After the description add:-folio solitario tereti canaliculato.

A specimeu of this plant, collected by M. le Guillou in Lord Auckland Island, is in wo better state of flower than those I gathered, the leaf is, however, in good preservation and similar to that of some other Thelimytra.
p. 71. Orchid. "dubii generis" n. 8.

1. Lyperanthus Antarcticus, Hook. fil.; folio lauceolato acuminato, periauthii foliolo dorsali galeato acuto lateralibus interioribusque parvis anguste linearibus, labello recurvo marginibus erectis disco plicato sub 6-glanduloso.

Though somewhat differeut in habit from the New Hollaud species, I do not think that this can be generically separated from them. The flowers are shorter and less expanded, and the upper sepal larger and more galeate, the remainder smaller than in its congeners. The description is completed from M. le Guillou's specimens, in which the foliage is inperfect.
p. 80. 3rd linc from bottom:-for "Juncus exiguns" read "Juncus inconspicturs."

1. 80. To Juncus, add
1. Juvcus planifolius, Br.; Prodr. p. 259. F7. Antarct. Pt. 2. p. 358.

Hab. Auckland Island: M. le Guillou (in Hl. Gunn). $_{\text {I }}$
Speeimens very diminutive, but, I think, elearly referable to this species, whieh is not uneommon thronghout the Islands of New Zealand.
p. 84. Luzula crinita.-Add to Ilabitats:-M'c Quarrie Island. (Hb, IIook:)
p. 119. 5th line from bottom, for "Bruch and Schimper" read "Nees and Hornscluch."
p. 122. In renarks on Leptostomun gracile;-the L. Bridgesii, Wils. MS., is L. splachnoides, Hook. and Arn.
p. 123. Splachnum octoblepharmm, add synon.:--S. plagiopus, Mont. in Toy. aut Pole Sud, Bot. Crypt. p. 285.
p. 121. To Racomitrius, add
2. Racomiricm microcarpum, Brid.; Mont. l.c. p. 2 St.

Hab. Auckland Island; barren : M. Hombron.
p. 128. Genus 11. Sprceea, for "Brid." read ILook. fil. et Wils.
p. 130. After Dicranem add
5. Dicranem dichotomum, Brid.; Mont. l.c. p. 295.

Hab. Auckland Island; barren: M. Honbron.
p. 130. To Canpyloples, add
3. Campylopes atro-vitens, De Notaris; Mont. l.c. p. 300.

Hab. Auckland Island; barren : Mr. Hombron.
p. 132. To Politrichum, add
2. Polytricues juniperinum, Willd.; Mont. l.c. p. 313.

Hab. Auckland Island: MI. Homlron.
p. 112. For Hypxum Terra-Nova, Brid., rar. . ., substitute
20. Hypnus linatum, Hook. fil. et Wils.; caule humili prostrato vage ramoso, ramis subfastigiatis, foliis subsecundis lanceolato-acumiuatis integcrimis enerriis, capsula subcrecta, operculo conico.

Dioienm. Rami breves, erecti. Folia couferta, subereeta, membranacea, e basi lata gradation augustata, longe aeuminata, subpilifera, siecitate nitida, luteola ; perichetialia ereeta, aeuminata, pilifera. Seta 3-4 lin. longa, rubra. Capsula subereeta, curvula. Operculum majuseulum, conienm, aeutinseulum, rubellum.

Allied to I. acutifolium, nob.; but the leaves are narrower, more membranaeeons, tapering gradually upwards from a broad base; and the areolæ are larger.
p. 143. To Hookeria, add
5. Hookerla crispula, Ilook. fil. et Wils; Lond. Journ. Bot. vol.iii. p.550. Mont. l.c. p. 320.

Hab. Aucklaud Island; barren: M. Hombron.
p. 153. After Jungermannia vertebralis, add

27 bis. Jungermasmia punicea, Nees; Mont. l.c. p. 261.
Hab. Aucklaud Island: NI. Itombron.
p. 153. To Jungermannia Urvilleana, add syn.:-J.abbreviata, Hook.fil. et Tayl. in Lond. Journ. Bot. vol. iii. p. 374. p. 156. After Jungermannia planiuscula, add

37 bis. Jungermannla connata, Sw.; Mont.l.c. p. 256.
Hab. Auckland Island : Mr. Hombron.
p. 157. After Jungermannia fissistipa, add

43 lis. Jungermannla amphibolius, Nees; Mont.l.c. p. 352.
Нав. Auckland Island : M. Mombron.
p. 159. Jungerimannia lippuroides is J. capillaris, Sw., β. minor, Lchm. Liad. et Gottsche, Syn. Hep. p. 213.
p. 159. After Jungermannia atbula, add

50 bis. Jungerbiannla filamentosa, Lehm. et Lind.; Mont. l.c. p. 246.
Hab. Anckland Island: M. Hombron.
p. 160. After Jungermannia nutans, add

54 bis. Jungermannla adnexa, Lehm. ct Lind.; Mont. l. c. p. 243.
54 ter. Jungermannia decrescens, Lehm. et Lind.; Mont. l. c. p. 243. t. 19. f. 4.
Hab. Auckland Island: M. Hombron.
p. 160. Jungermannia hirsuta is J. ochroleuca, Spr.; Gottsche, Nees et Lind. Syn. Hep. p. 240.
p. 160. Jungermannia mollissimu, is J.tomentella, γ. Gottsche, Necs and Lind. Syn. Hep. p. 237.
p. 162. Jungermannia elegantula is Madotheca Stangeri, Gottsche, Nees, and Lind. Syn. Mep. p. 290.
p. 165. After Jungermannia scandens, add

71 bis. Jungermanna gracilis, Nees; Mont.l.c.p. 293.
Hab. Auckland Island; IP Urville.
p. 167. After Jungermannia pticatitoba, add

77 bis. Jungermanla cucullata, Nees; Mont. l.c. p. 218.
Hab. Auckland Island : M. IIombron.
p. 177. Amongst synonyms to Xiphopiora Billardieri, dele "Ctenodus, Kütz."
p. 180. Ruodomela glomerulata, Mont., is Polysipionia botryocarpa, nobis.
p 184. After Jania insert

1. Melobesia vermucata, var. Antaretica, vide Part II. p. 482.
p. 191. After Callitilamnion gracile, add

Plate LXXXVIII. Fig. 1.-1, plant of the natural size; 2, ramulus; 3, ditto with spharospores: 4, articuli of ditto :-very highly magnified.
p. 193. After Ulva latissima add

1. Zignoa clathrata, Trevis. ; Mont. l.c. p. 30. Enteromorpha, auct.

Hab. Auckland Island; D'Urville.
p. 196. Stereocaulon Argus.

I have examined spccimens of S. ramulosum, approaching this so very closely, that Mr. Churchill Babington inclines to consider the plants as varieties of one species.
p. 197. Cenonyce ecmocyna, var. gracilis, is rather the C. sparassa; but the specimens are not very satisfactory. p.198. Sticta Freycinetii; these specimens probably belong to the S. Detisec, Fée., and differ from the true S. Freycinetii in the flatter (not concave) sessile apothecia. p. 199. After Sticta Menziesii, add

5 bis. Sticta Richardi, Mont.; in Foy. au Pole Sud, p. 187.
Hab. Lord Auckland's group : Mr. Hombron.
p. 198. For 6. Sticta Richardi, substitute

6. Sticta Billardieri, see p. 527.

I very much doubt the S. Richardi, Mont., being anything more than a larger state of this plant. It is a very frequent and most variable inhabitant of New Zealand.
p. 199. After Parmelia sphinctrina, add
3. Parmella enteromorpha, Ach.; P. pliysodes, var. vittata, Mont. in Voy. au Polc Sul, Bot. Crypt. p. 183.

Hab. Lord Auckland's group and Campbell's Island ; not uncommon.
4. Parmelia diatrypa, Ach.; P. physodes, var. Mont.l.c.

Hab. Lord Auckland's group; on trinks of trees.
p. 199. For Parmelia rubiginosa, Ach., read

Parmelia Mariana, Fries? Syst. Orb. Feg. pp. 245 and 284 (fid. Bab.).
Of the present plant the Rev. C. Babington remarks, "This seems to differ from P. mbiginosa, not only in general habit, but most especially in the apothecia being black: the scales, too, are singularly appressect; and the hypothallus is more carbonaceous. If a described plant, it is either P. pellita, Ach., or P. Marriante, Fries. The Acharian plant is barren, whence the thallus of the fertile might differ from this. Fries' plant exactly agrees in the apothecia and lypothallus; whilst the variation of the thallus to me seems calused by his specimens being more perfect."-C. Babington.
p. 199. After Lecanora Parelle, add
5. Lecanora varia, Ach.; Lich. Uuiv. p. 377. Engl. Bot. t. 1666.

Hab. Lord Auckland's group; on bark of trecs.
p. 200. For Lecidea geomea, snbstitute

1. Lecidea papillata, Fries; Lich. Europ. p. 336.
"I have little doubt of this being the plant of Fries, judging from the description." - C.Badingtun. p. 200. Add
2. Lecidea parasema, Ach.; Syn. Lich. p. 17. Scharer, Lich. Helvet. n. 197-199. 1. Lightfootii, Eagl. Bot. t. 1457.

Hab. Lord Anckland's group; on trunks of Dracophyllum.
p. 200. Add

1. Verrucarla punctiformis, Ach.; Syn. Lich. p. S7. V. stigmatella, Engl. Bot. t. 1891. Hab. Lord Auckland's group; on trunks of trees.
p. 200. Porina granulata, Hook. fil. and Tayl., is probably a state of Lecanora tartarea.

PARI II.

p. 212. 23 rd linc, for " gramitic " read tertiary.
p. 22s. To Hamadryas, add
4. Hamadryas paniculata, Hook. fil.; foliis longe petiolatis rotundatis sub-5-lobis, lobis obtusis crenatis supra glabratis reticulatis subter parce sericeo tomentosis, scapo gracili masculo laxe paniculatim ramoso multifloro superne tomentoso.

Hab. Staten Land; Welster.

Petioli (exemplare unico) 4 unc. longi, glabri, validi. Folia concava, 2 une. lata, coriacea, inæqualiter lobata, vix ad medium fissa, lobis grosse et obtuse crenatis. Scapi folio longiores; maseuli parce sericei, ramis paucis inæquilongis multifloris; fœminei (manei) pauciflori. Flores ut in II. argentea.

A distinet looking plant, both in the foliage and compound panicle, from any of its congeners. The specimens are in a very poor state.
p. 241. 4th line from bottom, for "S. australis" read S. pimatifida.
p. 253. Oxalis emeaphylla, Cav.; add to the Habitat:-Strait of Magalhaens; MM. Hombron and Jacquinot.
p. 27t. Gunnera Magellanica:-the Colombian plant alluded to as probably identical with this, is the G. pilosa, H.B.K.
p. 277 . 13th line from bottom, for "not one " read but onc.
p. 278. Ifter Montia, and

2. LYALLIA, Hook.fil.

Calyx persistens, 4-partitns, lobis subæqualibus obtusis. Petala, stamina, ovariumque nou suppetebant. Fruclus, utriculus globosus, carnosus, apiculatus, venosus (stomatibus instructus), 1-locularis. Semina 3, quorum 2 abortiva, e fundo uiriculi orta, funiculis validis ascendentibus affixa: semen maturum orhicularireniforme, compressum ; testa crustacea, subtiliter tuberculata; albumine carnoso v. subfarinaceo; embryone peripherico.-Herba suffrutescens, Insulæ Kerguclen, dense ccespitosa, glaberrima, ramosissima; ramis teretibus, foliis densissime imbricatis tectis. Pedunculi breviusculi, solitarii, terminales, basi bracteis connatis lanceolatosubulalis aucti. Flores verosimiliter valde inconspicui. Fruetus parvus inter folia fere occlusus.-Genus dicatum Doctori D. Lyall, amico meo periplique Antaretici participi, assiduo solertique plantarum indagatori.

1. Lyallia Kerguelensis, Hook. fil. (Tab. CXXII.)

Нав. Kerguelen's Land; forming large tufts in barren places, but very local.
Radices liguosi, descendentes. Rami perphurimi, densissime fastigiati, in cæspites globosas dispositi, $3-5$ unc. longi, stricti v. curvati, $\frac{1}{4}$ une. diametro. Folia secns ramos densissime imbricata, pluriseriata, alterna, ramo multoties angustiora, crecta, incurva, linearia, sessilia, subconcava, apice rotundata, obscure irregulariter sinuato-dentata, $3-5$-costata (costa in nervos validos parallelos infra apicent evamidos divisa), coriacea v . subehartacea, persistentia, sicca pallida, terminalia pallide vireseentia, $2-3$ lin. longa, ter quaterro longiora quam lata. Pedunculi terminales, solitarii, folio breviores, ereeti, infra florem dilatati, basi bibracteati. Bracteca pedunculis æquilongæ, basi comatæ, acuminatæ. Calyx fructiferus utricnlo brevior, e foliolis 4 (nuuc 5 ?) oratis obtusis 5 -ncrviis utriculo appressis constans. Petala et stamina ignota, sed (ab indole calyeis disciquc) verosimiliter perigyna. Utriculus $\frac{1}{2}-1$ lin. longus. Semen utriculun fere implens.

This is certainly, in its present state, the most obscure and, except the Pringlea, the most remarkable plant of Kergnelen's Land. I have placed it provisionally amongst Portulacece, knowing no other order with which it has any equally direet affinity. There is one plant to which it bears, at any rate, a very close resemblance if nothing more, the Pycnophyllum molle, Remy (Ann. Sc. Nat., 3rd Ser. vol. v. p. 355. t. 20. f. 2-8), of the Bolivian Andes; for a fragment of the original speeimen of which (preserved in Herb. Mns. Paris) I am indebted to the liberality of M. Deeaisne. In Pycnophyllum, however, the leaves are truly opposite and connate, and the capsule three-lobed, if not three-valverl.

This highly cuions genns, coming from the most interesting island visitcd by the Antarctic Expedition, will serve to eommemorate in some slight degree the important services rendered to Botany by my zealous friend and co-operator, Dr. Lyall, R.N.

Plate CXXII.-Fig. 1, a leaf; fig. 2, bracter, peduncle, and fruit; fig. 3, utriculus removed from the calyx; fig. 4, vertical seetion of the same, showing the ripened and abortive seed; fiy. 5 , seed and funiculus; fig. 6, seed, with the testa removed; fig. 7, embryo:-all magnified.
p. 292. Of the Valdivian specimens alluded to as belonging apparently to this specics, I have recently examined complete individuals, which prove them to be M. imbricatum, Poepp. The female flowers do not probably differ materially from those of M. punctulatum.
p. 296. In description of Plate CIV. the figures of $9,10,11$, and 12 , referred to as taken from Bridges' Valdivian speeimens, belong to M. imbricatum, Poepp.
p.304. Chiliotrichom humile:-M. Planehon considers this species, together with the C. Kingii and C. Darwinii, as referable to the genus Nardophyllum, DC.
p. 327. Lebetanthus Americanus:-this appears to be a true Prionotes, the placentation being the same as in the original P.cerinthoides of Tasmania, and the position of the braeteæ on the pedicel not affording a generic character. In two undoubted congeners from Tasmania, the ovules are attached to erect basal columms.
p. 341. After Chenopodium, add

2. BLITUM, L.

1. Blitum (Orthosporum) Antarcticum, Hook. fil.; caule prostrato ascendente parce papilloso, folis petiolatis deltoideo-ovatis obtusiusculis profunde irregulariter sinuato-dentatis lobis lobulatis utrinque petioloque papillosis, glomerulis scssilibus compositis axillaribus et in spicam terminalem foliosam dispositis, perigonii 3-phylli foliolis herbaceis post anthesin immutatis utriculum superantibus lineari-spathulatis dorso grosse papulatis, semine verticali orbiculari punctulato margine obtuso.

Hab. Staten Land; Webster (in Mus. Mort. Soc. Lond.).
Ramus 10 -uncialis simplicissimus solum mihi notus. Pelioli unciales, foliis requilongi. Flores minimi, dense aggregati.

Deseribed from a solitary specimen in the Herbarium of the Horticultural Society of London, in the absence of any means of eomparing it with its congeners in the Herb. Hook., of which the Chenopodiacere are now in the hands of M. Moquin Tandon for cxamination.
p. 343. Nanodea muscosa:-I am inelined to suspect, from certain circumstances commeeted with the locality of this plant, that it may be parasitical, like the Thesiun linophyllum.
p. 359. Luzula, sp.-Of this species I have recently found more complete (hitherto mislaid) specimens in my collection, they may be thus described:-
2. Luzula Antaretica, Hook. fil.; pusilla, cæspitosa, foliis late lineari-subulatis concavis basin versus ciliatis, culmo graeili filiformi arcuato v. erecto, panieula ovata densissime lanata, bracteolis foliolisque pcrianthii subrequalibus superne searioso-membranaceis inferne medioque coloratis marginibus in lacinias piliformes fimbriato-laceras apicibus hyalinis, capsula elliptico-subrotundata perianthio dimidio breviore, stigmatibus 3 sessilibus filiformibus.

Hab. Hermite Island, Cape Horn ; alpine rocks.
Llabitus L. spicatce, statura L. arcuatce humilior. Folia uncialia, basi fere $\frac{1}{4}$ unc. lata, pleraque exemplaribus meis mancis supernc glabrata v. glaberrima, basin versus ciliata. Culmus filiformis, 2-uncialis. Panicula $\frac{1}{3}$ unc. longa, late orata. Perianthii foliola per totam longitudinem in lacinias foliolum longe superantes fissa; parte inferiore mediaque brumea, coriacea, superiore hyalina.

Allied to L. Perweiana (of the Andes) in habit; but the leaves (in my specimens) are not ciliated and the perianth is of a different form, its leaflets being shorter, broader, not coriaceous, and subutate at the apices, and with very much more copious and longer cilie.
1.371. Muhlenbergia rariffora, Huok. fil.: -Nees (in Herb. Amott) regards this as a species of Streptachue, H.B.K.
p. 375. Arundo pilosa; add to Habitats:-Fuegia, Good Success Bay; Banks and Solander.
p. 381. Festuca Fuegiana, a., is considered by Nees (fid. Herb. Arnott) a variety of Poa lanigera, Necs, in Martius Fl. Bras. p. 490.
p. 392. Lomaria alpinu, Br.; add to synonyms:-L. pumila, Raoul, Choix de Plantes de la Nouvelle Zelande, t. 10. t. 2. f. A.
p. 393. Gleichenia aculifolia; add to the Habitats :--Staten Land ; Mr. Webster.
p. 39t. Lycoronum clavatum, var. Magellanicum; add synonym:-L. coufertum, Milld. Sp. Pl. vol. v. p. 27. Hook. et Creve, in Bot. Misc. vol. ii. p. 372.
p. 394. Alter Scluzaid, add

10. BOTKICHIUM, Swartz.

1. Butrychum Lenaria, Sw.; Syn. Fil. p. 171. Eigl. Bot.t. 318.

Hab. Fuegia, Good Success Bay ; in sandy places: Banks and Solemter (in Herb. Mus. Brit.).
Identical with the European plant, which ranges in Europe from Iceland and Lapland to the Asturias. In North America it is ouly found in Hudson's Bay, Newfoundland, Canada, and the Rocky Mountains. I know of no habitat except this of Fuegia and Tasmania anywhere south of the north of Spain. It is apparently a very rare Fuegian plant.
p. 403 . Orthortachum luteolum, Houk. fil. et Wils.-This approaches very closely the description of O. germanum, Mont. (in Aum. Sc. Nat., 3rd Ser. vol. iv. p. 121), a Chilian plant, but the leaves of which are said to be rather obtuse and reflexed at their margins.
p. tus. After Campylupls flechosers, add
3. Camprloptis rigilus, Hook. fil. et Wils.; caule erecto subramoso rigidiuseulo, foliis ovatoLanceolatis acuminatis integerrimis, nervo latissimo.

Hab. IIermite Island, Cape Horn ; on the summits of the hills.
p. 409. Tortula densifolia, Hook. fil. ct Wils., is evidently closely allied to Barbuta moides, Schwaeg. Suppl. t. 310 .
p. 410. Polytrichum compressum, Ilook, fil. et Wils.

Var. β., foliis apices versus obscure serratis lamellatis, capsula longiore.
Hab. Hermite Island, Cape Horn; with var. a.
p.418. Hypnum subpilosum, Hook. fil. et Wils.; (character reformata) caule arcuato parce ranoso, ramis recurvis attemuatis, foliis cordato-ovatis acuminatis subpiliferis concavis striatis serrulatis ruptinerviis, capsula subrotunda cernua, operculo conico, seta scabra.
1.449. After Exidia Auricula-Jude, add
2. Exidia flammea, Berk.; aurantiaca, hemispherica, depressa, substipitata, margine crenudata subtus rugulosa minutissime verrucoso-spiculata, sporis oblongis basi curvatis. (Tab. CLXTV. Fig. III. left hand specimen.)

Hab. Hermite Island, Cape Horn ; on dead wood amongst the snow.
Hemisphærica, leviter depressa, vel humore saturata planinseula, brevissime stipitata; margine læviter erenata; subtus rugulosa, sub lente maxime augente subtiliter verrucosa, hic illic spiculata. Sporce oblougæ, basi curvatæ.

Allied to Exidia truncata, but differing remarkably in its bright colonr. When first taken out of spirit the hymenium is quite plane, but becomes depressed afterwards. It is doubtful whether the margin be crenate in the living plant, for it is not represented in the drawing made from the fresh specinen.

Plate CLIIV. Fig. III.-2, (left hand fignre) E. flammea, of the natural size.
p. 451. Peziza Kerguelensis.-The Hermite Island plaut is Exidia flammea, Berk; to which also the left hand figure of Plate CLXIV. Fig. III. 2, is referable. The right hand figure (1), which, lowever, is not represented sufficiently adnate, and the disscetions, belong to P. Keryuelensis.

PLATES.

Plate NVI.-The Tasmariau flowering plant, figured at B, is another species, C. pmile, mihi (see supplement).
Plate IXI.-Helicmrysuy prostratem, is II. bellidioides, Forst. (see Suppl.)
Plate LIII. Fig. IV.—Hypnow Terrec-Nove is II. timatum, Hook. fil. et Wils. (sce Suppl.)
Plate LXXXiI. B.-Ranunculus hydrophylles, should be R. kytrophilus.
Plate LAXXV.-Hamadryàs tomentosa is H. argentea, Hook. fil. (see Suppl.)
Plate LXXXYII.-Berberis microplylta is a synonym of B buxifolia, Lam. (see Suppl.)
Plate ACIII.-Sagina subulata, D'Urv., is a synonym of Colobunhus subutatus (see Suppl.)
Plate CI.-Caldasia deucoides, Hook. fil., is a synonym of Oreomyrrhis andicolu, Endl. (see Suppl.)
Plate CIV.—Figs. 9, 10, 11, and 12, Myzodentron imbricatunt, Pocpp. (see Suppl.)
Plate CXII.-Macrorninchus coronopifolius should be M.pumilus, DC. (see p. 32t.)

Plate CXV.-Gentiana Magellanica should be G. Patagonica (see p. 328).
Plate CXVI-Gaultheria Antarctica, Hook. fil., is synonymous with G. microphylla, Hook. fil. (see p. 327.)
Plate CXVIII,—Ourisia Antarctica, Hook, fil., is synonymons with O. brevifora, Benth. (see p. 335.)
Plate CXX.—Primula Magellanica, Lam., is a variety of P.farinosa (see p. 337).
Plate CXXIX.-Sisyrinchioms pumilum, Hook. fil., is a synonym of Tapeinia Magellanica, Juss. (see p. 353.)
Plate CXXX.-Alopecurus Antarclicus, Vahl, is a variety of A. alpinus (see p. 370).
Plate CXXXVIII.—Poa Kerguelensis, Hook. fil., is Triodia Kerguelensis, Hook. fil. (see p. 379).
Plate CLVII. Fig. VII.-Jungermannia cavispina, Mook. fil. et Tayl., is a variety of J. austrigena, Hook. fil. et Tayl. (see p. 431.)
Plate CLXI. Fig. III.-For "Jungermannia rectinata," read "J. retusata (see p. 441).
Plate CLXIV. Fig. III.-1, Peziza Kerguelensis, Berk., to which also the dissections, 3, 4, and 5, belong; 2, is Exidia flammea, Berk. (see Suppl.)
Plate CLXIX, and CLXX.-Macrocystis lururians is a variety of M.pyrifera, Ag. (see p. 461.)

ALPHABETICAL INDEX

TO

PARTII. OF THE FLORA ANTARCTICA, containing the botany of fuegia, the falklands, Kerguelen's land, etc.

page
Abrotajella emarginata, Cass. 308
Acæna adscendens, Tahl, Tab. XCVI 268
——affimis, Hook. fil. Tab. XCVI. B. ib.

- Antaretica, Hook. fil. 269
- ascendens, Hook. et Amı. ib.
———adilla, Hook. fil. ib.
—— cuneata, Hook. et Am. 265
- lavigata, Ait. 266
—— Iucida, Fahl, Tab. XCIV. $i b$.
——macrorhiza, Hook. fil. 265
——macrostemon, Hook. fll. 269
- Magellanica, Takl, 267
_-Margellanica, Hook. et Ain. 267 \& 269
-_ Magellanica, β. Lam. 267
_ Monte-Tidensis, Hook. fil. 265
——multifida, Hook. fil. ib.
-_ ovalifolia, R. et P. 267
-_ pumila, Iahl, Tab. XCV. 264
Acanthococcus Antareticus, IIook. fil. et IIarv. Tab. CLXXXI 477
Achnanthes longipes, Ag. 510
- pachypus, Fütz. ib.
—— turgens, Ehrb. 511
Achyrophorus arenarins, Gaud. Tab. CXII. (in part). 323
—— tenuifolius, $D C$. $i b$.
Acroschisma, Mook. fil. et I/"ils. 397
Actimiscus lancearius, Elerb. 518
Actinocyclus senarins, Ehrb. 517
Actinoptychus biternarius, Elerb. ib.
Adenocystis D'Urvillci, Mlook. fil. et ILarv. 468
——Lessoni, Mook. fil. et Marv. ib.
Adesmia affinis, Hook. fil. 257
__ boronioides, Mook. fil. ib.
Page
Adesmia candida, Hooh. fll. 257
——conferta, Mook. et Arn. ib.
- grisea, Hook. fil. $i b$.
-_ lanata, Hook. fil. 256
—— lotoides, IIooh'. fil. 255
-_ pumila, Hook.fil. $i b$.
- Smithii, DC. 257
—— suffocata, Mook. fil. 256
—— trijuga, Gill. 258
_- villosa, Mook. fil. 256
Ecidium Magellanicum, Berk. Tab. CLIIII. Fig. II 450
Agaricus cxquisitus, Berk. 447
——fascicularis, IIuds. 448
- Glebarnm, Berk. Tab. CLXII. Fig. III 447
- longinquus, Berr. Tab. CLXIII. Fig. V. ib.
Agrostis alba, L. 372
- Antarctica, Mook. fil. Tab. CXXXII. 374
——crespitosa, Gand. 372
—— Falklandica, Hook. fil. 373
——Magcllauica, Lam.? ib.
-_Magellanica, Gaud. 374
- prostrata, Mook. fil. 373
——stolonifera, L. 372
—— tenuifolia, Bieb. ib.
Aira Autaretica, Hook. Tab. CXXXIII. 377
- cespitosu, Banks, 380
- caryophyllea, L. 375
——flexuosa, ib.
-_ Kingii, Hook.fl. Tab. CXXXV 376
-_ Magellanica, Hook.fil. Tab. CXXXIV ib.
- parrula, Hook. fil. 377
Alerse, of Chili 350
Allodape Americana, Endl. 327

INDEX.

Alopecurus alpims, Sm. Tab. CXXX Page
Apium Autarcticum, Banks, 287

- Antarcticus, Vahl, 370
- Baicalensis, Turz $i b$.
-_ Ifagellanicus, Lam ib.
——pratensis, var. Ledeb ib.
Amellus candidus, Banks, 304
- diffusus, Forst. ib.
-rosmarinifolius, Poepp ib.
Ampelodesmos australis, Brongn. 37
Amphora Lybica, Ehrb 512
- narieularis, Ehrb 513
Anabaina tenax, Hook: fl. et Harv. Tab.CXCIII Fig.III 502
Anæctangium Humboldtii, var. β. Brid. 415
Anagallis alternifolia, Cuv 337
Anaulus scalaris, $\operatorname{Eh} \cdot \mathrm{r} b$ 514
Ancistrum humile, Pers. 265
-_ merme, Banks, ib.
- levigatum, Lag. ib.
—— Magellanicrm, β. Lam. ib.
- repens, Vent. 267
Andreæa acutifolia, IIook. fil. et $W_{i l s}$. 396
——alpina, L. Tab. CLI. Fig. II 395
—— laxifolia, Hook. fil. et Wils. Tab. CLl.
Fig.IV.397
_— marginata, Ifk. fl.et \#ils. Тав.CLI. Fig.I. 396
—— mutabilis, Hook. fil. et Tils. 397
- rupestris, L 396
- subulata, IIarv. 397
_-I Wilsoni, Moor. fi. Tab. CLI. Fig. III. ib.
Andromeda empetrifolia, Lam. 326
——humilis, Banks ib.
Androseex spathulata, Cav 338
Anemone bicolor, l'ocpp. 223
- decapetala, $i b$.
- mucrorhiza, Domb ib.
- multifida, Poiret ib.
- trilobata, Juss, ib.
- triternata, Herb. Berol. il.
Aneura, Nees, $+4$
Anthapla, W. And. 272
Anthoceros punctatus, L 446
- australe, Pet. Th. $i \pi$.
Apium graveolens, 287
- prostratum, Lab ib.
Arabis Macloviana, Mook 231
Aralia polaris, Homb. et Jacq. Suppl 543
Arbutus empetrifolia, L. fil 326
——microphylla, Forst 327
- mucronata, L. fil. 326
——rigida, Banks, it.
——pumila, L. fil. i6.
- serpyllifolia, Lam. 327
Arenaria marina, Sut 250
- media, ib.
Arethusa lutea, Gaud. 3 วั0
Arjoona Patagonica, Homb. et Jacq 342
—— pusilla, Hook: fil ib.
Arthonia polymorpha, Ach 54!
Arthrodesmus Tænia, Elerb. 519
Arundo Alopecurus, Gaud 381
- Antarctica, D'Urv 382
- pilosa, D' L'v. 375
Asarca Commersonii, Lindl. 351
——? Kingii, Mook. fil. ib.
- odoratissima, Poepp $i 6$.
Aspcrococcus D' Lrvillei, Bory, 468
- sinuatus, Bory, ib.
Aspidium coriaccum, Sw. 392
_- Mohrioides, Bory, Tab. CXLIX. ib.
——restitum, Suc. is.
Asplenium Magellanicum, Kaulf ib.
Astelia pumila, Br. Tab. CXXVII 357
Aster glabratus, Banks, 305
- Magellanicus, Lam. 322
-_Magellanicus, Spreng. 304
——nurlicaulis, Comm. 307
——trifurcatus, Banks, 317
- Tahlii, Mook. et . Am. 305
Asterina Darwinii, Berk. Tab. CLXIV. Fig. II. 454
——pelliculosa, Berk. Tab. CLXIV. Fig. I. 453
——_stictica, Berk. Tab. CLINIT. Fig. 1V. ib.
Asteromphalos Beaumontii, Ehrb. 513
Asteromphalos Buchii, Ehrb. Page
513
Bartramia patens, Scluo Page
-Cuvierii, Eh - ib.
-_Darwinii, Ehrb ib.
- Hookeri, Elrb ib.
- Humboldtii, Ehrb ib.
- Rossiv, Ehrb ib.
Avena leptostachys, Hook.fil. 37 S
- redolens, D'Uur. 375
Azalea bullata, Forst. 327
Azara Chilocnsis, Hook.fit. 243
-_ lanccolata, Hook. fil. ib.
- microphylla, Hook. fil. 244
Azolla filiculoides, Lam. 395
- Magellanica, Filld. ib.
Azorella aretoides, Willd 293
- eæspitosa, Cav 282
—— cerspitosa, Vahl, 285
- crespitosa, γ. Willd $2 S 3$
—— Chamitis, Pers ib.
- crassifolia, Pers. 282
——daucoides, D'Urv 2S8
__ filamentosa, Lam. 283
-_- gumnifera, Poir. 282
- lycopodioides, Gaud. 284
- Ranunculus, D' Uro. Tab. XCVIII. 285
- Sclago, Hook.fil. Tab. XCIX 284
- tricuspidata, Lamarek $2 S 3$ \& 285
- trifurcata, Gertu. 283
Baccharis cuneifolia, DC 307
-_ humifusa, Banks, 311
- Magellanica, Pers 307
- Patagonica, Hook. et Arn. 308
- sessiliffora, Vahl 307
- tridentata, Gand ib.
Bore plantayinea, Pers. 333
Batexerda muscosa, Comm $3+2$
Ballia Brunonis, Hurv. 488
Balsam-bog, of Falkland Islands 285
Barbula gracilis, Bruch, 410
-_lceripila, Bruch, ib.
- Mulleri, Bruch, 409
Bartramia crispa, Swtz. 412
- pendula, Hook: ib.
- pomiformis, var. crispa, Hedio (b)
Batrachospermum ragum, Ay 193
Beech, of Cape Horn 3 5
Bellis Magellaniea, DC 307
- revoluta, Banks, 游
Berberis buxifolia, Lam. Tab. LXXIVII. (subnom. microplyylle)231
- cmpetrifolia, Iam. ib.
- ilicifolia, Forst. Tab. LXXXVI 230
- inermis, Pers.? 23
- lagenaria, Poir. 230
- microphylla, Forst 231
Betula Anlarctica, Forst 349
Biatora corallina, C. Bab 337
- pulverea, C. Bab 538
Biddulphia ursina, Elurb. 517
Blitum Autarcticum, IIook: fil. Suppl 545
Bolax aretioides, Spreng 283
-- cespitosa, Spreng.. i6.
- complicata, Spreng. 255
- filamentosa, Spreng. ib.
- glebaria, Comm. 26.
-- gummifera, Spreng $2 b$.
- gummifer, Spucng. iv.
Bonnenacisonia elegans, Enld $+54$
Bostrychia fastigiata, Hook. fil. et Harv. th.
- Hookeri, Harv. 1.53
—_raga, Hook. fil. et Harv 15.
Botrychimm Lunaria, Svo. 500
Bowiesia pulchra, Grer. tst
Brachymenium? oratum, Mook. fit. et Wils.
Tab. CLIII. Fig. IV 412
Brassica Magellanica, Juss $2+3$
—— Macloviana, D'Urv. 1.
- Magellanica, Poir.? 232
Bromus pictus, IIook: fil. 357
Bruyère à feuilles pointues, P'ern. 326
Bryopsis Arbuscula, Ag. 492
- plumosa, Greo 36.
- Mosx, $A y$ $+92$
Page.Bryum Autarcticum, Hook. fil. et Wits.
Tab. CLIII. Fig. VI. 414
-- argentcum, L 413
- Billardieri, Schw. i i.
——bimum, Schreb. 413
- cæspititium, L ib.
__ lacustre, Brid. $i b$.
—— lævigatum, Hook. fil. et Wils. Tab. CLIV.Fig. III.415
-_ nutans, Schreb. 413
- pallescens, Schw. 414
- rostratum, Hook. 415
- truncorum, Brid. ib.
—— vagans, Hook. fil.et Hils. Tab. CLIV.Fig. I.414
-_Wahlenbergii, Scluo. ib.
Bulgaria arenaria, Lév. 452
Bulliarda Magellanica, DC. 278
- moschata, D' Urv. ib.
Byssus niger, Sm. 502
Cabbage, of Kerguelen's Land. 238
Cacalia candiduns, Tahl, 312
-- lamuinosa, Banks, ib.
Calecolaria Darwinii, Benth. Tab. CXVII. B. 333
- biflora, Lam. ib.
_- Fothcrgillii, Sol. Tab. CXVII 332
- mana, Smu. ib.
- Neeana, Spreng $i b$.
- plantaginea, S m 333
- polyrluza, Cav $i b$.
- uniflora, Lam ib.
Caldasia Andicola, Lag. 288
Calendula MFayellanica, Willd. 307
- pumila, β. Forst. ib.
-_ pusilla, Pet. Th. ib.
Callithamnion flaceidum, Hook. fil. et Harv.
Tab. CLXXXVIII. Fig. 1. 490
- Gandichaudii, $A g$. 491
- Gaudichaudii,? Ag ib.
- leptocladum, Mont. ib.
- Montagnei, Hook. fil. et Marv. Tab.
CLXXXYIII. Fig. II$i b$.
Callithamnion Plumula, Ag Page
-_ Ptilota, Ilook. fil. et Harv. Tab. CLXXXIX.
Fig. 1. $i b$.
-- scoparium, Hook. fil. et Hurv. Tab. CLXXXIX. Fig. III. 490
—— simile, Hook. fll. et Marv. 489
- ternifolinm, Hook. fil. et Harv. Tab. CLXXXIX. Fig. II. 489
Callitriche verna, L 272
Callixene marginata, Comm. 354
- polyphylla, Ifook 355
Calocladia pulchra, Grev. 484
Calopayon Lessonii, Brongn. 351
Calothrix distorta, IFarv. 497
—olivacea, Hook. fil. et Harv. Тab. CXC. Fig. III. 497
Caltha appendiculata, Pers. 228
- dioneæfolia, Hook, Tab, LXXXIV 229
- multicapsularis, Banks 228
- paradora, Sol ib.
- sagittata, Cav ib.
Calucechinus Antarclica, Homb. et Jacq 345
-_Montagni, Homb. et Jacq ib.
Calusparassus betuloides, Homb. et Jacq. 349
- Forsteri, Homb. et Jacq. $i b$.
——Pumilio,? Homb. et Jacq. ib.
Calystegia sepium, Br 328
Campylodiscus Clypeus, Ehrb 509
Campylopus atro-virens, De Not. Suppl. 545
—— flexuosus, Brid. 407
-_ introflexus, Brid. $i b$.
-_ rigidus, Ilook. fil. et Wils. Suppl ธ550
Capea biruncinata, Mont. 466
Cardamine antiscorbutica, Bankis, 232
- geraniifolia, DC. Tab. LXXXVIII 233
-glacialis, DC. 232
-- hirsuta, L ib.
- propinqua, Carm. ib.
Carex acaulis, D'Uro. 363
—_ acutata, Boott, 366
- Anctersoni, Boott 364
——atrata, β., Vahl, 36532

[^45]

[^46]

INDEX.

Carex Banksii, Boott, Tab. CXLII.
Page 363
Cenomyce verticillata, Ach. Pag
531

- crespitosa, Banks, $i b$.
—— curta, Good. ib.
——Darwinii, Boolt, Tab. CXLIV. 364
- decidua, Boott, 363
- festiva, Derwey, ib.
——fuscula, D'Urv. 367
- germana, Boott, 366
-_indecora, Kunth, 367
- Magellanica, Lam. Tab. CXLIII. 365
- Macloviana, D'Urv. 362
- ovalis, Good. 362
- paleata, Boott, 367
- phlcaoides, Pers 369
—plysocarpa, Nees, 366
-_propinqua? Nees, 363
_- similis, D'Urv $i b$.
- spicala, Banks, ib.
- trifida, Cuv. 368
Carpha schænoides, Bauks, Tab. CXLVIII 362
Cassine Magellanica, Lam 254
Catabrosa Magellanica, IIook. fit. 387
Cecalyphum dichotonum, P. Beaur 406
Celastrus? Magellanicus, DC. $25 t$
—— Mayellanicus, Hook. ib.
- venustus, Banks 279
Celery, wild, 287
Celmisia vernicosa, IIook: fil. Suppl. 543
Cenomyce aggregata, Ach. 532
-_bacillaris, Ack. $i b$.
- coccifera, auct 531
- cornnta, Ach. ib.
- deformis, Ach $i b$.
-_ fimbriata, $A c h$ ib.
- furcata, Ach ib.
- gracilis, Ach. ib.
—— pyxidata, Ach. $i b$.
- rangiferina, Ach ib.
—— sparassa, Ach. 532
- mucialis, Ach. $i b$.
- ustulata, Hook. fil. et Tayl. 531
——? vermicularis, Ack 532
Cephaloxys graminifolia, Nees, 358
Ceramium diaphanum, Ag. 488
——ubrum, Ag ib.
Cerastium arvense, L 251
- vulgatum, L ib.
Ceratodon purpureus, Brid. 408
Ceterach, Pernetty, 393
Cetraria aculeata, Fries, 524
- glanca, Ach. 523
- Islaudica, Ach. $i b$.
- sepincola, Ach. 524
Chabrea purpurea, $D C$. 321
—— suaveolens, DC. Tab. CXI. iv.
Chorophyllum Chitense, Poir. 288
Chotanthera recurvata, Spreng 322
Chrotoceros Dichaeta, Elirb. 514
——Tctrachæta, Elırb. ib.
Chætospora Antarctica, Ilook. fil. 361
——laxa, Hook. fil. Tab. CXLTI. il.
Chamitis complicata, Banks, 285
- integrifotia, Gaert 283
- tricuspidata, Banks, it.
- trifurcata, Banks, il.
- trifurcata, Gaert. 285
Chara flexilis, L 395
Cheiloscyphus, Nees, 435
Chelone ruelloides, L. fil. 335
Chenopotium glaucum, L. β. 341
-- macrospermum, Hook. fil $i b$.
Chevreulia lycopodioides, $D C$: 319
Chiliotrichum amelloides, Cass. 304
- Darwinii, Hook. fil. ib.
-- humile, Hook,fil. ib.
—— Kingii, Hook. fil. ib.
- rosmarinifolium, Less. ib.
Chloræa Gaudichaudii, Brongn. 350
- Magellanica, Hook.fil. ib.
Chorda lomentaria, Grev. 468
Chroolepus aureus, Harv. 502
- ebcneus, Ay. ib.
Coscinodiscus Lumæ, Ehrb
Page
-_ lridis, Ehrb. ib.
- Oculus Elurb. ib.
——radiolatus, Elerb. ib.
- subtilis, Elub i6.
—— velatus, Elirb. ib.
Cotula reptans, Banks, 308
Crantzia attenuata, Hook. et Arn. 287
-_ lineata, Nutt. Tab. C. ib.
Crassula moschata, Forst 278
Crucibulum vulgare, Tul 449
Crymatea rigida, Banks, 319
Culcitium Magellanicum, Ilomb. et Jacq 311
Cyathus Crucibutum, Pers. 449
Cymbella maculata, Kütz 511
Cypress of Chili, 350
Cyttaria Gunnii, Berk. 453
- Hookeri, Berk. Tab. CLXII. Fig. I 452
Dactylis cespitosa, Forst. Tab. CXXXTI.-VII. 384
Dalibarda geoides, Pers. 263
Dasya pectinata, Hook, fil. et Harv. 482
Delesseria crassinervia, Mont. 471
- Davisii, Hook. fil. et Harr. Tab. CLXXV. 470
-_ Lyallii, Hook. fit. et Harr. Tab. CLAXYI 471
- platycarpa, Lamx ib.
- quercifolia, Bory, $i b$.
-- sanguinea, Lamx. 470
Delisea pulchra, Mont. 484
Denticella læris, Ehrb 518
Desfontainea spinosa, Ruiz et Pavon, 332
——splendens, H. B. К. ib.
Desmarestia anceps, Mont.? 466
— chordalis, Hook. fil. et Harv. 467
- herbacea, Lamx. $i b$.
- ligulata, Lamx ib.
——media, Grer. 466
- Rossii, Hook. fil. et Harv.
Tab. CLXXII-CLXXIII. 467
- viridis, Lamx. 466
Diatoma, n. sp. ? 511
- marinum, Lyngb 515
Dicladea autumnalis, Ehrb. 510

Page
Dicladea bulbosa, Ehrb. 510
Dicranum aciphyllnm, Hook. fil. et Wils.

$$
\text { Tab. CLII. Fig. III. } 405
$$

- Billardieri, Scheo 407
- Boryanum, Schoo. 406
- claratum, Scliw. 407
- dichotomum, Brid. 455
- ? imponens, Mont. 406
——introflexum, Hedw 407
—— pungens, Hook. fi. et Hils. 406
-_robustum, Hook. fil. et Wils. Tab. CLII.ib.
-- scoparium, β., Mont 406
- Starkii, $W_{e b}$ 407
—— tenuifolium, Hook. fl. et Wils. Tab, CLII.Fig. VII.ib.
- vaginatum, Hook ib.
Dictyocha aculeata, Ehrb 518
- binoculos, Ehrb ib.
- biternaria, Ehrb. ib.
- Epiodon, Elurb... ib.
- octonaria, Elnb ib.
-_Ornamentum, Ehrb. 519
- scptenaria, Ehrb. ib.
- Speculum, Ehro 519
Dictyosiphon fasciculatus, Hook. fil. et Harv. 467
Diddledce, of Faikland Islands 345
Didymodon capillaceus, Webst. 108
——? glacialis, Hook. fil. et Wils. Tab. CLII.
Fig. IT ib.
- longifolius, Brid. 408
- purpureus, Hook ib.
Diplolæna, Nees, 444
Discoplea Rota, Ekrb. 517
- Rotula, Ehirb. ib.
Donatia fascicularis, Forst. 281
- Magellanica, Lam. ib.
Draba affinis, Hook. fil. 235
—— alyssoides, H. B. K. 237
——Arbuscula, Hook. fil ib
——aretioides, $\Pi . B . K$. 23
- anstralis, Hook. fil. 235
Draba Bonplandiana, H. B. K. 237
-- cheiranthoides, Hook. fil 236
- cryptantha, Hook. fil. 234
- - depressa, Mook. fil. i3.
- Falklandica, IIook. fil. 235
—— funiculosa, Hook. fil. Tab, LXXXIX. ib.
——Gilliesii, Mook. et Am. 236
- grandiflora, Mook. et Arn. ib.
———Hallii, Hook. fil. 237
- iucana, L 233
__ Jorullensis, II, B. K. 237
- Macleani, Hook. fil. 235
- Magellanica, Lam. 233
- obovata, Benth. 234
- radicata, Hook. fil. 236
-- siliquosa, Hook. fil. 235
——Tolnccensis, II. B. K. 237
- violacea, $D C$. ib.
- volcanica, Bentle. 236
Draparnaldia pusilla, Mook. fil. et Marv.
Tab. CXC. Fig. II. 493
——sp.? ib.
Drapetes muscosa, Lam $3+3$
Drimys punctata, Lam. 229
- Winteri, Forst ib.
Drosera uniflora, Filld. 245
-_sp. ? Suppl. 543
Dryptodon crispulus, Hook, fl. et //its. 402
_-rupestris, Hook. fil. el Wils. 'Tab. CLII.Fig. I.ib.
Dumontia filiformis, Grev. 487
D'Urvillea Harveyi, Hooh. fil.
Tab. CLXV-CLXVI 456
-_ utilis, Bory 454
Dysemone integrifolia, Banks et Sol 274
—— lobata, Banks et Sol 275
Ectocarpus geminatus, Mook. fil. et Mare 469
-_ siliculosus, Lyngb. ib.
—— tomentosus, Lungb ib.
Elatine, Cronov 257
Eleocharis palustris, Br 360
Elymms Antaretieus, Hook. fil 35 S
Embothrium coccincum, Forst. Page- ferngineum, Cav342
Empetrum rubrum, Fahl, 345
Enargea marginata, Banks, 354
Encrelium simuosum, Ag. 463
Enteromorpha compressa, Grev 500
- intestinalis, Link, ib.
Epilobium confertifolium, Hook. fil. Suppl 543
——tetragonum, L 270
Epipactis Lessonii, D'Urv 351
Epithemia Faba, Kütz. 507
- gibberula, Kïtz. 506
Erechtites prenanthoides, DC. Suppl 544
Eremodon Magellanicus, Bricl 400
Erigeron alpinus, L. 306
- Canadensis, Hook. et Arn. 307
- pauciflorus, Banks, 306
- spiculosus, Mook. et Aru 307
-_Sulivani, Hook. fil. 306
-I - 305
- miflorus, I 306
Erysimum Macloviantm, Gay, 232
Escallonia serrata, Sm. 279
Eubrachion Aruottii, IIooh. fil. 291
Engenia apiculata, $D C$. 277
-Darwinii, Hook. fil. ib.
—— leptospermoides, $D C$ 275
——Ugni, Hook, et Arm. 276
Eunotia amplyyoxys, Ehrb. 506
-_ biceps, Ehhrb. 507
——Faba, Elerb. ib.
-_ gibberula, Elưb. ib.
Euphrasia Antarctica, Bentle 335
Eurotium herbariorum, Lh 454
Eurybia Lyallii, Mook. fil. Suppl 543
Euthalis lucida, Banks, 254
Erernia Magellanica, Mont. 522
Exidia Auricula Judæ, F^{*}. 449
- flammea, Ber\%. Suppl. 551
Exilaria, n.sp.: 510
- Ulma, Hass. 509
Fagus Antarctica, Forst. Tab. CXXIII. 345
Fagus betuloides, Mirb. Tab. CXXIV, Page
349
349
- dubia, Mirb. ib.
- . -_ Forsteri, Hook. Tab. CVII. ib.
- obliqua, Mirb. ib.
- Pumilio, Poepp. $i b$.
Fascine, of Falkland Islands 304
Festuca Alopecurus, D'U.v 381
- Antarctica, Kunth, 382
-_ arenaria, Lam. $i b$.
- Arundo, IIook. fil. 331
- bromoides, L. 38.
- caspitosa, Roem. et Schum. ib.
—— Cookii, IIook. fil. Тав. CXXXIX 382
- duriuscula, L 383
—— erecta, D'Uro. 384
- flabellata, Lam. ib.
-— Fuegiana, ILook. fil. Tab. CXLI. 380
- gracillima, Hook. fil. 383
- Magellanica, Lam 384
- purpurascens, Banks, Тав. CXL 383
- pusilla, Banks, 380
Fimbristylis melanostachys, Brong. 360
Flustrella concentrica, Ehrb. 516
Forstera muscifolia, Willd. 325
-uliginosa, Homb. et Jacq. $i b$.
Fossombronia, Nees, 446
Fragaria Chilcnsis, Elub. 264
Fragilaria acuta, Eherb 507
—— amphiccros, Elerb. il.
- capreina, Kütz.. 508
- constricta, Ehrb $i b$.
-- gramulata, Elrob 507
-—u. sp.? ib.
——n. sp.? $i b$.
—— spinulata, Elrb. ib.
—— rotundata, Elrbb. ib.
- rhabdosoma, Elvb 508
-_ Trachea, Elro. ib.
_- Ventriculus, Ehrb. ib.
Framboise, Pem. 263
Frullania, Raddi, 443
F'uchsia coccinea, Ait. 269
Fuchsia decussata, Grah Page __ discolor, Lindl.
- gracilis, Lindl.is.
—— macrostema, R. et P i6.
- Magellanica, Lam. 269
Fucus cordatus, Turn 485
—— palmatus, Sin. 475
——plicatus, Sm. $+87$
--- soboliferus, Sm 475
- tomentosus, Sm. 491
Fmaria hygrometrica, Hedw. 415
Funkia Magellanica, Willd 357
Gaimardia australis, Gaud 360
Galium Aparine, L. 302
-_ Antarcticum, ILook. fil. is.
- Chilense, Ilook. fil. if.
- Chonoense, Mlook. fil. ib.
- delile, Banks, 303
—— Fuegianum, Mook. fil. 302
- Magellanicum, Hook: fil. ib.
——tifidum? D'Urv 303
Galaxia narcissoides, Wiald. 353
- - obscura, Cav. 354
Gallionella Oculus, Elorb. 509
- pileata, Ehho is.
- Sol, Ehrb ib.
- sulcata, Ehib ib.
--Tympanum, Elirb. ib.
Gaultheria microphylla, Mook. fil. Tab. CXYI. (sub nom. G. Autaretice) 327
Gentiana Magellanica, Gaud 325
-_ Patagonica, Gris. Tab. CXV. (sub nom. (. Magellanice) ib.
- prostrata, Hcuk. il.
Geranium intermediun, Bert.? 252
——Magellanicum, Hook. fil. 251
- Patagonicum, Mook. fil. 259
- sessiliflorum, Cuv ih.
Geum Chilense, Lindl. 262
-Chiloense, Baib. ib.
- coccineum, Ser. ib.
——inolucratum, Juss. 263
Geum Magellanicum, Comar. 262
——Quellyon, Sweet, ib.
-_ parviforum, Comm. 263
Gigartina plicata, Grev 487
Gladiolus biflorus, Thunb 353
Glayeux, Pernetty 384
Gleichenia acutifolia, Hook. 393
- cryptocarpa, Hook 394
Gnaphalium affine, D'Urv. 310
- Antarcticum, Hook.fil.
Tab. CXIII. B. $i b$.
__Chitense, Hook. ct Arn. iv.
- coarctatum, Willd. 309
- consanguinerm, Gaud. ib.
—_ consanguineum, Homb. ct Jacq. 310
__ falcatum, Lam. iv.
- inornatum, DC 311
- littorale, Banks, 310
- Inteo-album, L 311
- lycopodioides, D'Urv 319
—— splacelatum, II. B. K 309
- spicatum, Lam. Tab. CXIII ib.
Gommier, Pern 285
Gompbonema clavatum, Elirl. 511
—_curvatum, β. Kiitz. iv.
_- miuntissimmm, Grev ib.
Gottschea, Nces, 424
Gracilaria? aggregata, Ilook. fit. et Harv. 478
——? migrescens, Ilook. fil. et Ilarv. 177
- obtus(nengule, IIook. fil. et IIarv ib.
Grammatophora Africana, Ehrb 515
- marina, Kütz ib.
-_Oceanica, Ehrb. iv.
— parallela, Ehrb. ib.
- serpentina, Elurb. ib.
-_ stricta, Ehrl. it.
Grammitis australis, $B r$. 393
Griffithsia Antarctica, Hook. fil. et Harv. 488
——corallina, $A g$. ib.
- equisetifolia, Aly ib.
Grimmia apocarpa, L 401
- falcata, Hook. fil. et IVils. Tab. CL1.Fig. V111.ib.
Page PageGrimmia maritima, Turn401
-_ tortuosa, ILook. fl. et Wils. Tab. CLI.
Fig. V11. 400
Gunnera Chilensis, Lam 273
- Falklandica, Hook 274
- lobata, IIook. fit. ib.
——Magellanica, Lam ib.
—— scabra, R. et P 273
Gymnanthe, Tayl 435
Gymnomitrion, Nees 423
Gymmostomnm Heimii, Hedo. 399
-_ laxum, Hook. fil. et Wils.
Tab. CLI. Fig. V. $i b$.
——Menziesii, Hook 400
Gyrophora ænea, var. Scher. 540
Halionyx duodenarius, Elurb. 513
-_ senarius, Ehrb ib.
Italymenia cordata, Ag 485
——variegata, Bory, 475
Hamadryas argentea, Hook. fil. Tab. LXXXY (sub nom. II. tomentosa.) 227
——Kingii, Mook. fil. 228
- Magellanica, Lan. 227
-_ paniculata, Hook. fil. Suppl. 548
- tomentosa, DC. 227
Hedwigia IImboldtii, Hook 415
Helichrysmm prostratun, Hook. fl. Suppl 543
Hemiaulus Antarcticus, Ehrb. 513
——? obtusus, Ehrl. ib.
Hemizoster tubulosus, Elurb 508
Heterosiphonia Berkeleyi, Mont 480
Hieracium Antarcticum, D'Urv. 324
——incertum, D'Urs 306
- Patagouicum, ILook. fil. 324
Hierochloe Antarclica, var. Brongn. 375
- Magellanica, Hook. fiz. ib.
Himanthatia D' Urvillei, Bory, 456
Hippuris vulgaris, L. 272
Homanthis eckinulata, Homb. et. Jacq. 322
Homoianthus echinulatus, Cass ib.
——Magellanicus, DC. $i b$.
Hookeria apiculata, Hook. fil. et Wils.
Tab. CLV. Fig. VI. $42]$
Hookeria cristata, Hedw. 422
— crispula, IIook. fil. et TFils. Suppl. 545
- denticulata, Hook. fil. el IFils. 422
—— Dicksomi, Hook. 421
——flaccida, Hook. fil. et ITils. Tab. CLV.
Fig. V.ib.
——Magellamica, P. Beouv ib.
Hordeum jubatum, L. 388
-_ pubiflorum, Hook. fil. ib.
Huanaca Cavauillesii, $D C$. 286
——acautis, Cav ib.
Hydrangea scandens, Poepp 279
Hydrocotyle Chinensis, Spreng. 287
-_ gummifera, Lam. 285
- gummifera, γ. Lam. 283
- lineata, Mich 287
Hymenophyllum caudiculatum, Mart. 390
-_cespitosum, Gaud. 391
- Chiloense, Hook. 390
- cruentum, Cav. 389
- imbricatum, Colens 391
—— pectinatum, Caz. 390
- rarum, Br. 391
- secundum, Mook, et Grev. ib.
- semibivalve, Hook. et Grev. $i b$.
—— tortuosum, Banks, 390
- Wilsoni, Mook. $i b$.
Hypnum aciculare, Brid. 419
--arluncum, Dill. 420
- amœnum, Medro. 421
—_ albicans, Dill. 418
——Arbuscula, P. Beauv. 423
- auriculatum, Mont. 418
—— chlamydophyllum, Hook. fil. et Wils. ib.
—— conspissatum, Hook.fil. et /Fils.Tab. CLV. Fig. III.419
- denticulatum, Dill. 417
-_falcatum, Brid. 420
—— filicinum, Dill 419
- fluitans, L. 420
- laricinum, Hook. 423
-_ leptorhynchum, Brid. 421
Hypnum limatum, Hook. fil. et Wils. Suppl.Page
—— lithophilum, Horns. Tab. CLV. Fig. IV. 420
- lucidulum, Hook. fil. et Wils. Tab. ClV.
Fig. I. 418
- Magellanicum, P. Beaur 422
- micans, Tils. 421
- mnioides, $H_{l o o k}$ 417
-mnioides, Schw ib.
- paradoxum, Hook. fil. el Wils. Tab. CLV.419
—— politum, IIook. fll. et Wits.
Tab. CLIV. Fig. II. 416
— riparium, Dill. ib.
-_reticulatum, Hook. fil. Tab. CLIV.
Fig. V. 417
— rutabulum, Dill. ib.
-- serpens, Dill. 418
-_ subbasilare, Hook. 417
-_subbasiture, Schm. ib.
__ subpilosum, Hook. fil. et IFils.
Tab. CLIV. Fig. IV 418
- tamariscimem, Swartz, 423
- Thouini, Schw. ib.
- uncinatum, IHall. 420
Typochoris arenaria, Gand 323
- minima,? Willd ib.
Hypopterygium laricinum, Brid. 423
Iridæa cordata, Bory, 485
- micans, Bory ib.
- Radula, Bory, ib.
Isidium oculatum, Ach 541
- lutescens, Turn. et Borr. $i b$.
Isolepis brevis, Brongn 361
- Meyenicura, Nees ib.
- Magellanica, Gaud $i b$.
- pygmæa, Kunth, ib.
—— pygmea, var. β. Kuntl, i.
- trigona, Kunze, ib.
Ineris nonocephala, Cass. 324
Isia Magellanica, Lam. 354
- pumita, Forst. ib.
Jacquinotia prostrala, Homb. et Jacq. 327
Juncus grandiftores, L. fil.
Page 35——graminifolius, E. MIey.—— inconspicuus, Gaud. Suppl358544
planifolius, $\mathrm{Br}^{(S u p p l} 545$) ——planifolius, Br. (Suppl. 545) 358
- schenchzerioides, Gaud. ib.
- rivularis, Poepp. ib.
Jungermannia, Lindb 4.28
——abbreviata, Hook. fil. et Tayl. Snppl. 546
—— adnexa, Lelim. et Lind. Suppl ib.
-_ requata, IIook. fil. et Tayl. TAB. CLVIII.
Fig. III. 433
——alcicornis, Ilook. fil. et Tayl. Tab. CLX.Fig. VILI.445
-_ alteruifolia, Mook. fil. et Tayz. Tab. CLNI. 436
-_ amphibolia, Nees,. 441
—— ansata, Hook. fil. et Tayl.
Tab. CLVI. Fig. VI. 425
- asplenioides, L 420
-atrocapilla, Hook. fil. et Tayl. 423
——austrigena, IIook. fil. et Tayl. TAB. CLIJI.
Fig. VII. and CLTIII. Fig. V. 431
- bicuspidata, I 429
—— byssacea, Rothe, ib.
—— capillaris, Sw. Suppl. 546
- - cavispina, Hook. fil. et Tayl. 431
-_ chordulifara, Tayl. Tab. CLII.$4+2$
_- chlorolenca, Hook, fil. et Tayl. Tab. CLXI.Fig. 1.433
- Chonotica, Tayl. 428
- clandestina, Mont 434
- colorata, Lelem. 428
-_ complanata, β. Hook. 442
—— confluens, Tayl. Tab. CLXI. Fig. VII. 446
- connata, Sw. Suppl 546
_- crebrilolia, Mook. fil. et Tayl. Tab. CLTII.Fig. IX..434
- cucullata, Nees, Suppl. 546
-_ cyperoides, Schu. 443
__ decresceus, Le7m. et Lind. Suppl. 546
- densifolia, Hook 433
__ distinctifolia, Tayl. 428
Jungermannia divaricata, Hook. fil. et Tayl. Tab. CLXI. Fig, VIII. 437
-_duricaulis, IIook. fil. et Tayl. Tab. CLVI. Fig. IX. 426
——crinacea, Hook. fil. et Tayl. Tab. CLII.Fig. IV.430
-_filamentosa, Lelm. et Lind. Suppl. 546
- filamentosa, Lerm. 442
- flavifolia, Hook. fil. et Tayl. ib.
—— fulvella, Hook. fil. et Tayl. TAB. CLVIII.
Fig. I. 432
- furcata, L. 445
-_fusco-virens, Mook. fil. et Tayl.440
——gracilis, Nees, Suppl. 546
-_ grandifolia, Hook. fil. et Tayl. Tab. CLIX.Fig. VIll.440
-...grisea, β. Hook, fil. et Tayl. Tab. CLX.
Fig. IT. 438
—— IIelix, Hooh. fil. et Tayl. Tab. CLX
Fig. II 442
-_ heterodonta, Mook. fil. et Tayl.
Tab. CLTII. Fig. II. 425
- hirsuta, Nees, (Suppl.546) 442
-- horizontalis, Mook. fil. et Tayl. 441
-_ humectata, Ilook. fil. et Tayl. Tab. CLVII.
Fig. Y.430
- lıumifusa, Mook. fil. et Tayl. Tab. CLIX.Fig. V. .436
—— humilis, IIook. fil. et Tayl. Tab. CLVIII. VI 434
-_ involutifolia, Mont. 43 I
- Jacquinotii, Mont. 427
- Javanica, Mont. 442
- levifolia, IIook. fil. et Tayl 441
-_ lamellata, Mlook: 424
-_ laminigera, Ilook. fil. et Tayl. Tab. CLTI.Fig. IV.425
-_ leptantha, Hook. fil. et Tayl. Tab. CLIX. Fig. VI 435
- leucophylla, Lehm. 424
- lobulata, Hook: 443
Jungermannia madida, Hook. fil. et Tayl.Page
Tab. CLVIII. Fig. il. 432
- Magellanica, Lam. 443
-_Magellanica, Spreng. ib.
- Magellanica, Lindb. 426
- marginalis, Hook. fil. et Tayl. 445
- Menziesii, Hook. 443
- minuta, Crantz. 135
- minutula, Hook. fil. et Tayl. Tab. CLVII.Fig. I.427
-- multifida, L. 4.4
—_obvoluta, Hook. fil. et Tayl. Tar. CLX1.
Fig. I. 132
- ochroleuca, Spr. Suppl. 546
-_ oligophylla, Lehm. $4+1$
——otophylla, Hook. fil. et Tayl. Tab, CLVIII.
Fig. IV 433
—— paclyyla, Hook. fl. et Tayl. Tab. CLVIFig. III424
- pallido-rirens, Hook, fil. et Tayl.
Tab. CLIX. Fig. IX 439
- palpebrifolia, Hook 443
-_ palustris, Hook. fil. et Tayl. Tab. CLVII.Fig. VIII.431
- parasitica, Hook. fil. el Tayl. Tab. CLX.
Fig. VI. 44
- physocaula, Hook. fil. et Tayl. Tab. CLVI.Fig. I.423
——physoloba, Mont. Tıb. CLX.
Fig. III 4.2
- pinguis, L. 445
_— pisicolor, Hook. fil. et Tayl. Tab. CLX.
Fig. VII. 44
——plumulosa, Lehur. 41
- prehensilis, Hook. fil. et Tayl. Tab. CLX.
Fig. 1 K 145
- pubescens, L. ib.
- punicea, Nees, Suppl 545
- pusilla, L. 446
- quadripartita, Hook 43 د
-- reclinans, Hook. fil. et Tayl. Tab. CLLX
Fig. I.438
Jungermannia retusata, Hook. fll, et Tayl. Tab. CLXI. Fig III. (sub nom. J. reclinate). 441
——rigens, Hook. fil. el Tayl. Tab. CLVII. Fig. III 429
- rivalis, Hook. fil. et Tayl. Tab. CLVIII. Fig VIII 437
—— rufescens, Lindb. 4.4
- sabuletorum, Mook. fil. el Tayl. Tab. CLT111. Fig. VII 437
—— schismoides, Mont. Tab. CLXI. Fig. IX. $43+$
- secundifolia, Hook. fil. et Tayl. Tab. CLIX. Fig. II 438
—— sphalera, Hook. fil. et Tayl. Tab. CLVI.
Fig. VIII 427
- splachnophylla, Hook. fil. et Tayl.Tab. CLVI. Fig. II424
-- Stangeri, L. L. et G. Suppl $54 f$
- subintegra, Ilook. fil. et Tayl. Tab. CLX
Fig. V 443
- subviridis, Hook. fil. et Tayl. Tab. CLIX.
Tig. IV. 43 s
-_ surrepens, IIook. fil. et Tayl. Tab. CLX. Fig. I. 40
——tctradactyla, Hook. fil. et Tayl. 441
-_ textilis, Hook. fil. et Tayl. Tab. CLVIII.
Fig. IX. 435
- tomentella, γ. Suppl. 546
——trachyopa, Hook. fil. et Tayl. Tab. CLLX.Fig. III.439
——triacantha, Mook. fil. et Tayl. it.
——tridactylis, Lehm. 441
—— tubulata, Ilook. fl. et Tayl. Tab. CLVII
Fig. VI.429
-_uncialis, Mook. fil. el Tayl. Tab. CLVI.Fig. VII.427
-uuciformis, Hook. fll. et Tayl. Tab. CLVI.
Fig. V 425
———Urvilleana, Mont. 435
—_rasculosa, Hook. fl. et Tayl. Tab. CLVII.
Fig. IV 430
Lagenophora Commersonii, Cass. Tab. CVIII. 307
——Magellanica, Cass. ib.

INDEX.

Laminaria biruncinata, Bory,	$\begin{aligned} & \text { Page } \\ & 466 \end{aligned}$
-fascia, Ag.	ib.
-- radiata, β. Turn.	ib.
Lasiocarpus humilis, Banks,	264
Lasiorhiza ceterachifolia, Cass.	321
- purpurea, Less .	ib.
- viscosa, Cass.	ib.
Lathyrus Magellanicus, Lam.	259
- maritimus, Big.	260
- petiolaris, Vogel,	259
- pisiformis, Hook.	260
- pubescens, Mook. et Arno.	259
Laurencia pimatifida, var. γ	484
Lebetauthus Americanus, Endl. (Suppl. 549)	327
Lecanora albella, Ach.	524
- atra, Ach..	$i b$.
Tab. CXCVIII. Fig. II.	535
- candelaria, Ack.	537
- chrysoleuca, Ack.	534
- citrina, Ack..	г36
- confragosa, Ach.	ib.
- Daltoniana, Mook: fil. et Tayl.	
Tab. CXCVIII. Fig. I..	534
- dichroa, Hook. fil. et Tayl.	536
-- epibryon, Ach.	524
- erythrella, Ach.	537
- erythrocarpia, 7 \%	536
- gelida, Ach.	$i b$.
- glaucoma, Lagl. Bot.	537
- hæmatomma, Acl.	537
- Hypuorum, Ach.	534
- melanaspis, Ach.	536
- microphylla, Ach..	534
- micropthalma, Mook. fil. et Tayl.	540
- miniata, Ach.	535
- molybdiua, Ach.	536
- muronm, Aclu.	535
- muscorum, Ack.	534
- paleacea, Fi.	ib.
- parella, Ach.	536
-sophodes, Ack..	ib.

Lecanora subfusca, Ach. Page-- tartarea, Ach$i b$.
—— theioclyta, Ach. $i b$.
—— Upsaliensis, Ach. ib.
—— varia, Acli.? Suppl. 547

- rentosa, Ack. 537
Lecidea abictina, var. Eschuo 540
- albo-cærulcscens? Ack. 538
- arctica, Sommf.. 540
——aromatica, Ach. 538
- atro-alba, Ach. $535 \& 539$
-_ candida, Ach.? 538
- confluens, Ach ib.
- coniops, Fries, 539
- contigua, Frics. 538
- clæochroma, Ach 540
- fusco-atra, Acl 539
- gcographica, Scher. ib.
- glacialis, Scher. i6.
——Lightfootii, Engl. Bot. Suppl. 547
-- lugubris, Sommf. 539
_- mamillaris? Fries, 538
__milliaria, var. Fries, 540
—— Ederi, E.B. 539
——papillata, Fries, Suppl. 547
- parascma, Ack. 539
- quadricolor, Borr. ib.
- riculasa, Ach. 538
—— sabuletornm, Acta. 539
- scabra, Tayl. ib.
- spilota, Fries, 538
—— stellulata, Tayl. 539
-_ vesicularis, Ach. 538
Lejcunia, Spreng. 443
Lcontodon Lycodon, Banks, 323
—— pubescens, Banks, 324
Lepiloccras Kingii, Hook. fil. 293
- Dombeyi, Hook. fil. ib.
Lepidozea, Nees, 441
Leptothyrium decipiens, Berk. Tab. CLXIII.Fig. III.445
Lepraria flava, Ach 541

INDEX

Lepraria lutescens, E. B.

Page
541
Leptinella acanoides, Hook. et Arn. 308

- plumosa, Mook. fil. ib.
_- scariosa, Cass. $i b$.
Leptostomum Meuziesii, Br. 400
Leskia nitida, Hook. fil. et Wils. Tab. CLIV Fig. VI. 416
Lessonia ciliata, Post. et Ruppr 461
- flavicans, D'Urr 457
-_- fuscescens, Bory, Tab. CLXVIII. A, etCLAXI. D.ib.
- nigrescens, Bory, Tab. CLXVII-CLXVIII. C. .458
——orata, Hook. fil. et Marv. Т'ab. CLITYI-CLXVIII. B., et CLNXI. C.459
Leucharia gossypina, Hook. et Ain. 321
- purpurea, Hook, et Arm. $i b$.
Lencodon Lagurus, Hook: 416
Lichen athrocarpus, E. B. 539
-_ aurantiaco-ater, Jacq. 520
- carnosus, E. B. 534
-_ cinereus, E. B. 537
- dulius, E. B. 540
--hymenius, E. B. s 41
- pruinosus, E. B. 538
--sulplurrea, Ach. 539
— tumidulus, Sm. 538
Lichnophora abbreviata, Ag. 511
Limosella aquatica, L 334
——anstralis, Br ib.
——tenuifolia, Nutt. $i b$.
Lithobotrys? denticulata, Elurb 517
Lithocampe Antarctica, Elurb. ib.
—— Australis, Ehrb. ib.
Lolinm perenne, L 389
Lomaria alpina, Hook.fi. Tab. CL 392
—— Autarctica, Carm. 393
——Australis, Kuuze, in.
_ bleclenoides, Bory? ib.
- decurrens, Kınze, $i 6$.
- linearis, Coleus. ib.
——Magellanica, Desv. ib.
Lomaria Mayellanica, β, Bory Pase
-polypodioides, Gaud. 302
——pumila, Raoul, Suppl. 550
-robusta, Carn. 393
——Sellowiana, Presl, ib.
- setigera, Gaud. ib.
-_ zamioides, Gard. ib.
Lomatia fcrruginea, $B r$. 342
Lophocolea, Nees, 435
- coadmata, Necs, ib.
Lacet musqué, Pcru 276
Luzula Alopecurus, Desv. 355
- Antarctica, Hook. fll. Suppl. 549
- sp.? 359
- crinita, Hook. fil. Suppl 545
Lyallia Kerguetensis, Hooz: fll. Tab. CXXII. Suppl. 548
Lychnis Magellanica, Lam. 246
——thysanodes, IIook. fit. ib.
Lycoperdon arenarium, Pers. 452
-cælatum, Bull. 449
Lycopodium carinatum, Desv. 394
- clavatum, L. i i.
—— confertum, Willd. Suppl. 550
- crassum, H.B.K. 394
——elongatum, Sw. ib.
- insulare, Carm. ib.
- Saururus, Lam. ib.
- Selago, L. ib.
Lungbya fragilis, Mook: fll. et Hare.
Tab. CXCIII. Fig. II 497
—— muralis, $A g$. ib.
-_ subarticulata, Mook. fil. et Harr. 498
Lyperanthus Antarcticus, Hook: fil. Suppl. 514
Lysimaclia repens, D'Urv. 332
Macrachænium gracile, Hook: fil. 321
Macrocystis angustifrons, Bory, 461
- commmis, Bory, ib.
- Humboldtii, auct. $i b$.
——integrifrons, Bory, $i b$.
- luxurians, Hook. fil. et Harv. ib.
-planicanlis, Ag. ib.
Macrocystis pomifera, Bory, Page
461
—— pyrifcra, Ag. var.є. Tab. CLXIX.-
CLXX. et CLXXI, Bib.
-zosterafolia, Bory, $i b$.
Macromitrium longipes, Schuc. 404
Macrorhynchus pumilus, DC. Tab. CXII. (sub nom. Mr. coronopifolii) 324
-_Chilensis, Hook. et Arm. ib.
Madia sativa, Mol. 308
- viscosa, Hook. et Arı $i b$.
Marchantia polymorpha, L. 446
Marsippospermum calyculatum, Desv 357
—— grandiflorum, Hook $i b$.
Mastigophora, Nees, 442
Mastigophorus Gaudichaudii, Cass. 319
Mastodia tessellata, Hook. fil. et Harv.
Tab. CNCIV. Fig. II. 499
Manve, Pern. 274
Maytenus Magellanicus, Hook. fil. 254
Melalema humifusa, Hook. fil. 311
Melanthium pumilum, Forst 357
Melobesia verrucata, Lamr. (Suppl. 546) 482
Meloseira, n. sp.? 503
Mesocæna? Spongolithis, Elirb 518
Mesogloia linearis, Itook. fit. et IIarv. 470
Mctrosideros stipularis, Hook. fil. 275
Metzgeria, Nees, 445
Nicrocoleus repens, Harv. 495
Misandia Magellanica, Comm. 274
Mitraria coccinea, Cav. 326
Mnium rostratum, Bruch, 415
Montia fontana, L. 278
- lamprosperma, Cham. $i b$.
—— linearifolia, D'Urv. ib.
Morca Magellanica, Willd. 3 3̆4
Morchella semilibera, Fr. 451
Mühlenbergia rariflora, Hook. fil. Tıв. CIXXI. 371
et Suppl 550
Inutinum acaule, Pers. 283
Muscaria Magellanica, Haw. 280
Myginda disticha, Hook. fil. 254
Myosotis albiflora, Bankis, 329
Myriophyllum elatinoides, Gaud. 271
- ternatum, Gaud. ih.
Myrrhis Andicola, H. B. K. 298
Myrtus Nummularia, Poir. 276
——stipularis, Hook. et Arn 275
Myrtus Ugni, Molin. 276
Myzodendron brachystachyum, $D C$.
Tab. CIII., CV., CVI. et CVII. bis, ter. 297
- imbricatum, Poepp. Suppl. 549
—— linearifolium, DC. Tab. CVII. ter 300
- oblongifolium, DC. 301
-planifotium, Banks 297
—— punctulatum, Banks et Sol.
Tab. CII., CIV., et CVII., bis, ter. 299
- quadriflorum, $D C$. Tab. CYII. ter 301
Nanodea muscosa, Gaertn (Suppl. 549) 342
Nassauvia Commersonii, Cass. 319
-D'Ureillai, Cass i.
——Gaudichaudii, Cass. il.
—— pyomæa, Hook. fil ib.
- serpens, D'U'v. Tab. CXIT il.
— suareolens, Tilld. ib.
Navicula amphyoxys, Ehrb. 512
—— Didyma? Kütz ib.
-_ elliptica, E7erb. ib.
—— Lyra, Elubb. ib.
—— peregrina, Kütz. iv.
- viridis, Kutz. ib.
Nephroma Arctica, Mont. 52.4
- cellulosa, Ach. ib.
- polaris, Ack. ib.
N̄ertcra depressa, Banks, 303
Nitophyllum Bomemaisoni, Grev. 47.
——Crozieri, Monk. fil. et. Harv.
Tab. CLAXYII 472
—— fusco-mbrum, Hook. fil. et Harv. ib.
—— laciniatum, Hook. fil. et Harv. 474——lividum, Hook. fil. et Harv.Tab. CLXXIX.il.
- multinerve, Mook. fil. et Harv. 473
—— Smithü, Hook. fil. et IIarv.Tab. CLXXVIIL.iz.

INDEX.			569
Noteroclada, Tayl.	$\begin{gathered} \text { Page } \\ 445 \end{gathered}$	Parmelia lugubris, Pers.	Page 532
Nostoc commune, Fauch.	501	- mariana, Fries ? Suppl.	547
- microscopicum, Carm. ?	it.	- pateacea, Fr.	533
Nothogenia variolosa, Mont	457	-plysodes, β. Mont. (Suppl. 5 $\ddagger 7$).	532
Enanthe Huanaca, Spreng.	256	- pubescens, Pers.	525
Oligosporus emarginatus, Cass.	308	- pulposa, Scher.	541
Oncophorus dichotomus, Brid.	406	- rmbiginosa, Ach.	533
Opegrapha atra, Pers.	540	- saxatilis, Ack.	ib.
Oreobolus obtusangulus, Gaud.	360	-_ stellaris, Ach.	534
Oreomyrrhis Andicola, Endl. (sub) nom. Caldasia daucoides.) Тав. СI.		- sphinctrina, Mont	533
	258	Peltidea canina, Ach.?	524
Oreophita tenuifolia, Don,	323	- polydactyla, Ach.	ib.
Orites depressa, Banks,	282	- horizoutalis, Ach.	525
Orthotrichum coarctatum, Schw.	403	- venosa, Ach.	$i b$.
-_ crassifohium, Hook. fil. et Hils	ib.	Perdicium lactucoides, Valıl,	322
	404	- lerigatum, Banks	$i b$.
\qquad longipes, Hook.\qquad luteolum, Hook. fil. et Wils. Tab. CLII.		- Magellanicum, Linn. fil.	ib.
		- purpureum, Tahl,	321
Fig. II.	403	- recurcatum, Tahl,	322
- Magellanicu	i i.	- sinuatum, Banks,	ib.
Orthodontium australc, Hook, fit. et Hils.		- suaceolens, D'trr	321
Tab. CLIII. Fig. V	112	Perezia Doniana, Less.	322
Oscillatoria autumnalis, Ag	497	- Magellanica, Lag.	$i 6$.
\qquad cholhonoplastes, β., Harv. \qquad purpurea, IIook, fil. et IIarv.	498	- lactucoides, Less.	$i 6$.
- purpurea, Hook, fil. et Harv.	496	- recurvata, Less.	ib.
- repens, Ag .	498	Peruetija empelrifolia, Gaud.	326
Osmorhiza Chilensis, Hook: et Am.\qquad Berterii, DC.	288	- mucronata, Gaud.	$i b$.
	it.	- pumila, Hook.	.
Ourisia breviflora, Bentl, Tab. CXVIII. (sul)		- serpyllifolia, DC	327
nom. O. Antarcticre.)	335	Pertusaria communis, $D C$	540
- Magellanica, Juss.	334	Petroselinum prostratum, DC.	287
Osalis emneaphylla, Caz. (Suppl. 548)	253	Peziza Kergueleusis, Berk. Tab. CLIIV	
\qquad Magellanica, For\qquad pumila, D'U'r.	ib.	Fig. III. (Suppl. 5 osl).	451
	ib.	-- stercorea, Pers. Tab. CLXIII.	ib.
Panargyrmm ablreviatum, Hook. et Arm.	320	Philesia buxifolia, Lam.	355
	it.	Phleum alpinum, L.	371
\qquad Darwinii, Itook. et Airz. \qquad Layascce? DC. Panke, Fcuill.	it.	- Henkieanum, Presl,	ib.
	273	Plyllactue uliginosa, Forst.	325
Parmelia cincinnata, Ach.	533	Phyllophora cuneifolia, IIook. fil. et Har	456
- diatrypa, Ach. (Suppl. 547)	it.	- obtusa, Greo.	ib.
-- enteromorpha, Ach. (Suppl. 5 ¢7)	532	Physcomitrion, Brid..	399
	528	Pilea elliptica, Hook. fi.	344

Pinguicula Antaretica, Fukl, Tab. CXIX Page
—— obtusa, Banks ib.
Pinnularia borealis, Ehrb 511
——peregrina? Elurb 512
Pisum maritimum, 260
Pratia longiflora, Hook. fl 325

- repens, Gcud. ib.
Primoose, of Falkland Islands. 337
Protococcus stercorareus, Berk 501
Plagiochila, Nees et Mont 425
Plantago barbata, Forst. 339
- hirtella, II. B. K. 340
- imberbis, Hook. fil. 339
-_ monanthos, $D^{\prime} U_{r} r$. Tab. CXXI 340
- pauciflora, Lam. 339
- pauciflora, β., Barn ib.
-polymorpha, Bayks, ib.
Plante ì odeur \&c., Pern. 321
Pleurophyllum criniferum, Hook. fil. Suppl. 543
Plocamium cocciueum, Lyngb 474
- Hookeri, Harv. $i b$.
——? Magellauicum, Ilook. fil. et Hurv ib.
Poa Alopecurus, Kunth, 381
- alpina, Brongn. 379
- alpina, var. Banks, 380
- compressa, rur. D'Urv. 379
—— lanigera, Nees, Suppl 550
——nemoralis, L 379
- pratcusis, L. ib.
- scabernla, Hook. fil. 378
Podosfemia abbreriata, Ehrb 511
——cuneata, Elirb. 514
Pogonia tetraplylla, Poepp. 351
Polycarpon Magellanicum, L. fil. 282
Polygonum maritimum, L. 340
Polyotus, Gotts. 44
Polypodiam Pima-marina, Poir 393
- restitum, Forst. 392
Polypogon Chonoticus, Hook. fll. $37 \pm$
Polyporus versicolor, Fr. 448
Polysiphonia abscissa, Hook. fil. et Marv.
Tab. CLXXXIII. Fig. II480
Polysiphonia anisogona, Hook. fll. et Harv. Тав. CLXXXII. Fig. II 478
-_ atro-rubesceus, Grev. $i b$.
- Berkelcyi, Hook, fil. et Haro. 480
—— botryocarpa, Hook. fil. et Harv. Suppl 546
——Davisii, Hook. fil. et Harv. 480
—— flabelliformis, Hook. fil. et Harv
Tab. CLLXXIII. Fig. I. ib.
- fusco-mbens, Hook. fil. et Harv.
Tab. CLXXXII. Fig. I. 478
- mierocarpa, Hook. fll. et Harv
Tab. CLXXXII. Fig. III. 479
- pectinata, Ilook. fil. et Harv. 452
- punicea, Mont 480
- Sulivanæ, Ifook. fil et Harv.
Tab. CLXXXII. Fig. IV 479
- tenuistriata, IIook. fil. et Harv.
Tab. CLXXXIII. Fig. III. ib.
Polytrichum alpestre, Hoppe, 411
- compressum, Ilook. fil. et Wils. 410
—— dendroides, Schw. 411
—— jumiperinum, Hedw. (Suppl. 545) 410
-_ juniperinum, β., Hook 411
- Magellanicum, Hedve. ib.
- piliferum, Sclureb. ib.
—— squamosum, Hook. fil. et Wils.
Tab. CLIII. Fig. VIII ib.
Porina fallax, Pers 537, $540 \& 541$
—— Wulfenii, DC. 541
Porphyra laciniata, $A y$. 500
_-vulgaris, $A y$. ib.
Potato, wild, 329
Poteutilla auserina, L 264
Pottia Heimii, Bruch, 399
Primula decipiens, Duby, 337
- farinosa, var. β. Magellanica, Lelmn.
Tab, CXX $i b$.
- Magellanica, Lehm. $i b$.
Pringlea autiscorbutica, Hook. fil. Tab. XC-XCI. 239
Prionotes Americana, Hook. (Suppl. 549) 327
Pteris palmaformis, Pet. Th. 393

INDEX.

P'tilota Harveyi, Hook. fil. Tab. CLXXXVII. .. 487 Rhodymenia Palmetta, Grev ${ }^{\text {Page }}$
Pyxidula dentata, Ehrb. 508

- Hellenica, Elerb. $i b$.
_ n. sp.? ib.
- sp.? ib.
Racomitrium aquaticum, Brid. 402
- cataractarum, Braun, $i b$.
- fasciculare, Dilt. ib.
- heterostichum, Brid. $i b$.
- lanuginosum, Brid. 403
-_ microcarpum, Mont. Suppl. 545
-- protensum, Braun, 402
Radula, Nees, 442
Ramalina scopulorum, Ach. 522
- terebrata, Hook. fil. et. Tayl ib.
-_rerucosa, Hook. fil. et Tayl. ib.
Ranunculus biternatus, Sin 224
- crassipes, Hook. fil. Tab. LXXXl ib.
- Chileusis, DC. ib.
- exiguus, D'Urv ib.
—_flaccidus, Banks ib.
- hydrophilus, Gaud. Tab. LXXXII. B 226
__ Maclovianns, D'Urv. 225
——parvifforus, Gaud. ib.
—— peduncularis, Sin. $i b$.
- sericocephalus, Hook. fi. Tab. LXXXIII. $i b$.
- trullifolius, Hook. fil. Tab. LXXXII. A. 226
Rhaphoneis fasciolata, Elub. 514
--Scutellum, Elirb. $i b$.
Rlizosolemia Calyptra, Etrb 519
-_ ornithoglossa, Ehrb. $i b$.
Rhodomela ? comosa, Hook. fil, et Hare.
Tab. CLINXY. 482
- Gaimardi, Ag. Tab. Clixxxiv. 481
- glomeralata, Mont. Suppl. 546
-- patula, Hook. fil. et Harv.'Гab. CLXXXIII. Fig. IV481
Whodymenia corallina, Bory, 4.75
- fimbriata, Grev ib.
- glaphyra, Suhr, ib.
- Hookeri, Harv. ib.
_ palmata, Grev.
- sobolifera, Grev. ib.
—— rariegata, Mont. ib.
-_ variolosa, Hook. fil. et Ilarr.
Tab. CLXXX. 476
Ribes Magellanicum, Poir 278
Rostkovia grandiflora, Ilook. fil 357
- Magellanica, Hook. fil 358
Rubus Antarcticus, Banks, 263
- geoides, Sim. ib.
Rumex Acetosella, L 341
——crispus, L. ib.
- cuneifolins, Campd ib.
-_ Patientia? Gaud. ib.
Sagiua crassifolia, D’Urr. 248
- procumbens, L 24.7
Samolus littoralis, Br 338
- spathulatus, Duby, ib.
Sapinette, Pern. 307
Saxifraga exarata, Fill. 280
- Magellanica, Poir ib.
_- bicnspidata, Hook. fil. Tab. XCVII 281
Scandix clavata, Banks, 288
Scapania? densifolia, Gotts. 433
Scheffieldia repens, Forst 338
Schistidium apocarpum, Bruch, 401
- marginatum, Mook. fil. et H'ils.
Tab. CLI. Fig. VI. 399
- maritimum, Bruch, 401
Schizea anstralis, Gaud. 324
Schizonema sp.? 510
Schudia Chilensis, Molin 288
Scirpus melanostackys, D'Urv. 360
Sentellaria nummulariæfolia, ITook. fil. 336
Seytothalia Jacquinotii, Mont 456
Sea-pink, of Falklund Islands, 339
Sendtnera ochroleuca, Nees, 442
Senebicra australis, Hook. fil. (Suppl. 548) 241
Seuecio acauthifolins, Homb. et Jacq. 318
—— Andersoni, Hook.fil. 312
- Arnottii, Hook. fil. 314
___ candidans, $D C$. ТАв. CIX 312
Senecio cuneatus, ITook. fil.
Page
- Danyausii, Homb. et Jacq. 313
—— Darwinii, Mook. et Arn. 317
- Eightsii, Hook. et Amn ib.
- exilis, Homb. et Jacq 313
—— Falklandicus, Hook.fil. Tab. CX 316
—— floccidus, IIomb. et Jacq. 313
- Hookeri, Homb. et Jacq. 312
—— Kingï, Hook fil. 314
—— Laseguei, Homb. et Jacq. 313
- limbardioides, Hook. ct Arn. 314
—— littoralis, Guud. 318
—— littoralis, var. a., Gaud 316
-_ longipes, IIook. fit. 314
- miscr, Hook. fil. it.
- Patagonicns, Hook. et Arm. 313
- tricuspidatus, Banks, 317
— trifurcatus, Less. Tab. CVIII ib.
—— Websteri, Hook: fil. ib.
- vaginatus, Ilook. et Arn. 318
- verbascifolins, Homb. et Jacq. 316
- vulgaris, L 313
Seriola apargioides, Less. 323
- - ircana, Hook. et Am. ib.
——tenuifolia, Hook. ct Arn. ib.
Silene thysanodes, Fenzl. 246
Sisymbrium canescens, auct. 242
- glaciale, Forst. 232
- geraniifolium, Poir. 233
-_Magellanicum, Hook. fil. 243
- Sophia, L. 242
Sisyrinchium filifolium, Gaud. Tab. CXXII 352
—— Gaudichaudii, Dietr. il.
- laxum, Link, ib.
—? sp 3 3ั 3
- narcissoides, Cav if.
-_odoratissimum, Lindl. ib.
Solanum tuberosum, L 329
_- Commersonii, Poir 330
Sonchus oleraecus, L 324
Sorrel, of Falkland Islands, 252
Soaranthe Huanaca, Lag. 286
Spharococcus fimbriatus, Ag. 475 475
——flaccidus, Suhr,
Spharococcus subulatus, β., Ag. 477
Spluerozyga tenax, Hook. fil. et. Harv. 502
Sphacelaria fumicularis, Mont 169
- obovata, Hook. fil. et Marv. ib.
Spheronema sticticum, Berk: Tab. CLXIII.
Fig. I. 450
Sphærophoron australe, Laur. 530
- compressum, Ach. ib.
- coralloides, Ack 529
—— tenerum, Laur. 530
Sphagnum condensatum, Brid. 395
- cuspidatum, Elork. ib.
- cymbifolium, Dill. 16.
—— fimbriatum, Wils. ib.
——obtusifolium, Hook ib.
Splachnum Magellanicum, Brid. 400
-plagiopus, Mont. Suppl 515
Sporidesmium adscendens, Berk. 450
Sporocturus medius, Ag 466
Sprucca, Hook: fit. et Hils. Suppl. 545
Stachys Chonotica, IIook. fil. 336
Statice Armeria, L. 339
- crespitosa, Poir it.
Stamoptera aspera, E her 512
- capitata, Elurb. ib.
Stcllaria debilis, $D^{\prime} U^{\circ} \cdot v$. 250
- lanceolata, Poir. ib.
——media, With ib.
- rotundifolia, Poir. ib.
Stereocaulou alpinum, Fr 529
- Argus, Hook. fil. et Tayl. Suppl. 546
- corallinum, Fr 428
- denudatum, Somm. 529
-paschale, Ach. 528
- ramulosum, Ach it.
Stercocladon Lyallii, Mook:fil. Tab. CLXXIV. 468
Stereorylon serratum, Poir. 279
Sticta Billardieri, Del. (Suppl. 547) 527
-_ citrina, Pers. ib.
- croeata, Limn. 525

INDEX

Sticta divulsa, Hook. fil. et Tayl. Page

- D'Urvillei, Del. 525
- fareolata, Del. 527
- filicina, Ach 528
——favicans, Hook. fil. et Tayl. 525
—— Freycinetii, Del. (Suppl. 547) 528
——fuliginosa, Hook. fil. et Tayl. 525
--fulvo-cinerea, Mont 528
-Gaudichaudii, Del. 525
- glabra, Hook. fil. et. Tayl. 528
- hirsuta, Mont. 526
- impressa, Hook. fil. ct Tayl. 525
- ochracea, Menz. ib.
-- orygmæa, Ack. 526
- obvoluta, Ack. ib.
—— Richardi, Mont. Suppl 547
-- Richardi, Mont 527
- scrobiculata, Ach ib.
—— Thouarsii, Del. ib.
Stictosiphonia fastigiata, Hook. fil. et Haro 484
- Hookeri, Harv. Тав. CLXXXVI.
Fig. II. 483
——raga, Hook. fil. et Ifarv. Tab. CLXXXYI.
Fig. I 484
Surirella? australis, Eirb 509
Surartzia capillacea, Hedw. 408
Synedra Ulna, Elurb. 509
symbolophora? Hexas, Elurb 514
—— Nicrotrias, $\mathrm{Eln} \cdot \mathrm{b}$ $i b$.
__? Pentas, Ehrb $i b$.
- ? Tetras, Ehrb ib.
Symphyostemon nareissoides, Miers 353
Syntrichia hyperborea, Brid. 410
-_mucronifolia, Br. ib.
Taraxacum coronopifolium, Gaud 324
—— Dens-leomis, Desf. Tab, CXII. in part 323
- lavigatum, DC. $i b$.
——pumilum, Gand. 324
Tapeinia Magellanica, Juss. Tab. CXXIX.
(sub nom. Sisyr. pumilum.) 3 зั3
Tea, of Falkland Islands. 276
Tetroncium Magellanicum, Willd.Tab. CXXVIII.359
Thamnophora Magellanica, Mont. Page
Thelimytra uniflora, Hook. fil. Suppl 544
Thilco, Feuit. 269
Thlaspi Magellanicum, Pers. 241
Thrift, of Falkland Istands. 339
Thuja tetragona, Hook. 350
Tillca moschata, DC 278
Torresia Mayeltanica, Pal. 375
Tortula densifolia, Hook. fil. ct Wils.
Tab. CLIII. Fig. I. 409
——gracilis, ILook. fil. et Wits. Tab. CLIII410
- hyperborea, Mont. ib.
—— levipila, Hook. fl. et Wils ib.
_— Mulleri, Hook. fit. et IVils. 409
— robusta, Hook. 'Tab. CLIII. Fig. II ib.
Tremella mesenterica, Retz, 449
Triache pygmaa, Cass. 319
Trianthus ulicinus, Hook. fil. 320
Triaulacias triquetra, Elurb. 517
Trichomanes cespitosum, Bory, 391
- flabellatum, Hook: ib.
——Flabellula, D'Urv. ib.
Trichostomam fasciculare, Schw 402
——heteroslichunt, Hedw ib.
—— lanuginosum, Hedw 403
- longifolium, Brid 408
- pallidrm, β ib.
Triglochin Capense, Thunb. 360
- Magellanicum, Vahl, 359
- maritimum, Drege, 360
——Monte-Vidense, Spreng. $i b$.
-reflexum, Vahl, 359
360
-

Triodia Kerguelensis, MIook. fit.
Tab. CXXXVIII. (sub nom. Poce.) 379

- Antarctica, Hook. fil. 380
Trisetum Audinum, Beuth. 377
-_ subspicatum, Beauv i ib.
Triticum glaucum, Lam. 389
——repens, L. ib.
-_ repens, var., Brougn. ib.
Tropidolepis diffusa, Tausch
Page
Trypothallus anastomosans, Hook. fil. et Harv.
Tab. CXCIV. Fig. 1. 501
Tussock-grass, 384
Tussilago trifurcata, Forst. 317
Ulva crispa, Lightf. 498
- cristata, Hook. fil. et Harv 499
- Lactuca, L 498
- latissima, L. ib.
- Linza, L. ib.
- rigida, $A y$. ? ib.
- tessellata, Hook. fil. et Harv. 499
- umbilicala, Sm. 500
T'ncinia Douglasii, Boolt, 369
- Kingii, Boott, Tab. CXLV. 370
- Macloriana, Gaud. ib.
- multifana, Nees, ib.
- phleoides, Pers. 369
- tenuis, Poepp. 363
Urceolaria calcarea, Ach. 537
- eudochlora, Hook. fil. et Tayl. ib.
—— erubescens, Hook. fil. et Tayl. $i b$.
- inecropthatmu, Hook. til. et Tayl. 585
- scruposa, B., Fries, 537
-_ sordida, Fries, ib.
Uredo candida, Pers. 451
Urtica allstralis, Huok. fil. Suppl. 544
- Darwinii, Hook. fit. 343
- Magellanica, Poir. 344
Usnea aurantiaco-alra, D'Urv. 520
- barbata, Ach. 521
- fasciula, Torr. 520
- florida, Ach. 522
- melaxantha, Ack. 519
- plicata, Ach. 521
- sphacelata, Br. $i b$.
-— Taylori, Hook. fil. Tab. CJCV. Fig. I ib.
Valeriana carnosa, Sin 304
Valeriana lipathifulie, Fahl, Page
- Magellanica, Homb. et Jutq. 304
- Mrayellanica, Lam. ib.
- sedifolia, D'Urv. ib.
Vaucheria cæspitosa, $A y$. 492
——Dillwyuii, Ag $i b$.
Veronica decussata, Ait. 334
- elliptica, Forst. ib.
— salicifolia? Forst. Suppl. 544
- scrpyllifolia, L. 334
Verrucaria gelida, Hook. fil. et Tayl. 541
-- punctiformis, Ach. Suppl. 547
- stignatella, E. B. ib.
- 1umbrina, Ach. Tab. CXCYIII. Fig. IV. 541
Ticia Kingii, Hook. fil. 258
- Magelianica, Hook. fil. 257
- P'atagonica, Hook. fil. 259
Tiscuma ambigutm, Hook. et Arn. 291
——flavescens, Comm. 289
Viola Commersonii, DC. 245
- maculata, Cav. 244
- Magellanica, Forst. ib.
- pyrolafolia, Poir. $i b$.
—— tridentata, Menz. 245
Weissia acuta, Hedu. 404
-- contecta, Hook. fil. et Wils. il.
- crispula, Ladio. 16.
——stricta, Mook.fil. et IVils. Tab. CLII.
Fig. II:il.
— tortifolia, Hook. fit. et Wils. Tab. CLII.
Fig. 1 405
Finter's Bark, 229
Winterut aromatica, Murr. $i b$.
-_ aromatica, Sol. ib.
Witsenia Magellanica, Pers. 353
- pumila, Vahl, ib.
Zignoa clathrata, Trecis. Suppl. 546
Zygoccros australis, Ehrb. 518

MESSRS. REEVE, BROTHERS,

 King william street, strand.
THE

BOTANY OF THE ANTARCTIC VOYAGE

OF H.M. DISCOVERY SHIPS EREBUS AND TERROR IN
THE YEARS 1839—1843,
UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S. \&e.

B)

On the First of She weas publishied Pabt I.
OFTHE

FLORA ANTARCTICA.

To be Published in Twenty Monthly Parts, size Royal Quarto, each Number containing eight beantifully Lithographed Plates of new or imperfectly known species, with sixteen pages of deseriptive Letter-press ; price ss. coloured, $5 s$. phain.

The Flora Antarctica is intended to give a complete history of the Vegetation of the Antarctic Regions, namely, such lands as are situated between the parallels of 50° and 78° South, the utmost limit that has been attained by Navigators. It will comprise an account of the Plants of Lord Auckland's and Campbell's Islands, of Kerguelen's and the Falkland Islands, of Tierra del Fuego, and of all the South Circumpolar Regions. Amongst other novelties will be included accounts of the Cabbage of Kerguelen's Island, a plant entirely new to science, though discovered and beneficially used during Captain Cook's Voyage ; the Tussac and other grasses of the Falklands; the Beech-trees, evergreen and deciduous, of Cape Horn, and many productions of great botanical interest.

In addition to the extensive collections made by the Officers of the Erebus and Terror, during three years spent in the high southern latitudes, the still unpublished Herbaria formed by Sir Joseph Banks, Forster, Solander, and Menzies, all deposited in the British Museum, are placed at the Author's disposal by the kindness of Mr. Brown, as are also the plants of Capt. Fitzroy's Voyage, by Mr. Darwin and Professor Henslow. These materials, together with species from private Herbaria, especially that of Sir William Jackson Hooker of the Royal Botanic Garden at Kew, will enable the Author to make a very important addition to the extra-tropical Botany of the Southern Hemisphere.

As the Lords Commissioners of the Treasury have been pleased to grant a liberal sum of money towards defraying the expense of the Plates, Messrs. Reeve are enabled to produce the work in the most careful and highly finished style, at a price considerably below that of similar publications, giving the full benefit of the Admiralty grant to the public.
N.B. The Flora Antarctica, complete in itself, will be followed by two others, for which ample materials were collected during the same V oyage :-riz.

The Flora Nove Zelandif, or Botany of New Zealand, illustrated with 140 Plates; and the

Flora Tasmanici, or Botany of Van Diemen's Island, illustrated with 200 Plates.

Reeve, Brothers, Natural-History Lithographers and Publishers, No. 8 King William Street, Strand.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF

H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843,

UNDER THE COMMAND OF

CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S. \&c.

BY

fOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND BOTANIST TO THE EXPEDITION.

Vicfuria Barrier and Land. Lat. 78° S. Monnt Erebus (active Volcano), and Mount Terror.

Foublished under the zuthority of the zorDs Commissioners of the zomitaite.

LONDON:

REEVE, BROTHERS, NATURAL HISTORY LITHOGRAPHERS, KING WILLIAM STREET, STRAND, FORTIN, MASSON \& CO., PARIS.

CONCHOLOGIA SYSTEMATICA,

OR COMPLETE SYSTEM OF CONCHOLOGY:

IN WHICH THE LEPADES AND MOLLUSCA ARE DESCRIBED AND CLASSIFIED ACCORDING TO THEIR NATURAL ORGANIZATION AND HABITS;

BY LoVELL REEVE, A.L.S., F.Z.S Etc.
WITH 300 HIGHLY-FINISHED COPPER-PLATE ENGRAVINGS, BY MESSRS. SOWERBY;
CONTAINING ABOVE 1500 FIGURES OF SHELLS.

Abstract

A Tabula Methodica, showing the distribution of the genera at one view, is given at the commencement; and every genus is then faithfully described in detail, illustrated by one or more plates of as many species of shells as may be considered of interest; whilst its origin and distinguishing characters, the various situations to which it has been assigned in the system by different authors, and the peculiarities of habit and organization of the animals referred to it, are at the same time fairly discussed. Amongst the genera adopted, are included nearly the whole of those advocated by Lamarck; the author has at the same time carefully abstained from introducing any new ones of his own, and only such of those proposed by modern authors are admitted as have resulted from positive discovery. It has, however, been considered useful to notice the superfluous genera of modern speculators in the places to which they refer, and to include them in an index of nomenclature at the end of each volume.

The Work is divided into two volumes; the first contains the Lepades and Bivalve Mollusks, illustrated by 130 plates of shells, and the second contains the Univalve Mollusks, illustrated by 170 plates, including in all above fifteen hundred figures of more than a thousand species, many of which are entirely new to science, and of great intcrest to collectors.

$\begin{aligned} & \text { Vol. I. } \text {. . The Bivalve Mollusks . . . } 130 \text { Plates. } \\ & \text { Vol. II. . } \\ & \text { Neutly bound in cloth, }-£ 10 \text { Coloured, }-£ 6 \text { Plain. }\end{aligned}$

Now in course of Publication in Numbers-A Number of Eight Large Quarto Plates, with descriptive text, on the First Day of every Month, Price 10s. Coloured,

CONCHOLOGIA ICONICA;

A REPERTORY OF SPECIES OF SHELLS.

By LOVELL REEVE, A.L.S., F.Z.S., Etc.
AUTHOR OF THE 'CONCHOLOGIA SYSTEMATICA.' lllustrated with original figures drawn and lithographed expressly from nature
By G. B. Sowerby, Jun.

The Conchologia Iconica was introduced at the commencement of the year 1843 for the purpose of illustrating all the known species of Shells by good natural-sized figures, and new and elaborate descriptions; neither pains nor expense have been spared to gain information and obtain specimens from every possible source, and this unabated desire to perfect the Work, coupled with the regularity of its monthly issue, has established a circulation which is most encouraging to the Author-proprietor.

The following genera being now completed, monographs of any of them may be had separately in neat stiff covers:-

The genera Pleurotoma and Mitra are now publishing.

THE B OTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839-1843,

UNDER THE COMMAND OF

CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S. \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND botanist to the EXPEDITION.

Woublisbed under the Zuthorite of the ZlotDs Commissioners of the Zlomitate.

> LONDON:

REEVE, BROTHERS, NATURAL HISTORY LITHOGRAPHERS, KING WILLIAM STREET, STRAND, FORTIN, MASSON \& CO., PARIS.

THE BOTANY
 OF

 THE ANTARCTIC VOYAGE

 THE ANTARCTIC VOYAGE}

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843,

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S. \&c.

Woublisbed under the zuthority of the Lords Commissioners of tb: Admitalty.

LONDON:

REEVE, BROTHERS, NATURAL HISTORY LITHOGRAPHERS, KING WILLIAM STREET, STRAND, FORTIN, MASSON \& CO., PARIS.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF

H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843,

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S. \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., assistant surgeon of the "erebus" and botanist to the expedition.

Victoria Barrier and Land. Lat. -8° S. Mount Erelus (active Volcano), and Mount Terror.

Wublisbed under the aluthority of the Zards Commissioncts of the Zomitalty.

LONDON:

reeve, brothers, natural history lithographers, king william street, strand, FORTIN, MASSON \& CO., PARIS.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

Wublishe under the Sluthorite of the fords Commissioners of the Zlomiralty.

LONDON:

DR. HOOKER'S FLORA ANTARCTICA.

Messrs. Reeve, Brothers, beg leave respectfully to inform the publie, that, at the request of several eminent Cryptogamic Botanists, they iutend to print a few copies of the Cryptogamic part of this important work in a separate form : these will be complete in themselves, distinctly paged, and accompanied with separate Titlepage and Index.

The first Part of the Cryptogamia of Lord Auckland's and Campbell's Islands will appear on the 1st of February 1845, contaning the Mosses, Hepaticce, Sea-weeds and Fungi. This portion will be concluded in Three Parts, comprizing forty-eight pages of letter-press and twenty-four plates, royal quarto, containing figures of about 120 different species. Price of the whole, 15 s . plain, or beantifully coloured after nature, £1:4s.

The Cryptogamia of the other Antarctic Islands will be published in the same year, contained in about Four similar Parts; the price of each part, in all cases, being the same, viz. 5s. plain, 8s. coloured. On the termination of the Floras of Van Diemen's Land and New Zealand, their Cryptogamic Botany will be similarly illustrated.

The very limited sale and great expense attending works of this description, oblige the Publishers to prepare very few copies in this form. Messrs. Reeve request therefore to be understood, that they inteud to print only so many extra copies of the Cryptogamia, as they shall have received the names of Subscribers for, before the 16 th of Jammary. To prevent disappointment, it is earnestly requested that Subscribers, whether they purpose taking the work direct from the publishers or through another channel, will favour Messrs. Reeve by communicating their intention.
\&, King WilliaM Street, Strand.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

 OFH.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF

CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S. \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S.,
ASSISTANT SURGEON OF THE "EREBUS" AND BOTANIST TO THE EXPEDITION.

LONDON:

PRINTED AND PUBLISHED BY REETE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, masson, et cie., paris.
1845.
4 +
$41+2$

$$
\begin{equation*}
* \tag{4}
\end{equation*}
$$

*1
$+$

NEW AND IMPORTANT SCIENTIFIC WORKS

P RINTED AND PUBLISHED BY REEVE, RROTHERS, KING WHLIAM STREET, STRAND.

```
        3atany.
        1.
    UNDER THE AUTHORITY
    of the lobds commishioners of the admibalty,
```


FLORA ANTARCTICA, the

BOTANY OF THE ANTARCTIC VOYAGE of H.M. Ships Erebus and Terror, 1839-1843 under the command of
CAPT. SIR JAMES CLARK ROSS, KT., R.N., F.R.S. BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S. Botavist to the Expedition.
To be completed in Twenty Monthly Parts, price 8s. col. 6s. pl. [Part VIII. now ready.

2.

CRYPTOGAMIA ANTARCTICA, тне
cryptogamic portion of the above, containing the
yosses, hepatice, sea-medds, fungi, \&c. BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S. Botanist to the Expedition.
To be completed in Seven Monthly Parts, price 8s. col. 6s. plain. So large a portion of Cryptogamic, as compared with Pbenogamic Plants, were collceted in the Antarctic Regions during this Expedition, and they contain so much of interest and novelty, that it has been thought desirable, at the suggestion of several eminent Cryptogamic Botanists, to publish this portion of "The Antafctic Botany" in a separate form.
[Part I. now ready.

3.

In a handsome volume, Royal Quarto, containing twenty-three beautifully coloured Plates, price One Guinea, neatly bound in cloth;

MADEIRA

FLOWERS, FRUITS, AND FERNS; a selection of the
choicest botanical productons of that island, foreign and indigenous,

Drawn and Coloured from Nature,
BY J. WALLAS PENFOLD,
of the Achada, Madeira.
[On the 1st March.
4.

In a bandsome volume, Folio, containing eight large beautifully eoloured plates, price One Guinea, neatly bound in eloth.
a selection of
MADEIRA FLOWERS, drawn and coloured from Nature,
By AUGUSTA J. ROBLEY. of Madeira.
[On the 1st Mareb.

CanchaIagn.

1.

Jnst published, at a reduced price,

CONCHOLOGIA SYSTEMATICA.

of complete system of conchology:
in which the Lepades and Mollusea are described and classifed according to their natural organization and habits;
by lovell reeve, a.l.s., f.Z.S., etc.
Illustrated with 1500 highly-finished copper-plate Engravinge, By Messrs. Sowerby;
Two volumes quarto, price $£ 10$, coloured. [Originally published in Twelve 21s. Parts.

2.

By the same Author,
Now in conrse of Publication in Numbers; Eight Large Quarto Plates, with descriptive text, on the First Day of every Montb, Price 6s. Plain, 10s. Coloured.

CONCHOLOGIA ICONICA :

a repertory of species of shells.
Illustrated with original Figures drawn expressly from Nature by G. B. Sowerbt, Jun.
Names of the Genera published,

Arca.	Cypiricardia.	Pectunculus.
Cardita.	Dephinula.	Phorus.
Cardium.	Glauconome.	Pleurotoma.
Conus.	Harpa.	Pullicipes.
Corbula.	Mitra.	Rauella.
Crassatella.	Myadora.	Triton.

N.B. Any of the genera may be had separately in monographs.
[Part XXV. now ready.

3.

In one volume octavo, cloth, or in sheets for labelling,
Price One Guinea,
THE CONCHOLOGIST'S
NOMENCLATOR,
SYSTEMATIC AND ALPHABETICAL CATALOGUE OF ALL THE KNOWN SPECIES OF SHELLS,
accompanied with synonymes, and references to where figured, or described,
BY AGNES CATLOW AND LOVELL REEVE.
N.B. For the convenience of remarks, and the addition of new species, copies will be sold interleaved with faint lines.
[Nearly ready.

※alagg.

1.

To be completed in Twenty Monthly Parts, small Folio, price 10s. 6d. coloured. The First Part to be published as soon as the Names of One Hundred Subscribers are obtained.
(By Permission of the Council of the Zoological Society.)

ZOOLOGIA TYPICA,

fleures of new and rare mammals and birds described in the Proceedings or exhibited in the collectious of the Zoological Society of London.

BY LOUIS FRASER,
Curator to the Society; Naturalist to the Niger Espedition, 1841-42.
N.B. Specimens are in preparation and further particulars will be shortly announced.

THE BOTANY

of

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Кт., R.N., F.R.S., \&c.
BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., assistant surgeon of the "eribus" and botanist to the expedition.

LONDON:

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF

H.M. DISCOVERY SHIPS EREBUS AND TERROR
 IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S., \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND BOTANIST TO THE EXPEDITION.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLLAM STREET, STRAND, fortin, masson, et cie., paris.

LLLUSTRATIONS OF THE WISDOM

AND

BENEVOLENCE OF THE DEITY

as Manifested in natúre.
By HENRY EDWARDS, LL.D., D.D., Etc.

"There is a power above us
And that there is, all Nature cries aloud
Through all her works."

CHAPTER I.

as mantrested in the minute creations of organic life.
Animalcules-Their Minute Strueture-Powers of Reproduction-Universal Diffnsion-Benefit to Mankind-Arrest of Putrefaction-Nutriment to Plants.

CHAPTER Π.

as MANIFESTED IN THE CHEMICAL CONOITION AND PRESSURE OF THE ATMOSPHERE.
Composition of the Air-Mixture of Gases-Charcoal in Plants-Functions of Plants-Re-action hetween Plants and Animals-Permeating Property of Gas-Affinity of Oxygen-Law of Evaporation - Weight and Pressure of the Air.

CHAPTER $1 I I$.

AS MANIFESTED IN THE CONSTITUENTS OF THE EARTH AND OF WATER.
Elements of the Earth-Of Watcr-Intensc Combination of Gases-Process of Oxydation-Dis. trihution of Metals-Important Propertics of Iron-Valuc and Abundanee of Lime-Presence of Lime in Shells, Vegetables, \&c.-Dissemination of Poisonous Substances.

CHAPTER VI.

AS MANIFESTED IN THE ORGANIC COMPOSITION OF PLANTS AND ANIMALS.
Organic Chemistry-Gases in Plants-Convulsions of the Earth-Mixture aud Combination of Materials-Origin and Composition of Flesh-Transformation of Animal and Vcgetahle Atoms -The Aldchyde of Liehig.

CHAPTER V.
AS MANIFESTED IN THE BENEFLCIAL DISTURBANCE AND NEW ARRANGEMENT OF PARTICLES OF MATTER.
Conversion of Starch into Sugar-Constituents of Quinine-Law of Reciprocity between the Components of Plants and Animals-Animal Chemistry-Salt in the Blood-Fibrine-Caseine -Continual Process of Decomposition and Recomposition-Dccomposing Principle of Oxygen.

CHAPTER VI.

AS MANIFESTED IN THE PROPERTIES OF LIGHT AND ELECTRICITY.
Influcnce of Light upon Plants and Animals-Upon the Formation of Crystals-Electricity, a Modification of Caloric-Magnetie Property of the Earth-Infnenee of Electricity upon Vege-tation-Conducting Power of Vegetahle Points-Effects of Magnetism upon the System-The Brain, an Electrieal Battery.

CHAPTER VII.

SUMMARY AND CONCLUDING REMARKS.
An interesting and familiar Summary of natural phenomena addressed to young Philosophers, and all who desire to
"Find tongucs in trees, books in the ruming hrooks,
Sermons in stones, and good in every thing."
Refve, Brothfre, King William Street, Strand.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S., \&c.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, Masson, ét cie., paris.
1845.

PHYCOLOGIA BRITANNICA

${ }^{0} \mathrm{r}_{3}$

BY

WILLIAM HENRY HARVEY, M.D., M.R.I.A.,

This Work will contain coloured figures, carefully drawn on stone by the author, representing the natural size and magnified dissections of every species, accompanied by generic and specific characters, synonymes, British habitats, the geographical distribution and general history of each individual, in a fuller and more perfect manuer than has yet been attempted in any work exclusively deroted to the illustration of British Algw. Appearing periodically, the general plan of similar publications, snch as the 'English Botany' and Greville's 'Scottish Cryptogamic Flora', will be followed; namely, each number will contain six species, selected without reference to systematic order, but at the conclusion of each volume, and more fully at the completion of the entire work, systematic and alphabetical indices will be added;-and finally, a general Introduction, to be prefixed to the last volume, will complete the History.

The beanty and variety of form, and the extraordinary delicacy of colour and structurc which distinguish the marine Algæ have cver rendered this tribe of plants a farourite object of study. But hitherto a serious want has been felt of an adequately illustrated work, devoted to these beautiful plants. The admirable figures by Greville comprise but a few of the more remarkable species, while the plates in the 'English Botany,' though excellent in their way, being, in several instances, drawn from imperfect specimens, do not afford that justice to the subject which modern discoveries and improvements require. To supply this want the present History has been projected; and Messrs. Reeve confidently trust that by producing it in an attractive form, and at an extremely moderate price, they will afford to the student the assistance which he so much requires, and ensure to their publication the patronage of the scientific public.
As a specimen of plates of Sea-weeds, published by them, Messrs. Reeve appeal to those which have already appeared in Dr. Hooker's 'Flora Antarctica,' now in progress, a work which, for beanty of execution, lias never (they may be permitted to say) heen excecded in this country. The plates of the Phycologia Britannica will be printed on the same paper, and coloured with equal care, and as they will all be exccuted hy Dr. Harvey, whose acquaintance with the subject is generally known, the Publishers feel confident of producing a work equally worthy of support.

Size royal octaro, to be completed in Sixty monthly numbers, each containing Six Coloured Plates, with descriptive text, price $2 s .6 d$.
${ }^{*}{ }^{*} *$ A few copies will be printed on large paper of superior quality, price $5 s$. ; but as a very limited number will be prepared in this style, Subscribers are requested to send intheir names to the Publisbers as early as possible.

Important new Work on the Physical History of Brazil.

Messrs. Reeve, Brothers, beg to announce that they are preparing for publication, complete in two vols., 8 vo , price 24 s ., illustrated with a Map, and View of the Organ Mountains, a work of considerable interest, general and botanical, entitled

TRAVELS

${ }^{\text {in tris }}$

INTERIOR OF BRAZIL,

PRINCIPALLY
'THROUGH THE NORTHERN PROVINCES

AND
The Gold and zaímond zistrirts.

BY
GEORGE GARDNER, F.L.S., Etc.

Tue present volumes are not offered to the public under an impression that they contain a better history of certain portions of Brazil than is to be found in the works of other Travellers, but because they include the description of a large tract of that immense Empire of which the world has as yet had no account. Independant of the general condition of the country, the author has endeavoured to give a faithful picture of its physical aspect and productions; and some cursory remarks are added on the characters, habits, and condition of the different races, whether indigenous or otherwise, of which the population of those parts tbat he visited is now composed. Besides travelling along the coast, his journeys into the interior were numerous. During his last expedition which extended from North to South from the Equator to the twenty-third degree of south latitude, and from East to West from the coast to the tributaries of the Amazon, tbough suffering numerous privations, his enthusiasm surmounted all difficulties. Hc laboured diligently in the pleasing vocation of a Naturalist, and his troubles were amply repaid, not only by the incidents and pleasure which such wanderings always afford to the lover of nature, but by the gratification of having contributed to no inconsiderable extent to the Flora and Fauna of that region.

ON THE FIRST OF JANUARY, 1846.

1.

CURTIS'S BOTANICAL MAGAZINE,

Edited by SIR WILLIAM JACKSON HOOKER, K.H., D.C.L., \&c., Director of the Royal Gardens of Kew. Vol. I., of the Third Series, for 1844, price $27.2 s$., cloth; also Vol. 1., of the Third Series, a beantiful edition on large paper, size royal quarto, price $47.4 s$. cloth.
${ }^{*}{ }_{\text {** }}$ * The Publishers take this opportunity of announcing that, in order to give effect to the forthcoming novelties, as well as to the improvements lately made in the drawing and typography of this highly favoured Work, a handsome large-paper edition will be issued on the Ist of every month with the usual octavo, price 7s.-All Subscribers of the present year who may be desirons of taking the large-paper edition can have their octavo copies allowed for to the full amount.

2.

A CENTURY OF ORCHIDACEOUS PLANTS,

Consisting of a hundred of those most worthy of cultivation, systematically arranged, and illustrated with Figures and Dissections, chiefly executed by Mr. Fiten; the descriptions by Sir Wilmam Jackson Hooker, K.H., D.C.L., \&c., Director of the Royal Gardens of Kew; with copious remarks on the culture and mode of treatment, and illustrative figures, by Јонn Lrons, Esq., of Ladiston, author of "A Practical Treatise on the Management of Orchidaceous Plants." A handsome large-paper edition, size royal quarto, to be completed within the year in Twelve Monthly Parts, price $10 s .6 d$. each, coloured; 7 s . plain.

REEVE, BROTHERS, KING WILLIAM STREET', STRAND.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF

H.M. DISCOVERY SHIPS EREBUS AND TERROR
 IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, K'r., R.N., F.R.S., \&c.
$B I^{-}$
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND botanist to tie expedition.

> LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KLNG WILLIAM STREETY, STRAND, fortin, Masson, et cie., paris.

PLANETARY AND STELLAR UNIVERSE.

WITII NUMEROUS ASTRONOMICAL DIAGRAMS.

BY

ROBERT JANES MANN.

CHAPTER I.

THE TELESCOPE
Invention of Instrument, First Astronomical Employment-Radiant Light-Optieal Iroperty of Lenses-Camera Obseura-The Eye-Illmminating and Magnifying Powers of Teleseope-Its Parious Construction-Astrononical Refraetor-Reflectors,-Gregorian, Newtonian, and Le-Mairean-The Parsonstown Leviathan.

CHAPTER II.

REVELATIONS OF THE TELESCOPE-THE MOON.
A solid opaque Sphere of large size-Without Atmosphere or Water-Inequalities of SurfaceShadows at Quadrature-Height of Projections-Explosive Craters, Tycho-Isolated PeaksMonntain Ridges-Extended Plains-Recent Extinet Volcanoes, Copernicus, Kepler, Aristar-chus-General Conelusions.

CHAPTER III.
REVELATIONS OF THE TELESCOPE-THE PLANETS.
Mercury-Venus, its Phases, Atmosphere, and Seasons-Mars, its Continents, Atmosphere, and Snows-the Asteroids-Jupiter, its Belt, Perpendieular Axis, and Satellites-Deduction of Rate of Propagation of Light-Saturn, its Rings and Satellites-Hersehel.

CHAPTER IV.

REVELATIONS OF THE TELESCOPE-THE SUN.
Apparent Motions of Sun-Its real Rotation-Maeulæ of Surface, their Nuclens and UmbræAnalogy with terrestrial atmospherie Changes-Faeule of Surface-Solar Constitution, a Nucleus and double Atmospherc-Estension and Attenuation of outer Envelope-The Solar System as a whole.

CHAPTER V.
REVELATIONS OF THE TELESCOPE-THE FIXED STARS.
Parallas-The Means of cstimating the Distances and Dimensions of the Sun and PlanetsClassification of fixed Stars-Their apparent Motions-Arrangement in Space-Star Firma-ment-Periodic Stars-Donble Stars-Their Revolution and Complementary Colours of Con-stitnents-Quadruple Star-Star Clusters-Remote Star Firmaments.

CHAPTER VI.

REVELATIONS OF THE TELESCOPE-NEBULE AND COMETS.
Irresolvable Nebule-Nebulous Stars-Theory of Nebular Condensation-Comets-External Characters-Intimate Constitution-Luminusity-Volume and Density-Nature of OrbitsHalley's, Eneke's, Biela's, Faye's, De Vico's, Lexel's-Occasional Comets-Material pouderable, but seat of some imponderable Elements-Sympathetic relation to Solar Sphere.

CHAPTER VII.

TIIE TELESCOPE IN THE OBSERVATORY.
Man's primeval Notions of the Universe-Origin of Astronomical Observations-Progress of the Seience in Chaldea, Egypt and Greece.-Pythagoras.-The barbarous and dark Ages; Astrology in Arabia, and Spain-16th. Centwry; Coperniens, Tycho Brahe.-17th Century; Kepler, Galileo, Gascoyne, Picard, and Romer; The Transit and Mural Cirele.-ISth Centnry Establishment of National Observatories.

CHAPTER VIII.

MIPORTANCE OF TELESCOPIC OBSERVATION TO THE THEORIES OF PHYSICAL ASTRONOMY.
Newton; lis deluctions from Kepler's Laws.-Examination of the Nature of the Deflecting Power acting apon the Moon-Picard's Measure of a Degree-Identification by it of Deflecting Force with Terrestrial Gravitations.-Extension of Principle to Investigation of Perturbatious and Densities of Planets.-Adaptation of Projectile and Deflecting Forces to Elliptical Motion.

SPLENDID NETI WORK ON THE BRTTISH SEA-TVEEDS.

Messrs. Reeve lave the pleasure to announce that on the 1st of January 1846, will be published No. I. of the

PHYCOLOGIA , BRITANNICA

OR,

HISTORY OF THE BRITISH SEA-WEEDS.

BY

WILLIAM MENRY MARVEY, M.D., M.R.I.A.,

This Work will contain coloured figures, carefully drawn on stone by the author, representing the natural size and magnified dissections of every species, accompanied by generic and specific characters, synonymes, British habitats, the geographical distribution and general history of each individual, in a fuller and more perfect mamer than has yet been attempted in any work exclusively devoted to the illnstration of British Algæ. Appearing periodically, the gencral plan of similar publications, such as the 'Enghish Botany ' and Greville's 'Scottish Cryptogamic Flora', will be followed; namely, each number mill contain six species, selected without reference to systematic order, but at the conclusion of each volume, and more fully at the completion of the entire work, systematic and alphabetical indices will be added;-and finally, a general Introduction, to be prefixed to the last volume, will complete the History.

The beauty and variety of form, and the extraordinary delicacy of colour and structure which distinguish the marine Algæ have ever rendered this tribe of plants'a favourite object of study. But hitherto a serious want has been felt of an adequately illustrated work, devoted to these beautiful plants. The admirable figures by Greville comprise but a few of the more remarkable species, while the plates in the 'English Botany,' thongh excellent in their way, being, in sevcral instances, drawn from imperfect specimens, do not afford that justice to the subject which modern discoveries and improvements require. To supply this want the present History has been projected; and Messrs. Reeve confidently trust that by producing it in an attractive form, and at an extremely moderate price, they will afford to the student the assistance which he so much requircs, and ensure to their publication the patronage of the scientific public.

As a specimen of plates of Sea-weeds, published by them, Messrs. Reeve appeal to those which have already appeared in Dr. Hooker's 'Flora Antarctica,' now in progress, a work which, for beauty of execution, bas never (they may be permitted to say) been exceeded in this country. The plates of the Purcologia Britannica will be printed on the same paper, and coloured with cqual care, and as they will all be exccuted by Dr. Harvey, whose acquaintance with the subject is generally kuown, the Publishers feel confident of producing a work equally worthy of support.

Size royal octavo, to be completed in Sixty monthly numbers, each containing Six Coloured Plates, with descriptive text, price 2s. $6 d$.
** A few eopies wiil be printed on large paper of superior quality, priee $5 s$.; but as a very limited number will be prepared in this style, Subseribers are requested to send in their names to the Publishers as early as possible.

London: Reeve, Brothers, King William Street, Strand.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S., \&c.

BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND BOTANIST TO THE EXPEDITION.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, Masson, et cie., paris. will be published No. I. of the

PHYCOLOGIA BRITANNICA

or,

BY

WILLIAM HENRY HARVEY, M.D., M.R.I.A.,

This Work will contain coloured figures, carefully drawn on stone by the author, representing the natural size and magnified dissections of every species, accompanied by generic and specific characters, synonymes, British habitats, the geographical distribution and general history of each individual, in a fuller and more perfect manner than has yet been attempted in any work exclusively devoted to the illustration of British Algæ. Appearing periodically, the general plan of similar publications, such as the 'English Botany ' and Greville's 'Scottish Cryptogamic Flora', will be followed; namely, each number will contain six species, selected without reference to systematic order, but at the conclusion of each volume, and more fully at the completion of the entire work, systematic and alphabetical indices will be added;-and finally, a general Introduction, to be prefixed to the last volume, will complete the History.

The beauty and variety of form, and the extraordinary delicacy of colour and structure which distinguish the marine Algæ have ever rendered this tribe of plants a favourite object of study. But hitherto a serious want has been felt of an adequately illustrated work, devoted to these beautiful plants. The admirable figures by Greville comprise but a few of the more remarkable species, while the plates in the 'English Botany,' though excellent in their way, being, in several instances, drawn from imperfect specimens, do not afford that justice to the subject whieh modern discoveries and improvements require. To supply this want the present History has been projected; and Messrs. Reeve confidently trust that by producing it in an attractive form, and at an extremely moderate price, they will afford to the student the assistance which he so much requires, and ensure to their publication the patronage of the scientific public.

As a specimen of plates of Sea-weeds, published by them, Messrs. Reeve appeal to those which have already appeared in Dr. Hooker's 'Flora Antarctica,' now in progress, a work which, for heauty of exeeution, has never (they may be permitted to say) been exceeded in this country. The plates of the Prycologia Britannica will be printed on the same papcr, aud coloured with equal care, and as they will all be executed by Dr. Harvey, whose acquaintance with the subject is generally known, the Publishers fecl confident of producing a work equally worthy of support.

Size royal octavo, to be completed in Sixty monthly numbers, each containing Six Coloured Plates, with descriptive text, price $28.6 d$.
${ }^{*} *^{*}$ A few copies will be printed on large paper of superior quality, price $5 s$. ; but as a very limited number will be prepared in this style, Subscribers are requested to send intheir names to the Publishers as early as possible.
-

Important new Work on the Physical History of Brazil.

Mcssrs. Reeve, Brothers, beg to announce that they are preparing for publication, complete in two vols., 8 vo , price 24 s ., illustrated with a Map, and View of the Organ Mountains, a work of considerable interest, general and botanical, entitled

TRAVELS

in the

INTERIOR OF BRAZIL,
 principally
 THROUGH TIIE NORTHERN PROVINCES

AND
The Gold and ziamono zistióts.

BY
GEORGE GARDNER, F.L.S., Etc.

The present volumes are not offered to the public under an impression that they contain a better history of certain portions of Brazil than is to be found in the works of other Travellers, but becanse they include the description of a large tract of that immense Empire of which the world has as yet had no account. Independant of the general condition of the country, the author has endeavoured to give a faithful picture of its physical aspect and productions; and some cursory remarks are added on the characters, habits, and condition of the different races, whether indigenous or otherwise, of which the population of those parts that he visited is now composed. Besides travelling along the coast, his journeys into the interior were numerous. During his last expedition which extended from North to Sonth from the Equator to the twenty-third degree of south latitude, and from East to West from the coast to the tribntaries of the Amazon, though suffering numerons privations, his enthasiasm surmounted all difficulties. He laboured diligently in the pleasing vocation of a Naturalist, and his troubles were amply repaid, not only by the incidents and pleasure which such wanderings always afford to the lover of nature, but by the gratification of having contributed to no inconsiderable extent to the Flora and Fauna of that region.

ON THE FIRST OF JANUARY, 1846.

1.

CURTIS'S BOTANICAL MAGAZINE,

Edited by SIR WILLIAM JACKSON HOOKER, K.H., D.C.L., \&c., Director of the Royal Gardens of Kew. Vol. I., of the Third Series, for 1844, price 2l. 2s., cloth; also Vol. 1., of the Third Series, a beautiful edition on large paper, size royal quarto, price $4 l .4 s$. cloth.
*.**The Publishers take this opportunity of amouncing that, in order to give effect to the forthcoming novelties, as well as to the improvements lately made in the chawing and typography of this highly favoured Work, a handsome large-paper edition will be issued on the 1st of every month with the usual octavo, price 7s.-All Subscribers of the present year who may be desirous of taking the large-paper edition can have their octavo copies allowed for to the full amount.

2.

A CENTURY OF ORCHIDACEOUS PLANTS,

Consisting of a hundred of those most wortliy of cultivation, systematically arranged, and illustrated with Figures and Dissections, chiefly executed by Mr. Firch ; the descriptions by Sir William Jackson Hooker, K.H., D.C.L., \&c., Director of the Royal Gardens of Kew ; with copious remarks on the cultme and mode of treatment, and ilhstrative figures, by Joun Lrons, Esq., of Ladiston, author of "A Practical Treatise on the Management of Orchidaccous Plants." A handsome large-paper edition, size royal quarto, to be completed within the year in Twelve Mouthly Parts, price 10s. 6d. each, colcured; 7s. plain.

REEVE, BROTHERS, KING WILLIAM STREET, STRAND.

THE BOTANY
 OF

 THE ANTARCTIC VOYAGE

 THE ANTARCTIC VOYAGE}

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S., \&c.

BY
JOSEPI DALTON HOOKER, M.D., R.N., F.L.S.,

弱ublishey under the autharity af the 3iaros Commissiancrs of the aymiraltu.

> LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, FORTIN, MASSON, ET CIE., PARIS.

Shortly will be published, in one thick volume octavo, illustrated with a Map, and View of the Organ Mountains, a work of considerable general and botanical interest ;

TRAVELS

IN THE

INTERIOR OF BRAZIL,

PRINCIPALLY

THROUGH THE NORTHERN PROVINCES
 AND
 The feold and ziamono zistrírts.

BY

GEORGE GARDNER, F.L.S., Etc.

The present volume is not offered to the public under an impression that it contains a better history of certain portions of Brazil than is to be found in the works of other Travellers, but because it includes the description of a large tract of that immense Empire, of which the world has as yet had no account. Independent of the general condition of the country, the author has endeavoured to give a faithful picture of its physical aspect and productions; and some cursory remarks are added on the characters, habits, and condition of the different races, whether indigenous or otherwise, of which the population of those parts that he visited is now composed. Besides travelling along the coast, his journeys into the interior were numerous. During his last expedition, which extended from North to South from the Equator to the twenty-third degree of south latitude, and from East to West from the coast to the tributaries of the Amazon, though suffering numerous privations, his enthusiasm surmounted all difficulties. He laboured diligently in the pleasing vocation of a Naturalist, and his troubles were amply repaid, not only by the incidents and pleasure which such wanderings always afford to the lover of nature, but by the gratification of having contributed to no inconsiderable extent, to our knowledge of the Flora and Fauna of that region.

London : Reeve, Brothers, King William Street, Strand.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF

H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839-1843.

UNDER TRE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kt., R.N., F.R.S., \&c.

BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" AND BOTANIST TO THE EXPEDITION.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, Masson, et cie., paris.

NOW IN COURSE OF PUBLICATION.

Eight quarto Plates of Shells, with descriptive text, on the first day of every month, price 10 s. coloured,

CONCHOLOGIA ICONICA;

or

MONOGRAPHS OF THE GENERA OF SHELLS.

Inclnding Latin and English descriptions of all the species known up to the time of publication, with copious remarks on their characters, affinities, and circumstances of habitation.

$B_{\text {y }}$ LOVELL REEVE, A.L.S, Etc.,
Author of the 'Conchologia Systematica.'

With figures of the uatural size, drawn and engraved from specimens chiefly in the collection of Ingh Cuming, Esq.,F.L.S., \&e., By G. B. SOWERBY, F.L.S.
The 'Conchologia Iconica,' of which thirty-nine Numbers coutaining three hundred and twelve quarto plates are now published, was commenced in January 1843, with the view of presenting a faithful and characteristic illustration of every living species and remarkable variety of Shell, collceted up to the time of publication; and the liberal reception it has met with not only throughout England and the Continent, including the cities of Paris, Brussels, Vienna, Bremen, Turin, Berue, Berlin, Copenhagen, Stockholm, Moscow, and St. Petersburgh, but in the United States, Chili, Mauritins, and British India, has enabled the author to avail himself of every improvement which typography and the arts employed for illustration are now capable of.

The magnificent collection of Hugh Cuming, Esq., of surpassing nuvelty and beauty, is most zealonsly devoted to the undertaking, and the valuable information respecting localities, and circumstances of habitation with which the possessor, from his enterprizing personal experience, is so richly stored, is generously contribnted to the advancement of the work.

The author has besides to return his sincere thanks to many local and far-distant correspondents for their kind co-operation by the loan of specimens, including H.M. The King of Dcnmark, the Marquis of Northampton, J. E. Gray, Esq., of the British Museum, Miss Saul, Miss Stecre, Wm. Metcalfe, Esq., J. S. Gaskoin, Esq., William Walton, Esq., Sylvanus Hạnley, Esq., and the Rev. F. J. Stainforth of London; Thomas Norris, Esq., of Preston; J. Dennison, Esq., of Liverpool; Thomas Lombe Taylor, Esq., of Starston; Dr. Knapp of Edinburgh; H. H. White, Esq., of Clapham; John Adamson, Esq., of Newcastle; E. G. L. Graner, Esq., of Bremen, Dr. Menke of Pyrmont, and M. Delessert, M. Deshayes, and M. Alcide D'Orbigny, of Paris.

The chief merit of the 'Conchologia Iconica' consists in having all the species illustrated of the natural size, excepting those which on account of thcir minuteness require magnifying, and great attention is given to avoid any exaggeration in the colouring.

The arduous researches of Mr. Cuming, both in the eastern and western hemispheres, have supplied his collection with such an extensive and interesting number of undescribed specics of Shells, that a very large proportion of those hitherto figured are entircly new to science.

The following is a list of the gencra completed, any of which may be had separately as follows:-

Tbe genera Haliotis and Mangelia are in course of publication.
Binding.-A temporary Cover and Title (price 6 d .) are circulated on the completion of cach Genus, for the ase of those who may desire to kcep the Genera in separate Monographs, uutil the completion of Families, when permanent Titlcs and Indices are to be issued, as already published with the Cardiacea. For temporary accommodation the publishers strongly recommend the Iudia-rubber method of bindiug, in which no sewing is requircd.

London: Reeve, Brothers, King William Street, Strand.

A TREATISE

THE ESCULENT MUSHROOMS

OF
ENGLAND,
INCLUDING
THEIR BOTANICAL CHARACTERS, HABITS OF GROWTH, MICROSCOPIC STRUCTURE, NUTRITIOUS PROPERTIES, AND MODE OF COOKING, PRESERVING, \&c.,

BY DAVID BADHAM, M.D.

In treating of the eatable kinds of Mushroom, the author desires to secure for an undeservedly neglected subject, the curiosity and interest of those who, having an inclination for the study of Natural History, have not yet determined on what particular province to devote their powers of observation and experiment. For the sake of such readers, the outlines of Myeology will precede the description of the "Esculent Mushrooms" of England.

It is for this latter portion of the volume, however, that the Author anticipates the greater number of readers, inasmuch as he will treat of a most excellent article of food, the chief varieties of which have, through prejudice, and the want of fixed discriminating signs, been hitherto suffered to perish unused; but which, a little easily acquired information, may at once render a wholesome, costless, and palatable species of nourishment.

It is not to be wondered at that the descriptions of the Esculent Funguses of the continent, which may be found here and there in scientific and expensive works, have never yet enabled us to turn to account the treasures of our own forests and meadows. Such a purpose can only be answered by the substitution of popular for technical terms, and by an exact delineation of the varions escnlent kinds, occasionally contrasted with those noxious specimens which they most closely resemble. Accordingly, the descriptions in the present work, are written in the plainest possible manner, and the plates are fimished with such accuracy, that no perplexity or misgivings as to the nature of any Fungus will remain on the minds of those who study them accurately.

A chapter is added on the nutritious properties of the various kinds, and one also on the best modes of cooking and preserving them.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839-1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S., \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S.,
assistant surgeon of the "erebus" and botanist to the expedition.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, Masson, et cIe., paris.
1846.

NOW IN COURSE OF PUBLICATION.

Eight quarto Plates of Shells, with descriptive text, on the first day of every month, price 10 s. coloured,

CONCHOLOGIA ICONICA;

OR

MONOGRAPHS OF THE GENERA OF SHELLS.

Including Latin and English descriptions of all the species known up to the time of publication, with copious remarks on their characters, affinities, and circumstances of hahitation.

By LOVELL REEVE, A.L.S, Etc.,
Anthor of the 'Conchologia Systematica.'

With figures of the uatural size, drawn and engraved from specimens chiefly in the collection of Hugh Cuming, Esq.,F.L.S., \&c., By G. B. SOWERBY, F.L.S.
The 'Conchologia Iconica,' of which forty Nambers coutaining three hundred and twenty quarto plates are now published, was commenced in January 1843, with the viev of presenting a faitbful and characteristic illustration of every living species and remarkable variety of Shell, collected up to the time of publication; and the liberal reception it has met with not only throughout Eugland and the Continent, including the cities of Paris, Brussels, Vienna, Bremen, Turin, Berue, Berlin, Copeuhagen, Stockholm, Moscow, and St. Petersburgh, but in the United States, Chili, Mauritins, and British India, has enabled the author to avail himself of every improvement which typography and the arts employed for illustration are now capable of.

The magnificent collection of Hugh Coming, Esq., of surpassing novelty and heauty, is most zealonsly devoted to the undertaking, and the valnable information respecting localities, and circumstances of habitatiou with which the possessor, from his enterprizing personal experience, is so richly stored, is generously contribnted to the advancement of the work.

The author has hesides to rcturn his sincere thanks to many local and far-distant correspondents for their kind co-operation by the loan of specimens, including H.M. The King of Denmark, the Marquis of Northampton, J. E. Gray, Esq., of the British Museum, Niss Saul, Miss Steere, Wm. Mctcalfe, Esq., J. S. Gaskoin, Esq., William Walton, Esq., Sylvanus Hanley, Esq., and the Rev. F. J. Stainforth of London; Thomas Norris, Esq., of Preston ; J. Dennison, Esq., of Liverpool; Thomas Lombe Taylor, Esq., of Starston; Dr. Knapp of Edinburgh; H. H. White, Esq., of Clapham; John Adamson, Esq., of Newcastle ; E. G. L. Gruner, Esq., of Bremen, Dr. Menke of Pyrmont, and M. Delessert, M. Deshayes, and M. Alcide D'Orbigny, of Paris.

The chief merit of the 'Conchologia Iconica' consists in having all the species illustrated of the natural size, excepting those which on account of their minuteness require magnifying, and great attention is given to avoid any exaggeration in the colouring.

The arduous researches of Mr. Cuming, both in the eastern and western hemispheres, have supplied his collection with such an extensive and intercsting number of undescribed species of Shells, that a rery large proportion of those hitherto figured are entirely new to science.

The following is a list of the genera completed, any of which may be had separately as follows :-

\&. s. d.			\&. s. d.			P. s. d.		
Arca	11	6	Cypricardia	2	6	Myadora	1	6
Cardita.	11	6	Delphinula	6	6	Pectunculus	11	6
Cardium.	17	6	Glauconome	1	6	Phorus	4	0
Conus	30	0	Harpa	5	0	Pleurotoma	210	6
Corbula.	6	6	Isocardia	1	6	Pollicipes	1	6
Crassatella	4	0	Mitra	210	6	Ranella.	10	0
Cyprea .	114		Murex	25	6	Triton	15	

The geaera Haliotis and Mangelia are in course of publication.

Binding.-A temporary Cover and Title (price 6d.) are circulated on the completion of each Genus, for the use of 'those who may desire to keep the Genera in separate Monographs, nutil the completion of Families, when permanent Titles and Indices are to be issued, as already published with the Cardiacea. For temporary accommodation the publishers strongly recommend the India-rubber method of binding, in which no sewing is required.

This day is published, Part 2, size royal octavo, six plates, price $2 s .6 d$. coloured, of the

PHYCOLOGIA BRITANNICA:

OR
A HISTORY OF BRITISH SEA-WEEDS, CONTAINING

COLOURED FIGURES, GENERIC AND SPECIFIC CHARACTERS, SYNONIMIES, AND DESCRIPTIONS

OF
atl the species of alge inhabiting the shores of the

BRITISH ISLANDS.

BY

WILLIAM HENRY HARVEY, M.D., M.R.I.A.
Keeper of the Herbarium of the University of Dublin.

LONDON:

REEVE, BROTHERS, KING WILLIAM STREEF, STRAND. fortin, masson et cie., plade de l'ecole de medecine, paris.

THE BOTANY

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1813.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S., \&o.

BI

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S.,

LIONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, Masson, et cie., paris.

Preparing for publication, complete in one volume, super-royal acluro, berulifutty, illustrated with coloured figures and dissections,

A TREATISE

THE ESCULENT MUSHROOMS

OF
ENGLAND,
including

THEIR BOTANICAL CHARACTERS, HABITS OF GROWTH, MICIROSCOPIC STRUÇTURE, NUTRITIOUS PROPERTIES, AND MODE OF COOKING, PRESERVING, \&c.,

BY DAVID BADHAM, M.D

In treating of the eatable kinds of Mushroom, the author desires to secure for an undeservedly ueglected subject, the curiosity and interest of those who, having an inclination for the study of Natural History, have not yet determined on what particular province to devote their powers of observation and experiment. For the sake of such readers, the outlines of Mycology will precede the description of the "Esculent Mushrooms" of England.

It is for this latter portion of the volume, however, that the Author anticipates the greater number of readers, inasmuch as he will treat of a most excellent article of food, the chief varieties of which have, through prejudice, and the want of fixed discriminating signs, been hitherto suffered to perish unused; but which, a little easily acquired information, may at once render a wholesome, costless, and palatable species of nowrishment.

It is not to be wondered at that the descriptions of the Esculent Funguses of the continent, which may be found here and there in scientific and expensive works, have never yet enabled us to turn to account the trcasures of our own forests and moadows. Such a purpose can only be answered by the substitution of popular for technical terms, and by an exact delineation of the various esculent kinds, occasionally contrasted with those noxious specimens which they most closely resemble. Accordingly, the descriptions in the present work, are written in the plainest possible manner, and the plates are finished with such accuracy, that no perplexity or misgivings as to the nature of any Fungus will remain on the minds of those who study them accurately.

A chapter is added on the nutritious properties of the various kinds, and one also on the best modes of cooking and preserving them.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

On
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S., \&c.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, fortin, masson, et cie., paris.

This day is published, size royal Svo., 5 Plates, price $3 s .6 d$. coloured; 2s. 6d. plain, Part III. of
\title{ ELEMENTS OF CONCHOLOGY, }
BEING
A SYSTEMATIC CLASSIFICATION OF ALL TIIE SPECIES OF RECENT SHELLS KNNOWN
UP TO THE TIME OF PUBLICATION, WITH DESCRIPTIONS OF THEIR FORMATION, GROWTH, DEPOSITION OF COLOURS,
AND A POPULAR ACCOUNT OF
THE ORGANIC STRUCTURE, HABITS, AND CALCIFYING FUNCTIONS OF THEIR
ANIMAL INHABITANTS.

Br LOVELL REEVE, A.L.S., Etr.,
Author of the 'Conchologia Systematica', 'Conchologia Iconica', \&c.

** To be completed in twelve Monthly Parts, illustrated with forty-eight Plates of Shells, of the natural size, and twelve Plates of Shells, of the same dimensions, with the Animal crawling from each as it appears in a living state.

The object of the present work is to furnish the 'Collector of Shells' with a methodical arrangement and cnumeration of species, illustrated by a shellfigure of every genus, and several figures of shells with the animal as it appears in a living state, accompanied by a popular summary of those grand truths in the physiological history of the Mollusca, which have been elicited from the investigations of recent travellers ; to demonstrate the habits and organic peculiarities of this mystic tribe of animals by a careful system of generalization; and to lead him to meditate, whilst pondering over the treasures of his cabinet, upon the nature and zoological affinity of those imperishable records of existence he so delights to contemplate.

It is not the author's intention to treat of the anatomy of the Mollusca in detail, because he cannot boast of sufficient practical acquaintance with the dissecting-knife to enable him to undertake it with satisfaction; for that department of their natural history he must refer the student to the writings of those authors whose professional skill and education have better fitted them for the task. It is intended to treat of the exterual form, and of the more prominent features of organization ; and especially such as tend to elucidate peculiarities of habit or the characters selected for their generic arrangement.

For drawings of the living mollusks the author will have recourse to those invaluable records of zoological discovery exceuted under the auspices of the French Government, which, on account of their enormons cost, are as sealed

- books to the naturalists of this country; and he will be mainly indebted for information on their habits and circumstances of existence to the enterprising exertions of Hugh Cuming, Esq., whose free manner of communicating the different incidents which arrested his attention during fourteen years of indefatigable research, camnot be spoken of in too high terms.

The Elements of Conchology are addressed exclusively to the 'Collector of Shells'; and the author desires the work to be simply recorded as an effort to induce a more legitimate tone of enquiry amongst amateur conchologists, into the nature and origin of those beautiful objects which afford them so much intellectual recreation and amusement.

London : Reeve, Brothers, King Willian Street, Strand.

CONCHOLOGIA ICONICA.

HIS ROYAL HIGHNESS PRINCE ALBERT (two copies). HIS MLAJESTY THE KING OF DENMARK, COPENHAGEN. the most noble, the marquis of northampton, Pres. R.S.

```
BODLELAN LIBRARY, OXFORD (colouring).
TRLNITY COLLEGE, DUBLIN (colouring).
CAMBRIDGE UNIVERSITY LIBRARY (colouring).
LINNEAN SOCIETY OF LONDON.
GEOLOGICAL SOCIETY OF LONDON.
ZOOLOGICAL SOCIETY OF LONDON.
IMPERIAL ACAD. OF SCIENCES OF MOSCOW.
IMP. ACAD. OF SCIENCES OF PETERSBURGH.
IMPERLAL MUSEUM OF VIENNA.
ROTAL LIBRARY, PARIS.
```

ROYAL MUSEUM, JARDIN DES PLANTES, PARIS
ROYAL IIUSEUM OF BELGIUM.
ROYAL MUSEUM OF BERLIN.
ROYAL MUSEUM OF STOCKHOLM.
ROYAL MUSEUM OF TURIN.
ROYAL INSTITUTION OF LIVERPOOL.
ASIATIC SOCIETY OF CALCUTTA.
NATURAL HISTORY SOCIETY OF BELFAST.
LIT. AND PHIL. INSTITUTION OF BRISTOL
LIT. AND PHIL. SOCIETY OF NEWCASTLE.

Amos, G., Esq., St. Ibbs, Hitchin.
Anderson, T'. P., Esq., London.
Austen, R., Esq., Merrow Honse, Guildford.
Barclay, Sir David, Manritins.
Bates, John, Esq., R. N., Isle of Wight.
Benson, William, Esq., Himalaya, India.
Boivin, M., Paris.
Boone, T., Esq., London (two copies).
Bowler, R. E., Esq., London.
Bridges, Thos., Esq., Valparaiso.
Broderip, W. J., Esq., F.R.S., \&c., London.
Brown, Dr., Preston, Lancashire.
Burt, Robt., Esq., London.
Butler, Benjamin, Esq., Manilla.
Campbell, Archibald, Esq., Dover.
Catheart, Hon. Col. Macadam, Berbeth, Ayr.
Catlow, Miss, Bridgeland, Sussex.
Corrie, Mrs., Woodville, Warwickshire.
Crighton, G. W., Esq, Dublin.
Crotch, Rev. W. R., Taunton.
Damon, Mr. R., Weymouth.
Delessert, Baron Benjamin, Paris.
Dennison, J., Esq., Woolton Hill, Lancaskire.
Deshayes, M., Paris.
Dixon, Capt. Manly Hall, H.M.S. Caledonia.
Drummond, Col., The Boyce, Gloucestershire.
Ewing, Mrs., London.
Farington, Miss. M. H., Worden Hall, Lancashire.
Finch, Miss, Birmingham.
Fysh, Rev. Frederick, Torqnay.
Gabriel, J. G., Esq., Chester-le-street, Durham.
Garnons, Rev. W.L.P., F.L.S., Sidney Coll., Cambridge.
Gibson, G. Stacey, Esq., Satfiron-TValden.
Gould, John, Esq., F.R.S., London.
Graves, Capt., H.M.S. Beacon, Malta.
Gruner, E. G. L., Esq., Bremen.
Guise, IV. V., Esq., Elmore Court, Gloncestershire.
Hankey, Lieut., H.M.S. Collingwood.
Hanley, Sylvanus, Esq., Newington.
Harford, Frederick, Esq., London.

Henry, Dr., Haffield, Herefordshire.
Hinds, Richard Brinsley, Esq., Sidney.
Hudson, Robt., Esq., Clapham Common.
Jay, Dr., New York.
Jerdon, T. C., Esq., Nellore, Madras.
Jonas, Dr., Hamburgh.
Knapp, Dr., Edinburgh.
Koch, M., Vienna.
Largilliert, M., Rouen.
Lea, Isaac, Esq., Philadelphia.
Leonard, S. W., Esq., London.
Lloyd, Dr., Warwick.
Martin, MI's., Taunton.
Menke, Charles Theodore, Pyrmont, Germany.
Metcalfe, William, Esq., London.
Mitchell, D. W., Esq., F.L.S., London.
Norris, Thomas, Esq. Howick Honse, Lancashire.
Orbigny, M. Alcide de, Paris.
Page, Thomas, Esq., London.
Petit de la Saussaye, M., Paris.
Priestlcy, Mrs., The Grove, Chalfont, Bucks.
Randall, T., Esq., Colchester.
Reeves, Jolin, Esq., F.R.S., \&c., Clapham.
Roby, John, Esq., Rochdale.
Rolfe, Rev. S. C. E. Neville, Heacham Hall, Lynn.
Saul, Miss, Limehouse.
Shuckburgh, Sir Francis, Bart. Shuckburgh Park.
Shuttleworth, Robt., Esq., Berne, Switzerland.
Smith, Dr. A., Chatham.
Sowerby, G. B., Jun., Esq., London.
Steere, Miss, London.
Taylor, Thomas, Lombe, Esq., Starston Hall, Norfolk.
Teunant, James, Esq., F.G.S., London.
Thomas, Rev, R, Bancroft's Hospital.
Walker, Miss, Southgate.
Wells, Rev. Henry, Kingsworth.
White, Heury, Hopley, Esq., Clapham.
Whiteman, John C., Esq., London.
Yolde, Connt, Copenhagen.

[^47]

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., F.R.S., \&c.

BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., assistant surgeon of the "erebus" and botanist to the expedition.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLLAM STREET, STRANL, fortin, Masson, et cie., paris.

CRYPTOGAMIC BOTANY. REEVE BROTHERS' NEW PUBLICATIONS.

MYCOLOGY.

THE ESCULENT MUSHROOMS OF ENGLAND.

A treatise on their classical history, uses, characters, habits of growth, microscopic structure, nutritious propertics, mode of cooking and preserving, \&c., by Charles David Badham, M.D.
** Just ready, complete iu one handsome volume super-royal 8vo., with seventeen coloured plates of species, and four of dissections, price One Guinea.

ILLUSTRATIONS OF BRITISH MYCOLOGY, containing figures and popular descriptions of the Funguses of interest indigenons to Britain, by Mrs. J. T. Hussey.

[^48]
PHYCOLOCY.

PHYCOLOGIA BRITANNICA, or History of British Sea-Weeds, containing coloured figures, generic and specific characters, synonymes and descriptions, of all the species of Algæ inhabiting the shores of the British Islands. By William Henry Harvey, M.D., M.R.I.A., Keeper of the Herbarium of the University of Dublin.
** Published monthly, in Parts, price 2s. 6d. colonred; large paper, 5s. Part 14 published this day.

NEREIS AUSTRALIS, or Illustrations of the Algæ of the Southern Ocean, being Figures and Descriptions of new or imperfectly known Sea-Weeds, collected on the shores of the Cape of Good Hope, the extra-tropical Australian Colonies, Tasmania, New Zealand, and the Autarctic Regions, and deposited in the Merbarium of the Dublin University. By William Henry Harvet, M.D., M.R.I.A., Keeper of the Herbarium.

[^49]
THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF

CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., T.R.S., \&c.

BY

JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., assistant surgeon of the "erebts" and botanist to the expedtion.

> LONDON:
printed and published by reeve, brothers, kivg william street, strand, mictor masson, paris.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDER THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kт., R.N., T.R.S., \&c.

BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S.,
assistant surgeon of the "rrebus" and botantist to the expbdition.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLIAM STREET, STRAND, VICtor Masson, paris.

THE BOTANY

OF

THE ANTARCTIC VOYAGE

OF
H.M. DISCOVERY SHIPS EREBUS AND TERROR

IN THE YEARS 1839—1843.

UNDIR THE COMMAND OF
CAPTAIN SIR JAMES CLARK ROSS, Kr., R.N., T.R.S., \&c.

BY
JOSEPH DALTON HOOKER, M.D., R.N., F.L.S., ASSISTANT SURGEON OF THE "EREBUS" aND botanist to the EXPEDITION.

LONDON:

PRINTED AND PUBLISHED BY REEVE, BROTHERS, KING WILLLAM STREET, STRAND, victor masson, paris.

NATURAL HISTORY AND TRAVELS.

I.

CURTIS'S BOTANICAL MAGAZINE; By Sir W. J. HOOKER, K.H., D.C.L., Director of the Royal Gardens of Kew.
II.
[Part XXXIII. 3s. 6d.
PHYCOLOGIA BRITANNICA; or, History of the British Sea-Weeds, including Coloured Figures of each Species, with Growth, Fructification, \&cc. By Dr. W. H. HARVEY, M.R.I.A., Keeper of the Herbarium of the University of Dublin.
[Part XXI. 2s. 6d., commencing Vol. 2.
IIL.
NEREIS A USTRALIS; or, Illustrations of the Sea-Weeds of the Southern Ocean, including figures of Growth, Fructification, \&c., coloured. By Dr. W. H. HARVEY, M.R.I.A. Keeper of the Herbarium of the University of Dublin. In Four Parts.
[Part I. 21s.
iv.

TRAVELS IN THE INTERIOR OF BRAZIL; principally through the Northern Provinces and the Gold and Diamond Districts.' By GEORGE GARDNER, F.L.S., Superintendent of the Royal Botanic Gardens of Ceylon.
[One vol. $8 v o .560 \mathrm{pp}$. 18 s .
ESCULENT FUNGUSES of ENGLAND : a Treatise on their Structure, Nutritious Properties, Mode of Cooking, \&c. With coloured Figures. By the Rev. Dr. BADHAM. [One vol, super royal. 8 vo. 21 s. vi.

- The PLANETARY and S'TELLAR UNIVERSE, with Astronomical Diagrams and Map of the Circumpolar Constellations. By R. J. MANN, of Buxton, Norfolk.
[One vol. 12mo. 5s. viI.

NARRATIVE of the VOYAGE of H.M.S. SAMARANG, employed surveying the Lastern Seas, from Borneo to Japan, during the Years 1843-46. By Capt. Sir EDWARD BELCHER, C.B. F.R.A.S. and G.S., Commander of the Expedition.
[In the Press.
vili.
FLORA ANTARCTICA; or, Botany of the Antarctic Voyage of H.M.SS. Erebus and Terror, By Dr. J. D. HOOKER, F.R.S., F.L.S. and G.S., Botanist to the Expedition.
[Part XXV., completing the work. IX.

BRITISH MYCOLOGY, Illustrations of ; containing Figures and Descriptions of the Funguses of interest and novelty indigenous to Britain. By Mrs. T. J. HUSSEY.
[Part VI. this day.

x.

CONCHOLOGIA ICONICA; or, Coloured Figures and Descriptions of all the known Species of Shells. By LOVELL REEVE, F.L.S. \&c.
[Part LFI.

$\boxed{\pi}$.

ELEMENTS of CONCHOLOGY; or, Physiology of Shells and their Molluscous Inhabitants, their Structure, Calcifying Functions and Habits, Geographical Distribution, Affinities, Arrangement and Species, with Coloured Figures of the subject as they appear in a living state. By LOVELL REEVE, F.L.S. \&c.
[Part VII.

[^50]

54130

Ramunculus acaulis Bantas \& Sol.

A Gordemenco whellatie Nawesil

Efuilobium itin nuevides. Hook jid

inv dez eiter

- Crizeineir albiflomar Hook gaz

Trineuron sfucthulatum vorisc

Oforsteies iffroigere

Genleenere wornere Hows tid

-

()

 \cdots

4

VII

404

D. hemisphærica

Il

MJP\&WFdF
VII

$($
 08

8

Polysiphomia botryocarpa

- . Comenia dichotoma

R. Hombroniaza yourgl

Polysiphonia dumosa

Pol: ceratoclada. Mone

Polyzonia cuneifolia Mout

Cal. gracile

Ramahna inflata

Stereocaulon Arǵus

Caltha dioneæfolia. Hook

486e590.

[^51]
\qquad

D. Hoolrer, तelt

Fitch del. et. lith

Fitch ael et lith
Calceolaria Fothergillii. Ait:

Reeve imp
C. Darwimiii: Benth.

Plantago monanthos: D'Urv

Fitch, del et. Tith.
Festraca purpurascens, Banks \& Sol

Plate CXIT.

Lomaria alpma, E:

Coprinus flosculus. Berk

* 8

$$
V_{u}=1
$$

1
1
1
1

W）

，
 紜三三

000000000000

21. さ1ュcciau:n

-

Draparnaldia pusilla He \& E

$$
\begin{aligned}
& V_{1}=2 \\
& |y|=
\end{aligned}
$$

Irvoothallus anastomosans. HI I\& H

0
0

-

[^0]: * For an admirable description of these remarkable rocks, distant 350 miles from the nearest land (the Island of Fernando Noronha), sce Mr. Darwin's Journal, p. 8.

[^1]: * Vide Chart. \dagger Vide Vignette.

[^2]: * These few were collected by Dr. Dieffenbach, and are now deposited in the collection of Sir W. J. Hooker.

[^3]: * A few of the plants collected by the French have been published by two of the officers of Admiral D'Urville's Expedition, under the title of 'Voyage au Pôle Sud, Botanique.'
 vol. I.

[^4]: * Suttoria tenuifolia, n. sp.; arbuscula, foliis petiolatis ovatis rel ovalibus obtusis tenuibus submembranaceis integerrimis reticulatim venosis punctis glandulosis parvis, fructibus globosis solitariis v . binis pedicel-

[^5]: * Derived from χ puaòs, gold, and β ß́cirpor, a staff.

[^6]: * A familiar instance of the advantage of slow changes of temperature in enabling plants to endure transportation, is found in the application of Mr. Ward's glazed cases for transmitting plants to England through different climates. One of the main features of his philosophical contrivance is, that their construction induces a slow change of temperature in the atmosphere immediately surrounding the plants, and prevents their suffering from any sudden variations.

[^7]: * Hieroculoe rariflora, Hook. fil. ; panicula laxa effusa pauciflora, glumarum valvis inæquaibus fiosculis $\frac{1}{2}$ brerioribus, palea inferiore obtusa, arista nulla, flosculi intermedii palea supcriore apice bifida ciliata, foliis anguste linearibus scalridis, culmis elongatis basi ramosis foliosis.

[^8]: * Agrostis foliata, Hook. fil.; panieula contracta eompressa oblonga obtusa densiflora, glumarum valvis æquilongis glaberrimis viridi-purpureis dorso ciliatis, fioseulo sessili, palea inferiore ghaberima apice 4 -dentata 5 -nervi, nervo medio in aristam validam elongatam glumas superantem producta, superiore minima hyalina, foliis longe vaginantibus lanceolatis planis utriuque seaberudis, raginis compressis lamina bis longioribus turgidis sulcatis glaberrinnis, culmis valde foliosis basi compressis validis.

 Hab. Colombia; on Piclineha at the limits of perpetual snow, alt. $15,676 \mathrm{ft}$ - Prof. Wr. Jameson.

[^9]: * Narrative of a Visit to the Australian Colonies, by Janes Backhouse.

[^10]: * I here most gratefully aeknowledge the invaluable assistance afforded me in the more complete determination, and in the diagnoses and descriptions, of the mosses, by our old and ralued friend William Wilson, Esq., of Warrington; whose accuraey in botanical, and especially in microscopical investigation, and knorledge of this tribe of plants, are bevond praise.-J.D.H.

[^11]: * Though very averse to the system of changing names, we sloould not feel ourselves justified in allowing that of IIolomitrium, founded, as the name is, upon incorrect characters drawn from imperfect speeimens, to remain. In proposing that of sprucea for this fine genus, we commemorate the services rendered to British Botany, and especially to Muscology, by our aeute friend, Mr. Richard Spruce, of Tork.

[^12]: * Nomen e doфiov parca crista et óoov̀s dens.

[^13]: * The subdivisions here proposed appear to us more natural than those in gencral use, of which they are in some respects modifications.
 \dagger An original specimen of this in Herb. Hook. may be thus characterized;
 H. densum, Sw ; foliis lanceolatis acuminatis argute serratis fragilibus siccitate striatis evanidinerriis (arcolis rotundatis) margine basi punctatis. H. densum, Sccartz̈, Fl. Ind. Occ., p. 1829.

 Hab. Jamaica; roots of trees on the Blue Mountains, (Scoartz).

[^14]: * The Hypnum fexile, Hedw., is a very different moss from this, as may be inferred from the following description dram up from an authentic specimen:-

 Leskia flexilis, Hedw. ; caule pendulo subpinnatim ramoso, foliis ovatoooblongis rigidiusculis apiculatis (apiculo recurvo) enerviis, periehretialibus squarrosis, theca ereeta elliptica, operculo subulato, calyptra ralde pilosa.-L. flexilis, Hedu. Sp. Mhesc. p. 234. t. ̌s. Hypnum? Suartz, Prodi. p. 141. Fl. Ind. Occ. p. 1830.

 Hab. Jamaica; ou the tops of momitains in the southern parts of the island, (Suartz).

[^15]: * The liberal manner in which the most eminent Naturalists in each department of Cryptogamic Botany have afforded their cooperation, has remored the diffidence I should otherwise hare felt in publishing this difficult portion of the Antarctic Flora. To Dr. Taylor's extensive knowledge and keen discrimination I owe the diagnoses of the Hepatice and Lichenes. The large amount of Jongermemnice which were collceted, and the entangled manner in which they delight to grow, rendered their separation a task demanding no ordinary patience and skill. Further, the mieroscopic iurestigation of cighty different species and a much greater number of specinens, entailed upon that gentleman and myself an amount of labour which we woudd fain hope has resulted in the correct determination of a eollection so uncxpectedly novel and interesting. After a thorough examimation by Dr. Taylor, the specimens have passed t wice under my own eyes, preparatory to the completion of the descriptions and the drawings, which latter have been further revised by Mr. Fitch when transferring them to the stone; this severe scautiny will, it is to be trusted, reduce the errors into which I should otherwise personally have fallen, to a very small number.

 Amidst so many uew species it is not to be wondered that some are advanced with hesitation. In a tribe of plants so minute, a casual resemblance or a slight variation may often lead (without reference to the microscope) on the one hand to a union of what are not the same, and on the other to a multiplication of specics. The difficulty of holding a middle course between these extremes is acknowledged. Our plan, when investigating the plants of new countries, so remote from any whose productions are explored, has becn, to consider tangible characters, though often slight, as specific differences; at the same time stating the amount of difference, and hoping that future observers may obtain such materials as will either unite these with the plants of other lands, or tend still further to prove them distinct.

[^16]: * I take the present opportunity of describing two new species of Dothidea, contained in the Herbarium of Sir II. J. Hooker.

 1. Dothidea circumseripta, Berk.; imata, gregaria, maculis suborbicularibus irrcgularibus depressis nigris nitidis circumscriptis, cellulis paucis maguis depresso-globosis, collo brevi, ostiolo papillæformi, ascis clavatis, sporidiis oblongo-lanceolatis. (Tab. LXVIII. Fig. VI.)

 Hab. Andes of Columbia (Jameson). Chacapoyas, Peru (Mathews); ou various species of Facciniwn.
 Hypophylla, rarissime epiphylla, innata. Maculce $\frac{3}{4}$ lin. latæ, suborbiculares v. confiuentes, irregulares, depressæ, nigræ, nitidæ, quandoque leviter undulatæ, minutissime granulatæ, ostiolis paucis papillæformibus notatæ, linea nigra plus minuste evidenter circumscriptæ, demum omnino fatisccntes, et scutellam epidermide marginatam exhibentes. Celluhe fructiferæ paucissimæ, maguæ, globosæ, depressæ, collo brevi, ostiolo papillæformi. Asci clavati. Sporidia octona, oblonga, hine acuminata.

 A very pretty species, remarkable for the small number of fructifying cells and the dark line cnclosing the stroma, which is especially erident when the latter is abortive; beyond this line there is sometimes a coloured ring. The sporidia are almost of the sanc shape with those figured by Corda, in Rhytisma Eugeniacearum; when young they are filled with distinct granules which become less evident as they are more developed. In age the stroma completely decays and falls out, learing a scutellum surromded by the cuticle. This follows from the dark line indicating a harder substance than that of the stroma, which is not always externally risible, but will be found on making a vertical section.

[^17]: * The remark in inverted commas was made by Dr. Harvey.-The division of the spores of Fucacee was observed while examining the D'Urrillea utilis in a fresh state, when they were considered as tetraspores, and again by Dr. Montagne and by myself, in dried speeimens of Niphophora. More recently, and sinee the above was written, the interesting paper of MM. Decaisne and Thurct has appeared, in the 'Annales des Sc. Nat.' (Series 3. vol. iii. p. I.) It is there shown that this structure exists in five specics of Fucus abundant on our shores; F. nodosus, serratus, resiculosus, canaliculatus and tuberculatus: also in Mimanthalia, whieh I have elsewhere allicd to D'Urvillea (London dourn of Botany, vol. ii. p. 325), and the mode of divisiou in the original spores is excellently followed and illustrated, as also their germination, a most important point. I cannot onit here an allusion to two of the most remarkable recent diseoveries in modern Botanical Seience, made by those observers, and published in the same paper : -that of organs, in every respect analogous to the antheridia of mosses (of whose nature my coadjutor, Mrs. Harvey, had formed the same idea), existing in all the above-mentioned Fuci; and these antheridia being wholly filled, before bursting, with bodies endowed with rapid motion and apparent volition, and which, though thus proved to be truly of regetable origin, have hitherto been ranked in the animal kingdom. 1 am indebted to the friendship of M. Decaisne for a demonstration of these curions phenomena in living Alga, and for the original drawings from which the plates that accompany his interesting paper in the 'Amnales' are executed.-J. D. H.

[^18]: * I had long supposed that the sphærospores of these genera were different; but after a complete examination of the fruit of T. corallorhiza, costata, angusta, Mertensii, procera, Cumninghamii, Telfairice and cornuta, and comparison with that of $P l$. coccineum, I have becn obliged to abandon this idea. In all, the spherospores are erlindrical, divided into four by thrce transverse striæ. Kützing separates $P l$. cormutum under the generic name of Thamnocurpus, but I am at a loss to conceive upon what grounds.-W. H. H.

[^19]: * Professor E. Forbes has comected the similarity, long known to exist between the Floras of the west of Ireland and Portugal, with certain geological characteristics belonging to both these now remote, but perhaps once mited countries. Thus he also connects the Alpine Flora of Scotland with that of the Scandinavian Alps, and the botany of the Chamel coasts and islands with that of France (vid. 'Report of the Mcetings of the British Association in Cambridge, July 18.45°). Uniformity of surface is gencrally accompanied by a siuilarity of vegetation throughout an extended region. When such a surface becomes divided we are apt to conclude that the isolation of the lesser portion preceded the migration of plants from the larger ; in short, that the identity of the Forfolk and Suflolk Flora with that of llolland must be due to the former laving been peopled with plants by the latter, subsequently to the German Ocean having assumed its present position; and not that the two together formed an equally well chothed and extended plain, reaching, as Ilumboldt believes, from North Brabant to the Steppes of Asia; its western portion having been atterwards insulated by the influx of the North Sea. The umformity of surface in the vast continent of Africa is becoming daily more evident, as the monntains of the moon recede before the intrepid explorers of the somres of the true Nile. It were natural to suppose that a barrier, such as they were conjectured to be, would exhibit changes in the vegetation, equally marked with those produced by the Cordillera, Himalayah, and other mountain ehains wherever they may occur. A further proof of the suspicions mature of the reports that any rery cxitensive and elevated land exists in Afriea appears to me evident in the character of Abyssinian vergetation. Mr. Brown first showed that it possessed types of the Cape Flora, and lately l rceeived the nost ample confirmation of these views from 11 . Richard, who exhibited to me a beatiful series of drawings of Abyssinian plants, made by the late nnfortunate French travellers, amougst which were mincrons Proleacere, Asclepiadece, Orchidece, Irider, and Amarylli$d e \mathscr{}$, of forms whieh the Cape alone was supposed to possess. Central Eastern Africa is perhaps the most interesting spot in the world for a botanist; it contains not merely Cape orders, but others typical of Madagasear, the Eist Iudics, Arabia, both the northern and western coasts of Africa itself, and on its high mountains those even of Europe. The uniformity of the surface and Flora of Australia is efpually evident.

 There are, however, instances of a sudden change in the vegetation oceurring, unaccompaned with any diversity

[^20]: * The conjecture of these islands being the exposed culminating peaks of a submerged chain of momatains, receives confirmation from the circumstance of Sir James Ross having struck soundings in 16,062 fere in lat. $33^{\circ} 21^{\circ}$ south, and long. $9^{\circ} 4^{\prime}$ west, that is, nearly on a line hetween St. Helena and Tristan d'Acmila.
 + The island of St. Helena has many elaims to rank as one of the most interesting botanical stations known;

[^21]: almost the whole of its native flowering plants and several of its genera being peculiar. Tarions causes have, within the memory of man, reduced this flora to a more shadow of what it once was, for when the island was discovered, it is described as entarely clothed with forest. The greater part of this was said to be destroyed by the introduction of goats and pigs, and by the bark of the trees being stripped for tauning, so that the flora is consequently now very limited both in number of species and of individnals. During the interval that elapsed between two visits which I paid to St. Helcna, one very pecnliar mative plant, the Acalypha mbre, had disappeared, and two other handsome slurubly species of Melhanio, with particularly showy flowers, had very recently become extinct; whilst the existence of some W'aklenbergice, of a Plysalis, and a few of the peculiar arborescent Compositce, though thas far prolonged, is held upon a very precarious tenurc. These plants are all well marked species, which on the destruction of the forests seem unable to accommodate themselves to their altered cirem tances, perish, and are replaced by introduced species, exactly as is the case with rarions savage races of mankind, which do not swit themsclves to the condition of the soil when altered by the European settler, bat dimmish in number and drindle away even when fiolent measures have not been used for their extipation. I may remark, that species in isolated islands are generally well defined; this is in part the natural consequence of another law which I bave observed, that genera in islands bear a large proportion to the species, or in other words, that gencra are small, seldan containing more than two or three species, and very frequently solitary represcutatives. It must be borne in mind that this well-marked character of the species in insular localitics applics equally to mountainous as to planer islands. It might seem natural to suppose that a varied surface would have the effect of obliterating specific distinction, especially in small areas, as the Pacific Islands, the Galapagos, St. Helena, and the like, whose present contow is not the result of recent geological changes, and where time, the required element for developing such species as are the offspring of rariation, has been granted.

[^22]: * Mr. Darmin's valuable herbarium is preserved in the Cambridge Museum, and it is to the liberality of the Rer. Professor Henslow that I am more immediately indebted for their temporary transference to my care.

[^23]: * A. microphylla, n.sp.; glaberrima, ramis ramulisque distichis divaricatis, foliis distichis parvis coriaceis integcrimis, majoribus obovatis obtusis in petiolum brevem attenuatis, minoribus oblongis rotundatisve, corymbis sessilibus v. breviter pedunculatis, floribus parvis, staminibus 4-5 glandulis alternantibus, filamentis planiusculis, antheris extrorsis.

 Hab. Chiloe; Capt. King. Province of Valdivia, at the base of the Audes; Bridyes (n. 560).
 Frutex $10-15$-pedalis. Rami pedales, stricti. Folia $\frac{1}{2}$ unc. longa, nitentia, interdum apiculata. Corymbi folium minus subæquantes, 5 - 7 flori, floribus parvis.

[^24]: * L.thysanodes; caule procumbente asceudente pubescente simplici v. superne paniculatio diriso, foliis radicalibus lanccolatis acuminatis marginibus ciliato-tomentosis, caulinis pedicellis calycibusque glanduloso-pubescentibus, floribus solitariis r. plurimis nutantibus, calyce latissime oroideo ad medium quinquefido petalis $\frac{1}{3}$ breviore. Sdene thysanodes, Fenzl. in Endl. Nor. Stirp. Dec. 39. H'alpers' Repert., vol. i. p. 279.

 Hab. Chinnorazo; Jameson, n. 39.
 Statura et habitu L. apelalce affinis, sed forma et longitudine segmentorum calycis valde diversa.

[^25]: * C. cherlcrioides, n. sp.; dense pulvatim cæspitosus, ramosus, ramis fastigiatis foliosis, foliis parvis arcte

[^26]: * The 'Auna Pink' was one of the squadron whieh aecompanied Commodore Anson's disastrous Expedition.
 † Darwin's Journal in Murray's Home and Colonial Library, p. 282.
 \ddagger Voy. of the Adventwe and Beagle, vol. ii. p. 370.
 § De Candolle gives Niee on the Mediterranean as a station, which I have not scen confirmed, (Bot. Gall. vol. iv. p. 586).

[^27]: * A. macrostemon, n. sp.; caule simplieiusculo aseendente folioso, foliis elongatis utrinque sericeo-pilosis subcoriaceis, foliolis $5-7$-jugis plerisque sessilibus deeurreutibus grosse et subaeute erenato-lentatis, peduneulo elongato sparse piloso, capitulo majuseulo globoso, calycibus pilosis, petalis oblongo-obovatis dorso margineque serieeovillosis, filamentis gracilibus elongatis, antheris miximis oblongis, stylo elongato breviter plumoso, ealycis aristis 2 cateris duplo longioribus, fructibus breviter obconieis. A. ascendens, Ilook. et Arn. in Bot. Miscell. vol. iii. p. 307.

 Нab. Cordillera of Chili ; Cuming, Bridyes. Mendoza; Gillies. Port Desire; Darvin.
 Caulis pelalis. Folia 4-6 une. longa. Pedunculi spithamai. Anthere bis terve majores quam in eongeneribus
 A. Cadilla, n.sp.; caule prostrato ramoso, ramis ascendentilus petiolisque patentim pilosis villosinsculis, foliis membranaeeis subsericeo-pilosis folidis late obovato-oblongis obtusis grosse et snbacute inciso-serratis lacinïs angustatis, peduneulo scapiformi, capitulo globoso, calycilus dense setoso-pilosis, petalis dorso subvillosis, staminibus 2 filamentis graeillimis antheris parvis, fruetu obconico elongato parce villoso setis 4 divaricatis elongatis filiformibus terminato, stylo breviusculo gracili sublonge plumoso.-Nom. vernac. "Cadilla." - A. Nacellaniea, Hook. et Arn, in Bot. Miscell. vol. iii. p. 308, in part.

 Hab. South Chili, Provinee of Maule; Cuming: fields near Yaldivia; Bridges.
 Capitula post anthesin majora et aristæ fruetus longiores quam in congeneribus. Rami pilis sericeis patentibus villosiusculi. Folia argute ineisa.

[^28]: * As figured in Dc Candolle's Coll. Mém. ; vi. t. 11. f. A and B.

[^29]: * Eubrachion, Nov. Gen. Iufforescentia amentacca. Amenta hermaphrodita, flores compressi, perianthio trifido segmento dorsali minorc. Fl. Masc. Stamina 3, segmentis perianthii opposita, filamentis breviusculis, antheris compressis latis bilocularibus. Fl. Fea. Ovarium inferum compressum, disco epigyno latinsculo, stylo breviusculo, stigmate simplici. Fructus ovato-globosus, compressus, carnosns, sarcocarpio viscoso supra loculum posito, endocarpio subcrustaceo superue aperto, embryone tereti, cotyledonibus albumine late disciformi immersis.

[^30]: * Peppig, Nor. Gen. et Sp. Plant. Per. et Chili, vol. ii. p. 70. t. 199.
 \dagger Vid. Decaisne Mém. sur le dércloppement du Pollen \&.c., in Act. Acad. Roy. Bruss. vol. 13.
 \ddagger Vid. Jussieu, Cours Elémentaire, p. 351.
 § Aug. St. Hilaire, Leçons de Botanique §c., p. 451.
 || Linn. Soc. Trans. vol. 19.t. 34. figs. 4 and 6.

[^31]: * The position of the future embryo proves that these orules must be anatropons, thongh I cannot perceive any sign of raphe, chalaza or foramen. The pollen-tube probably reaches the foramen throngh the walls of the pouch in which the ovulum is lodged at an early period.
 \dagger Of this I have seen two species, both imperfect. The genus may be recognised by its small leares, each terminated by a broad deciduous scaly apex, and its solitary axillary female flowers whose perianth is deciduous.

 1. L. K̈̈ngï; ramis ramulisque erectis hirto-pubescentibus, foliis breviter petiolatis ellipticis utrinque acntis, ovariis pedicellatis trigonis.

 Hab. Chiloe, Capt. King.
 2. L. Dombeyi; ramis ramulisque diraricatis horizontaliter pateutibus puberulis, fohis sessilibus late oboratis obtusis, ovario fructuque ovato-globosis.

 Hab. Peru, Dombey in Herb. Mus. Paris, et Lindley.
 \ddagger Korthals, Over het geslacht T'upeia, \&c. (published in Hollaud with no date).
 § Miquel in Limæa, vol. xviii. p. 28.
 If I am inclined to agree with MI. Eudlicher in considering Viscum incanum, Hook. (Ic. Plant. t. 73), a species of Tupeia. Thongh differing in the bracteate female flowers and unilocular anthers, its perianth, and, I believe, the structure of the ovarium, are the same in both.

[^32]: * Guillemin in Delessert's Icones Selcetre, vol. iii. p. 47.
 + Endlicher, Genera Plantarım, p. S00. n. 4581.
 \ddagger Lepidoceras Dombeyi, vid. supra, p. 293.
 § A name which, without any assigned reason, has been altered to lineare in the Nova Genera et Species Plant. Chil. et Perur.

[^33]: * Decaisue, Mémoire sur le développement du Pollen \&c. du Gui, in Act. Acad. Roy. de Bruxelles, p. 49.

[^34]: * Decaisne, Mémoire sur la famille des Lardizabalées ; in Archires du Muséum d’Hist. Nat. vol. i. t. 10.

[^35]: * 1. Chiliotrichum Kingii, n.sp.; caule ramisque suberectis angulatis appresse tomentosis laxe foliosis, foliis coriaceis linearibus obtusis recurvis, eapitulis sessilibus breviter pedunculatisve, involucri late campauulati squamis oblongo-lanceolatis acutis, aehæniis serieeis.

 Hab. Patagomia, Capt. Niddteton in Herb. Bentham; Port St. Helena, Capt. King.
 2. Chiliotrichum Darwinii; n.sp.; canle ramisque suberectis angulatis appresse tomentosis, foliis imbricatis coriaceis linearibus reeurvis, eapitulis peduneulatis, iuvolucri subelongati eampanulati squamis anguste linearibus acuminatis vernicosis.

[^36]: * This is one kind of "Roble" of Capt. King's Narrative (p. 280) ; in speaking of the woots of Chiloe, he says, "Roble, (Fagus obliqua, Mirl.), is a large tree, and, from the durable quality of its timber, considered the

[^37]: 1. Uncinla multifaria, Nees; spica crassa densiflora basi attenuata apice conico mascula nuda, stigmatibus 3 , perigyniis (arista divaricata vix duplo brevioribus) linearibus ore truncato striato-nervosis scabris margine ciliatis squama oblonga obtusa pallida apice albo-membranacea cliolata angustioribus longioribusque. Boott.
[^38]: * For the generic characters and remarks on this and other genera, see the 1st Part of this work.

[^39]: * For the sake of brevity, we omit in this work the generic distinctions proposed by Bruch and Schimper in the 'Bryologia Europrea', without, however, intending to question their validity in a natural system. Pottir comprises those terrestrial species of Gymnostomun, exclusive of Physcomitrium, which are of bi-triennial duration and have monoicons inflorescence.

[^40]: * An authentic specimen, however, received from Mons. Lindblad, since the above was printed, is not more cracked than the Antarctic plant. Corticium tremellinum must be considered, therefore, mcrely a highly dereloped form of C. viscosum.

[^41]: * It is well known that the true uature of the Diatomacea has been long and unsuccessfully disputed, being claimed both by botamists and zoologists. No conclusive evidence on this subject had been adduced, till, within these very few days, it was the singular good fortune of my friend, Mr. Thwaites, of Bristol, a most acute observer and profond Cryptoganist, to detect several species of Diatomacee coujugating, in a manner perfectly analogous to that pursued by the Zygnemata : a fact which leaves no doubt of their vegetable origin in the minds of persons acquainted with his interesting observations. I am indebted to Mr. Thwaites for specimens of three British species of Eunotia, and Gomphonena, illustrating this important discovery, and mounted in fluid, after the beautiful plan invented by that gentleman for preserving regetable tissues moist, and always ready for the microscope in the form of slides.

[^42]: * See Ehrenberg, in Schrift. Berlin Akad., June, 1841.
 \dagger On the contrary, I caunot but suspect that some of these Phytolitharia are the remains of Crustacea, and especially the siliceous (?) particles, which occur in the tunics of naked Mollusca.
 \ddagger I do not remenber to have examined the contents of the stomach of any Salpa between the latitudes of the N. Tropic and the 50° S., which did not contain the remains of Diatomacce. Dictyocha aculeata was unirersally found in the stomachs of those I opeued when off Victoria Land.

[^43]: * Fragilaria pimulata, and some Coscinodisci.
 \dagger The soundings were invariably in greenish mud, into which the lead sometimes sunk for two feet. At times, this mud seemed almost wholly composed of Diatomaceous remains.
 \ddagger This great depth, reaching to within a quarter of a mile of the Barrier, whose height appeared nowhere to exceed 200 feet, proves that the latter does not rest on this bank. The accumudation, however, of snow on the

[^44]: * Since the publication of the "Lichenes Antarctici" in the 'London Journal of Botany,' and of those eontained in the first part of this work, l have had the adrantage of re-studying all the speeies with my friend, the Rev. Chnrehill Babington, whose profound knowledge of the forms of this difficult order, and aequaintance with the most recent writings of European Lichenologists, have been most liberally brought to bear upon this part of the 'Flora Antarctiea.'

[^45]:

[^46]:

[^47]: ** In addition to the Noblemen and Gentlemen above rccorded are many who procure the work of their Bookseller, whose names are unknown to the author, in conseqnence of their copies being taken by the Trade.

[^48]: ** The List of Subscribers wanting only seven to complete the requisite number, Part 1, it is expected, will be published in March.

[^49]: ** To be published in four Quarterly Parts, imperial octavo, each containing twentr-five coloured plates, with corresponding letter-press, price One Guinea.

 Part 1, now in a state of forwardness, will be published shortly.

[^50]: LONDON: Reeve, Brothers, King William Street, Strand.

[^51]:

