THE FLORA OF AUSTRALIA,

ITS ORIGIN, AFFINITIES, AND DISTRIBUTION;

BEING AN

Introductory Essay

to the

FLORA OF TASMANIA.

BY

JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.;

LATE BOTANIST TO THE ANTARCTIC EXPEDITION.

LONDON:
LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN.

1859.
MAR 26 1912
Gray Herbarium
Harvard University
ON THE FLORA OF AUSTRALIA,

ITS ORIGIN, AFFINITIES, AND DISTRIBUTION.
ON

THE FLORA OF AUSTRALIA,

ITS ORIGIN, AFFINITIES, AND DISTRIBUTION;

BEING AN

Introductory Essay

TO THE

FLORA OF TASMANIA.

BY

JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.;

LATE BOTANIST TO THE ANTARCTIC EXPEDITION.

LONDON:
LOVELL Reeve, Henrietta Street, Covent Garden.
1859.
CONTENTS OF THE INTRODUCTORY ESSAY.

§ 1.

Preliminary Remarks.

Sources of Information, published and unpublished, materials, collections, etc. i
Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species iii

§ 2.

On the General Phenomena of Variation in the Vegetable Kingdom.

All plants more or less variable; rate, extent, and nature of variability; differences of amount and degree in different natural groups of plants ... v
Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants ... vii
Variation a centrifugal force; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them ... viii
Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character . x
Darwin's Theory of Natural Selection;—its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc. .. xi

§ 3.

On the General Phenomena of Distribution in Area.

Circumscription of Area of Species, and causes of it .. xii
Relative Distribution of Natural Groups of Plants ... xiii
Insular Floras, and analogies between them and mountain Floras, and between the geological ages of insular and other Floras .. xv
Existing conditions will not account for existing distribution xvi
Effects of Humidity in modifying distribution:—effects of the Glacial Epoch, and Darwin's views thereon . xvii

§ 4.

On the General Phenomena of the Distribution of Plants in Time.

Outlines of the principal facts in Fossil Botany ... xx
Their bearing on the question of Progressive Development amongst known Plants xx
Progression and Retrogression of Vegetable Types ... xxiv
CONTENTS OF THE INTRODUCTORY ESSAY.

The Doctrine of Genetic Resemblance .. xxv
Concluding Remarks on the speculative aspect of the whole subject xxvi

ON THE FLORA OF AUSTRALIA.

§ 1. General Remarks.
Peculiarities of the Flora ... xxvii
False impressions of the amount and value of these peculiarities, and general agreement of Flora with others xxviii

§ 2. Estimate of the Australian Flora, and general remarks on the Classes and Orders, their number, distribution, and affinities ... xxx

§ 3. On the Australian Distribution of Natural Orders xxxiii

§ 4. On the Genera of the Australian Flora .. xxxvi

§ 5. On the Tropical Australian Flora .. xxxviii
Comparison with the Indian, African, etc., Floras xli
List of Indian Plants in Australia .. xlii

§ 6. On the Flora of Extratropical Australia ... 1
Comparison and Contrasts of South-eastern and South-western Floras lii

§ 7. On the Flora of the countries round Spencer's Gulf lv

§ 8. On the Tasmanian Flora .. lvi
Table of Distribution of Tasmanian Plants ... lvii

§ 9. On the New Zealand and Polynesian features of Australian Vegetation . lxxvi

§ 10. On the Antarctic Plants of Australia ... lxxxix
CONTENTS OF THE INTRODUCTORY ESSAY.

<table>
<thead>
<tr>
<th>§ 11.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the South African features of the Australian Vegetation</td>
<td>xcii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§ 12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the European features of the Australian Flora. List of European Genera and Species in Australia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§ 13.</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the Fossil Flora of Australia and its Geology in relation to the existing Flora</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§ 14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the Naturalized Plants of Australia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§ 15.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A List of some of the Esculent Plants of Tasmania</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§ 16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlines of the Progress of Botanical Discovery in Australia.</td>
</tr>
</tbody>
</table>

1. Voyages of Discovery and Survey | cxiii

 English.—Dampier, Cook (Banks and Solander), Vancouver, establishment of Port Essington (Armsstrong), Flinders (Brown), King (Allan Cunningham), Wickham (Bynoe), Blackwood (M‘Gillivray), Ross (Antarctic Expedition), Stanley (M‘Gillivray, Kennedy, Carron), Denham (M‘Gillivray and Milne).

 French.—D‘Entrecasteaux (Labillardière), Baudin (Leschenault), Freycinet (Gaudichaud), Duperrey (D‘Urville and Lesson), D‘Urville (Lesson), D‘Urville (Hombroon and Jacquinot).

 American.—Wilkes.

2. Land Expeditions undertaken by order of the Home and Colonial Governments | cxix

 Oxley (Allan Cunningham and Fraser), Sturt, Mitchell (R. Cunningham), Grey, Leichhardt, Eyre, Roe, Mueller, Gregory, North Australian Expedition (Mueller), Babbage.

3. Colonial Botanists and Gardens | cxxiii

 Fraser, R. Cunningham, M‘Lean, A. Cunningham, Anderson, Moore, Mueller, Hill, Francis.

4. Private Travellers and Collectors sent out by Horticultural Establishments or private individuals | cxxiv

 White, Caley, Paterson, Burton, Lawrence, Baxter, Sieber, Collie, Gunn, Hügel, Preiss, Drummond, Lhotsky, Backhouse, Bidwill, Harvey, Strzelecki, Vicary, Robertson, Adamson, Clowes, Davies, Milligan, Stuart, Scott, Oldfield, Archer.

Postscript | cxxviii

ERRATA.

Page xxxix, line 6, *for tropical read tropic of.*

Page cxxviii, in P.S., line 5, *for New Guinea read Celebes.*
INTRODUCTORY ESSAY

to

THE FLORA OF TASMANIA.

§ 1.

Preliminary Remarks.

The Island of Tasmania does not contain a vegetation peculiar to itself, nor constitute an independent botanical region. Its plants are, with comparatively few exceptions, natives of extratropical Australia; and I have consequently found it necessary to study the vegetation of a great part of that vast Continent, in order to determine satisfactorily the nature, distribution, and affinities of the Tasmanian Flora.

From the study of certain extratropical genera and species in their relation to those of Tasmania, I have been led to the far more comprehensive undertaking of arranging and classifying all the Australian plants accessible to me. This I commenced in the hope of being able thereby to extend our knowledge of the affinities of its Flora, and, if possible, to throw light on a very abstruse subject, viz. the origin of its vegetation, and the sources or causes of its peculiarity. This again has induced me to proceed with the inquiry into the origin and distribution of existing species; and, as I have already treated of these subjects in the Introduction to the New Zealand Flora, I now embrace the opportunity afforded me by a similar Introduction to the Tasmanian Flora, of revising the opinions I then entertained, and of again investigating the whole subject of the creation of species by variation, with the aid of the experience derived from my subsequent studies of the Floras of India and Australia in relation to one another and to those of neighbouring countries, and of the recently published hypotheses of Mr. Darwin and Mr. Wallace.

No general account of the Flora of Australia having hitherto been published, nor indeed a complete Flora of any part of it, I have been obliged, as a preliminary measure, to bring together and arrange the scattered materials (both published and unpublished) relating to its vegetation to which I had access. Those which are published consist of very numerous papers relating to the general botany of Australia, in scientific periodicals, and appended to books of travel, amongst which by far the most important are Brown’s ‘General Remarks, Geographical and Systematical, on the Botany of Terra Australis,’ published in the Appendix to Captain Flinders’ Voyage, now nearly half a century ago; Allan Cunningham’s Appendix to Captain King’s Voyage, which appeared in 1827; Lindley’s Report on the Swan River Botany; and Mueller’s, on the Tropical Botany of Australia. There are also some special essays or descriptive works on the Floras of certain parts of the continent; of

* Reprinted from the first volume of Dr. Hooker’s ‘Flora of Tasmania;’ published in June, 1859.
these the most important are Brown's 'Prodromus,' of which the only published volume appeared in 1810; the 'Plantae Preissianae,' edited by Professor Lehmann, and containing descriptions, by various authors, of about 2250 species (including Cryptogamiae) of Swan River plants; Dr. Mueller's various Reports on the Flora of Victoria, and his numerous papers on the vegetable productions of that colony; and Lindley's Appendices to Mitchell's Travels.

The unpublished materials chiefly consist of the vast collections of Australian plants made during the last half-century, and these having been obtained from all parts of the continent, and carefully ticketed as to locality, etc., supply abundant materials for the investigation of the main features of the Australian Flora. In another part of this Essay I propose to give a short summary of the labours of the individuals by whom these and other Australian collections have been principally obtained, and of the routes followed by the expeditions which they accompanied.

The majority of the collections were, either wholly or in part, transmitted to Sir William Hooker, forming the largest Australian herbarium in existence, and of which the published portion is in value greatly exceeded by the unpublished; for although about two-thirds of the plants have been described, only about half of these have been brought together in a systematic form; nor, since the publication of Brown's Appendix to Flinders' Voyage, has the Flora of the whole continent been considered from a general point of view. And, before entering on the field of inquiry so successfully explored by Brown half a century ago, I must pay my tribute to the sagacity and research exhibited in the essay to which I have alluded. At the time of its publication, not half the plants now described were discovered, vast areas were yet unexplored, and far too little was known of the vegetation of the neighbouring islands to admit of the Australian Flora being studied in its relation to that of other countries. Nevertheless we are indebted to Brown's powers of generalization for a plan of the entire Flora, constructed out of fragmentary collections from its different districts, which requires but little correction from our increased knowledge, though necessarily very considerable amplification. Although he could not show the extent and exact nature of its affinities, he could predict many of them, and by his detection of the representatives of plants of other countries under the masks of structural peculiarity which disguise them in Australia, he long ago gave us the key to the solution of some of those great problems of distribution and variation, which were then hardly propounded, but which are now prominent branches of inquiry with every philosophical naturalist.

In the Introductory Essay to the New Zealand Flora, I advanced certain general propositions as to the origin of species, which I refrained from endorsing as articles of my own creed; amongst others was the still prevalent doctrine that these are, in the ordinary acceptation of the term, created as such, and are immutable. In the present Essay I shall advance the opposite hypothesis, that species are derivative and mutable; and this chiefly because, whatever opinions a naturalist may have adopted with regard to the origin and variation of species, every candid mind must admit that the facts and arguments upon which he has grounded his convictions require revision since the recent publication by the Linnean Society of the ingenious and original reasonings and theories of Mr. Darwin and Mr. Wallace.

Further, there must be many who, like myself, having hitherto refrained from expressing any positive opinion, now, after a careful consideration of these naturalists' theories, find the aspect of the question materially changed, and themselves freer to adopt such a theory as may best harmonize with the facts adduced by their own experience.

The Natural History of Australia seemed to me to be especially suited to test such a theory, on account of the comparative uniformity of its physical features being accompanied with a great
variety in its Flora; of the differences in the vegetation of its several parts; and of the peculiarity both of its Fauna and Flora, as compared with those of other countries. I accordingly prepared a classified catalogue of all the Australian species in the Herbarium, with their ranges in longitude, latitude, and elevation, as far as I could ascertain them, and added what further information I could obtain from books. At the same time I made a careful study of the affinities and distribution of all the Tasmanian species, and of all those Australian ones which I believed to be found in other countries. I also determined as accurately as I could the genera of the remainder, and especially of those belonging to genera which are found in other countries, and I distinguished the species from one another in those genera which had not been previously arranged. In this manner I have brought together evidence of nearly 8000 flowering plants having been collected or observed in Australia, of which I have seen and catalogued upwards of 7000. About two-thirds of these are ascertained specifically with tolerable accuracy, and the remainder are distinguished from one another, and referred to genera with less certainty, being either undescribed, or described under several names, whilst some are members of such variable groups that I was left in doubt how to dispose of them.

To many who occupy themselves with smaller and better worked botanical districts, such results as may be deduced from the skeleton Flora I have compiled for Australia may seem too crude and imperfect to form data from which to determine its relations. But it is not from a consideration of specific details that such problems as those of the relations of Floras and the origin and distribution of organic forms will ever be solved, though we must eventually look to these details for proofs of the solutions we propose. The limits of the majority of species are so undefinable that few naturalists are agreed upon them;* to a great extent they are matters of opinion, even amongst those persons who believe that species are original and immutable creations; and as our knowledge of the forms and allies of each increases, so do these differences of opinion; the progress of systematic science being, in short, obviously unfavourable to the view that most species are limitable by descriptions or characters, unless large allowances are made for variation. On the other hand, when dealing with genera, or other combinations of species, all that is required is that these be classified in natural groups; and that such groups are true exponents of affinities settled by Nature is abundantly capable of demonstration. It is to an investigation of the extent, relations, and proportions of these natural combinations of species, then, that we must look for the means of obtaining and expressing the features of a Flora; and if in this instance the exotic species are well ascertained, it matters little whether or not the endemic are in all cases accurately distinguished from one another. Further, in a Flora so large as that of Australia, if the species are limited and estimated by one mind and eye, the errors made under each genus will so far counteract one another, that the mean results for the genera and orders will scarcely be affected. As it is, the method adopted has absorbed many weeks of labour during the last five years, and a much greater degree of accuracy could only have been obtained by a disproportionately greater outlay of time, whilst it would not have materially affected the general results.

With regard to my own views on the subjects of the variability of existing species and the fallacy of supposing we can ascertain anything through these alone of their ancestry or of originally created types, they are, in so far as they are liable to influence my estimate of the value of the facts collected for the analysis of the Australian Flora, unaltered from those which I maintained in the

* The most conspicuous evidence of this lies in the fact, that the number of known species of flowering plants is by some assumed to be under 80,000, and by others over 150,000.
‘Flora of New Zealand:’ on such theoretical questions, however, as the origin and ultimate permanence of species, they have been greatly influenced by the views and arguments of Mr. Darwin and Mr. Wallace above alluded to, which incline me to regard more favourably the hypothesis that it is to variation that we must look as the means which Nature has adopted for peopling the globe with those diverse existing forms which, when they tend to transmit their characters unchanged through many generations, are called species. Nevertheless I must repeat, what I have fully stated elsewhere, that these hypotheses should not influence our treatment of species, either as subjects of descriptive science, or as the means of investigating the phenomena of the succession of organic forms in time, or their dispersion and replacement in area, though they should lead us to more philosophical conceptions on these subjects, and stimulate us to seek for such combinations of their characters as may enable us to classify them better, and to trace their origin back to an epoch anterior to that of their present appearance and condition. In doing this, however, the believer in species being lineally related forms must employ the same methods of investigation and follow the same principles that guide the believer in their being actual creations, for the latter assumes that Nature has created species with mutual relations analogous to those which exist between the lineally-descended members of a family, and this is indeed the leading idea in all natural systems. On the other hand, there are so many checks to indiscriminate variation, so many inviolable laws that regulate the production of varieties, the time required to produce wide variations from any given specific type is so great, and the number of species and varieties known to propagate for indefinite periods a succession of absolutely identical members is so large, that all naturalists are agreed that for descriptive purposes species must be treated as if they were at their origin distinct, and are destined so to remain. Hence the descriptive naturalist who believes all species to be derivative and mutable, only differs in practice from him who asserts the contrary, in expecting that the posterity of the organisms he describes as species may, at some indefinitely distant period of time, require redescription.

I need hardly remark that the classificatory branch of Botany is the only one from which this subject can be approached, for a good system must be founded on a due appreciation of all the attributes of individual plants,—upon a balance of their morphological, physiological, and anatomical relations at all periods of their growth. Species are conventionally assumed to represent, with a great amount of uniformity, the lowest degree of such relationship; and the facts that individuals are more easily grouped into species limited by characters, than into varieties, or than species are into limitable genera or groups of higher value, and that the relationships of species are transmitted hereditarily in a very eminent degree, are the strongest appearances in favour of species being original creations, and genera, etc., arbitrarily limited groups of these.

The difference between varieties and species and genera in respect of definable limitation is however one of degree only, and if increased materials and observation confirm the doctrine which I have for many years laboured to establish, that far more species are variable, and far fewer limitable, than has been supposed, that hypothesis will be proportionally strengthened which assumes species to be arbitrarily limited groups of varieties. With the view of ascertaining how far my own experience in classification will bear out such a conclusion, I shall now endeavour to review, without reference to my previous conclusions, the impressions which I have derived from the retrospect of twenty years' study of plants. During that time I have classified many large and small Floras, arctic, temperate, and tropical, insular and continental: embracing areas so extensive and varied as to justify, to my apprehension, the assumption that the results derived
INTRODUCTORY ESSAY.

from these would also be applicable to the whole vegetable kingdom. I shall arrange these results successively under three heads; viz. facts derived from a study of classification; secondly, from distribution; thirdly, from fossils; after which I shall examine the theories with which these facts should harmonize.

§ 2.

On the General Phenomena of Variation in the Vegetable Kingdom.

1. All vegetable forms are more or less prone to vary as to their sensible properties, or (as it has been happily expressed in regard to all organisms), "they are in a state of unstable equilibrium."* No organ is exactly symmetrical, no two are exact counterparts, no two individuals are exactly alike, no two parts of the same individual exactly correspond, no two species have equal differences, and no two countries present all the varieties of a species common to both, nor are the species of any two countries alike in number and kind.

2. The rate at which plants vary is always slow, and the extent or degree of variation is graduated. Sports even in colour are comparatively rare phenomena, and, as a general rule, the best-marked varieties occur on the confines of the geographical area which a species inhabits. Thus the scarlet Rhododendron (R. arboreum) of India inhabits all the Himalaya, the Khasia Mountains, the Peninsular Mountains, and Ceylon; and it is in the centre of its range (Sikkim and the Khasia) that those mean forms occur which by a graduated series unite into one variable species the rough, rusty-leaved form of Ceylon, and the smooth, silvery-leaved form of the North-western Himalaya. A white and a rose-coloured sport of each variety is found growing with the scarlet in all these localities, but everywhere these sports are few in individuals. Also certain individuals flower earlier than others, and some occasionally twice a year, I believe in all localities.

3. I find that in every Flora all groups of species may be roughly classified into three large divisions: one in which most species are apparently unvarying; another in which most are conspicuously varying; and a third which consists of a mixture of both in more equal proportions. Of these the unvarying species appear so distinct from one another that most botanists agree as to their limits, and their offspring are at once referable by inspection to their parents; each presents several special characters, and it would require many intermediate forms to effect a graduated change from any one to another. The most varying species, on the contrary, so run into one another, that botanists are not agreed as to their limits, and often fail to refer the offspring with certainty to their parents, each being distinguished from one or more others by one or a few such trifling characters, that each group may be regarded as a continuous series of varieties, between the terms of which no hiatus exists suggesting the intercalation of any intermediate variety. The genera Rubus, Rosa, Salix, and Saxifraga, afford conspicuous examples of these unstable species; Veronica, Campanula, and Lobelia, of comparatively stable ones.

4. Of these natural groups of varying and unvarying species, some are large and some small; they are also very variously distributed through the classes, orders, and genera of the Vegetable Kingdom; but, as a general rule, the varying species are relatively most numerous in those classes, orders, and genera which are the simplest in structure.† Complexity of structure is generally ac-

† Mr. Darwin, after a very laborious analysis of many Floras, finds that the species of large genera are relatively more variable than those of small; a result which I was long disposed to doubt, because of the number of variable
compounded with a greater tendency to permanence in form: thus Acotyledons, Monocotyledons, and Dicotyledons are an ascending series in complexity and in constancy of form. In Dicotyledons, Salicaceae, Urticaceae, Chenopodiaceae, and other Orders with incomplete or absent floral envelopes, vary on the whole more than Leguminosae, Lythraceae, Myrtaceae, or Rosaceae, yet members of these present, in all countries, groups of notoriously varying species, as Eucalyptus in Australia, Rosa in Europe, and Lotus, Epilobium, and Rubus in both Europe and Australia. Again, even genera are divided: of the last named, most or all of the species are variable; of others, as Epaetris, Acacia, and the majority of such as contain upwards of six or eight species, a larger or smaller proportion only are variable. But the prominent fact is, that this element of mutability pervades the whole Vegetable Kingdom; no class nor order nor genus of more than a few species claims absolute exemption, whilst the grand total of unstable forms generally assumed to be species probably exceeds that of the stable.

5. The above remarks are equally applicable to all the higher divisions of plants. Some genera and orders are as natural, and as limitable by characters, as are some species; others again, though they contain many very well-marked subordinate plans of construction, yet are so connected by intermediate forms with otherwise very different genera or orders, that it is impossible to limit them naturally. And as some of the best marked and limited species consist of a series of badly marked and illimitable varieties, so some of the most natural* and limitable orders and genera may respectively consist of only undefinable groups of genera or of species. For instance, both Gramineae and Composite are, in the present state of our knowledge, absolutely limited Orders, and extremely natural ones also; but their genera are to a very eminent degree arbitrarily limited, and their species extremely variable. Orchideae and Leguminose are also well-limited Orders (though small genera and the fact that monotypic genera seldom have their variations recorded in systematic works, but an examination of his data and methods compels me to acquiesce in his statement. It has also been remarked (Bory de Saint-Vincent, Voy. aux Quatre Iles de l'Afrique) that the species of islands are more variable than those of continents, an opinion I can scarcely subscribe to, and opposed to Mr. Darwin's facts, insomuch as insular Floras are characterized by peculiar genera, and by having few species in proportion to genera. Bisexual trees and shrubs are generally more variable than unisexual, which however is only a corollary from what is stated above regarding plants of simple structure of flower. On the whole, I think herbs are more variable than shrubby plants, and annuals than perennials. It would be curious to ascertain the relative variableness of social and scattered plants. The individuals of a social plant, in each area it is social upon, are generally very constant, but individuals from different areas often differ much. The Pinus sylvestris, Magnis, and uncinata are cases in point, if considered as varieties of one; as are the Cedars of Atlas, Algeria, and the Himalaya.

* It should be borne in mind that the term natural, as applied to Orders or other groups, has often a double significance; every natural order is so in the sense of each of its members being more closely related to one or more of its own group than to any of another; but the term is often used to designate an easily limited natural order, that is, one whose members are so very closely related to each other by conspicuous peculiarities that its differential characters can be expressed, and itself always recognized; these may be called objective Orders; Orchideae and Gramineae are examples. Any naturalist, endowed with fair powers of observation and generalization, recognizes the close affinity between a pseudobulbous epiphytical, and a terrestrial tuberous-rooted Orchid, or between the Bamboo and Wheat, though the differences are exceedingly great in habit and in organs of vegetation and reproduction. Other orders are as natural and may be as well limited, but having no conspicuous characters in common, and presenting many subordinate distinct plans of structure, may be regarded as subjective. Such are Ranunculaceae and Leguminose, of which a botanist must have a special and extensive knowledge before he can readily recognize very many of their members. No degree of natural sagacity will enable an uninstructed person to recognize the close affinity of Cimnatis and Ranunculus, or of Acacia and Ophiurus, though these are really as closely related as the Orchids and Grasses mentioned above. We do not know why some Orders are subjective and some objective; but if the theory of creation by variation is a true one, we ought through it to reach a solution.
not so absolutely as the former), but they, on the contrary, consist of comparatively exceedingly well-marked genera and species. *Melanthaceae* and *Scrophularineae*, on the other hand, are not limitable as Orders, and contain very many differently constructed groups; but their genera, and to a great extent their species also, are well-marked and limitable. The circumstance of a group being either isolated or having complex relations, is hence no indication of its members having the same characters.

Again, as with species, so with genera and orders, we find that upon the whole those are the best limited which consist of plants of complex floral structure: the Orders of Dicotyledons are better limited than those of Monocotyledons, and the genera of Dichlamydeae than those of Achlamydeae.*

Now my object in dwelling on this parallelism between the characteristics of individuals in relation to species, of species in relation to genera, and of genera in relation to Orders, is because I consider (Introd. Essay to Fl. N. Z.) that it is to the extinction of species and genera that we are indebted for our means of resolving plants into limitable genera and orders. This view is now, I believe, generally admitted, even by those who still regard species as the immutable units of the Vegetable Creation; and it therefore now remains to be seen how far we are warranted in extending it to the limitation of species by the elimination of their varieties through natural causes.†

6. The evidence of variability thus deduced from a rapid general survey of the prominent facts elicited from a study of the principles of classification, are to a certain extent tested by the behaviour of plants under cultivation, which operates either by hastening the processes of Nature (in rapidly inducing variation), or by effecting a prolepsis or anticipation of those processes (in producing sports, i.e. better marked varieties, without graduated stages), or by placing the plant in conditions to which it would never have been exposed in the ordinary course of natural events, and which eventually either kill it or give origin to a series of varieties which might otherwise have never existed.‡

* There are too many exceptions to this to admit of our concluding at once that it is attributable to any simple and uniform law of variation; but it may be explained by assuming that the degree or amount of variation is differently manifested at different epochs in the history of the group. Thus, if a genus is numerically increasing, and consequently running into varieties, it will present a group of species with complex relations *inter se*; if, on the contrary, it is numerically decreasing, such decrease must lead to the extinction of some varieties, and hence result in the better limitation of the remainder. The application of this assumption to the fact of the best limited groups being most prevalent among the higher classes (i.e. among those most complicated in their organization), would at first sight appear an argument against progression, were it not for the consideration that the higher tribes of plants have in another respect proved themselves superior, in that they have not only far surpassed the lower in number of genera and species, but in individuals, and also in bulk and stature. And lastly, as all the highest orders of plants contain numerous species and often genera of as simple organization as any of the lower orders are, it follows that that physical superiority which is manifested in greater extent of variation, in better securing a succession of race, in more rapid multiplication of individuals, and even in increase of bulk, is in some senses of a higher order than that represented by mere complexity or specialization of organ.

† It follows as a corollary to the proposition (That species, etc., are naturally rendered limitable by the destruction of varieties), that there must be some intimate relation between the rate of increase and the duration of genera (or other groups of species) on the one hand, and the limitability of their species on the other. Thus, when a genus consists of a multitude of illimitable forms, we may argue with much plausibility that it is on the increase, because no intermediates have as yet been destroyed, and that the birth of individuals and the production of new forms is proceeding at a greater proportional rate than in an equally large genus of which the species are limitable.

‡ My friend Mr. Wallace treats of animals under domestication, not only as if they were in very different physical conditions from those in a state of nature, inasmuch as every sense and faculty is continually fully exercised and strengthened by wild animals, whilst certain of these lie dormant in the domesticated, but as if they were
7. Now the prominent phenomena presented by species under cultivation are analogous in kind and extent to those which we have derived from a survey of the affinities of plants in a state of nature: a large number remain apparently permanent and unalterable, and a large number vary indefinitely. Of the permanent there is little to remark, except that they belong to very many orders of plants, nor are they always those which are permanent in a state of nature. Many plants, acknowledged by all to be varieties, may be propagated by seed or otherwise, when their offspring retains for many successive generations the characters of the variety. On the other hand, species which have remained immutable for many generations under cultivation, do at length commence to vary, and having once begun, are thereafter peculiarly prone to vary further.

8. The variable cultivated species present us with the most important phenomena for investigating the laws of mutability and permanence; but these phenomena are so infinitely varied, complex, and apparently contradictory, as to defeat all attempts to elucidate the history of any individual case of variation by a study of its phases alone. It would often appear doubtful whether the natural operations of a plant tend most to induce or to oppose variation; and we hence find the advocates of original permanent creations, and those of mutable variable species, taking exactly opposite views in this respect, the truth, I believe, being that both are right. Nature has provided for the possibility of indefinite variation, but she regulates it as to extent and duration; she will neither allow her offspring to be weakened or exhausted by promiscuous hybridization and incessant variation, nor will she suffer a new combination of external conditions to destroy one of these varieties without providing a substitute when necessary; hence some species remain so long hereditarily immutable as to give rise to the doctrine that all are so normally, while others are so mutable as to induce a belief in the very opposite doctrine, which demands incessant lawless change.

9. It would take far too long a time were I to attempt any analysis of the phenomena of cultivation, as illustrative of those of variability in a state of nature. There are however some broad facts which should be borne in mind in treating of variation by cross impregnation and hybridity.

10. Variation is effected by graduated changes; and the tendency of varieties, both in nature and under cultivation, when further varying, is rather to depart more and more widely from the original type, than to revert to it: the best marked varieties of a wild species occurring on the confines of the area the species inhabits, and the best marked varieties of the cultivated species being those last produced by the gardener. I am aware that the prevalent opinion is that there is a strong tendency in cultivated, and indeed in all varieties, to revert to the type from which they departed; and I have myself quoted this opinion, without questioning its accuracy, * as tending to subject to the influence of fundamentally different laws. He says, "No inferences as to varieties in a state of nature can be deduced from the observation of those occurring among domestic animals. The two are so much opposed that what applies to the one is almost sure not to apply to the other." But, in the first place, of the same species of wild animals some families must be placed where certain faculties and senses are far more exercised than others, and the difference in this respect between the conditions of many families of wild animals is as great as those between many wild and tame families; and secondly, other senses and faculties, latent and unknown in the wild animal, but which are as proper to the species as any it exercised in its wild state, are manifested or developed by it under domestication. An animal in a state of nature is not then, as Mr. Wallace assumes, "in the full exercise of every part of its organization;" were it so, it could not vary or alter with altered conditions, nor could other faculties remain to be called into play under domestication. The tendency of species when varying cannot be to depart from the original type in a wild condition and to revert to it under domestication, for man cannot invert the order of Nature, though he may hasten or retard some of its processes.

port the views of those who regard species as permanent. A further acquaintance with the results of gardening operations leads me now to doubt the existence of this centripetal force in varieties, or at least to believe that in the phrase "reversion to the wild type," many very different phenomena are included. In the first place, the majority of cultivated vegetables and cerealia, such as the Cabbage and its numerous progeny, and the varieties of wall-fruit, show when neglected no disposition to assume the characters of the wild states of these plants;* they certainly degenerate, and even die if Nature does not supply the conditions which man (by anticipation of her operations, or otherwise) has provided; they become stunted, hard, and woody, and resemble their wild progenitors in so far as all stunted plants resemble wild plants of similar habit; but this is not a reversion to the original type, for most of these cultivated races are not merely luxuriant forms of the wild parent. In neglected fields and gardens we see plants of Scotch Kale, Brussels Sprouts, or Kohl-rabi, to be all as unlike their common parent, the wild Brassica oleracea, as they are unlike one another; so, too, most of our finer kinds of apples, if grown from seed, degenerate and become crabs, but in so doing they become crab states of the varieties to which they belong, and do not revert to the original wild Crab-apple. And the same is true to a great extent of cultivated Roses, of many varieties of trees, of the Raspberry, Strawberry, and indeed of most garden plants. It has also been held, that by imitating the conditions under which the wild state of a cultivated variety grows, we may induce that variety to revert to its original state; but, except in the false sense of reversion above explained, I doubt if this is supported by evidence. Cabbages grown by the seaside are not more like wild Cabbages than those grown elsewhere, and if cultivated states disseminate themselves along the coast, they there retain their cultivated form. This is however a subject which would fill a volume with most instructive matter for reflection, and which receives a hundredfold more illustration from the Animal than from the Vegetable Kingdom. I can here only indicate its bearing on the doctrine of variation, as evidence that Nature operates upon mutable forms by allowing great variation, and displaying little tendency to reversion.† With this law the suggestive observation of M. Vilmorin well accords, that when once the constitution of a plant is so broken that variation is induced, it is easy to multiply the varieties in succeeding generations.

It may be objected to this line of argument that our cultivated plants are, as regards their constitution, in an artificial condition, and are, if unaided, incapable of self-perpetuation; but an artificially induced condition of constitution is not necessarily a diseased or unnatural one, and, so far as our cultivated plants are concerned, all we do is to place them under conditions which Nature does not provide at the same particular place and time. That Nature might supply the conditions at other places and times may be inferred from the fact that the plant is found to be provided with the means of availing itself of them when provided, while at the same time it retains all its functions, not only unimpaired, but in many cases in a more highly developed state. We have no reason to suppose that we have violated Nature's laws in producing a new variety of wheat,—we may have only anticipated them; nor is its constitution impaired because it cannot, unaided, perpetuate its race; it is in as sound and unbroken health and vigour during its life as any wild variety is, but its offspring

* Hence the great and acknowledged difficulty of determining the wild parent species of most of our cultivated fruits, cerealia, etc., and in fact of almost every member of our Flora Cibaria. This would not be so were there any disposition in the neglected cultivated races to revert to the wild form.

† It is not meant by this that any character of a species which may be lost in its variety never reappears in the descendants of the latter, for some occasionally do so in great force; what is meant is, that the newly acquired characters of the variety are never so entirely obliterated that it has no longer a claim to be considered a variety.
has so many enemies that they do not perpetuate its race. In the case of annual plants, those only can secure the succession of their species which produce more seeds annually than can be eaten by animals or destroyed by the elements. Cultivated wheat will grow and ripen its seed in almost all soils and climates, and as its seeds are produced in great abundance, and can be preserved alive in any quantity, in the same climate, and for many years, it follows that it is not to the artificial or peculiar condition of the plant itself, and still less to any change effected by man upon it, that its annual extinction is due, but to causes that have no effect whatever upon its own constitution, and over which its constitutional peculiarities can exercise no control.

11. Again, the phenomena of cross impregnation amongst individuals of all species appear, according to Mr. Darwin's accurate observations, to have been hitherto much underrated, both as to extent and importance. The prominent fact that the stamens and pistil are so often placed in the same flower, and come to maturity at the same epoch, has led to the doctrine that flowers are usually self-impregnated, and that the effect is a conservative one as regards the permanence of specific forms. The observations of Carl Sprengel and others have, however, proved that this is not always the case, and that while Nature has apparently provided for self-fertilization, she has often insidiously counteracted its operation, not only by placing in flowers lures for insects which cross-fertilize them, but often by interposing insuperable obstacles to self-fertilization, in the shape of structural impediments to the access of the pollen to the stigma of its own flower.* In all these instances the double object of Nature may be traced; for self-impregnation (or "breeding in"), while securing identity of form in the offspring, and hence hereditary permanence, at the same time tends to weakness of constitution, and hence to degeneracy and extinction: on the other hand, cross-impregnation, while tending to produce diversity of form in the offspring, and hence variation and apparent mutability, yet by strengthening the offspring favours longevity and apparent permanence of specific type. The ultimate effect of all these operations is of course favourable to the hypothesis that variability is the rule, and permanence the exception, or at any rate only a transitory phenomenon.

12. Hybridization, or cross-impregnation between species or very well marked varieties, again, is a phenomenon of a very different kind, however similar it may appear in operation and analogous in design. Hybridizable genera are rarer than is generally supposed, even in gardens, where they are so often operated upon, under circumstances the most favourable to the production of a hybrid, and unfavourable to self-impregnation. Hybrids are almost invariably barren, and their characters are not those of new varieties. The obvious tendency of hybridization between varieties or other very closely allied forms (in which case the offspring may be fertile) is not to enlarge the bounds of variation, but to contract them; and if between very different forms, it will only tend to confound these. That some supposed species may have their origin in hybridization cannot be denied, but we are now dealing with phenomena on a large scale, and balancing the tendencies of causes uniformly acting, whose effects are unmistakable, and which can be traced throughout the Vegetable Kingdom. In gardening operations the number of hybridized genera is small, their offspring doomed, and since they are more readily impregnated by the pollen of either parent than by their own,

* Thus, in *Lobelia fulgens*, the pollen is entirely prevented by natural causes from reaching the stigma of its own flower. In kidney beans impregnation takes place imperfectly except the carina is worked up and down artificially, which is effected by bees, who may thus either impregnate the flower with its own pollen or with that brought from another plant. I am indebted to Mr. Darwin for both these facts: see 'Gardeners' Chronicle,' 1858, p. 828.
or by that of any other plant,* they eventually revert to one of their parents: on the other hand, the number of varieties is incalculable, the power to vary further is unimpaired in their progeny, and these tend to depart further and further in sensible properties from the original parent.

In conformity with my plan of starting from the variable and not the fixed aspect of Nature, I have now set down the prominent features of the Vegetable Kingdom, as surveyed from this point of view. From the preceding paragraphs the evidence appears to be certainly in favour of proneness to change in individuals, and of the power to change ceasing only with the life of the individual; and we have still to account for the fact that there are limits to these mutations, and laws that control the changes both as to degree and kind; that species are neither visionary nor even arbitrary creations of the naturalist; that they are, in short, realities, whether only temporarily so or not.

13. Granting then that the tendency of Nature is first to multiply forms of existing plants by graduated changes, and next by destroying some to isolate the rest in area and in character, we are now in a condition to seek some theory of the modus operandi of Nature that will give temporary permanence of character to these changelings. And here we must appeal to theory or speculation; for our knowledge of the history of species in relation to one another, and to the incessant mutations of their environing physical conditions, is far too limited and incomplete to afford data for demonstrating the effects of these in the production of any one species in a native state.

Of these speculations by far the most important and philosophical is that of the delimitation of species by natural selection, for which we are indebted to two wholly independent and original thinkers, Mr. Darwin and Mr. Wallace.† These authors assume that all animal and vegetable forms are variable, that the average amount of space and annual supply of food for each species (or other group of individuals) is limited and constant, but that the increase of all organisms tends to proceed annually in a geometrical ratio; and that, as the sum of organic life on the surface of the globe does not increase, the individuals annually destroyed must be incalculably great; also that each species is ever warring against many enemies, and only holding its own by a slender tenure. In the ordinary course of nature this annual destruction falls upon the eggs or seeds and young of the organisms, and as it is effected by a multitude of antagonistic, ever-changing natural causes, each more destructive of one organism than of any other, it operates with different effect on each group of individuals, in every locality, and at every returning season. Here then we have an infinite number of varying conditions, and a superabundant supply of variable organisms, to accommodate themselves to these conditions. Now the organisms can have no power of surviving any change in these conditions, except they are endowed with the means of accommodating themselves to it. The exercise of this power may be accompanied by a visible (morphological) change in the form or structure of the individual, or it may not, in which case there is still a change, but a physiological one, not outwardly

* A very able and careful experimenter, M. Naudin, performed a series of experiments at the Jardin des Plantes at Paris, in order to discover the duration of the progeny of fertile hybrids. He concludes that the fertile sterility of hybrids disappears, to give place to the pure typical form of one or other parent. "Il se peut sans doute qu'il y ait des exceptions à cette loi de retour, et que certains hybrides, à la fois très-fertiles et très-établis, tendent à faire souche d'espèce; mais le fait est loin d'être prouvé. Plus nous observons les phénomènes d'hybridité, plus nous inclinons à croire que les espèces sont indissolublement liées à une fonction dans l'ensemble des choses, et que c'est le rôle même assigné à chacune d'elles qui en détermine la forme, la dimension et la durée." (Annales des Sc. Nat. sér. 4. v. 9.)

manifested; but there is always a morphological change if the change of conditions be sudden, or when, through lapse of time, it becomes extreme. The new form is necessarily that best suited to the changed condition, and as its progeny are henceforth additional enemies to the old, they will eventually tend to replace their parent form in the same locality. Further, a greater proportion of the seeds and young of the old will annually be destroyed than of the new, and the survivors of the old, being less well adapted to the locality, will yield less seed, and hence have fewer descendants.

In the above operations Nature acts slowly on all organisms, but man does so rapidly on the few he cultivates or domesticates; he selects an organism suited to his own locality, and by so modifying its surrounding conditions that the food and space that were the share of others falls to it, he ensures a perpetuation of his variety, and a multiplication of its individuals, by means of the destruction of the previous inhabitants of the same locality; and in every instance, where he has worked long enough, he finds that changes of form have resulted far greater than would suffice to constitute conventional species amongst organisms in a state of nature, and he keeps them distinct by maintaining these conditions.

Mr. Darwin adduces another principle in action amongst living organisms as playing an important part in the origin of species, viz. that the same spot will support most life when peopled with very diverse forms, as is exemplified by the fact that in all isolated areas the number of Classes, Orders, and Genera is very large in proportion to that of Species.

§ 3.

On the General Phenomena of Distribution in Area.

Turning now to another class of facts, those that refer to the distribution of plants on the surface of the globe, the following are the most obvious:—

14. The most prominent feature in distribution is that circumscription of the area of species, which so forcibly suggests the hypothesis that all the individuals of each species have sprung from a common parent, and have spread in various directions from it. It is true that the area of some (especially Cryptogamic and Aquatic plants) is so great that we cannot indicate any apparent centre of diffusion, and that others are so sporadic that they appear to have had many such centres; but these species, though more numerous than is usually supposed, are few in comparison with those that have a definite or circumscribed area.

With respect to this limitation in area,* species do not essentially differ from varieties on the one hand, or from genera and higher groups on the other; and indeed, in respect of distribution, they hold an exactly intermediate position between them, varieties being more restricted in locality than species, and these again more than genera.

* It is a remarkable fact that there are some striking anomalies in the distribution of plants into provinces, as compared with animals. Thus there is no peculiarity in the vegetation of Australia to be compared with the rarity of placental mammals, nor with the fact of so many of the mammals, birds, and fish of Tasmania differing from those of the continent of Australia. Nearer home, we find the basin of the Mediterranean with a tolerably uniform Flora on the European and North African sides, but these ranking as different zoological provinces. The much narrower delimitation in area of animals than plants, and greater restriction of Faunas than Floras, should lead us to anticipate that plant types are, geologically speaking, more ancient and permanent than the higher animal types are, and so I believe them to be, and I would extend the doctrine even to plants of highly complex structure.
INTRODUCTORY ESSAY.

The universality of this feature (of groups having defined areas) affords to my mind all but conclusive evidence in favour of the hypothesis of similar forms having had but one parent, or pair of parents. And further, this circumscription of species and other groups in area, harmonizes well with that principle of divergence of form, which is opposed to the view that the same variety or species may have originated at different spots. It also follows that, as a general rule, the same species will not give rise to a series of similar varieties (and hence species) at different epochs; whence the geological evidence of contemporaneity derived from identity of fossil forms may be relied upon.

The most obvious cause of this limitation in area no doubt exists in the well-known fact that plants do not necessarily inhabit those areas in which they are constitutionally best fitted to thrive and to propagate; that they do not grow where they would most like to, but where they can find space and fewest enemies. We have seen (13) that most plants are at warfare with one or more competitors for the area they occupy, and that both the number of individuals of any one species and the area it covers are contingent on the conditions which determine these remaining so nicely balanced that each shall be able at least to hold its own, and not succumb to the enervating or etiolating or smothering influences of its neighbours. The effects of this warfare are to extinguish some species, to spare only the hardier races of others, and especially to limit the remainder both as to area and characters. Exceptions occur in plants suited to very limited or abnormal conditions, such as desert plants, the chief obstacles to whose multiplication are such inorganic and principally atmospheric causes as other plants cannot overcome at all; such plants have no competitors, are generally widely distributed, and not very variable.*

15. The three great classes of plants, Acotyledons, Monocotyledons, and Dicotyledons (Gymnospermous and Angiospermous), are distributed with tolerable equality over the surface of the globe, inasmuch as we cannot indicate any of the six continents (Europe, Asia, Africa, North and South America, and Australia) as being peculiarly rich in one to the exclusion of another. Further, the distribution of some of the larger Orders is remarkably equable, as Composite, Leguminosae, Gramineae, and others; facts which (supposing existing species to have originated in variation) would seem to indicate that the means of distribution have overcome, or been independent of the existing apparent impediments, and that the power of variation is equally distributed amongst these classes, and continuously exerted under very different conditions. I do not mean that all the classes are equally variable, but that each displays as much variety in one continent as in another.

16. Those Classes and Orders which are the least complex in organization are the most widely distributed, that is to say, they contain a larger proportion of widely diffused species. Thus the species of Acotyledons are more widely dispersed than those of Monocotyledons, and these again more so than those of Dicotyledons; so also the species of Thallophytes are among the most widely dispersed of Acotyledons, the Gramineae of Monocotyledons, and the Chenopodiaceae of Dicotyledons. This tendency of the least complex species to be most widely diffused is most marked in Acotyledons, and least so in Dicotyledons,† a fact which is analogous to that already stated (4), that the least complex are also the most variable.

* Though invariable forms, they may be, and often are, themselves varieties or races of a species that inhabits more fertile spots, as Poa bulbosa, which is a very well-marked and constant form of P. pratensis, occurring in dry sandy soil, from England to North-western India, its "meadow" relative being a very variable species in the same countries, and always struggling for existence amongst other Grasses, etc.

† Very much, no doubt, because of the difficulty in classifying Dicotyledons by complexity of organization; in other words, of our inability to estimate in a classificatory point of view the relative value of the presence or absence
17. Though we rarely find the same species running into the same varieties at widely sundered localities (unless starved or luxuriant forms be called varieties), yet we do often find a group of species represented in many distant places by other groups of allied forms; and if we suppose that individuals of the parent type have found their way to them all, the theory that existing species have originated in variation, and that varieties depart further from the parent form, will account for such groups of allied species being found at distant spots; as also for these groups being composed of representative species and genera.

18. No general relations have yet been established between the physical conditions of a country and the number of species or varieties which it contains, further than that the tropical and temperate regions are more fertile than the polar, and that perennial drought is eminently unfavourable to vegetation. It is not even ascertained whether the tropical climates produce more species than the temperate.

19. Though we cannot explain the general relations between the vegetation and physical condition of any two countries that contrast in these respects, we may conclude as a general rule that those tracts of land present the greatest variety in their vegetation that have the most varied combinations of conditions of heat, light, moisture, and mineral characters. It is, in the present state of our knowledge, impossible to measure the amount of the fluctuations of these conflicting conditions in a given country, nor if we could can we express them symbolically or otherwise so as to make them intelligible exponents of the amount of variety in the vegetation they affect; but the following facts in general distribution appear to me to be favourable to the idea that there is such a connection.

There are certain portions of the surface of the globe characterized by a remarkable uniformity in their phaenogamic vegetation. These may be luxuriantly clothed, and abound in individuals, but are always poor in species. Such are the cooler temperate and subarctic lake regions of North America, Fuegia and the Falkland Islands, the Pampas of Buenos Ayres, Siberia and North Russia, Ireland and Western Scotland, the great Gangetic plain, and many other tracts of land. Now all these regions are characterized by a great uniformity in most of their physical characters, and an absence of those varying conditions which we assume to be stimulants to variation in a locality. On the other hand, it is in those tracts that have the most broken surface, varied composition of rocks, excessive climate (within the limits of vegetable endurance), and abundance of light, that the most species are found, as in South Africa, many parts of Brazil and the Andes, Southern France, Asia Minor, Spain, Algeria, Japan, and Australia.

20. The Polar regions are chiefly peopled from the colder temperate zones, and the species from the latter which have spread into them are very variable, but only within comparatively small limits, particularly in stature, colour, and vesture. Many of these polar and colder temperate plants are also found, together with other species closely allied to them, on the mountains of the warm temperate, and even tropical zones; to which it is difficult to conceive that they can have been transported by agencies now in operation.

21. The Floras of islands present many points of interest. The total number of species they contain seems to be invariably less than an equal continental area possesses, and the relative numbers of species to genera (or other higher groups) is also much less than in similar continental areas.

The further an island is from a continent, the smaller is its Flora numerically, the more of organs in plants, where many are present, and where those of low morphological importance may have a comparatively high physiological significance.
peculiar is its vegetation, and the smaller its proportion of species to genera. In the case of very isolated islands, moreover, the generic types are often those of very distant countries, and not of the nearest land. Thus the St. Helena and Ascension forms are not so characteristic of tropical Africa as of the Cape of Good Hope. Those of Kerguelen's Land are Antarctic American, not African nor Indian. The Sandwich Islands contain many North-west American and some New Zealand forms. Japan presents us with many genera and species unknown except to the eastward of the Rocky Mountains, in North America.* So too American, Abyssinian, and even South African genera and species are found in Madeira and the Canary Islands; and Fuegian ones in Tristan d'Acunha.

22. There is a strict analogy in this respect between the Floras of islands and those of lofty mountain-ranges, no doubt in both cases owing to the same causes. Thus, as Japan contains various peculiar N.E. American species which are not found in N.W. America nor elsewhere on the globe, and the Canaries and Azores possess American genera not found in Europe nor Africa, so the lofty mountains of Borneo contain Tasmanian and Himalayan representatives; the Himalayas contain Andean, Rocky Mountain, and Japanese genera and species; and the Alps of Victoria and Tasmania contain assemblages of New Zealand, Fuegian, Andean, and European genera and species. We cannot account for any of these cases of distribution between islands and mountains except by assuming that the species and genera common to these distant localities have found their way across the intervening spaces under conditions which no longer exist.

23. There is much to be observed in the condition and distribution of the introduced or naturalized plants of a country, which may be applied to the study of the origin of its indigenous vegetation. The greater proportion of these are the annual and other weeds of cultivated land, and plants which attach themselves to nitrogenous soils; naturalized perennials, shrubs, and trees occur consecutively in rapidly diminishing proportions. I can find no decided relation between complexity of structure and proneness to migrate, nor much between facilities for transport or power of endurance or vitality in the seed, and extent of distribution by artificial means. I shall return to this subject (which I have elsewhere discussed at length with reference to the Galapagos Archipelago) when treating of the naturalized plants of Australia.

24. I venture to anticipate that a study of the vegetation of islands with reference to the peculiarities of their generic types on the one hand, and of their geological condition (whether as rising or sinking) on the other, may, in the present state of our knowledge, advance the subjects of distribution and variation considerably. The incompleteness of the collections at my command from the Polynesian islands, has frustrated my attempts to illustrate this branch of inquiry by extending my researches from the Australian Flora over that of the Pacific. I may however indicate as a general result, that I find the sinking islands, those (so determined by Darwin's able investigations) characterized as atolls, or as having barrier reefs, to contain comparatively fewer species and fewer peculiar generic types than those which are rising. Thus, commencing from the east coast of Africa, I find in the Indian Ocean the following islands marked in Darwin's chart† as bounded with fringing reefs or active volcanos, and hence rising:—The Seychelles, Madagascar, Mauritius, Bourbon, Ceylon, the Andamans, Nicobar, and Sumatra; the vegetation of all which is characterized by great diversity and much peculiarity of generic type: whereas those marked as

* Whilst these sheets are passing through the press, I have been informed by Professor Asa Gray that the Flora of Japan and N.E. Asia is much more closely allied to that of the Northern United States than to that of America west of the Rocky Mountains.

† Linn. Trans. xx. 235.

‡ See his works on volcanic islands and on coral reefs.
atolls or barrier reefs, as the Maldives, Laccadives, and Keeling Island, contain few species, and those the same as grow on the nearest continents. In the Pacific Ocean, again, the groups of islands most remarkable for their ascertained number of very peculiar generic types are the Sandwich group, Galapagos, Juan Fernaudez, Loochoo and Bonin, all of which are rising, and most have active volcanos: those with the least amount of peculiarity are the Society group and Fijis, both of which are sinking. In the present state of our knowledge it is not safe to lay much stress on these apparent facts, especially as the New Hebrides and New Caledonia, which lie very close together, and both, I believe, contain much peculiarity, are in opposite geological conditions, the Hebrides rising and Caledonia sinking; and the Friendly* and Fiji groups, equally near one another, and with, I suspect, very similar vegetation, are also represented as being in opposite conditions. On the other hand, whole of the group including the Low Archipelago and the Society Islands, extending over more than 2000 miles, I observe but one rising spot,† namely, Elizabeth Island, a mere speck of land, but which is the only known habitat of one of the most remarkable genera of Composite.‡

25. Many of the above facts in the general distribution of species cannot be wholly accounted for by the supposition that natural causes have dispersed them over such existing obstacles as seas, deserts, and mountain-chains; moreover, some of these facts are opposed to the theory that the creation of existing species has taken place subsequent to the present distribution of climates, and of land and water, and to that of their dispersion having been effected by the now prevailing aquatic, atmospheric, and animal means of transport.

Similar climates and countries, even when altogether favourably placed for receiving colonists from each other, and with conditions suitable to their reciprocal exchange, do not, as a rule, interchange species. Causes now in operation will not account for the fact that only 200 of the New Zealand Flowering Plants are common to Australia, and still less for the contrasting one that the very commonest, most numerous, and universally distributed Australian genera and species, as Casuarina, Eucalyptus, Acacia, Boronia, Helichrysum, Melaleuca, etc., and all the Australian Leguminosce (including a European genus and species), are absent from New Zealand. Causes now in operation cannot be made to account for a large assemblage of Flowering Plants characteristic of the Indian peninsula being also inhabitants of tropical Australia, while not one characteristic Australian genus has ever been found in the peninsula of India. Still less will these causes account for the presence of Antarctic and European species in the Alps of Tasmania and Victoria, or for the reappearance of Tasmanian genera on the isolated lofty mountain of Kina-Balou, in Borneo.

These and a multitude of analogous facts have led to the study of two classes of agents, both of which may be reasonably supposed to have had a powerful effect in determining the distribution of plants; these are changes of climates, and changes in the relative positions and elevations of land.

26. Of these, that most easy of direct application is the effect of humidity in extending the

* I find that there is a remarkable difference between the Floras of the New Hebrides and Caledonia on the one hand, and those of the Fiji islands and those to the east of them on the other. In the former, New Zealand and Australian types abound; in the latter, almost exclusively Indian forms. The differences between the Floras of Fiji, Samos, Tonga, Tahiti, and that of India, are in species and not in genera, and many species are common to all.

† Mr. Darwin has left Aurora Island (another of the group) uncoloured, on account of the doubtful evidence regarding it, which however is in favour of its being in the same condition as Elizabeth Island. From a list of species communicated by Mr. Dana, it appears to contain no peculiar plants.

range of species into regions characterized by what would otherwise be to them destructive temperatures.

I have, in the 'Antarctic Flora,' shown that the distribution of tropical forms is extended into cold regions that are humid and equable further than into such as are dry and excessive; and, conversely, that temperate forms advance much further into humid and equable tropical regions than into dry and excessive ones; and I have attributed the extension of Tree-ferns, Epiphytal Orchids, Myrtaceae, etc., into high southern latitudes, to the moist and equable climate of the south temperate zone. I have also shown how conspicuously this kind of climate influences the distribution of mountain plants in India, where tropical forms of Laurel, Fig, Bamboo, and many other genera, ascend the humid extratropical mountains of Eastern Bengal and Sikkim to fully 9000 feet elevation; and temperate genera, and in some cases species, of Quercus, Salix, Rosa, Pinus, Prunus, Camellia, Rubus, Kadsura, Fragaria, Eucalus, etc., descend the mountains even to the level of the sea, in lat. 25°. In a tropical climate the combined effects of an equable climate and humidity in thus extending the distribution of species, often amount to 5000 feet in elevation or depression (equivalent to 15° Fahr. of isothermals in latitude), a most important element in our speculations on the comparative range of species under existing or past conditions; and when to this is added that the average range in altitude of each Himalayan tropical and temperate and alpine species of Flowering Plant is 4000 feet, which is equivalent to 12° of isothermals of latitude, we can understand how an elevation of a very few thousand feet might, under certain climatic conditions, suffice to extend the range of an otherwise local species over at least 25° parallels of latitude, and how a proportionally small increase of elevation in a meridional chain where it crosses the Equator, may enable temperate plants to effect an easy passage from one temperate zone to the other.

27. To explain more fully the present distribution of species and genera in area, I have recourse to those arguments which are developed in the Introductory Essay to the New Zealand Flora, and which rest on geological evidence, originally established by Sir Charles Lyell, that certain species of animals have survived great relative changes of sea and land. This doctrine, which I in that Essay endeavoured to expand by a study of the distribution of existing Southern species, has, I venture to think, acquired additional weight since then, from the facts I shall bring forward under the next head of Geological Distribution, and which seem to indicate that many existing Orders and Genera of plants of the highest development may have flourished during the Eocene and Cretaceous periods, and have hence survived complete revolutions in the temperature and geography of the middle and temperate latitudes of the globe.

28. Mr. Darwin has greatly extended in another direction these views of the antiquity of many European species, and their power of retaining their facies unchanged during most extensive migrations, by his theory of the simultaneous extension of the glacial temperature in both hemispheres, and its consequent effect in cooling the tropical zone. He argues that, under such a cold condition of the surface of the globe, the temperate plants of both hemispheres may have been almost confined to the tropical zone, whence afterwards, owing to an increment of temperature, they would be driven up the mountains of the tropics, and back again to those higher temperate latitudes where we now find most of them. I have already (New Zealand Essay) availed myself of the hypothesis of an austral glacial period, to account for Antarctic species being found on the alps of Australia, Tasmania, and New Zealand; and if as complete evidence of such a proportionally cooled state of the intertropical regions were forthcoming as there is of a glacial condition of the temperate zones, it would amply suffice to account for the presence of European and Arctic species in the Antarctic and south tem-
perate regions, and of the temperate species of both hemispheres on the mountains of intermediate tropical latitudes.

On the other hand, we have sufficient evidence of many of what are now the most tropical Orders of plants having inhabited the north temperate zone before the glacial epoch; and it is difficult to conceive how these Orders could have survived so great a reduction of the temperature of the globe as should have allowed the preglacial temperate Flora to cross the Equator in any longitude. It is evident that, under such cold, the most tropical Orders must have perished, and their re-creation after the glacial epoch is an inadmissible hypothesis.*

29. It remains then to examine whether, supposing the glacial epochs of the northern and southern hemispheres to have been contemporaneous, the relations of land and sea may not have been such as that a certain meridian may have retained a tropical temperature near the Equator, and thus have preserved the tropical forms. Such conditions might perhaps be attained by supposing two large masses of land at either pole, which should contract and join towards the Equator, forming one meridional continent, while one equatorial mass of land should be placed at the opposite meridian. If the former continent were traversed by a meridional chain of mountains, and so disposed that the polar oceanic currents should sweep towards the Equator for many degrees along both its shores, its equatorial climate would be throughout far more temperate than that of the opposite equatorial mass of land, whose climate would be tropical, insular, and humid.

30. The hypothesis of former mountain chains having afforded to plants the means of migration, by connecting countries now isolated by seas or desert plains, is derived from the evidence afforded by geology of the extraordinary mutation in elevation that the earth's surface has experienced since the appearance of existing forms of animals and plants. In the Antarctic Flora I suggested as an hypothesis that the presence of so many Arctic-American plants in Antarctic America might be accounted for by supposing that the now depressed portions of the Andean chain had, at a former period, been so elevated that the species in question had passed along it from the north to the south temperate zone;‡ and there are some facts in the distribution of species common to the mountain Floras of the Himalaya and Malay Islands, and of Australia and Japan, that would well accommodate themselves to a similar hypothesis. Of such submerged meridional lands we have some slender

* The question of the state of the mean temperature of the globe during comparatively recent geological periods is yearly deriving greater importance in relation to the problem of distribution. Upon this point geologists are not altogether clear, nor at one with the masters of physical science. Lyell (Principles, ed. ix. chap. vii.) attributes the glacial epoch to such a disposition of land and sea as would sufficiently cool the temperate zones; and he implies that this involves or necessitates a lowering of the mean temperature of the whole globe. Another hypothesis is, that there was a lowering of the mean temperature of the globe wholly independent of any material change in the present relations of sea and land, which cold induced the glacial epoch. A third theory is that such a disposition of land and sea as would induce a glacial epoch in our hemisphere need not be great, nor necessitate a decrement of the mean temperature of the whole earth.

‡ The continuous extension of so many species along the Cordillera (of which detailed evidence is given in the Antarctic Flora) from the Rocky Mountains to Fuegia, is a most remarkable fact, considering how great the break is between the Andes of New Granada and those of Mexico, and that the intermediate countries present but few resting-places for alpine plants. That this depression of the chain has had a powerful effect in either limiting the extension of species which have appeared since its occurrence, or in inducing changes of climate which have extinguished species once common to the north and south, is evidenced by the fact that a number of Fuegian and South Chilli plants extend northward as alpines to the very shores of the Gulf of Mexico, but do not inhabit the Mexican Andes, whilst as many Arctic species advance south to the Mexican Andes, but do not cross the intermediate depression and reappear in the Bolivian Andes.
evidence in the fact that, in the meridians of Australia and Japan, we have, first, the north-west coast of Australia sinking, together with the Louisiade Archipelago to its north; then, approaching the Line, the New Ireland group is sinking, as are also the Caroline Islands, in lat. 7° N. Beyond this, however, in lat. 15° N., are the Marianne Islands (rising), of whose vegetation nothing is known; in 27° N., the Bonin Islands (also rising); and in 30° N. is Japan, with which this botanical relationship exists.

It is objected by Mr. Darwin to this line of argument (as to that at p. xv concerning the Pacific Islands), that all these sinking areas are volcanic islands, having no traces of older rocks on them; but I do not see that this altogether invalidates the hypothesis, for many of the loftiest mountains throughout the Malayan Archipelago, New Zealand, and the Pacific Islands, are volcanic; some are active, and many attain 10–14,000 feet in elevation, whilst the lower portions of some of the largest of these islands are formed of rocks of various ages.

§ 4.

On the General Phenomena of the Distribution of Plants in Time.

A third class of facts relates to the antiquity of vegetable forms and types on the globe, as evidenced by fossil plants. The chief facts relating to these are the following:—

31. The earliest Flora of which we know much scientifically, is that of the Carboniferous formation. We have indeed plants that belonged to an earlier vegetation, but they do not differ in any important respects from those of the carboniferous formation.

Now the ascertained features of the coal vegetation may be summed up very briefly. There existed at that time,—

Filices; in the main entirely resembling their modern representatives, and some of which may even be generically, though not specifically, identical with them.

Lycopodiaceae; the same in their main characters as those now existing, and, though of higher specialization of stem, of greater stature, of different species, and perhaps also genera, from modern Lycopodiaceae, yet identical with these in the structure of their reproductive organs and their contents, and in the minute anatomy of their tissues.

Coniferae. The evidence of this Order is derived chiefly from the anatomical characters of the Dicotyledonous wood so abundantly found in the coal, and which seems to be identical in all important respects with the wood of modern genera of that Order, to which must be added the probability of Trigonocarpon and Nagegerathia being Gymnospermous, and allied to Salisburia.* On the other hand, it must not be overlooked that no Coniferous strobili have been hitherto detected in the Carboniferous formation.

Cycadeae. Some fragments of wood, presenting a striking similarity in anatomical characters to that of Cycadeae, have been found in the carboniferous series.

In the absence of the fructification of Calamites, Calamodendron, Halonia, Anabathra, etc., there are no materials for any safe conclusions as to their immediate affinities, beyond that they all seem to be allied to Ferns or Lycopodiaceae; but the same can hardly be said of the affinities of Volkmanna, Antholithes and others, which have been referred, with more or less probability, to Angiospermous Dicotyledons.

The Permian Flora is for the most part specifically distinct from the Carboniferous, but many of

* Phil. Trans. 1855, p. 149. † See Quarterly Journal of Geological Society, May, 1854.
FLORA OF TASMANIA.

its genera are the same. The prevalent types are Gymnospermous Dicotyledons, especially Cycadeae, and a great abundance of Tree-ferns.

The New Red Sandstone, or Trias group, presents plants more analogous to those of the Oolite than to those of the Carboniferous epoch, but they have also much in common with the latter. Volzia, a remarkable genus of Conifers, appears to be peculiar to this period.

In the Lias numerous species of Cycadeae have been found, with various Conifers and many Ferns. No other Dicotyledonous or any Monocotyledonous plants have as yet been discovered, but it is difficult to believe that none such should have existed at a period when wood-boring and herb-devouring insects, belonging to modern genera, were extremely abundant, as has been proved by the researches of Mr. Brodie and Mr. Westwood.*

The Oolite contains numerous Cycadeae, Conifera, and Ferns, and more herbivorous genera of insects; and here Monocotyledonous vegetables are recognizable in Podocarya and other Pandanaceous plants. A cone of Pinus has been discovered in the Purbeck, and one of Araucaria in the inferior Oolite of Somersetshire.

In the Cretaceous group, Dicotyledons of a very high type appear. A good many species are enumerated† by Dr. Debye, of Aix-la-Chapelle, including a species of Juglans, a genus belonging to an Order of highly-developed floral structure and complex affinities.‡

Characeae appear for the first time at this epoch, and are apparently wholly similar in structure to those of the present day.

The Tertiary strata present large assemblages of plants of so many existing Genera and Orders, that it can hardly be doubted but, that even the earliest Flora of that period was almost as complex and varied as that of our own. In the lowest Eocene beds are found Anonaceae, Nipa, Acacia, and Cucurbitaceae.§ In the Bagshot sands some silicified wood has been found, which may confidently be referred to Banksia, and which is, in fact, scarcely distinguishable from recent and fossil Australian Banksia wood.||

* These insects include species of the existing common European genera, Elater, Gryllus, Hemerobius, Ephemeria, Libellula, Panorpa, and Carabos. Of all conspicuous tribes of plants the Cycadeae, Filiceae, Conifera, and Lycopodiaceae perhaps support the fewest insects, and the association of the above-named insects with a vegetation consisting solely or mainly of plants of these Orders is quite inconceivable.
‡ Professor Oswald Heer, of Zurich, in an interesting little paper (Quelques Mots sur les Noyers), in Bibl. Univ. Genev. Sep. 1858, argues from the fact of the early appearance of Juglans in the geological series, that this genus must be a low type of the Dicotyledonous class to which it belongs. The position of Juglans is unsettled in the present state of our classification of Dicotyledonous Orders, as it has equal claims to be ranked with Terebinthaceae, which are very high in the series, and with Cupulifera, which are placed very low; and were the grounds for our thus ranking these Orders based on characters of ascertained relative value, such an argument might be admissible; but the system which sunder these Orders is a purely artificial one, and Juglans with its allies would prove it so, if other proofs were wanting; for it absolutely combines Terebinthaceae and Cupulifera into one natural group, in which (as in so many others) there is a gradual passage from great complexity of floral organs to great simplicity.
§ I am far from considering the identification of these and the other genera which I have enumerated in various strata as satisfactory, but I conclude that they may be taken as evidence of as highly developed and varied plants having then existed as are now represented by these genera.
|| I am indebted to the late Robert Brown for this fact, and for the means of comparing the specimens, which are beautifully opalized. I ascertained that he was satisfied with the evidence of this wood having really been dug up near Staines, though it is so perfectly similar in every respect to the opalized Banksia-wood of Tasmania as to suggest to his mind and my own the most serious doubts as to its English origin.
In the brown coal of the Eocene and Miocene periods, Fan-palms, Conifers, and various existing genera of Myricaceae, Lauraceae, and Platanaceae are believed to have been identified. Wesel and Weber describe from the brown coal of the Rhine a rich and varied Flora, representing numerous families never now seen associated, and including some of the peculiar and characteristic genera of the Australian, South American, African, Indian, and European Floras.*

In the Mollasse and certain Miocene formations at Öningen and elsewhere in Germany, Switzerland, and Tuscany,† 900 species ofDicotyledons have been observed, all apparently different from existing ones. They have been referred, with more or less probability, to Fan-palms, Poplars (three species), evergreen Lauraceae, Ceralonia, Acacia, Tamarindus, Banksia, Embothrium, Grevillea, Cupressus, several species of Juglandes (one near the North-American J. acuminata, another near the common Walnut of Europe and Asia, J. nigra, and a third near the North-American J. cinerea); also a Hickory, near the Carya alba (a genus now wholly American), and a Pterocarya closely allied to P. Caucasian.

The rise of the Alps was subsequent to this period; and in the European deposits immediately succeeding that event, in Switzerland (at Durnten and Utznach) are found evidences of the following existing species,—Spruce, Larch, Scotch Fir, Birch, a Hazel (different from that now existing), Scirpus lacustris, Phragmites communis, and Menyanthes trifoliata.

The glacial epoch followed, during and since which there has probably been little generic change in the vegetation of the globe.

32. So much for the main facts hitherto regarded as established in Vegetable Palaeontology; they are of little value as compared with those afforded by the Animal Kingdom, even granting that they are all well made out, which is by no means the case. In applying them theoretically to the solution of the question of creation and distribution, the first point which strikes us is the impossibility of establishing a parallel between the successive appearances of vegetable forms in time, and their complexity of structure or specialization of organs, as represented by the successively higher groups in the Natural method of classification. Secondly, that the earliest recognizable Cryptogams

* See Quart. Journ. Geol. Soc. xv. misc. 3, where an abstract is given, with some excellent cautions, by C. J. F. Bunbury, Esq. The Australian genera include Eucalyptus, Casuarina, Leptomeria, Templetonia, Banksia, Dryandra, and Hakea. I am not prepared to assert that these identifications, or the Australian ones of the Mollasse, are all so unsatisfactory that the evidence of Australian types in the brown coal and Mollasse should be altogether set aside; but I do consider that not one of the above-named genera is identified at all satisfactorily, and that many of them are not even problematically decided.

† During the printing of this sheet I have received from my friend M. De Candolle a very interesting memoir on the tertiary fossil plants of Tuscany, by M. C. Gaudin and the Marquis C. Strozzi, in which some of the genera here alluded to are described. The age of these Tuscan beds is referred by Prof. O. Heer to a period intermediate between those of Utznach and Öningen. The most important plants described are, Conifere, 6 sp.; Salix, 2; Liquidambar, 1; Alnus, 1; Carpinus, 1; Populus, 2; Fagus, 1; Quercus, 5; Ulmus, 2; Planae, 1; Ficus, 1; Platanus, 1; Oredaphne, 1; Laurus, 2; Persia, 1; Acer, 2; Vitis, 1; Juglandes, 4; Carya, 1; Pterocarya, 1. There are 49 extinct species in all, of which 46 are referred, without even a mark of doubt or caution, to existing genera, and this in almost all cases from imperfect leaves alone! Without questioning the good faith or ability of the authors of this really valuable and interesting memoir, I cannot withhold my protest against this practice of making what are at best little better than surmises, appear under the guise of scientifically established identifications. What confidence can be placed in the positive reference of supposed fossil Fungi to Spharia, or of pinnated leaves to Sapindus, and other fragments of foliage to existing genera of Lauracea, Ficus, and Vitis?

should not only be the highest now existing, but have more highly differentiated vegetative organs than any subsequently appearing; and that the dicotyledonous embryo and perfect exogenous wood with the highest specialized tissue known (the coniferous, with glandular tissue*), should have preceeded the monocotyledonous embryo and endogenous wood in date of appearance on the globe, are facts wholly opposed to the doctrine of progression, and they can only be set aside on the supposition that they are fragmentary evidence of a time further removed from that of the origin of vegetation than from the present day; to which must be added the supposition that types of Lycopodiales, and a number of other Orders and Genera, as low as those now living, existed at that time also.

Another point is the evidence,† said to be established, of genera now respectively considered peculiar to the five continents having existed cotemporaneously at a comparatively recent geological epoch in Europe, and the very close affinity, if not identity, of some of these with existing species. The changes in the level and contour of the different parts of the earth's surface which have occurred since the period of the chalk, or even since that preceding the rise of the Alps, imply a very great amount of difference between the past and present relations of sea and land and climate; and it is no doubt owing to these changes that the Araucaria, which once inhabited England, are no longer found in the northern hemisphere, and that the Australian genera which inhabited Europe at a period preceding the rise of the Alps have since been expelled.

Such facts, standing at the threshold of our knowledge of vegetable paleontology, should lead us to expect that the problem of distribution is an infinitely complicated one, and suggest the idea that the mutations of the surface of our planet, which replace continents by oceans, and plains by mountains, may be insignificant measures of time when compared with the duration of some existing genera and perhaps species of plants, for some of these appear to have outlived the slow submersion of continents.

35. From the sum then of our theories, as arranged in accordance with ascertained facts, we may make the following assumptions:— That the principal recognized families of plants which inhabited the globe at and since the Palaeozoic period still exist, and therefore have as families survived all intervening geological changes. That of these types some have been transferred, or have migrated, from one hemisphere to another. That it is not unreasonable to suppose that further evidence may be forthcoming which will show that all existing species may have descended genealogically from fewer pre-existing ones; that we owe their different forms to the variation of individuals, and the power of limiting them into genera and species to the destruction of some of these varieties, etc., and the increase in individuals of others. Lastly, that the fact of species being with so much uniformity the ultimate and most definable group (the leaves as it were of the family tree), may possibly be owing to the tendency to vary being checked, partly by the ample opportunities each brood of a

* The vexed question of the true position of Gymnospermous plants in the Natural System assumes a somewhat different aspect under the view of species being created by progressive evolution. In the haste to press the recent important discoveries in vegetable impregnation and embryogeny into the service of classification, the long-established facts regarding the development of the stem, flower, and reproductive organs themselves of Gymnospermous plants have been relatively underrated or wholly lost sight of; and if an examination of the doctrines of progression and variation lead to a better general estimation of the comparative value of the characters presented by these organs, the acceptance or rejection of the doctrines themselves is, in the present state of science, a matter of secondary importance.

† See first foot-note of p. xxi (*): what I have there said of the supposed identifications of the Australian genera applies to many of those of the other enumerated quarters of the globe.
INTRODUCTORY ESSAY.

variety possesses of being fertilized by the pollen of its nearest counterpart, partly by the temporary stability of its surrounding physical conditions, and partly by the superabundance of seeds shed by each individual, those only vegetating which are well suited to existing conditions: an appearance of stability is also, in the case of many perennials, due to the fact that the individuals normally attain a great age,* and thus survive many generations of other species, of which generations some present characters foreign to their parents.

36. In the above line of argument I have not alluded to the question of the origin of those families of plants which appear in the earliest geological formations, nor to that of vegetable life in the abstract, conceiving these to be subjects upon which, in the present state of science, botany throws no light whatever. Regarded from the classificatory point of view, the geological history of plants is not altogether favourable to the theory of progressive development, both because the earliest ascertained types are of such high and complex organization,† and because there are no known fossil plants which we can certainly assume to belong to a non-existing class or even family, nor that are ascertained to be intermediate in affinity between recent classes or families.‡

The progress of investigation may ultimately reveal the true history of the unrecognized vegetable remains with which our collections abound, and may discover to us amongst them new and unexpected organisms, suggesting or proving a progressive development; but in the meantime the fact remains that the prominent phenomena of vegetable palaeontology do not advance us one step towards a satisfactory conception of the first origin of existing Natural Orders of plants.

Taking the Conifers as an example, whatever rank is given to them by the systematist, that they should have preceded Monocotyledons and many Dicotyledons in date of appearance on the globe, is a fact quite incompatible with progressive development in the scientific acceptation of the term, whilst to argue from their apparently early appearance that they are low in a classificatory system is begging the question.

Another fact to be borne in mind is, that we have no accurate idea of what systematic progression is in botany. We know little of high and low in the Vegetable Kingdom further than is expressed by the sequence of the three classes, Dicotyledons, Monocotyledons, and Acotyledons; and amongst Acotyledons, of Thallogens being lower than Acrogens, and of these that the Mosses, etc., are lower than Filices and their allies. It is true that we technically consider multiplication and complexity of floral whorls in phaenogamic plants as indications of superior organization; but very many

* In considering the relative amount and rate at which different plants vary, it should be remembered that we habitually estimate them not only loosely but falsely. We assume annuals to be more variable than perennials, but we probably greatly overrate the amount to which they really are so, because a brief personal experience enables us to study many generations of an annual under many combinations of physical conditions; whereas the same experience embraces but a fractional period of the duration of (comparatively) very few perennials. It has also been well shown by Bentham (in his paper on the British Flora, read (1858) before the Linnean Society) that an appearance of stability is given to many varieties of perennials, through their habitual increase by buds, offsets, etc., which propagate the individual; and in the case of Rubi, which comparatively seldom propagate by seed, a large tract of ground may be peopled by parts of a single individual.

† I have elsewhere stated that I consider the evidence of Algæ having existed at a period preceding vascular Cryptogams to be of very little value. (Lond. Journ. Bot. viii. p. 254.)

‡ It must not be supposed that in saying this I am even expressing a doubt as to there having been plants intermediate in affinity between existing Orders and Classes. Analogy with the animal kingdom suggests that some at any rate of the plants of the coal epoch do hold such a relationship; but should they not do so, I consider this fact to be of little value in the present inquiry, for I incline to believe that the ascertained geological history of plants embraces a mere fraction of their whole history.
of the Genera and Orders most deficient in these respects are so manifestly reduced members of others, which are indisputably the most complex in organization in the whole Vegetable Kingdom, that no good classification even has been founded on these considerations alone.*

37. Again, it is argued by both Mr. Darwin and Mr. Wallace that the general effects of variation by selection must be to establish a general progressive development of the whole animal kingdom. But here again in botany we are checked by the question, What is the standard of progression? Is it physiological or morphological? Is it evidenced by the power of overcoming physical obstacles to dispersion or propagation, or by a nice adaptation of structure or constitution to very restricted or complex conditions? Are cosmopolites to be regarded as superior to plants of restricted range, hermaphrodite plants to unisexual, parasites to self-sustainers, albuminous-seeded to exalbuminous, gymnosperms to angiosperms, water plants to land, trees to herbs, perennials to annuals, insular plants to continental? and, in fine, what is the significance of the multitudinous differences in point of structure and complexity, and powers of endurance, presented by the members of the Vegetable Kingdom, and which have no recognized physiological end and interpretation, nor importance in a classificatory point of view? It is extremely easy to answer any of these questions, and to support the opinion by a host of arguments, morphological, physiological, and teleological; but any one gifted with a quick perception of relations, and whose mind is stored with a sufficiency of facts, will turn every argument to equal advantage for both sides of the question.

To my mind, however, the doctrine of progression, if considered in connection with the hypothesis of the origin of species being by variation, is by far the most profound of all that have ever agitated the schools of Natural History, and I do not think that it has yet been treated in the unprejudiced spirit it demands. The elements for its study are the fastest and most complicated which the naturalist can contemplate, and reside in the comprehension of the reciprocal action of the so-called inorganic on the organic world. Granting that multiplication and specialization of organs is the evidence and measure of progression, that variation explains the rationale of the operation which results in this progression, the question arises, What are the limits to the combinations of physical causes which determine this progression, and how can the specializing power of Nature stop short of causing every race or family ultimately to represent a species? While the psychological philosophers persuade us that we see the tendency to specialize pervading every attribute of organic life, mental and physical; and the physicists teach that there are limits to the amount and duration of heat, light, and every other manifestation of physical force which our senses present or our intellects perceive, and which are all in process of consumption; the reflecting botanist, knowing that his ultimate results must accord with these facts, is perplexed at feeling that he has failed to establish on independent evidence the doctrines of variation and progressive specialization, or to co-ordinate his attempts to do so with the successive discoveries in physical science.

* The subject of the retrogression of types has never yet been investigated in botany, nor its importance estimated in inquiries of this nature. To whatever Order we may grant the dignity of great superiority or complexity, we find that Order containing groups of species of very simple organization; these are moreover often of great size and importance, and of wide geographical distribution. Such groups, if regarded per se, appear to be far lower in organization than other groups which are many degrees below them in the classified series; and our only clue to their real position is their evident affinity with their complex co-ordinates; — destroy the latter by a geological or other event, and all clue to the real position of the former may be lost. Are such groups of simply-constructed species created by retrogressive variation of the higher, or did the higher proceed from them by progressive variation? If the latter, did the simpler forms precede in origin the highest forms of all other groups which rank below them in the classified series?
38. Before dismissing this subject, I may revert once more to the opposite doctrine, which regards species as immutable creations, and this principally to observe that the arguments in its favour have neither gained nor lost by increased facilities for investigation, or by additional means for observation. The facts are unassailable that we have no direct knowledge of the origin of any wild species; that many are separated by numerous structural peculiarities from all other plants; that some of them invariably propagate their like; and that a few have retained their characters unchanged under very different conditions and through geological epochs. Recent discoveries have not weakened the force of these facts, nor have successive thinkers derived new arguments from them; and if we hence conclude from them that species are really independent creations and immutable, though so often illimitable, then is all further inquiry a waste of time, and the question of their origin, and that of their classification in Genera and Orders, can, in the present state of science, never be answered, and the only known avenues to all means of investigation must be considered as closed till the origin of life itself is brought to light.

39. Of these facts the most important, and indeed the only one that affords a tangible argument, is that of genetic resemblance. To the tyro in Natural History all similar plants may have had one parent, but all dissimilar plants must have had dissimilar parents. Daily experience demonstrates the first position, but it takes years of observation to prove that the second is not always true. There are, further, certain circumstances connected with the pursuit of the sciences of observation which tend to narrow the observer's views of the attributes of species; he begins by examining a few individuals of many extremely different kinds or species, which are to him fixed ideas, and the relationships of which he only discovers by patient investigation; he then distributes them into Genera, Orders, and Classes, the process usually being that of reducing a great number of dissimilar ideas under a few successively higher general conceptions; whilst with the history of the ideas themselves, that is, of species, he seldom concerns himself. In a study so vast as botany, it takes a long time for a naturalist to arrive at an accurate knowledge of the relations of Genera and Orders if he aim at being a good systematist, or to acquire an intimate knowledge of species if he aim at a proficiency in local Floras, and in both these pursuits the abstract consideration of the species itself is generally lost sight of; the systematist seldom returns to it, and the local botanist, who finds the minutest differences to be hereditary in a limited area, applies the argument derived from genetic resemblance to every hereditarily distinct form.

40. It has been urged against the theory that existing species have arisen through the variation of pre-existing ones and the destruction of intermediate varieties, that it is a hasty inference from a few facts in the life of a few variable plants, and is therefore unworthy of confidence, if not of consideration; but it appears to me that the opposite theory, which demands an independent creative act for each species, is an equally hasty inference from a few negative facts in the life of certain species,* of which some generations have proved invariably within our extremely limited experience. These theories must not, however, be judged of solely by the force of the very few absolute facts on which they are based; there are other considerations to be taken into account, and especially the conclusions to which they lead, and their bearing upon collateral biological phenomena, under which points of view the theory of independent creations appears to me to be greatly at a disadvantage; for according to it every fact and every phenomenon regarding the origin and continuance of species, but that of their occasional variation, and their extinction by natural causes, and regarding the rationale of classi-

* See paragraph 4, where I have stated that the grand total of unstable species probably exceeds that of the stable.
classification, is swallowed up in the gigantic conception of a power intermittently exercised in the development, out of inorganic elements, of organisms the most bulky and complex as well as the most minute and simple; and the consanguinity of each new being to its pre-existent nearest ally, is a barren fact, of no scientific significance or further importance to the naturalist than that it enables him to classify. The realization of this conception is of course impossible; the boldest speculator cannot realize the idea of a highly organized plant or animal starting into life within an area that has been the field of his own exact observation* and research; whilst the more cautious advocate hesitates about admitting the origin of the simplest organism under such circumstances, because it compels his subscribing to the doctrine of the "spontaneous generation" of living beings of every degree of complexity in structure and refinement of organization.

On the other hand, the advocate of creation by variation may have to stretch his imagination to account for such gaps in a homogeneous system as will resolve its members into genera, classes, and orders; but in doing so he is only expanding the principle which both theorists allow to have operated in the resolution of some groups of individuals into varieties: and if, as I have endeavoured to show, all those attributes of organic life which are involved in the study of classification, representation, and distribution, and which are barren facts under the theory of special creations, may receive a rational explanation under another theory, it is to this latter that the naturalist should look for the means of penetrating the mystery which envelopes the history of species, holding himself ready to lay it down when it shall prove as useless for the further advance of science, as the long serviceable theory of special creations, founded on genetic resemblance, now appears to me to be.

The arguments deduced from genetic resemblance being (in the present state of science), as far as I can discover, exhausted, I have felt it my duty to re-examine the phenomena of variation in reference to the origin of existing species; these phenomena I have long studied independently of this question, and when treating either of whole Floras or of species, I have made it my constant aim to demonstrate how much more important and prevalent this element of variability is than is usually admitted, as also how deep it lies beneath the foundations of all our facts and reasonings concerning classification and distribution. I have hitherto endeavoured to keep my ideas upon variation in subjection to the hypothesis of species being immutable, both because a due regard to that theory checks any tendency to careless observation of minute facts, and because the opposite one is apt to lead to a precipitate conclusion that slight differences have no significance; whereas, though not of specific importance, they may be of high structural and physiological value, and hence reveal affinities that might otherwise escape us. I have already stated how greatly I am indebted to Mr. Darwin's† rationale of the phenomena of variation and natural selection in the production of species; and though it does not positively establish the doctrine of creation by variation, I expect that every additional fact and observation relating to species will gain great additional value from being viewed in reference to it, and that it will materially assist in developing the principles of classification and distribution.

* It is a curious fact (illustrative of a well-known tendency of the mind), that the few writers who have in imagination endeavoured to push the doctrine of special creations to a logical issue, either place the scene of the creative effort in some unknown, distant, or isolated corner of the globe, removed far beyond the ken of scientific observation, or suppose it to have been enacted at a period when the physical conditions of the globe differed both in degree and kind from what now obtain; thus in both cases arguing ad ignotum ab ignoto.

† In this Essay I refer to the brief abstract only (Linn. Journ.) of my friend's views, not to his work now in the press, a deliberate study of which may modify my opinion on some points whereon we differ. Matured conclusions on these subjects are very slowly developed.
ON THE FLORA OF AUSTRALIA.

§ 1.

General Remarks.

The Flora of Australia has been justly regarded as the most remarkable that is known, owing to the number of peculiar forms of vegetation which that continent presents. So numerous indeed are the peculiarities of this Flora, that it has been considered as differing fundamentally, or in almost all its attributes, from those of other lands; and speculations have been entertained that its origin is either referable to another period of the world's history from that in which the existing plants of other continents have been produced, or to a separate creative effort from that which contemporaneously peopled the rest of the globe with its existing vegetation; whilst others again have supposed that the climate or some other attribute of Australia has exerted an influence on its vegetation, differing both in kind and degree from that of other climates. One of my objects in undertaking a general survey of the Australian Flora, has been to test the value of the facts which have given rise to these speculations, and to determine the extent and comparative value of a different and larger class of facts which are opposed to them, and which might also give some clue to the origin of the Flora, and thus account for its peculiarities. This I pursued under the impression that it is the same with the study of whole Floras as of single species or their organs, viz. that it is much easier to see peculiarities than to appreciate resemblances, and that important general characters which pervade all the members of a family or Flora, are too often overlooked or undervalued, when associated with more conspicuous differences which enable us to dismember them. The result has proved, as I anticipated, that, the great difficulty being surmounted of collecting all the materials and so classifying them as to allow of their being generalized upon, the peculiarities of the Flora, great though they be, are found to be more apparent than real, and to be due to a multitude of specialities affecting the species, and to a certain extent the genera, but not extending to the more important characteristics of the vegetation, which is not fundamentally different from that of other parts of the globe.

Before proceeding to the discussion of the elements of the Australian Flora, I shall shortly describe its general character, viewed in the double light of a peculiar vegetation and as a part of the existing Flora of the globe. Its chief peculiarities are:

That it contains more genera and species peculiar to its own area, and fewer plants belonging to other parts of the world, than any other country of equal extent. About two-fifths of its genera, and upwards of seven-eighths of its species are entirely confined to Australia.

Many of the plants have a very peculiar habit or physiognomy, giving in some cases a character to the forest scenery (as Eucalypti, Acacie, Proteacee, Casuarine, Conifere), or are themselves of anomalous or grotesque appearance (as Xanthorrhoea, Kingia, Delabechea, Casuarina, Banksia, Dryandra, etc.).

A great many of the species have anomalous organs, as the pitchers of Cephalotus, the deciduous bark and remarkable vertical leaves of the Eucalypti, the phyllodia of Acacia, the fleshy peduncle of Exocarpus, the inflorescence and ragged foliage of many Proteaceee.

Many genera and species display singular structural peculiarities, as the ovules of Banksia,
calyptra of *Eucalyptus*, stigma of *Goodeniaceae*, staminal column of *Stylidium*, irritable labellum of various *Orchideae*, flowers sunk in the wood of some *Leptospermeae*, pericarp of *Casuarina*, receptacle and inner staminodia of *Eupomatia*, stomata of *Proteaceae*.

On the other hand, if, disregarding the peculiarities of the Flora, I compare its elements with those of the Floras of similarly situated large areas of land, or with that of the whole globe, I find that there is so great an agreement between these, that it is impossible to regard Australian vegetation in any other light than as forming a peculiar, but not an aberrant or anomalous, botanical province of the existing Vegetable Kingdom. I find:—

That the relative proportions of the great classes of Monocotyledons to Dicotyledons, of genera to orders, and of species to genera, are the same as those which prevail in other Floras of equal extent.

That the subclasses distinguished by a greater or less complexity of the floral envelopes, or their absence, as *Thalamifloræ*, *Calycifloræ*, *Corollifloræ*, etc., are also in the same relative proportions as prevail in other Floras.

That the proportion of Gymnospermous plants to other Dicotyledons is not increased.

That all the Australian Natural Orders, with only two small exceptions, are also found in other countries; that most of those most widely diffused in Australia are such as are also the most widely distributed over the globe; and that Australia wants no known Order of general distribution.

That the only two absolutely peculiar Natural Orders contain together only three genera, and very few species; they are, further, comparatively local in Australia, and are rather aberrant forms of existing natural families than well-marked isolated groups: *Brunoniaceæ* being intermediate between *Goodeniaceæ* and *Compositæ*, and *Tremandrea* between *Polygaleæ* and *Buettneriaceæ*.

That the large Natural Orders and Genera, which, though not absolutely restricted to Australia, are there very abundant in species and rare elsewhere, and for which I shall hence adopt the term Australian, stand in very close relationship to groups of plants which are widely spread over the globe (as *Epacrideæ* to *Ericeæ*, *Goodeniaceæ* to *Campanulaceæ*, *Stylideæ* to *Lobeliaceæ*, *Casuarine* to *Myricæ*).

That these Australian Orders are exceedingly unequally distributed in Australia; that there is a greater specific difference between two quarters of Australia (south-eastern and south-western) than between Australia and the rest of the globe; and that the most marked characteristics of the Flora are concentrated at that point which is geographically most remote from any other region of the globe.

That most of those Australian Orders and genera which are found in other countries around Australia, have their maximum development in Australia at points approximating in geographical position towards those neighbouring countries. Thus the peculiarly Indian features of the Flora are most developed in north-western Australia, the Polynesian and Malayan in north-eastern, the New Zealand and South American in south-eastern, and the South African in south-western Australia.

That of the nine largest Natural Orders, which together include a moiety of the Australian species of flowering plants, no fewer than six belong to the nine largest Natural Orders of the whole world, and five belong to the largest in India also.

That in Australia itself, in advancing from the tropics to the coldest latitudes, or from the driest to the most humid districts, or from the interior to the seashore, or in ascending the mountains, the changes in vegetation are in every aspect analogous to what occur in other parts of the globe.
That the relations between the epochs of the flowering and the fruiting of plants, and the seasons of the year, are the same in Australia as elsewhere, and most remarkably so, the Orchideae being spring flowers, the Leguminose summer, the Composite autumn, and the Cryptogamia winter.

That the peculiarities of the Australian Flora in no way disturb the principles of natural arrangement derived from the study of the Flora of the globe apart from that of Australia; for after having attempted to consider the Australian vegetation in a classificatory point of view, shutting out of my view, as far as I could, that of other countries, I have been led to the conclusion that the authors of the Natural System—Ray, Linnaeus,* and the Jussieus—might have developed the same Natural System had they worked upon Australian plants instead of upon European.

I find further, that the classes, orders, genera, and species, may be about as well (or as ill) fixed or limited by a study of their Australian members as by those of any other country similarly circumstanced, and that there is the same vagueness as to the exact limits of natural groups, a similar inequality amongst them in numerical value and botanical characters, and an analogous difficulty in forming subclasses intermediate between classes and orders, as other Floras present. The Australian Flora, in short, neither breaks down nor improves the Natural System of plants as a whole, though it throws great light on its parts; the Australian genera fall into their places in that system well enough, though that system was developed before Australia was known botanically, and was chiefly founded upon a study of the vegetation of its antipodes.

Thus, whether the Australian Flora is viewed under the aspect of its morphology and structure, as exhibited by its natural classification, or its numerical proportions or geographical distribution, it presents essentially the same primary features as do those of the other great continents: and it hence appears to me rash to assume that its origin belongs to another epoch of the earth's history than that of other Floras, when the proportions of its classes, etc., are identically the same with these; or that it should be attributed to a distinct creative effort, if this is manifested only in effecting morphological differences requisite to constitute species and genera in our classification, without disturbing the proportions of these; or that the local influence of the Australian climate should be essentially different from that of other countries, and yet effect no physiological change in the periods of flowering and fruiting, or produce any other functional disturbances of the vegetable organisms, or affect the agency of humidity, temperature, soil, and elevation, on plants.

I shall now take the Australian Flora in greater detail, and dwell more at length upon those features from which I have derived the above conclusions.

* The real merits of Linnaeus as a founder of the Natural System have never been appreciated. In the well deserved admiration of the genius and labours of the Jussieus, it is forgotten that the powers displayed by Linnaeus in constructing the Genera Plantarum was not less (perhaps greater) than that exercised in grouping these into those genera of a higher value, which are now called Jussieuan Orders. The history of our Natural System presents but four salient points:—I. Ray's division of all plants into Phanogams and Cryptogams, and of the former into Monocotyledons and Dicotyledons. II. Linnaeus's forming natural groups called Genera, and rendering a knowledge of them accessible to scientific minds by means of a binomial nomenclature and a mixed natural and artificial system of Classes and Orders. III. The Jussieus' combining most of the genera of Linnaeus into truly Natural Orders, under Ray's classes, which classes they divided into subclasses as artificial as many of Linnaeus's classes were. IV. The separation of Gymnosperms, by Brown, which is the first step towards a natural classification of the Jussieuan Orders of Dicotyledons. (See Lond. Journ. of Bot. and Kew Gard. Misc. ix. 314 note.)
Estimate of the Australian Flora, and some General Remarks on the Classes and Orders, their Numbers, Distribution, and Affinity.

I estimate the Flowering Plants known to be indigenous to Australia* at about 8,000 species, a number which will not in all probability be much increased by further investigations, because it includes upwards of 500 of which I have seen no specimens, and a considerable proportion of which will no doubt prove to be founded on error, and it includes a much larger number which I have reason to believe will prove to be varieties,† when more of their forms are collected, or themselves more carefully studied.

About ten years ago (1849), Brown, in the appendix to Sturt's Voyage, estimated the Australian Flora at something under 7,000 species; since which period 1,000 species have not been added, although the explored area has been greatly enlarged, both by surveys of the tropical coasts, and inland journeys made to the north of the Tropic of Capricorn, and especially by the investigations of Dr. Mueller, during his adventurous explorings of the Australian Alps, and of the northern and eastern parts. Dr. Mueller‡ himself, who has personally explored more of the continent than any other botanist, except the late Allan Cunningham, considers that the total Flora, including the undiscoverd species, Phaenogamic and Cryptogamic (exclusive of the minute Fungi and fresh-water Algae), cannot exceed 10,000 species. Cryptogamic plants are known to be extremely rare in Australia as compared with Phaenogamic; nevertheless, as they already amount to fully 2,000 discovered species,§ I suspect that Dr. Mueller's estimate is more probably too low than too high, and that we may assume 9,000–10,000 flowering plants as an approximation to the number that will eventually be found to be indigenous to Australia.||

Considering that the vegetation of Australia is confined to a belt of more or less fertile land surrounding an arid desert, which occupies perhaps two-thirds of its total area, and that the tropical region is an extremely poor one in plants, this Flora must be considered as very large. And if the tropical Flora is excluded, and the temperate alone compared numerically with that of Europe for instance, the very varied nature of the Australian vegetation will appear all the more remarkable. Thus the superficies clothed with any considerable number of species in extra-tropical Australia, is probably not equal to one-fifth of the similarly clothed area of Europe, which, though so much more varied in all its physical features, contains only 9,648** species, according to Nyman's list, and this

* Except when otherwise stated, I include Tasmania and its islands under the general term Australia.
† Dr. Mueller's valuable notes upon my 'Tasmanian Flora,' which will be found in the Supplement, show how very much is to be done in the reduction of species founded on herbarium specimens, even when these are unusually copious and good.
§ In Tasmania alone there are Ferns and allies, 70; Mosses and Hepaticæ, 386; Algae, 315; Lichens, about 100; Fungi, 275. And I cannot doubt but that this number will be doubled by future discoverers.
|| I need hardly remark, that the very different opinions entertained by botanists as to what amount and constancy of difference between many forms of plants should constitute a species, renders all such comparisons vague; and I may add that no two or more botanists can ascertain the comparative value of their opinions except they have exactly the same materials to work with. It is too often forgotten that in the sciences of observation what are called negative facts and evidence are worthless as compared with positive.
** Nyman, Sylloge Floræ Europæae.
includes a large proportion of what would be considered varieties in all the Australian estimates. To be more precise, I may state, that the fertile portions of the colonies of New South Wales, Victoria, South Australia, and Western Australia, do not probably, in the aggregate, exceed in area Spain, Italy, Greece, and European Turkey, and contain perhaps half as many more flowering plants, or as many as these European countries together with Asia Minor and the Caucasus do. There is, however, little or nothing to be learnt from such numerical comparisons of species, when not examined in relation to the generic and ordinal differences which characterize them, and to which I shall hereafter allude.

The relative proportions of the two great classes of Flowering plants, Monocotyledons to Dicotyledons, are as 1 : 4·6,* which is a close approximation to what is supposed to obtain in the vegetation of the whole globe (1 : 4·9),† a remarkable coincidence, when the fact I have already alluded to is borne in mind, that seven-eighths of the species, and two-fifths of the genera of Australia have not been found elsewhere on the globe.

Regarding the temperate and tropical Australian Floras separately, I find that the tropical contains about 2,200 species, and the temperate 5,800, and that the proportions of Monocotyledons to Dicotyledons in each are,—

Tropical Flora . . . 1 : 3·5
Temperate Flora . . . 1 : 5·0

Comparing these numbers with those obtained from similarly large areas, there is again a remarkable concordance,‡ exemplifying the established fact that the proportion of Dicotyledons increases with the increasing distance from the tropics. Thus we have,—

<table>
<thead>
<tr>
<th>Temperate Floras</th>
<th>Tropical Floras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe¹ . . . Monocot. : Dicot. :: 1 : 5·2</td>
<td>Western Trop. Africa⁶ Monocot. : Dicot. :: 1 : 3·6</td>
</tr>
<tr>
<td>Russian Empire² . . . , . , .</td>
<td>Ceylon⁶ . . . , . , .</td>
</tr>
<tr>
<td>British North America³ . . . , . , .</td>
<td>India⁷ . . . , . , .</td>
</tr>
<tr>
<td>South Africa⁴ . . . , . , .</td>
<td>Tropics⁸ generally . . . , . , .</td>
</tr>
<tr>
<td>Australia . . . , . , .</td>
<td>Australia . . . , . , .</td>
</tr>
</tbody>
</table>

* Brown (General Remarks, p. 6) gives the proportion of Dicotyledons to Monocotyledons as rather more than 3 : 1, from which it appears that the results of subsequent collections has been to increase the number of Dicotyledons relatively to that of Monocotyledons very largely. And this is as was to be expected, for the Monocotyledons are most widely diffused, and hence tend to preponderate unduly in incomplete Floras.

† According to Lindley's 'Vegetable Kingdom,' in which the numerical values of the Orders, as regards the genera and species they contain, were obtained with great labour, and are entitled to much confidence.

‡ Brown, on the contrary (Gen. Remark.), found a considerable discordance on this very point, for his materials from New South Wales and from King George's Sound both gave the proportion of Monocotyledons to Dicotyledons as very nearly 1 : 3, and his Tropical Flora the same. He adds:—"I confess I can perceive nothing, either in the nature of the soil or climate of Terra Australis, or in the circumstances under which our collections were formed, to account for the remarkable exceptions to the general proportions of the two classes in the corresponding latitudes of other countries."

I have satisfied myself, by a comparison of the relative distribution of Monocotyledons and Dicotyledons within Australia, that this discordance was only apparent, and due to the fact of his collections not being complete enough. I have elsewhere remarked that the same source of error has vitiated Brown's estimates of the proportions of the classes in Western Africa (Linn. Trans. xx. p. 240 note).

¹ Nymau, Sylloge. ² Hooker's 'Flora Boreali-Americana.' ³ Ledebour, 'Flora Rossica.' ⁴ Drège, Meyer, Harvey's MSS., etc. ⁵ Thwaites's 'Summary.' ⁶ Author's MSS. The Indian Flora here estimated includes a large number of temperate and alpine plants, and the proportion of Dicotyledons is hence high. ⁷ A. De Candolle, Geogr. Bot. p. 1188.
The Gymnospermous Dicotyledons being regarded by many botanists as a class equivalent in rank with all Angiospermous Phaenogams, and all the Australian species being endemic, I have thought it might be interesting approximately to compare their proportions to other Phaenogams. They are,—

<table>
<thead>
<tr>
<th>Location</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Australia</td>
<td>1 : 184</td>
</tr>
<tr>
<td>In Europe</td>
<td>1 : 194</td>
</tr>
<tr>
<td>In the Russian Empire</td>
<td>1 : 160</td>
</tr>
<tr>
<td>In India</td>
<td>1 : 292</td>
</tr>
<tr>
<td>In the whole world</td>
<td>1 : 315</td>
</tr>
</tbody>
</table>

I may remark, that in selecting Floras for comparing the proportions of Orders, it is necessary to take such as embrace a very large area, and are moreover tolerably well defined as botanical provinces. Of those I have compared, India is inapplicable, being a heterogeneous assemblage of temperate, tropical, and alpine plants, the tropical being however so far dominant as to determine the main results. Ceylon, again, is both far too small as an area, and is not a botanical province; the proportions of the Indian Orders in it are, however, on the whole, so well balanced, that it gives normal results.

The number of Natural Orders of Phaenogamic plants in Australia is about 152.* Of these none are absolutely peculiar except Brunoniaceae and Tremandraceae, which may without violence be respectively appended to Goodeniaceae and Buechneriaceae. Of about fifty absent Orders, the following are universally recognized as large and tropical Indian, and their total absence in Australia is certainly anomalous; Ternstroemiaceae (if Cochlospermum be excluded), Dipterocarpaceae, Guttiferae (exclusive of Calophyllum), Ochnaceae, Connaraceae, Balsamineae, Begoniaceae, Vaccinaceae.

The following are also tropical Indian, but are small; some of them are not universally recognized, but are appended by various authors to other Orders which do exist in Australia:—

- Samydeae: a family of Bixaceae.
- Tamariscoineae.
- Myrceae: of which Casuarinaceae are possibly a family.
- Pyrenacanthae: referred to Antidesmeae or Euphorbieae.

The following are temperate Orders, found elsewhere in the southern hemisphere, but not in Australia:—

- Fumariaceae: a Suborder of Papaveraceae.
- Salicinacea: almost entirely a northern Order.
- Berberideae: ditto, except in the South American Andes.
- Valerianae: ditto, except in the South American Andes.

The Orders which, without being absolutely confined to Australia, are either peculiarly characteristic of that country, or are almost entirely confined to it, are either very small indeed, or are sections of larger Orders, as,—

* The following estimates are founded on the assumption that there are about 200 Natural Orders in all the Vegetable Kingdom, that is to say, so many Natural groups which are—1. Types of structure common in most cases to a large number of species, and containing several or many Genera; 2. Groups absolutely definable by natural characters, or betraying a transition to other groups by only a small proportion of their species. My views on these points accord with those of Bentham (Linn. Soc. Journ. Bot. vii. p. 31) and Asa Gray, who also consider 200 as a fair approximate estimate of the known Natural Orders.
Stackhousiaceae: containing only about 20 species, and of which representatives are found in New Zealand and the Philippine Islands.

Goodeniaceae: very closely allied to Campanulaceae and Lobeliaceae.

Stylidiaceae: ditto.

Epacridaceae: a division of Ericaceae.

Casuarinaceae: very near Myricaceae.

Xerotidae and Aphyllantheae sections of Liliaceae or Junceae.

Other Orders which are less peculiar but are largely developed and equally or more characteristic of Australian vegetation than the other, are:

Dilleniaceae, after Australia, abound most in India.

Rutaceae, " South Africa.

Proteaceae, " Ditto.

Restiaceae, " Ditto.

Thymelaceae, " Ditto.

Haemodoraceae, " Ditto.

Buettneriaceae, " Ditto.

Droseraceae, " Ditto.

Turning again to other countries which are remarkable for the peculiarity of their vegetation, I find that South America contains many more peculiar families than Australia, and South Africa about as many.

§ 3.

On the Australian Distribution of Natural Orders.

I have attempted in various ways so to group the Orders as to show the geographical distribution of the characteristic ones; of these I shall select the following as illustrating most clearly, both that the temperate Flora is more peculiar than the tropical, and that that quarter of the continent which is geographically most isolated contains the greatest number of peculiar features.

A. Orders which are most characteristic of Australia, and almost confined to it:

1. Stackhousiaceae has most species in the South-west; next, South-east; fewest in the Tropics.

Hence, Six-sevenths attain their maximum in the South-west.

One-seventh, " South-east.

None, " Tropics.

B. Orders which attain their maximum in Australia, and most of the Australian genera and species of which are peculiar to that country:

"
Here again, Seven-tenths attain their maximum in the South-west.

<table>
<thead>
<tr>
<th>Orders</th>
<th>South-west</th>
<th>South-east</th>
<th>Tropics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Proteaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Dilleniaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Droseraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Myoporineae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Rutaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Haloragaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Pittosporaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Thymeleaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Haemodoraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Restiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three-tenths attain their maximum in the South-east.
None attain their maximum in the Tropics.

Orders which are not at all peculiar to Australia, and do not there attain their maximum, but of which more than half the species are peculiar, and many belong to peculiar Australian genera:

Here again, Five-ninths attaining their maximum in the South-east.

<table>
<thead>
<tr>
<th>Orders</th>
<th>South-west</th>
<th>South-east</th>
<th>Tropics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leguminosae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Myrtaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Compositae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Umbelilferae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Iridaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Melanthaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Santalaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Phytolacaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Saxifragaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Four-ninths attain their maximum in the South-west.
None attain their maximum in the Tropics.

Orders, all containing upwards of thirty species, but of which comparatively few, or none, of the genera are peculiar.

<table>
<thead>
<tr>
<th>Orders</th>
<th>South-west</th>
<th>South-east</th>
<th>Tropics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gramineae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cyperaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Orchideae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Euphorbiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Labiatae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Liliaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Rubiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Scrophularineae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Amaranthaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Chenopodiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Sapindaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Malvaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Convolvulaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Rhamnaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTORY ESSAY.

15. Verbenaceae has most species in the Tropics; next, South-west; fewest in the South-east.

16. Loganiaceae Tropics South-west South-east.

17. Cruciferae Tropics South-west South-east.

18. Loranthaceae Tropics South-east South-west.

19. Lobeliaceae South-west South-east Tropics.

20. Urticaceae Tropics South-east South-west.

21. Ranunculaceae Tropics South-east South-west.

22. Polygalaceae South-west South-east Tropics.

23. Solanaceae Tropics South-west South-east.

24. Lentibulariaceae South-east South-west Tropics.

25. Boraginaceae Tropics South-west South-east.

The sequence in this case is wholly inverted from what obtained in A and B, and we have—

Fourteen twenty-fifths attaining their maximum in the Tropics.

Six twenty-fifths South-east.

Five twenty-fifths South-west.

This accumulation of ordinal and generic peculiarity of Australian vegetation in the south-west quarter of the continent, as compared with the south-east especially, is a very remarkable feature; it would still have been very striking had there been any contrasting peculiarity of climate or surface between these districts, which is not the case.

An examination of the proportions which the largest Natural Orders bear to the whole Flora affords very important data for determining the relations of a Flora. I find that half the Australian species are included under the following Orders, which I have here arranged nearly in the order of their numerical extent, and contrasted them with those of some other countries.

<table>
<thead>
<tr>
<th>Australia</th>
<th>India</th>
<th>South Africa</th>
<th>Europe</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leguminosae</td>
<td>Leguminosae</td>
<td>Composite</td>
<td>Compositae</td>
<td>Compositae</td>
</tr>
<tr>
<td>2. Myrtaceae</td>
<td>Rubiaceae</td>
<td>Leguminosae</td>
<td>Leguminosae</td>
<td>Leguminosae</td>
</tr>
<tr>
<td>3. Proteaceae</td>
<td>Orchideae</td>
<td>Eriaceae</td>
<td>Cruciferae</td>
<td>Gramineae</td>
</tr>
<tr>
<td>4. Compositae</td>
<td>Composite</td>
<td>Gramineae</td>
<td>Gramineae</td>
<td>Ortideae</td>
</tr>
<tr>
<td>5. Gramineae</td>
<td>Gramineae</td>
<td>Liliaceae</td>
<td>Umbelliferae</td>
<td>Rubiaceae</td>
</tr>
<tr>
<td>6. Cyperaceae</td>
<td>Euphorbiaceae</td>
<td>Irideae</td>
<td>Caryophyllaeae</td>
<td>Euphorbiaceae</td>
</tr>
<tr>
<td>7. Epacridae</td>
<td>Acanthaceae</td>
<td>Diosmeae</td>
<td>Scrophularineae</td>
<td>Labiateae</td>
</tr>
<tr>
<td>8. Goodeniaceae</td>
<td>Cyperaceae</td>
<td>Scrophularineae</td>
<td>Labiateae</td>
<td>Myrtaceae</td>
</tr>
<tr>
<td>9. Orchideae</td>
<td>Labiateae</td>
<td>Geraniaceae</td>
<td>Ranunculaceae</td>
<td>Cyperaceae</td>
</tr>
</tbody>
</table>

Hence it appears, that of the nine Natural Orders which together include upwards of half the known Australian Flowering Plants, three Orders are similarly characteristic of all the other areas compared, two of three areas, and two of two areas. In other words,—

Composite, Leguminosae, and Gramineae, are found in all five areas.

Cyperaceae and Orchideae, in three.

Epacridae (Eriaceae) and Myrtaceae, in two.

Goodeniaceae and Proteaceae, in Australia alone.

Rude as the above data and methods of comparison are, they appear clearly to corroborate the
opinion, that the fundamental features of the Australian vegetation are not very different from those of the rest of the world, or than the vegetations of other large areas in the world are from one another.

§ 4.

On the Genera of the Australian Flora.

The number of Genera of Australian Flowering Plants exceeds 1,300, and each genus has on the average about six species: the Monocotyledons differ in this respect from the Dicotyledons in having rather fewer species to each genus. This proportion is of course smaller than obtains for the whole globe (10-5, Lindley), for Europe (about 8), and India (about 5).

Of these genera a large number (between 500 and 600) are peculiar to Australia, but a rather larger number are common to India and its islands; 212 are European, and 146 British.

The proportion of endemic Australian genera is much larger amongst Dicotyledons, and is very conspicuously great in those Orders which themselves numerically preponderate, as Myrtaceae, Goodeniaceae, Epacridae, Proteaceae, Myoporineae, thus indicating that the generic peculiarities of the vegetation are in a certain sense restricted.

I have endeavoured to arrange approximately the principal Natural Orders with respect to the number of endemic genera they contain, and their prevalence, as follows:—

1. Orders or Natural groups characteristic of the Flora, and half whose genera are endemic.

 a. All genera endemic:—
 Haemodoraceae, Xerotideae, Tremandreae.

 b. Upwards of three-fourths of the genera endemic:—

 c. Between half and three-quarters of the genera endemic:—
 Leguminosae. Compositeae. Stackhousiae.

2. Orders or large groups characteristic of the Flora in various respects, which are numerically great, and less than half whose genera are endemic.

 a. Few or no endemic genera:—

 b. Upwards of three-fourths not endemic:—
c. Between three-fourths and one-half not endemic:

- Cruciferae
- Verbenaceae
- Euphorbiaceae
- Liliaceae
- Labiatae
- Orchideae
- Cyperaceae
- Chenopodieae
- Smilaceae
- Gramineae
- Apocynae
- Amaranthaceae
- Orchide®
- Lamiaceae
- Chenopodieae
- Liliaceae
- Cyperaceae
- Gramineae
- Compositae
- Euphorbiaceae
- Liliaceae
- Cyperaceae

The above estimates are very rude, and intended to show tendencies in the general vegetation. It appears from them, that out of the twenty-five Orders, half of whose genera are endemic, but few are really much restricted in distribution; and that there are thirty-nine Orders universally distributed over the globe which play a conspicuous part in the vegetation of Australia, but of whose genera less than half are peculiar to that country. On the other hand, the twenty-three first-named Orders comprise considerably more than half the species of Australian Flowering Plants.

In point of number of species they contain, the Australian genera may be arranged approximately, as follows.

- Above 200 species,—
 - Acacia
 - Eucalyptus
 - Leucopogon
 - Grevillea

- Above 100 species,—
 - Pimelea
 - Goodenia
 - Persoonia
 - Pultenflia
 - Daviesia
 - Melaleuca
 - Dryandra
 - Drosera
 - Eurybia
 - Lepidosperma
 - Dampiera
 - Boronia
 - Xerotes
 - Helichrysum
 - Banksia
 - Dodonea
 - Trichinium

These genera together comprise upwards of 2,000 species, are almost without exception very characteristic of extratropical Australian vegetation, and nearly all are highly characteristic of Australia and its islands.

One-half of the genera of Australian Flowering Plants are included in the following Orders:

1. Compositae
2. Leguminosae
3. Gramineae
4. Myrtaceae
5. Cyperaceae
6. Euphorbiaceae
7. Orchideae
8. Epacridae
9. Proteaceae
10. Scrophularineae
11. Rubiaceae
12. Goodeniaceae
13. Liliaceae
14. Labiatae

Of the peculiar genera of Australia, on the other hand, one-half of the whole are comprised in the following Orders:

1. Compositae
2. Leguminosae
3. Myrtaceae
4. Epacridae
5. Proteaceae
6. Goodeniaceae
7. Rubiaceae
8. Orchideae

Had I the materials, it would have been interesting to have extended this inquiry to the character of the genera themselves, and especially as to whether the arboreous or herbaceous prevailed, one of the most striking characters of the Australian vegetation being the great number of peculiar genera, amongst which a large proportion are trees or large shrubs.
§ 5.

On the Tropical Australian Flora.

There are no geographical or other features of the Australian continent which enable me to draw any natural boundary between temperate and tropical Australia. In selecting a botanical tropic of Capricorn, I hence have had recourse to the distribution of the plants themselves, and these must afford very vague data. The tropical Flora, in one form, advances further south on the west coast and on the central meridian than on the east, because of the absence of mountains, and hence of water, on the west, which causes combine to favour the prevalence of hot, desert types of vegetation, many of which advance even to Swan River. On the east coast again the climate is moister, and we hence not only find the most marked features of extratropical Australian vegetation,—Stackhousia, Boronia, Tetraetheca, Comesperma, various genera of Epacridaceae, Leguminosceae, Myrtaceae, etc., advancing in full force as far north as Moreton Bay, lat. 27°, which I have somewhat arbitrarily assumed there to be the limit of the temperate Flora,—but Palms and other tropical forms running down the coast almost to Bass’s Straits. To the northward of Moreton Bay (judging especially from Mr. Bidwill’s Wide Bay collections) not only do many temperate forms disappear, but tropical ones,—Malvaceae, Sterculiaceae, Acanthaceae, Euphorbiaceae, Convolvulaceae, Meliaceae, and Sapindaceae, Ficus, together with numerous tropical Indian weeds,—become a prevailing feature in the landscape. The Araucarias, according to M’Gillivray (Voy. Rattlesnake, 1846-50), begin at Port Bowen and advance to Cape Melville. Pandanus, according to the same authority, commences at Moreton Island.

On the west coast I am puzzled where to draw the line. Judging from Drummond’s herbarium, formed between the Moore and Murchison rivers (lat. 27°30′ S.), the vegetation is there still typically that of the Swan River, though much modified, and reduced greatly in number of genera and species. Sir G. Grey, in his adventurous journey from Port Regent to Swan River, enumerates various eminently tropical forms as occurring to the north of Sharks Bay (lat. 26° S.), as Nutmeg, *Araucaria,* Calamus (abundant), Vines, many Figs, and Areca, together with a Banksia of Swan River, which he distinctly alludes to as being quite exceptional (p. 247). To the southward of Sharks Bay again, he met with Xanthorrhoea and Sow-thistle,† both of whose northern limits he gives as 28° S., and Zamia (lat. 29° S.). The parallel of Sharks Bay, I have hence assumed to be north of the position of the tropic of vegetation.

In determining what may be called the tropic of vegetation, regard must be had not only to the latitude and isothermal lines, but to the abundance of the vegetation and its character: and, indeed, in such a country as Australia the latter elements are perhaps of the greatest importance, owing to the diminution northward of so many peculiar genera that make up a large proportion of the extra-tropical vegetation, and to the fact that the tropical Flora is so very poor in number of species, and deficient in such conspicuously tropical genera as Epiphytic Orchids, Palms, Ferns, Scitamineae, etc., etc.

Taking all elements into consideration, of the vegetation, actual temperature, and relative hu-
INTRODUCTORY ESSAY.

midity, we may assume that the tropical and temperate Australian Floras blend on both (east and west) meridians at between lat. 26° and 29° S.; and had we complete Floras of the included parallels of latitude, it would not be difficult to determine by the affinities of the peculiar (endemic) species, and the distribution of those that extend either north or south of those parallels, which to refer to the tropical Flora and which to the temperate.

With regard to the actual temperature of the Australian tropical vegetation, it approximates to the isothermal of 68°.

The general botanical features of the tropical vegetation may be gathered from the excellent narratives of Leichardt, Mitchell, Mc'Gillivray, Carron, and especially of Mueller, for the interior, and of Brown, Cunningham, and Mc'Gillivray for the coasts. The most prominent feature is the rarity of Cryptogams, which are almost wholly absent in western and central tropical Australia, and in the islands of the Gulf of Carpentaria, but are more abundant (especially the Ferns) on the north-east coast. The absence of Bamboos is another very striking feature, though these are said to abound in Arnheim's Land (Mueller, Linn. Journ. Bot. ii. p. 138). Epiphytic Orchids are also very rare. Eucalypti and Acacieform the mass of the arboreous and shrubby vegetation here as elsewhere throughout Australia, next to which some of the most common and noticeable arboreous features of vegetation are afforded by clumps of Pandani (one species indicating fresh-water in the interior), Brachychiton, Adansonia, on the north-west quarter, and Cochlospermum, and many other genera on the north-east. Casuarina, Calitlitas, and other large trees seem to be rare though not wholly wanting on the west coast.

The principal tropical phases of vegetation described by Mueller are,—

1. The varied arboreous and shrubby clothing of the eastern slopes of the eastern ranges, where numerous Indian genera of umbrageous trees are interspersed with Australian; this, called the "Brushwood," or "Cedar" country, further contains the most numerous representatives of the Polynesian and Malayan Floras; together with Cycas thirty feet high, and various Palms of the genera Calamus, Areca, Caryota, and Livistona.
2. The "Brigalow Scrub" extends over the elevated sandstone plains west of the coast range in east Australia, as far as the Newcastle range (lat. 18°–20°). This is also a very varied vegetation, chiefly of small trees and shrubs of Capparideae, Pittosporeae, Bauhinia, Sterculiaeæ, etc. Here Delabechia and Brachychiton, form a remarkable secondary feature; distinguished as the Bottle-tree Scrub, from their tumid trunks. This vegetation is elsewhere* described by Mueller as extending from the Burdekin to the Upper Darling rivers, and ceasing towards the south-west, somewhere near Mount Serle, Mount Murchison, or Cooper's river.
3. Open downs of basalt, nearly destitute of trees, except along watercourses. The vegetation is chiefly herbaceous, and much of it annual; the soil is rich, and after the rains produces a luxuriant crop of excellent grass and herbaceous plants.†
4. The desert presents various assemblages of plants according as the soil is saline, clayey, or sandy, but these plants are almost the same as those of extratropical Australia, with the exception of various species of Portulaceæ, Solanum, Euphorbia, Cassia, Gomphrena, Pitotus, Trianthema, Aylmeria, and other Paronychieæ.

* Report on Plants of Babbage's Expedition, (Victoria, 1858).
† Mueller remarks that a Verbena forms so conspicuous a feature over large tracts of country as to have suggested the name of Vervain Plains; it is very singular that this should be the South American V. Bonariensis, and I should think an introduced plant.
5. The sandstone table-land presents an arid, cheerless landscape, described by Dr. Mueller in terms that apply perfectly well to the sandstone table-lands of the peninsula of India, and indeed many of the characteristic genera are common to both. These consist of Terminalia, Melia, Cochlospermum, Sterculia, Buchanania, Zizyphus, Nauclea, Bauhinia, Indigofera, Erythrina, Gardenia, Strychnos, Santalum, a profusion of Andropogoneous Grasses, and other shrubs and herbs, all of which the Indian botanist recognizes at once as the prominent features of the sandstone ranges of western Bengal, and central India.

6. The sea-coasts are chiefly tenanted by an Indian vegetation, consisting of Avicennia, Rhizophoreae, Pandanaceae, Spinifex, Zoysia, Suriana, Agiceras, Pemphis, Tribus, together with Colubrina, Ipomoea, etc.

To these Dr. Mueller adds, as a seventh region, the banks of the northern rivers, which, however, seem scarcely to afford a peculiar vegetation.

Other plants worthy of notice, as natives of tropical Australia, are a species of Musa and Nepenthes, both mentioned by M'Gillivray, who also is the authority for the occurrence of a clump of Cocoa-nuts* on Frankland Island, for the Pomegranate on Fitzroy Island, and Caryota urens, at Cape York. The same naturalist discovered Balanophora fungosa of New Caledonia at Rockingham Bay, and no doubt there are many other plants of the Malayan and Polynesian islands still to be detected in similar localities.

The number of species in tropical Australia appears to be extremely small, owing, no doubt, much to the dryness of the climate, and to the absence of any large rivers, swamps, and mountains; as also to the short duration of the rainy season, which in many parts of the coast lasts only from November to January. Many discoveries may yet be anticipated, when it is considered how many very common tropical Indian and Malay Archipelago weeds may be found to occur here and there along the coast: but Brown spent many months on the tropical shores, and Cunningham several years; Mueller traversed northern Australia, Armstrong resided some years at Port Essington; and we have considerable collections from Bynoe, Mitchell, Bidwill, and M'Gillivray; and it must hence be doubtful whether future explorers will raise the known number of 2,200 tropical flowering species to much above 3,000.

Mueller's collections alone contain, of plants collected between the Victoria River and Moreton Bay, 160 Natural Orders, 600 Genera, and 1,790 Species, including Cryptogamia; but as the Moreton Bay Flora can hardly be called Tropical, and as Mueller includes 14 Orders which scarcely advance north of the tropic of Capricorn, I must exclude, perhaps, 500 species, including Cryptogamia, to work his results into my estimate, which includes 148 Natural Orders, 700 genera, and 2,200 species.

The most extensive tropical Natural Orders are,—

<table>
<thead>
<tr>
<th>Australia</th>
<th>Tropical Africa</th>
<th>India</th>
<th>West Indies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leguminosae</td>
<td>Leguminosae</td>
<td>Leguminosae</td>
<td>Leguminosae</td>
</tr>
<tr>
<td>Gramineae</td>
<td>Rubiaceae</td>
<td>Rubiaceae</td>
<td>Composite</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Gramineae</td>
<td>Orchideae</td>
<td>Rubiaceae</td>
</tr>
<tr>
<td>Compositae</td>
<td>Compositae</td>
<td>Compositae</td>
<td>Gramineae</td>
</tr>
</tbody>
</table>

* Captain King (Voy. i. p. 194) mentions having picked up cocoa-nuts on the beach at Cape Cleveland; Flinder's (ii. p. 49) at Shoal-water Bay; and Cook's party found old husks at the mouth of the Endeavour River. To all these places the fruit or its remains was no doubt brought by currents.

† Chiefly founded on Grisebach's Essay on the Plants of Guadeloupe, etc.
Mueller has given, in his 'General Report on the Botany of the North Australian Expedition,' some valuable tables, showing approximately the order of succession in which temperate forms appear in advancing southward in Australia, and these give us a wide idea of the immensely extended distribution of many endemic species. He enumerates no less than 225 Victoria colony species as occurring to the north of lat. 26° S., and of these I find nearly 90 to be Tasmanian. Many of them are properly tropical forms that attain the latitude of Victoria only in the hot deserts, but many are essentially temperate forms. The whole are thus distributed:

<table>
<thead>
<tr>
<th>Lat.</th>
<th>Victoria species</th>
<th>Tasmania</th>
</tr>
</thead>
<tbody>
<tr>
<td>17°30' S. to 20° S.</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>20°</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>23°</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>26°</td>
<td>118</td>
<td>52</td>
</tr>
</tbody>
</table>

The diminution of vegetable forms in advancing from temperate to tropical Australia is to a great extent due to the rarity or absence of Orders which, though more typical of hot latitudes in other parts of the globe, abound in the temperate regions only of Australia. I have marked these with an asterisk in the following list of extratropical Australian Orders that diminish rapidly or are absent in the tropics of that continent:

- Ranunculaceae
- *Dilleniaceae*
- Cruciferae
- *Tremandreae*
- *Buettneriaceae*
- Geraniaceae
- *Violeariae*
- Droseraceae
- *Polygales*
- Rutaceae
- *Stackhousiae*
- *Rhamnaceae*
- Rosaceae
- *Myricaceae*
- Crassulaceae
- Cunoniaceae
- *Haloragaceae*
- Umbelliferae
- *Lobeliaceae*
- Composite
- *Casuarinaceae*
- *Coniferae*
- Euphorbiaceae
- Myoporineae
- *Proteaceae*
- Daphnaceae
- *Bestiaceae*
- *Hemodoraceae*
- *Liliaceae*
- *Juncaceae*
- *Xerotideae*
- *Restiaceae*

Those Orders, again, which are confined to the Tropics, are unexceptionally common Indian ones, and which it is not necessary to specify. There are, however, several of the most typically Indian Orders that are very scarce or absent in tropical Australia, amongst which the most remarkable are:

- Anonaceae
- Menispermeae
- Guttiferae
- Celastrineae
- *Rhamnaceae*
- Melastomaceae
- Araliaceae
- Vacciniaceae
- Symplecomae
- Myrsineae
- Acanthaceae
- Cyrtandreae
- Laurineae
- Cupuliferae
- Dioscoreeae
- Aroidae

The peculiar features of the extratropical Australian Flora are mainly kept up in its tropical quarter, by the following plants:
Dilleniaceae (a few genera of).
Drosera.
Pittosporaceae.
Eucalyptus, and a few other genera of Myrtaceae.
Acacia, and a few other genera of Leguminosae.
Stylidium.
Myoporineae.

Grevillea, and a few other Proteaceae.
Casuarina.
Callitris.
Loganiaceae.
Restiaceae.
Xerotidae.

Of the tropical Australian plants nearly 500, included under 273 genera, are either identical with continental or insular Indian species, or are so very closely allied to them as to require a further examination to distinguish them.* To make this list more useful, I have given the extra-Australian and extra-Indian distribution of the species:—

* I must caution my readers that this catalogue, being a first attempt, does not pretend to anything like absolute accuracy: it enumerates Australian species which a closer examination may probably prove to be different from Indian, and omits other plants that will be found eventually to be common to these countries. I have had no materials of any consequence to help me, but such as the herbarium affords; and I have had, for almost every species enumerated, to examine a very extensive suite of specimens often from various parts of the world. To render such a list worthy of as much confidence as is attainable in the present state of specific botany, would be a work of years.

† Found on Cato Reef, where Flinders's ships were wrecked; also in China, and believed to be the S. integrifolia of Madagascar.

‡ The absence of Urena and Triumfetta is remarkable.
in Australia.

Grewia orientalis, L.

Grewia sepia, Roxb.

Grewia tilisfolia, Vahl.

Grewia hirsuta, Vahl.

Grewia multiflora, Juss.

Aurantiaceae.

Glycosmis pentaphylla, Correa.

Murraya exotica, L.

Hippocrateaceae.

Hippocratea Indica, Willd.

Oleariaceae.

Opilia amertacea, Roxb.

Cansjera scandens, Roxb.

Ximenia Americana, L. (Africa, America).

Hypericaceae.

Hypericum Japonicum, Th.

Guttiferae.

Calophyllum inophyllum, L. (Africa).

Malpighiaceae.

Tristellateia Australasica, A. Rich.

Sapindaceae.

Dodonaea Burmanni, DC. (Africa).

Cardiospermum Halacabum, L. (Africa, America).

Erioglossum edule, Bl.

Ampelidaceae.

Leea sambucina, L.

Cissus lanceolaria, Roxb.

Cissus adnatus, Wall.

Meliaceae.

Melia composita, Willd.

Xylocarpum granatum, Kan.

Sandoricum Indicum, L.

Sandoricum nervosum, Bl.

Pittosporaceae.

Pittosporum ferrugineum, Ait.

Oxlidaceae.

Zygophyllaceae.

Tribulus cistoides, L. (Africa, America).

Simarubaceae.

Brucea Sumatrana, Roxb.

Terebinthaceae.

Garuga floribunda, Dene.

Buchanania angustifolia, Wall.

Rhamnaceae.

Colubrina Asiatica, Brong. (Africa).

Leguminosae.

Crotalaria verrucosa, L. (Africa, America).

Crotalaria calycina, Schrenck.

Crotalaria juncea, L. (Africa).

Crotalaria linifolia, L. fil.

Crotalaria medicaginea, Lam.

Crotalaria medicaginea, var. neglecta.

Crotalaria laburnifolia, L.

Crotalaria incana, L. (Africa, America).

Crotalaria trifoliata Willd. (Africa, America).

Crotalaria retusa, L. (Africa).

Rothia trifoliata, Pers.

Indigofera linifolia, Retz (Africa).

Indigofera cordifolia, Heyne (Africa).

Indigofera enneaphylla, L.

Indigofera trifoliata, L.

Indigofera viacosa, Lam. (Africa).

Indigofera hirsuta, L. (Africa).

Tephrosia purpurea, Pers. (Africa).

Zornia hymenone Indica, L. (Africa).

Alysicarpus scariosus, Grak.

Alysicarpus scariosus, var. thyrsiflorus.

Dendrolobium umbellatum, Bth. (Africa).

Uraria Lagopus, DC.

Dicerema biarticulatum, DC.

Desmodium polycarsum, DC. (Africa, America).

Desmodium concinnum, DC.

Lepeadeza cuneata, G. Don.

Galactia tenuiflora, W. & A.

Canavalia obtusifolia, DC. (Africa, America).

Phaseolus radiatus, L.

* The rarity of Zizyphus in Australia is remarkable.
Flora of Tasmania.

|xlv| [Indian Plants|

Phaseolus Truxillensis, H. B. K.
Vigna anomala, Vahl (Africa).
Rynchosia minima, DC. (Africa).
Flemingia lineata, Roxb.
Flemingia semi-alata, Roxb.
Eriosema virgatum, Bth.
Pycnospora hedyasaroides, Br.
Derris uliginosa, Bth. (Africa).
Brachypterum scandens, Bth.
Pongamia glabra, Ait. (Africa).
Sophora tomentosa, L. (Africa, America).
Cesalpinia sepiaaria, Roxb.
Cesalpinia paniculata, Roxb.
Cassia occidentalis, L. (Africa, America).
Cassia minosoides, L. (Africa, America).
Cassia Absus, L. (Africa).
Cynometra ramiiflora, L.? (America).
Adenanthera pavonina, L.? (Africa).
Acacia Farnesiana, Wild. (Africa, America).
Albizia Lebbek, Bth. (Africa).

Rosaceae.
Rubus rossefolius, Sm. (Africa).
Rubus acerifolius, Wall.

Combretaceae.
Laguncularia cocinea, Gaud.
Terminalia Bellerica, Roxb.?

Rhizophoreae.
Carallia integerrima, DC.
Ceriops Candolleana, W. & A.
Bruguierra Rheedii, Bl.
Rhizophora mucronata, Lam. (Africa).

Onagraceae.
Jussieua villosa, Lam. (Africa, America).
Jussieua angustifolia, Lam. (America).
Ludwigia parviflora, Wall.
Rotala illecebroidea, L.
Rotala verticillaris, L.
Ammannia auriculata, Lam. (Africa).
Ammannia multiflora, Roxb. (Africa).
Ammannia vesicaria, Roxb. (Africa).
Pemphis acidula, Forst. (Africa).

Haloragaceae.
Myriophyllum Indicum, L.? (Africa).
Ceratophyllum submersum, L. (Eur., Afr., Amer.).

Myrtaceae.
Barringtonia acutangula, Gart.
Sonneratia acida, L.
Careya arborea, Roxb.

Melastomaceae.
Melastoma Malabathricum, L.

Portulaceae.
Sesuvium Portulacastrum (Africa, America).
Trianthema decandra, L.

Paronychiae.
Polycarpea corymbosa, Lam. (Africa).

Crosulaceae.
Bryophyllum calycinum, L. (Africa).

Incert. sed.
Suriana maritima, L. (Africa, America).

Cucurbitaceae.
Mukia scabrella, Arm. (Africa).
Lagenaria vulgaris, Ser. (Africa).
Bryonia laciniosa, L. (Africa).

Umbelliferae.
Hydrocotyle Asiatica, L. (Africa, America).

Rubiaceae.
Stylocoryne racemosa, Cav.?
Dentella repens, Forst.
Guettarda speciosa, L. (Africa).
Epithinna Malayana, Jack.
Pavetta Indica, L.
Ixora cocinea, L.
Hedyotis racemosa, Lam.

Composite.
in Australia.

INTRODUCTORY ESSAY.

Elephantopus scaber, L. (Africa, America).
Spharantus hirtus, Willd.
Spharantus microcephalus, Willd.
Blumea hieracifolia, DC.
Blumea Wightiana, DC.
Blumea lacera, DC. (Africa).
Pluchea Indica, Less.
Monenteles redolens, Lab.
Monenteles spicatus, Lab.
Siegebeckia orientalis, L. (ubique).
Wedelia calendulacea, Less.
Wedelia urticifolia, DC.?
Wollastonia bifora, DC.
Bidens leucantha, Willd. (Africa, America).
Myriogyne minuta (Africa, America).
Gnaphalium luteo-album, L. (ubique).
Youngia Thunbergiana, DC. (Africa).

Goodeniaceae.

Scaevola Koenigii, Vahl (Africa).

Symproceae.

Syplocos sp.?

Symplocosae.

Mimusops Kauki, L.
Ægiceras majus, L.

Primulaceae.

Centunculus tenellus, Duby (Brazil!).

Asclepiadeae.

Dischidia nummularia, Br.

Apocynaeae.

Cerbera Odollam, Gærtn.

Loganiaceae.

Mitreola oldenlandioides, Wall.
Mitrassaceae capillaris, Wall.?

Convolulaceae.

Cuscuta Chinensis, Lamk.
Batatas paniculata, Chois. (Africa).
Pharbitis Nil, Chois. (Africa).
Convolvulus parviflorus, Vahl.
Ipomoea filicaulis, Bl. (Africa).

Ipomoea pend ula Forst. (Africa).
Ipomoea Coptica, Roth (Africa).
Ipomoea dasysperma, Jacq.
Ipomoea reptans, Poir. (Africa).
Ipomoea rugosa, Chois. (Africa).
Ipomoea tridentata, Roth (Africa).
Ipomoea Turpethum, Br. (Africa).
Ipomoea dissecta, Willd.
Ipomoea sessiliflora, Roth (Africa).
Ipomoea chryseidis, Br. (Africa).
Ipomoea pentadactyla, Chois.

Evolution alsinoides, L. (Africa).

Solaneae.

Solanum verbascifolium, L. (Africa).
Solanum nigrum, L. (ubique).
Solanum Indicum, L. (Africa).
Solanum auriculatum, Ait. (Africa, America).
Solanum xanthocarpum, Schrad.?
Physalis parviflora, Br. (Africa, America).

Boragineae.

Coredea Myxa, L. (Africa).
Coredea subcordata, Lam. (Africa).
Coredea orientalis, Br.?
Coredea dichotoma, Forst.
Ehretia serrata, Roxb.?
Coldenia procumbens, L. (Africa).
Tournefortia argentea, L. (Africa).
Heliotropium Coromandelianum, Retz (Africa).
Heliotropium Europæum, L. (Africa).
Trichodesma Zeylanicum, Br. (Africa).

Scrophularineae.

Mimusulus gracilis, Br. (Africa).
Limnophila gratioloides, Br. (Africa, America).
Herpestis floribunda, Br. (Africa).
Vandella crustacea, Bth. (Africa, America).
Scoparia dulcis, L. (ubique).
Microcarpa muscosa, Br.
Buchnera hispida, Harn. (Africa).

h
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Striga hirsuta, Bth. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Centranthera hispida, Br.</td>
</tr>
<tr>
<td>Verbenaeece.</td>
<td>Verbena officinalis, L. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Clerodendrum inerme, Br.</td>
</tr>
<tr>
<td></td>
<td>Vitex trifolia, L. (Africa).</td>
</tr>
<tr>
<td>Labiatea.</td>
<td>Moschusma polystachyum, Bth. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Orthosiphon stramineus, Bth. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Anisomeles Heyneana, Bth.*</td>
</tr>
<tr>
<td></td>
<td>Colesa atro-purpurea, Bth.*</td>
</tr>
<tr>
<td></td>
<td>Dysophyllum verticillata, Bth. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Salvia plebeja, Br.</td>
</tr>
<tr>
<td></td>
<td>Leucas flaccida, Br.</td>
</tr>
<tr>
<td>Lentibularineae.</td>
<td>Utricularia graminifolia, Vaahl.</td>
</tr>
<tr>
<td></td>
<td>Pisonia excelsa, Blume.</td>
</tr>
<tr>
<td></td>
<td>Boerhaavia diffusa, L. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Boerhaavia repanda, Wildl. (Africa).</td>
</tr>
<tr>
<td>Polygonaceae.</td>
<td>Polygonum plebejum, Br.</td>
</tr>
<tr>
<td></td>
<td>Polygonum lanigerum, Br (Africa).</td>
</tr>
<tr>
<td></td>
<td>Polygonum orientale, L.</td>
</tr>
<tr>
<td></td>
<td>Polygonum barbatum, L. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Polygonum flaccidum, Boxb. (Africa, America).</td>
</tr>
<tr>
<td></td>
<td>Polygonum mite, var. serrulatum (Africa).</td>
</tr>
<tr>
<td></td>
<td>Polygonum minus, Huds.</td>
</tr>
<tr>
<td>Chenopodiaceae.</td>
<td>Polygonum lapathifolium (Africa, America).</td>
</tr>
<tr>
<td></td>
<td>Polygonum strigosum, Br.</td>
</tr>
<tr>
<td>Amaranthaceae.</td>
<td>Salicornia Arbuscula, L. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Salicornia Indica, Wildl. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Salsola brachypteris, Moq.</td>
</tr>
<tr>
<td>L⠒ruineae.</td>
<td>Deeringia celosioides, Br. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Pililotus corymbosus, Br.</td>
</tr>
<tr>
<td></td>
<td>Achyranthes canescens, Br.</td>
</tr>
<tr>
<td></td>
<td>Achyranthes porphyrostachys, Wall. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Centrostachys aquatica, Wall. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Alternanthera nodiflora, Br. (Africa, America).</td>
</tr>
<tr>
<td></td>
<td>Alternanthera denticulata, Br. (Africa, America).</td>
</tr>
<tr>
<td>Labiatea.</td>
<td>Gyrocarpus Asiaticus, Wildl.</td>
</tr>
<tr>
<td></td>
<td>Tetranthera monopetala, Roxb.</td>
</tr>
<tr>
<td>Daphnece.</td>
<td>Wickstromia Indica, C. A. M.</td>
</tr>
<tr>
<td>Santalaceae.</td>
<td>Exocarpus latifolia, Br.</td>
</tr>
<tr>
<td>Euphorbiaceae.</td>
<td>Euphorbia Chamaesyce, Wildl. (Africa, America)</td>
</tr>
<tr>
<td></td>
<td>Euphorbia biifida, Hook.</td>
</tr>
<tr>
<td></td>
<td>Homalanthus populifolius, Grah.</td>
</tr>
<tr>
<td></td>
<td>Rottlera tinctoria, Roxb.</td>
</tr>
<tr>
<td></td>
<td>Briedelia tomentosa, Bl.</td>
</tr>
<tr>
<td></td>
<td>Fluggea leucopyra, Wildl.</td>
</tr>
<tr>
<td></td>
<td>Fluggea virosa, Roxb.</td>
</tr>
<tr>
<td></td>
<td>Melanthesa Chinensis, Bl.</td>
</tr>
<tr>
<td>Antidesmaceae.</td>
<td>Antidesma paniculatum, Roxb. (Africa).</td>
</tr>
</tbody>
</table>
INTRODUCTORY ESSAY.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peperomia Dindygulensis, Miq.?</td>
</tr>
<tr>
<td>Urticeae</td>
<td>Covellia hispida, Miq.</td>
</tr>
<tr>
<td></td>
<td>Covellia oppositofolia, Gasp.</td>
</tr>
<tr>
<td></td>
<td>Fatoua Manillensis, Walp.</td>
</tr>
<tr>
<td></td>
<td>Epicarpurus orientalis, Bl.</td>
</tr>
<tr>
<td>Casuarinaceae</td>
<td>Casuarina equisetifolia, Forst.</td>
</tr>
<tr>
<td>Monocotyledones</td>
<td></td>
</tr>
<tr>
<td>Orchideae</td>
<td>Spiranthus australis, Lindl.</td>
</tr>
<tr>
<td></td>
<td>Microtis rara, Br.</td>
</tr>
<tr>
<td></td>
<td>Calanthe veratritifolia, Br.</td>
</tr>
<tr>
<td></td>
<td>Hydrilla dentata, Casp. (Africa).</td>
</tr>
<tr>
<td></td>
<td>Blyxa octandra, Dne.</td>
</tr>
<tr>
<td></td>
<td>Ottelia alismoides, Pers.</td>
</tr>
<tr>
<td>Philydraceae</td>
<td>Philydrum lanuginosum, Br.</td>
</tr>
<tr>
<td>Burmanniaceae</td>
<td>Burmannia distachya, Br.</td>
</tr>
<tr>
<td></td>
<td>Burmannia juncea, Br.?</td>
</tr>
<tr>
<td></td>
<td>Tacca pinnatifida (Africa)</td>
</tr>
<tr>
<td>Typhaceae</td>
<td>Typha angustifolia, L. (ubique).</td>
</tr>
<tr>
<td>Araceae</td>
<td>Lemna minor, L. (ubique).</td>
</tr>
<tr>
<td></td>
<td>Commelyna agrostophylla, F. M.</td>
</tr>
<tr>
<td></td>
<td>Cyanotis axillaris, B. & S.</td>
</tr>
<tr>
<td></td>
<td>Halophila ovalis, Gaud.</td>
</tr>
<tr>
<td>Melanthaceae</td>
<td>Iphigenia Indica, Kth.</td>
</tr>
<tr>
<td>Restiaceae</td>
<td>Briocaulon sp?</td>
</tr>
<tr>
<td></td>
<td>Cyperus canescens, Vahl.</td>
</tr>
</tbody>
</table>
Malacochaete pectinata, *Nees & Mey.* (Afr., Amer.).
Isolepis diffusa, *Br.*
Isolepis compacta, *Br.*
Isolepis gracilis, *Br.*
Tricholastylus xyroides, *Arn.*
Fimbristylis dichotoma, *Vahl.*
Fimbristylis acuminata, *Nees*.
Fimbristylis nutans, *Vahl.*
Fimbristylis polytrichoides, *Vahl.*
Fimbristylis schoenoides, *Vahl.*
Scleria oryzoidea, *Presl.*
Scleria levis, *Retz.*
Scleria margaritifera, *Br.*
Carex Gaudichaudiana, *Kth.*

Gramineae.
Oryza sativa, *L.*
Panicum effusum, *Br.*
Panicum Indicum, *L.*
Isachne australis, *Br.*
Chameraphis hordeacea, *Br.*
Gymnothrix Japonica, *Kth.*
Spinifex squarrosum, *L.*
Daetyloctenium Aegyptiacum (Africa, America).
Eleusine radulana, *Br.*
Gymnopogon digitatus, *Nees.*
Eragrostis Zeylanica, *Nees.*
in Australia.

INTRODUCTORY ESSAY.

Elytrophorus articulatus, P. B. (Africa).
Ophiurus corymbosus, Gartn.
Rottboellia exaltata, L. (Africa).
Manisuris granularis, (Africa, America).
Hemarthria compressa, Br. (Africa, America).
Imperata arundinacea, Cyrl. (Africa, America).
Heteropogon contortus, L. (Africa, America).
Sorghum Halepense, L. (Africa, America).
Ischémum ciliare, Née.

Andropogon annulatus, Forsk. (Africa).
Andropogon pertusus, Wild. (Africa).
Andropogon Ischémum, Née (Africa, America).
Andropogon striatus, Wild. (? (Africa).
Spodiopogon angustifolius, Tr.
Chrysopogon acicularia, L. (Africa).
Chrysopogon Gryllus, L. (Africa).
Zo sia pungens, Wild. (Africa).
Arundinella miliaceas, Nees (Africa, America).

This catalogue offers many points worthy of discussion, but which it would be beyond the object and scope of this Essay to discuss. The Indian botanist will recognize the double element, one consisting of a littoral and the other of an inland Flora, the former prevalent over the shores of both Indian peninsulas, the Malay and Philippine islands, and, to a certain extent, the Louisiade and Western Pacific groups; the other or inland Indian Flora characteristic of the Carnatic, the sandstone table-lands of the western Peninsula of India, and which reappears in the Upper Birma valley, where the climate of this becomes dry for a considerable portion of the year. A list of representative Indian species would have added greatly to its value, as further establishing the close relationship between endemic Floras of central Australia and central India, for it would include many species of the following conspicuous Indian genera which are not enumerated in the foregoing list:

fifth. The number of arboreous and shrubby plants is very considerable, showing that this portion of the Flora is not wholly made up of transported weeds.

Lastly, I have to allude to the remarkable absence of any reciprocity between the vegetation of Australia and India, for though I have given nearly 500 Indian species, and upwards of 200 genera, that are very decidedly Indian types of vegetation, I am not aware of a single Australian species in central India or in the western Indian peninsula, or one Australian genus that is common there. The only Australian genera that are found in any part of India proper are Stylidium (of which a very few species are found in the eastern Peninsula, and one in eastern Bengal, Ceylon, and the country near Calcutta), Lagenophora and Haloragis, which are temperate forms, and the following, which are confined in India to the Malayan Peninsula, or the country immediately adjoining it.

<table>
<thead>
<tr>
<th>Philydrum</th>
<th>Casuarina</th>
<th>Tristania</th>
<th>Metrosideros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacrydium</td>
<td>Leucopogon</td>
<td></td>
<td>Leptospermum</td>
</tr>
</tbody>
</table>

To the eastward of India again Beckia attains the latitude of southern China and the Philippines. Microtis rara inhabits New Zealand, Java, and Bonin; Thelymitra is also Javanese; a species of Stackhousia is found in the Philippines; one of the Indian Stylidiums inhabits Hongkong, and Carex littorea (an extra-tropical plant) is a native of Japan.

According to the hitherto prevailing theory of the distribution of plants, this presence of so many Indian species in tropical Australia would be accounted for by trans-oceanic migration, but this theory offers no explanation of the total absence of Australian species and typical genera in the tropical parts of India. Eucalyptus, Acacia, Stylidium, and Goodeniaceae, are characteristic of tropical as well as of temperate Australia, together with various peculiar genera of Leguminose, Composite, Myrtaceae, Myoporinece, Loganiaceae, Restiaceae, Conifera, and Orchideae, which are not represented in tropical India.

Some of these genera (Acacia, Eucalyptus, and Casuarina) flourish when planted in the Peninsula of India, and it would be interesting to know whether they become naturalized, for it appears to me to be difficult to conceive that there should be anything in the condition of the soil, vegetation, or climate of India that would wholly oppose the establishment of Australian plants, had they been transported thither by natural causes now in operation; and I cannot suppose that there should have been no migration from Australia to India if there was such a migration in the opposite direction as would account for so great a community of vegetation between these continents.

§ 6.

On the Flora of Extra-tropical Australia.

In studying the extra-tropical Flora of Australia, the first phenomenon that attracts attention is the remarkable difference between the eastern and western quarters, to which there is nothing analogous in the tropical region. What differences there are between eastern and western tropical Australia are confined to more Asiatic forms in the latter, and more Polynesian and temperate Australian ones in the former; this is analogous to that preponderance, to which I shall hereafter allude, of the South African types in south-western Australia, and of New Zealand and Antarctic ones in south-eastern; but offers nothing analogous to the fact that the species, and in a great extent the genera, of south-western Australia differ from those of south-eastern, though these species and
genera belong to the same Natural Orders, and in many cases to peculiarly Australian Orders or divisions of Orders.

I have endeavoured to estimate this difference by tabulating the genera and species of each country, and though the results must, in the present state of our knowledge, be very vague, they may serve to give an approximate idea of the amount of difference, which it is all the more important to do because I believe the phenomenon to be without a parallel in the geography of plants. These Floras I estimate as containing about—

<table>
<thead>
<tr>
<th>South-western.</th>
<th>The South-eastern Flora, including Tasmania.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Orders</td>
<td>90</td>
</tr>
<tr>
<td>Genera</td>
<td>600</td>
</tr>
<tr>
<td>Species</td>
<td>3,600</td>
</tr>
</tbody>
</table>

As far as I can make out, about one-fifth of the south-eastern species are found beyond that area; but only one-tenth of them are found in south-western Australia.

I need not remind my readers that these countries are in the same parallel of latitude, are not remarkably different in physical conditions, or indeed by any means so different as others (Greece and Spain for example) that present no such contrast, and that the extreme distance between them is only 1700 miles, with continuous land throughout. What differences there are in conditions would, judging from analogy with other countries, favour the idea that south-eastern Australia, from its far greater area, many large rivers, extensive tracts of mountainous country and humid forests, would present much the most extensive Flora, of which only the drier types could extend into south-western Australia. But such is not the case altogether, for though the far greater area is much the best explored, presents more varied conditions, and is tenant by a larger number of Natural Orders and genera, these contain fewer species by several hundreds.

Of the largest genera of south-eastern and south-western Australia there are very few species common to both countries, as the following list, arranged in order of their magnitude, will show.*

<table>
<thead>
<tr>
<th>South-eastern Australia.</th>
<th>Species.</th>
<th>Sp. found in S.W.</th>
<th>Species.</th>
<th>Sp. found in S.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia</td>
<td>133</td>
<td>0</td>
<td>Melaleuca</td>
<td>27</td>
</tr>
<tr>
<td>Grevillea</td>
<td>67</td>
<td>0</td>
<td>Helichrysum</td>
<td>25</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>55</td>
<td>0</td>
<td>Brachycome</td>
<td>24</td>
</tr>
<tr>
<td>Pultenaea</td>
<td>50</td>
<td>0</td>
<td>Xerotes</td>
<td>24</td>
</tr>
<tr>
<td>Leucopogon</td>
<td>50</td>
<td>0</td>
<td>Prasophyllum</td>
<td>23</td>
</tr>
<tr>
<td>Persoonia</td>
<td>40</td>
<td>0</td>
<td>Pterostylis</td>
<td>22</td>
</tr>
<tr>
<td>Eurybia</td>
<td>36</td>
<td>1</td>
<td>Senecio</td>
<td>20</td>
</tr>
<tr>
<td>Pimelea</td>
<td>35</td>
<td>1</td>
<td>Hibbertia</td>
<td>18</td>
</tr>
<tr>
<td>Epacris</td>
<td>34</td>
<td>0</td>
<td>Phebalium</td>
<td>17</td>
</tr>
<tr>
<td>Prostanthera</td>
<td>30</td>
<td>0</td>
<td>Bossiaea</td>
<td>17</td>
</tr>
<tr>
<td>Goodenia</td>
<td>30</td>
<td>0</td>
<td>Carex</td>
<td>17</td>
</tr>
<tr>
<td>Hakea</td>
<td>28</td>
<td>1</td>
<td>Ozothamnus</td>
<td>17</td>
</tr>
<tr>
<td>Boronia</td>
<td>27</td>
<td>0</td>
<td>Pleurandra</td>
<td>16</td>
</tr>
</tbody>
</table>

* This list is very far from complete, but is in so far founded on exact data as that I have satisfied myself of the whole number of species alluded to in the first column of figures being absent in the collections I have examined from south-west Australia, except when otherwise stated. Future observations will no doubt modify its details without vitiating the general result.
FLORA OF TASMANIA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sp. found in S.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidosperma</td>
<td>16</td>
</tr>
<tr>
<td>Daviesia</td>
<td>16</td>
</tr>
<tr>
<td>Beuckea</td>
<td>16</td>
</tr>
<tr>
<td>Haloragis</td>
<td>15</td>
</tr>
<tr>
<td>Cryptandra</td>
<td>15</td>
</tr>
<tr>
<td>Pomaderris</td>
<td>15</td>
</tr>
<tr>
<td>Banksia</td>
<td>15</td>
</tr>
<tr>
<td>Trichium</td>
<td>15</td>
</tr>
<tr>
<td>Cyperus</td>
<td>15</td>
</tr>
<tr>
<td>Dampiera</td>
<td>14</td>
</tr>
<tr>
<td>Isoe Les</td>
<td>14</td>
</tr>
<tr>
<td>Dodonea</td>
<td>13</td>
</tr>
<tr>
<td>Gompholobium</td>
<td>13</td>
</tr>
<tr>
<td>Dillwynia</td>
<td>13</td>
</tr>
<tr>
<td>Cassinia</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Sp. found in S.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veronica</td>
<td>13</td>
</tr>
<tr>
<td>Utricularia</td>
<td>13</td>
</tr>
<tr>
<td>Hydrocotyle</td>
<td>12</td>
</tr>
<tr>
<td>Loranthus</td>
<td>12</td>
</tr>
<tr>
<td>Asperula</td>
<td>12</td>
</tr>
<tr>
<td>Lobelia</td>
<td>12</td>
</tr>
<tr>
<td>Plantula</td>
<td>12</td>
</tr>
<tr>
<td>Polygonum</td>
<td>12</td>
</tr>
<tr>
<td>Conospermum</td>
<td>12</td>
</tr>
<tr>
<td>Caladenia</td>
<td>12</td>
</tr>
<tr>
<td>Sida</td>
<td>11</td>
</tr>
<tr>
<td>Astrotichio</td>
<td>11</td>
</tr>
<tr>
<td>Galium</td>
<td>11</td>
</tr>
<tr>
<td>Stylidium</td>
<td>11</td>
</tr>
</tbody>
</table>

Extra-tropical Genera

<table>
<thead>
<tr>
<th>Species</th>
<th>Sp. found in S.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca</td>
<td>100</td>
</tr>
<tr>
<td>Acacia</td>
<td>99</td>
</tr>
<tr>
<td>Stylidium</td>
<td>78</td>
</tr>
<tr>
<td>Hakea</td>
<td>75</td>
</tr>
<tr>
<td>Grevillea</td>
<td>74</td>
</tr>
<tr>
<td>Leucopogon</td>
<td>70</td>
</tr>
<tr>
<td>Dryandra</td>
<td>53</td>
</tr>
<tr>
<td>Daviesia</td>
<td>48</td>
</tr>
<tr>
<td>Petrophila</td>
<td>46</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>46</td>
</tr>
<tr>
<td>Verticordia</td>
<td>43</td>
</tr>
<tr>
<td>Dampiera</td>
<td>38</td>
</tr>
<tr>
<td>Banksia</td>
<td>38</td>
</tr>
<tr>
<td>Lepidosperma</td>
<td>36</td>
</tr>
<tr>
<td>Drosera</td>
<td>35</td>
</tr>
<tr>
<td>Jacksonia</td>
<td>31</td>
</tr>
<tr>
<td>Calothamnos</td>
<td>30</td>
</tr>
<tr>
<td>Gastrolobium</td>
<td>28</td>
</tr>
<tr>
<td>Calycotrich</td>
<td>28</td>
</tr>
<tr>
<td>Trichium</td>
<td>27</td>
</tr>
<tr>
<td>Isopogon</td>
<td>27</td>
</tr>
<tr>
<td>Pimelea</td>
<td>27</td>
</tr>
<tr>
<td>Boronia</td>
<td>26</td>
</tr>
<tr>
<td>Conospermum</td>
<td>26</td>
</tr>
<tr>
<td>Schoenus</td>
<td>26</td>
</tr>
<tr>
<td>Persoonia</td>
<td>25</td>
</tr>
<tr>
<td>Conostylis</td>
<td>23</td>
</tr>
<tr>
<td>Xerotes</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Sp. found in S.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chorizema</td>
<td>22</td>
</tr>
<tr>
<td>Hemigenia</td>
<td>21</td>
</tr>
<tr>
<td>Candollea</td>
<td>20</td>
</tr>
<tr>
<td>Hibbertia</td>
<td>20</td>
</tr>
<tr>
<td>Comesperma</td>
<td>20</td>
</tr>
<tr>
<td>Tetraphia</td>
<td>20</td>
</tr>
<tr>
<td>Dondona</td>
<td>20</td>
</tr>
<tr>
<td>Restio</td>
<td>20</td>
</tr>
<tr>
<td>Trymalium</td>
<td>20</td>
</tr>
<tr>
<td>Oxylobium</td>
<td>20</td>
</tr>
<tr>
<td>Goodenia</td>
<td>20</td>
</tr>
<tr>
<td>Merkiusa</td>
<td>20</td>
</tr>
<tr>
<td>Caladenia</td>
<td>20</td>
</tr>
<tr>
<td>Astraloema</td>
<td>18</td>
</tr>
<tr>
<td>Andersonia</td>
<td>18</td>
</tr>
<tr>
<td>Leptomeria</td>
<td>18</td>
</tr>
<tr>
<td>Thysanotus</td>
<td>18</td>
</tr>
<tr>
<td>Thomaisa</td>
<td>17</td>
</tr>
<tr>
<td>Genethyllis</td>
<td>16</td>
</tr>
<tr>
<td>Eurybia</td>
<td>16</td>
</tr>
<tr>
<td>Leschenaultia</td>
<td>16</td>
</tr>
<tr>
<td>Logania</td>
<td>16</td>
</tr>
<tr>
<td>Patersonia</td>
<td>16</td>
</tr>
<tr>
<td>Chelospora</td>
<td>16</td>
</tr>
<tr>
<td>Gompholobium</td>
<td>15</td>
</tr>
<tr>
<td>Pulteanae</td>
<td>15</td>
</tr>
<tr>
<td>Bossiae</td>
<td>15</td>
</tr>
<tr>
<td>Chamelacium</td>
<td>15</td>
</tr>
</tbody>
</table>

South-western Australia.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sp. found in S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca</td>
<td>100</td>
</tr>
<tr>
<td>Acacia</td>
<td>99</td>
</tr>
<tr>
<td>Stylidium</td>
<td>78</td>
</tr>
<tr>
<td>Hakea</td>
<td>75</td>
</tr>
<tr>
<td>Grevillea</td>
<td>74</td>
</tr>
<tr>
<td>Leucopogon</td>
<td>70</td>
</tr>
<tr>
<td>Dryandra</td>
<td>53</td>
</tr>
<tr>
<td>Daviesia</td>
<td>48</td>
</tr>
<tr>
<td>Petrophila</td>
<td>46</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>46</td>
</tr>
<tr>
<td>Verticordia</td>
<td>43</td>
</tr>
<tr>
<td>Dampiera</td>
<td>38</td>
</tr>
<tr>
<td>Banksia</td>
<td>38</td>
</tr>
<tr>
<td>Lepidosperma</td>
<td>36</td>
</tr>
<tr>
<td>Drosera</td>
<td>35</td>
</tr>
<tr>
<td>Jacksonia</td>
<td>31</td>
</tr>
<tr>
<td>Calothamnos</td>
<td>30</td>
</tr>
<tr>
<td>Gastrolobium</td>
<td>28</td>
</tr>
<tr>
<td>Calycotrich</td>
<td>28</td>
</tr>
<tr>
<td>Trichium</td>
<td>27</td>
</tr>
<tr>
<td>Isopogon</td>
<td>27</td>
</tr>
<tr>
<td>Pimelea</td>
<td>27</td>
</tr>
<tr>
<td>Boronia</td>
<td>26</td>
</tr>
<tr>
<td>Conospermum</td>
<td>26</td>
</tr>
<tr>
<td>Schoenus</td>
<td>26</td>
</tr>
<tr>
<td>Persoonia</td>
<td>25</td>
</tr>
<tr>
<td>Conostylis</td>
<td>23</td>
</tr>
<tr>
<td>Xerotes</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Sp. found in S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chorizema</td>
<td>22</td>
</tr>
<tr>
<td>Hemigenia</td>
<td>21</td>
</tr>
<tr>
<td>Candollea</td>
<td>20</td>
</tr>
<tr>
<td>Hibbertia</td>
<td>20</td>
</tr>
<tr>
<td>Comesperma</td>
<td>20</td>
</tr>
<tr>
<td>Tetraphia</td>
<td>20</td>
</tr>
<tr>
<td>Dondona</td>
<td>20</td>
</tr>
<tr>
<td>Restio</td>
<td>20</td>
</tr>
<tr>
<td>Trymalium</td>
<td>20</td>
</tr>
<tr>
<td>Oxylobium</td>
<td>20</td>
</tr>
<tr>
<td>Goodenia</td>
<td>20</td>
</tr>
<tr>
<td>Merkiusa</td>
<td>20</td>
</tr>
<tr>
<td>Caladenia</td>
<td>20</td>
</tr>
<tr>
<td>Astraloema</td>
<td>18</td>
</tr>
<tr>
<td>Andersonia</td>
<td>18</td>
</tr>
<tr>
<td>Leptomeria</td>
<td>18</td>
</tr>
<tr>
<td>Thysanotus</td>
<td>18</td>
</tr>
<tr>
<td>Thomaisa</td>
<td>17</td>
</tr>
<tr>
<td>Genethyllis</td>
<td>16</td>
</tr>
<tr>
<td>Eurybia</td>
<td>16</td>
</tr>
<tr>
<td>Leschenaultia</td>
<td>16</td>
</tr>
<tr>
<td>Logania</td>
<td>16</td>
</tr>
<tr>
<td>Patersonia</td>
<td>16</td>
</tr>
<tr>
<td>Chelospora</td>
<td>16</td>
</tr>
<tr>
<td>Gompholobium</td>
<td>15</td>
</tr>
<tr>
<td>Pulteanae</td>
<td>15</td>
</tr>
<tr>
<td>Bossiae</td>
<td>15</td>
</tr>
<tr>
<td>Chamelacium</td>
<td>15</td>
</tr>
</tbody>
</table>
This instructive table puts the most important differential features of south-eastern and south-western Australia prominently before the eye, and I would point out:—1. How greatly larger the genera of the south-western Flora are, there being 80 genera with upwards of 10 species in its column, and only 55 in the south-eastern. 2. That the 55 genera of the south-eastern Flora contain about 1,260 species, and the 55 highest of the south-western 1,727 species. 3. That of these 55 south-western genera 36 do not appear at all in the south-eastern list, and 17 (marked with a *) are absolutely confined to the south-west, or almost so.

Altogether, I find the proportion of genera to species in the south-western Flora to be 1:6, and in the south-eastern 1:4. This increased number of genera in south-eastern Australia over the south-western is mainly due to the presence of more Antarctic, European, New Zealand, and Polynesian genera in the south-east, to which I shall hereafter allude.

The proportion of species belonging to peculiar or endemic genera in the south-west is about one-third of the whole, and in the south-east one-sixth.

The proportion of species common to other countries in the south-west is about one-tenth of the Flora, and in the south-east one-sixth.

There are about 180 genera, out of about 600, in south-western Australia that are either not found at all in south-eastern, or that are represented there by a very few species only, and these 180 genera include nearly 1,100 species.

Of generally diffused Australian genera that are absent in the south-west, I find Viola, Polygala, Epacris, Lycopus, Ajuga, Smilax, and Eriocaulon; and of European genera which occur in that quarter, but which I have not seen from elsewhere in Australia, are Echinospermum, Eritrichium, Orobanche, Althenia, and Lepturus, several of which I suppose to be introduced, and, if so, will soon be found in other colonies.

This curious case of great differences in the genera and species of the two quarters of a small continent, accompanied by an increased number of species in the smaller and more isolated quarter of the continent, which is, further, by far the most uniform in physical conditions, will no doubt eventually be found to offer the best means of testing whatever theory of creation and distribution may be established. In the meantime, the theories which I have sketched in the early pages of this Essay cannot, in the present state of our geological knowledge of Australia, be brought to bear fully upon it. That no Natural Order, but that many genera, and a whole Flora of species, should
be created in the smaller and more isolated area of western Australia, different from what eastern Australia presents, seems at first sight favourable to the idea that these are derivative genera and species, formed during the gradual migration of certain of the Orders and Genera of the east towards the west. But on the other hand, this massing of most of the peculiar features of the Australian Flora in the west, unmixed there with Polynesian, Antarctic, or New Zealand genera, is an argument for regarding western Australia as the centrum of Australian vegetation, whence a migration proceeded eastward; and the eastern genera and species must in such a case be regarded as the derivative forms. Had we any idea of the comparative geological age of eastern and western Australia, this inquiry might be proceeded with a little further; though even then it would be soon brought to a standstill, by the necessity of determining the antecedents of the whole Australian Flora. This Flora, though manifestly more allied to the Indian than to any other, differs from it so organically, that it is impossible to look upon one as derived from the other, though both may have had a common parentage.

The local character of the south-western Australian plants is another singular feature that must not be overlooked in any inquiry as to the relative ages of countries and their vegetation. So singularly circumscribed are its species in area, that many are found in one spot alone, and, of some Natural Orders, the species of Swan River differ very much from those of King George's Sound. I am quite at a loss to offer any plausible reason for this rapid succession of forms in area, and the contrast in this respect between the south-western and eastern districts is all the more remarkable, because the latter also, as compared with other parts of the world, presents a very considerable assemblage of local species. But so it is, that there are far more King George's Sound species absent from the Swan River, though separated by only 200 miles of tolerably level land, than there are Tasmanian plants absent from Victoria, which are as many miles apart, and separated by an oceanic strait. It would indeed appear that the mixture of several Floras of different character in one area tends to keep down the total number of species in that area, and if so, we may connect the richness in species of the western Australian Flora with its singular uniformity of character, for it is purely Australian, without admixture of any other element. As this excessive multiplication must, under the theory of creation by variation, have occupied a great length of time, it seems to be more natural to assume, on purely botanical grounds, that the western Australian Flora is the earliest, and sent colonists to the eastern quarter, where they became mixed with Indian, Polynesian, etc., colonists, than that the western Flora was peopled by one section only of the inhabitants of the eastern quarter.

So much for the botanical aspect of the question. The geological one suggests a different explanation. That part of the Australian continent which alone is clothed with any considerable amount of vegetation, may be likened to a horse-shoe of more or less elevated land, with its convexity to the north, and a vast enclosed central depressed area, that opens to the sea on the south, and advances north almost to the Gulf of Carpentaria. According to Mr. Jukes's clever 'Sketch of the Physical Structure of Australia,' this central and southern area was recently an oceanic bay, and existing species of Mollusca are found on its surface for many miles along the coast, and inland from it, in an almost unchanged condition.* To the east of this depressed area, the mountains are far loftier and the rocks of a much greater age than to the west of it; and were the question of the age of the Floras comprised in that of the rocks they inhabit, little doubt would be enter-

* Great beds of shells, with the colours retained, are found at Jurien Bay, at forty to eighty feet above the sea-level. (Von Sommer, in Quart. Journ. Geol. Soc. v. p. 52.)
tained that the western one was modern and derivative; but in no other part of the world are recently-formed lands tenanted exclusively by endemic plants, nor do they present assemblages of very local species; on the contrary, they are inhabited by many individuals of a few species derived from surrounding countries, of which some few are so altered as to be distinguished as varieties or even species; and we cannot therefore accept the geological evidence as good for explaining the botanical phenomena.

There is another way of viewing the whole question, but one so purely speculative that I hesitate to put it forward. It is that the antecedents of the peculiar Australian Flora may have inhabited an area to the westward of the present Australian continent, and that the curious analogies which the latter presents with the South African Flora, and which are so much more conspicuous in the south-west quarter, may be connected with such a prior state of things.

§ 7.

On the Flora of Countries around Spencer's Gulf.

South Australia, which now ranks as a distinct colony, has been but imperfectly explored, and is apparently very poor in species. Some notices of its botany will be found in Lindley's and Hooker's Appendices to Mitchell's Journeys; in Brown's 'Appendix to Sturt's Journey;' in Hooker's 'Kew Miscellany,' 1855, p. 105; and, more recently, in Mueller's Report on the plants collected by Mr. D. Hergolt during Babbage's expedition. They all show that the character of the Flora is intermediate between the south-eastern, south-western, and tropical Floras, the eastern being perhaps the dominant, and the tropical due to the proximity of the central desert.

Amongst the western genera and species which here approach their eastern limits are Hibiscus hakeaefolius and multifidus, Cyanothamnus, Sollya heterophylla, Cheiranthera, Bossiaea sulcata, Templetonia retusa, Clianthus Dampieri, Nitraria Billardieri, Adenanthera terminalis, Podotheca, Cylindrosorus flavescens, Logania crassifolia, Anthocercis anisantha, Cyclotheca australica, and Codonocarpus acacieformis?

The tropical element is displayed by species of Crotalaria, Polycarpea, Monenteles, Pluchea, Glossogyne, Sarcostemma, Trichodeema, Rostellularia, and Santalum. Mueller further alludes to a succulent, leafless Euphorbia, probably of the Indian or South African type. The absence or rarity of Proteaceae, Sophoreae, Myrtaeae, Diosmeae and Epaecideae, and prevalence of Compositae, Eremophila, Zygophylleae and Salsoleae, are other proofs of the tropical and desert character of the South Australian Flora.

From the examination of a considerable collection of South Australian species made by Messrs. Whitaker, Dutton, Hillebrandt, etc., I am inclined to suspect that it contains so few peculiar genera, and so large a number of species which are either identical with or strictly intermediate in character between eastern and western ones, or which are so closely allied to congeners of one or the other, that they will favour the idea of the Flora being to a very great extent derivative.
§ 8.

On the Tasmanian Flora.

For an account of the physical features of Tasmania, in so far as they affect the vegetation, I must refer to Strzelecki's excellent 'Physical Description of New South Wales and Van Diemen's Land,' where the relations of the forest to the soil and elevation, and of all these features in Tasmania to those of south-eastern Australia, are well portrayed.

The primary feature of the Tasmanian Flora is its identity in all its main characters with the Victorian, and especially of the mountainous parts of that colony; it differs only in having fewer orders, genera, species, more Antarctic and New Zealand elements, and fewer tropical, all of which might be expected from its geographical position and its climate, which is much more equable and humid than any district of Australia. There is, indeed, one part of Victoria, viz. Wilson's promontory, of which the vegetation is described as peculiarly Tasmanian, and a glance at the map shows that here again geographical proximity and uniformity of vegetation go together. There are besides a very few south-western Australian types in Tasmania, that have not also been found in the eastern Australian continent.

Before proceeding with the analysis of the Tasmanian Flora, I shall give a list of the species, with the distribution of each, and indicate the Floras of which each genus may be considered most strongly representative. These are:—1. The Australian continent; 2. New Zealand and Polynesia; 3. The Antarctic Islands; 4. South American; 5. Europe (including North America, North Asia, and North India, in so far as these share European features). Many species may be classed under two or more of these divisions, as *Anemone*, which is absent in Australia and New Zealand, but is Antarctic, American, and European. I have also put an asterisk to every species considered by Mueller, Archer, or myself as probably a variety, and noted which are subalpine and alpine. Mr. Archer has further revised the list, and added "Ch." to every species found within fifteen miles of Cheshunt.

DICOTYLEDONS.

I. **Ranunculaceae.**

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clematis coriacea, DC.</td>
<td>Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>2. Clematis *blanda, Hook.</td>
<td></td>
<td>Europe, etc.</td>
</tr>
<tr>
<td>3. Clematis *gentianoides, DC.</td>
<td></td>
<td>Tasmania</td>
</tr>
<tr>
<td>4. Clematis lineariololia, Steud.</td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>5. Anemone crassifolia, Hook.</td>
<td>Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>6. Ranunculus aquatilis, L. Ch.</td>
<td></td>
<td>Tasmania, temp. zone</td>
</tr>
<tr>
<td>7. Ranunculus Gunnianus, Hook. Ch.</td>
<td></td>
<td>Europe, etc.</td>
</tr>
<tr>
<td>8. Ranunculus hirtus, B. & S. Ch.</td>
<td></td>
<td>N. Zealand</td>
</tr>
<tr>
<td>9. Ranunculus lappaceus, Sm. Ch.</td>
<td></td>
<td>S. Africa</td>
</tr>
<tr>
<td>10. Ranunculus *scapigerus, Hook. Ch.</td>
<td></td>
<td>Tasmania (subalp.).</td>
</tr>
</tbody>
</table>
INTRODUCTORY ESSAY.

Distribution of Species. Distr. of Genera or representatives.

15. Ranunculus inundatus, Br. Ch. . . Australia.
17. Ranunculus Pumilio, Br. Australia.
18. Caltha introloba, Muell. Ch. . . "

II. Magnoliaceae.

III. Monimiaceae.
20. Atherosperma moschata, Br. Ch Australia N. Zealand, South America.

IV. Dilleniaceae.
23. Hibbertia virgata, Br. "
26. Pleurandra sericea, Br. "
27. Pleurandra ovata, Lab. Ch. "
28. Pleurandra riparia, Br. Ch. "

V. Cruciferae.
30. Cardamine radicata, H.f. Ch. . . Tasmania (alp.) Europe, etc.
31. Cardamine stylosa, DC. Ch. . . Australia.
32. Cardamine dictyosperma, Hook. Ch. . . "
33. Cardamine pratensis, L. Ch. . . " Europe,
34. Cardamine hirsuta, L. Ch. . . " ubiquitous.
35. Barbarea australis, H.f. Ch. . . " New Zealand . . . Europe, etc.
36. Nasturtium terrestre, Br. Ch. . . " ubiquitous . . . Europe, etc.
37. Stenopetalum lineare, Br. Australia.
38. Hutchinsia procumbens, Br. Europe Europe, etc.
39. Hutchinsia australis, H.f. "
40. Thlaspi ? Tasmanicum, H.f. Tasmania (subalp.) . . . Europe, etc.
41. Draba nemoralis, L. Europe Europe, South America
42. Draba Pumilio, Br. Tasmania.
43. Lepidium cuneifolium, DC. Australia Europe, etc.
44. Lepidium ruderal, L. Ch. . . " ubiquitous.
45. Lepidium foliosum, Desv. "

VI. Violariea.
46. Viola hederacea, Lab. Australia Europe, etc.
47. Viola betonicifolia, Scw. Ch. . . "
48. Viola Cunninghamii, H.f. Ch. . . New Zealand (subalp.).
49. Viola Caleyana, Don. Ch. Australia.
VII. Droseraceae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Drosera Arcturi, Hook. Ch.</td>
<td>Austral., N. Zeal. (subalp.) Europe, South Africa, etc.</td>
</tr>
<tr>
<td>52</td>
<td>Drosera pygmaea, DC.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Drosera spathulata, Lab.</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Drosera binata, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Drosera Planchoni, H.f.</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Drosera peltata, Sw.</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Drosera gracilis, H.f. Ch.</td>
<td>Tasmania (subalp.).</td>
</tr>
<tr>
<td>59</td>
<td>Drosera foliosa, H.f.</td>
<td>Australia.</td>
</tr>
</tbody>
</table>

VIII. Polygaleae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Comesperma volubilis, Lab. Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>61</td>
<td>Comesperma retusa, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Comesperma ericina, DC.</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Comesperma calymeja, Lab.</td>
<td></td>
</tr>
</tbody>
</table>

IX. Tremandraceae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Tetrapheca ciliata, Lindl.</td>
<td>Australia.</td>
</tr>
<tr>
<td>65</td>
<td>Tetrapheca glandulosa, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Tetrapheca pilosa, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Tetrapheca procumbens, Gunn. Ch.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>68</td>
<td>Tetrapheca Gunnii, H.f.</td>
<td></td>
</tr>
</tbody>
</table>

X. Pittosporeae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>Billardiera longiflora, Lab. Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>70</td>
<td>Billardiera mutabilis, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Billardiera macrantha, H.f.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>72</td>
<td>Pittosporum bicolor, Hook. Ch.</td>
<td>Australia, India, etc.</td>
</tr>
<tr>
<td>73</td>
<td>Bursaria spinosa, Cav. Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>74</td>
<td>Bursaria procumbens, Putt.</td>
<td></td>
</tr>
</tbody>
</table>

XI. Frankeniaceae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>Frankenia pauciflora, DC.</td>
<td>Europe, etc.</td>
</tr>
</tbody>
</table>

XII. Caryophyllea

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Spergularia rubra, St. Hil.</td>
<td>Australia (ubiquitous) Europe, etc.</td>
</tr>
<tr>
<td>77</td>
<td>Scleranthus biflorus, H.f. Ch.</td>
<td>New Zealand Europe, etc.</td>
</tr>
<tr>
<td>78</td>
<td>Scleranthus fasciculatus, H.f. Ch.</td>
<td>Tasmania (subalp.).</td>
</tr>
<tr>
<td>80</td>
<td>Colobanthus Billardieri, Fenzl</td>
<td>New Zealand New Zealand, Antarctic.</td>
</tr>
<tr>
<td>81</td>
<td>Colobanthus affinis, H.f. Ch.</td>
<td>Tasmania (subalp.).</td>
</tr>
<tr>
<td>82</td>
<td>Stellaria multiflora, Hook.</td>
<td>Australia, New Zealand Europe, etc.</td>
</tr>
<tr>
<td>83</td>
<td>Stellaria media, Saw. Ch.</td>
<td>Europe, Antarctic.</td>
</tr>
<tr>
<td>84</td>
<td>Stellaria glauca, With. Ch.</td>
<td>Europe.</td>
</tr>
<tr>
<td>85</td>
<td>Stellaria pungens, Bronyn. Ch.</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTORY ESSAY

XIII. Linaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linum marginale, A.C. Ch.</td>
<td>Australia, Europe, etc.</td>
</tr>
</tbody>
</table>

XIV. Elatineae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elatine Americana, Arn. Ch.</td>
<td>Austral., N. Zeal., N. Amer. Europe, etc.</td>
</tr>
</tbody>
</table>

XV. Malvaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavatera plebeja, Sims</td>
<td>Australia, Europe, etc.</td>
</tr>
<tr>
<td>Lawrenzia spicata, Hook.</td>
<td>Australia</td>
</tr>
<tr>
<td>Plagianthus pulchellus, A. Gray. Ch.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>Plagianthus sidoides, Hook.</td>
<td></td>
</tr>
</tbody>
</table>

XVI. Buettneriaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasiopetalum discolor, Hook.</td>
<td>Tasmania, Australia</td>
</tr>
<tr>
<td>Lasiopetalum Gunnii, Steetz</td>
<td></td>
</tr>
<tr>
<td>Lasiopetalum micranthum, H.f.</td>
<td></td>
</tr>
</tbody>
</table>

XVII. Elaeocarpeae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
</table>

XVIII. Hypericaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypericum gramineum, Forst. Ch.</td>
<td>Aust., N. Zeal., India? S. Af.?</td>
</tr>
<tr>
<td>Hypericum *Japonicum, Thunb. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>Eucryphia lucida, Spach. Ch.</td>
<td>Tasmania (subalp.), South America</td>
</tr>
<tr>
<td>Eucryphia *Milligani, H.f.</td>
<td>"</td>
</tr>
</tbody>
</table>

XIX. Sapindaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodonaea viscosa, Forst.</td>
<td>Aust., N. Zeal., ubiq. Trop. India, etc.</td>
</tr>
<tr>
<td>Dodonaea saloafolia, A.C. Ch.</td>
<td>Australia</td>
</tr>
</tbody>
</table>

XX. Geraniaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geranium dissectum, L. var.</td>
<td>Aust., N. Zeal., Eur., Amer. Europe, etc.</td>
</tr>
<tr>
<td>Geranium *potentilloides, L'Hér.</td>
<td>"</td>
</tr>
<tr>
<td>Geranium brevicaule, Hook. Ch.</td>
<td>Austral., N. Zeal. (subalp.)</td>
</tr>
<tr>
<td>Pelargonium australe, Wild. Ch.</td>
<td>Australia, South Africa? Australia, South Africa</td>
</tr>
<tr>
<td>Pelargonium *Acagnaticum, Pet. Th. Ch.</td>
<td>New Zealand, South Africa</td>
</tr>
</tbody>
</table>

XXI. Oxalidaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalis Magellanica, Forst. Ch.</td>
<td>N. Zeal., Antarct. (subalp.) Europe, etc.</td>
</tr>
<tr>
<td>Oxalis corniculata, L.</td>
<td>ubiquitous.</td>
</tr>
</tbody>
</table>

XXII. Zygoxyllaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raepera Billardieri, A. Juss.</td>
<td>Australia</td>
</tr>
<tr>
<td>Raepera latifolia, H.f.</td>
<td></td>
</tr>
</tbody>
</table>

XXIII. Rutaceae

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correa rufa, Gartn.</td>
<td>Australia</td>
</tr>
<tr>
<td>Correa Backhousiana, Hook.</td>
<td>"</td>
</tr>
<tr>
<td>FLORA OF TASMANIA.</td>
<td>Distribution of Species.</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>117. Phebalium truncatum, H. f. Ch.</td>
<td>.</td>
</tr>
<tr>
<td>120. Eriostemon virgatum, A. Cunn.</td>
<td>.</td>
</tr>
<tr>
<td>128. Boronia citriodora, Gunn. Ch.</td>
<td>.</td>
</tr>
</tbody>
</table>

XXIV. Rhamnaceae.

140. Cryptandra obovata, *H. f.*	.	"
145. Pomaderris *discolor, Vent.*	.	"
146. Pomaderris ferruginea, *Fenzl.*	.	"

XXV. Stackhousiaceae.

| 152. Stackhousia maculata, *Sieb.* | . | " |
XXVI. *Leguminosae.*

Podaalyria.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>Oxylobium arborescens, Br. Ch</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>155</td>
<td>Oxylobium ellipticum, Br. Ch</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Gompholobium latifolium, Sm.</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>157</td>
<td>Daviesia umbellulata, Sm. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Daviesia latifolia, Br. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Aotis villosa, Curt. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Sphaerolobium vinineum, Sm. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Dillwynia glaberrima, Sm. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Dillwynia floribunda, Sims</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Dillwynia cinerascens, Br. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Pultenaea daphnoides, Ser.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Pultenaea stricta, Sims</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Pultenaea subumbellata, Hook.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Pultenaea selaginoides, H.f.</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Pultenaea pimeleoides, H.f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Pultenaea Gunnii, Benth. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Pultenaea dentata, Lab. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Pultenaea prostrata, Benth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Pultenaea Hibbertioides, H.f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Pultenaea juniperina, Lab. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Pultenaea cordata*, Hook.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Pultenaea diffusa, H.f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Pultenaea pedunculata, Hook.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Pultenaea humilis, Benth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Pultenaea tenuifolia, Br. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Pultenaea fasciculata, Benth. Ch</td>
<td></td>
<td>(subalp.)</td>
</tr>
<tr>
<td>180</td>
<td>Pultenaea Backeioides, Benth.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genistae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>Hovea purpurea, Sweet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Hovea heterophylla, A. C. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Bossiaea ensata, Lab. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Bossiaea prostrata, Br.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Bossiaea cordigera, Benth. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Bossiaea cinerea, Br.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Platylobium triangulare, Br.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Platylobium Murrayanum, Hook.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Platylobium formosum, Sm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Goodia lotifolia, Sal. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Goodia pubescens*, Sims. Ch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trifolii.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>Lotus corniculatus, L. Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Lotus australis, Andr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Psoralea Gunnii, H.f.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Indigofera australis, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Swainsonia Lessertiaefolia, DC.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Hardenbergia ovata, Benth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Desmodium Gunnii, Benth.</td>
<td>Tropics</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>Kennedya prostrata, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Leptocyamus Tasmanicus, Benth.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Leptocyamus clandestinus, Benth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Acacia Gunnii, Benth.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Acacia Stuartiana, F. Mull.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Acacia diffusa, Lindl.</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Acacia juniperina, Wild.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Acacia ovoida, Benth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Acacia verticillata, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Acacia Riceana, Henslow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Acacia axillaris, Benth.</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Acacia myrtifolia, Wild.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Acacia suaveolens, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Acacia crassiuscula, Wendl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Acacia verniciflua, A. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Acacia stricta, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Acacia melanoxylon, Br.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Acacia linearis, Sims.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Acacia mucronata, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>Acacia Sophorae, Br.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Acacia discolor, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Acacia dealbata, Lind.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Acacia mollissima, Wild.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Rubus macropodus, Ser.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Rubus Gunnianus, Hook.</td>
<td>Tasmania (alpine)</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Potentilla anserina, L.</td>
<td>Australia (ubiquitous)</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Acena Sanguisorbas, Vahl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Acena ovina, A. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Geum urbanum, L.</td>
<td>Aust., Eur., N. Zeal., Ant.</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>Geum reniforme, Muell.</td>
<td>Tasmania (alpine)</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Epilobium tenuipes, H.f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Epilobium palidiforum, Sol.</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Epilobium Billardierianum, Ser. MS.</td>
<td>Australia, New Zealand</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTORY ESSAY.

Distribution of Species. Distr. of Genera or representatives.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>Epilobium glabellum, Forst. Ch</td>
<td>New Zealand</td>
</tr>
<tr>
<td>235</td>
<td>Enothera Tasmanica, H.f.</td>
<td>Tasmania (alpine)</td>
</tr>
</tbody>
</table>

XIX. Haloragaceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>236</td>
<td>Haloragis pinnatifida, A. Gray Ch</td>
<td>Australia</td>
</tr>
<tr>
<td>237</td>
<td>Haloragis Gunnii, H.f. Ch</td>
<td>South temperate zone</td>
</tr>
<tr>
<td>238</td>
<td>Haloragis tetragyna, H.f. Ch</td>
<td>New Zealand</td>
</tr>
<tr>
<td>239</td>
<td>Haloragis depressa, A. Cunn. Ch</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Haloragis microcarpa, Th. Ch</td>
<td>Aust., N. Zeal., Japan, Bengal</td>
</tr>
<tr>
<td>241</td>
<td>Myriophyllum elatinoides, Gaud.</td>
<td>Australia, N. Zeal., Antarct. Europe, etc.</td>
</tr>
<tr>
<td>242</td>
<td>Myriophyllum variegatum, H.f. Ch</td>
<td>Australia</td>
</tr>
<tr>
<td>243</td>
<td>Myriophyllum amphibia, Lab.</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Myriophyllum pedunculatum, H.f. Ch</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Myriophyllum integrifolium, H.f.</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Ceratophyllum demersum, L.</td>
<td>ubiquitous</td>
</tr>
<tr>
<td>247</td>
<td>Meionectes Brownii, H.f.</td>
<td>Australia</td>
</tr>
<tr>
<td>248</td>
<td>Callitriche verna, L. Ch.</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>Gunnera cordifolia, H.f.</td>
<td>Tasmania (alpine)</td>
</tr>
</tbody>
</table>

XXX. Lythraceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>Lythrum Salicaria, L. Ch.</td>
<td>Australia, Europe</td>
</tr>
<tr>
<td>251</td>
<td>Lythrum hyssopifolium, L.</td>
<td>Europe, etc.</td>
</tr>
</tbody>
</table>

XXXI. Myrtaceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>Calycothrix glabra, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>253</td>
<td>Thryptomene microcarpa, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>254</td>
<td>Melaleuca squamea, Lab.</td>
<td>Australia</td>
</tr>
<tr>
<td>255</td>
<td>Melaleuca pustulata, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>256</td>
<td>Melaleuca ericifolia, Sm.</td>
<td>Australia</td>
</tr>
<tr>
<td>257</td>
<td>Melaleuca squarrosa, Sm.</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Melaleuca gibbosa, Lab.</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>Kunzea corifolia, Rich.</td>
<td>Australia</td>
</tr>
<tr>
<td>260</td>
<td>Callistemon viridiflorus, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>Callistemon salignum, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Eucalyptus cordata, Lab.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>263</td>
<td>Eucalyptus Risdoni, H.f.</td>
<td>Australia, Malay Islands</td>
</tr>
<tr>
<td>264</td>
<td>Eucalyptus Globulus, Lab.</td>
<td>Australia</td>
</tr>
<tr>
<td>265</td>
<td>Eucalyptus coccifera, H.f.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>266</td>
<td>Eucalyptus urnigera, H.f.</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Eucalyptus viminalis, Lab. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>268</td>
<td>Eucalyptus Gunnii, H.f. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>269</td>
<td>Eucalyptus Acervula, Sieb.</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Eucalyptus vernicosa, H.f.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>271</td>
<td>Eucalyptus amygdalina, Lab. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>272</td>
<td>Eucalyptus coriacea, A. Cunn.</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Distribution of Species</td>
<td>Flora of Tasmania</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>273</td>
<td>Eucalyptus gigantea, H.f.</td>
<td>Australia</td>
</tr>
<tr>
<td>274</td>
<td>Eucalyptus radiata, Sieb.</td>
<td>Ch.</td>
</tr>
<tr>
<td>275</td>
<td>Eucalyptus nitida, H.f.</td>
<td>"</td>
</tr>
<tr>
<td>276</td>
<td>Leptospermum scoparium, Sm.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>277</td>
<td>Leptospermum lanigerum, Sm.</td>
<td>Ch.</td>
</tr>
<tr>
<td>278</td>
<td>Leptospermum *flavescens, Sm.</td>
<td>Ch.</td>
</tr>
<tr>
<td>279</td>
<td>Leptospermum nitidum, H.f.</td>
<td>Tasman.</td>
</tr>
<tr>
<td>280</td>
<td>Leptospermum *rupestre, H.f.</td>
<td>Ch.</td>
</tr>
<tr>
<td>281</td>
<td>Leptospermum myrtifolium, Sieb.</td>
<td>Ch.</td>
</tr>
<tr>
<td>282</td>
<td>Fabricia levigata, Gartn.</td>
<td>"</td>
</tr>
<tr>
<td>283</td>
<td>Beckia leptocalaxis, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>284</td>
<td>Beckia thymifolia, H.f.</td>
<td>"</td>
</tr>
<tr>
<td>285</td>
<td>Beckia diffusa, Sieb.</td>
<td>Australia</td>
</tr>
<tr>
<td>286</td>
<td>Beckia Gunniana, Schauer.</td>
<td>Ch.</td>
</tr>
<tr>
<td>288</td>
<td>Calandrinia calyptrata, H.f.</td>
<td>Ch.</td>
</tr>
<tr>
<td>289</td>
<td>Claytonia Australasica, Hook.</td>
<td>Ch.</td>
</tr>
<tr>
<td>290</td>
<td>Montia fontana, L.</td>
<td>N. Zeal., Europe, Antarct.</td>
</tr>
<tr>
<td>291</td>
<td>Tillaea verticillaris, DC.</td>
<td>Ch.</td>
</tr>
<tr>
<td>292</td>
<td>Tillaea purpurata, H.f.</td>
<td>"</td>
</tr>
<tr>
<td>293</td>
<td>Tillaea macrantha, H.f.</td>
<td>"</td>
</tr>
<tr>
<td>294</td>
<td>Tillaea recurva, H.f.</td>
<td>"</td>
</tr>
<tr>
<td>295</td>
<td>Mesembryanthemum aequilaterale, Ait.</td>
<td>Australia, South Africa.</td>
</tr>
<tr>
<td>296</td>
<td>Mesembryanthemum australis, Sol.</td>
<td>Ch.</td>
</tr>
<tr>
<td>298</td>
<td>Tetragonia implexicoma, H.f.</td>
<td>Australia, New Zealand.</td>
</tr>
<tr>
<td>299</td>
<td>Anopterus glandulosus, Lab.</td>
<td>Ch.</td>
</tr>
<tr>
<td>300</td>
<td>Bauera rubioides, Andr.</td>
<td>Ch.</td>
</tr>
<tr>
<td>301</td>
<td>Bauera microphylla, Sieb.</td>
<td>"</td>
</tr>
<tr>
<td>302</td>
<td>Tetrapetaea Tasmanica, H.f.</td>
<td>Ch.</td>
</tr>
<tr>
<td>303</td>
<td>Anopterus glandulosus, Lab.</td>
<td>Ch.</td>
</tr>
<tr>
<td>304</td>
<td>Hydrocotyle Asiatica, L.</td>
<td>Ch.</td>
</tr>
<tr>
<td>305</td>
<td>Hydrocotyle hirta, Br.</td>
<td>Ch.</td>
</tr>
</tbody>
</table>

XXXII. Cucurbitaceae.
XXXIII. Portulaceae.
XXXIV. Crassulaceae.
XXXV. Ficoideae.
XXXVI. Cunoniaceae.
XXXVII. Escalloniaceae.
XXXVIII. Umbelliferae.
INTRODUCTORY ESSAY.

<table>
<thead>
<tr>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>306. Hydrocotyle peduncularis, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>*307. Hydrocotyle Tasmanica, H.f. Ch.</td>
<td>„</td>
</tr>
<tr>
<td>308. Hydrocotyle vagans, H.f. Ch.</td>
<td>„</td>
</tr>
<tr>
<td>309. Hydrocotyle pterocarpa, Mull.</td>
<td>„</td>
</tr>
<tr>
<td>310. Hydrocotyle tripartita, Br. Ch.</td>
<td>„</td>
</tr>
<tr>
<td>311. Hydrocotyle muscosa, Br.</td>
<td>„</td>
</tr>
<tr>
<td>312. Didiscus pilosus, Benth.</td>
<td>„ Aust., N. Caledon., Borneo</td>
</tr>
<tr>
<td>313. Didiscus humilis, H.f. Ch.</td>
<td>„ (subalp.)</td>
</tr>
<tr>
<td>314. Xanthosia montana, Sieb. Ch.</td>
<td>„</td>
</tr>
<tr>
<td>315. Xanthosia dissecta, H.f.</td>
<td>„</td>
</tr>
<tr>
<td>316. Xanthosia pusilla, Bunge</td>
<td>„</td>
</tr>
<tr>
<td>317. Diplospis Hydrocotyle, H.f. Ch.</td>
<td>„ (alpine) Australia</td>
</tr>
<tr>
<td>318. Diplospis cordifolia, H.f.</td>
<td>„ Tasmania (subalp.)</td>
</tr>
<tr>
<td>319. Dichocentrum ranunculaceum, Mull.</td>
<td>„ Australia (subalp.) Tasmania</td>
</tr>
<tr>
<td>320. Hemiphues bellidoides, H.f.</td>
<td>„ Tasmania (alpine)</td>
</tr>
<tr>
<td>321. Microtheca Saxifraga, H.f.</td>
<td>„ (subalp.) Tasmania</td>
</tr>
<tr>
<td>322. Xanthosia procumbens, Mueller.</td>
<td>„ (alpine) New Zealand</td>
</tr>
<tr>
<td>323. Eryngium vesiculosum, Lab.</td>
<td>„ New Zealand Europe</td>
</tr>
<tr>
<td>324. Crantzia lineata, Nutt. Ch.</td>
<td>„ Aust., N. Z., Amer., Ant. America, Antarctic</td>
</tr>
<tr>
<td>325. Apium australe, Pet. Th.</td>
<td>„ Antarctic Europe</td>
</tr>
<tr>
<td>326. Daucus brachiatus, Siebold.</td>
<td>„ N. & S. Amer. Europe</td>
</tr>
<tr>
<td>328. Oreomyrrhis brachycarpa, H.f. Ch.</td>
<td>„ Tasmania (subalp.)</td>
</tr>
<tr>
<td>329. Oreomyrrhis argentea, H.f.</td>
<td>„</td>
</tr>
<tr>
<td>330. Oreomyrrhis sessiliflora, H.f.</td>
<td>„ (alpine)</td>
</tr>
<tr>
<td>331. Oreomyrrhis ciliata, H.f. Ch.</td>
<td>„ (subalp.)</td>
</tr>
</tbody>
</table>

XXXIX. Araliaceae.

| **332. Panax Gunnii, H.f.** | „ Tasmania India, etc |

XL. Caprifoliaceae.

| **333. Sambucus Gaudichaudiana, DC. Ch.** | „ Australia Europe, etc |

XLI. Rubiaceae.

334. Coprosma hirtella, Lab. Ch.	„ Australia Aust., N. Z., Polynesia
335. Coprosma Billardieri, H.f. Ch.	„
336. Coprosma nitida, H.f. Ch.	„ Tasmania (subalp.)
337. Coprosma pumila, H.f. Ch.	„ Australia, N. Zealand (alp.)
338. Opercularia ovata, H.f. Ch.	„
339. Opercularia varia, H.f. Ch.	„
341. Asperula subsimplex, H.f.	„ Tasmania Europe, etc
342. Asperula Gunnii, H.f. Ch.	„ Australia (subalp.)
343. Asperula scoparia, H.f. Ch.	„
344. Asperula conferta, H.f.	„
345. Asperula pusilla, H.f.	„ Tasmania (alpine)
Distribution of Species

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>346</td>
<td>Asperula minima, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>347</td>
<td>Galium vagans, H.f.</td>
<td>Australia, Europe, etc.</td>
</tr>
<tr>
<td>348</td>
<td>Galium ciliare, H.f.</td>
<td></td>
</tr>
<tr>
<td>349</td>
<td>Galium australe, DC.</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Galium squalidum, H.f.</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Galium albescens, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>352</td>
<td>Eurybia argophylla, Cass. Ch.</td>
<td>Australia, Australia, New Zealand</td>
</tr>
<tr>
<td>353</td>
<td>Eurybia viscosa, Cass. Ch.</td>
<td></td>
</tr>
<tr>
<td>354</td>
<td>Eurybia erubescens, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>Eurybia myrsinoides, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>356</td>
<td>Eurybia Persoonoides, DC. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>357</td>
<td>Eurybia alpina, H.f.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>358</td>
<td>Eurybia obcordata, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>Eurybia *lirata, DC. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>360</td>
<td>Eurybia fulvida, Cass.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>361</td>
<td>Eurybia *Gunniana, DC. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>362</td>
<td>Eurybia pinifolia, H.f. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>363</td>
<td>Eurybia ledifolia, A. C. Ch.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>364</td>
<td>Eurybia linearifolia, DC.</td>
<td>Australia</td>
</tr>
<tr>
<td>365</td>
<td>Eurybia ramulosa, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>Eurybia lepidophylla, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>Eurybia floribunda, H.f.</td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>Eurybia glandulosa, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>Eurybia linifolia, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>370</td>
<td>Eurybia ericoides, Steetz</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>Eurybia ciliata, Benth.</td>
<td>Australia</td>
</tr>
<tr>
<td>372</td>
<td>Celmisia longifolia, Cass. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>373</td>
<td>Vittadinia scabra, DC.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>374</td>
<td>Vittadinia cuneata, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>Erigeron Pappochroma, Lab. Ch.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>376</td>
<td>Erigeron Tasmanicum, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>Erigeron *Gunnii, Muell. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>378</td>
<td>Brachycome decipiens, H.f. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>379</td>
<td>Brachycome tenuiscapa, H.f. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>380</td>
<td>Brachycome radicans, Steetz Ch.</td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>Brachycome linearifolia, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>Brachycome scapiformis, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>Brachycome *parvula, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>384</td>
<td>Brachycome *pumila, Walp.</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>Brachycome angustifolia, A. Cunn.</td>
<td>Australia</td>
</tr>
<tr>
<td>386</td>
<td>Brachycome stricta, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>Brachycome oblongifolia, Benth.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>388</td>
<td>Brachycome diversifolia, Fisch. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>389</td>
<td>Brachycome ciliaris, Less.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Species Name</td>
<td>Distribution of Species</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>392.</td>
<td>Lagenophora latifolia, H.f. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>393.</td>
<td>Lagenophora montana, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>394.</td>
<td>Lagenophora Gunniana, Steets Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>400.</td>
<td>Cotula alpina, H.f. Ch.</td>
<td>Australia (subalp.).</td>
</tr>
<tr>
<td>402.</td>
<td>Leptinella intricata, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>403.</td>
<td>Leptinella Filicula, H.f. Ch.</td>
<td>(subalp.).</td>
</tr>
<tr>
<td>413.</td>
<td>Actinopappus perpusillus, H.f.</td>
<td></td>
</tr>
<tr>
<td>415.</td>
<td>Apalochlamys Billardieri, DC.</td>
<td></td>
</tr>
<tr>
<td>419.</td>
<td>Ozothamnus selaginoides, Sonder</td>
<td>(subalp.).</td>
</tr>
<tr>
<td>422.</td>
<td>Ozothamnus reticulatus, DC.</td>
<td></td>
</tr>
<tr>
<td>425.</td>
<td>Ozothamnus Antennaria, H.f. Ch.</td>
<td>(subalp.).</td>
</tr>
<tr>
<td>431.</td>
<td>Ozothamnus thyrsoides, DC. Ch.</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Species.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species Name</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>436</td>
<td>Leptorrhynchus elongatus, DC.</td>
<td>Australia</td>
</tr>
<tr>
<td>437</td>
<td>Podolepis acuminata, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>438</td>
<td>Millotia tenuifolia, Cass.</td>
<td>Australia</td>
</tr>
<tr>
<td>440</td>
<td>Helichrysum scorpioides, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>Helichrysum semipapposum, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>442</td>
<td>Helichrysum spiculatum, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>Helichrysum papillosum, Lab.</td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>Helichrysum leucopsideum, DC.</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>Helichrysum dealbatum, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>Helichrysum pumilum, H.f.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>447</td>
<td>Helichrysum Milligani, H.f.</td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>Helipterum incanum, DC.</td>
<td>Australia, South Africa</td>
</tr>
<tr>
<td>449</td>
<td>Helipterum anthemoides, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>Gnaphalium luteo-album, L.</td>
<td>(ubiquitous). Europe, etc.</td>
</tr>
<tr>
<td>451</td>
<td>Gnaphalium involucratum, Forst. Ch.</td>
<td>New Zealand</td>
</tr>
<tr>
<td>452</td>
<td>Gnaphalium collinum, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>Gnaphalium *alpigenum, Muell. Ch.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>454</td>
<td>Gnaphalium indutum, H.f.</td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>Gnaphalium f Planchnoni, H.f. Ch.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>456</td>
<td>Erechtites prenanthoides, DC.</td>
<td>Australia, New Zealand, Australia, New Zealand</td>
</tr>
<tr>
<td>457</td>
<td>Erechtites arguta, DC.</td>
<td></td>
</tr>
<tr>
<td>458</td>
<td>Erechtites quadridenta, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>459</td>
<td>Erechtites hispidula, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>Erechtites Gunnii, H.f. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>461</td>
<td>Senecio laetus, Forst. Ch.</td>
<td>Australia, New Zealand, Europe, etc.</td>
</tr>
<tr>
<td>462</td>
<td>Senecio capillifolius, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>463</td>
<td>Senecio pectinatus, DC. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>464</td>
<td>Senecio leptocarpus, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>Senecio spathulatus, A. Rich.</td>
<td>Australia</td>
</tr>
<tr>
<td>466</td>
<td>Senecio velleioides, A. C. Ch.</td>
<td></td>
</tr>
<tr>
<td>467</td>
<td>Senecio australis, Wild. Ch.</td>
<td></td>
</tr>
<tr>
<td>468</td>
<td>Senecio odoratus, Horn.</td>
<td></td>
</tr>
<tr>
<td>469</td>
<td>Senecio Georgianus, DC.</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>Senecio primulifolius, Muell.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>471</td>
<td>Senecio papillosus, Muell.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>472</td>
<td>Bedfordia salicina, DC. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>473</td>
<td>Bedfordia linearis, DC.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>474</td>
<td>Centropappus Brunonis, H.f.</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>Cymbonotus Lawsonianus, Cass.</td>
<td>Australia, Cape Affinity</td>
</tr>
<tr>
<td>476</td>
<td>Microseris Forsteri, H.f. Ch.</td>
<td>New Zealand, South America</td>
</tr>
<tr>
<td>477</td>
<td>Picris hieracioides, L.</td>
<td>Eur, Europe</td>
</tr>
<tr>
<td>478</td>
<td>Sonchus asper, Fuchs. Ch.</td>
<td>(ubiquitous), Europe</td>
</tr>
</tbody>
</table>

XLIII. Brunoniacea.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species Name</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>479</td>
<td>Brunonia australis, Linn.</td>
<td>Australia</td>
</tr>
</tbody>
</table>

INTRODUCTORY ESSAY.

XLIV. Goodeniaceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td>Dampiera stricta, Br.</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>481</td>
<td>Scaevola Hookeri, Muell. Ch.</td>
<td>"</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>482</td>
<td>Selliera radicans, Cav.</td>
<td>"</td>
<td>N. Zeal., Antarc.</td>
</tr>
<tr>
<td>483</td>
<td>Goodenia ovata, Sm. Ch.</td>
<td>"</td>
<td>Australia</td>
</tr>
<tr>
<td>484</td>
<td>Goodenia geniculata, Br.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>485</td>
<td>Goodenia hederacea, Sm. Ch.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>486</td>
<td>Goodenia elongata, Lab. Ch.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>487</td>
<td>Goodenia humilis, Br.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>488</td>
<td>Velleia paradoxa, Br. Ch.</td>
<td>"</td>
<td>Australia</td>
</tr>
<tr>
<td>489</td>
<td>Velleia montana, H.f. Ch.</td>
<td>"</td>
<td>(subalp.)</td>
</tr>
</tbody>
</table>

XLV. Stylideae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>490</td>
<td>Stylidium graminifolium, Sw. Ch</td>
<td>Australia</td>
<td>Australia, India</td>
</tr>
<tr>
<td>491</td>
<td>Stylidium despectum, Br.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>492</td>
<td>Stylidium perpusillum, H.f. Ch.</td>
<td>"</td>
<td>Tasmania</td>
</tr>
<tr>
<td>493</td>
<td>Forskera bellidifolia, Hook.</td>
<td>"</td>
<td>(alpine)</td>
</tr>
</tbody>
</table>

XLVI. Lobeliaceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>494</td>
<td>Lobelia anceps, Th.</td>
<td>Aust., N. Zl., S. Af., S. Am. Europe, etc.</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>Lobelia surrepens, H.f. Ch.</td>
<td>"</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>496</td>
<td>Lobelia pedunculata, Br. Ch.</td>
<td>"</td>
<td>Australia</td>
</tr>
<tr>
<td>497</td>
<td>Lobelia fluviatilis, Br. Ch.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>498</td>
<td>Lobelia irigina, Br.</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>499</td>
<td>Lobelia gibbosa, Lab. Ch.</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

XLVII. Campanulaceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Wahlenbergia gracilis, A. DC. Ch</td>
<td>Australia, N. Zeal., India, South Africa</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>Wahlenbergia *saxicola, A. DC. Ch</td>
<td>New Zealand (alpine)</td>
<td></td>
</tr>
</tbody>
</table>

XLVIII. Ericeae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>502</td>
<td>Gaultheria hispida, Br. Ch.</td>
<td>"</td>
<td>Australia (subalp.)</td>
</tr>
<tr>
<td>503</td>
<td>Gaultheria *lanceolata, H.f. Ch</td>
<td>"</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>504</td>
<td>Gaultheria antipoda, var. γ, H.f. Ch</td>
<td>New Zealand (alpine)</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>Pernettya Tasmanica, H.f. Ch.</td>
<td>"</td>
<td>Tasmania (alpine)</td>
</tr>
</tbody>
</table>

XLIX. Epaerideae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>506</td>
<td>Styphelia ascendens, Br.</td>
<td>"</td>
<td>Australia</td>
</tr>
<tr>
<td>507</td>
<td>Astroloma humifusum, Br. Ch.</td>
<td>"</td>
<td>Australia</td>
</tr>
<tr>
<td>508</td>
<td>Stenanthera pinifolia, Br.</td>
<td>"</td>
<td>Australia</td>
</tr>
<tr>
<td>509</td>
<td>Cyathodes glauca, Lab.</td>
<td>"</td>
<td>Tasmania</td>
</tr>
<tr>
<td>511</td>
<td>Cyathodes *macrantha, H.f. Ch.</td>
<td>"</td>
<td>(alpine)</td>
</tr>
<tr>
<td>512</td>
<td>Cyathodes dealbata, Br. Ch.</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

[Note: The table continues with additional species and distributions.]
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>Cyathodes ascendentis, H.f. Ch.</td>
<td>Tasmania (alpine).</td>
</tr>
<tr>
<td>514</td>
<td>Cyathodes divaricata, H.f.</td>
<td>Australia.</td>
</tr>
<tr>
<td>515</td>
<td>Cyathodes parvifolia, Br. Ch.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>516</td>
<td>Cyathodes Oxycedrus, Br. Ch.</td>
<td>New Zealand.</td>
</tr>
<tr>
<td>517</td>
<td>Cyathodes abietina, Br.</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>Lissanthe strigosa, Br. Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>519</td>
<td>Lissanthe montana, Br.</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Lissanthe daphnoides, Br.</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>Lissanthe ciliata, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>Leucopogon Richeri, Br.</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>Leucopogon affinis, Br.</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Leucopogon australis, Br.</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Leucopogon virgatus, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Leucopogon ericoides, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>Leucopogon collinus, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>Leucopogon ciliatus, A.C. Ch.</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>Leucopogon Hookeri, Sond. Ch.</td>
<td>(alpine).</td>
</tr>
<tr>
<td>530</td>
<td>Leucopogon Frazeri, A.C. Ch.</td>
<td>New Zealand.</td>
</tr>
<tr>
<td>531</td>
<td>Monotoca lineata, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>Monotoca empetrifolia, Br. Ch.</td>
<td>Tasmania (alpine).</td>
</tr>
<tr>
<td>533</td>
<td>Acrotriche serrulata, Br. Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>534</td>
<td>Acrotriche patula, Br.</td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>Decaspora disticha, Br.</td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>Decaspora Cunninghamii, DC. Ch.</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>Decaspora Gunnii, H.f.</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>Decaspora thymifolia, Br. Ch.</td>
<td>(alpine).</td>
</tr>
<tr>
<td>539</td>
<td>Pentachondra involucrata, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>Pentachondra ericifolia, H.f.</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>Pentachondra pumila, Br. Ch.</td>
<td>Australia (alpine).</td>
</tr>
<tr>
<td>542</td>
<td>Pentachondra verticillata, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>543</td>
<td>Epacris *Gunnii, H.f. Ch.</td>
<td>Australia (subalp.)</td>
</tr>
<tr>
<td>544</td>
<td>Epacris impressa, Lab. Ch.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>545</td>
<td>Epacris *ceraiflora, Grah.</td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>Epacris *ruscifolia, Br.</td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>Epacris lanuginosa, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>Epacris mucronulata, Br.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>549</td>
<td>Epacris heteronema, Lab.</td>
<td>Australia (subalp.).</td>
</tr>
<tr>
<td>550</td>
<td>Epacris squarroso, H.f.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>551</td>
<td>Epacris myrtifolia, Lab.</td>
<td></td>
</tr>
<tr>
<td>552</td>
<td>Epacris *serpyllifolia, Br. Ch.</td>
<td>Australia (alpine).</td>
</tr>
<tr>
<td>553</td>
<td>Epacris *exserta, Br. Ch.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>554</td>
<td>Epacris *virgata, H.f.</td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>Epacris obtusifolia, Sm.</td>
<td>Australia.</td>
</tr>
<tr>
<td>556</td>
<td>Epacris *Francilinii, H.f.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>557</td>
<td>Epacris *corymbiflora, H.f.</td>
<td></td>
</tr>
<tr>
<td>558</td>
<td>Epacris petrophila, H.f.</td>
<td>Australia (alpine).</td>
</tr>
</tbody>
</table>
INTRODUCTORY ESSAY.

Distribution of Species. Distr. of Genera or representatives.

559. Prionotes corinthoides, Br. ... Tasmania (subalp.) ... Tasmania, South America.
560. Archeria hirtella, H. f. ... " ... Tasmania.
561. Archeria eriocarpa, H. f. Ch. ... " ... Tasmania.
562. Archeria serpyllifolia, H. f. ... " (alpine).
563. Archeria minor, H. f. ... " ... Tasmanian Plants.

564. Sprengelia incarnata, Sm. Ch. ... Australia ... Australia.
565. Sprengelia *propinqua, A. C. Ch. ... Tasmania (subalp.).
566. Sprengelia *montana, Br. Ch. ... " (alpine).
567. Cystanthe Sprengelioides, Br. Ch. ... " ... Tasmania.
568. Cystanthe procera, MueLL. ... " ... Tasmania.
569. Pilitis acerosa, Lind. Ch. ... " (alpine) ... Tasmania.
570. Pilitis Milligani, H. f. ... " ... Australia.
571. Richea pandanifolia, H. f. ... " (subalp.) ... Australia.
572. Richea dracophylla, Br. ... " ... Australia.
573. Richea Gunnii, H. f. Ch. ... Australia (alpine).
574. Richea *scoparia, H. f. Ch. ... " ... Austral., N. Zeal., N. Caled.
576. Dracophyllum Milligani, H. f. ... " ... Aust., N. Zeal., N. Caled.
577. Notelsa ligustrina, Vent. Ch. ... Australia ... Australia.

L. Oleaceae.
578. Alyxia buxifolia, Br. ... Australia ... Australia.
579. Lyonsia straminea, Br. Ch. ... Australia ... New Caledonia.

LI. Apocynaceae.

580. Sebaea ovata, Br. Ch. ... Australia, New Zealand ... South Africa.
581. Sebaea albidiflora, MueLL. ... " ... Europe, etc.
582. Erythrea australis, Br. ... Australia ... Europe, etc.
583. Gentiana montana, Forst. Ch. ... " ... New Zealand ... Europe, etc.
584. Gentiana Diemensis, GrieSe. Ch. ... " (subalp.) ... Europe, etc.
585. Villarsia parnassiifolia, Br. Ch. ... " ... Europe, etc.
586. Villarsia exigua, MueLL. ... " ... Europe, etc.
587. Liparophyllum Gunnii, H. f. ... " ... Austral., N. Zeal., N. Caled.

LXIII. Loganiaceae.

588. Mitrasacme paradoxa, Br. Ch. ... Australia ... India.
589. Mitrasacme distylis, Hook. ... " ... India.
590. Mitrasacme serpyllifolia, Br. Ch. ... " ... India.
591. Mitrasacme pilosa, Lab. Ch. ... " ... India.
592. Mitrasacme montana, H. f. ... " ... Tasmania (alpine).
593. Mitrasacme Archeri, H. f. Ch. ... " ... Tasmania (alpine).

LIV. Convolvulaceae.

594. Convolvulus erubescens, Sims ... " ... Australia, N. Zeal., Europe ... Europe, etc.
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>595</td>
<td>Calystegia Sepium, Br.</td>
<td>Aust., N. Z., Ant., Eur., Ind., Europe, etc.</td>
</tr>
<tr>
<td>597</td>
<td>Wilsonia humilis, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>598</td>
<td>Wilsonia Backhouseana, H.f. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>600</td>
<td>Cuscuta australis, Br.</td>
<td>Australia, New Zealand</td>
</tr>
</tbody>
</table>

LV. Boragineae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>Myosotis australis, Br. Ch.</td>
<td>Australia, New Zealand?</td>
</tr>
<tr>
<td>602</td>
<td>Myosotis suaveolens, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>603</td>
<td>Cynoglossum australe, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>604</td>
<td>Cynoglossum suaveolens, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>605</td>
<td>Cynoglossum latifolium, Br.</td>
<td>"</td>
</tr>
</tbody>
</table>

LXVI. Labiatae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>606</td>
<td>Mentha australis, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>607</td>
<td>Mentha gracilis, Br. Ch.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>608</td>
<td>Mentha serpyllifolia, Benth.</td>
<td>"</td>
</tr>
<tr>
<td>609</td>
<td>Lycoptus australis, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>610</td>
<td>Prunella vulgaris, Linn. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>611</td>
<td>Scutellaria humilis, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>612</td>
<td>Prostanthera lasianthos, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>613</td>
<td>Prostanthera rotundifolia, Br.</td>
<td>"</td>
</tr>
<tr>
<td>614</td>
<td>Prostanthera retusa, Br.</td>
<td>"</td>
</tr>
<tr>
<td>615</td>
<td>Westringia rubiæfolia, Br.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>616</td>
<td>Westringia brevifolia, Benth. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>617</td>
<td>Westringia angustifolia, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>618</td>
<td>Teucrium corymbosum, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>619</td>
<td>Ajuga australis, Br.</td>
<td>"</td>
</tr>
</tbody>
</table>

LVII. Myoporineae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>620</td>
<td>Myoporum Tasmanicum, DC.</td>
<td>Australia</td>
</tr>
</tbody>
</table>

LVIII. Solaneæ.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>621</td>
<td>Solanum nigrum, Linn.</td>
<td>Australia (ubiquitous)</td>
</tr>
<tr>
<td>622</td>
<td>Solanum aviculare, Forst. Ch.</td>
<td>"</td>
</tr>
</tbody>
</table>

LIX. Scrophularineæ.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>623</td>
<td>Anthocercis Tasmanica, H.f.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>624</td>
<td>Mimulus repens, Br.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>625</td>
<td>Mazus Pumilio, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>626</td>
<td>Gratiola pubescens, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>627</td>
<td>Gratiola latifolia, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>628</td>
<td>Gratiola nana, Benth. Ch.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>629</td>
<td>Glossostigma elatinoides, Benth.</td>
<td>Australia, New Zealand</td>
</tr>
</tbody>
</table>

[Distribution of Genres or representatives.}
<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>Limosella aquatica, Linn.</td>
<td>Aust., N. Zeal., Ant. (ubiq.) Europe, etc.</td>
</tr>
<tr>
<td>631</td>
<td>Veronica formosa, Br.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>632</td>
<td>Veronica labiata, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>633</td>
<td>Veronica nivea, Lindl. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>634</td>
<td>Veronica calycina, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>Veronica distans, Br.</td>
<td></td>
</tr>
<tr>
<td>636</td>
<td>Veronica arguta, Br.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>637</td>
<td>Veronica gracilis, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>638</td>
<td>Ourisia integrifolia, Br. Ch.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>639</td>
<td>Euphrasia *alpina, Br. Ch.</td>
<td>Australia (alpine)</td>
</tr>
<tr>
<td>640</td>
<td>Euphrasia *collina, Br. Ch.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>641</td>
<td>Euphrasia multicaulis, Benth. Ch.</td>
<td></td>
</tr>
<tr>
<td>642</td>
<td>Euphrasia scabra, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>643</td>
<td>Euphrasia striata, Br. Ch.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>644</td>
<td>Euphrasia cuspidata, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>Utricularia australis, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>646</td>
<td>Utricularia dichotoma, Lab. Ch.</td>
<td></td>
</tr>
<tr>
<td>647</td>
<td>Utricularia *uniflora, Br.</td>
<td></td>
</tr>
<tr>
<td>648</td>
<td>Utricularia lateriflora, Br.</td>
<td></td>
</tr>
<tr>
<td>649</td>
<td>Utricularia monanthos, H.f.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>650</td>
<td>Polypompholyx tenella, Lab.</td>
<td>Australia</td>
</tr>
<tr>
<td>651</td>
<td>Samolus litoralis, Br.</td>
<td>Australia, N. Zeal., S. Amer. Europe, etc.</td>
</tr>
<tr>
<td>652</td>
<td>Statice australis, Spr.</td>
<td>Australia</td>
</tr>
<tr>
<td>653</td>
<td>Plantago varia, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>654</td>
<td>Plantago bellidiformis, Dene. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>655</td>
<td>Plantago antarctica, Dene. Ch.</td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>Plantago Archeri, H.f. Ch.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>657</td>
<td>Plantago Tasmanica, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>659</td>
<td>Plantago paradoxa, Nob. Ch.</td>
<td>Tasmania (alpine)</td>
</tr>
<tr>
<td>660</td>
<td>Plantago Gunnii, Nob. Ch.</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>Rumex Brownii, Campd.</td>
<td>Australia</td>
</tr>
<tr>
<td>662</td>
<td>Rumex bidens, Br.</td>
<td></td>
</tr>
<tr>
<td>663</td>
<td>Polygonum minus, Hude.</td>
<td>N. Zeal., Europe. Europe, etc.</td>
</tr>
<tr>
<td>664</td>
<td>Polygonum subsessile, Br.</td>
<td></td>
</tr>
<tr>
<td>665</td>
<td>Polygonum strigosum, Br.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Distribution</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>666</td>
<td>Polygonum prostratum, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>667</td>
<td>Muehlenbeckia adpressa, Meisn. Ch.</td>
<td>N. Zeal., Aust., Pacific, S. America</td>
</tr>
<tr>
<td>668</td>
<td>Muehlenbeckia axillaris, H.f.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>669</td>
<td>Didymotheca thesioides, H.f.</td>
<td>Australia</td>
</tr>
<tr>
<td>670</td>
<td>Trichinium spathulatum, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>671</td>
<td>Alternanthera sessilis, Br.</td>
<td>N. Zeal., Tropics</td>
</tr>
<tr>
<td>672</td>
<td>Hemichroa pentandra, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>673</td>
<td>Didymotheca thersioides, H.f.</td>
<td>Australia</td>
</tr>
<tr>
<td>674</td>
<td>Rhagodia baccata, Moq.</td>
<td>Australia</td>
</tr>
<tr>
<td>675</td>
<td>Chenopodium glaucum, Linn.</td>
<td>N. Zeal., Ant., Europe, etc.</td>
</tr>
<tr>
<td>676</td>
<td>Chenopodium erosum, Br.</td>
<td></td>
</tr>
<tr>
<td>677</td>
<td>Atriplex cinerea, Poir.</td>
<td>N. Zealand, Europe, etc.</td>
</tr>
<tr>
<td>678</td>
<td>Atriplex patula, Linn.</td>
<td>Europe, etc.</td>
</tr>
<tr>
<td>679</td>
<td>Atriplex Billardieri, H.f.</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>Threlkoldia diffusa, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>681</td>
<td>Suaeda maritima, Dun.</td>
<td>N. Zealand, Europe, etc.</td>
</tr>
<tr>
<td>682</td>
<td>Salicornia Arbuscula, Br.</td>
<td>Tropics</td>
</tr>
<tr>
<td>683</td>
<td>Salicornia Indica, Willd.</td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>Cassytha melantha, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>685</td>
<td>Cassytha pubescens, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>686</td>
<td>Cassytha glabella, Br.</td>
<td></td>
</tr>
<tr>
<td>687</td>
<td>Conospermum taxifolium, Sw.</td>
<td>Australia</td>
</tr>
<tr>
<td>688</td>
<td>Isopogon ceratophyllus, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>689</td>
<td>Agastachys odorata, Br.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>690</td>
<td>Cenarrhenes nitida, Lab.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>691</td>
<td>Persoonia juniperina, Lab. Ch.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>692</td>
<td>Persoonia Gunnii, H.f. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>693</td>
<td>Bellendena montana, Br. Ch.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>694</td>
<td>Grevillea australis, Br. Ch.</td>
<td>Australia, New Caledonia</td>
</tr>
<tr>
<td>695</td>
<td>Hakea Epiglottis, Lab.</td>
<td>Australia</td>
</tr>
<tr>
<td>696</td>
<td>Hakea pugioniformis, Cav.</td>
<td></td>
</tr>
<tr>
<td>697</td>
<td>Hakea microcarpa, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>Hakea acicularis, Br.</td>
<td></td>
</tr>
<tr>
<td>699</td>
<td>Hakea lissosperma, Br. Ch.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>700</td>
<td>Orites diversifolia, Br.</td>
<td>(alpine)</td>
</tr>
</tbody>
</table>

Distribution of Species

- Dist. of Genera or representatives

LXV. Phytolaccaceae

LXVI. Amaranthaceae

LXVII. Chenopodiaceae

LXVIII. Laurineae

LXIX. Proteaceae
INTRODUCTORY ESSAY.

<table>
<thead>
<tr>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>705. Lomatia polymorpha, Br.</td>
<td>Australia, South America.</td>
</tr>
</tbody>
</table>

LXX Thymelae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>720. Pimelea linifolia, Sm.</td>
<td></td>
</tr>
</tbody>
</table>

LXXI. Santalaceae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
</table>

LXXII. Euphorbiaceae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>731. Ricinocarpus pinifolius, Desf.</td>
<td>Australia.</td>
</tr>
<tr>
<td>733. Beyeria Backhousii, H.f.</td>
<td></td>
</tr>
<tr>
<td>739. Poranthera microphylla, Brong. Ch.</td>
<td>Australia.</td>
</tr>
</tbody>
</table>
FLORA OF TASMANIA.

LXXIII. Urticae.

Distribution of Species. Distr. of Genera or representatives.

740. Urtica incisa, Poir. Ch. New Zealand Europe, etc.
741. Parietaria debilis, Forst. Ch. ubiquitous Europe, etc.

LXXIV. Cupuliferae.

LXXV. Casuarineae.

745. Casuarina quadrivalvis, Lab. Australia Australia, India, etc.
746. Casuarina distyla, Vent. " Australia, India, etc.
747. Casuarina *suberosa, Ott. & Diet. Ch. "

LXXVI. Coniferae.

748. Frenella rhomboidea, Endl. Australia Australia.
751. Athrotaxis cupressioides, Don. Ch. " "
752. Athrotaxis selaginoides, Don. Ch. " "
753. Athrotaxis laxifolia, Hook. Ch. " "
754. Pherosphaera Hookeriana, Arch. " (alpine) Tasmania.
755. Podocarpus alpina, Br. Ch. Australia (subalp.) India, etc.
756. Dacrydium Franklinii, H.f. Tasmania N. Zealand, etc.
758. Phyllocladus rhomboidalis, Bach. Ch. " (subalp.) New Zealand, Borneo.

MONOCOTYLEDONES.

I. Orchideae.

2. Thelymitra Smithiana, H.f. "
3. Thelymitra venosa, Br. Ch. "
4. Thelymitra carnea, Br. Ch. "
5. Thelymitra nuda, Br. Ch. " (New Zealand?)
6. Thelymitra angustifolia, Br. Ch. "
7. Thelymitra ixioides, Br. Ch. "
9. Diuris palustris, Lindl. "
10. Diuris sulphurea, Br. Ch. "
11. Diuris corymbosa, Lindl. "
12. Diuris pedunculata, Br. Ch. "
13. Cryptostylis longifolia, Br. Ch. "
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Prasophyllum lutescens, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Prasophyllum brevilabre, H.f.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Prasophyllum fusum, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Prasophyllum patens, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Prasophyllum truncatum, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Prasophyllum alpinum, Br.</td>
<td>Australia</td>
<td>Subalpine</td>
</tr>
<tr>
<td>21</td>
<td>Prasophyllum fuscum, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Prasophyllum brachystachyum, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Prasophyllum nudiscapum, H.f.</td>
<td>Australia</td>
<td>Tasmania</td>
</tr>
<tr>
<td>24</td>
<td>Prasophyllum despectans, H.f.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Prasophyllum Archeri, H.f.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Prasophyllum nudum, H.f.</td>
<td>Australia</td>
<td>New Zealand</td>
</tr>
<tr>
<td>27</td>
<td>Calochilus campestris, Br.</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>28</td>
<td>Spiranthes australis, Lindl.</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>29</td>
<td>Corysanthes fimbriata, Br.</td>
<td>Australia, N.Z., China, Ind., Siber. Europe, etc.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Lyperanthus nigricans, Br.</td>
<td>Australia</td>
<td>Java</td>
</tr>
<tr>
<td>31</td>
<td>Burnettia cuneata, Lindl.</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Caleana major, Br.</td>
<td>Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>33</td>
<td>Caleana minor, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Pterostylis curta, Br.</td>
<td>Australia</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>35</td>
<td>Pterostylis nutans, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Pterostylis pedunculata, Br.</td>
<td>Australia</td>
<td>Tasmania</td>
</tr>
<tr>
<td>37</td>
<td>Pterostylis nana, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Pterostylis obtusa, Br.</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Pterostylis cucullata, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Pterostylis dubia, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Pterostylis furcata, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Pterostylis squamata, Br.</td>
<td>Australia</td>
<td>New Zealand, Antarctic</td>
</tr>
<tr>
<td>43</td>
<td>Pterostylis mutica, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Pterostylis rufa, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Pterostylis praecox, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Pterostylis aphylla, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Pterostylis parviflora, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Pterostylis longifolia, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Chiloglottis diphylla, Br.</td>
<td>New Zealand, Antarctic</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Chiloglottis Gunnii, Lindl.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Microtis arenaria, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Microtis parviflora, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Acianthus exsertus, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Acianthus viridii, H.f.</td>
<td>Australia</td>
<td>Tasmania</td>
</tr>
<tr>
<td>58</td>
<td>Cyrtostylis reniformis, Br.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Eriochilus autumnalis, Br.</td>
<td>Australia</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>60</td>
<td>Caladenia Menziesii, Br.</td>
<td>Australia</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td>Caladenia filamentosa, Br. Ch.</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>Caladenia dilatata, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td>Caladenia clavigera, A.C. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td>Caladenia Patersoni, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>Caladenia *pallida, Lindl.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>66.</td>
<td>Caladenia latifolia, Br.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td>Caladenia barbata, Lindl.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td>Caladenia caerulea, Br.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>Caladenia carneae, Br. Ch.</td>
<td>Australian</td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>Caladenia congesta, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td>Caladenia alata, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>Caladenia *angustata, Lindl. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>Glossodia major, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td>Gastrodia sesamoides, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td>Dipodium punctatum, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>76.</td>
<td>Gunnia australis, Lindl.</td>
<td>Australia, New Zealand</td>
<td></td>
</tr>
<tr>
<td>77.</td>
<td>Dendrobium Milligani, Muell.</td>
<td>Tasmania</td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td>Dendrobium, sp.?</td>
<td>India, etc.</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>Patersonia glauca, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>Patersonia longiscapa, Sweet</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td>Diplarrhena Moraea, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td>Hæmodororum distichophyllum, Hook.</td>
<td>Tasmania (alpine)</td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td>Hypoxis hygrometrica, Lab.</td>
<td>Australia, India and S. Africa.</td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td>Hypoxis glabella, Br. Ch.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td>Hypoxis pusilla, H.f.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td>Vallisneria spiralis, L.</td>
<td>Australia, (ubiquitous)</td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td>Lemna minor, L.</td>
<td>Australia, (ubiquitous)</td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td>Lemna trisulca, L.</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td>Typha angustifolia, L.</td>
<td>Australia, (ubiquitous)</td>
<td></td>
</tr>
<tr>
<td>92.</td>
<td>Triglochin centrocarpum, Hook.</td>
<td>Australia</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Species

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Triglochin procerum, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>94</td>
<td>Potamogeton natans, L. Ch.</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Potamogeton heterophyllus, Schreb. Ch.</td>
<td>(ubiquitous) Europe, etc.</td>
</tr>
<tr>
<td>96</td>
<td>Potamogeton gramineus, L. Ch.</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Ruppia maritima, L.</td>
<td>(ubiquitous) Europe, etc.</td>
</tr>
<tr>
<td>98</td>
<td>Zannichellia Preissii, Lehm.</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Cymodocea antarctica, H.f.</td>
<td>Oceans, warm and tropical.</td>
</tr>
<tr>
<td>101</td>
<td>Zostera marina, L.?</td>
<td>(ubiquitous) Europe, etc.</td>
</tr>
<tr>
<td>102</td>
<td>Halophila ovalis, Gaud.</td>
<td>India, Africa Tropical seas.</td>
</tr>
</tbody>
</table>

IX. Melanthaceae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>Burchardia umbellata, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>104</td>
<td>Anguillaria dioica, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>105</td>
<td>Anguillaria uniflora, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Hewardia Tasmanica, Hook.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>107</td>
<td>Campynema linearis, Lab.</td>
<td></td>
</tr>
</tbody>
</table>

X. Smilaceae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>Drymophila cyanocarpa, Br. Ch.</td>
<td>Australia</td>
</tr>
</tbody>
</table>

XI. Liliaceae

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>Blandfordia grandiflora, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>111</td>
<td>Arthropodium pendulum, DO.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>112</td>
<td>Arthropodium minus, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>113</td>
<td>Arthropodium laxum, Sieb.</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Arthropodium strictum, Br.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>115</td>
<td>Bulbine bulbosa, Hau.</td>
<td>Australia, S. Africa</td>
</tr>
<tr>
<td>116</td>
<td>Bulbine semibarbata, Hau.</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Cæsia corymbosa, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>118</td>
<td>Cæsia parviflora, Br.</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Cæsia vittata, Br.</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Cæsia ? alpina, H.f. Ch.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>121</td>
<td>Thysanotus Patersoni, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>123</td>
<td>Tricoryne elatior, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>125</td>
<td>Stypandra umbellata, Br.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Dianella longifolia, Br.</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Dianella levis, Br.</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Dianella revoluta, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Dianella Tasmanica, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Dianella Archeri, H.f. Ch.</td>
<td>Tasmania</td>
</tr>
</tbody>
</table>
Distribution of Species. Distr. of Genera or representatives.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>Xanthorrhoea australis, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>133</td>
<td>Xanthorrhoea hastilis, Br.</td>
<td>"</td>
</tr>
<tr>
<td>134</td>
<td>Xanthorrhoea minor, Br.</td>
<td>"</td>
</tr>
<tr>
<td>135</td>
<td>Laxmannia minor, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>136</td>
<td>Astelia alpina, Br. Ch.</td>
<td>(alpine).</td>
</tr>
<tr>
<td>137</td>
<td>Astelia stylosa, Müll.</td>
<td>Tasmania (alpine).</td>
</tr>
<tr>
<td>138</td>
<td>Milligania longifolia, H.f.</td>
<td>(subalpine).</td>
</tr>
<tr>
<td>139</td>
<td>Milligania densiflora, H.f.</td>
<td>(subalpine).</td>
</tr>
</tbody>
</table>

XII. Junceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>Xerotes longifolia, Br. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>141</td>
<td>Xerotes glauca, Br.</td>
<td>"</td>
</tr>
<tr>
<td>142</td>
<td>Juncus planifolius, Br. Ch.</td>
<td>Aust., N. Zl., Chili, Antarct. All temperate latitudes.</td>
</tr>
<tr>
<td>143</td>
<td>Juncus cespiticios, Meyer. Ch.</td>
<td>Australia (subalp.).</td>
</tr>
<tr>
<td>144</td>
<td>Juncus falcatus, Meyer. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>145</td>
<td>Juncus bufonius, L. Ch.</td>
<td>(ubiquitous).</td>
</tr>
<tr>
<td>146</td>
<td>Juncus revolutus, Br.</td>
<td>"</td>
</tr>
<tr>
<td>148</td>
<td>Juncus Holoschoenus, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>149</td>
<td>Juncus maritimus, Lamk.</td>
<td>(ubiquitous).</td>
</tr>
<tr>
<td>151</td>
<td>Juncus *pallidus, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>152</td>
<td>Juncus communis, Meyer. Ch.</td>
<td>(ubiquitous).</td>
</tr>
<tr>
<td>153</td>
<td>Juncus pauciflorus, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>155</td>
<td>Juncus vaginatus, Br.</td>
<td>Australia, New Zealand.</td>
</tr>
<tr>
<td>156</td>
<td>Luzula campestris, Sm. Ch.</td>
<td>(ubiquitous).</td>
</tr>
<tr>
<td>157</td>
<td>Luzula *Oldfieldii, H.f.</td>
<td>Europe, etc.</td>
</tr>
</tbody>
</table>

XIII. Xyrideae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>Xyris operculata, Lab. Ch.</td>
<td>Australia</td>
</tr>
<tr>
<td>159</td>
<td>Xyris gracilis, Br.</td>
<td>"</td>
</tr>
</tbody>
</table>

XIV. Restioaceae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>Restio monocephalus, Br. Ch.</td>
<td>Australia, South Africa.</td>
</tr>
<tr>
<td>161</td>
<td>Restio complanatus, Br.</td>
<td>"</td>
</tr>
<tr>
<td>162</td>
<td>Restio australis, Br.</td>
<td>(subalp.).</td>
</tr>
<tr>
<td>163</td>
<td>Restio gracilis, Br.</td>
<td>"</td>
</tr>
<tr>
<td>164</td>
<td>Restio tetraphyllus, Lab. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>165</td>
<td>Lepyrodia Tasmanica, H.f.</td>
<td>Tasmania.</td>
</tr>
<tr>
<td>166</td>
<td>Leptocarpus Brownii, H.f. Ch.</td>
<td>Australia, New Zealand.</td>
</tr>
<tr>
<td>167</td>
<td>Leptocarpus tenax, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>168</td>
<td>Hypolophus fastigiata, Br. Ch.</td>
<td>Australia.</td>
</tr>
<tr>
<td>169</td>
<td>Calorophus elongata, Lab. Ch.</td>
<td>New Zealand, Australia, New Zealand.</td>
</tr>
<tr>
<td>170</td>
<td>Aphelia Gunnii, H.f.</td>
<td>"</td>
</tr>
<tr>
<td>171</td>
<td>Aphelia Pumilio, H.f.</td>
<td>"</td>
</tr>
</tbody>
</table>
Tasmanian Plants.

INTRODUCTORY ESSAY.

<table>
<thead>
<tr>
<th>Distribution of Species</th>
<th>Distr. of Genera or representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>172. Centrolepis aristata, H.f.</td>
<td>Australia</td>
</tr>
<tr>
<td>173. Centrolepis tenuior, R. & S.</td>
<td></td>
</tr>
<tr>
<td>175. Centrolepis pulvinata, R. & S.</td>
<td></td>
</tr>
<tr>
<td>176. Alepyrum monogynum, H.f.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>177. Alepyrum muscoideus, H.f.</td>
<td>Australia</td>
</tr>
</tbody>
</table>

XV. Cyperaceae.

<p>| | Tasmania | All warm latitudes |
| 181. Cyperus sanguineo-fuscus, Nees | | | |
| 182. Cyperus Gunnii, H.f. | Australia | |
| 183. Schoenus fluitans, H.f. | Tasmania | Europe, etc. |
| 184. Chetospora tenuissima, H.f. | Australia | Europe, etc. |
| 185. Chetospora capillacea, H.f. | Tasmania | |
| 186. Chetospora nitens, Br. | Australia, New Zealand | |
| 188. Chetospora axillaris, Br. | Ch. | |
| 190. Chorizandra enoidis, Nees | | |
| 201. Isolepis Saviana, Schultes | | |
| 204. Scirpus triquetra, L. | Ch. | (ubiquitous) | Ubiquitous. |
| 205. Scirpus maritimus, L. | | |
| 206. Scirpus lacustris, L. | | |
| 208. Lepidosperma olatior, Lab. | Ch. | |
| 212. Lepidosperma lateralis, Br. | | |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td>Lepidospermaglobosa, Lab.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>217</td>
<td>Lepidospermatetragona, Lab.</td>
<td>New Zealand</td>
</tr>
<tr>
<td>218</td>
<td>Lepidospermafiliformis, Lab.</td>
<td>Australia (subalp.)</td>
</tr>
<tr>
<td>220</td>
<td>Cladium glomeratum, Br.</td>
<td>"Australia, Europe, etc.</td>
</tr>
<tr>
<td>221</td>
<td>Cladium laxiflorum, Hf.</td>
<td>"Tasmania</td>
</tr>
<tr>
<td>222</td>
<td>Cladium junceum, Br. Ch.</td>
<td>"Australia, New Zealand</td>
</tr>
<tr>
<td>224</td>
<td>Cladium tetraquetrum, Hf. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>225</td>
<td>Cladium achenoides, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>226</td>
<td>Cladium Filum, Br.</td>
<td>"</td>
</tr>
<tr>
<td>227</td>
<td>Cladium Mariscus, Br.</td>
<td>(ubiquitous)</td>
</tr>
<tr>
<td>229</td>
<td>Gahnia psittacorum, Lab. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>230</td>
<td>Gahnia melanocarpa, Br.</td>
<td>"</td>
</tr>
<tr>
<td>231</td>
<td>Caustia pentandra, Br.</td>
<td>"Australia</td>
</tr>
<tr>
<td>232</td>
<td>Carex Archeri, Boott. Ch.</td>
<td>"Tasmania (alp.) . Europe, etc.</td>
</tr>
<tr>
<td>233</td>
<td>Carex inversa, Br. Ch.</td>
<td>"Australia, New Zealand</td>
</tr>
<tr>
<td>235</td>
<td>Carex chlorantha, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>236</td>
<td>Carex Gaudichaudiana, Kth. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>237</td>
<td>Carex barbata, Boott</td>
<td>"Tasmania</td>
</tr>
<tr>
<td>238</td>
<td>Carex Gunniana, Boott. Ch.</td>
<td>"Australia</td>
</tr>
<tr>
<td>239</td>
<td>Carex littorea, Lab.</td>
<td>"N. Zeal., Japan</td>
</tr>
<tr>
<td>241</td>
<td>Carex longifolia, Br.</td>
<td>"Australia</td>
</tr>
<tr>
<td>242</td>
<td>Carex fascicularia, Sol. Ch.</td>
<td>"New Zealand</td>
</tr>
<tr>
<td>243</td>
<td>Carex breviculmis, Br. Ch.</td>
<td>"</td>
</tr>
<tr>
<td>244</td>
<td>Carex Bichenoviana, Br.</td>
<td>"Tasmania</td>
</tr>
<tr>
<td>246</td>
<td>Uncinia riparia, Br. Ch.</td>
<td>"Tasmania (subalp.).</td>
</tr>
<tr>
<td>247</td>
<td>Uncinia nervosa, Boott</td>
<td>"</td>
</tr>
<tr>
<td>248</td>
<td>Uncinia compacta, Br. Ch.</td>
<td>"(alpine)</td>
</tr>
</tbody>
</table>

XVI. Gramineae.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>Tetrarhena distichophylla, Br.</td>
<td>"Tasmania . Australia</td>
</tr>
<tr>
<td>250</td>
<td>Tetrarhena tenacissima, Nees</td>
<td>"Australia</td>
</tr>
<tr>
<td>251</td>
<td>Tetrarhena acuminata, Br.</td>
<td>"</td>
</tr>
<tr>
<td>252</td>
<td>Microlema Gunnii, Hf. Ch.</td>
<td>"Tasmania . Australia, New Zealand</td>
</tr>
<tr>
<td>253</td>
<td>Microlema stipoides, Br.</td>
<td>"Australia, New Zealand</td>
</tr>
<tr>
<td>254</td>
<td>Diplax Tasmanica, Hf.</td>
<td>"Tasmania, New Zealand</td>
</tr>
<tr>
<td>256</td>
<td>Spinifex hirsutus, Lab.</td>
<td>"Australia, New Zealand . Aust., N. Zeal., India</td>
</tr>
<tr>
<td>257</td>
<td>Hemarthria uncinata, Br.</td>
<td>"Europe, etc.</td>
</tr>
<tr>
<td>258</td>
<td>Anthistiria australis, Br. Ch.</td>
<td>"India, Africa . India, etc.</td>
</tr>
</tbody>
</table>
Tasmanian Plants

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>Hierochloe borealis, B. & S. Ch.</td>
<td>N. Zealand, Europe (alp.)</td>
</tr>
<tr>
<td>261</td>
<td>Hierochloe rarinoda, H.f.</td>
<td>Australia</td>
</tr>
<tr>
<td>262</td>
<td>Stipa semibarbata, Br.</td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>Stipa pubescens, Br.</td>
<td>All temperate latitudes</td>
</tr>
<tr>
<td>264</td>
<td>Stipa flavescens, Lab.</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Stipa setacea, Br.</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Dichelauchne crinita, Nees. Ch.</td>
<td>New Zealand, Australia, New Zealand</td>
</tr>
<tr>
<td>267</td>
<td>Dichelauchne scabra, H.f.</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>Dichelauchne stipoides, H.f.</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>Agrostis parviflora, Br. Ch.</td>
<td>Europe, etc.</td>
</tr>
<tr>
<td>270</td>
<td>Agrostis venusta, Tr. Ch.</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>Agrostis quadrata, Br. Ch.</td>
<td>New Zealand</td>
</tr>
<tr>
<td>272</td>
<td>Agrostis Billardieri, Br.</td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>Agrostis squata, Nees</td>
<td>Tasmania</td>
</tr>
<tr>
<td>274</td>
<td>Agrostis semula, Br. Ch.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>275</td>
<td>Agrostis scabra, Br. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>276</td>
<td>Agrostis montana, Br. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>277</td>
<td>Agrostis contracta, Muell.</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>Polypogon Monspeliensis, Desv. Ch.</td>
<td>(introduced?) Europe, etc.</td>
</tr>
<tr>
<td>279</td>
<td>Echinopogon ovatus, P. B. Ch.</td>
<td>New Zealand, Australia, New Zealand</td>
</tr>
<tr>
<td>280</td>
<td>Pentagongon Billardieri, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>Phragmites communis, Tr. Ch.</td>
<td>Eur., N. Asia, etc. Europe, etc.</td>
</tr>
<tr>
<td>282</td>
<td>Deschampsia cespitosa, Beav. Ch.</td>
<td>Aust., N. Zl., Eur., S. Am. Europe, etc.</td>
</tr>
<tr>
<td>283</td>
<td>Trisetum subsessile, P. B. Ch.</td>
<td>Arctic and Antarctic (alp.) Europe, etc.</td>
</tr>
<tr>
<td>284</td>
<td>Danthonia pilosa, Br.</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td>285</td>
<td>Danthonia semi-annulata, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>Danthonia subulata, H.f. Ch.</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>Danthonia setacea, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>Danthonia pauciflora, Br. Ch.</td>
<td>(alpine)</td>
</tr>
<tr>
<td>289</td>
<td>Danthonia nervosa, H.f.</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>Danthonia Archeri, H.f. Ch.</td>
<td>Tasmania</td>
</tr>
<tr>
<td>291</td>
<td>Glyceria fluitans, Br. Ch.</td>
<td>Australia (ubiquitous) Europe, etc.</td>
</tr>
<tr>
<td>292</td>
<td>Glyceria stricta, H.f.</td>
<td>New Zealand</td>
</tr>
<tr>
<td>293</td>
<td>Poa australis, Br. Ch.</td>
<td>Europe, etc.</td>
</tr>
<tr>
<td>294</td>
<td>Poa tenera, Muell. Ch.</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>Poa affinis, Br. Ch.</td>
<td>New Zealand</td>
</tr>
<tr>
<td>296</td>
<td>Poa saxicola, Br.</td>
<td>Tasmania (subalp.)</td>
</tr>
<tr>
<td>297</td>
<td>Koeleria cristata, Pers.</td>
<td>Aust., N. Zeal. (ubiq.) Europe, etc.</td>
</tr>
<tr>
<td>298</td>
<td>Festuca duriuscula, L.</td>
<td>(introduced?) Europe, etc.</td>
</tr>
<tr>
<td>299</td>
<td>Festuca bromoides, L. Ch.</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Festuca distichophylla, Br.</td>
<td>Australia</td>
</tr>
<tr>
<td>301</td>
<td>Festuca Hookeriana, Muell. Ch.</td>
<td>(subalp.)</td>
</tr>
<tr>
<td>302</td>
<td>Festuca litoralis, Lab.</td>
<td>N. Zeal., Antarct.</td>
</tr>
<tr>
<td>303</td>
<td>Triticum scabrum, Br.</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Triticum pectinatum, Br. Ch.</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Triticum velutinum, Nees</td>
<td>(subalp.)</td>
</tr>
</tbody>
</table>
This catalogue places in a very strong light the thoroughly Eastern Australian character of the Tasmania Flora: out of 1,063* species, only 280, or rather more than one-fourth, have not been found on the Australian continent. There are only 22 genera and 267 species noted as being absolutely peculiar to Tasmania, of which latter fully 4½ will prove, in all probability, to be varieties.

The contrast between the Floras of south-west Australia and Tasmania, in respect of their affinity with that of south-east Australia, is very remarkable, for though their geographical contiguity would lead us to expect that the Tasmanian Flora should be less different from the Victorian than that of King George’s Sound is, it must be recollected that Tasmania is placed several degrees further south, in a colder climate and moister atmosphere, and is separated from Victoria by a wide and deep oceanic channel.

It will probably be conceded that Tasmania once formed a continuous southward extension of Victoria, and that as Britain was peopled with continental plants before the formation of the Channel, so Tasmania and Victoria possessed their present Flora before they were separated by Bass’ Straits; but if the effects of segregation and natural selection have done so little towards modifying the Floras of the opposite shores during the immense epoch that has intervened since the earliest formation of Bass’ Straits, we are all the more puzzled to account for the complete change of the south-western Flora, which is isolated by no such barrier from the south-eastern.

There are only 592 flowering plants peculiar to Tasmania and Australia, or 860 if those peculiar to Tasmania are included, so that fully one-fifth of the Flora is extra-Australian; whereas only one-sixth of the south-eastern Flora and one-tenth of the south-western are extra-Australian. Considering the before-mentioned isolation of Tasmania, this is certainly a most remarkable fact, and requires a close scrutiny.

Turning to the genera again, I find that out of the whole (394), only 22 are absolutely peculiar to Tasmania; or, adding these to the 122 which are exclusively Australian and Tasmanian, I find only 144 in all. In other words, considerably more than two-thirds of the Tasmanian genera are found in other countries besides Australia; whereas in south-western Australia much less than half the genera are extra-Australian, in south-eastern somewhat more than half, and in the whole Australian Flora, between one-half and two-thirds.

In examining the distribution of the genera and species a little further, I find that the deficiency of Australian forms, and preponderance of extra-Australian, is caused partly by the paucity of new genera of Australian affinity, partly by the absence of some that are common on the north shore of Bass’s Straits, but most of all by the greater proportion of New Zealand, South American, Antarctic, and even European genera and species, some of which do not occur on the Australian continent. Thus no less than 120, or nearly one-third, of the genera, and 67, or one-fifteenth, of the Tasmanian species, are European, whilst with the other quarters it stands thus:

<table>
<thead>
<tr>
<th></th>
<th>Europ. genera, one-sixth</th>
<th>of the whole; species about one-seventieth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In all Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In S.E. Australia</td>
<td>less than one-third</td>
<td>one-twenty-seventh.</td>
</tr>
<tr>
<td>In S.W. Australia</td>
<td>less than one-fourth</td>
<td>one-hundredth.</td>
</tr>
<tr>
<td>In Tasmania</td>
<td>one-third</td>
<td>one-fifteenth.</td>
</tr>
</tbody>
</table>

* These and the following numbers will not be found to accord exactly with the data on the preceding pages, because, since the earlier sheets of the latter were printed off, I have received collections and notes from Archer, Gunn, and Mueller, that slightly alter the number of the species, varieties, and their distribution. *Stackhousia pulvinaris*, Muell. (see Vol. II. Suppl.), should be added at p. ix.; “Australia” should be added to the distribution of *Eryngium vesiculorum* (p. lxv.) and to *Calocephalus lacteus* and the ten following species (p. lxvii.). “Isle of Pines” should be expunged from 587.
There is thus a very remarkable rise in the proportion of European forms in Tasmania, and this
is not due to the extension of all the European plants of Australia into Tasmania, for there are in
the latter island several European genera and species that have not been found on the continent; as—

Anemone. Hierochloe borealis. Trisetum subspicatum.
Thlaspi?

On the other hand, the Victoria Alps contain several northern European forms which have not
been found in Tasmania, as—

Sagina procumbens. Alisma Plantago. Carex vulgaris (f. Muell.)

The New Zealand Flora is another which enters proportionately much more largely into the
Tasmanian than into the Australian, nearly 200 of the genera and 170 of the species of Tasmania
being common to New Zealand; and these countries further contain various representative genera
and species, which will be found in the Introductory Essay to the 'New Zealand Flora,' and in the
section of this Essay devoted to a comparison of the New Zealand and Australian Floras.

From the higher latitude of Tasmania, and its loftier mountains, it contains further a larger
proportion of antarctic plants, nearly 100 genera and 56 species being common to this island
and the groups south of New Zealand, Fuegia, the Falkland Islands, etc.

A strict comparison of the continental Australian and Tasmanian Floras cannot be fully carried
out, until much larger suites of specimens from both countries have been selected and compared.
It is evident that many of the plants that rank as peculiar to Tasmania, are slightly though per-
manently altered forms, no less than 100 of the 1063 being so considered, with more or less certainty
or plausibility, by Mueller or Archer or myself, and some by all of us. To enter into a discussion
of them here would be quite useless.

Another interesting subject of detail, requiring fuller materials, is the alpine Flora of Tasmania,
upon which Mueller's Victorian Alps collections have thrown so much light. I find, on a rough
estimate, that there are 200 alpine and subalpine species in Tasmania (of which half are alpine);
considering as such those which are most prevalent in or confined to altitudes above 3,000 feet: of
these 30 are probably altered forms of lowland plants; 120 are of Australian genera (10 of them are
probably varieties); about 10 are of New Zealand genera; 55 are of European genera (17 of them
probably varieties); and 25 are Antarctic forms.

This proportion of varieties amongst the alpine and subalpine plants, amounting as it does to
15 per cent., is very large; the proportion amongst the lowland plants being considerably under
10 per cent. The small proportion of varieties amongst the alpines belonging to Australian genera
compared with those of European genera is also worthy of notice, as an exemplification of an
observation made by Mr. Darwin, that the species of widely distributed genera are more variable
than those of local genera.

The locality indicated by the letters "Ch." as the habitat of many Tasmanian plants collected
by Mr. Archer, consists of a tract of country (in which is included his estate of Cheshunt, about ten
miles south-west of Deloraine and 600 feet above the sea), extending southerly from Mount Gog, on
the Mersey, to the Falls of the Meander, and westerly from Quamby's Bluff to the Lobster Rivulet; the whole comprising an area of about 400 square miles.

The rocks of the northern part of this tract, including Mount Gog, are chiefly quartzite; and the remainder, including a portion of the Western Mountains, elevated fully 4,000 feet, are for the most part basalt. Immediately above Cheshunt, to the south-west, rises an offset of the western mountains, named Cumming's Head, along the north-east base of which extends a tract of sandstone and fossiliferous limestone, which is the habitat of nearly all Mr. Archer's cryptogams.

This district has already produced nearly 550 flowering plants, or rather more than half of all that are known to inhabit Tasmania. The character of the Cheshunt Flora is, on the whole, that of a cold hilly region, approaching, in many respects, to the subalpine, and is hence even less Australian than that of all Tasmania is. The absence of all but four Rhamnee, the paucity of Restiaceae, Myrtaceae, Liliaceae, and Leguminosa, the abundance of Orchideae, Compositae, and Epacrideae, are amongst the most noticeable features.

§ 9.

On the New Zealand and Polynesian features of the Australian Vegetation.

I have already remarked that these features, in so far as they are peculiar, are confined to the east and south-east coasts of Australia, and chiefly to the temperate regions, including Tasmania. There is a great difference between the temperate and tropical Floras of eastern Australia in respect to the character of their non-endemic genera and species, for the former appears to have received immigrants from New Zealand and the Antarctic regions, whilst the latter contains an assemblage of forms common to itself, India, and the Pacific. There is, however, no evidence in either case that the migration has been in one direction more than in another: Tasmania may once have been peopled by New Zealand and antarctic forms, before the Australian vegetation spread over it and replaced these; and Australia itself may have derived its peculiar features from some Pacific islands which have since been overrun by an Indian vegetation. I have therefore not subdivided this Section, but shall regard the affinities, both tropical and temperate, under the same point of view.

To the eastward of Australia are various groups of islands so arranged as to form a sort of rude outlying girdle to that continent. Beginning from the northward, these are the Solomon's Islands, New Hebrides, New Caledonia, Norfolk Island, and the New Zealand group; to which might be added Eastern New Guinea, the Louisiade Archipelago, and New Ireland, but I know very little of their botany.

The common botanical feature of all of these archipelagos, that lie to the north and east of the New Hebrides, and indeed of all the Polynesian groups westward of Juan Fernandez and the Galapagos (which are wholly American), is that they are peopled mainly by Indian and Australian genera, and in a very slight degree by American; but these Floras (Indian, Australian, and American) are represented in very different proportions in different groups; and I have observed (note at p. xvi.), that there are in this respect considerable anomalies in the Floras of contiguous archipelagos, those immediately to the eastward of New Caledonia* being remarkably deficient in Australian genera.

* In the only published volume of Asa Gray's 'Botany of Wilkes's Exploring Expedition,' I have found the Fiji, Navigators', Friendly, and Society Islands to be represented by upwards of 140 genera of Thalamiiflora and Calyciflora (208 species). Only 26 genera are not Indian, and almost all of them are either new or confined to these groups; nor do I find one characteristic Australian plant amongst them, except a phyllodineous Acacia.
Commencing with the New Hebrides and New Caledonia, I find, that out of a list of scarcely 100 species known to me, there are no less than 12 markedly Australian generic types, viz. *Disemma*, *Eriostemon*, *Kennedya*, phyllocladous *Acacia*, *Leptospermum*, *Beckia*, *Metrosideros*, *Didiscus*, *Coprosma*, *Casinia*, *Leucopogon*, *Dracophyllum*, *Lomatia*, *Stenocarpus*, *Grevillea*, *Exocarpus*, *Casuarina*, *Araucaria*, *Microtis*, *Luperanthus*, *Geitonoplesium*, *Stylpandra*, *Lamprocarya*.

Norfolk Island, which lies intermediate between the New Hebrides and New Zealand, presents a Flora of intermediate character. Besides containing many New Zealand plants not hitherto found in the New Hebrides, it contains the following Australian types not found in New Zealand:—*Jasminum gracile*, *Exacaria Agallocha*, *Myrsine crassifolia*, *Pimelea linifolia*, *Achyranthes canescens*, *Araucaria*, *Geilonoplesium cymosum*.

New Zealand presents a long list of Australian genera, including many that are very characteristic of that continent, but wholly wants some of the most extensive and widely distributed (both in area and elevation) of these, as *Eucalyptus*, *Acacia*, *Styelidium*, *Casuarina*, *Callitris*, *Xyris*, *Xerotes*, *Thysanotus*, *Hibbertia*, *Pleurandra*, *Banksia*, *Dryandra*, *Grevillea*, *Hakea*.

At p. xxxvii. I have enumerated the 23 largest Australian genera, all containing from 50 to upwards of 200 species; of these no less than 15 have no New Zealand representative, and all but 2 have very few indeed. In other words, of the 23 Australian genera which number upwards of 50 species each, and which together include about 2,000 species, only 8 are found in New Zealand, and of these, *Drosera*, *Dodonaea*, *Helichrysum*, and *Leucopogon*, are all widely distributed elsewhere; of the 7 Australian genera, with upwards of 100 species each, only *Leucopogon* is a New Zealand one.

It is even more remarkable that most of the highly characteristic Australian Orders are wholly or nearly absent in New Zealand: thus, instead of 100 genera and 1,000 species of *Leguminosae* there are but 4 genera, all but one different (*Cianthus*), and 8 species, all different. Of *Myrtaceae*, with 60 Australian genera and 600 species, there are but 4 genera and 15 species in New Zealand. The 5 Australian genera (including 100 species) of *Dilleniaceae* have no representative, nor has the Order; and of *Styelidaceae*, in lieu of 5 genera and 115 species, there is but one genus, and that antarctic. Of *Goodeniaceae*, which in Australia has 20 genera and 230 species, there is but one species in New Zealand, and that a salt-marsh plant also common to Chili and Tasmania. Lastly, there are no representatives whatever of:

- Capparideae.
- Polygaleae.
- Stackhousieae.
- Myoporineae.

and very few of—

- Frankeniaceae.
- Tremandraceae.
- Santalaceae.
- Irideae.

To put this in another point of view, I will give a comparative table of the relative magnitude of the 9 largest Natural Orders in each country, which Orders include upwards of half the species in each, and from which it will be seen that only 5 of the New Zealand Orders appear in the other lists.

<table>
<thead>
<tr>
<th>New Zealand</th>
<th>Australia</th>
<th>Tasmania</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Composite</td>
<td>Leguminosae</td>
<td>Composite</td>
</tr>
<tr>
<td>2. Cyperaceae</td>
<td>Myrtaceae</td>
<td>Orchideae</td>
</tr>
<tr>
<td>3. Gramineae</td>
<td>Proteaceae</td>
<td>Epsicridae</td>
</tr>
<tr>
<td>4. Scrophularineae</td>
<td>Composite</td>
<td>Leguminosae</td>
</tr>
</tbody>
</table>
Another remarkable difference between these Floras is afforded by certain American genera being found in each, but which are not common to both. Of these the most striking are—

New Zealand. Australia and Tasmania.

So too with regard to the European genera and species, there are certain temperate and northern species found in New Zealand but not in Australia, such as—

Taraxacum officinale, Veronica Anagallis, Sparganium natans, Agrostis canina.

Turning now to the points of affinity between Australia and New Zealand, these are so numerous and decided as to render the dissimilarities all the more singular.

In the first place, there is no New Zealand Order absent from Australia except Coriariceae, Brexiaceae, and Chloranthaceae, which are single genera rather than Orders. Of the 282 genera of Phaenogams in New Zealand, 240 are also Australian, and 60 are almost confined to these two countries. The greatest amount of generic affinity exists in three of the largest Orders in each, viz. Composite, Orchideae, and Gramineae, which may be considered generically identical in both. To this category of resemblances also belong the antarctic genera and representative genera, many of which are also found in America, and which will be hereafter considered. Of these 240 genera, by far the larger proportion are confined to eastern Australia, not one being exclusively western Australian.

Descending to species, I find that 216, or one-fourth of the New Zealand Phaenogams, are natives of Australia,* and of these 115 are confined to these two countries. Of the remaining 101, 77 are common to America, 75 to India, and 52 to Europe. The comparatively small number of these that are common to India, and greater number common to America, is a remarkable fact, considering the relative position of these countries; and the large number of European genera is no less so.

Another interesting anomaly is, that of the 115 species peculiar to Australia and New Zealand, only 26 belong to genera peculiar to those countries, and only 6 to the long list of Australian genera that contain upwards of 20 species each. Again, upwards of 20 of these 115 are scarce and chiefly alpine plants in both countries, occupying comparatively very small areas; whereas of the 101 that are found in other lands besides Australia and New Zealand, only 5 or 6 are alpine, and most of these are antarctic also.

Thus, under whatever aspect I regard the Flora of Australia and New Zealand, I find all attempts to theorize on the possible causes of their community of feature frustrated by anomalies in distribution such as I believe no two other similarly situated countries in the globe present. Everywhere else I recognize a parallelism or harmony in the main common features of contiguous Floras, which

* The majority of these will be found in the Tasmanian Classified List at p. lvi., with the indication of their being natives of New Zealand.
conveys the impression of their generic affinity at least being effected by migration from centres of dispersion in one of them, or in some adjacent country. In this case it is widely different. Regarding the question from the Australian point of view, it is impossible in the present state of science to reconcile the fact of Acacia,* Eucalyptus, Casuarina, Callitris, etc., being absent in New Zealand, with any theory of transoceanic migration that may be adopted to explain the presence of other Australian plants in New Zealand; and it is very difficult to conceive of a time or of conditions that could explain these anomalies, except by going back to epochs when the prevalent botanical as well as geographical features of each were widely different from what they are now. On the other hand, if I regard the question from the New Zealand point of view, I find such broad features of resemblance, and so many connecting links that afford irresistible evidence of a close botanical connection, that I cannot abandon the conviction that these great differences will present the least difficulties to whatever theory may explain the whole case. I shall again allude to this point after discussing the antarctic and European features of Australia.

Between Norfolk Island and Australia a few small islands rise like specks in the ocean, and these, too, tell a tale of distribution. Lord Howe's Island and the Middleton group, in the parallels of 28° and 32° south, have both been botanized in by the officers of the 'Herald' (Captain Denham's Pacific Exploring Expedition), and their Flora is of an intermediate character between that of Australia, New Zealand, and Norfolk Island, some species being common to each, and the rest, though quite distinct, being closely allied to the plants of these countries.

§ 10.

On the Antarctic Plants of Australia.

From the geographical position of Australia, no less than from the altitude of its southern mountains, it is well placed for the maintenance of those types of vegetation which I have denominated Antarctic. These, it must be remembered, are not so called because they really inhabit the country of that name beyond the Polar circle, but because in a botanical point of view, no less than in position relative to the south temperate Flora, they represent the Arctic Flora. They might indeed almost be called alpine plants, for many which are found at the level of the sea in the so-called Antarctic islands, also ascend the mountains of more genial latitudes. An alpine vegetation, however, in the tropics especially, is supposed to commence only where the forest is replaced by low brushwood; whereas, owing to the uniformity and humidity of the high southern latitudes, an arboreous vegetation there encroaches upon the limits of perpetual ice. In the longitude of Cape Horn, on the mountains of Fuegia, of the Middle Island of New Zealand, and of Australia, the belt of country occupied by low and chiefly herbaceous plants, that intervenes between the arboreal vegetation and the extinction of phanerogamic life, is a very narrow one indeed compared with what analogous regions the Alps, Andes, Himalaya, or Arctic latitudes present.

In discussing the antarctic vegetation of Australia, I shall have to adopt a style that appears to indicate that this Flora is an immigrant, whereas it may, to a considerable extent, both in Australia and elsewhere, consist of altered forms of the plants of that continent, which have migrated from

* There are no climatic or other reasons against these genera flourishing in New Zealand when introduced there. Some introduced Australian plants have already become naturalized in New Zealand; but upon this point I hope to collect more full evidence.
it to the Antarctic regions; just as the endemic alpine Floras of Tasmania and Victoria are to an appreciable degree composed of altered lowland species, or vice versd. Taking for example such an eminently antarctic genus as Accenarf,† which is not known in the northern hemisphere, except in America and the Sandwich Islands (but which is elsewhere in that hemisphere represented by Poterium and Sanguisorba), its distribution is very wide and disconnected, yet it is so universally present in all high southern lands, both under the forms of temperate, alpine, and antarctic species, that it is impossible to regard it under any other category than the vague one of antarctic.

Premising that the so-called antarctic vegetation is that of the islands south of New Zealand, West Chili south of Cape Tresmontes, Fuegia, the Falklands and other islands south of them, Tristan d'Acunha, and Kerguelen's Land, I shall proceed to indicate which of the plants of these countries are actually present, or are represented by allied genera or species in Australia.—E prefixed distinguishes the European species.

<table>
<thead>
<tr>
<th>Australia and Tasmania.</th>
<th>Islands south of New Zealand.</th>
<th>Fuegia, etc., Tristan d'Acunha, and Kerguelen's Land.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Cardamine hirsuta, L.</td>
<td>C. *hirsuta, L.</td>
<td>C. hirsuta, L.</td>
</tr>
<tr>
<td>E Stellaria media, Sm.</td>
<td>S. media, Sm.</td>
<td>S. media, Sm.</td>
</tr>
<tr>
<td>E Sagina procumbens, L.</td>
<td>C. Billardieri, Fenzl.</td>
<td>S. procumbens, L.</td>
</tr>
<tr>
<td>E Geranium dissection, L.</td>
<td>G. potentilloides, L'Hér.</td>
<td>G. dissection, L.</td>
</tr>
<tr>
<td>E Potentilla anserina, L.</td>
<td>G. *urbanum, L.</td>
<td>P. anserina, L.</td>
</tr>
<tr>
<td>E Geum urbanum, L.</td>
<td>C. Sanguisorba, Vahl.</td>
<td>G. urbanum, L.</td>
</tr>
<tr>
<td>G. Patagonicum, ///.</td>
<td>M. *elatinoides, Gaud.</td>
<td>E. tetragonum, L.</td>
</tr>
<tr>
<td>E Callitriche verna, L.</td>
<td>M. fontana, L.</td>
<td>C. verna, L.</td>
</tr>
<tr>
<td>E Montia fontana, L.</td>
<td>C. *lineata, Nutt.</td>
<td>M. fontana, L.</td>
</tr>
<tr>
<td>Coprosma pumila, H.f.</td>
<td>N. depressa, B. & S.</td>
<td>N. depressa, B. & S.</td>
</tr>
<tr>
<td>Trineuron scapigerum, Muell.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleroilema forsteroides, H.f.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† One species (A. pinnatifida, R. & P.), is found both in Chili and in California, but not in any intermediate latitude. California, Mexico, and the Sandwich Islands are almost the only habitats of the genus in the northern hemisphere.

* An asterisk indicates those species which, being common to Tasmania and Fuegia, etc., are found on the mountains of New Zealand, though not in the islands south of it.
of the Australian Flora.]

INTRODUCTORY ESSAY.

Australia and Tasmania.

Leptinella intricata, H.f.
Erechites prenanthoides, DC.
Forstera bellidifolia, Hook.
Selliera radicans, Cav.
Pernettya Tasmanica, H.f.
Prionotes cernithoides, Lab.
Gentiana montana, Forst.
E Calystegia sepium, Br.
E Limosella aquatica, L.
Ourisia integrifolia, Br.
Samolus radicans, Cav.
Plantago Brownii, Rap.
E Chenopodium glaucum, L.
Lomatia tinctoria, Br.
Drapetes Tasmanica, H.f.
Fagus Gunnii, H.f.
Fagus Cunninghamii, Hook.
Astelia alpina, Br.
Triglochin triandrum, Mirb.
Juncus planifolius, Br.
Oreobolus Pumilio, Br.
Carpha alpina, Br.
E Isolepis pygmaea, Kth.
Carex appressa, Br.
Hierochloe redolens, Br.
E Deschampsia caespitosa, Pal.
E Trisetum subspicatum, Pal.
E Festuca duriuscula, L.
Festuca littoralis, Lab.

Islands south of New Zealand.
L. plumosa, H.f.
E. prenanthoides, DC.
F. clavigera, H.f.
S. radicans, Cav.

Ourisia macrophylla, Hook.
S. littoralis, Br.
P. Brownii, Rap.
C. *glaucum, L.

D. Lyallii, H.f.
F. Menziesii, H.f.
A. linearis, H.f.
T. *triandrum, Mirb.
J. *planifolius, Br.
O. Pumilio, Br.
C. *alpina, Br.
I. *pygmaea, Kth.
C. appressa, Br.
H. redolens, Br.
D. caespitosa, Pal.
T. subspicatum, Pal.
F. *duriuscula, L.
F. littoralis, Lab.

The most curious point in this list is the number of European species it contains, amounting to seventeen, of which most are British; there are besides two other species which inhabit the north temperate zone of the New World, Triglochin triandrum and Crantzia lineata; Apium australe is in some of its states with difficulty distinguished from A. graveolens.

The genera that are most characteristic of the Antarctic regions amongst them are,—Colobanthus, Acena, Donatia, Nertera, Forstera, Leptinella, Ourisia, Drapetes, Fagus, Oreobolus, and Carpha. Only one (Lomatia) can be said to betray any generic affinity between the peculiar Flora of Australia and the Antarctic regions; though Forstera, as belonging to Stylidiae, may be classed with Australian representatives.
On the South African features of Australian Vegetation.

The relations between the Floras of Australia and of the same latitudes in Africa, are of a very different character from those that exist between it and Polynesia, or India, etc., or even Europe; for whereas there is a very definable affinity traceable in the presence and abundance of some peculiar Orders, there is very little generic affinity in those Orders, and scarcely any specific identity.

My data for the African Flora are chiefly derived from my friend Dr. Harvey's communications, his 'Genera of South African Plants,' Drège and Meyer's 'Zwei Pflanzen-geographische Documente' (Flora, 1843), the Niger Flora, and the Natal, West African, and Mauritius plants in the Herbarium at Kew.

With regard to the tropical Floras of Australia and Africa, their agreement is in rather less than 300 genera, and in about 200 species that are without exception common to India also, and hardly any of which belong to those genera or natural families that are characteristic of the South African or Australian Flora. This subject therefore requires no further illustration than it has received under the Indian chapter.

With regard to the temperate South African Flora, it is perhaps as widely different from the tropical as the temperate Australian is from that of the Malayan Islands; and an extraordinary number of species, many of them belonging to a few genera and orders elsewhere rare, are massed towards the south extreme of Africa, and there confined to a tract of land of varying width, interposed between the sea and a desert interior.

The most conspicuous characters that extratropical South Africa presents in common with Australia, are the abundance of species of the following Orders, many of which being shrubby, give in certain districts of each country a character to the landscape.

- **Proteaceae.** Polygaleae. Rutaceae.
- **Composite.** Restiaceae. Thymeleae.
- **Iridace.** Epacridae, Ericaceae. Santalaceae.
- **Hymodoraceae.** Decandrous Papilionaceae and Anthospermous Rubiaceae.
- **Buettneriaceae.** tribes Podalyrieae and Lotoc.

All these Orders are far more abundantly represented in Australia (especially south-western) and South Africa than in any other part of the world, added to which by far the greater number of the known genera and species of Proteaceae and Restiaceae are confined to these two countries. Other marks of affinity are the Cycadeae, the genus Encephalartos (to which Mueller reduces Macrozamia) being common to both; Cyphiaceae (according to Brown a suborder of Goodeniaceae) are almost confined to South Africa. Numerous terrestrial Orchideae, Droseraceae, Zygophylleae, Liliaceae, Smilaceae, and Capparideae; the genera Pelargonium and Meseambryanthemum, besides Metrosideros, Acena, Tetragni
tia, Weinmannia, Sarco
temna, Sebaea, Callitris,† Anguillaria, Restio, Carphæ, Uncina, and Ehrharta.

* As exceptions may rank the few Proteaceae said to exist in Abyssinia, which however belong to genera widely different from the Australian. The late Professor A. Richard gave me to understand (Preface to 'Flora Antarctica,' vol. ii. p. 210) that there were many representatives of the South African peculiarities in Abyssinia, but I find they are not so numerous as I was led to suppose.

† I include *Frenela* and *Widdringtonia* under *Callitris*, one species of which is found in North Africa.
INTRODUCTORY ESSAY.

The rarity in both of Aroidce, Laurin-ce, and all Rubiacee except the Anthospernece, is also worthy of notice. With regard to the Natural Orders enumerated above, their genera are almost unexceptionally different in the two countries. I find that of 1,000 South African genera of flowering plants, only about 280 are Australian; of these about 160 are also common to Europe, and 130 to India, leaving Callitris, Encephalartos, Restio, Hypolema, and Anguillaria, confined to South Africa and Australia, and 10 more common to these countries, together with New Zealand and extratropical America.

On the other hand, South Africa contains upwards of 220 European genera, of which 80 are not Australian, and of these upwards of 60 are north temperate forms. We have hence the very curious fact that in point of numbers Australia represents generically the European Flora better than South Africa does; but that the South African Flora contains a larger proportion of very northern European genera (not species) than Australia does. This is no doubt because many of the so-called European genera of Australia are more properly Asiatic, and spread thence in both directions, towards Europe and towards Australia.

Before dismissing this subject, it is as well to glance at the differences between these Floras, which may shortly be summed up. South Africa abounds in Campanulaceae, which are very rare in Australia, where the very closely allied Orders Stylidieae and Goodeniaceae abound. The true Ericceae, which swarm in certain districts of South Africa, are all but wholly absent in Australia, being represented there by their suborder Epaecrider. Succulents are, comparatively, extremely rare in Australia, which almost wholly wants those conspicuous features of South African vegetation the Crassulaceae, Ficoideae, fleshy Asclepiadce, Lilieae (Aloes), and Euphorbeae.

I have given (p. xxxiii.) a list of the five Orders which abound more in South Africa than in any other country but Australia, and are therefore highly characteristic of both these. I shall now give the contrasting ordinal dissimilarities of each.

The following Orders are represented in the South African Flora, but are either comparatively rare or absent in Australia:—

- Fumariaceae, absent in Australia.
- Resedaceae, ditto.
- Bixaceae.
- Tamariscineae, ditto.
- Geraniaceae.
- Oxalideae.
- Caryophylleae.
- Ficoideae.
- Rosaceae.
- Bruniaeneae, ditto.
- Loaseae, ditto.
- Penaeaceae, ditto.
- Begoniaceae, ditto.
- Crassulaceae.
- Valerianaceae, ditto.

Temperate Australia contains the following Orders that are rare or absent in South Africa:—

- Dipsaceae, absent in Australia.
- Arctotideae (tribe of Comp.).
- Ericceae.
- Campanulaceae.
- Stillineae (Verben.), absent in Australia.
- Selagineae (Verben.), ditto.
- Asclepiadceae.
- Podostemaceae, ditto.
- Saururesae, ditto.
- Rafflesiaeae, absent in Australia.
- Cytineae, ditto.
- Betulaceae, ditto.
- Salicinaceae, absent in Australia.
- Hypoxideae.

- Ternandraeae, absent in South Africa.
- Pittosporeae.
- Stackhousiaeneae, ditto.
- Halorageae.
Myrtaceae.
Caprifoliaceae, absent in South Africa.
Goodeniaceae, ditto.
Stylidiaceae, ditto.
Brunoniaceae, ditto.
Epaerideae, ditto.
Loganiaceae.
Myoporineae, ditto.
Labiatae.
Lentibularineae.
Plantaginaceae, absent in South Africa.
Cupuliferae, ditto.
Casuarineae, ditto.
Coniferae.
Xerotideae, ditto.
Phylidium, ditto.

It is singular that there should be exactly the same number (sixteen) of Orders absent in each country; of these, however, three Australian ones are confined to the south-eastern part of that continent, Magnoliaceae, Monimiaceae, and Caprifoliaceae, which is in accordance with the facts I have elsewhere indicated, that the affinity between the Floras of South-west Australia and South Africa is very markedly greater than between that country and South-east Australia.

I shall return to the consideration of the European genera of South Africa in the following section of this Essay.

§ 11.

On the European Features of the Australian Flora.

In one respect this is by far the most difficult subject to treat of to the satisfaction of many persons interested in the study of the distribution of plants; for situated as Australia is, at the antipodes of Europe, the presence in it of many forms common to both, whether generic or specific, affords so strong an argument in favour of there being many centres of creation for each vegetable form, that I cannot expect the believers in that doctrine to follow me far. I have given my own reasons for dissenting from that view and inclining to the opposite one, that variation will account for change of species and genera; that the force of variation being a centrifugal one tends to diversity of forms and opposes reversion; that Darwin's theory of natural selection accounts for the temporary stability of many forms we call species; that the destruction of species by natural causes resolves species into genera, etc.; and that if we allow time enough, these several operations may have worked together and produced, out of what would otherwise be to us a homogeneous series of vegetable forms, a series broken up into varieties, species, and genera, all of unequal value, and of multiplied cross-affinities. I now pursue the subject of the European affinities of the Australian Flora in subjection to these views, not because I insist that they are right, nor because I expect to explain the facts by them, but because I conceive these hypotheses to be, in the present state of science, as legitimately tenable as those of absolute creations and multiplied centres, and far more suggestive to future inquirers of fresh ideas, that may be worked into one class of hypotheses or the other.

The following is a list of the European genera and species hitherto discovered in Australia. I have indicated by As. those which, though found in Europe, are so scarce there, and so much more characteristic of Asia, that they cannot be considered as direct instances of affinity between Australia and Europe; and by Trop. those genera that are only found in tropical or subtropical Australia. Those marked with an asterisk are possibly introduced.
Banunculus aquatilis.
— parviflorus.
Anemone.
Clematis.
Myosurus.
Caltha.
As. Nelumbium speciosum. Tr.
Papaver.
Lepidium *ruderale.
Draba nemoralis.
Cardamine hirsuta.
— pratensis.
Arabis.
Barbara vulgaris.
Nasturtium terrestre.
Senebiera. Trop.
Erysimum.
Hutchinsia procumbens.
Sisymbrium thalianum.
Turritis glabra.
Talapi?
As. Capparis spinosa.
Cleome.
Viola.
Drosera.
Polygala.
Frankenia.
*Gypsophila tubulosa.
Spergularia rubra.
Scleranthus.
Stellaria media,
— glauca.
Sagina procumbens.
Linum.
Elatine.
Lavatera.
As. Malva. Trop.
As. Sida. Trop.
As. Hibiscus Trionum.
As. Vitis. Trop.
Geranium dissectum.
Oxalis corniculata.
Hypericum.
Zygophyllum.

As. Tribulus. Trop.
As. Zizyphus. Trop.
As. Phaseolus. Trop.
Lotus corniculatus.
Trigonella.
As. Cassia. Trop.
As. Sophora. Trop.
As. Psoralea. Trop.
Geum urbanum.
Potentilla anserina.
Rubus.
Alchemilla arvensis.
— vulgaris.
Callitriche cerna.
— platycarpa?
Ceratophyllum demersum.
As. Ludwigia. Trop.
As. Ammannia. Trop.
Epilobium tetragonum.
Lythrum Salicaria.
— *hyssopifolium.
As. Myrtus. Trop.
Montia fontana.
Mesembryanthemum.
As. Glinus lotoides.
As. Portulaca oleracea.
Tillea.
Hydrocotyle vulgaris.*
Helosciadium?
Sium latifolium.
Eryngium.
Aptium.
Daucus.
Seseli.
As. Loranthus. Trop.
As. Viscum. Trop.
Sambucus.
Asperula.
Galium.
Erigeron.
Conyza ambigua.
Bidentera cernua.
— pilosa.
Cotula coronopifolia.

As. Myriogyne minuta.
Antennaria.
Helichrysum.
Gnaphalium luteo-album.
Senecio.
Sonchus asper.
Pieris hieracioides.
Lobelia.
Wahlenbergia.
As. Olea. Trop.
As. Jasminum.
As. Diospyros. Trop.
Gentiana.
Villarsia.
Erythrea.
As. Cynanchum. Trop.
Cuscuta.
As. Cressa Cretica.
As. Convolvulus althoides!?
Calystegia sepium.
— Saldanella.
As. Ipomoea. Trop.
Solanum nigrum.
As. Physalis. Trop.
As. Lycium.
As. Heliotropium. Trop.
Myosotis.
Cynoglossum.
As. Echinopspermum. Trop.
Eritrichium.
As. Tournefortia. Trop.
Euphrasia.
Veronica serpyllifolia.
Limosella aquatica.
As. Gratiola.
Verbena officinalis.
As. Lippia nodiflora. Trop.
As. Vitex. Trop.
Mentha.
Lycopus Europaeus.
Prunella vulgaris.
Scutellaria.
Teucrium.
Ajuga.
Utricularia.

* Introduced on the authority of Brown's list in the Appendix to Flinders's Voyage.
Lysimachia vulgaris.
Samolus Valerandi.
As. Plumbago. Trop.
Statices.
Plantago.
As. Boerhaavia. Trop.
Polygonum minus.
— aviculare.
— mite.
— lapathifolium.
Rumex.
Chenopodium glaucum.
— murale.
Blitum virgatum
Atriplex *rosea.
Kochia.
Suaeda maritima.
Echinopsilon.
Halocnemon.
Arthrocemnon Arbuseula.
Salsola Kali.
Euxolus viridis.
As. Alternanthera nodiflora.
As. Achyranthes. Trop.
Thesium.
As. Euphorbia Chamasyce. Tr.
As. Croton. Trop.
Urtica.
Parietaria debilis.
As. Ficus. Trop.
Fagus.
As. Ephedra. Trop.
Vallisneria spiralis.
As. Hydrilla dentata.
As. Habenaria. Trop.
Spiranthes.
Aliama Plantago.
Actinocarpus Damasonum?
Triglochin.
Zannichellia palustris ?
Naias major ?
Ruppia maritima.
Zostera marina.
Posidonia.
Potamogeton natans.
— obovatus ?
— perfoliatus.
— pectinatus.
— obtusifolius ?
— trisulae.
— nuda.
— obtusifolia.
— angustifolia.
— angustifolia.
— obtusifolia.
— obtu
Of the 227 genera and 148 species here enumerated, by far the larger proportion are natives of many other parts of the globe, including all those found also in Tropical India, but there is still left a list of 38 species so notably characteristic of northern Europe, and so rare, if present at all, in warm or southern Asia, that they at once challenge further investigation. These are, excluding such marsh- and water-plants as *Potamogeton*, *Scirpus*, *Isolepis*, etc., and others, which inhabit all hot countries as well as cold:—

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draba nemoralis</td>
<td>All Europe, and Russian Asia.</td>
</tr>
<tr>
<td>Cardamine pratensis</td>
<td>Europe, Russian Asia, and Arctic America.</td>
</tr>
<tr>
<td>Hutchinsia procumbens</td>
<td>Europe, Western Asia, Mediterranean, Patagonia.</td>
</tr>
<tr>
<td>Sisymbrium thalianum</td>
<td>Europe, Russian Asia, and North America.</td>
</tr>
<tr>
<td>Stellaria glauca</td>
<td>Europe, Russian Asia, and North America.</td>
</tr>
<tr>
<td>Sagina procumbens</td>
<td>Europe, Russian Asia, Himalaya, North America, Fuegia.</td>
</tr>
<tr>
<td>Geranium dissectum</td>
<td>Europe, Russian Asia, North America, Fuegia.</td>
</tr>
<tr>
<td>Lotus corniculatus</td>
<td>Europe, Russian Asia.</td>
</tr>
<tr>
<td>Geum urbanum</td>
<td>Europe, Russian Asia, Himalaya, New Zealand, Fuegia.</td>
</tr>
<tr>
<td>Potentilla anserina</td>
<td>Europe, Russian and Central Asia, N. America, Arc. & Antarc. regions, N. Zeal.</td>
</tr>
<tr>
<td>Alchemilla arvensis</td>
<td>Europe, Western Asia.</td>
</tr>
<tr>
<td>Alchemilla vulgaris</td>
<td>Northern and Arctic Europe and Asia, Ceylon, and Peninsula of India.</td>
</tr>
<tr>
<td>Epilobium tetragonum</td>
<td>Temperate and Subarctic Europe, Asia, and N. and S. America, N. Zealand.</td>
</tr>
<tr>
<td>Lythrum Salicaria</td>
<td>Europe, North and Central Asia, North and South America, and South Africa.</td>
</tr>
<tr>
<td>Siou latifolium</td>
<td>Europe, North Asia.</td>
</tr>
<tr>
<td>Bidens cernua</td>
<td>Europe, North Asia, Himalaya, North America.</td>
</tr>
<tr>
<td>Picris hieracioides</td>
<td>Europe, Central Asia, Himalaya, New Zealand.</td>
</tr>
<tr>
<td>Calystegia sepium</td>
<td>Temperate Europe, North Asia, North America, New Zealand, Fuegia.</td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>Temperate Europe, Asia, North America, Himalaya.</td>
</tr>
<tr>
<td>Lyopus Europaeus</td>
<td>Temperate Europe, Asia, North America, Himalaya.</td>
</tr>
<tr>
<td>Lysimachia vulgaris</td>
<td>Northern Europe and Russian Asia.</td>
</tr>
<tr>
<td>Samolus Valerandi</td>
<td>Europe, North Asia, Temperate and Tropical North and South America, Fuegia.</td>
</tr>
<tr>
<td>Alisma Plantago</td>
<td>Northern and Arctic Europe, Asia, America, and North-west India.</td>
</tr>
<tr>
<td>Actinocarpus Damaeolum, var.?</td>
<td>(A. Damaeolum, in South-west Europe, Central Asia).</td>
</tr>
<tr>
<td>Juncus communis</td>
<td>Temperate northern hemisphere, India, South Africa, New Zealand.</td>
</tr>
<tr>
<td>Juncus bufonius</td>
<td>Temperate northern hemisphere, India.</td>
</tr>
<tr>
<td>Juncus maritimus</td>
<td>Temperate and North Europe, Asia, North America, New Zealand, Fuegia.</td>
</tr>
<tr>
<td>Luzula campestris</td>
<td>Temperate and Arctic Europe, Asia, America, New Zealand.</td>
</tr>
<tr>
<td>Carex stellulata</td>
<td>Temperate and Arctic Europe, Asia, America, New Zealand.</td>
</tr>
<tr>
<td>Carex Buxbaumii</td>
<td>Northern and Arctic Europe, Asia, America.</td>
</tr>
<tr>
<td>Alopecurus geniculatus</td>
<td>Europe, North and Central Asia, New Zealand.</td>
</tr>
<tr>
<td>Hierochloe borealis</td>
<td>Arctic Europe, Asia, America, New Zealand.</td>
</tr>
<tr>
<td>Deschampsia caespitosa</td>
<td>Northern and Arctic Europe, Asia, Fuegia, New Zealand.</td>
</tr>
<tr>
<td>Trisetum subspicatum</td>
<td>Arctic and Alpine Europe, North America, Asia, America, Antarctic regions.</td>
</tr>
<tr>
<td>Glyceria fluitans</td>
<td>Temperate and Arctic Europe, Asia, America.</td>
</tr>
<tr>
<td>Koeleria cristata</td>
<td>Central and South Europe, N. Asia, Temperate N. America, New Zealand, Fuegia.</td>
</tr>
<tr>
<td>Festuca duriuscula</td>
<td>Temperate Arctic Europe, America, northern Asia, Andes, New Zealand, Fuegia.</td>
</tr>
</tbody>
</table>

With one exception (*Trisetum subspicatum*) these are all British, a great many are the only examples of their genus in Australia, and only three are water-plants. None of them are found
in any truly tropical climate, and a few only enter the temperate plains of north-western India. All of them are temperate plants in Australia, and several of them subalpine or alpine; few inhabit south-west Australia, and as a whole they are characteristic of the coolest parts of south-east Australia and Tasmania, the latter island alone possessing 28 out of the 37. New Zealand possesses 15 of them, and the Antarctic regions 13; but few are South African.

It is a singular fact that some of the best-marked of these plants do not inhabit any part of India, except the extreme north-western Himalaya, and others occur nowhere in the old world between northern Europe or Asia and Australia; one, *Alchemilla vulgaris*, though not Himalayan, is found on the Nilgiri mountains and those of Ceylon.

Neither New Zealand, temperate South America, nor South Africa, present so large an assemblage of well-marked European species, but these countries and the Antarctic islands contain several that are not found in Australia; and since we must look to one general cause for this southern migration of northern forms into all the south temperate lands, I shall add a list of all other such genera and species as are known to me.

| Anemone. | Sempervivum. South Africa. |
| Cerastium. arvense. Fuegia, etc. | Laserpantium. Ditto. |
| Chrysanthemum. Pyrethrum. |
INTRODUCTORY ESSAY.

This catalogue adds many very northern genera to the southern Flora, chiefly from South Africa, and some very northern species, chiefly from Fuegia and the Antarctic islands; of the latter, the best-marked are the following, with their distribution:

- Anemone decapetala. Northern United States and Arctic circle, Peru, Chili, South Brazil.
- Draba incana. Northern and Arctic Europe and Asia.
- Sisymbrium Sophia. Europe, North Asia, Caucasus, Himalaya, North America, Fuegia, South Chili.
- Lychnis apetala* Arctic Europe, Asia, and America, Altai and Himalaya.
- Cerastium arvense. Europe, Russian Asia, North America.
- Lathyrus maritimus. Arctic and North-western Europe, Arctic Asia and America.
- Hippuris vulgaris. Europe, North and Central Asia, North America, and Arctic regions.
- Saxifraga esarata. Alpine and Arctic Europe, Asia Minor, and North America.
- Galium Aporine. All Europe, North and Central Asia, Himalaya, North America.
- Erigeron alpinus. Alpine and Arctic Europe, Asia, and America.
- Taraxacum Dens-leonis. Temperate and Arctic Europe, Asia, and America.
- Gentiana prostrata. Alps of Central Europe and Asia, Himalaya, Rocky Mountains, and Andes of South America.
- Stachys sylvatica† Europe, North and Central Asia.
- Veronica Anagallis. Europe, Central and North Asia, North America.
- Primula farinosa. Northern and Arctic Europe, Asia, America.
- Statice Armeria. Throughout North Temperate Zone to Arctic regions.
- Plantago maritima. Europe, North and Central Asia, North and South America, South Africa.
- Polygonum maritimum. Europe, North Asia, North America.
- Emepetrum nigrum. Northern and Arctic Europe, Asia and America.
- Sparganium simplex. Northern and Arctic Europe, Asia and America.

* L. Magellanica, Lamk., Flor. Antarc., ii. 246.
† S. Chonotica, Flor. Antarc., ii. 386.
Carex festiva. Arctic North America, and Lapland.
Carex curta. Arctic and Alpine Europe, Asia, and North America.
Phleum alpinum. Arctic and Alpine Europe, Asia, and America.
Alopecurus alpinus. Arctic and Alpine Europe, Asia, and America.
Agrostis canina. Europe, North Asia, North America.
Poa pratensis. Temperate and Arctic Europe, Asia, North America.
Poa nemoralis. Northern and Arctic and Alpine Europe, Asia, Himalaya, North America.
Triticum caninum. Temperate and Arctic Europe and America, Central and Northern Asia.
Hordeum jubatum. Temperate North America.

Here are 30 species, of which the Taraxacum is found both in New Zealand and Fuegia, and the Veronica Anagallis and Agrostis canina in New Zealand only. If to this we add 12 from the Australian list of northern forms, which are also found in south Chili, or the Antarctic islands, we have two nearly equal lists of decidedly northern plants in the south temperate and colder zones,—one of the Old World, the other of the New; in which lists about one-third of the plants are common to both. I have no catalogue of the decidedly indigenous European plants in South Africa, and therefore cannot extend this subject by comparing the two south temperate divisions of the Old World Flora in respect of the northern plants they contain; but my impression is that though South Africa adds so many northern genera, it will fall short in number of nearer allied forms.

The last observation I shall make with reference to this subject is, that the existing European Flora does not contain one Australian representative, nor betray the remotest direct botanical affinity with the Australian. I have elsewhere indicated (p. xxi.) that there is evidence of what are now Australian plants having once inhabited Europe. In north-eastern Asia there are however a few Australian forms, of which the Haloragis, Stylidium, and Baeckia of China, the Microtis of Bonin, Stackhousia and Thysanotus? of Philippine Islands, Thelymitra of Java, and Proteaceae of Japan are examples. Connecting these again is the singular assemblage of Australian forms on the lofty mountain Kini Balou in Borneo, and which consists of species of Drimys, Leptospermum, Leucopogon, Coprosma, Didiscus, Drapetes, Euphrasia, Phyllocladus, Dacrydium, and an Irideous and Restiaceous plant, both apparently allied to Australian genera.

§ 12.

The fossiliferous rocks of Australia do not throw much light upon the antiquity of its existing Flora, because of the hiatus which geologists seem to consider exists between the paleozoic and tertiary strata of that country. Mr. Jukes* has called attention to the curious fact that this deficient series in Australia is largely developed in Europe, and there presents such Australian forms of life as marsupiate quadrupeds, Trigonias and other fossil shells, together with Cycadeous plants. To the latter no importance can be attached, as this Order is far more characteristic of tropical America, of India, and even of south-east Africa, than of Australia; but on the other hand the

* J. B. Jukes, 'Physical Structure of Australia,' p. 89, etc.
Araucaria of the English oolite, and other fossils alluded to at p. xxi., would seem to tend to confirm Mr. Jukes's observation.

The so-called Palaeozoic rocks of Australia contain fossil plants of which so little, botanically, is known, that it would be rash to speculate on their affinities, even if we knew the age of the beds they are found in, as compared with the European, which we do not. Their fossils comprise Ferns of several genera, including the genus Glossopteris, which is found in the oolitic beds of England, and in India;* Phyllotheca, a plant somewhat similar to Casuarina, but of extremely doubtful affinity; Vertebraria, also an Indian fossil, as to the affinities of which no plausible guess has been made; Sphenopteris and Zygophyllum, of which little more can be said. To these the Rev. W. B. Clarke† adds the following well-known British coal fossils,—Lepidodendron, Halonia, Sigillaria, Ulodendron, Calamites, and Stigmaria.

Many of the tertiary fossil plants of Australia would seem to be very closely allied to existing ones; these include the Casuarina cones of Flinders Island, the Banksia and Araucaria wood of Tasmania, the Banksia cones of Victoria (which seem identical with those of B. ericifolia, though buried under many feet of trap). The leaves of the calcareous tufts on the banks of the Derwent,‡ etc., appear however to belong to a different and warmer period.

From the above it would appear that the extinct Flora of Australia was not entirely different from that now existing, and, following Mr. Jukes's line of argument, that Australia continued as dry land during the European Oolitic and Cretaceous periods. At this epoch Mr. Jukes assumes that the peculiar Flora of Australia was introduced, and that the continent was again submerged during the Tertiary epoch, when it presented the appearance of two long islands, or chains of islands, one, the larger, representing the elevated land of eastern Australia and Tasmania, the other that of southeastern Australia, together with subsidiary groups in the western and northern parts of the continent.

These are the speculations of an able geologist and voyager, which I introduce without comment, and chiefly to observe that such a partition of the continent may be supposed to be favourable to the multiplication of forms of vegetable life out of fewer pre-existing ones, by the segregation of varieties. These groups of islands would present a precise analogy with the Galapagos and Sandwich groups, where we have the small islands of one Archipelago peopled by different species, and even genera. The subsequent elevation of these islets, and consequent union of them into larger ones, would further, according to Darwin's hypothesis (of the struggle of very different kinds of species and families for occupation of the soil resulting in a further separation of varieties into species), tend to enlarge the genera numerically within comparatively small geographical limits, and thus effect such a geographical distribution of plants as Australia now presents.

In our complete ignorance as to the condition of all the continents during the Palaeozoic epoch, it is impossible to speculate on the earlier condition of the Australian Flora. That previous to some Tertiary submersion of a great part of the continent, it was not altogether specifically different from what it now is, would appear from a fact insisted on by Mr. Jukes, that it was during such a submersion that those volcanos were active, the lavas of which now cover large tracts of southern Australia, and which we know to have buried a plant apparently identical with Banksia ericifolia, which is still one of the commonest trees in that part of the country: but the question of where the Banksias and their allies were created, and, if in other lands than Australia, how they migrated thither, we have no

means of answering. If the identifications of Banksia and other Proteaceous leaves in the Cretaceous and Miocene formations of Europe are worthy of any confidence, it is possible that the Australian from the northern to the southern hemisphere, as, according to Darwin's types may have migrated speculations, the existing European plants in Australia have.

Some arguments in favour of the antiquity of the Australian Flora as compared with the European may be derived from a consideration of its generic and ordinal peculiarities. If, as I have expressed it, a Genus or Order is rendered peculiar, that is, unlike its allies, by the extinction of the intermediate species, it follows that the greater the peculiarity the greater the number of lapsed forms. Applying this argument to the Australian Flora, we must assume an extraordinary destruction of species that once linked it with the general Flora of the globe, to account for its many peculiar genera, and these being represented by so many species. But as this destruction of species is primarily due to geological causes, that influence climates and so directly and indirectly lead to the extinction of species, and as geological events are of slow progress, it follows that we must regard the Australian Flora as a very ancient one. Again, Darwin argues that a rich Flora or Fauna, marked by a preponderance of highly developed types, must have required a large area for its development: this is because, according to his view, the principle of natural selection favours the high forms, and is unfavourable to the low. Now it could be easily shown that the Australian Flora is of as high a type as any in the globe, but under existing conditions has a very small area for its development, and presents fewer representatives of other Floras to contend with than most; and we must hence, under these hypotheses, assume not only the antiquity of the Flora, but that it was developed in a much larger area than it now occupies.

The only other geological speculation, founded upon anything like plausible grounds, that bears upon the origin of any of the plants now inhabiting Australia, is that of Mr. Darwin in reference to the European species, to which I have alluded at p. xvii. It implies of course that the existing European types were introduced into the continent long subsequently to the peculiar Australian, and are plants of a later creation. I have already pointed out the difficulties attending its adoption, the chief of which is the admission of such a cold climate in the intertropical latitudes as that not merely a temperate, but a decidedly northern Flora should have migrated across them; and that this migration, if conceded, must have been extensive and have introduced very many genera and species into the tropics appears likely, when we consider the fragmentary character of the assemblage of northern forms still left in Australia,—for even when reduced to its most typical examples, it consists of nearly as many Natural Orders as species. The little colony of south Australian genera found under the Equator, on Kini Balou, in Borneo, presents another difficulty, except indeed it be regarded as evidence of that previous southern migration of Australian forms from Europe to Australia, which I have just mentioned as conceivable.

There are then the Antarctic types to account for; were they of more recent introduction than the European or Australian? Darwin has alluded to the possibility of these having been transported by icebergs from higher southern latitudes, during a period of greater cold than now obtains in the southern hemisphere, (as the Scandinavian and Arctic plants are supposed by Forbes to have been transported to Britain, etc., during the Glacial period), and, with the north European plants already in Australia, to have ascended the mountains during the subsequent rise of temperature. This would imply that Australia was, during a cold Tertiary period, simultaneously peopled by all those Antarctic, European, and Australian types which now inhabit it, but that the latter Flora was much less developed in number of species and genera than now; for I cannot but regard the Antarctic Flora in the same
light as the European, and as a mere fragment of a much more extensive one, whose other members perished in the battle for place waged with the European and Australian during those changes of climate and level that succeeded their first introduction. The ultimate numerical ascendency of the Australian botanical element may have been gained during the subsequent partition of the continent into archipelagos of islands, which became so many colonies of Australian types of vegetation, prepared on the final rise of the land to descend and occupy the intermediate ground. The paucity of alpine plants of Australian genera is a fact which lends itself well to this idea; it implies that, during either the rise of land or increase of temperature, the tendency of the species of Australian type was to seek warmer regions, and that the boreal and antarctic types being better suited to a colder climate prevented to a great extent the establishment of such varieties of Australian type as might otherwise have been adapted to inhabit the same climate as themselves.

When I take a comprehensive view of the vegetation of the Old World, I am struck with the appearance it presents of there being a continuous current of vegetation (if I may so fancifully express myself) from Scandinavia to Tasmania; along, in short, the whole extent of that arc of the terrestrial sphere which presents the greatest continuity of land. In the first place, Scandinavian genera, and even species, reappear everywhere from Lapland and Iceland to the tops of the Tasmanian alps, in rapidly diminishing numbers it is true, but in vigorous development throughout. They abound on the Alps and Pyrenees, pass on to the Caucasus and Himalaya, thence they extend along the Khasia mountains, and those of the peninsulas of India to those of Ceylon and the Malayan archipelago (Java and Borneo), and after a hiatus of 30°, they appear on the alps of New South Wales, Victoria, and Tasmania, and beyond these again on those of New Zealand and the Antarctic Islands, many of the species remaining unchanged throughout! It matters not what the vegetation of the bases and flanks of these mountains may be; the northern species may be associated with alpine forms of Germanic, Siberian, Oriental, Chinese, American, Malayan, and finally Australian and Antarctic types; but whereas these are all, more or less, local assemblages, the Scandinavian asserts his prerogative of ubiquity from Britain to beyond its antipodes.

Next in importance and appearance along the arc indicated is that Flora which may be called Himalayan,* and which consists of the endemic plants of that range, with a mixture of Siberian, Caucasian, and Chinese genera; this, gathering strength in its progress south-eastward along the ranges of northern and eastern India, occupies the flanks of all the mountain-chains I have enumerated between the Caucasus and Malay Islands; but there the Himalayan Flora disappears, and does not reappear in Australia or New Zealand, and scarcely a trace of it is found in Polynesia.

The Malayan Flora† is in many respects closely allied to the Himalayan, but is wholly tropical in character. This also very gradually appears in the valleys of the western and central Himalaya, and multiplying in genera and species in the eastern Himalaya and Khasia ranges, it sweeps down the Malayan peninsula, occupies all the Malayan Islands, and then it too stops short without entering Australia, being, however, continued eastward in tropical Polynesia.

Lastly, there is the Flora of the plains and lower hills of India,‡ which is of a drier character than the Malayan, and is equally characteristic of Africa. This commences gradually in north-west India, or even in eastern Persia, and occupies all central India, the Gangetic plain, the whole of the

* Characterized by Cupulifera, Magnoliaceae, Ternstroemiacae, Lauriaceae, Balsaminaceae, Ericaceae, Famariaceae, etc.
† Faccineae, Rhododendron, Begoniaceae, Quercus; and equally typified by Cyrtandraceae, Diplorcarpeae, Myristiceae, Anisaceae, Menispermeae.
‡ It consists of Acanthaceae, Sterculiaeae, and other Orders, enumerated at p. xlii. et seq.
Madras peninsula, except the western coast and mountains, the valley of the Irrawaddi, and the lower flat districts of the Malay Islands, whence it is continued in great force over the whole of tropical Australia.

Reversing the position, and beginning at the southern extreme of this arc of vegetation, there is first the Antarctic Flora (the complement of the Scandinavian), with its decided Australian representatives in *Centrolepideae* and *Stylidiaceae*, commencing in Fuegia, the Falklands, and Lord Auckland's and Campbell's group, reappearing in the Alps of New Zealand, Tasmania, and Australia, and disappearing under the equator, on the Alps of Borneo, being thus strictly confined to the southern hemisphere. Next there is the Australian Flora proper, a large and highly developed one, diminishing rapidly after crossing the southern tropic, and as it advances towards the north-western shore of the continent, reappearing in very small numbers in the Malay Islands, and terminated by a *Casuarina* on the east coast of the Bay of Bengal, and a *Stylidium* on the west. Not one representative of this vegetation advances further north-west.

Analogous appearances are presented by Africa and America. In Africa Indian forms prevail throughout the tropics, and, passing southwards, occupy the northern boundary of the south temperate zone; but there a very copious and widely different vegetation succeeds, of which but few representatives advance north to the tropic, and none to India, but with which are mingled Scandinavian genera and even species. In the New World, Arctic, Scandinavian, and North American genera and species are continuously extended from the north to the south temperate and even Antarctic zones; but scarcely one Antarctic species, or even *genus* (*Forsteria*, *Calceolaria*, *Colobanthus*, *Gunnera*, etc. etc.) advances north beyond the Gulf of Mexico.

These considerations quite preclude my entertaining the idea that the Southern and Northern Floras have had common origin within comparatively modern geological epochs; on the contrary, the European and Australian Floras seem to me to be essentially distinct, and not united by those of intervening countries, though fragments of the former are associated with the latter in the southern hemisphere. For instance, I regard the Indian plants in Australia to be as foreign to it, botanically, as the Scandinavian, and more so than the Antarctic; and that to whatever lengths the theory of variation may be carried, we cannot by it speculate on the Southern Flora being directly a derivative one from the existing Northern. On the contrary, the many bonds of affinity between the three southern Floras, the Antarctic, Australian, and South African, indicate that these may all have been members of one great vegetation, which may once have covered as large a southern area as the European now does a Northern. It is true that at some anterior time these two Floras may have had a common origin, but the period of their divergence antedates the creation of the principal existing generic forms of each. To what portion of the globe the maximum development of this Southern Flora is to be assigned, it is vain at present to speculate; but the geographical changes that have resulted in its dismemberment into isolated groups scattered over the Southern Ocean, must have been great indeed. Circumscribed as these Floras are, and encroached upon everywhere by northern forms, their ultimate destiny must depend on that power of appropriation in the strife for place which we see in the force with which an intrusive foreign weed establishes itself in our already fully peopled fields and meadows, and of the real nature of which power no conception has been formed by naturalists, and which has not even a name in the language of biology. Everywhere, however, we see the more widely distributed, and therefore least peculiar forms of plants, spreading, and the most peculiar dying out in small areas, and the progress of civilization has introduced in man a new enemy to

Aexma is a remarkable exception. See p. xc. in note.
the scarce old forms, and a strong ally of those already common: nor can it be doubted but that many of the small local genera of Australia, New Zealand, and South Africa, will ultimately disappear, owing to the usurping tendencies of the emigrant plants of the northern hemisphere, energetically supported as they are by the artificial aids that the northern races of man afford them.

§ 14.

On some of the Naturalized Plants of Australia.

My sources of information upon this subject are unfortunately extremely scanty, and almost confined to data procured from the vicinity of Melbourne, where Mr. Adamson has paid especial attention to the introduced species which have run wild, and assumed the positions and importance of native plants. It would be interesting to discover the date and particular circumstances under which these plants were introduced, and so to register their increase and migrations as to afford to succeeding observers the means of comparing their future condition with their present. In the early times of a colony, there is comparatively little difficulty in distinguishing the colonists from the native species; but as the surface of the land becomes artificially disturbed, the habits of all its plants are influenced,—the endemic species are driven from their native places, and take refuge in hedgerows, ditches, and planted copses, and from there associating with the introduced plants, are apt to be classed in the same category with them; whilst the introduced wander from the cultivated spots and eject the native, or, taking their places by them, appear, like them, to be truly indigenous.

There are many interesting subjects of inquiry connected with this replacement of one vegetable by another, such as determining the relations between the facility with which the new plants of certain countries or genera are introduced and establish themselves, and the countries such plants come from, or Floras of which they form a part.* Much of course depends on the new comer finding a suitable climate and soil for its future increase, but there may be more in the physique or constitution of the new comer that enables it to displace other plants which are apparently equally well (if not better) adapted to the circumstances it finds itself environed with. The nature of the past intercourse between Europe and Australia should lead us to anticipate that a far greater number of English plants are naturalized in Australia than of Australian in England; but the fact of importation does not explain naturalization, nor how it is that no Australian plant has become naturalized in England. This total want of reciprocity in migration is no doubt mainly attributable to climate, but then we have the apparent double anomaly, that Australia is better suited to some English plants than England is, and that some English plants are better suited to Australia than those Australian plants were which have given way before English intruders. For my own part, I am disposed to consider that the three elements of (1) abundant exportation of seed from Europe into Australia for agricultural and horticultural purposes, and scanty export of Australian seed produce to England; (2) better adaptation of Australia than England to support numerous forms of vegetable life; and (3) abundance of unoccupied ground in Australia as compared with England; are, combined, all but sufficient to account for the predominance of so many European naturalized plants in Australia, and for the converse state of things in England. But I think it may still remain to be seen whether the altered

* The reader will find some admirable discussions on this and kindred subjects in the chapters of A. De Candolle's 'Géographie Botanique Raisonnée' devoted to naturalized and introduced plants.
circumstances which seem to be temporarily favourable will prove to be so permanently: perhaps they
over-stimulate, and will, by gradually effecting a change on the constitution of the naturalized plants,
either render them eventually distinct forms, or bring on degeneracy and consequent extinction.

In all these discussions it must be borne in mind that no wild species is stationary in number of
individuals. None will survive all time; each must reach a period of maximum development, and
decline from it to extinction; and as we do not know that man can add to or take from the sum of
vegetable matter on the globe, it may very well be the case, that in every instance where his opera-
tions tend to an inordinate development of a species in individuals, he is shortening the period of
time otherwise allotted for the duration of that species. Man, as I have observed before (p. viii. in
note), may hasten or retard the operations of Nature, but cannot reverse them.

The following list refers almost entirely to Melbourne, a colony established about twenty years
ago. I have no such list of the introduced plants of any other Australian colony, and the scattered
notices of naturalized plants that I have met with in various travels, are not sufficiently definite to be
quoted. Thus, in Mitchell’s first journey, I find a singular observation, that Horehound and common
Grass, or Dog-tooth Grass, spring up wherever the white man sets his foot, by which I assume that
the Marrubium and Cynodon are meant, but cannot be sure.

Catalogue of some of the Naturalized Plants of the Australian Colonies, (chiefly compiled from the Mel-
bourne collections and notes of F. Adamson, Esq.) to which are added the species enumerated in
Mueller’s Reports, and Backhouse’s and Gunn’s MSS.

The letter A indicates that the species is also naturalized in the northern United States, according to
Professor Asa Gray’s Manual.

A 1. Ranunculus acrie, L. Very common at Melbourne. (Britain, pastures.)
A 2. Ranunculus sceleratus, L. Victoria. (Britain, pastures, ditches.)
A 3. Ranunculus muricatus, L. Victoria. (Europe, cornfields.)
A 4. Delphinium Consolida, L. New South Wales. (Europe, cornfields.)
 5. Papaver album, L. New South Wales. (Europe.)
 6. Papaver dubium, L. New South Wales. (Europe.)
 7. Escholtzia Californica, Cham. Victoria. (California.)
A 8. Argemone Mexicana, L. New South Wales. (South United States.)
A 9. Fumaria officinalis, L. (Britain, waste places.)
A 10. Barbarea praecox, L. An overpowering weed in Tasmania, Backh. (Britain, hedges, etc.)
A 11. Nasturtium officinale, L. (Britain, water plant.)
A 12. Sisymbrium officinale, L. Victoria. (Britain, roadsides.)
A 13. Capsella Bursa-pastoris, L. Ubiquitous. (Britain, waste places.)
 14. Lepidum sativum, L. New South Wales. (South Europe.)
A 15. Lepidum ruderale, L. Victoria. (Britain, waste places.)
A 16. Senebiera didyma, Pers. Victoria, Tasmania. (Britain, waste places.)
 (Britain, weed of culture.)
A 18. Brassica Napus, L. Tasmania. (Britain, weed of culture.)
A 19. Sinapis arvensis, L. Tasmania. (Britain, weed of culture.)
 20. Malva pusilla, With. Grows to a great size (2 feet) in cultivated ground, looking very
different from its usual small state. Victoria, Adamson. (Europe.)
A 21. Malva sylystris, L. Victoria and Tasmania. (Britain, roadsides.)
INTRODUCTORY ESSAY.

<table>
<thead>
<tr>
<th>No.</th>
<th>Taxon</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Malva crispa, L. Victoria</td>
<td>(Central Europe, fields and waste places.)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Malva rotundifolia, L. Tasmania</td>
<td>(Britain, fields and waste places.)</td>
<td></td>
</tr>
</tbody>
</table>
| 24 | *Silene Gallica*, L. Victoria | (South Europe, weed of cultivation.) Var. *quinquevulnera.*
Victoria and Tasmania. (South Europe, weed of cultivation.) |
| 25 | *Cerastium glomeratum*, Victoria | (Britain, waste places.) |
| 26 | *Cerastium vulgatum*, L. Victoria and Tasmania. | (Britain, waste places.) |
| 27 | *Sagina apetala*, L. Victoria | (Britain, waste places.) |
| 28 | *Stellaria media*, L. Ubiquitous. | (Britain, weed of cultivation.) |
| 29 | *Spergula arenaria*, L. Ubiquitous. | (Britain, weed of cultivation.) |
| 30 | *Linum usitatissimum*, L.? Sparingly, and never far from cultivated ground, Adamson. | (Britain, weed of cultivation.) |
| 31 | *Erodium cicutarium*, L. Tasmania | (Britain, waste places.) |
| 32 | *Erodium moschatum*, L. Adamson considers this to be decidedly indigenous on sandhills near the sea, whence it has spread to cultivated grounds, assuming a very large size and different form. Mueller notes it as an introduced plant. | (Britain, waste places.) |
| 33 | *Geranium molle*, L. Tasmania | (Britain, pastures.) |
| 34 | *Melilotus officinalis*, L. | (Britain, waste places.) |
| 35 | *Melilotus alba*, Lam. | (Britain, waste places.) |
| 36 | *Lathyrus odoratus*, L. | (South Europe, garden plant.) |
| 37 | *Lathyrus latifolius*, L. | (South Europe, garden plant.) |
| 38 | *Trifolium repens*, L. has spread most luxuriantly wherever there is moisture, often destroying all other vegetation. | (Britain, pastures.) |
| 39 | *Trifolium pratense*, L. Tasmania | (Britain, pastures.) |
| 40 | *Trifolium procumbens*, L. | (Britain, pastures.) |
| 41 | *Trifolium filiforme*, L. | (Britain, waste places.) |
| 42 | *Medicago sativa*, L. (South Europe, waste places.) | |
| 43 | *Medicago lupulina*, L. New South Wales. | (Britain, waste places.) |
| 44 | *Lotus tenuifolius*, Presl. Victoria | (South Europe, fields and hedges.) |
| 45 | *Lotus corniculatus*, L. Victoria | (Britain, fields and hedges.) |
| 46 | *Vicia angustifolia*, Both. | (Germany, fields and hedges.) |
| 47 | *Vicia sativa*, L. New South Wales. | (Britain, fields.) |
| 48 | *Ervum hirsutum*, L. (Britain, fields.) | |
| 49 | *Lupinus polyphyllus*, Doug. New South Wales. | (California, garden plant.) |
| 50 | *Psoralia pinnata*, L. Swan River. (Cape of Good Hope.) | |
| 51 | *Ulex Europaeus*, L. Naturalized about Hobarton, Backh. | (Britain. Naturalized in St.
Helena and Nilgherry mountains.) |
| 52 | *Amygdalus Persica*, L. New South Wales. | (Persia.) |
| 53 | *Rosa rubiginosa*, L. Forms thickets in Tasmania; also common in Victoria. | (Britain.) |
| 54 | *Alchemilla arenaria*, Lam. | (Britain, weed of cultivation.) |
| 55 | *Poterium Sanguisorba*, L. (Britain.) | |
| 56 | *Lythrum hyssopifolium*, L. In the streets of Sydney. | (South Europe.) |
| 57 | *Enothera suaveolens*, Desf. (North America.) | |
| 58 | *Polycarpontetraphyllum*, L. Ubiquitous. | (South Europe.) |
| 59 | *Portulaca oleracea*, L. Victoria, New South Wales. (Tropics.) | |
| 60 | *Foeniculum vulgare*, L. Victoria, New South Wales. (South Europe, garden plant.) | |
| 61 | *Pastinaca sativa*, L. Victoria. | (Britain, fields.) |
| 62 | *Sherardia arvensis*, L. Tasmania. | (Britain, fields and waste places.) |
63. Scabiosa atro-purpurea, L. Thoroughly established at Melbourne, *Adamson*. (South Europe, garden plant.)
64. Bellis perennis, L. Tasmania, in old gardens only. (Britain.)
65. Conyza ambigua, DC. (Europe, fields and waste places.)
66. Erigeron Canadensis, L. Ubiquitous. (United States.)
67. Bidens tripartita, L. (Britain.)
68. Chrysanthemum segetum, L. (Britain, weed of culture.)
69. Siegesbeckia orientalis, L. Ubiquitous weed of tropics. (India.)
70. Eclipta erecta, L. Ubiquitous weed of tropics. (India.)
71. Galinsoga parviflora, Cav. New South Wales. (South America.)
72. Pyrethrum inodorum, L. Tasmania. (Britain, weed of cultivation.)

A 73. Anthemis Cotula, L. Victoria. (Britain, weed of cultivation.)

A 74. Gnaphalium luteo-album, L. Forms a dense crop on newly turned-up land, to the exclusion of everything else. (Ubiquitous.)
75. Cryptostemma caeruleum, Br. Abundant at Perth, *Harvey*. (South Africa.)
76. Carthamus tinctorius, L. (India, cult.)
A 77. Onopordon Acanthium, L. (South Europe, cult.)
A 78. Cnicus lanceolatus, L. Found at Melbourne, but has not spread much, *Adams*. A pest in Tasmania. (Britain, fields and roadsides.)
A 79. Cnicus arvensis, Hoffm. Also a pest in Tasmania. (Britain, fields and roadsides.)

A 80. Cnicus palustris, Willd. Common in Tasmania. (Britain, meadows, etc.)
A 81. Carduus Marianus, L., has spread amazingly along the great road up-country, and at Melbourne, preferring the richest soils, *Adams*. Also a pest in Tasmania, *Harvey*. (South Europe.)

A 82. Cynara Scolymus, L. (South Europe.)

A 83. Centaurea solstitialis, L. Victoria. Very abundant in certain places, but never far from cultivation, *Adams*. (South Europe, fields and waste places.)
84. Tragopogon porrifolium, L. Victoria. (South Europe, fields and waste places.)
85. Lapsana punilla, L. So thoroughly introduced into Tasmania as to be apparently indigenous, *Gunn*. (Britain, fields.)
86. Hypochoris glabra, L. Victoria, Tasmania. (Britain, fields.)
A 87. Taraxacum Dens-leonis, Desf. Victoria, common. (Britain, ubiquitous in cultivated ground, etc.)
A 88. Sonchus asper, Vill. Victoria, Tasmania. (Britain, ubiquitous in cultivated ground, etc.)
A 89. Sonchus oleraceus, L. Growing everywhere, even on the roofs of houses in Melbourne, *Adamson*. (Britain, ubiquitous in cultivated ground, etc.)
A 90. Sonchus arvensis, L. (Britain, ubiquitous in cultivated ground, etc.)
A 91. Apargia autumnalis, Willd. (Britain, ubiquitous in cultivated ground, etc.)
A 92. Xanthium spinosum, L. First observed in April, 1857, in isolated patches near Melbourne. I am informed that it also first appeared in great quantities in the present year, at Queenscliff, near the Heads, *Adamson*.

A 93. Gorteris arvensis? Spreading with great rapidity around Melbourne; growing 2–3 feet high, and destroying all other vegetation. Fortunately cattle are very fond of it, *Adamson*. (Cape of Good Hope.)
A 94. Melissa officinalis, L. (South Europe, hedges, etc.)
A 95. Origanum vulgare, L. (Britain, hedges and waste places.)
A 96. Marrubium vulgare, L. (Britain, fields and roadsides.)
of Australia.]

INTRODUCTORY ESSAY.

A 97. Stachys arvensis, L. (Britain, fields and roadsides.)
A 98. Echium violaceum, L. New South Wales. (South Europe, waste places.)
A 99. Lithospermum arvense, L. Tasmania. (Britain, weed of culture.)
A 100. Echinopspermum Lappula, Sw. (South Europe.)
A 101. Verbena Bonariensis, L. New South Wales. (South America.)
A 102. Solanum Sodonueum, L. (South Europe.)
A 103. Datura Tatula, L. (South Europe.)
A 104. Verbascum Blattaria, L. (Britain, waste places.)
A 105. Verbascum virgatum, With. (Britain.)
A 106. Celsia Cretica, L. (South Europe.)
A 107. Veronica peregrina, L. (South Europe.)
A 108. Veronica serpyllisfolia, L. (Britain, fields and waste places.)
A 109. Anagallis arvensis, L. Common on cultivated ground, and has also spread into native pastures, Adamson. (Britain, weed of cultivation.)
A 110. Plantago major, L. (Britain, weed of cultivation.)
A 111. Plantago lanceolata, L. (Britain, weed of cultivation.)
A 112. Plantago Coronopus, L. Tasmania. (Britain, generally maritime.)
A 113. Polygonum Convuleus, L. Victoria, Tasmania. (Britain, weed of cultivation.)
A 114. Polygonum aviculare, L. Very abundant about Victoria. I have seen newly turned-up soil covered with a thick matting of it. Cattle eat it with avidity, Adamson. (Britain, weed of cultivation.)
A 115. Rumex Aacetosella, L. This often monopolizes the pastures about Melbourne, to the entire exclusion of the Grasses, Adamson. (Britain, weed of cultivation.)
A 116. Rumex crispus, L. (Britain, weed of cultivation.)
A 117. Urtica dioica, L. Only seen at Melbourne where houses are or have been, Adamson. (Britain, chiefly near houses.)
A 118. Urtica urens, L. (Britain, chiefly near houses.)
A 119. Chenopodium viride, L. Tasmania. (Britain, chiefly near houses.)
A 120. Atriplex patula, L. (Britain, chiefly maritime.)
A 121. Euphorbia helioscopia, L. (Britain, weed of cultivation.)
A 122. Alopecurus geniculatus, L. (Britain, weed of cultivation.)
A 123. Anthoxanthum odoratum, L. (Britain, weed of cultivation.)
A 124. Phalaris minor, Retz. (South Europe, weed.)
A 125. Phalaris Canariensis, L. (South Europe, weed.)
A 126. Holcus lanatus, L. (Britain, weed.)
A 127. Polypogon Monspeliensis, Desf. (South Europe, waste places.)
A 128. Avena fatua, L. (Britain, weed of cultivation.)
A 129. Dactylis glomerata, L. (Britain, fields and waste places.)
A 130. Poa annua, L. Ubiquitous. (Britain, weed of cultivation.)
A 131. Briza media, L. Victoria, Tasmania. (Britain, weed of cultivation.)
A 132. Briza minor, L. (Britain, weed of cultivation.)
A 133. Festuca Myurus, L. Ubiquitous. (Britain, weed of cultivation.)
A 134. Bromus sterilis, L. Victoria. (Britain, weed of cultivation.)
A 135. Bromus commutatus, L. Victoria. (Britain, weed of cultivation.)
A 136. Lolium perenne, L. Victoria, Tasmania. (Britain, weed of cultivation.)
A 137. Lolium temulentum, L. Victoria. (Britain, weed of cultivation.)
A 138. Hordeum murinum, L. Victoria. (Britain, road sides.)
A 139. Lepturus incurvatus, L. Victoria, Swan River. (Britain, salt-marsh.)
§ 15.

A List of some of the Esculent Plants of Australia.

In the course of reading preparatory to undertaking this Essay, I found scattered notices of edible and other plants, which I thought might be worth bringing together, and thus form the skeleton of an Australian 'Flora Cibaria,' for the use of future inquirers. It is extremely incomplete as an exposition of the uses to man of the Australian Flora, both because it omits many plants that have escaped my notice or memory, more that I know nothing of, and perhaps a still greater number that come under the category of being "eatable but not worth eating." I have not alluded to pharmaceutical plants: such may exist, and multitudes of the weeds, seeds, and roots of Australia will no doubt enjoy a more or less substantial reputation as drugs, for a period, and then be consigned to oblivion. This is the pharmaceutical history of the plants of all countries that have been long inhabited by civilized man, and Australia will form no exception to them. The fact being, that of the multitude of names of plants that appear in Pharmacopoeias, the number of really active and useful plants, known to be such, is extremely small.

I have been greatly indebted to Backhouse's Notes on the Edible Plants of Tasmania (Ross, 'Hobarton Almanack'), and to Gunn's and Mueller's various writings, for much of the following information.

Atherospermamoschata. Bark used as tea in Tasmania.
Tasmania aromatica. "Pepper-tree." Drupe used as condiment.
Cardamine hirsuta. This and other species afford excellent pot-herbs when luxuriant and flaccid.
Nasturtium terrestre. Ditto.
Nymphaea gigantea, and another species. Roots and fruit eaten.
Nelumbium speciosum. Seeds eaten raw, and roasted as coffee.
Hibiscus, allied to heterophyllus? Yields a sorrel.
Billardiera mutabilis. Berries acid and pleasant.
Pittosporum acacioides. Yields an excellent gum.
Vitis sp. Tubers and fruits eaten.
Meliaceae. Various species of Trichilia? bear acidulous drupes.
Wallrothia sp. Fruit edible.
Triphasis glauca. A small lemon, Mueller.
Oxalis sp. Leaves acid (sorrel).
Geranium spp. parviflorum, and others. Roots eaten by Natives.
Adansonia Gregorii. Dry, acidulous pulp of fruit eaten.
Bombax. Wood used for boats.
Brachychiton sp. Wood full of mucilage; seeds eatable, and make a good beverage.
Corea alba. Cape Barren Tea.
Castanospermum edule. Moreton Bay Chesnut.
Acacia. Various species yield excellent eating gum, as A. mollissima, of which the gum is soft and sweet.
Acacia Sophore. Seeds eaten by natives of Tasmania. "Boobyalla."
Acacia pendula. Myall, cattle are fed on its leaves, Mitchell.
Erythrina. Wood used for shields and boats.
Canavalia Baueriana. The Mackenzie Bean.
of Australia.

INTRODUCTORY ESSAY.

Trigonella suavissima. Excellent spinach, Mitchell.

Rubus Gunnianus. The best native fruit in Tasmania.

Parinarium. The Nonda fruit of Leichardt, Mueller.

Terminalia. Fruit eaten; gum also eaten.

Jambosa eucalyptoides. Rose-apple.

Leptospermum. Leaves of various species used for tea.

Eugenia sp. White apple of tropics, East Australia.

Eucalyptus dumosa, and others? Water contained in roots: native name, "Weir-malleb." Also yields a kind of manna, called Lerp, or Laap (the nidus of an insect), consisting of starch.

Eucalyptus mammifera. Manna formed on leaves.

Eucalyptus Gunnii. Cider-tree of Tasmania.

Portulaca oleracea. Purslane; acidulous pot-herb.

Nitraria Billardieri. Fruit eatable, Mueller.

Tetragonia expansa. New Zealand spinach.

Mesembryanthemum precocx. Fruit eatable, Mueller.

Sambucus Gaudichaudiana. Fruit fleshy, sweetish.

Cucumis pubescens. Fruit abundantly eaten.

Lagenaria vulgaris. Gourds used for bottles, etc.

Rhzizophora?, Kandelia, etc. Wood used for canoes; young shoots beaten into a paste and eaten.

Coprosma hirtella. Fruit sweet, eatable, not agreeable.

Coprosma microphylla and C. nitida. Native currant; fruit good.

Sonchus asper. Stems and roots eaten.

Microseris. Roots used roasted by the Natives.

Mimusops Kauki. Fruit eatable.

Maba laurina. Green, palm-like fruit, Kennedy.

Gaultheria antipoda var. Fruit of superior flavour, Gunn.

Lissanthes sapida. Fruit eatable.

Styphelia ascendens. Fruit eatable.

Leucopogon Richeli, and others. Fruit eatable.

Physalia parvi flora. Berries eatable.

Solanum vesicum. Berries eatable and good. "Gunyang."

Polygonum adpressum. "Macquarie Harbour Vine." Fruit subacid, used for tarts and preserves; leaves taste of sorrel.

Boerhaavia acuminate. Root eaten.

Santalum oblongatum. Fruit eaten, Leichardt.

Santalum persicarium. Root bark used as food.

Santalum lanceolatum. Fruit eatable and agreeable, Mueller.

Fusanus acuminus. "Quandong."

Exocarpus. Fruit of various species edible.

Atriplex Halimus. Once used as a pot-herb in New South Wales, and called "Botany Bay Greens."
Rhagodia parabolica. Yields one-third its weight in salt, Mitchell.
Salicornia Indica. Young shoots pickled.
Ficus sp.? The "Clustered Fig." Eaten.
Morus Calcar-galli. Mulberry.
A species of Casuarina? is the Mallee Oak, which contains water in the cavities of the trunk.
Casuarina sp. Native throwing-stick made of its wood. Shoots of C. quadriacutis acid.
Zamia sp. Seeds of various species eaten.
Cymbidium canaliculatum. Mucilaginous stems, etc., eaten.
Caladenia and various other Orchids have edible tubers.
Gastrodia sesamoides. Roots cooked and eaten by the Tasmanian natives.
Livistona inermis. "Palm Cabbage."
Arceus sp. Used for baskets.
Seaforthia sp. Leaves used for water-baskets.
Pandanus spiralis, P. aquaticus. Mucilaginous young parts and kernels of fruit eaten.
 Typha latifolia. Root an excellent food. (The pollen is made into cakes in New Zealand and Scinde.)
Caladium macrorhizon. Cultivated; root eaten.
Taccas spp. Tubers eaten, full of starch.
Aponogeton sp. Ditto.
 Dioscorea spp. Tubers of a wild yam eaten.
Hamodori sp. Roots eaten.
Philydrum lanuginosum. Leaves used for women's girdles.
Flagellaria Indica. Used for cordage.
Aestelia alpina. Fruit sweet, and base of leaves eaten.
Xanthorrhoea sp. Bases of young leaves eaten raw and roasted.
Xerotes sp. Leaves used for basket-work.
Anthistiria australis. The best fodder-grass of Australia.
Panicum laevinode. Grains pounded yield excellent food.
Oryza sativa. The Rice was found by Mueller in tropical Australia.
Pteris aquilina, var. esculenta. Root eaten raw and roasted.
Dicksonia antarctica. Pulp of top of trunk full of starch, eaten raw and roasted.
Alaophila australis. Ditto.
Agaricus campestris. Common Mushroom.
Mytilta australis. The native bread (a huge Truffle) of Tasmania.
Cyttaria Gunnii. An edible Fungus, on the branches of Fagus Cunninghamii.

§ 16.

Outlines of the Progress of Botanical Discovery in Australia.

In the following rapid sketch of the labours of those who have mainly contributed to develop the botanical riches of Australia, I have endeavoured to give some idea of the comparative amount
INTRODUCTORY ESSAY.

and value of the results of the various explorers and collectors, to indicate the extent of coast and interior wholly or partially explored, and to enumerate the narratives and other works which will be found to contain the most botanical information.

I have arranged the subject-matter under four heads.

1. Voyages of Discovery and Survey, undertaken by the English, French, and American Governments.

2. Land Expeditions undertaken by order of the Home or Colonial Governments.

3. Colonial Botanists and Botanical Gardens.

4. Botanical explorers who have worked chiefly on their own or other private resources.

In a few cases I have had to depart from this arrangement, some of the most distinguished Australian explorers having served in several capacities. Thus Allan Cunningham filled the appointments of His Majesty's Botanist in Australia, Colonial Botanist of New South Wales, Botanist to Captain King's voyages, and has also been the leader of several inland exploratory journeys. Dr. Mueller has also distinguished himself in several scientific capacities, and, for extent and range of his journeys, ranks second to Allan Cunningham alone of all Australian botanical explorers.

I. VOYAGES OF DISCOVERY AND SURVEY.

For the first glimmerings of light upon the vegetation of Australia, we are indebted to the great buccaneer and navigator Dampier, who in 1688 visited Cygnet Bay, on the north-west coast of the Continent; and in 1699 he returned to the west and north-west coasts in H.M.S. 'Roebuck' (King's Voy., 1. xxii). The herbarium of Dampier is still preserved at Oxford, and (as I am informed by Mr. Baxter, Curator of the Oxford Botanic Gardens) contains forty specimens, eighteen of which are figured in his 'Voyage,' published in 1703.

The first botanical investigators of any part of Australia were Mr., afterwards Sir Joseph Banks, and his companion, Dr. Solander, the Naturalists of Captain Cook's first voyage. Cook's ship the 'Endeavour' anchored in April, 1770, in Botany Bay, so called by its discoverers from the number and variety of the plants collected by the naturalists during their week's stay there. Proceeding thence northward they landed successively in Bustard Bay, lat. 24° 4', Thirsty Sound, Point Hillock, and Cape Grafton, lat. 16° 57', beyond which point the 'Endeavour' struck on a reef, and after incurring imminent peril, she was brought to the Endeavour River, lat. 15° 26', on the 18th June, 1770. There it was found that the herbarium had suffered from the immersion of the ship, but the greater part was eventually preserved. The 'Endeavour' subsequently visited Cape Flattery, Lizard Island, Weymouth Bay (12° 42'S.), Possession Island, the northern extreme of Australia and Wallis's Islands.

The plants of Cook's first voyage formed part of the famous Banksian herbarium, which, after the death of its possessor, passed to the British Museum. Of the Australian plants, consisting of nearly 1,000 species, a portion only have been published in Brown's 'Prodromus Florae Novae-Hollandiae.'

Captain Cook, on his second voyage, was accompanied by J. R. Forster and his son George, who made many discoveries in the Pacific islands, Fuegia, and New Zealand, but only one of his ships, the 'Adventure,' commanded by Captain Furneaux, visited any part of Australia, arriving at Adventure Bay, Tasmania, in February, 1773.

In Cook's third voyage, Adventure Bay was again visited, in January, 1777, and a considerable collection made by Mr. David Nelson, and Mr. Anderson, the surgeon of the 'Resolution,' which are preserved in the Banksian herbarium.
In 1791, Captain Vancouver's expedition, consisting of two ships, the 'Discovery' and 'Chatham,' when on their voyage to north-west America, discovered King George's Sound. The expedition was accompanied by Mr. A. Menzies, a zealous botanist, who formed a good collection at this port, some of the plants of which appear in Brown's 'Prodromus.'

In 1801, Captain Flinders's voyage, undertaken to complete the discovery of Terra Australis, was commenced: and it was continued during the two succeeding years in the 'Investigator,' 'Porpoise,' and 'Cumberland.' Owing to the late Robert Brown having accompanied this voyage, it proved, as far as botany is concerned, the most important in its results ever undertaken, and hence marks an epoch in the history of that science. Brown united a thorough knowledge of the botany of his day, with excellent powers of observation, consummate sagacity, an unerring memory, and indefatigable zeal and industry as a collector and investigator; he had further the advantage of being accompanied by a botanical draughtsman, Ferdinand Bauer, who proved no less distinguished as a microscopic observer than as an artist; and he had a gardener, Mr. Peter Good, to assist in the manual operations of collecting and preserving. Hence, when we regard the interest and novelty of the field of research, the rare combination of qualities in the botanist, and the advantages and facilities which he enjoyed, we can easily understand why the botanical results should have been so incomparably greater, not merely than those of any previous voyage, but than those of all similar voyages put together. The 'Investigator' reached King George's Sound in 1802, where Brown collected 500 species, and afterwards coasted along through Bass's Straits to Port Jackson. In July, 1802, the northern survey was commenced, and that of the Gulf of Carpentaria, where the rotten state of the ship obliged her captain to run to Timor, whence they returned by the west and south coast again to Port Jackson. The 'Investigator' was here condemned, and Captain Flinders hired another ship to sail for England, in which he took the duplicates of Brown's collections. Unfortunately this vessel was wrecked on the Cato Reef, in lat. 23° S., but the Captain, and eventually the whole crew, reached Port Jackson: the duplicate collections were of course lost. Brown and Bauer had meanwhile been left in New South Wales, where they explored the Blue Mountains; and Brown also visited the islands of Bass's Straits and Tasmania, where he resided for some months, at Risdon, on the Derwent.

Brown and Bauer finally returned to England in the 'Investigator,' arriving in 1805 with a complete set of all their collections. On his return Brown was directed by the Board of Admiralty to publish his plants, and the commencement appeared in 1810, as the 'Prodromus Flore Novae-Hollandiae,' and another contribution in 1814, as the Appendix to Captain Flinders's Voyage. The first of these works, though a fragment, has for half a century maintained its reputation unimpeached, of being the greatest botanical work that has ever appeared.

Captain King's voyages come next under review, and owing to that able officer's own love of natural history, and the encouragement he consequently gave to the botanist, Allan Cunningham, who accompanied him, his surveys have been the means of adding very largely to our knowledge of the vegetation especially of tropical Australia. As however the botanical interest of his expeditions centres in Mr. Cunningham, who was even more celebrated as an inland explorer and Colonial botanist than as the companion of Captain King, I shall include a notice of the principal points touched at by Captain King in the following brief sketch of Cunningham's career.*

Allan Cunningham (born 1791) was, when a young man, engaged at Kew in the preparation of

Aiton's 'Hortus Kewensis,' and was thence, in 1814, despatched, through the instrumentality of Sir J. Banks and Mr. Aiton (King's Gardener at Kew), on a botanical mission to the Brazils, and thence, in 1816, to New South Wales. In 1817 he accompanied Lieutenant Oxley's* expedition to explore the Lachlan and Macquarrie rivers. This journey, a toilsome and painful one of 1,200 miles, extended across the Blue Mountains, within the parallels of 34° 30' and 32° S. lat., and 149° 43' and 143° 40' E. long., and produced about 450 species of plants.

After his return to Sydney, Mr. Cunningham was engaged as botanist to Captain King's surveying voyage, and arrived in the 'Mermaid' at King George's Sound, early in 1818: here traces of Vancouver's garden were searched for in vain. Thence they proceeded to the islands and west coast near Dampier's Archipelago, the Goulburn islands, and visited Timor before returning to Port Jackson. This voyage seems to have yielded very few novelties, for in a letter to Mr. Heward he says that the aggregate of his collections made on the coasts of Australia, does not exceed 300 species.

Subsequently Mr. Cunningham visited the Illawarra district, perhaps the richest botanical province in Australia, and in 1818 accompanied Captain King to Hobarton and Macquarrie Harbour.

The survey of the north and west coasts was commenced by King in the 'Mermaid,' in May, when Port Macquarrie and the Hastings River were visited, and the following places were successively touched at,—Rodd's Bay, Percy Isles, Cleveland Bay, Halifax and Rockingham Bays, the Endeavour River: after passing through Torres Straits, they stood across the Gulf of Carpentaria to Liverpool River and Goulburn Islands for the second time, Vernon Islands, Cambridge Gulf, and Port Warrender, whence they again visited Timor before returning to Port Jackson.

The third voyage of the 'Mermaid' was undertaken in June, 1819, when Cunningham visited Port Bowen, the Endeavour River, Lizard Island, Cape Flinders, Pelican, Haggerston, and Cairncross Islands, Goulburn and Sim's Islands, Montague and York Sounds, Port Nelson, Brunswick Bay, and returned to Port Jackson in December.

In 1821, the survey was continued, when Cunningham visited Percy Islands, Cape Grafton, Lizard Island, Cape Flinders, Clark's Island, and for the third time, Goulburn and Sim's Islands, Careening Bay, Prince Regent's River, and Hanover Bay, whence they proceeded to the Mauritius to refit. Thence they sailed to King George's Sound, where Cunningham found no traces of his own garden, formed (in 1818) with great labour. Thence they proceeded up the west coast to Dirk Hartog's Islands and Cygnet Cove, whence they sailed for Port Jackson, where terminated Cunningham's connection with the coast survey.

In 1822, Cunningham again visited Illawarra, and afterwards crossed the Blue Mountains, to the water-heads of the Macquarie. On his return to Sydney in January, 1823, he prepared for a more extended expedition, in which he opened up some of the most fertile districts of New South Wales. Starting from Bathurst he proceeded to the Liverpool Plains, to which he descended from the Pandora's Pass, discovered by himself, on the Blue Mountains, and visited the valleys beyond Hawksbury Vale.† In November, 1823, he again left Sydney to explore another pass that had been discovered leading to the Hawkesbury.

In 1824, Cunningham visited the southern parts of the Colony, by Camden, Argyll, Lakes George and Bathurst, the source of the Murrumbidgee, Brisbane Downs, and Shoalhaven Gullies.

* See Journals of Two Expeditions into the Interior of New South Wales, by John Oxley, Lieut. R.N. 4to, 1820.

† An Account of this journey will be found in Field's 'New South Wales,' p. 133.
In the autumn of the same year he visited Illawarra for the third time, and still later in the year he explored the Brisbane River with Lieutenant Oxley.

In 1825 another expedition to the north-west was undertaken by Cunningham. Crossing the Nepean he proceeded to the southern feeders of the Hunter, and thence to the Pandora's Pass, descended to the Liverpool Plains, and ascended the Camden Valley to lat. 30° 47' S., long. 150° E. The three last months of the same year were spent in examining Wellington Valley, and the six following at Cox's River and the Illawarra district.

In 1826, Cunningham visited New Zealand. Returning in January, 1827, he undertook the command of another most arduous expedition, in which he skirted the Liverpool Plains, crossed the Peel and Dumaresq Rivers, and discovered Darling Downs, in lat. 28° S., Cumming's Downs, and Peel's Plains, and after making various detours, returned to the Hunter's River, and thence by a new route to Paramatta and Sydney.

In 1827 and 1828, Cunningham was collecting at Bathurst and Illawarra. In June 1828, he again visited Moreton Bay * with Mr. Fraser the colonial botanist, made an expedition to Mount Lindsay, to the Limestone station in Bremer River, discovered another pass across the mountains, proceeded north-west to Hay's Peak and Lister's Peak, and returned to Brisbane and Sydney.

In 1829, Cunningham again explored the Blue Mountains, and in May of the same year took a third voyage to Moreton Bay, visited the head-waters of the Bremer and Campbell's Range, Norfolk Island, and Phillip Island, and returned to Sydney. In December he visited Illawarra and Broken Bay.

In January, 1831, Cunningham crossed the Blue Mountains to Cox's River, and in February he sailed for England, where he took up his residence at Kew. In 1832, owing to the death of Charles Fraser, the situation of Colonial Botanist in New South Wales fell vacant; it was offered to Cunningham, but he declined in favour of his brother Richard, who reached Sydney in 1833, and was murdered in Mitchell's journey in 1835. The appointment was thereafter again offered to Allan Cunningham, and being accepted, he sailed for Port Jackson in 1836. The duties expected from the Colonial Botanist were however, at that time, neither scientific nor such as any one having the good of the colony at heart could conscientiously perform, and Cunningham soon resigned the appointment.

In 1838, Cunningham again visited New Zealand, and returned in the same year to Sydney. His labours were now rapidly drawing to a close; his originally robust and long severely tried constitution having been gradually undermined during twenty-two years' incessant travelling, was now found to have been so irremediably shattered in New Zealand, that he was in 1839 reluctantly compelled to decline accompanying Captain Wickham in his survey of the north-west coast; soon after which he died, in the Botanic Garden, Sydney, in June 1839, at the early age of forty-eight.

I have dwelt at length upon Allan Cunningham's botanical travels, because they are by far the most continuous and extensive that have ever been performed in Australia, or perhaps in any other country. His vast collections were, for the most part, transmitted to Kew, whence they were transferred to the British Museum. A very complete set was however given to Sir W. Hooker, and his own private herbarium was left to his early and attached friend R. Heward, Esq., F.L.S., from whose memoir most of the above information is abridged.

Cunningham's most important published works consist of an Appendix to 'King's Voyage,' and the 'Prodromus Florae Nova-Zelandiae,' published in the 'Companion to the Botanical Magazine' and the 'Annals of Natural History.' He also wrote 'A Specimen of the Indigenous Botany of the

* I find in Sturt's Australia (vol. i. p. 154) that an account of this journey was published in Sydney.
Blue Mountains,' the result of observations made in October, November, and December, 1822, prepared in 1823, and published (1825) in Field's 'Australia,' p. 323; and a 'Journal of a Route from Bathurst to Liverpool Plains in 1823,' \textit{ibid}, p. 131.

Captain King was succeeded by Captain Wickham, who in 1837 commissioned H.M.S. 'Beagle' to explore certain parts of north-western Australia, and the best channels through Bass' and Torres' Straits. Owing to Captain Wickham's illness the command devolved on Captain J. Lort Stokes, who drew up the narrative of the voyage. No botanist accompanied the Expedition, nor is there in the narrative any information of importance on the vegetation of the coasts surveyed; but Mr. Bynoe, the surgeon, made some valuable collections, chiefly on Dupuch Island, the Abrolhos, the Victoria River, Bass' Straits, and in New South Wales, which are preserved in Sir W. Hooker's herbarium. The 'Beagle' returned to England in 1843.

The establishment of Port Essington was founded in the year 1838, by Sir Gordon Bremer. Mr. M'Gillivray was stationed at it for some time during the Expedition of Captain Blackwood; and Mr. Armstrong, a collector sent by Kew Gardens, resided there for several years, and made important collections, a considerable portion of which are in Sir W. Hooker's herbarium.

In 1840, Captain Sir James Ross visited Hobarton in H.M.S. 'Erebus' and 'Terror,' and spent the months of August, September, and October there, during which extensive collections were made by Dr. Lyall and myself, in the Derwent, and in the Lake district of Tasmania, and at Port Arthur.

In 1841, the same Expedition returned to Hobarton to refit, and stayed through March, April, and May, when the botanist visited the Huon River and Richmond districts. From Tasmania the Expedition proceeded to Port Jackson, where also a considerable herbarium was formed, chiefly in the neighbourhood of Sydney and Botany Bay.

In 1842, Captain Blackwood was sent out in H.M.S. 'Fly' and 'Bramble,' to make a further survey of the tropical coasts of Australia, in which voyage he was accompanied by Mr. M'Gillivray, as Naturalist. The narrative of the Expedition was written by Mr. Jukes (Geologist to the Expedition), and contains no botanical matter. The coasts and islands visited by the 'Fly' and 'Bramble' had been previously explored by Cunningham, and subsequently by Mr. M'Gillivray, a skilful naturalist, in H.M.S. 'Rattlesnake,' whose collections were sent to Sir W. Hooker.

In 1847, H.M.S. 'Rattlesnake' was fitted out by Captain Owen Stanley, to discover openings through the Barrier Reefs in Torres' Straits, to the northward of Raine Island passage, to examine Harvey Bay as a site for a new settlement, and to make a general survey of the Louisiade Archipelago.

Many places were visited between Sydney, Cape York, and Port Essington, and excellent collections made at Port Curtis, Rockingham Bay, Port M hello, Cape York, Go odl, Lizard, and Moreton Islands. The Expedition was accompanied by Mr. M'Gillivray, upon whom the task of editing the narrative of the voyage devolved, owing to the death of its commander, in Sydney. Mr. M'Gillivray's narrative abounds in interesting observations on the vegetation of Australia. Among the most noticeable discoveries are, that of a clump of Cocoa-nuts on Frankland Islands, whence, no doubt, the nuts and husks were washed to the mainland, where they had excited the curiosity of Cook, King, etc.: of \textit{Caryota urens} and a native \textit{Musa}, on the Peninsula of Cape York, and of the \textit{Balanophora fungosa} in Rockingham Bay. The author also mentions the existence of the Pomegranate on Fitzroy Island, where (if no error exists) it has no doubt been planted.

The account of Mr. Kennedy's disastrous attempt to penetrate from Rockingham Bay to Port Curtis is appended to Mr. M'Gillivray's work; it terminated in the murder of its leader, and death,
by starvation, of most of his party. Amongst the survivors was Mr. Carron, the botanist, whose narrative is full of excellent observations on the vegetation of the swampy and almost impracticable country traversed. It includes the notice of a *Nepenthes*, which, with the rest of the collection, was lost. Mr. M‘Gillivray's herbarium was given to Sir W. Hooker, and contains several hundred species in excellent preservation.

The only other English naval expedition remaining to be noticed is that of Captain Denham, now surveying the Pacific Islands in H.M.S. 'Herald.' He was accompanied by Mr. M‘Gillivray and a botanical collector; and has sent some interesting collections from Lord Howe's Island, between Australia and New Zealand, and from Dirk Hartog's Island and Sharks Bay.

The French Expeditions rank next in importance to the British. Of these the first is that of D‘Entrecasteaux. In 1792 the French Expedition, under General D‘Entrecasteaux, visited Tasmania and south-western Australia. Considerable collections were made by M. J. J. Labillardière, who published figures and descriptions of 265 of the most interesting in his 'Novae-Hollandiae Plantarum Specimen,' 2 vols. 4to, Paris, 1804, and described a few others in the narrative of the voyage, which was written by himself, a work accompanied by folio plates of several of the plants.

In 1800, the Expedition of Captain Baudin, in the 'Géographie,' 'Naturaliste,' and 'Casuarina,' left France on a voyage of discovery and survey along the shores of Australia. Out of a large staff of naturalists, MM. Leschenault de la Tour, the botanist,* and Riedlé, Sautier, and Guichenot, all gardeners, seem to have been chiefly occupied with the botanical department, and formed large collections, which are now in the Jardin des Plantes. They were collected principally on the islands of the north-west and west coasts, in Tasmania and New South Wales. These were not published in a connected manner, but they gave rise to various papers, in the 'Mémoires du Muséum' and 'Annales du Muséum,' by Desfontaines and others.

Some general remarks on the botany of Australia and Tasmania are given by M. Leschenault in the second volume of the Narrative of the Expedition (4to, Paris, 1816); and many of the plants figured in the fine work of M. Ventenat, 'Jardin Malmaison,' were introduced into Europe by the officers of this voyage.

In 1818 and 1819, Captain Freycinet's Expedition in the French corvettes 'Uranie' and 'Physicienne' visited the Baie des Chiens Marins on the west coast of Australia, where considerable collections were made by M. Gaudichaud, and afterwards, at various parts of New South Wales, Port Jackson, Botany Bay, the Blue Mountains, etc. A few of the plants were published by the same naturalist and others,† in a quarto volume of letterpress and folio of plates (Paris, 1826).

In 1824, Captain Duperrey visited Sydney in the corvette 'La Coquille,' on a voyage of discovery. She carried two naturalists, M. D'Urville (afterwards the celebrated Admiral, and an ardent botanical collector), and Lesson, an accomplished zoologist. A portion of the plants of this voyage were published in 1829, by MM. Brongniart, D'Urville, and Bory de St. Vincent, in a series of 78 folio plates, and a quarto volume of 232 pages; both parts are however incomplete.

In 1827 the French discovery-ship 'L'Astrolabe,' commanded by Captain D'Urville, visited Port Jackson; she was accompanied by M. Lesson, as naturalist. Some botanical collections were made, but more important ones were received from Mr. Fraser, Superintendent of the Sydney Botanic

* Two other botanists, A. Michaux (afterwards author of the 'SylvaAmericana'), and J. Delisse, also embarked on this expedition, but left it at the Isle of France, on the outward voyage. Bory de St. Vincent, afterwards eminent as a botanist, embarked as zoologist, and was also left at the Isle of France.

† The Lichens and Fungi by Persoon, *Algae* by Agardh, Mosses and *Hepatica* by Schwein.

The Lichens and Fungi by Persoon, *Algae* by Agardh, Mosses and *Hepatica* by Schwein.
Gardens. Of these a few were published by Lesson and A. Richard, in 1832, in an octavo volume of letterpress, and folio of plates.

Captain D'Urville again visited Australia, Sydney, and also Tasmania, when on his memorable voyage to the Antarctic regions in 1839, when collections were made by MM. Hombron and Jacquinot, the medical officers of the Expedition, at Sydney, Port Essington, Raffles Bay, etc., but very few of them have been published.

The United States Exploring Expedition, under Commodore Wilkes, visited Tasmania and Sydney in 1839, and large collections were made, near Port Jackson, etc. These have been in part published by Professor Asa Gray, of Harvard University, Cambridge, in his excellent 'Botany of the United States Exploring Expedition,' of which one quarto volume of letterpress and one folio volume of plates alone have hitherto appeared.

The Austrian exploring-frigate 'Novara' has returned to Europe during the passage of these sheets through the press, and has no doubt brought valuable collections, but I am not aware of their nature or extent.

II. LAND EXPEDITIONS UNDERTAKEN BY ORDER OF THE HOME OR COLONIAL GOVERNMENTS.

The first Colonial Expeditions that added much to our knowledge of the botany of Australia were those of Lieutenant Oxley, Surveyor-General of New South Wales, across the Blue Mountains. Mr. Oxley started on his first expedition, in 1817, to ascertain the course of the Lachlan, and was accompanied by Allan Cunningham, as King's Botanist, and Mr. Fraser, as Colonial Botanist. Early in 1818, Mr. Oxley, with Mr. Fraser, again left Sydney, to examine the course of the Macquarie. On both these occasions large collections were made, and the journal of the Expedition was published by Lieutenant Oxley in one quarto volume (London, 1820).

The land expeditions of Allan Cunningham, in 1826 and 1827, are the next in date; they have been already noticed (at p. cxiv.). Captain Sturt's Expedition was despatched to follow up Cunningham's and Oxley's discoveries.

Captain Charles Sturt, an officer of his Majesty's 39th Regiment, then on military duty in New South Wales, was commissioned by the Colonial Government to ascertain the course of the rivers rising on the western watershed of the Blue Mountains. He accordingly left Sydney in 1828, proceeded to the Wellington Valley, then the most remote north-western settlement, and proceeded down the Macquarie to the Darling River, whence he returned to Sydney. In 1829 another Expedition was fitted out, under Captain Sturt, and despatched to the Murrumbidgee River, when the Murray was discovered, and named, and followed to its debouch in Lake Alexandria, and thus into the sea, from whence the Expedition returned by the same rivers. There are no botanical observations in the narrative of these remarkable and interesting journeys, nor is there any notice of collections having been made.

In 1844, Captain Sturt started from Adelaide on another and still more remarkable journey, when, advancing north into the heart of Australia, he reached the 25th parallel of latitude in longitude 139 E. On this occasion a considerable collection was made, amounting to about 100 species, some of which were described by Brown in the appendix to Captain Sturt's narrative of the Expedition.

Captain (now Sir George) Grey's Expeditions on the west coast of Australia were organised in the hope of discovering a large river or inlet which was supposed to exist in that quarter. The
party arrived in Hanover Bay (lat. 15° S.) in 1837, whence several inland journeys were made to the south-west, and the Glenelg River discovered.

Captain Grey's second expedition was made in whale-boats, which he took with him in a sailing-vessel from Swan River. He first landed on Bernier Island (lat. 25° S.), where he made a depot; thence he crossed to the Gascoyne River, and explored the coasts for some miles to the northward, and after encountering great difficulties and hardships, he returned to Bernier Island, where he found that the stores had been utterly destroyed by the ocean, which during the stormy interval had swept over the island. This obliged Captain Grey to return to the mainland, which he reached at Gantheaume Bay (lat. 27° 50' S.). Here the boats were abandoned, and the overland journey to Swan River commenced, which was reached by a remnant of the party after having suffered incredible hardships from starvation and the natural difficulties of the country. Of course no collections of plants were brought back, but the commander's narrative abounds in valuable observations on the vegetation of the countries visited. Amongst many other observations worthy of note, are that of an Araucaria occurring on the mountains of the interior, of a Swan River Banksia near Prince Regent's River, of Xanthorrhoea attaining the latitude of 28°, and Zamia of 29°, in which latitude the common Sowthistle appears to have been found abundantly. Many notices of edible plants are scattered through the narrative, including that of a 'Wild Oat,' with large grains, which Captain Grey states has been cultivated with success as a cereal in the island of Mauritius.

Major Mitchell's extensive journeys come next under review, and owing to his great fondness for natural history, and excellent system of observation, his writings and his collections have both proved eminently useful in advancing our knowledge of Australian botany.

Mitchell's first Expedition originated in a report of the existence of a large river in central Australia, called the Kindur, in search of which he started in November, 1831. His party proceeded northward from Sydney, crossed the rivers Hawkesbury and Hunter, and then the watershed in lat. 32° S., long. 151° E.; thence they traversed Liverpool Plains, and traced the Gwydyr to lat. 29° S., returning to Sydney in March. The collections were divided between Mr. Brown and Dr. Lindley.

The second Expedition was organized in 1835, to explore the course of the Darling River. On this journey the Boga? River was followed from its sources to its junction with the Darling in lat. 30° S., long. 146° E., and the latter river, thence traced in a south-western direction to lat. 32° 30' and long. 142° 30'. Richard Cunningham, the brother of Allan, who was then Colonial Botanist, accompanied Major Mitchell, and was murdered by the Blacks. The plants were given to Dr. Lindley, by whom many have been described in notes to the 'Journal of the Expedition.' The Trigonella suavisima was found on this journey, and copiously used as an excellent Spinach.

Mitchell's third Expedition left Sydney in 1836, with the object of following the Darling from the point where he had left it to its confluence with the Murray. This plan was however modified, and the Lachlan river was followed instead to its junction with the Murrumbidgee, and the latter to its confluence with the Murray, which was traced to the Darling in lat. 34° S. and long. 142° E.: thence the party returned to the Murrumbidgee, and proceeded in a south-western direction to the mountains of Victoria. There Mount William (alt. 4,500 feet) was ascended, and many plants found and observations made on the peculiarities of the alpine vegetation. In July the party reached the Glenelg River, and followed it to the sea at Discovery Bay, in Bass' Straits, which they reached in August. The return journey was made through the heart of the Victoria alps, crossing the Bagungum, Mur-
ray, and Murrumbidgee rivers high up in their course, and reaching Goulburn in New South Wales in the following November. In this very extraordinary journey Mitchell was accompanied by a good plant-collector named Richardson, and the collections were brought safe and in good condition to Sydney, and sent to Dr. Lindley, by whom many have been described.

The narratives of the three journeys were published in two volumes, 8vo; they abound in useful and instructive information to the geographer, and especially to the naturalist. Dr. Lindley's descriptions are appended as notes to the pages of the volume, and render it a most important work to the botanist.

Mitchell's fourth Expedition was to subtropical Australia, and was undertaken in the hope of discovering a river flowing into the Gulf of Carpentaria, which would take much of the Australian produce to the sea without passing through Torres Straits. Very fine collections were made in this journey, chiefly amongst a group of mountains 2–3,000 feet high, discovered in lat. 25° S. and long. 147° E. The plants were given to Dr. Lindley and Sir W. Hooker, by whom descriptions were drawn up and appended to the narrative of the journey, which was published in 1848.* Like Mitchell's other works, this contains excellent landscapes from sketches made by himself, which give faithful as well as artistically good views of the vegetation he describes, and render his works as attractive as they are useful to the naturalist.

In 1844 the lamented Dr. Ludwig Leichardt, after spending several years in New South Wales, started on his adventurous journey from Moreton Bay to Port Essington. This Expedition originated in private enterprise, but it was promoted by a public subscription in the colony, and I have hence classed it amongst the Colonial enterprises. Starting from Moreton Bay, he proceeded north-west to the Gulf of Carpentaria, coasted its head, and travelled northwards through Arnheim's Land to Port Essington, which he reached after a journey of a year and two months.

The narrative of Dr. Leichardt, who appears to have had a very considerable knowledge of botany, contains as much Botany as Geography, and is by far the fullest published detailed account of the tropical vegetation of the interior of Australia that we possess.

In December 1846, Dr. Leichardt started from Sydney with the view of crossing Australia from Moreton Bay to Swan River, a journey which he calculated would occupy two years and a half. Since his departure, however, from a point on his previous journey, a little to the north-west of Moreton Bay, nothing has been heard of this accomplished man and adventurous explorer.

Dr. Leichardt's collections became, I believe, the property of his friend the late Mr. Lind, barrack-master in Sydney, and were eventually sold.†

In 1840, Captain Eyre's perilous journey from Adelaide to the Swan River proved the utter sterility of the waterless coast which he traversed. Between the meridians of Streaky Bay and Lucky Bay there appears to be scarcely any vegetation at all, except on the outlying islands, on some of which Brown had botanized when in Flinders' voyage, and on which he appears to have found very little. At the meridian of 118° again the peculiar vegetation of south-western Australia commences, as we know from Mr. Roe's explorations, which next come under review.

In 1848 a journey of discovery into the interior of south-western Australia was undertaken by J. S. Roe, Esq., Surveyor-General, during which excellent collections of plants were made and trans-

* An abstract of this journey was also communicated to the 'London Journal of Botany' (vol. vi. p. 364) by R. Heward, Esq.
† Some further information regarding Dr. Leichardt's expeditions will be found in the 'London Journal of Botany,' vols. iv., v., vi., and vii., communicated by P. B. Webb, Esq., and R. Heward, Esq.
mitted to Sir W. Hooker. Mr. Roe started from Cape Riche, and proceeded north-east to the Bremer Range, lat. 32° 35' S., long. 120° 30' E., and then south-east to Russell Range, whence he returned parallel to the south coast. The narrative of this journey, which contains much botanical information, was published in the 'Kew Journal of Botany,' vol. vi.

Dr. Ferdinand Mueller's extensive journeys and important labours come next under review. They extend already over a period of ten years of uninterrupted exertion in travelling, or collecting and describing, often under circumstances of great hardship and difficulty, and are of very great merit and importance.

Dr. Mueller first resided at Adelaide,* whence he removed to Melbourne, and was appointed Colonial Botanist at Victoria. In 1853 he visited the Fuller's Range, Mayday Hills, the Buffalo Ranges, Mounts Aberdeen and Buller, and the Yarra Ranges, whence he descended to the coasts of Gipps Land, and returned to Melbourne by Port Albert and Wilson's Promontory. In this journey he traversed 1,500 miles, and collected nearly 1,000 species of plants. This journey is noticed in his 'First General Report,' which contains a Catalogue of the Flowering Plants and Ferns of Victoria.

In 1854, Dr. Mueller visited more of the mountains of the colony, and explored many of the most difficult regions of South Australia; he also visited Lake Albert, the Murray Lagoons, the Cobbora Mountains, the Snowy and Buchan rivers, and the Grampian and Victoria ranges. During this expedition about 2,500 miles were traversed, and upwards of 500 additional plants collected. These are enumerated in Dr. Mueller's 'Second Report,' in which the catalogue of Victoria plants is raised to 1,500 species.

In 1854—5, Dr. Mueller again visited the Australian Alps, traversed the Avon Ranges, ascended Mount Wellington, crossed the Snowy Plains, reached the Bogong Range, and measured Mounts Hotham and Latrobe (7,000 feet), the loftiest in the Australian continent. Thence he proceeded to the Munyang Mountains, and afterwards to the south-east coast, when he returned to Victoria. The account of this journey is published in Dr. Mueller's 'Third Report,' wherein the Victoria Flora is raised to 2,500 species, including Cryptogamia, 1,700 being flowering plants.

In the intervals between these journeys Dr. Mueller has been incessantly employed in the duties of the Botanic Garden, in arranging and distributing his herbaria, and in publishing their novelties.

In 1855, Dr. Mueller accompanied Mr. Gregory in his celebrated expedition across northern Australia. Mr. Gregory's party left Sydney in a schooner, carrying their horses and all material with them. On the voyage out, Dr. Mueller collected on several islands off the east and north coasts of Australia, and landed with the party at the mouth of the Victoria River, in northwestern Australia, in September. The river was ascended, and the country to the south explored to the limits of the Great Desert in lat. 18° 20' S., long. 127° 30' E. From the Victoria River they traversed Arnhem's Land, and keeping within a hundred miles of the sea, reached the mouth of the Albert, in the Gulf of Carpentaria, on the 30th August. Not meeting there with the expected supplies, Mr. Gregory and his party proceeded eastward, parallel to the coast, to the Gilbert River; thence they travelled south-east, crossed the head of the Lynd, reached the Burdekin, followed it to the Suttor, and the Suttor to the Beyland, the Mackenzie, and the Dawson rivers, where they reached the first settlers' station on the 22nd November, and from thence proceeded to Brisbane and Sydney, which was reached without the loss of a member of the overland Expedition.

* A sketch of the vegetation of a part of this colony, viz. of the districts surrounding Lake Torrens, by Dr. Mueller, will be found in the 'Kew Journal of Botany,' vol. v. p. 105.
This extraordinary journey is second in point of interest and extent of unknown country traversed to Leichardt's only, and, unlike his, is no less fruitful of results in a botanical than in a geographical point of view. The energies of Dr. Mueller were here taxed to the uttermost; and the collections and botanical observations which were continuously and systematically made throughout the journey were brought safe to Sydney, and abound in novelty and interest. These have been sent to Kew, and a set retained for the herbarium at Melbourne. An excellent account of the vegetation of tropical Australia was drawn up by Dr. Mueller,* and communicated to the Linnaean Society, and published in its Journal (vol. ii. p. 137), and many of the plants discovered have been published by himself in that work, in the 'Kew Journal of Botany,' and in the 'Transactions of the Victoria Institute.'

It would be beyond the object of this sketch to enter into more detail upon Dr. Mueller's publications, which will be found in his 'Reports' alluded to, in the pages of the Transactions of the Philosophical Society and Pharmaceutical Societies of Victoria, in the 'Linnaea,' in the 'Kew Journal of Botany,' and in the 'Journal of the Linnaean Society of London.'

Mr. Babbage's expedition to the countries around and north-east of Lake Torrens was undertaken in 1858. Mr. Babbage was accompanied by a plant-collector, Mr. David Hergolt, who seems to have made a good herbarium, especially considering the desert nature of the country. The results are published in a separate Report on the Botany of the Expedition, by Dr. Mueller (Victoria, 1859).

In 1858, an Expedition under Mr. A. C. Gregory was despatched from Moreton Bay to discover traces of the unfortunate Dr. Leichardt, when collections were made by that officer along and near the Cooper's River and its tributaries in subcentral Australia, which have been enumerated by Dr. Mueller in the official Report.

III. COLONIAL BOTANISTS AND GARDENS.

The first Colonial Botanist of whom I have any information was Mr. Charles Fraser, who, as I am informed, was a soldier in the 73rd Regiment, then commanded by Lieut.-Col. M'Quarie. He was an indefatigable collector and explorer, and enriched the gardens of England by numberless plants. His collections of dried plants are, I believe, in the British Museum, and many are in the Hookerian Herbarium. He visited the Swan River in 1826-7, and Moreton Bay in 1828, and wrote excellent accounts of the vegetation of those districts (see Hook. Bot. Misc. vol. i. pp. 221 and 237). Mr. Fraser also visited Tasmania, and established the Botanic Garden in Sydney. He died at the close of 1831 or beginning of 1832. On Fraser's death, Mr. John M'Lean became Acting Superintendent, and held that post till the arrival of R. Cunningham.

Mr. Richard Cunningham was appointed in 1833, and was murdered in 1835 by the Blacks, when accompanying Major Mitchell's second journey (see p. cxx.), when Mr. M'Lean again became Acting Superintendent, and continued so till the arrival of Allan Cunningham in 1836, as mentioned in the notice of his life (p. cxxvi.). A. Cunningham soon after resigned, when he was succeeded by Mr. John Anderson, the botanical collector of Captain King's voyage to South America and survey of the Straits of Magelhaens, etc. It was on King's homeward voyage that Anderson was left at Sydney, where he made considerable collections, and held the appointment of Superintendent of the Garden till his death, when he was succeeded, in 1847, by Mr. Charles Moore, the present active

* See page xxxix of this Essay.
Superintendent, who has made extensive investigations, especially on the economic value of the vegetable products of New South Wales.

Of the actual date of the foundation of the Sydney Botanical Gardens I have no information. Mr. Heward, who has kindly endeavoured to trace its history for me in the records of the Colonial Office, finds the earliest official mention there, bearing date of 1817, but he thinks it was probably founded shortly after Governor M'Quarrie's arrival, in 1809. There are three other botanical gardens in Australia; that of Victoria, at Melbourne, under the direction of the indefatigable Dr. Mueller; that of Adelaide, under Mr. Francis; and that of Brisbane, superintended by Mr. W. Hill, who has already made some interesting and important discoveries in the Flora of his district.

IV. PRIVATE TRAVELLERS, AND COLLECTORS SENT OUT BY HORTICULTURAL ESTABLISHMENTS OR BY PRIVATE INDIVIDUALS.

In 1788, Mr. John White landed in Botany Bay, where, or at Sydney, he was resident for seven years as Surgeon-General to the new settlement. He collected a considerable number of plants, and made drawings of others, which were sent to Mr. Wilson, Mr. Lambert, and Sir James Smith, and published by the latter botanist in 'A Specimen of the Botany of New Holland,' the 'Exotic Botany,' etc., in White's 'Journal of a Voyage to New South Wales,' and other works.

About 1800, Mr. George Caley was sent to New South Wales by Sir Joseph Banks, and botanized there during the time of Brown's stay. According to Captain Sturt, he was the first person who attempted to scale the Blue Mountains. He resided ten years in the colony, and made extensive collections, which are preserved in the British Museum. After his return to England, he was sent to the West Indies as Superintendent of the Botanic Garden of St. Vincent's, where he died.

Colonel Paterson held a military appointment in New South Wales previous to 1794, when the command of the troops in the colony devolved upon him as Captain of the New South Wales Corps (afterwards 102nd Foot). He zealously devoted himself to investigating the botany of the colony, and also of the northern parts of Tasmania, where he was Lieutenant-Governor from 1804 till 1810 during which time he founded Launceston. His plants were sent to Sir J. Banks and Mr. Brown, and some are published in the Supplement to the 'Prodromus' and elsewhere.

I have already alluded to Mr. Peter Good, who accompanied Mr. Brown in the capacity of gardener in Flinders's voyage. He was an indefatigable assistant as collector of plants, and sent a vast number of seeds home to the Royal Gardens of Kew, the plants of which are described in Aiton's 'Hortus Kewensis.'

Mr. David Burton botanized in New South Wales in 1802, but under what circumstances I have no means of determining.

In 1823-5 and 1829, the vicinity of King George's Sound, Wilson's Promontory, Cape Arid, and Lucky Bay were explored botanically by Mr. Baxter, a gardener sent out by private enterprise to collect seeds and roots of Australian plants. Many of his specimens are in Sir W. Hooker's collections, and others in Mr. Brown's, the Proteaceae of which are included in the Supplement to the 'Prodromus Flora Novae-Hollandiae.'

In 1823, Franz Wilhelm Sieber, of Prague, a botanical collector, formed considerable collections during a seven months' sojourn in New South Wales, which were sold in numbered sets, bearing the label, "Flor. Nov. Holl."
In 1826, Mr. Robert William Lawrence, a settler in Tasmania, commenced exploring the northern parts of that island, and forming collections, which were communicated to Sir W. Hooker up till 1832, when he died. Some of these plants were published in the 'Companion to the Botanical Magazine,' 'Journal of Botany,' 'Icones Plantarum,' and elsewhere.

In 1830, Mr. John Lhotsky visited New South Wales, the alps of Victoria and Tasmania. His collections are dispersed.

Ronald Campbell Gunn, Esq., F.R.S. and L.S., to whose labours the Tasmanian Flora is so largely indebted, was the friend and companion of the late Mr. Lawrence, from whom he imbibed his love of botany. Between 1832 and 1850, Mr. Gunn collected indefatigably over a great portion of Tasmania, but especially at Circular Head, Emu Bay, Rocky Cape, the Asbestos and Hampshire Hills, Western Mountains, Flinders and other islands in Bass' Straits, the east coast, the whole valley of the Derwent, from its sources to Recherche Bay, the lake districts of St. Clair, Echo, Arthur's Lakes, and the country westward of them to Macquarie Harbour, and the Franklin and Huon rivers. There are few Tasmanian plants that Mr. Gunn has not seen alive, noted their habits in a living state, and collected large suites of specimens with singular tact and judgment. These have all been transmitted to England in perfect preservation, and are accompanied with notes that display remarkable powers of observation, and a facility for seizing important characters in the physiognomy of plants, such as few experienced botanists possess.

I had the pleasure of making Mr. Gunn's acquaintance at Hobarton, in 1840, and am indebted to him for nearly all I know of the vegetation of the districts I then visited; for we either studied together in the field or in his library; or when he could not accompany me himself, he directed one of his servants, who was an experienced guide and plant-collector, to accompany me and take charge of my specimens. I can recall no happier weeks of my various wanderings over the globe, than those spent with Mr. Gunn, collecting in the Tasmanian mountains and forests, or studying our plants in his library, with the works of our predecessors Labillardiere and Brown.

Mr. Gunn made a short visit to Port Phillip and Wilson's Promontory, and collected largely, noting all the differences between the vegetation of the opposite shores of Bass' Straits.

Mr. Collie, one of the naturalists in Captain Beechey's voyage to the west coast of North America, visited South-western Australia about the year 1832, and made collections in Swan River and Leuwin's Land.

Mr. James Backhouse visited Australia in 1832, and spent six years there. The journey was undertaken, as his narrative informs us, "solely for the purpose of discharging a religious duty," but owing to his knowledge of botany, his connection with a fine horticultural establishment (the Nursery, York), and his love of observing and collecting, the results of his journey have proved extremely valuable in a scientific point of view, and added much to our familiarity with Australian vegetation.

Mr. Backhouse first landed at Hobarton, and then, and on two future occasions, visited numerous parts of Tasmania, on the Derwent and Clyde, Macquarie Harbour, Port Arthur, Spring Bay, various stations on the north coast, and the mountainous interior; he also twice visited New South Wales, and made excursions to the Blue Mountains, Bathurst, Moreton Bay, Newcastle, Maitland, Port Macquarie, Illawarra, and Goulburn; and afterwards went to Port Phillip, Adelaide, King George's Sound, and Swan River. The journals of these various extensive journeys are extremely good, and though specially devoted to philanthropic objects, they omit no observations on natural history, and especially of botany, that their talented author considered might be worthy of such a record. Mr.
Backhouse formed a considerable herbarium, and made copious MS. notes (now in the Hookerian Library), which he liberally gave where he thought they would be most useful. Amongst his plants are many collected by Mr. (now Sir William) M'Arthur, one of the most accomplished and zealous patrons of science in Australia.

Baron Charles von Hügel, the celebrated Austrian traveller, visited the Swan River colony in 1833, and made considerable collections, some of which were published by Bentham, Fenzl, Schott, and Endlicher, in a work edited by the latter, and commenced in 1837, but never completed.

In 1838, Dr. Ludwig Preiss arrived at Swan River, and resided there for four years, travelling often with Mr. Drummond, and collecting largely. His plants were sold in numbered sets, and a complete account of them, published by various authors, in two octavo volumes, edited by Dr. Lehmann of Hamburg, and containing upwards of 2,000 species, including Cryptogamie.

Early in 1839, Mr. James Drummond, a resident in the Swan River, at Hawthornden, near Guildford, commenced preparing for sale in Europe sets of the plants of his district, which include a vast number of novelties, and rival in interest and importance those of any other part of the world. Mr. Drummond's exertions were actively continued for upwards of fifteen years, during which he made extensive journeys as far as King George's Sound in a south-east direction, and the Moore and Murchison rivers to the northward. Some accounts of his journeys and discoveries will be found in the 'Botanical Journal,' vols. ii., iii., and iv., in the 'London Journal of Botany,' vols. i., ii., and iii., and in the 'Kew Journal of Botany,' vols. i., ii., iv., v.

Dr. Lindley's able 'Sketch of the Vegetation of the Swan River Colony,' published in 1839, as an appendix to the 'Botanical Register,' is founded chiefly on Drummond's collections; and it contains a good account of many of the features of the climate and of the colony, many extremely valuable botanical notes on the plants, and figures of eighteen. Dr. Lindley records his obligations to Captain Mangles, R.N., and R. Mangles, Esq., and notices a paper on Western Australia by Dr. Milligan, published in the 'Madras Journal' for 1837.

Mr. J. T. Bidwill, a gentleman long resident both in Sydney and New Zealand, and possessed of a remarkable love of botany and knowledge of Australian plants, visited Moreton Bay and Wide Bay, and formed an excellent herbarium, which included many novelties, and was transmitted to Sir W. Hooker. Mr. Bidwill accompanied me in my excursions around Port Jackson, and impressed me deeply, both then and afterwards in England, with the extent of his knowledge and fertile talents. He was the discoverer of the Araucaria which bears his name, and of many other rare and interesting Australian and New Zealand plants. He died in 1851, from the effects of over-exertion, when cutting his way through the forests of eastern Australia, between Wide Bay and Moreton Bay. He was at the time engaged in marking out a new road, but lost his way, and after eight days' starvation was rescued, but only to succumb in acute pain to the injuries he had received.

In 1854, Dr. Harvey, F.R.S., Professor of Botany in Dublin, visited Australia for the purpose of investigating the Algology of its shores; he landed at King George's Sound, went overland to Swan River and Cape Riche, then to Melbourne, Tasmania, and Sydney, forming magnificent collections of Algae, many of which have been already published in the 'Phycologia Australica,' in this work, and elsewhere. Amongst the many zealous collectors of the Algae of the coast, not elsewhere mentioned in this sketch, are G. Clifton, Esq., of Fremantle, Dr. Curdie, of Geelong, Mr. Rawlinson, and Mr. Layard, of Melbourne, and in Tasmania, Mrs. M'Donald Smith, Mrs. W. S. Sharland, and especially the Rev. John Fereday, of Georgetown.

In 1839-42, Count Strzelecki, F.R.S., the accomplished Polish traveller, traversed the south-
eastern parts of Australia and Tasmania, but made no botanical collections. His excellent work 'On the Physical Features of New South Wales and Van Diemen's Land' is full of valuable information on all branches of science.

There are other private individuals of whose precise journeys I have no record, but who collected well, and often largely, as Major Vicary, of the Bengal Army, who seems to have been a very acute and indefatigable investigator of the New South Wales Flora, and a set of whose plants he has transmitted to Kew; Mr. Whittaker, who has sent valuable collections from Port Adelaide; Mr. G. Clowes, a gentleman who visited New South Wales for his health, and transmitted to Kew very copious and fine specimens of New South Wales plants. Mr. Robertson and Mr. Frederick Adamson, both settlers in Victoria, have formed very extensive and excellent collections there between the years 1840 and 1855, which have all been sent to Sir W. Hooker.

The Rev. Richard H. Davies has discovered many curious and some new plants on the east coast of Tasmania since the year 1833, which were communicated to Mr. Archer.

Dr. Joseph Milligan, of Hobarton (now Secretary to the Royal Society of Hobarton), has, since the year 1834, visited many parts of Tasmania, and made several most interesting discoveries, especially on its loftiest mountains and east coast.

Mr. Charles Stuart has been employed in Tasmania in collecting, at various times, chiefly, I believe, for Mr. Gunn, ever since the year 1842. Many of his discoveries have been published by Dr. Mueller, and are included in this work.

Dr. Thomas Scott collected in Tasmania, and transmitted specimens to Sir W. Hooker about 1835.

Mr. A. Oldfield (now, I believe, in Western Australia) has carefully investigated the Flora of several parts of Tasmania, and especially of the Huon River, and has also ascended some of its loftiest mountains. His name will be repeatedly found in the Tasmanian Flora, both as a zealous collector and as a careful and acute observer.

It remains only to mention my friend William Archer, Esq., F.L.S., of Cheshunt, who, after a residence of upwards of ten years in Tasmania, during which he sedulously investigated the botany of the district surrounding his property, returned to England in 1857, with an excellent herbarium, copious notes, analyses, and drawings, and a fund of accurate information on the vegetation of his native island, which have been unreservedly placed at my disposal. I am indeed very largely indebted to this gentleman, not only for many of the plants described, and much of the information that I have embodied in this work, but for the active interest he has shown during its whole progress, and for the liberal contribution of the thirty additional plates,* all of which are devoted to the Orchideae, and chiefly made from his own drawings and analyses.

As these pages were being prepared, I have received from Dr. Mueller an interesting botanical account of the Paramatta district, drawn out by W. Woolls, Esq., a zealous Australian botanist.

This brief notice would be neither complete nor satisfactory did it contain no allusion to the important services rendered to the botany of Australia by a few of its most eminent statesmen and settlers, of whom I would specially allude to the late Sir John Franklin, to Sir W. Dennison, Sir George Grey, and Sir Henry Barkly, as Governors, who have specially interested themselves

* The grant of her Majesty's Treasury towards this work is wholly laid out in the payment of the illustrations, and provided for only 170 of these. The remainder were defrayed out of a sum of £100, liberally placed at my disposal by Mr. Archer, to be expended on the work.
in the Botanical Gardens and Expeditions; and amongst private individuals, to Sir William M'Arthur; George M'Leay, Esq.; G. Bennett, Esq., and the distinguished naturalist, W. S. M'Leay, Esq., of Sydney.

P.S. At a meeting of the Linnaean Society, held on the 3rd of November, and after the printing of this Essay was completed, I heard an admirable paper read on the Geographical Distribution of Animals in the Malayan, New Guinea, and Australian continents and islands, by Mr. Alfred Wallace, who is still indefatigably investigating the zoology of those countries. The total absence of information as to the vegetation of New Guinea precludes my attempting any botanical corroboration of one of Mr. Wallace's most striking facts, viz. the complete difference between the zoology of Celebes and Borneo. These countries are separated by the Straits of Macassar, which are very deep, and the former belongs to the Australian zoological province, but the latter to the Malayan. The Straits of Lombok, to the south of those of Macassar, again, are, though only sixteen miles broad, also very deep, and separate in that latitude the Malayan from the Australian zoological province.

In Mr. Wallace's paper (which I have not seen) he appears to have adopted the same general views regarding the distribution of animals which I have promulgated for that of plants in the Introductory Essays to this and the New Zealand Flora; and establishes it on independent evidence of his own obtaining and of convincing strength. Mr. Wallace has further arrived independently at the same conclusion regarding the permanence of vegetable as compared with animal forms, which I have put forth at p. xii. in note.

I would further observe here, to avoid ambiguity, that my friend Mr. Darwin's just completed work "On the Origin of Species by Natural Selection," from the perusal of much of which in MS. I have profited so largely, had not appeared during the printing of this Essay, or I should have largely quoted it.

Kew, November, 4, 1859.
COLONIAL FLORAS.

By A. H. R. GRISEBACH, M.D.,

Professor of Botany in the University of Göttingen.

FLORA OF THE BRITISH WEST INDIAN ISLANDS.

To be completed in 6 Parts at 5s. each.

By Dr. J. D. Hooker, F.R.S., L.S., & G.S.

I.

FLORA OF THE ANTARCTIC ISLANDS.

2 vols., 200 Plates, £10. 15s. coloured, £7. 10s. plain.

"The descriptions of the plants of this work are carefully drawn up, and much interesting matter, critical, explanatory, and historical, is added in the form of notes. The drawings of the plants are admirably executed by Mr. Fitch, and we know of no productions from his pencil, or, in fact, any botanical illustrations at all, that are superior in faithful representation and botanical correctness."

Athenæum.

II.

FLORA OF NEW ZEALAND.

2 vols., 130 Plates, £12. 12s. coloured, £8. 15s. plain.

"The work is written in good plain English, with a view to the convenience of colonists, but without on that account being rendered in the smallest degree unscientific; quite the contrary. Let us add, that the beautiful execution of the work renders it a library-book, even for those who are not interested about natural history."

Gardeners' Chronicle.

III.

FLORA OF TASMANIA.

2 vols., 200 Plates, £17. 10s. coloured, £12. 10s. plain.

Lovell Reeve, 5, Henrietta Street, Covent Garden.